
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344359270

An Open System Architecture Framework for Interoperability (OSAFI)

Article in International Journal of Business Information Systems · September 2020

DOI: 10.1504/IJBIS.2020.10052134

CITATIONS

2
READS

2,096

3 authors:

Rashmi Jain

Montclair State University

64 PUBLICATIONS 342 CITATIONS

SEE PROFILE

Marina Evrim Johnson

Montclair State University

14 PUBLICATIONS 125 CITATIONS

SEE PROFILE

Abdullah Albizri

Montclair State University

21 PUBLICATIONS 166 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marina Evrim Johnson on 24 September 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344359270_An_Open_System_Architecture_Framework_for_Interoperability_OSAFI?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344359270_An_Open_System_Architecture_Framework_for_Interoperability_OSAFI?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rashmi-Jain-7?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rashmi-Jain-7?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Montclair-State-University?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rashmi-Jain-7?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marina-Johnson?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marina-Johnson?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Montclair-State-University?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marina-Johnson?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdullah-Albizri?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdullah-Albizri?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Montclair-State-University?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdullah-Albizri?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marina-Johnson?enrichId=rgreq-128bac7709a4f6809188c528912ca148-XXX&enrichSource=Y292ZXJQYWdlOzM0NDM1OTI3MDtBUzo5MzkwOTUwMjcxMDU3OTJAMTYwMDkwOTExMDUxNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 1

An Open System Architecture Framework for Interoperability
(OSAFI)

ABSTRACT

Interoperability of systems is a critical factor for firms to make informed operational and
strategic decisions and achieve a competitive edge in the marketplace. As a result, open
systems which have a higher level of interoperability with secured and stable operations
have significant relevance in today’s global economy. Interoperability is accomplished
through appropriate system architecture and design. Thus, to achieve the open system
interoperability, this paper proposes a framework that looks at system architecture at various
levels of abstraction/implementation and identifies the required attributes at each of these
levels. This framework can be used as a reference to analyse and determine interoperability
requirements at all levels and prioritize the required aspects of interoperability.

1. INTRODUCTION

Many natural disasters and needless loss of human life due to lack of timely and critical
communications and information sharing have repeatedly demonstrated the importance of
having higher degrees of interoperability between systems and those relying upon them. The
need for interoperability is historic, and lack of interoperability results in battlefield failures
and substantial financial losses due to lack of common network protocols, shared message
formats, and communication channels. Worldwide extended enterprise systems now
distributing information, resources, and materials need to interoperate in secure and safe
network environments. Also, systems must be deployed, redesigned, and enhanced at faster
paces and in a shorter time to address the growing market demands and increased
competition. This has driven the need to design systems possessing inherent

interoperability, along with efficient deployment of services in networked environments. In
order to obtain higher degrees of interoperability, architecture frameworks enabling open
attributes is required. Existing literature has pointed out the need to address interoperability
issues through architecture and design practices (Bhardwaj et al., 2018; Davis et al., 2002;
Klaseen and Cunningham, 1994; Kiljander et al., 2014; Mills, 1993). Key principles of an
interoperability architecture for public administration is proposed in European Public
Administration Network (2004) (Kubicek and Cimander, 2009). The various types of
interoperability for public administration are organizational interoperability, semantic
interoperability, technical interoperability, and governance (Sarantis et al., 2008).
Numerous Interoperability assessment systems, such as Levels of Information Systems
Interoperability (LISI) and The Interoperability Score Model have also been established
(C4ISR Architectures Working Group report, 1998; Ford et al., 2007).

As a system and its parts work together, interoperability is represented from different
aspects within numerous different contexts such as data, process, applications, functions,
components, information, resources, protocols, organizations, and enterprises. Arapi et al.
(2007), Igamberdiev et al. (2018), Jardim-Goncalves (2012), and Ponis et al. (2012) discuss
the multi-level problem of interoperability in terms of representations, objects, concepts,
domains, contexts, and meta-contexts. They also state that high levels of interoperability

 2

characterize open systems from the aspects mentioned above, and the prerequisite for
designing for interoperability is establishing interconnections. A universally accepted
framework for interconnection is the OSI (Open System Interconnection) model. Proponents
of the OSI model assert that system interoperability can be achieved through extrapolating
or extending the OSI model (Abuelma’atti, et al., 2006). Because the OSI communication
stack does not accommodate understanding in communications and system
interconnectivity, many researchers emphasize the need for semantic interoperability with
multiple layers (Alaya et al., 2015; Jabbar et al., 2017; Kiljander et al., 2014; Pollack and
Hodgson, 2004; Yahia et al., 2012). For example, a model proposed by Pollack and
Hodgson (2004) contains four layers as described below.

• Syntax Layer: binary format of the application layer message
• Schema Format Layer: physical structure of information classifications
• Referent Layer: relationships among conceptual and implementation schema
• Domain Context Layer: abstract model used to align context.

This paper investigates current interoperability issues and submits a new framework to
achieve greater levels of interoperability. An abstract framework for an open system
interoperability architecture is designed using a multi-level hierarchical approach similar to
OSI model. The multi-levels of architecture abstraction include physical, functional,
system, enterprise, and extended enterprise. At each of these levels, the various factors that
address all aspects of interoperability such as data, process, and information are identified.
The framework also groups these interoperability factors under different interoperability-
related attributes of architecture such as security, scalability at each level of architecture
abstraction.

Figure 1. Research Methodology and Organization of Paper.

In the following sections of this paper, types and levels of interoperability are described, and
architecture attributes supporting interoperability are examined. A framework identifying
the required factors of interoperability and related architecture attributes at various levels of

 3

architecture abstraction is then proposed. Levels of architectural abstraction are defined
along with interoperability related architecture attributes taxonomy. This framework is
further converted into a survey tool to assess the level of interoperability at each level of
architecture and the corresponding architecture attributes. This survey tool and its pilot
validation results are then discussed, and recommendations are provided.

2. INTEROPERTABILITY: DEFINITION, TYPES, LEVELS, & CHALLANGES

The evolution of systems demands scalability and adaptability to interoperate with other
existing and new systems. As a result, interoperability becomes a critical and pre-requisite
system characteristic and must be of inherent quality. The growing usage of the term
interoperability in systems engineering literature over the past few years shows the
widespread understanding of its importance and criticality. In order to adequately and
clearly define interoperability, the need and its importance have to be studied within various
contexts specifically from the systems engineering perspective.

2.1 Interoperability Definitions

There are numerous definitions of interoperability, and this number is probably growing due
to the continuing analysis of this problem domain in defence and commercial environments.
In a survey on interoperability measurement, Ford et al. (2007) have catalogued thirty-four
sources having interoperability definitions. A very general and context-independent
interpretation of this definition is that interoperability allows components, sub-systems, and
systems to (inter)-operate with each other. In other words, interoperability is a result of
higher degrees of systems integration to obtain complete system functionality.
Interoperability provides an ability of multiple systems or components to exchange
information and to use that particular information that has been transferred (A Compilation
of IEEE Standard Computer Glossaries, 1991).

Interoperability is the ability to interconnect business-aware software products irrespective
of their suppliers, date, and origin, to provide access to corporate data and functionality by
any authorized user, and to maintain theta interconnection and access over changes in
suppliers, date, and origin, where business-aware software provides functions that are
characteristics of that particular business (The Bellcore OSCATM Architecture, 1999).
Interoperability is also defined as a collection of communicating entities to share specified
information according to a common operational semantics (Alaya et al., 2015, Brownsword
et al., 2004; Carney et al., 2005; Kundu and Tyagi, 2017).

The Authoritative Dictionary of IEEE Standards Terms (2000) distinguishes
“interoperability” as “software interoperability and “hardware interoperability” and relates
the interoperability to “compatibility” and “conformance.”

1. Software interoperability: The ability of two or more systems or elements to
exchange information and to use the information that has been exchanged.

2. Hardware interoperability: The capability for units of equipment to work together to
do useful functions.

 4

3. The capability: promoted but not guaranteed by joint conformance with a given set
of standards, that enables heterogeneous equipment, generally built by various
vendors, to work together in a network environment.

4. The ability of two or more systems or components to exchange information in a
heterogeneous network and use that information.

These definitions given by IEEE focus on how to accomplish or a means of achieving
interoperability. On the other hand, Hastings and McManus (2006) provide a solution-
independent definition that captures all aspects of interoperability. According to these
researchers, “Interoperability can be defined as the ability of the system to “play well with
others,” both with systems it was originally designed to work with, and with future systems;
may be desirable in and of itself; also enhances versatility, flexibility, and evolvability of
systems of systems”.

2.2 Interoperability Types

There have been numerous types of interoperability documented in various contexts. For
example, Ford et al. (2007) have provided a reference listing of sixty-four different
interoperability types, including operational interoperability, technical interoperability,
coalition interoperability, and constructive interoperability. Pollack and Hodgson (2004)
emphasize data understanding and semantics and provide a different viewpoint regarding
interoperability types as illustrated in Table 1.

Table 1. Interoperability (IO) Types Increase in Complexity Structure (Pollack and
Hodgson, 2004, pp. 43-44)

IO Type Definition

Data
Semantic interoperability of data enables data to maintain original meaning
across multiple business contexts, data structures, and schema types by using
data meaning as the basis for transformations.

Process
Semantic interoperability of process enables specific business processes to be
expressed in terms of another by inferring meaning from the process models
and contextual metadata and applying it in a different process model
elsewhere or outside the organization.

Services/
Interface

Semantic interoperability of services enables a service to look up, bind, and
meaningfully communicate with a new service without writing custom code
in advance.

Application
Semantic interoperability of applications enables the granular interactions of
methods, transactions, and API calls between heterogeneous software
applications to be platform independent.

Taxonomy
Semantic interoperability of taxonomy enables any category to be expressed
in terms of other categories by leveraging the intended meaning behind the
category definitions.

Policy
Semantic interoperability of policies and rules enables businesses to protect
valuable resources regardless of what technologies their security mechanisms
have been implemented in or how complex the rights management issues
have become.

 5

IO Type Definition
Social
Network

Semantic interoperability of social networks enables people in different
communities of interest to network, infer, and discover meaningful
connections through previously unknown contacts and interests.

2.3 Interoperability Levels

Table 2 provides different levels of interoperability based on various interoperability
assessment models. Usually, interoperability levels are associated with interoperability
attributes used in the model (Wassermann and Fay, 2017). Please note that some models,
such as the System of Systems Interoperability (SOSI) Model proposed by Morris et al.
(2004) do not have any levels.

Table 2. Levels of interoperability (IO) differ amongst Assessment Models (Ford et al.
2007)

Level
or

Layer

Levels of
Information
System IO
(LISI) 1998

Layers of
Coalition
IO (LCI)

2003

NATO C3
Technical

Architecture
Reference

Model for IO
(NMI) 2003

Organizational
IO Agility

Model (OIAM)
2005

Levels of
Conceptual
IO Model
(LCIM)

2006

0 Isolated Static None

1 Connected Physical Unstructured
data exchange Amenable Technical

2 Functional Protocol Structured data
exchange Accommodating Syntactic

3 Domain Data/Object
Model

Seamless
sharing of data Open Semantic

4 Enterprise Information
Seamless
sharing

of information
Dynamic Pragmatic

5 Knowledge/
Awareness Dynamic

6 Aligned
Procedures Conceptual

7 Aligned
Operations

8
Harmonized/

Strategy
Doctrines

9 Political
Objectives

 6

2.4 Challenges of Interoperability

Interoperability is a challenge and difficult to achieve in practice, whether the goal is to
increase interoperability between systems that originally did not interact, or to architect new
systems designed to interoperate at the enterprise level from inception (Petcu, 2011; Steel et
al., 2012). The advent of the extended enterprise, where multiple disparate enterprise
architectures must interoperate to achieve shared commercial objectives presents a complex
interoperability challenge. Service-Oriented Architectures (SOA) is an approach poised to
meet this challenge (Papazoglu and Van den Heuvel, 2007). Maintaining interoperability
with legacy systems as new systems are deployed sometimes conflicts with achieving
greater levels of interoperability among the newer systems. This necessitates trade-offs, and
in some cases, decisions are made to accept reduced interoperability between older legacy
and newer systems. Interoperability is also an issue for Commercial-off-the-shelf (COTS)
based systems integration (Bhuta and Boehm, 2007; Jain et al., 2010; Tu et al., 2002).
Standards and architecture play an important role in the interoperability of COTS-based
systems integration. Architecture also influences the interoperability of both COTS and
legacy components. Component interoperability has become a concern because companies
integrate COTS products and assemble modules from various sources into a single
application. Despite these challenges, interoperability has been addressed through some
common guiding principles such as compliance to interface standards, deriving system
interoperability requirements and testing against them, use of standardized communication
interfaces and middleware, and implementation of SOA.

Within the context of a SOA, Erl (2016) describes the concept of inherently interoperable
services. SOA allows architects to implement service descriptions and messages that are
highly standardized, resulting in “intrinsic interoperability” where application customization
is reduced, and the degree of modelling is enhanced. Erl (2007) establishes SOA Principles
instead of interoperability levels or attributes and relates them to intrinsic interoperability as
shown in Table 3.

Table 3. SOA Principles Supporting Intrinsic Interoperability (Erl 2007, pp. 363)

Principle SOA Relationship
Standardized
Service
Contract

The fact that service contracts are consistently standardized guarantees a
baseline measure of interoperability because of natural compatibility
between data models defined in technical service contracts.

Service Loose
Coupling

Reducing the amount of required service coupling fosters interoperability
by making individual services less dependent on each other and therefore
more open to sharing data with different service consumers.

Service
Abstraction

Service Reusability considerations naturally increase interoperability as
they outfit services with design characteristics geared for repeated usage
by numerous service consumers (with which reusable services will need to
effectively interoperate).

Service
Autonomy

By increasing a service's autonomy, it establishes itself as a more reliable
enterprise resource with predictable runtime behavior. This, in turn,
increases its attainable level of interoperability

Service
Statelessness

Through an emphasis on stateless design, the availability and scalability of
services increase, allowing them to interoperate more frequently and
reliably.

 7

Service
Discoverability

To enable interoperability between a service consumer and a service, the
appropriate service must first be located. Therefore, the application of the
Service Discoverability principle increases the chances for a service to
maximize its interoperability potential.

Service
Composability

For services to be repeatedly composable, they must be highly
interoperable. Therefore, shaping each service into an effective
composition member increases its native ability to interoperate with
others.

SOA is a more specialized concept, applicable to the enterprise level of architecture and, as
its name implies, the principles are strictly related to services without any supposition of a
hierarchal structure of components. SOA services, although composable, are flat and
assume support from the lower levels of the OSI model. The accomplishment of Erl’s
principles for intrinsic interoperability requires careful design activities to be made early in
the SOA deployment process to attain the benefits.

3. INTEROPERABILITY THROUGH ARCHITECTURES: BALANCING
COMPLIANCE AND DESIGN FLEXIBILITY

One typical pattern in addressing the need for interoperability in a system is through the
compliance requirements and the system architecture. Thus, this section researches the
relationships between interoperability, standards, system architecture, and integration. The
primary goal here is to find out if adherence to standards leads to better interoperability,
whether interoperability can be addressed through architecture, and how architecture
influence interoperability. When these questions were studied in detail, it was found that
interoperability can be best achieved by two approaches, one by maintaining compliance
and another by implementing flexible designs.

Compliance can be defined as conformance to standards and regulations, which indicates
that such systems or components meet the requirements specified by standards and
regulations. The International Organization for Standardization (ISO) differentiates between
standards and regulations. A standard is a document approved by a recognized body, that
provides, for common and repeated use, rules, guidelines, or characteristics for products,
processes or services with which compliance is not mandatory. On the other hand, a
regulation is a document, which lays down product, process, or service characteristics,
including the applicable administrative provisions, with which compliance is mandatory.
Conformance (for software and hardware) to standards indicates that such hardware or
software meets the requirements specified by a standard. COTS-based systems help this by
introducing more standardized components into the marketplace that are widely adopted.

Compliance results in higher compatibility among systems and system components.
Compatibility is sometimes used synonymously to “interoperability.” Compatibility is
defined as the ability of two or more systems or components to perform their required
functions while sharing the same hardware or software environment (The Authoritative
Dictionary of IEEE Standards Terms, 2000). Compatibility (for hardware) is defined as the
degree to which devices may be interconnected and used, without modification, when

 8

designed as defined throughout a specified standard. (i.e., mechanical, electrical, or
functional compatibility). Compatibility (for programmable devices) is the degree to which
devices may be interconnected and used, without modification, when designed as defined
throughout a specified standard. Flexible designs promote both “flexibility” and
“adaptability”. Flexibility characterizes system’s ability to be easily changed or modified. In
contrast, adaptability describes a system’s ability to adapt itself towards changing operating
environments.

Figure 2 shows the degree of interoperability that can be achieved by adopting the two
approaches, namely, compliance and design flexibility. The y-axis shows the degree of
compliance and x-axis shows the degree of “design flexibility.” The resulting benefit or
effect of compliance and flexibility are shown on the opposite side of the chart. For
example, uniformity resulting from compliance is shown on the opposite side of the
compliance (Y) axis. By having a greater level of compliance, a uniform design is obtained
– conversely, a lower level of compliance results in a lower level of uniformity in
architecture and design. Flexible designs promote innovation. Innovation is a by-product of
flexible architecture and design.

In the left bottom quadrant (Figure 2) of the matrix, the degree of compliance and the degree
of “design flexibility” is low, indicating that the systems are “isolated”. Isolated systems are
not designed based on standards, nor are their designs flexible and adaptable to achieve a
level of interoperability. Once the degree of compliance increases, systems become
“standardized,” as shown in the upper left quadrant, indicating that systems and their
components are designed conforming to standards. At this level of compliance, even though
the design flexibility is low, standardized systems can provide some level of
interoperability. On the other hand, once the degree of “design flexibility” increases while
the degree of compliance is on the lower side of the matrix, the systems are “customized” as
shown in the right bottom quadrant. This level of customization shows that systems are
designed to maintain flexibility and adaptability but are not necessarily compliant with
standards. At this level of customization, without a significant degree of compliance to
standards, some level of interoperability can be obtained.

“Open” systems provide the maximum level of interoperability as shown in the top right
quadrant of the matrix. Open systems comply with open standards allowing for design
flexibility at the same time. Open systems provide the maximum level of flexibility and
therefore are preferred over other levels of interoperability of the systems. To achieve
openness, a system is required to comply with standards, regulations, and other regulatory
requirements that support open systems while simultaneously adopting flexible system
designs. Open systems support different aspects of openness, namely, interoperability,
flexibility, adaptability, and adherence to open standards. According to this analysis and
Figure 2, interoperability can be best achieved by two approaches, one by maintaining
compliance and another by implementing flexible designs. Use of a local data vocabulary
could be viewed as customization; therefore, the open architecture matrix as shown in
Figure 2 is not perfect. In the context depicted above, openness is ideal – there is a
realization that with autonomy, a single homogeneous architecture is impractical, and
universal compliance to standards impossible.

 9

Figure 2. Open Architecture Matrix

4. INTERCONNECTION TO INTEROPERABILITY ARCHITECTURES AND

OPEN VS. CLOSED SYSTEMS AND THEIR RELATIONSHIOPS TO
INTEROPERABILITY

Interoperability can be viewed from different levels. When two systems are capable of
exchanging information, they are interconnected. When two interconnected systems are also
capable of understanding and processing the information exchanged, they are defined as
interoperable. Therefore, Interconnectivity is a means to an end, where interoperability is
the goal (Gravina et al., 2018; Klaseen and Cunningham, 1994). A necessary step in
achieving interoperability is to define an interconnection architecture comprising the
protocols used to transfer data between systems. Additionally, an interconnection
architecture must define various details relating to the infrastructure that supports the data
transfer protocols, such as a directory schema, and system and network resource
management (Czarnecki and Spiliopoulou, 2012; Guijarro, 2007; Klaseen and Cunningham,
1994). The second necessary step in achieving interoperability is to reach a common
understanding of how data is to be interpreted and used, and what each function and sub-
system can do (Haslhofer and Klas, 2010; Klaseen and Cunningham, 1994). Functions of
one layer of architecture are decoupled from the functions of the other layer. A high enough
level of decoupling can be expected to support interoperability (Alqaoud, 2010; Mills, 1993;
OSCATM, 1999). In order to have integrated operations, a loosely coupled system is required
to be frequently bound together by a common communication and processing protocol.
Interoperability must be provided among building blocks (functional and physical) for better

 10

operational control (Mills, 1993). Interoperability also provides operational flexibility (Dai
et al., 2015; Klaseen and Cunningham, 1994).

Interoperability can be considered as the next generation or a more advanced or evolved
form of interconnectivity. To achieve open interconnections, the OSI model is
predominantly used. But as the context of interconnection is moving from applications to
systems, enterprises, and businesses, there is a need to extend this model to address the
interoperability between the extended contexts. By studying the various existing levels of
interoperability and the means by which interoperability is achieved through architecture,
this study develops an Open System Architecture Framework for Interoperability (OSAFI),
which is the focus of the following sections.

An open system is a system that can exchange energy, material, and information with its
environment continuingly. Such exchange is enabled through the use of open (i.e., well
defined, widely used and consensus-based) standards, protocols, languages, and data
formats in developing systems. The focus of attention in an open system is on key interfaces
(Gillis, 1999). An interface is designated as a key interface when the technology turnover is
rapid and design risk is high on either side of the interface, and/or the system elements on
one or both sides of the interface exhibit a high failure rate or are costly. Use of an open
standard is the preferred method for implementing a key interface (OSJTF, 1996).

A closed system is characterized by closely held, privately owned standards, protocols,
languages, and data formats that are either unavailable to outsiders or are available only at a
very high license fee. Closed systems also include those that were designed by a single
company for a single program or a small number of programs. In contrast, an open system is
a system designed using a collection of interacting and integrated software, hardware and
human components that are based on consensus-based, de jure or if not available, de facto
standards that are easily accessible to all interested parties (OSJTF, 1996). Table 4
summarizes some critical distinctions between open and closed systems and relates the open
system characteristic to interoperability by assessing the degree of correlation to
interoperability along with the applicable architectural abstraction level.

Table 4. Characteristics of Open and Closed System

Characteristics Closed System Open System

Correlation Between
Characteristics & IO and
Applicable Architecture

Level

Interfaces,
languages, and
data formats &
protocols

Closely held and
private

Openly and
widely held and
publicly
available

High correlation at all levels of
architecture. Being publicly
available may violate security
concerns and policies at system
level and above.

 11

Critical
Importance

Given to unique
design and
implementation

Given to
interfaces
management and
widely used
conventions

High correlation at all levels of
architecture. Existing Internet
protocols provide
commonality.

Modularity Less emphasis Heavy emphasis

Low Correlation at all levels of
architecture. Mostly applicable
to upgrade with minimum
disruption.

Vendor and
Technology
Dependence

Very dependent Very
independent

Medium correlation at system
level and below. COTS and IT
standards ubiquitous and
interoperable. Vendors must
comply with standards.

Number of
implementation
and interfaces

Minimization of
the number of
implementations

Minimization of
the number of
types of
interfaces

High Correlation especially at
functional level for streamlined
workflows. At enterprise level
and above, this may enhance
isolation and redundancy.

System
Integration

Difficult and
more costly
integration

Easier and more
cost-effective
integration

High correlation at all levels.
Interoperability built into
integration procedures.

Portability,
connectivity,
interoperability,
and scalability

Low High High Correlation at system
level and above.

Vendor Usage Use of sole-
source vendor

Use of multiple
vendors

Medium correlation at all
levels. More vendor choices
exist at lower architectural
level.

Expansion and
Upgrading

Requires
considerable
time, money, and
effort

Easier, quicker,
and less
expensive

Low correlation at all levels.
Maintaining interoperability
usually limits choices and
places. Constraints on
expansion.

Cost of
Ownership Higher total cost Lower total cost

Low correlation at all levels.
But there is cost of
interoperability at all levels.

Technology
Transfer

Slower and more
costly

Faster and less
costly

Low Correlation at all levels.
This is supported by
modularity. Interoperability
usually drives need for
technology transfer.

 12

Components,
interfaces,
standards, and
implementations

Selected
sequentially

Selected
interactively

High Correlation at all levels.
There is need to know
compatibility with other
systems and enterprises.

Life Expectancy Shorter Longer

High correlation especially at
the system level and below.
Better IO means longer life
expectancy.

Adaptability
Less adaptable to
change in threats
and technologies

More adaptable
to evolving
threats and
technologies

High correlation at all levels.
IO link to changing standards.

Primary Focus

Focusing mostly
on development
cost and meeting
present mission

Focusing on
total costs of
ownership,
sustainment, and
growth

Medium correlation at all
levels of architecture.

User’s Role
User as the
producer of
systems

User as the
consumer of
components

High correlation at all levels.
Applicable to system level and
above, especially SOA.

System Influence Rigid and slow Real time and
cybernetic

High correlation especially
where governance is
manifested (e.g., above system
level).

Relationship
with prime
contractors,
suppliers, and
vendors

Adversarial Symbiotic
High correlation especially at
Extended Enterprise level of
abstraction.

5. OPEN SYSTEMS ARCHITECTURE FRAMEWORK FOR

INTEROPERABILITY

The Open Systems Joint Task Force has defined an open systems approach in their draft
(version 1.0, October, 2001) and subsequent versions as “…an integrated business and
technical strategy that employs a modular design and, where appropriate, defines key
interfaces using widely supported, consensus-based standards that are published and
maintained by a recognized industrial standards organization.” Some of the objectives that
the open systems strategy aims to achieve are as follows:

 13

• adapt to evolving requirements and threats
• facilitate systems integration
• reduce the development cycle time and total life-cycle cost
• ensure that the system will be fully interoperable with all the systems which it must

interface, without major modification of existing components
• enhance commonality and reuse of components among systems
• mitigate the risks associated with technology obsolescence
• mitigate the risk of a single source of supply over the life of a system
• enhance life-cycle supportability

In order to address the openness of systems as described above, there are some architectural
and design considerations that need to be provided during system design. It is these
architecture and design considerations that will support and preserve interoperability as
defined for a given system. The authors of this paper used such architectural and design
considerations as the basis to develop a framework. The proposed framework could be used
as a reference to explore the requirements of interoperability at each level of architecture
abstraction.

As a first step in developing this framework a collection of various aspects of
interoperability such as data, process, resources have been analysed by exploring the various
interoperability models such as, Levels of Information System Interoperability (LISI)
(C4ISR Architectures Working Group report, 1998), Organizational Interoperability
Maturity Model (OIM) (Clark and Jones, 1999), NATO C3 Technical Architecture
(NC3TA) Reference Model for Interoperability (NATO Allied Data Publication, 2003),
Levels of Conceptual Interoperability (LCIM) (Tolk and Muguira, 2003), Layers of
Coalition Interoperability, System of Systems Interoperability (SOSI) Model (Morris et al.,
2004), and Basic Interoperability Data Model (BIDM) (IEEE 1420.1, 1995). Then, the
authors have further explored the factors of architecture that can influence interoperability
such as interfaces, protocols (standard), data, and layers (building blocks) (Klaseen and
Sydir, 1995; Klaseen and Cunningham, 1994; Mills, 1993; Janssen, 2012). It is important to
note that how these factors are addressed in architectures can vary. and some examples
include communication between components and interfaces, transfer data between systems,
as well as semantic integrity constraints/consistency. Afterward, the authors have
categorized these factors in terms of how they would relate to different levels of architecture
abstractions and finally identified the requirements for the factors at each level of
architecture abstraction.

6. LEVELS OF ARCHITECTURE ABSTRACTION: INTEROPERABILITY &

INTERFACES

A systems approach to architecture and design emphasizes on both abstraction and detailed
design. Abstraction supports a holistic design and better understanding of interfaces and
interoperability at each level. The authors adopt a 5-level architecture abstraction to address
how to achieve and implement interoperability at each level. These levels of architecture
abstraction are shown in Figure 3. In addition to the five levels of abstraction,
interoperability related architecture attributes are listed. These attributes are applied to each

 14

level of architecture abstraction and will be discussed later in more detail. This method
follows the approach taken by some other interoperability models as discussed, but instead
of using levels of interoperability, architecture levels are employed. Since different
architectural approaches are accommodated by this proposed method, the aspect of multiple
views is shown (e.g., some views of system architecture contain an organizational
architecture in addition to the physical and functional, but in this case, organizational
aspects are reserved for the enterprise level).

Figure 3. Architecture Levels of Abstraction and Attributes Comprise the OSAFI.

At the physical architecture, which is the lowest level of architecture abstraction,
specifications of physical components and parts are provided, and most of the
interoperability issues and implementations are addressed. Physical architecture defines how
the physical components and parts work and integrate. It also describes the partitioned
elements of the system with complete definitions of the performance characteristics of the
resources. Physical interoperability occurs between the physical components and parts of
the system. Physical interoperability is the capability for physical components and parts of
the system to operate together to do useful functions.

The next level of architecture abstraction is functional architecture. It is a logical model
that captures the transformation of inputs into outputs using control information. This
definition adds the flow of inputs and outputs throughout the functional decomposition;
these items that comprise the inputs and outputs are commonly modelled via a data model.
An IDEF0 model without any mechanisms can be used as the modelling technique to
represent the functional architecture at this level of detail. In other words, IDEF0 is a logical
model of a functional decomposition plus the flow of inputs and outputs, to which
input/output requirements have been traced to specific functions and items (inputs, outputs,
and controls). Functional interoperability is observed between the physical parts and

 15

components of the system when they are integrated and work together. Functional
interoperability is the ability of physical components and parts of the system to function
together, exchange information, and use the exchanged information.

The physical and functional architecture make up the system architecture. The system
architecture is the structure in terms of components, connections, and constraints of a
product, process, or element (Maier and Rechtin, 2009). System architecture is a logical
construct for defining and controlling the interfaces and the integration of all the
components of the system (Zachman, 1987). It is the organizational structure of a system or
component, their relationships, and the principles and guidelines governing their design and
evolution over time (IEEE 610.12-1990). In other words, it is the fundamental organization
of a system embodied in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution (Hilliard, 2000). Systems
interoperability is the capability of systems to work together to do required functions,
exchange information, and use the exchanged information when integrated with other
systems and its environment. Systems interoperability requires compatibility and ability to
function together with other systems, both with systems it was originally designed to work
with, and with future systems.

An enterprise can also be viewed as a system of systems, and enterprise architecture
describes how enterprise systems interoperate. Enterprise Architecture is about
understanding all of the different elements making up the enterprise and how those elements
inter-relate. An enterprise in this context is any collection of organizations that has a
common set of goals/principles and/or single bottom line. In that sense, an enterprise can be
a whole corporation, a division of a corporation, a government organization, a single
department, or a network of geographically distant organizations linked together by
common objectives. Enterprise interoperability is the level of interoperability between the
systems within an enterprise. Enterprise interoperability demonstrates the ability of
enterprise systems to provide services to and accept services from other systems within the
enterprise and to operate effectively together.

Extended enterprise architecture describes how an enterprise and its suppliers and partners
are linked together by information flows, integrating knowledge, design, and production.
These arrangements are commonly long-term and/or permanent and represented as
Extended Enterprises (E2) architectures. Extended enterprise architectures could take the
form of a Business to Business (B2B) or Business to Customers (B2C) architecture or
several others that exist today. Interoperability addressed through extended enterprise
architecture facilitates business interactions beyond the boundaries of an enterprise. This
may be termed as extended business interoperability. Due to emerging interconnectivity
needs in the business and technology world, enterprise systems are required to integrate
with the systems outside the enterprise. Business interoperability is the ability of enterprise
systems to provide services to and accept services from other systems outside the enterprise
and to operate effectively together.

In order to achieve higher levels of interoperability, all the requirements and factors of
interoperability need to be addressed at all the levels of architecture abstraction discussed

 16

above. Therefore, the authors proposed a framework called “The Open System
Interoperability Architecture framework (OSIAF),” which can be used to identify such
requirements and factors of interoperability at various levels of architecture abstraction. To
design this framework, first a subset of architecture attributes that can be utilized to resolve
interoperability issues have been identified by reviewing the existing research regarding the
factors that provide good and reliable architecture (Abuelma’atti et al., 2006; Arapi et al.,
2007; EPAN, 2004; Jain et al., 2008; Keshav and Gamble, 1998; Klaseen and Cunningham,
1994; Mills, 1993) Then, the factors of good architecture have been compared with
attributes of interoperability architectures. Based on this analysis, the authors have identified
the attributes that focus on interoperability issues as listed in Table 5.

Table 5. Important Interoperability Attributes.

Attribute Name IO Applicability
1. Commonality Aims to establish commonality between systems

2. Compliance Aims to help towards complexly developed business

applications to be interoperable and ensure data and
application integration across different platforms such as the
cloud and on-premise data centres.

3. Flexibility Allows introduction of new elements into the system; thus,
allowing to maintain interoperability.

4. Modularity Provides rapid and flexible development, thus allows
interoperability among different systems

5. Orthogonal Changes in one part of a system should occur without
changing other parts

6. Portability Enables organizations to move data among several resources
and provide a degree of interoperability

7. Reliability,
Maintainability, &
Availability (RMA)

Provides the baseline for architecture components to
interoperate with a larger system. It is expected that system
architecture should reach the requires RMA level to achieve
interoperability

8. Responsiveness Allows a prompt reaction to changing business needs increase
the level of interoperability (e.g., adaptation of cloud systems
and their existence and co-operation with on-premise data
centres)

9. Robustness/Versatility Helps systems to operate near normalcy in the presence of
errors and faults; thus, providing system interoperability
during unexpected adverse environments

10. Scalability Offers high security and massive scale between devices,
applications, and systems. With the rise of Internet of Things
(IoT) and Artificial Intelligence (AI), this is important to
realize full interoperability

11. Security Provides the rules and boundaries for data and information
sharing (e.g., interorganizational) and facilitates security
management operations; thus, enables interoperability of

 17

multiple systems at various levels.
12. Simplicity Achieves IO with more straightforward and simpler set-up
13. Testability Facilitates the definition of a method that enables testing the

level of achievement of interoperability improvement

To form an interoperability architecture attribute taxonomy, the authors have categorized
the above interoperability attributes into four higher-level categories (i.e., service, user,
strategic, and systemic) as given in Figure 4 (Williams, 2000).

Figure 4. Top-Level Interoperability Architecture Attribute Taxonomy

The OSAFI framework as shown in Table 6 provides the architecture attributes and the
factors and requirements of interoperability at five levels of architecture abstraction. For
instance, the factors of interoperability such as uniformity, decomposition, and
configuration level result in commonality at system-level architecture, leading to increased
system interoperability. The columns in the table represent the different levels of granularity
of architecture. The rows list the attributes of good architecture. The cells are the factors of
interoperability needed for each attribute and its corresponding architecture to enable an
open system design. Each level of architecture inherits the interoperability factors of the
subset or lower-level architecture. However, if these interoperability factors are not
addressed in the lower levels, they constrain the level of interoperability at the higher levels
and may impact other attributes of the architecture. Please note that the scope of the table
does not include cost and training.

 18

Table 6. OSAFI: Interoperability Architecture Attributes and Factors

Attributes of
Good

Architecture

How interoperability of open system is addressed through attributes of architecture at
different levels of granularity?

Extended
Enterprise Enterprise System Functional Physical

Commonality

§ Uniformity
§ Organization

structure &
Processes

§ Governance

§ Uniformity
§ Organization

structure &
Processes

§ Governance
§ Configuration

§ Uniformity
§ Decomposition
§ Configuration

§ Uniformity
§ Decomposition
§ COTS/Non-

Development
Items

§ Uniformity
§ Decomposition

Compliance

§ Data
§ Standards
§ Throughput

Levels of
service
agreements

§ Ontology

§ Data
§ Standards
§ Throughput

Levels of
service
agreements

§ Ontology

§ Data
§ Standards
§ Throughput
§ Levels of

service
agreements

§ Semantics
§ Safety

§ Data
§ Standards
§ Throughput
§ Levels of service

agreements
§ Semantics
§ Safety

§ Data
§ Standards
§ Throughput
§ Levels of

service
agreements

§ Syntactic
§ Safety

Flexibility

§ Configuration
§ Organization

structure &
processes

§ Governance

§ Configuration
§ Organization

structure &
processes

§ Governance
§ Maturity

§ Configuration
§ Decomposition
§ Orthogonal
§ Maturity

§ Configuration
§ Decomposition
§ Orthogonal
§ Technology

§ Configuration
§ Decomposition
§ Orthogonal
§ Technology

Modularity

§ Organization
structure &
processes

§ Governance

§ Organization
structure &
processes

§ Governance
§ Configuration
§ Maturity
§ Vendor

management

§ Decomposition
§ Configuration
§ Maturity
§ Vendor

management

§ Decomposition § Decomposition

Orthogonal

§ Integrated
process

§ Vertical
dependency
between goal,
objects, and
business
requirements

§ Integrated
process

§ Vertical
dependency
between goal,
objects, and
business
requirements

§ Services
independent
evolution

§ Inheritance
(dependency)

§ Rationalized
allocation

§ Functional
cohesiveness

§ Inherence
(dependency)

§ Consistency in
allocation

Portability

§ Organization
structure &
process

§ COP1
§ Governance

§ Organization
structure &
process

§ COP
§ Consistency

§ COP
§ Commonality
§ User interface

§ Reuse
§ Modularity
§ Common

platform

§ Reuse
§ Modularity

RMA

§ Dependencies
§ Performance
§ Serviceability
§ Latency
§ Recovery
§ Capability

§ Dependencies
§ Performance
§ Serviceability
§ Latency
§ Recovery
§ Capability

§ Dependencies
§ Performance
§ Serviceability
§ Latency
§ Recovery
§ Capability

§ Dependencies
§ Performance
§ Serviceability
§ Latency
§ Recovery
§ Capability

§ Dependencies
§ Performance
§ Serviceability
§ Latency
§ Recovery

1 Common Operating Picture

 19

Attributes of
Good

Architecture

How interoperability of open system is addressed through attributes of architecture at
different levels of granularity?

Extended
Enterprise Enterprise System Functional Physical

Responsiveness

§ Disaster
recovery

§ Contingency
plan

§ Archiving
§ Business

continuity plan
/Mission
contingency
plan

§ Business
impact analysis

§ Disaster
recovery

§ Contingency
plan

§ Archiving
§ Business

continuity plan
/mission
contingency
plan

§ Business
impact analysis

§ Disaster
recovery

§ Contingency
plan

§ Archiving

§ Disaster
recovery

§ Contingency
plan

§ Archiving
§ Synchronization

§ Disaster
recovery

§ Contingency
plan

§ Archiving

Robustness -
Versatility

§ Versatility in
handling
unpredictable
environments

§ Agility
§ Adaptability

§ Versatility in
handling
unpredictable
environments

§ Agility
§ Adaptability

§ Versatility in
handling
unpredictable
environments

§ Virtual
prototyping

§ Virtual testing
§ Safe mode

operation
§ Exception

handling
§ Baseline

operation
§ Modelling and

simulation
§ Self-healing/
 adapting
§ Intelligence

capability

§ Virtual
prototyping

§ Virtual testing
§ Safe mode

operation
§ Exception

handling
§ Baseline

operation

§ Virtual
prototyping

§ Virtual testing
Protection layer
(safeguard)

Scalability
§ Performance
§ Capability
§ Serviceability

§ Performance
§ Capability
§ Serviceability

§ Performance
§ Capability
§ Serviceability
§ Configuration

§ Performance
§ Capability
§ Configuration

§ Performance
§ Configuration

Security

§ Access control
§ Assurance
§ Resilience
§ Policy
§ Technical

§ Access control
§ Assurance
§ Standards
§ Resilience
§ Policy
§ Technical
§ OPSEC

(Operational
Security)

§ Access control
§ Assurance
§ Standards
§ Resilience
§ OPSEC
§ Security

services2

§ Access control
§ Assurance
§ Standards
§ Performance
§ Recovery
§ Auditing
§ Security services

§ Access control
§ Standards
§ Performance
§ Recovery
§ Security

services

Simplicity

§ User interface
§ Organizational

structure &
processes

§ User interface
§ Organizational

structure &
processes

§ User interface

§ Interface
§ Decomposition
§ Manual

intervention

§ Interface
§ Decomposition
§ Manual

intervention

2 Security Services are Integrity, Non-repudiation, Confidentiality, Authentication, Availability, and
Accountability

 20

Attributes of
Good

Architecture

How interoperability of open system is addressed through attributes of architecture at
different levels of granularity?

Extended
Enterprise Enterprise System Functional Physical

§ Governance § Governance § Synchronization § Synchronizatio
n

Testability

§ Traceability
§ Interfaces
§ Isolation
§ Configuration
§ Auditing
§ Exception

handling

§ Traceability
§ Interfaces
§ Isolation
§ Configuration
§ Auditing
§ Exception

handling

§ Traceability
§ Interfaces
§ Isolation
§ Configuration
§ Auditing
§ Exception

handling

§ Traceability
§ Interfaces
§ Isolation
§ Configuration
§ Auditing
§ Exception

handling

§ Traceability
§ Interfaces
§ Isolation
§ Configuration

As an example, this section will elaborate on compliance and how it can be used at the five
levels of architecture abstraction to address open system interoperability. In this context,
compliance of architecture can be defined as the ability of the system to adhere to the
standards, guidelines, and regulations to provide consistency among processes, components,
and sub-systems (e.g., organizational process, development process, product lines). It also
aims to maintain safety and security, reduce the communication interface and cost, and
address interoperability. It is the degree to which a system or its architectural description is
compliant with a given standard (McCabe and Pollen, 2004). Various interoperability
aspects such as data, standards, throughput, and level of service agreements have to be
addressed at all levels of architecture. To process, store, and transmit data as a precondition
for interoperability, throughput and data related interoperability factors (e.g., format, type,
and structure) need to be defined at all levels of architecture. Standards are required at all
levels of architecture to address interoperability through interfaces, applications, data,
protocols, and processes. To maintain the same level of interoperability throughout the
system, sub-system, and organization, internal and external service level agreements need to
be addressed at all levels of architecture. Safety-related issues of interoperability have to be
addressed in physical, functional, and system architecture. These safety requirements are a
part of regulatory compliance or organizational compliance. Syntactic interoperability in
physical architecture ensures that the structure of inputs, outputs, and interfaces between the
components that interoperate is well defined.

Semantic interoperability is addressed in both functional architecture and system
architecture to exhibit compliance. Semantics is the use of domain knowledge to make
systems and functions more intelligent, adaptive, and efficient (Lee, 2004). By using
knowledge specific to the systems and functions, one can enhance their functionalities and
optimize the performance. Semantic interoperability is achieved by sharing the semantics
information about the applications and systems that interoperate. Semantic interoperability
ensures that the requester and the provider have a common understanding of the ‘meaning’
of the requested services and data (Salah et al., 2005). To interoperate, they must agree on
the semantics of concepts that enable them to exchange with a common understanding.
Semantic interoperability in enterprise architecture and extended enterprise architecture is

 21

addressed through ontology mapping. Enterprise and extended enterprise ontology typically
include information, data, meta-data, and meta-meta-data categorization. They describe
relationships and structures between these entities that interoperate and their classes of
information/data.

7. VALIDATION OF THE OSAFI FRAMEWORK THROUGH A SURVEY

The OSAFI framework has been converted into a survey tool (Appendix A) to assess the
interoperability at five levels of architecture and examine the attributes of architecture in
terms of interoperability factors. Thirty-four industry practitioners have responded to this
survey. Figure 5 demonstrates the distribution of respondents by industry field and job title.
The participants have different roles, including IT managers and IT director in various
industry domains (e.g., telecommunications, healthcare), which reduces the bias in the
dataset.

Figure 5. Distribution of Respondents by Industry Domain and Role

Table 7 summarises the most and the least essential interoperability characteristics at a
given level of architecture abstraction. It should be noted that all of the interoperability
factors studied in the survey received an average score of above 6. This indicates that the
interoperability factors proposed in this study are critical attributes of good architecture that
enable open systems.

Physical interoperability provides the physical connections allowing information to move
from one place to another and sets the foundation for interoperable systems. Fault tolerance
in the physical level specifically contributes to two primary attributes of good architecture
design, namely availability and responsiveness. When physical links are under threat and
not fault-tolerant, interoperability cannot be achieved due to being not available and
responsive. Physical interoperability also defines how physical components and parts work;
therefore, “Standards”, “Technology, and “Safety” factors ensuring reliable integration
among the physical elements of an open system are considered crucial. It is important to
note that these three factors primary assist open systems to be simultaneously compliant and
flexible. Considering that the characteristics of physical components change so rapidly in

 22

the current technological environment, it is expected that compliance and flexibility are seen
as essential to accomplish physical interoperability

Table 7. Survey Result Summary

Functional interoperability aims to deploy integrations of components to function together,
exchange data, and use the transferred data. Synchronization is a concern when multiple
parts communicate to transport and utilize data, especially in today's systems operating in
real-time. Synchronization specifically determines how responsive and simple an open
system is and plays a pivotal role to achieve the maximum level of interoperability. Because
fully synchronous parts function with low latency, modularity determining how components
should be decomposed is necessary to guard the system against failures. Decomposition
helps system designers identify the requirements to partition the whole system into
components, allowing an uninterrupted flow of inputs and outputs. Thus, decomposition,

 23

within open systems, provides modularity that improves the level of interoperability.
Another important factor worth mentioning in the functional level is orthogonal, which
contributes to flexibility by allowing a procedure to be modified without a significant
change in the workflow, other functions, and operations.

In the system level, maturity strengthens interoperability by enabling system elements (1) to
be well-defined and non-overlapping (2) to be modified to do jobs not initially included in
the requirements definition. Maturity grants two critical characteristics of good architecture
design, namely modularity and flexibility. The user interface factor is crucial as it enables
simplicity. The need for simplicity through user interfaces to enable complete systems
interoperability has been addressed by Unified Communications Interoperability Forum
(2010). According to the results, interoperability at the system level requires a “Common
Operating Platforms”, which assist interoperability by defining interfaces, incorporating
data models and standards. Having Common operating platforms is also addressed as an
essential interoperability factor because it provides various shared capabilities reducing the
need to redesign systems and their components repeatedly. This factor also contributes to
achieving interoperability even among future systems that have not been yet designed.

Governance providing simplicity and security is a foundational requirement for successful
adoption of interoperable enterprise systems. Enterprise interoperability grants large
organizations to link activities, including product and service delivery, supply chain
management, and information storage, analysis, and reporting. The enterprise layer
encompasses frequent use of data and requires data governance. Especially, considering
several industry domains where data protection is essential, such as the healthcare and
pharmaceutical industries, effective and standardized data governance processes to achieve
interoperability is highly needed. Process integration provides portability enabling systems
enterprises to move data among several resources. Process integration also allows
automation and unification of systems across an organization. Therefore, it is a crucial
interoperability factor supporting open systems at the enterprise level. The Organizational
structure factor lays the foundation for how data and processes are shared and governed in
addition to determining the ability of a particular enterprise to adopt technologies enabling
interoperability. The Organizational structure factor provides portability and assists
enterprise interoperability.

Extended enterprise architecture links an organization, its suppliers and partners together
with information flow. In such a complex ecosystem where multiple parties are involved,
having a contingency plan and disaster recovery becomes a critical factor for maintaining
interoperability, especially during catastrophic events such as failures and cybersecurity
attacks. A contingency plan and disaster recovery assist enterprises to stay responsive
during system failures and allow an ongoing flow of inputs and outputs. For instance, two
hospitals’ systems that are not interoperable under normal conditions should become
interoperable in the wake of a hurricane crisis. This can allow patients evacuated from one
hospital to seek care in another facility.

 24

8. CONCLUSION

This study has discussed how interoperability can be achieved through compliance and
design flexibility. After defining five architecture levels, the study has proposed a
framework by determining the most crucial interoperability factors at each architecture
abstraction level to achieve open systems. In order to identify the critical interoperability
factors, a survey has been conducted, and the results have been discussed. It has been
observed that interoperability factors in achieving open systems vary depending on the
architecture level. This framework can be extended by identifying the best practices and
guiding principles in achieving the factors of interoperability discussed in each cell of the
framework. For example, defining access control to have a secure and interoperable
environment will need to be analysed using threat modelling (Anderson, 2001).
Additionally, metrics for each of these factors of interoperability and overall system
interoperability such as coupling, heterogeneity, synchronicity, boundedness, ownership,
and usage patterns need to be developed. The proposed OSAFI can be employed to develop
a framework for interoperability measurement.

REFERENCES

Abuelma'atti, O., Merabti, M., and Askwith, B. (2006), ‘A wireless networked appliances
interoperability architecture’, 1st International Symposium on Wireless Pervasive
Computing, Phuket, pp. 6, January 16 – 18, pp 6 – 12

Alaya, M. B., Medjiah, S., Monteil, T., and Drira, K. (2015) ‘Toward semantic
interoperability in oneM2M architecture’, IEEE Communications Magazine, Vol. 53
No. 12, pp. 35 – 41

Alqaoud A., Taylor I., and Jones A. (2010) ‘Scientific workflow interoperability framework.
International Journal of Business Process Integration and Management’, Vol. 5 No.
1, pp. 93 – 105

Anderson, R. (2001) ‘Security Engineering: A Guide to Building Dependable Distributed
Systems, Wiley Computer Publishing, New York

Arapi P., Moumoutzis N., Mylonakis M., Christodoulakis S. (2007), ‘A Framework and an
Architecture for Supporting Interoperability Between Digital Libraries and
eLearning Applications’, Proceedings of the DELOS Conference on Digital
Libraries, Pisa Italy, February 13 – 14

Bhardwaj S., Ozcelebi T., Lukkien J., and Lee K. M. (2018) ‘Semantic Interoperability
Architecture for Smart Spaces’, International Journal of Fuzzy Logic and Intelligent
Systems, Vol. 18 No. 1, pp. 50 – 57

Bhuta, J. and Boehm, B. (2007) ‘A framework for identification and resolution of
interoperability mismatches in COTS-based systems’, In Proceedings of the
International Workshop on Incorporating COTS Software into Software Systems:
Tools and Techniques. IEEE Computer Science Society

Brownsword, L., Carney, D.J., Fisher, D., Lewis, G., and Meyers, C. (2004). Current
Perspectives on Interoperability. Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

Carney, D., Fisher, D., and Place, P. (2005) ‘Topics in Interoperability: System-of-Systems
Evolution’, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA

 25

Clark, T. and Jones, R. (1999) ‘Organisational interoperability maturity model for c2’,
Proceedings of Command and Control Research and Technology Symposium,
Newport, Rhode Island. June 29 – July 1

Czarnecki, C., and Spiliopoulou, M. (2012). ‘A holistic framework for the implementation
of a next generation network’, International Journal of Business Information
Systems, Vol. 9 No,4, pp. 385-401.

C4ISR Architectures Working Group Report. (1998) Levels of Information Systems
Interoperability (LISI), Department of Defence, Washington, DC

Dai, W., Vyatkin, V., Christensen, J., and Dubinin, V. (2015) ‘Bridging Service-Oriented
Architecture and IEC 61499 for Flexibility and Dynamic Reconfigurability’ IEEE
Transactions on Industrial Informatics, Vol. 11 No. 3, 771 – 781

Davis, L., Gamble, R., and Payton, J. (2002) ‘The Impact of Component Architectures on
Interoperability’, Journal of Systems & Software, Vol. 61 No. 1, pp. 31 – 45

Erl, T. (2007) ‘Service-Oriented Architecture Concepts, Technology and Design’, 1st
Edition, Prentice Hall/Pearson PTR

Erl T. (2016), ‘Service-Oriented Architecture Principles of Service Design’, 1st Edition,
Prentice Hall

EPAN (2004) ‘Key Principles of an Interoperability Architecture’, European Public
Administration Network, eGovernment Working Group. Retrieved on July 16, 2019
from
https://circabc.europa.eu/webdav/CircaBC/eupan/dgadmintest/Library/3/2/8_ireland/
meetingssduringsthesiris/27-
28_may_2004/Principles_of_Interoperability__eGov.pdf

Ford, T., Colombi, J., Jacques, D., and Graham, S. (2007) ‘The Interoperability Score’, 5th
Annual Conference on Systems Engineering Research, Hoboken, NJ, March 14 – 16

Gillis, M. (1999), ‘Open Systems Joint Task Force Gets the Word Out’, pp. 44-47
Gravina, R., Palau, C. E., Manso, M., Liotta, A., and Fortino, G. (2018) ‘Integration,

Interconnection and Interoperability of IoT Systems’, Springer Berlin, Germany
Guijarro, L. (2007) ‘Interoperability frameworks and enterprise architectures in e-

government initiatives in Europe and the United States’, Government. Informatics,
Vol. 24 No. 1 pp. 89 – 101.

Haslhofer, B. and Klas, W. (2010). ‘A survey of techniques for achieving metadata
interoperability’. ACM computing Surveys, Vol. 42 No. 2, pp. 1 – 42

Hillard, R. (2000) ‘Recommended Practice for Architectural Description of Software –
Intensive Systems’. IEEE-std-1471-2000

IEEE (1990) ‘Standard Glossary of Software Engineering Terminology’, IEEE Standard
610.12

IEEE Dictionary. (1991) ‘IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries’, IEEE Std 610, Vol. 1, No. 1, pp.1 – 217

IEEE Standard for information technology – software reuse. (1995) ‘Data model for reuse
library interoperability; Basic Interoperability Data Model’. IEEE std 1420.1

Igamberdiev, M., Grossmann, G., Selway, M., and Stumptner, M. (2018), ‘An integrated
multi-level modelling approach for industrial-scale data interoperability’, Software
System Model, Vol. 17 No. 1, pp. 269 – 294

ISO/IEC JTCI/SC21, Basic Reference models of open distributed processing – Part 2
Descriptive Model, Committee Draft, ISO/IEC CD 10746-2 1991-07-24.

 26

Jabbar, S., Ullah, F., Khalid, S., Khan, M., and Han, K. (2017) ‘Semantic Interoperability in
Heterogeneous IoT Infrastructure for Healthcare’, Wireless Communications and
Mobile Computing, pp. 1 – 10

Jain, R., Chandrasekaran, A., Elias, G., and Cloutier, R. (2008) ‘Exploring the Impact of
Systems Architecture and Systems Requirements on Systems Integration
Complexity’ IEEE Systems Journal, Vol. 2 No. 2, pp. 209 – 223

Jain, R., Chandrasekaran, A., and Erol, O. (2010) ‘A framework for end-to-end approach to
Systems Integration’, International Journal of Industrial and Systems Engineering,
Vol. 5 No. 1, pp. 79 – 209

Janssen, M. (2012). ‘Sociopolitical Aspects of Interoperability and Enterprise Architecture
in E-Government’ Social Science Computer Review, Vol. 30 No. 1, pp. 24 – 36

Jardim-Goncalves, R., Popplewell, K., Grilo, A. (2012) ‘Sustainable interoperability: The
future of Internet based industrial enterprises’, Computers in Industry, Vol. 63 No.
8, pp. 731 – 738

Keshav, R and Gamble, R. (1998) ‘Towards a Taxonomy of Architecture Integration
Strategies’, 3rd International Software Architecture Workshop, November 1 – 2,
Orlando FL, pp. 49 – 51

Kiljander, J., D’elia, A., Morandi, F., Hyttinen, P., Takalo-Mattila, J., Ylisaukko-Oja, A.,
Soininen, J., and Cinotti, T. S. (2014) ‘Semantic Interoperability Architecture for
Pervasive Computing and Internet of Things’, IEEE Access, Vol. 2 No.1, pp. 856 –
873

Klaseen, E. L., Levin, L. J., Denny, B. A., and Cunningham, J. (1994) ‘Achieving Open
Interoperability in Tactical Remoted Systems with COTS Technology’, Proceedings
of Technical Communications Conference - IEEE, Fort Wayne IN, May 12 to 14,
pp. 225 – 233

Klaseen, E.L. and Sydir, J.J. (1995) ‘The definition of interoperability architectures for
intelligent devices using abstract models, Factory Communication Systems’,
Proceedings of WFCS, IEEE International Workshop, October 4 – 6, Leysin,
Switzerland, pp. 237 – 245

Kubicek, H. and Cimander, R. (2009) ‘Three dimensions of organizational interoperability:
insights from recent studies for improving interoperability frameworks’, European
Journal of ePractice, Vol. 6 No. 1, pp. 3 – 14

Kundu, S. and Tyagi, K. (2017). ‘Selection and classification of common factors affecting
the maintainability on the basis of common criteria’, International Journal of
Business Information Systems, Vol. 26 No. 3, pp. 402-412.

Lee, J. (2004) ‘Introduction To Semantics Technology’, IBM T.J. Watson Research Center,
Retrieved on July 13, 2019 From
http://www.alphaworks.ibm.com/contentnr/introsemantics

Maier, M. W. and Rechtin, E. (2009) ‘The Art of Systems Architecting, Third Edition, CRC
Press

McCabe, R. and Pollen, M. (2004) ‘Evaluating Architectures with System Attributes’,
Software Productivity Consortium, Herndon VA, February 5th

McManus, H. and Hastings, D. (2006) ‘A framework for understanding uncertainty and its
mitigation and exploitation in complex systems’, IEEE Engineering Management
Review, Vol. 34 No. 3, pp. 81 – 94

 27

Mills, J.A. (1993) ‘Large Scale Interoperability and Distributed Transaction Processing’,
Journal of Systems Integration, Vol. 3 No. 3 – 4, pp. 351 – 369

Morris, E., Levine, L, Meyers, C., Place, P, Plakosh, D. (2004) ‘System of Systems
Interoperability (SOSI)’, Technical Report. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA

NATO Allied Data Publication 34. (2003) ‘NATO C3 Technical Architecture (NC3TA),
Version 4.0,” retrieved from http://www.nato.int/docu/standard.htm on July 21,
2019

Open Systems Joint Task Force Report. (2001). Acquired on July 7. 2019 from
https://apps.dtic.mil/dtic/tr/fulltext/u2/a402560.pdf

Ouksel, A and Sheth, A. (1999) ‘Semantic Interoperability in Global Information Systems’,
ACM Sigmod Record, Vol. 21 No. 1, pp. 5 – 12

Unified Communications Interoperability Forum (UCIF): Members Meeting, Los Angeles
Convention Center, Los Angeles, California, October 5, 2010 Accessed on June 5th ,
2019 from
https:/web.archive.org/web/20130928001901/http:/www.ucif.org/portals/0/documen

ts/2919_10_05_ucif_f2f.pdf
Papazoglou, M.P. and Van den Heuvel, W. (2007) ‘Service oriented architectures:

approaches, technologies and research issues’, The International Journal on very
Large Data Bases, Vol. 16 No. 3, pp. 389 – 415.

Petcu, D. (2011) ‘Portability and interoperability between clouds: Challenges and case
study’, Towards a Service-Based Internet. ServiceWave. Lecture Notes in Computer
Science, vol 6994. Springer, Berlin, Heidelberg

Pollack, J. T. and Hodgson, R. (2004), ‘Adaptive Systems’, John Wiley and Sons
Ponis, S. T., Van der Eijk, P., and Masselos, V. (2012). ‘Supply chain interoperability for

enhancing e-business adoption by SMEs: a case study from the European clothing
sector’, International Journal of Business Information Systems, Vol. 10 No. 4, 417-
435.

Salah, H., Mahmoud, B., and Nacer, B. (2005). ‘An architecture for the interoperability of

workflow models’, IHIS Proceedings of the first international workshop
on Interoperability of heterogeneous information systems, November 4th Bremen,
Germany, pp. 31 – 38

Sarantis, D., Charalabidis, Y., and Psarras, J. (2008) ‘Towards standardizing interoperability
levels for information systems of public administrations”, The Electronic Journal for
E- commerce Tools & Applications Special Issue on Interoperability for Enterprises
and Administrations Worldwide, Vol. 1 No.1 pp. 1 – 15

Steel, J., Drogemuller, R., and Toth, B. (2012) ‘Model interoperability in building
information modelling’, Software & Systems Modelling, Vol. 11 No. 1, pp 99 – 109

The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition" (2000) IEEE Std
100-2000, pp.1-1362,

The Bellcore OSCATM Architecture; Technical Advisory TA-STS-000915, Issue 3, March
1999, Bellcore, Piscataway NJ

Tolk A, Muguira J. A. (2003) ‘The levels of conceptual interoperability model’. Fall
Simulation Interoperability Workshop, Simulation Interoperability Standards
Organization, Orlando, Florida

 28

Tu, S., Xu, L., Abdelguerfu, M., and Ratcliff, J. (2002) ‘Achieving interoperability for
integration of heterogeneous COTS geographic information systems’, Proceedings
of the 10th ACM international symposium on Advances in geographic information
systems, McLean, Virginia, November 8 – 9, pp 162 – 167

Wassermann, E. and Alexander Fay, A. (2017) ‘Interoperability rules for heterogenous
multi-agent systems: Levels of conceptual interoperability model applied for multi-
agent systems’, 15th International Conference on Industrial Informatics, July 24 –
26, Emden Germany, pp. 89 – 95

Williams, J. (2000) ‘Correctly assessing the -ilities requires more than marketing hype’, IT
Professional, Vol. 2 No. 6, pp. 65 – 67

Yahia, E., Aubry, A., Panetto, H. (2012) ‘Formal measures for semantic interoperability
assessment in cooperative enterprise information system’, Computers in Industry,
Vol. 63 No.5, pp. 443 – 457

Zachman. J. A. (1987) ‘A Framework for Information Systems Architecture’, IBM Systems
Journal, Vol. 26 No. 3, pp. 276 – 292

APPENDIX A

Availability of architecture can be defined as the ability of the system to provide the
intended functionality and performance during all periods of desired use. It is the degree to
which a system or component is operational and accessible when required for use (IEEE
610.12, 1990). The parameters or constituent factors of availability are sub-
system/component. Reliability and fault tolerance such as number of single points of
failure, mean time between operational service interruption, and mean time to
repair/recover, latent defects such as service interruption rate due to software malfunction
and recovery time from software malfunction , and system recovery actions required per
month (system IPLs and restarts, sub-system restarts, system warm starts, database
recoveries), operational duty factor (e.g., downtime, uptime), fraction of uptime during
normal 24/7 operation, fraction of customer transactions completed successfully after
encountering recoverable errors, and fraction of customer-initiated activity completed by the
system. Availability is typically characterized by a ratio of the number of system services
provided correctly to the amount desired (McCabe and Pollen, 2004).
Compliance of architecture can be defined as the ability of the system to adhere to the
standards, guidelines, and regulations to provide consistency among organizational
processes, components, and sub-systems. Compliance aims to maintain required safety and
security, reduce the communication interface and cost, and address interoperability. It is the
degree to which a system (or its architectural description) is compliant with (or can be
brought into compliance with) a given standard (McCabe and Pollen, 2004).
Evolvability can be defined as the ability of the system to serve as the basis of new systems
to meet new needs and(or) attain new capability levels (McManus and Hastings, 2006).
Flexibility can be defined as the ability of the system to be modified to do jobs not
originally included in the requirements definition. The modification may be in the design,
production, or operation of the system; each has a unique flavour (McManus and Hastings,
2006). It is the ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically designed (IEEE
610.12, 1990).

 29

Functionality of architecture can be defined as uniquely identified functions and capability
provided by the system. It is a set of attributes that bear on the existence of a set of functions
and their specified properties. The functions are those that satisfy stated or implied needs
ISO/IEC 9126, 1991). The parameter or constituent factor of functionality is the percentage
of system objective requirements (functional and performance) satisfied by solution (e.g.,
the number of requirements fully satisfied, the number of requirements partially satisfied,
and number of requirements not met)
Generality can be defined as using Multiple-function (sub)systems and interfaces, rather
than specialized ones. A common example is a general-purpose processor/computer rather
than specialized chip or machine. Bus interfaces, or fully switched networks connecting
redundant elements (instead of the minimum interconnection necessary to swap in for a
dead unit), are examples of “general” interfaces (McManus and Hastings, 2006).
Interoperability can be defined as the ability of the system to “play well with others,” both
with systems it was initially designed to work with, and with future systems. It may be
desirable in and of itself; it also enhances versatility, flexibility, and evolvability of systems
of systems (McManus and Hastings, 2006). It is the ability of systems, units, or forces to
provide services to and accept services from other systems, units, or forces and to use the
services so exchanged to enable them to operate effectively together.
Modularity of architecture can be defined as the extent to which the system is made up of
well-defined, functionally non-overlapping, and modular elements with well-documented
interfaces. These interfaces must allow updates or replacements of a portion of the system
without affecting the remainder of the system. The parameters or constituent factors of
modularity are system partitions completely defined by industry-standard interfaces, module
orthogonality (non-overlapping functionality) in terms of Are functional requirements
fragmented across multiple processing elements and interfaces?, Are capacity requirements
satisfied by multiple synchronized elements?, and Are common specifications identified?,
physical modularity - ease of upgrading system elements, functional modularity - ease of
adding new functionality with minimum disruption, and abstraction - Does system
architecture provide for proper information hiding. Modularity, open architectures, and
standard interfaces: Functions grouped into modules and connected by standard interfaces in
such a way that they can “plug and play.” Not independent strategies, but greatly helps
redundancy, generality, upgradeability, and makes testing easier (sometimes). Modularity is
the degree to which a system is structured as a configuration of smaller, self-contained
functional units with well-defined interfaces and interactions (i.e., independently testable),
moderating design complexity and enhancing its clarity, and enabling design and functional
flexibility and variety for the system as a whole (McCabe and Pollen, 2004; Open Systems
Joint Task Force , 2005)
Responsiveness of architecture can be defined as the ease with which the system can be
updated in response to changing business needs. The parameters or constituent factors of
responsiveness are ease of updating solution to reflect updated business process
requirements, amount of coordination and consensus required with other business areas
prior to or concurrent with system update, amount of customized design incorporated in
solution, development time required to incorporate changes, integration and test effort
required for system updates and operational training cost and complexity.
Robustness can be defined as the ability of the system to do its basic job in unexpectedly
adverse environments. Well understood for non-aerospace products; aerospace products

 30

tend to be designed for expected adverse environments already, leading to minor
ambiguities. Worse is the common tendency to use this word for any of the attributes on this
list (McManus and Hastings, 2006). It is the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environmental conditions.
See also: error tolerance; fault tolerance (IEEE 610.12, 1990)
Scalability of architecture can be defined as the ease with which the system can grow to
accommodate increased performance (e.g., higher transaction rates, more customers, etc.),
expanded functionality (e.g., additional pricing methods) or scaled back to cost-effectively
support reduced levels of performance or functionality. The parameters or constituent
factors of scalability are total cost to add system capacity to accommodate more users,
higher transaction volumes, additional service types, additional products, etc…,
architectural limitations on growth/scalability - ability of application software to
accommodate infrastructure changes (greater capabilities and capacities or different
structure) without incurring degraded performance or unreliable operation, reach -
architecture limits on expansion of solution into multiple geographic regions, total
additional cost incurred to upgrade infrastructure to accommodate functionality and capacity
growth and operational impacts of scaling performance capacities.
Serviceability/Upgradeability can be defined as the degree to which the (Sub) systems can
be modified to improve or change function. Obvious difficulty in non-retrievable vehicles
like satellites, although there are options even in this case (software, swarm components).
Combining general hardware with upgradeable software is very powerful (McManus and
Hastings, 2006).
Simplicity of architecture can be defined as the degree of complexity (how complex is the
system) in terms of partitioning, interfaces, manual intervention, and synchronization
relative to other systems of similar functionality. The parameters or constituent factors of
simplicity are number of independent functional interfaces types, number of interfaces,
number of independent functional partitions, manual intervention required, operator skill-
level required, system timing synchronization required, data Synchronization requirements
and infrastructure requirements.
Versatility can be defined as the ability of the system, as built/designed, to do jobs not
originally included in the requirements definition, and/or or to do a variety of required jobs
well. Often confused or combined with Robustness and Flexibility in discussions (McManus
and Hastings, 2006).

 31

SURVEY

Questions 1 Through 5:

Please provide rating ranging from 0 to 10 on the extent to which factor of interoperability
listed below is needed and addressed (for the corresponding architecture abstraction level)
to enable an open system design. Please provide ratings based on your experience of a
specific system. Note that 0 stands for “Not addressed at all” while 10 indicates “completely
addressed.”

Physical
IO

Uniformity (1), Decomposition (2), Data (3), Standards (4), Throughput (5),
Levels of service agreements (6), Syntactic (7), Safety (8), Configuration (9),
Orthogonal (10), Technology (11), Inheritance (Dependency) (12),
Consistency in allocation (13), Reuse (14), Modularity (15), Dependencies
Impacting cross-ilities (16), Performance (17), Serviceability (18), Latency
(19), Recovery (20), Disaster Recovery (21), Contingency plan (22),
Archiving (23), Virtual prototyping (24), Virtual testing Protection layer
(safeguard) (25), Access control (26), Security services (27), Interfaces (28),
Manual intervention (29), Synchronization (30), Traceability (31), Fault
Isolation (relevant for regression testing) (32)

Functional
IO

Uniformity (1), Decomposition (2), COTS/Non-Development Items (3), Data
(4), Standards (5), Throughput (6), Levels of service agreements (7),
Semantics (8), Safety (9), Configuration (10), Orthogonal (11), Technology
(12), Inheritance (Dependency) (13), Rationalized allocation (14), Functional
cohesiveness (15), Reuse (16), Modularity (17), Common platform (18),
Dependencies Impacting cross-ilities (19), Performance (20), Serviceability
(21), Latency (22), Recovery (23), Capability (24), Disaster Recovery (25),
Contingency plan (26), Archiving (27), Virtual prototyping (28), Virtual
testing (29), Safe mode operation (30), Exception handling (31), Baseline
operation (32), Access control (33), Assurance (34), Auditing (35), Security
services (36), Interfaces (37), Manual intervention (38), Synchronization (39),
Traceability (40), Fault Isolation (relevant for regression testing) (41), Fault
Isolation (relevant for regression testing) (42)

 32

System IO

Uniformity (1), Decomposition (2), Configuration (3), Data (4), Standards (5),
Throughput (6), Levels of service agreements (7), Semantics (8), Safety (9),
Orthogonal (10), Maturity (11), Vendor management (12), System evolution
based on reduced functional dependencies (13), Common Operating Platform
(14), Commonality (15), User Interface (16), Dependencies Impacting cross-
ilities (17), Performance (18), Serviceability (19), Latency (20), Recovery
(21), Capability (22), Disaster Recovery (23), Contingency plan (24),
Archiving (25), Versatility in handling unpredictable environments (26),
Virtual prototyping (27), Virtual testing (28), Safe mode operation (29),
Exception handling (30), Baseline operation (31), Modeling and simulation
(32), Self healing/adapting (33), Intelligence Capability (34), Access control
(35), Assurance (36), Resilience (37), OPSEC (Operational Security) (38),
Security services (39), User Interface (40), Traceability (41), Interfaces (42),
Fault Isolation (relevant for regression testing) (43), Auditing (44), Exception
handling (45)

Enterprise

Uniformity (1), Organization structure & Processes (2), Governance (3),
Configuration (4), Data (5), Standards (6), Throughput (7), Levels of service
agreements (8), Ontology (9), Maturity (10), Vendor management (11),
Integrated Process (12), Vertical Dependency between goal, objects, and
business requirements (13), Common Operating Picture (14), Process
Consistency (15), Dependencies Impacting Cross-ilities (16), Performance
(17), Serviceability (18), Latency (19), Recovery (20), Capability (21),
Disaster Recovery (22)

Extended
Enterprise

Uniformity (1), Organization structure & Processes (2), Governance (3), Data
(4), Standards (5), Throughput (6), Levels of service agreements (7),
Ontology (8), Configuration (9), Integrated Process (10), Vertical Dependency
between goal, objects, and business requirements (11), Common Operating
Picture (12), Dependencies Impacting Cross-ilities (13), Performance (14),
Serviceability (15), Latency (16), Recovery (17), Capability (18), Disaster
Recovery (19), Contingency plan (20), Archiving (21), Business continuity
plan /Mission contingency plan (22), Business impact analysis (23),
Versatility in handling unpredictable environments (24), Agility (25),
Adaptability (26), Access control (27), Assurance (28), Resilience (29),
Policy (30), Technology (31), User Interface (32), Traceability (33), Interfaces
(34), Fault Isolation (relevant for regression testing) (35), Configuration (36),
Auditing (37), Exception handling (38)

Question 6: What is your Current role within your company?

Question 7: In which year was your company founded?

Question8: In which Primary Industry/Products/Services that your company operates?

Question 9: Where is the location of major operations of your company?

View publication stats

https://www.researchgate.net/publication/344359270

