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An Open System Architecture Framework for Interoperability 
(OSAFI) 

 
ABSTRACT 

Interoperability of systems is a critical factor for firms to make informed operational and 
strategic decisions and achieve a competitive edge in the marketplace. As a result, open 
systems which have a higher level of interoperability with secured and stable operations 
have significant relevance in today’s global economy. Interoperability is accomplished 
through appropriate system architecture and design. Thus, to achieve the open system 
interoperability, this paper proposes a framework that looks at system architecture at various 
levels of abstraction/implementation and identifies the required attributes at each of these 
levels. This framework can be used as a reference to analyse and determine interoperability 
requirements at all levels and prioritize the required aspects of interoperability. 
 
1. INTRODUCTION 

Many natural disasters and needless loss of human life due to lack of timely and critical 
communications and information sharing have repeatedly demonstrated the importance of 
having higher degrees of interoperability between systems and those relying upon them. The 
need for interoperability is historic, and lack of interoperability results in battlefield failures 
and substantial financial losses due to lack of common network protocols, shared message 
formats, and communication channels.  Worldwide extended enterprise systems now 
distributing information, resources, and materials need to interoperate in secure and safe 
network environments. Also, systems must be deployed, redesigned, and enhanced at faster 
paces and in a shorter time to address the growing market demands and increased 
competition.  This has driven the need to design systems possessing inherent 

interoperability, along with efficient deployment of services in networked environments. In 
order to obtain higher degrees of interoperability, architecture frameworks enabling open 
attributes is required.  Existing literature has pointed out the need to address interoperability 
issues through architecture and design practices (Bhardwaj et al., 2018; Davis et al., 2002; 
Klaseen and Cunningham, 1994; Kiljander et al., 2014; Mills, 1993). Key principles of an 
interoperability architecture for public administration is proposed in European Public 
Administration Network (2004) (Kubicek and Cimander, 2009). The various types of 
interoperability for public administration are organizational interoperability, semantic 
interoperability, technical interoperability, and governance (Sarantis et al., 2008).  
Numerous Interoperability assessment systems, such as Levels of Information Systems 
Interoperability (LISI) and The Interoperability Score Model have also been established 
(C4ISR Architectures Working Group report, 1998; Ford et al., 2007). 

As a system and its parts work together, interoperability is represented from different 
aspects within numerous different contexts such as data, process, applications, functions, 
components, information, resources, protocols, organizations, and enterprises. Arapi et al. 
(2007), Igamberdiev et al. (2018), Jardim-Goncalves (2012), and Ponis et al. (2012) discuss 
the multi-level problem of interoperability in terms of representations, objects, concepts, 
domains, contexts, and meta-contexts. They also state that high levels of interoperability 
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characterize open systems from the aspects mentioned above, and the prerequisite for 
designing for interoperability is establishing interconnections. A universally accepted 
framework for interconnection is the OSI (Open System Interconnection) model. Proponents 
of the OSI model assert that system interoperability can be achieved through extrapolating 
or extending the OSI model (Abuelma’atti, et al., 2006). Because the OSI communication 
stack does not accommodate understanding in communications and system 
interconnectivity, many researchers emphasize the need for semantic interoperability with 
multiple layers (Alaya et al., 2015; Jabbar et al., 2017; Kiljander et al., 2014; Pollack and 
Hodgson, 2004; Yahia et al., 2012). For example, a model proposed by Pollack and 
Hodgson (2004) contains four layers as described below. 

• Syntax Layer: binary format of the application layer message 
• Schema Format Layer: physical structure of information classifications 
• Referent Layer: relationships   among   conceptual   and   implementation schema 
• Domain Context Layer: abstract model used to align context.  

This paper investigates current interoperability issues and submits a new framework to 
achieve greater levels of interoperability. An abstract framework for an open system 
interoperability architecture is designed using a multi-level hierarchical approach similar to 
OSI model.  The multi-levels of architecture abstraction include physical, functional, 
system, enterprise, and extended enterprise. At each of these levels, the various factors that 
address all aspects of interoperability such as data, process, and information are identified.  
The framework also groups these interoperability factors under different interoperability-
related attributes of architecture such as security, scalability at each level of architecture 
abstraction.  

 

Figure 1. Research Methodology and Organization of Paper. 

In the following sections of this paper, types and levels of interoperability are described, and 
architecture attributes supporting interoperability are examined. A framework identifying 
the required factors of interoperability and related architecture attributes at various levels of 
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architecture abstraction is then proposed.  Levels of architectural abstraction are defined 
along with interoperability related architecture attributes taxonomy.  This framework is 
further converted into a survey tool to assess the level of interoperability at each level of 
architecture and the corresponding architecture attributes. This survey tool and its pilot 
validation results are then discussed, and recommendations are provided.  

 
2. INTEROPERTABILITY: DEFINITION, TYPES, LEVELS, & CHALLANGES 

The evolution of systems demands scalability and adaptability to interoperate with other 
existing and new systems. As a result, interoperability becomes a critical and pre-requisite 
system characteristic and must be of inherent quality. The growing usage of the term 
interoperability in systems engineering literature over the past few years shows the 
widespread understanding of its importance and criticality. In order to adequately and 
clearly define interoperability, the need and its importance have to be studied within various 
contexts specifically from the systems engineering perspective. 

2.1 Interoperability Definitions 

There are numerous definitions of interoperability, and this number is probably growing due 
to the continuing analysis of this problem domain in defence and commercial environments.  
In a survey on interoperability measurement, Ford et al. (2007) have catalogued thirty-four 
sources having interoperability definitions. A very general and context-independent 
interpretation of this definition is that interoperability allows components, sub-systems, and 
systems to (inter)-operate with each other.  In other words, interoperability is a result of 
higher degrees of systems integration to obtain complete system functionality.  
Interoperability provides an ability of multiple systems or components to exchange 
information and to use that particular information that has been transferred (A Compilation 
of IEEE Standard Computer Glossaries, 1991). 
 
Interoperability is the ability to interconnect business-aware software products irrespective 
of their suppliers, date, and origin, to provide access to corporate data and functionality by 
any authorized user, and to maintain theta interconnection and access over changes in 
suppliers, date, and origin, where business-aware software provides functions that are 
characteristics of that particular business (The Bellcore OSCATM Architecture, 1999). 
Interoperability is also defined as a collection of communicating entities to share specified 
information according to a common operational semantics (Alaya et al., 2015, Brownsword 
et al., 2004; Carney et al., 2005; Kundu and Tyagi, 2017).  
 
The Authoritative Dictionary of IEEE Standards Terms (2000) distinguishes 
“interoperability” as “software interoperability and “hardware interoperability” and relates 
the interoperability to “compatibility” and “conformance.”  

1. Software interoperability: The ability of two or more systems or elements to 
exchange information and to use the information that has been exchanged.  

2. Hardware interoperability: The capability for units of equipment to work together to 
do useful functions.  
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3. The capability: promoted but not guaranteed by joint conformance with a given set 
of standards, that enables heterogeneous equipment, generally built by various 
vendors, to work together in a network environment. 

4. The ability of two or more systems or components to exchange information in a 
heterogeneous network and use that information.  

 
These definitions given by IEEE focus on how to accomplish or a means of achieving 
interoperability. On the other hand, Hastings and McManus (2006) provide a solution-
independent definition that captures all aspects of interoperability. According to these 
researchers, “Interoperability can be defined as the ability of the system to “play well with 
others,” both with systems it was originally designed to work with, and with future systems; 
may be desirable in and of itself; also enhances versatility, flexibility, and evolvability of 
systems of systems”. 
 
2.2 Interoperability Types 

There have been numerous types of interoperability documented in various contexts. For 
example, Ford et al. (2007) have provided a reference listing of sixty-four different 
interoperability types, including operational interoperability, technical interoperability, 
coalition interoperability, and constructive interoperability. Pollack and Hodgson (2004) 
emphasize data understanding and semantics and provide a different viewpoint regarding 
interoperability types as illustrated in Table 1. 

Table 1. Interoperability (IO) Types Increase in Complexity Structure (Pollack and 
Hodgson, 2004, pp. 43-44) 

IO Type  Definition  

Data  
Semantic interoperability of data enables data to maintain original meaning 
across multiple business contexts, data structures, and schema types by using 
data meaning as the basis for transformations.  

Process  
Semantic interoperability of process enables specific business processes to be 
expressed in terms of another by inferring meaning from the process models 
and contextual metadata and applying it in a different process model 
elsewhere or outside the organization.  

Services/ 
Interface  

Semantic interoperability of services enables a service to look up, bind, and 
meaningfully communicate with a new service without writing custom code 
in advance.  

Application  
Semantic interoperability of applications enables the granular interactions of 
methods, transactions, and API calls between heterogeneous software 
applications to be platform independent.  

Taxonomy  
Semantic interoperability of taxonomy enables any category to be expressed 
in terms of other categories by leveraging the intended meaning behind the 
category definitions.  

Policy  
Semantic interoperability of policies and rules enables businesses to protect 
valuable resources regardless of what technologies their security mechanisms 
have been implemented in or how complex the rights management issues 
have become. 
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IO Type  Definition  
Social 
Network  

Semantic interoperability of social networks enables people in different 
communities of interest to network, infer, and discover meaningful 
connections through previously unknown contacts and interests.  

2.3 Interoperability Levels 

Table 2 provides different levels of interoperability based on various interoperability 
assessment models. Usually, interoperability levels are associated with interoperability 
attributes used in the model (Wassermann and Fay, 2017). Please note that some models, 
such as the System of Systems Interoperability (SOSI) Model proposed by Morris et al. 
(2004) do not have any levels.  

Table 2.  Levels of interoperability (IO) differ amongst Assessment Models (Ford et al. 
2007) 

Level 
or 

Layer 

Levels of 
Information 
System IO 
(LISI) 1998 

Layers of 
Coalition 
IO (LCI) 

2003 

NATO C3 
Technical 

Architecture 
Reference 

Model for IO 
(NMI) 2003 

Organizational 
IO Agility 

Model (OIAM) 
2005 

Levels of 
Conceptual 
IO Model 
(LCIM) 

2006 

0 Isolated   Static None 

1 Connected Physical Unstructured 
data exchange Amenable Technical 

2 Functional Protocol Structured data 
exchange Accommodating Syntactic 

3 Domain Data/Object 
Model 

Seamless 
sharing of data Open Semantic 

4 Enterprise Information 
Seamless 
sharing 

of information 
Dynamic Pragmatic 

5  Knowledge/ 
Awareness   Dynamic 

6  Aligned 
Procedures   Conceptual 

7  Aligned 
Operations    

8  
Harmonized/ 

Strategy 
Doctrines 

   

9  Political 
Objectives    
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2.4 Challenges of Interoperability 

Interoperability is a challenge and difficult to achieve in practice, whether the goal is to 
increase interoperability between systems that originally did not interact, or to architect new 
systems designed to interoperate at the enterprise level from inception (Petcu, 2011; Steel et 
al., 2012).  The advent of the extended enterprise, where multiple disparate enterprise 
architectures must interoperate to achieve shared commercial objectives presents a complex 
interoperability challenge.  Service-Oriented Architectures (SOA) is an approach poised to 
meet this challenge (Papazoglu and Van den Heuvel, 2007). Maintaining interoperability 
with legacy systems as new systems are deployed sometimes conflicts with achieving 
greater levels of interoperability among the newer systems. This necessitates trade-offs, and 
in some cases, decisions are made to accept reduced interoperability between older legacy 
and newer systems.  Interoperability is also an issue for Commercial-off-the-shelf (COTS) 
based systems integration (Bhuta and Boehm, 2007; Jain et al., 2010; Tu et al., 2002). 
Standards and architecture play an important role in the interoperability of COTS-based 
systems integration. Architecture also influences the interoperability of both COTS and 
legacy components. Component interoperability has become a concern because companies 
integrate COTS products and assemble modules from various sources into a single 
application. Despite these challenges, interoperability has been addressed through some 
common guiding principles such as compliance to interface standards, deriving system 
interoperability requirements and testing against them, use of standardized communication 
interfaces and middleware, and implementation of SOA.   

Within the context of a SOA, Erl (2016) describes the concept of inherently interoperable 
services.  SOA allows architects to implement service descriptions and messages that are 
highly standardized, resulting in “intrinsic interoperability” where application customization 
is reduced, and the degree of modelling is enhanced. Erl (2007) establishes SOA Principles 
instead of interoperability levels or attributes and relates them to intrinsic interoperability as 
shown in Table 3. 

Table 3.  SOA Principles Supporting Intrinsic Interoperability (Erl 2007, pp. 363) 

Principle SOA  Relationship  
Standardized 
Service 
Contract  

The fact that service contracts are consistently standardized guarantees a 
baseline measure of interoperability because of natural compatibility 
between data models defined in technical service contracts.  

Service Loose 
Coupling  

Reducing the amount of required service coupling fosters interoperability 
by making individual services less dependent on each other and therefore 
more open to sharing data with different service consumers.  

Service 
Abstraction  

Service Reusability considerations naturally increase interoperability as 
they outfit services with design characteristics geared for repeated usage 
by numerous service consumers (with which reusable services will need to 
effectively interoperate). 

Service 
Autonomy  

By increasing a service's autonomy, it establishes itself as a more reliable 
enterprise resource with predictable runtime behavior. This, in turn, 
increases its attainable level of interoperability  

Service 
Statelessness  

Through an emphasis on stateless design, the availability and scalability of 
services increase, allowing them to interoperate more frequently and 
reliably.  
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Service 
Discoverability  

To enable interoperability between a service consumer and a service, the 
appropriate service must first be located. Therefore, the application of the 
Service Discoverability principle increases the chances for a service to 
maximize its interoperability potential. 

Service 
Composability  

For services to be repeatedly composable, they must be highly 
interoperable. Therefore, shaping each service into an effective 
composition member increases its native ability to interoperate with 
others.  

SOA is a more specialized concept, applicable to the enterprise level of architecture and, as 
its name implies, the principles are strictly related to services without any supposition of a 
hierarchal structure of components.  SOA services, although composable, are flat and 
assume support from the lower levels of the OSI model.  The accomplishment of Erl’s 
principles for intrinsic interoperability requires careful design activities to be made early in 
the SOA deployment process to attain the benefits. 

 

3. INTEROPERABILITY THROUGH ARCHITECTURES: BALANCING 
COMPLIANCE AND DESIGN FLEXIBILITY 

One typical pattern in addressing the need for interoperability in a system is through the 
compliance requirements and the system architecture. Thus, this section researches the 
relationships between interoperability, standards, system architecture, and integration. The 
primary goal here is to find out if adherence to standards leads to better interoperability, 
whether interoperability can be addressed through architecture, and how architecture 
influence interoperability. When these questions were studied in detail, it was found that 
interoperability can be best achieved by two approaches, one by maintaining compliance 
and another by implementing flexible designs.  
 
Compliance can be defined as conformance to standards and regulations, which indicates 
that such systems or components meet the requirements specified by standards and 
regulations. The International Organization for Standardization (ISO) differentiates between 
standards and regulations. A standard is a document approved by a recognized body, that 
provides, for common and repeated use, rules, guidelines, or characteristics for products, 
processes or services with which compliance is not mandatory. On the other hand, a 
regulation is a document, which lays down product, process, or service characteristics, 
including the applicable administrative provisions, with which compliance is mandatory. 
Conformance (for software and hardware) to standards indicates that such hardware or 
software meets the requirements specified by a standard.  COTS-based systems help this by 
introducing more standardized components into the marketplace that are widely adopted. 
 
Compliance results in higher compatibility among systems and system components. 
Compatibility is sometimes used synonymously to “interoperability.” Compatibility is 
defined as the ability of two or more systems or components to perform their required 
functions while sharing the same hardware or software environment (The Authoritative 
Dictionary of IEEE Standards Terms, 2000). Compatibility (for hardware) is defined as the 
degree to which devices may be interconnected and used, without modification, when 
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designed as defined throughout a specified standard. (i.e., mechanical, electrical, or 
functional compatibility). Compatibility (for programmable devices) is the degree to which 
devices may be interconnected and used, without modification, when designed as defined 
throughout a specified standard. Flexible designs promote both “flexibility” and 
“adaptability”. Flexibility characterizes system’s ability to be easily changed or modified. In 
contrast, adaptability describes a system’s ability to adapt itself towards changing operating 
environments.  
 
Figure 2 shows the degree of interoperability that can be achieved by adopting the two 
approaches, namely, compliance and design flexibility. The y-axis shows the degree of 
compliance and x-axis shows the degree of “design flexibility.”  The resulting benefit or 
effect of compliance and flexibility are shown on the opposite side of the chart. For 
example, uniformity resulting from compliance is shown on the opposite side of the 
compliance (Y) axis. By having a greater level of compliance, a uniform design is obtained 
– conversely, a lower level of compliance results in a lower level of uniformity in 
architecture and design. Flexible designs promote innovation. Innovation is a by-product of 
flexible architecture and design.  
 
In the left bottom quadrant (Figure 2) of the matrix, the degree of compliance and the degree 
of “design flexibility” is low, indicating that the systems are “isolated”. Isolated systems are 
not designed based on standards, nor are their designs flexible and adaptable to achieve a 
level of interoperability. Once the degree of compliance increases, systems become 
“standardized,” as shown in the upper left quadrant, indicating that systems and their 
components are designed conforming to standards.  At this level of compliance, even though 
the design flexibility is low, standardized systems can provide some level of 
interoperability. On the other hand, once the degree of “design flexibility” increases while 
the degree of compliance is on the lower side of the matrix, the systems are “customized” as 
shown in the right bottom quadrant. This level of customization shows that systems are 
designed to maintain flexibility and adaptability but are not necessarily compliant with 
standards.  At this level of customization, without a significant degree of compliance to 
standards, some level of interoperability can be obtained. 
 
“Open” systems provide the maximum level of interoperability as shown in the top right 
quadrant of the matrix.  Open systems comply with open standards allowing for design 
flexibility at the same time.  Open systems provide the maximum level of flexibility and 
therefore are preferred over other levels of interoperability of the systems. To achieve 
openness, a system is required to comply with standards, regulations, and other regulatory 
requirements that support open systems while simultaneously adopting flexible system 
designs. Open systems support different aspects of openness, namely, interoperability, 
flexibility, adaptability, and adherence to open standards. According to this analysis and 
Figure 2, interoperability can be best achieved by two approaches, one by maintaining 
compliance and another by implementing flexible designs. Use of a local data vocabulary 
could be viewed as customization; therefore, the open architecture matrix as shown in 
Figure 2 is not perfect.  In the context depicted above, openness is ideal – there is a 
realization that with autonomy, a single homogeneous architecture is impractical, and 
universal compliance to standards impossible. 
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Figure 2. Open Architecture Matrix 

 
4. INTERCONNECTION TO INTEROPERABILITY ARCHITECTURES AND 

OPEN VS. CLOSED SYSTEMS AND THEIR RELATIONSHIOPS TO 
INTEROPERABILITY 

Interoperability can be viewed from different levels. When two systems are capable of 
exchanging information, they are interconnected. When two interconnected systems are also 
capable of understanding and processing the information exchanged, they are defined as 
interoperable. Therefore, Interconnectivity is a means to an end, where interoperability is 
the goal (Gravina et al., 2018; Klaseen and Cunningham, 1994). A necessary step in 
achieving interoperability is to define an interconnection architecture comprising the 
protocols used to transfer data between systems. Additionally, an interconnection 
architecture must define various details relating to the infrastructure that supports the data 
transfer protocols, such as a directory schema, and system and network resource 
management (Czarnecki and Spiliopoulou, 2012; Guijarro, 2007; Klaseen and Cunningham, 
1994). The second necessary step in achieving interoperability is to reach a common 
understanding of how data is to be interpreted and used, and what each function and sub-
system can do (Haslhofer and Klas, 2010; Klaseen and Cunningham, 1994). Functions of 
one layer of architecture are decoupled from the functions of the other layer. A high enough 
level of decoupling can be expected to support interoperability (Alqaoud, 2010; Mills, 1993; 
OSCATM, 1999). In order to have integrated operations, a loosely coupled system is required 
to be frequently bound together by a common communication and processing protocol. 
Interoperability must be provided among building blocks (functional and physical) for better 
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operational control (Mills, 1993). Interoperability also provides operational flexibility (Dai 
et al., 2015; Klaseen and Cunningham, 1994). 
 
Interoperability can be considered as the next generation or a more advanced or evolved 
form of interconnectivity. To achieve open interconnections, the OSI model is 
predominantly used. But as the context of interconnection is moving from applications to 
systems, enterprises, and businesses, there is a need to extend this model to address the 
interoperability between the extended contexts. By studying the various existing levels of 
interoperability and the means by which interoperability is achieved through architecture, 
this study develops an Open System Architecture Framework for Interoperability (OSAFI), 
which is the focus of the following sections.  

An open system is a system that can exchange energy, material, and information with its 
environment continuingly. Such exchange is enabled through the use of open (i.e., well 
defined, widely used and consensus-based) standards, protocols, languages, and data 
formats in developing systems. The focus of attention in an open system is on key interfaces 
(Gillis, 1999). An interface is designated as a key interface when the technology turnover is 
rapid and design risk is high on either side of the interface, and/or the system elements on 
one or both sides of the interface exhibit a high failure rate or are costly. Use of an open 
standard is the preferred method for implementing a key interface (OSJTF, 1996). 

A closed system is characterized by closely held, privately owned standards, protocols, 
languages, and data formats that are either unavailable to outsiders or are available only at a 
very high license fee. Closed systems also include those that were designed by a single 
company for a single program or a small number of programs. In contrast, an open system is 
a system designed using a collection of interacting and integrated software, hardware and 
human components that are based on consensus-based, de jure or if not available, de facto 
standards that are easily accessible to all interested parties (OSJTF, 1996). Table 4 
summarizes some critical distinctions between open and closed systems and relates the open 
system characteristic to interoperability by assessing the degree of correlation to 
interoperability along with the applicable architectural abstraction level. 

Table 4. Characteristics of Open and Closed System 

Characteristics Closed System  Open System  

Correlation Between 
Characteristics & IO and 
Applicable Architecture 

Level 

Interfaces, 
languages, and 
data formats & 
protocols 

Closely held and 
private  

Openly and 
widely held and 
publicly 
available 

High correlation at all levels of 
architecture.  Being publicly 
available may violate security 
concerns and policies at system 
level and above. 
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Critical 
Importance 

Given to unique 
design and 
implementation 

Given to 
interfaces 
management and 
widely used 
conventions 

High correlation at all levels of 
architecture. Existing Internet 
protocols provide 
commonality. 

Modularity Less emphasis  Heavy emphasis  

Low Correlation at all levels of 
architecture. Mostly applicable 
to upgrade with minimum 
disruption. 

Vendor and 
Technology 
Dependence 

Very dependent Very 
independent 

Medium correlation at system 
level and below. COTS and IT 
standards ubiquitous and 
interoperable.  Vendors must 
comply with standards. 

Number of 
implementation 
and interfaces 

Minimization of 
the number of 
implementations 

Minimization of 
the number of 
types of 
interfaces 

High Correlation especially at 
functional level for streamlined 
workflows.  At enterprise level 
and above, this may enhance 
isolation and redundancy. 

System 
Integration 

Difficult and 
more costly 
integration 

Easier and more 
cost-effective 
integration 

High correlation at all levels. 
Interoperability built into 
integration procedures. 

Portability, 
connectivity, 
interoperability, 
and scalability 

Low High High Correlation at system 
level and above. 

Vendor Usage Use of sole-
source vendor 

Use of multiple 
vendors 

Medium correlation at all 
levels. More vendor choices 
exist at lower architectural 
level. 

Expansion and 
Upgrading 

Requires 
considerable 
time, money, and 
effort 

Easier, quicker, 
and less 
expensive 

Low correlation at all levels. 
Maintaining interoperability 
usually limits choices and 
places.  Constraints on 
expansion. 

Cost of 
Ownership Higher total cost Lower total cost 

Low correlation at all levels. 
But there is cost of 
interoperability at all levels. 

Technology 
Transfer 

Slower and more 
costly  

Faster and less 
costly 

Low Correlation at all levels. 
This is supported by 
modularity. Interoperability 
usually drives need for 
technology transfer. 
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Components, 
interfaces, 
standards, and 
implementations 

Selected 
sequentially 

Selected 
interactively 

High Correlation at all levels. 
There is need to know 
compatibility with other 
systems and enterprises. 

Life Expectancy Shorter Longer 

High correlation especially at 
the system level and below. 
Better IO means longer life 
expectancy. 

Adaptability 
Less adaptable to 
change in threats 
and technologies 

More adaptable 
to evolving 
threats and 
technologies 

High correlation at all levels. 
IO link to changing standards. 

Primary Focus 

Focusing mostly 
on development 
cost and meeting 
present mission 

Focusing on 
total costs of 
ownership, 
sustainment, and 
growth 

Medium correlation at all 
levels of architecture.  

User’s Role 
User as the 
producer of 
systems 

User as the 
consumer of 
components 

High correlation at all levels. 
Applicable to system level and 
above, especially SOA. 

System Influence Rigid and slow  Real time and 
cybernetic  

High correlation especially 
where governance is 
manifested (e.g., above system 
level). 

Relationship 
with prime 
contractors, 
suppliers, and 
vendors 

Adversarial  Symbiotic  
High correlation especially at 
Extended Enterprise level of 
abstraction. 

 
 
 
5. OPEN SYSTEMS ARCHITECTURE FRAMEWORK FOR 

INTEROPERABILITY  

The Open Systems Joint Task Force has defined an open systems approach in their draft 
(version 1.0, October, 2001) and subsequent versions as “…an integrated business and 
technical strategy that employs a modular design and, where appropriate, defines key 
interfaces using widely supported, consensus-based standards that are published and 
maintained by a recognized industrial standards organization.” Some of the objectives that 
the open systems strategy aims to achieve are as follows: 
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• adapt to evolving requirements and threats 
• facilitate systems integration 
• reduce the development cycle time and total life-cycle cost 
• ensure that the system will be fully interoperable with all the systems which it must 

interface, without major modification of existing components 
• enhance commonality and reuse of components among systems 
• mitigate the risks associated with technology obsolescence 
• mitigate the risk of a single source of supply over the life of a system 
• enhance life-cycle supportability 

In order to address the openness of systems as described above, there are some architectural 
and design considerations that need to be provided during system design. It is these 
architecture and design considerations that will support and preserve interoperability as 
defined for a given system. The authors of this paper used such architectural and design 
considerations as the basis to develop a framework. The proposed framework could be used 
as a reference to explore the requirements of interoperability at each level of architecture 
abstraction.  

As a first step in developing this framework a collection of various aspects of 
interoperability such as data, process, resources have been analysed by exploring the various 
interoperability models such as, Levels of Information System Interoperability (LISI) 
(C4ISR Architectures Working Group report, 1998), Organizational Interoperability 
Maturity Model (OIM) (Clark and Jones, 1999), NATO C3 Technical Architecture 
(NC3TA) Reference Model for Interoperability (NATO Allied Data Publication, 2003), 
Levels of Conceptual Interoperability (LCIM) (Tolk and Muguira, 2003), Layers of 
Coalition Interoperability, System of Systems Interoperability (SOSI) Model (Morris et al., 
2004), and Basic Interoperability Data Model (BIDM) (IEEE 1420.1, 1995). Then, the 
authors have further explored the factors of architecture that can influence interoperability 
such as interfaces, protocols (standard), data, and layers (building blocks) (Klaseen and 
Sydir, 1995; Klaseen and Cunningham, 1994; Mills, 1993; Janssen, 2012). It is important to 
note that how these factors are addressed in architectures can vary. and some examples 
include communication between components and interfaces, transfer data between systems, 
as well as semantic integrity constraints/consistency. Afterward, the authors have 
categorized these factors in terms of how they would relate to different levels of architecture 
abstractions and finally identified the requirements for the factors at each level of 
architecture abstraction. 
 
6. LEVELS OF ARCHITECTURE ABSTRACTION: INTEROPERABILITY & 

INTERFACES 

A systems approach to architecture and design emphasizes on both abstraction and detailed 
design. Abstraction supports a holistic design and better understanding of interfaces and 
interoperability at each level. The authors adopt a 5-level architecture abstraction to address 
how to achieve and implement interoperability at each level.  These levels of architecture 
abstraction are shown in Figure 3.  In addition to the five levels of abstraction, 
interoperability related architecture attributes are listed.  These attributes are applied to each 
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level of architecture abstraction and will be discussed later in more detail.  This method 
follows the approach taken by some other interoperability models as discussed, but instead 
of using levels of interoperability, architecture levels are employed.  Since different 
architectural approaches are accommodated by this proposed method, the aspect of multiple 
views is shown (e.g., some views of system architecture contain an organizational 
architecture in addition to the physical and functional, but in this case, organizational 
aspects are reserved for the enterprise level). 

 
Figure 3. Architecture Levels of Abstraction and Attributes Comprise the OSAFI. 

At the physical architecture, which is the lowest level of architecture abstraction, 
specifications of physical components and parts are provided, and most of the 
interoperability issues and implementations are addressed. Physical architecture defines how 
the physical components and parts work and integrate. It also describes the partitioned 
elements of the system with complete definitions of the performance characteristics of the 
resources. Physical interoperability occurs between the physical components and parts of 
the system.  Physical interoperability is the capability for physical components and parts of 
the system to operate together to do useful functions.  
 
The next level of architecture abstraction is functional architecture. It is a logical model 
that captures the transformation of inputs into outputs using control information. This 
definition adds the flow of inputs and outputs throughout the functional decomposition; 
these items that comprise the inputs and outputs are commonly modelled via a data model.  
An IDEF0 model without any mechanisms can be used as the modelling technique to 
represent the functional architecture at this level of detail. In other words, IDEF0 is a logical 
model of a functional decomposition plus the flow of inputs and outputs, to which 
input/output requirements have been traced to specific functions and items (inputs, outputs, 
and controls). Functional interoperability is observed between the physical parts and 
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components of the system when they are integrated and work together. Functional 
interoperability is the ability of physical components and parts of the system to function 
together, exchange information, and use the exchanged information.  
 
The physical and functional architecture make up the system architecture. The system 
architecture is the structure in terms of components, connections, and constraints of a 
product, process, or element (Maier and Rechtin, 2009). System architecture is a logical 
construct for defining and controlling the interfaces and the integration of all the 
components of the system (Zachman, 1987).  It is the organizational structure of a system or 
component, their relationships, and the principles and guidelines governing their design and 
evolution over time (IEEE 610.12-1990). In other words, it is the fundamental organization 
of a system embodied in its components, their relationships to each other, and to the 
environment, and the principles guiding its design and evolution (Hilliard, 2000). Systems 
interoperability is the capability of systems to work together to do required functions, 
exchange information, and use the exchanged information when integrated with other 
systems and its environment. Systems interoperability requires compatibility and ability to 
function together with other systems, both with systems it was originally designed to work 
with, and with future systems.  
 
An enterprise can also be viewed as a system of systems, and enterprise architecture 
describes how enterprise systems interoperate. Enterprise Architecture is about 
understanding all of the different elements making up the enterprise and how those elements 
inter-relate. An enterprise in this context is any collection of organizations that has a 
common set of goals/principles and/or single bottom line. In that sense, an enterprise can be 
a whole corporation, a division of a corporation, a government organization, a single 
department, or a network of geographically distant organizations linked together by 
common objectives. Enterprise interoperability is the level of interoperability between the 
systems within an enterprise.   Enterprise interoperability demonstrates the ability of 
enterprise systems to provide services to and accept services from other systems within the 
enterprise and to operate effectively together.  
 
Extended enterprise architecture describes how an enterprise and its suppliers and partners 
are linked together by information flows, integrating knowledge, design, and production. 
These arrangements are commonly long-term and/or permanent and represented as 
Extended Enterprises (E2) architectures. Extended enterprise architectures could take the 
form of a Business to Business (B2B) or Business to Customers (B2C) architecture or 
several others that exist today. Interoperability addressed through extended enterprise 
architecture facilitates business interactions beyond the boundaries of an enterprise. This 
may be termed as extended business interoperability.  Due to emerging interconnectivity 
needs in the business and technology world, enterprise systems are required to integrate 
with the systems outside the enterprise. Business interoperability is the ability of enterprise 
systems to provide services to and accept services from other systems outside the enterprise 
and to operate effectively together.  
 
In order to achieve higher levels of interoperability, all the requirements and factors of 
interoperability need to be addressed at all the levels of architecture abstraction discussed 
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above. Therefore, the authors proposed a framework called “The Open System 
Interoperability Architecture framework (OSIAF),” which can be used to identify such 
requirements and factors of interoperability at various levels of architecture abstraction. To 
design this framework, first a subset of architecture attributes that can be utilized to resolve 
interoperability issues have been identified by reviewing the existing research regarding the 
factors that provide good and reliable architecture (Abuelma’atti et al., 2006; Arapi et al., 
2007; EPAN, 2004; Jain et al., 2008; Keshav and Gamble, 1998; Klaseen and Cunningham, 
1994; Mills, 1993) Then, the factors of good architecture have been compared with 
attributes of interoperability architectures. Based on this analysis, the authors have identified 
the attributes that focus on interoperability issues as listed in Table 5. 
 

Table 5.  Important Interoperability Attributes. 

Attribute Name IO Applicability 
1. Commonality Aims to establish commonality between systems 

 
2. Compliance Aims to help towards complexly developed business 

applications to be interoperable and ensure data and 
application integration across different platforms such as the 
cloud and on-premise data centres. 

3. Flexibility Allows introduction of new elements into the system; thus, 
allowing to maintain interoperability. 

4. Modularity Provides rapid and flexible development, thus allows 
interoperability among different systems 

5. Orthogonal Changes in one part of a system should occur without 
changing other parts 

6. Portability Enables organizations to move data among several resources 
and provide a degree of interoperability 

7. Reliability, 
Maintainability, & 
Availability (RMA) 

Provides the baseline for architecture components to 
interoperate with a larger system. It is expected that system 
architecture should reach the requires RMA level to achieve 
interoperability 

8. Responsiveness Allows a prompt reaction to changing business needs increase 
the level of interoperability (e.g., adaptation of cloud systems 
and their existence and co-operation with on-premise data 
centres) 

9. Robustness/Versatility Helps systems to operate near normalcy in the presence of 
errors and faults; thus, providing system interoperability 
during unexpected adverse environments 

10. Scalability Offers high security and massive scale between devices, 
applications, and systems. With the rise of Internet of Things 
(IoT) and Artificial Intelligence (AI), this is important to 
realize full interoperability 

11. Security Provides the rules and boundaries for data and information 
sharing (e.g., interorganizational) and facilitates security 
management operations; thus, enables interoperability of 
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multiple systems at various levels.   
12. Simplicity Achieves IO with more straightforward and simpler set-up  
13. Testability Facilitates the definition of a method that enables testing the 

level of achievement of interoperability improvement  

To form an interoperability architecture attribute taxonomy, the authors have categorized 
the above interoperability attributes into four higher-level categories (i.e., service, user, 
strategic, and systemic) as given in Figure 4 (Williams, 2000).  

 
Figure 4. Top-Level Interoperability Architecture Attribute Taxonomy 

The OSAFI framework as shown in Table 6 provides the architecture attributes and the 
factors and requirements of interoperability at five levels of architecture abstraction. For 
instance, the factors of interoperability such as uniformity, decomposition, and 
configuration level result in commonality at system-level architecture, leading to increased 
system interoperability. The columns in the table represent the different levels of granularity 
of architecture.  The rows list the attributes of good architecture.  The cells are the factors of 
interoperability needed for each attribute and its corresponding architecture to enable an 
open system design. Each level of architecture inherits the interoperability factors of the 
subset or lower-level architecture.   However, if these interoperability factors are not 
addressed in the lower levels, they constrain the level of interoperability at the higher levels 
and may impact other attributes of the architecture. Please note that the scope of the table 
does not include cost and training. 
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Table 6. OSAFI:  Interoperability Architecture Attributes and Factors 

Attributes of 
Good 

Architecture 

How interoperability of open system is addressed through attributes of architecture at 
different levels of granularity? 

Extended 
Enterprise Enterprise System Functional Physical 

Commonality 

§ Uniformity  
§ Organization 

structure & 
Processes 

§ Governance 

§ Uniformity  
§ Organization 

structure & 
Processes 

§ Governance 
§ Configuration 

§ Uniformity  
§ Decomposition 
§ Configuration 

§ Uniformity  
§ Decomposition 
§ COTS/Non-

Development 
Items 

§ Uniformity  
§ Decomposition 

Compliance 

§ Data 
§ Standards 
§ Throughput 

Levels of 
service 
agreements 

§ Ontology 

§ Data 
§ Standards 
§ Throughput 

Levels of 
service 
agreements 

§ Ontology 

§ Data 
§ Standards 
§ Throughput 
§ Levels of 

service 
agreements 

§ Semantics 
§ Safety 

§ Data 
§ Standards 
§ Throughput 
§ Levels of service 

agreements 
§ Semantics  
§ Safety 

§ Data 
§ Standards 
§ Throughput 
§ Levels of 

service 
agreements 

§ Syntactic 
§ Safety 

Flexibility 

§ Configuration  
§ Organization 

structure & 
processes 

§ Governance 

§ Configuration 
§ Organization 

structure & 
processes 

§ Governance 
§ Maturity 

§ Configuration 
§ Decomposition 
§ Orthogonal 
§ Maturity 

§ Configuration  
§ Decomposition 
§ Orthogonal 
§ Technology 

§ Configuration  
§ Decomposition 
§ Orthogonal 
§ Technology 

Modularity 

§ Organization 
structure & 
processes 

§ Governance 

§ Organization 
structure & 
processes 

§ Governance 
§ Configuration 
§ Maturity 
§ Vendor 

management 

§ Decomposition 
§ Configuration 
§ Maturity 
§ Vendor 

management 

§ Decomposition § Decomposition 

Orthogonal 

§ Integrated 
process 

§ Vertical 
dependency 
between goal, 
objects, and 
business 
requirements 

§ Integrated 
process 

§ Vertical 
dependency 
between goal, 
objects, and 
business 
requirements 

§ Services 
independent 
evolution 

§ Inheritance 
(dependency) 

§ Rationalized 
allocation 

§ Functional 
cohesiveness 

§ Inherence 
(dependency) 

§ Consistency in 
allocation 

Portability 

§ Organization 
structure & 
process 

§ COP1 
§ Governance 

§ Organization 
structure & 
process 

§ COP 
§ Consistency 

§ COP 
§ Commonality 
§ User interface 

§ Reuse 
§ Modularity 
§ Common 

platform 

§ Reuse 
§ Modularity 

RMA 

§ Dependencies 
§ Performance 
§ Serviceability 
§ Latency 
§ Recovery 
§ Capability 

§ Dependencies 
§ Performance 
§ Serviceability 
§ Latency 
§ Recovery 
§ Capability 

§ Dependencies 
§ Performance 
§ Serviceability 
§ Latency 
§ Recovery 
§ Capability 

§ Dependencies 
§ Performance 
§ Serviceability 
§ Latency 
§ Recovery 
§ Capability 

§ Dependencies 
§ Performance 
§ Serviceability 
§ Latency 
§ Recovery 

 
1 Common Operating Picture 
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Attributes of 
Good 

Architecture 

How interoperability of open system is addressed through attributes of architecture at 
different levels of granularity? 

Extended 
Enterprise Enterprise System Functional Physical 

Responsiveness 

§ Disaster 
recovery 

§ Contingency 
plan 

§ Archiving 
§ Business 

continuity plan 
/Mission 
contingency 
plan 

§ Business 
impact analysis 

§ Disaster 
recovery 

§ Contingency 
plan 

§ Archiving 
§ Business 

continuity plan 
/mission 
contingency 
plan 

§ Business 
impact analysis 

§ Disaster 
recovery 

§ Contingency 
plan 

§ Archiving 

§ Disaster 
recovery 

§ Contingency 
plan 

§ Archiving 
§ Synchronization 

§ Disaster 
recovery 

§ Contingency 
plan 

§ Archiving 

Robustness - 
Versatility 

§ Versatility in 
handling 
unpredictable 
environments 

§ Agility 
§ Adaptability 

§ Versatility in 
handling 
unpredictable 
environments 

§ Agility 
§ Adaptability 

§ Versatility in 
handling 
unpredictable 
environments 

§ Virtual 
prototyping 

§ Virtual testing 
§ Safe mode 

operation 
§ Exception 

handling 
§ Baseline 

operation 
§ Modelling and 

simulation 
§ Self-healing/ 
  adapting 
§ Intelligence 

capability 

§ Virtual 
prototyping 

§ Virtual testing 
§ Safe mode 

operation 
§ Exception 

handling 
§ Baseline 

operation 

§ Virtual 
prototyping 

§ Virtual testing 
Protection layer 
(safeguard) 

Scalability 
§ Performance 
§ Capability 
§ Serviceability 

§ Performance 
§ Capability 
§ Serviceability 

§ Performance 
§ Capability 
§ Serviceability 
§ Configuration 

§ Performance 
§ Capability 
§ Configuration 

§ Performance 
§ Configuration 

Security 

§ Access control  
§ Assurance  
§ Resilience 
§ Policy 
§ Technical 

§ Access control  
§ Assurance 
§ Standards  
§ Resilience 
§ Policy 
§ Technical 
§ OPSEC 

(Operational 
Security) 

§ Access control 
§ Assurance  
§ Standards 
§ Resilience 
§ OPSEC  
§ Security 

services2 

§ Access control  
§ Assurance 
§ Standards 
§ Performance 
§ Recovery 
§ Auditing 
§ Security services 

§ Access control 
§ Standards 
§ Performance 
§ Recovery 
§ Security 

services 

Simplicity 

§ User interface 
§ Organizational 

structure & 
processes 

§ User interface 
§ Organizational 

structure & 
processes 

§ User interface 

§ Interface  
§ Decomposition 
§ Manual 

intervention 

§ Interface  
§ Decomposition 
§ Manual 

intervention 

 
2 Security Services are Integrity, Non-repudiation, Confidentiality, Authentication, Availability, and 
Accountability 
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Attributes of 
Good 

Architecture 

How interoperability of open system is addressed through attributes of architecture at 
different levels of granularity? 

Extended 
Enterprise Enterprise System Functional Physical 

§ Governance § Governance § Synchronization § Synchronizatio
n 

Testability 

§ Traceability 
§ Interfaces 
§ Isolation 
§ Configuration 
§ Auditing 
§ Exception 

handling 

§ Traceability 
§ Interfaces 
§ Isolation 
§ Configuration 
§ Auditing 
§ Exception 

handling 

§ Traceability 
§ Interfaces 
§ Isolation 
§ Configuration 
§ Auditing 
§ Exception 

handling 

§ Traceability 
§ Interfaces 
§ Isolation 
§ Configuration 
§ Auditing 
§ Exception 

handling 

§ Traceability 
§ Interfaces 
§ Isolation 
§ Configuration 

 
As an example, this section will elaborate on compliance and how it can be used at the five 
levels of architecture abstraction to address open system interoperability. In this context, 
compliance of architecture can be defined as the ability of the system to adhere to the 
standards, guidelines, and regulations to provide consistency among processes, components, 
and sub-systems (e.g., organizational process, development process, product lines). It also 
aims to maintain safety and security, reduce the communication interface and cost, and 
address interoperability. It is the degree to which a system or its architectural description is 
compliant with a given standard (McCabe and Pollen, 2004).  Various interoperability 
aspects such as data, standards, throughput, and level of service agreements have to be 
addressed at all levels of architecture. To process, store, and transmit data as a precondition 
for interoperability, throughput and data related interoperability factors (e.g., format, type, 
and structure) need to be defined at all levels of architecture. Standards are required at all 
levels of architecture to address interoperability through interfaces, applications, data, 
protocols, and processes. To maintain the same level of interoperability throughout the 
system, sub-system, and organization, internal and external service level agreements need to 
be addressed at all levels of architecture. Safety-related issues of interoperability have to be 
addressed in physical, functional, and system architecture. These safety requirements are a 
part of regulatory compliance or organizational compliance. Syntactic interoperability in 
physical architecture ensures that the structure of inputs, outputs, and interfaces between the 
components that interoperate is well defined. 
 
Semantic interoperability is addressed in both functional architecture and system 
architecture to exhibit compliance. Semantics is the use of domain knowledge to make 
systems and functions more intelligent, adaptive, and efficient (Lee, 2004). By using 
knowledge specific to the systems and functions, one can enhance their functionalities and 
optimize the performance. Semantic interoperability is achieved by sharing the semantics 
information about the applications and systems that interoperate. Semantic interoperability 
ensures that the requester and the provider have a common understanding of the ‘meaning’ 
of the requested services and data (Salah et al., 2005). To interoperate, they must agree on 
the semantics of concepts that enable them to exchange with a common understanding. 
Semantic interoperability in enterprise architecture and extended enterprise architecture is 
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addressed through ontology mapping. Enterprise and extended enterprise ontology typically 
include information, data, meta-data, and meta-meta-data categorization. They describe 
relationships and structures between these entities that interoperate and their classes of 
information/data.  
 

7. VALIDATION OF THE OSAFI FRAMEWORK THROUGH A SURVEY 

The OSAFI framework has been converted into a survey tool (Appendix A) to assess the 
interoperability at five levels of architecture and examine the attributes of architecture in 
terms of interoperability factors. Thirty-four industry practitioners have responded to this 
survey. Figure 5 demonstrates the distribution of respondents by industry field and job title. 
The participants have different roles, including IT managers and IT director in various 
industry domains (e.g., telecommunications, healthcare), which reduces the bias in the 
dataset. 

 

Figure 5. Distribution of Respondents by Industry Domain and Role 

 
Table 7 summarises the most and the least essential interoperability characteristics at a 
given level of architecture abstraction. It should be noted that all of the interoperability 
factors studied in the survey received an average score of above 6. This indicates that the 
interoperability factors proposed in this study are critical attributes of good architecture that 
enable open systems.  
 
Physical interoperability provides the physical connections allowing information to move 
from one place to another and sets the foundation for interoperable systems. Fault tolerance 
in the physical level specifically contributes to two primary attributes of good architecture 
design, namely availability and responsiveness.  When physical links are under threat and 
not fault-tolerant, interoperability cannot be achieved due to being not available and 
responsive. Physical interoperability also defines how physical components and parts work; 
therefore, “Standards”, “Technology, and “Safety” factors ensuring reliable integration 
among the physical elements of an open system are considered crucial. It is important to 
note that these three factors primary assist open systems to be simultaneously compliant and 
flexible. Considering that the characteristics of physical components change so rapidly in 
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the current technological environment, it is expected that compliance and flexibility are seen 
as essential to accomplish physical interoperability 

Table 7. Survey Result Summary 

 
 
Functional interoperability aims to deploy integrations of components to function together, 
exchange data, and use the transferred data. Synchronization is a concern when multiple 
parts communicate to transport and utilize data, especially in today's systems operating in 
real-time. Synchronization specifically determines how responsive and simple an open 
system is and plays a pivotal role to achieve the maximum level of interoperability. Because 
fully synchronous parts function with low latency, modularity determining how components 
should be decomposed is necessary to guard the system against failures. Decomposition 
helps system designers identify the requirements to partition the whole system into 
components, allowing an uninterrupted flow of inputs and outputs. Thus, decomposition, 
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within open systems, provides modularity that improves the level of interoperability. 
Another important factor worth mentioning in the functional level is orthogonal, which 
contributes to flexibility by allowing a procedure to be modified without a significant 
change in the workflow, other functions, and operations.   
 
In the system level, maturity strengthens interoperability by enabling system elements (1) to 
be well-defined and non-overlapping (2) to be modified to do jobs not initially included in 
the requirements definition. Maturity grants two critical characteristics of good architecture 
design, namely modularity and flexibility.  The user interface factor is crucial as it enables 
simplicity. The need for simplicity through user interfaces to enable complete systems 
interoperability has been addressed by Unified Communications Interoperability Forum 
(2010). According to the results, interoperability at the system level requires a “Common 
Operating Platforms”, which assist interoperability by defining interfaces, incorporating 
data models and standards. Having Common operating platforms is also addressed as an 
essential interoperability factor because it provides various shared capabilities reducing the 
need to redesign systems and their components repeatedly. This factor also contributes to 
achieving interoperability even among future systems that have not been yet designed. 
 
Governance providing simplicity and security is a foundational requirement for successful 
adoption of interoperable enterprise systems. Enterprise interoperability grants large 
organizations to link activities, including product and service delivery, supply chain 
management, and information storage, analysis, and reporting. The enterprise layer 
encompasses frequent use of data and requires data governance. Especially, considering 
several industry domains where data protection is essential, such as the healthcare and 
pharmaceutical industries, effective and standardized data governance processes to achieve 
interoperability is highly needed. Process integration provides portability enabling systems 
enterprises to move data among several resources. Process integration also allows 
automation and unification of systems across an organization. Therefore, it is a crucial 
interoperability factor supporting open systems at the enterprise level. The Organizational 
structure factor lays the foundation for how data and processes are shared and governed in 
addition to determining the ability of a particular enterprise to adopt technologies enabling 
interoperability. The Organizational structure factor provides portability and assists 
enterprise interoperability. 
 
Extended enterprise architecture links an organization, its suppliers and partners together 
with information flow. In such a complex ecosystem where multiple parties are involved, 
having a contingency plan and disaster recovery becomes a critical factor for maintaining 
interoperability, especially during catastrophic events such as failures and cybersecurity 
attacks. A contingency plan and disaster recovery assist enterprises to stay responsive 
during system failures and allow an ongoing flow of inputs and outputs.  For instance, two 
hospitals’ systems that are not interoperable under normal conditions should become 
interoperable in the wake of a hurricane crisis. This can allow patients evacuated from one 
hospital to seek care in another facility.  
 
 
 



 24 

8. CONCLUSION 

This study has discussed how interoperability can be achieved through compliance and 
design flexibility. After defining five architecture levels, the study has proposed a 
framework by determining the most crucial interoperability factors at each architecture 
abstraction level to achieve open systems. In order to identify the critical interoperability 
factors, a survey has been conducted, and the results have been discussed. It has been 
observed that interoperability factors in achieving open systems vary depending on the 
architecture level. This framework can be extended by identifying the best practices and 
guiding principles in achieving the factors of interoperability discussed in each cell of the 
framework. For example, defining access control to have a secure and interoperable 
environment will need to be analysed using threat modelling (Anderson, 2001). 
Additionally, metrics for each of these factors of interoperability and overall system 
interoperability such as coupling, heterogeneity, synchronicity, boundedness, ownership, 
and usage patterns need to be developed. The proposed OSAFI can be employed to develop 
a framework for interoperability measurement. 
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APPENDIX A 

Availability of architecture can be defined as the ability of the system to provide the 
intended functionality and performance during all periods of desired use. It is the degree to 
which a system or component is operational and accessible when required for use (IEEE 
610.12, 1990). The parameters or constituent factors of availability are sub-
system/component. Reliability and fault tolerance such as  number of single points of 
failure, mean time between operational service interruption, and mean time to 
repair/recover, latent defects such as service interruption rate due to software malfunction 
and recovery time from software malfunction , and system recovery actions required per 
month (system IPLs and restarts, sub-system restarts, system warm starts, database 
recoveries), operational duty factor (e.g., downtime, uptime), fraction of uptime during 
normal 24/7 operation, fraction of customer transactions completed successfully after 
encountering recoverable errors, and fraction of customer-initiated activity completed by the 
system. Availability is typically characterized by a ratio of the number of system services 
provided correctly to the amount desired (McCabe and Pollen, 2004).  
Compliance of architecture can be defined as the ability of the system to adhere to the 
standards, guidelines, and regulations to provide consistency among organizational 
processes, components, and sub-systems. Compliance aims to maintain required safety and 
security, reduce the communication interface and cost, and address interoperability. It is the 
degree to which a system (or its architectural description) is compliant with (or can be 
brought into compliance with) a given standard (McCabe and Pollen, 2004). 
Evolvability can be defined as the ability of the system to serve as the basis of new systems 
to meet new needs and(or) attain new capability levels (McManus and Hastings, 2006).   
Flexibility can be defined as the ability of the system to be modified to do jobs not 
originally included in the requirements definition. The modification may be in the design, 
production, or operation of the system; each has a unique flavour (McManus and Hastings, 
2006). It is the ease with which a system or component can be modified for use in 
applications or environments other than those for which it was specifically designed (IEEE 
610.12, 1990).  
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Functionality of architecture can be defined as uniquely identified functions and capability 
provided by the system. It is a set of attributes that bear on the existence of a set of functions 
and their specified properties. The functions are those that satisfy stated or implied needs 
ISO/IEC 9126, 1991). The parameter or constituent factor of functionality is the percentage 
of system objective requirements (functional and performance) satisfied by solution (e.g., 
the number of requirements fully satisfied, the number of requirements partially satisfied, 
and number of requirements not met) 
Generality can be defined as using Multiple-function (sub)systems and interfaces, rather 
than specialized ones. A common example is a general-purpose processor/computer rather 
than specialized chip or machine. Bus interfaces, or fully switched networks connecting 
redundant elements (instead of the minimum interconnection necessary to swap in for a 
dead unit), are examples of “general” interfaces (McManus and Hastings, 2006). 
Interoperability can be defined as the ability of the system to “play well with others,” both 
with systems it was initially designed to work with, and with future systems. It may be 
desirable in and of itself; it also enhances versatility, flexibility, and evolvability of systems 
of systems (McManus and Hastings, 2006). It is the ability of systems, units, or forces to 
provide services to and accept services from other systems, units, or forces and to use the 
services so exchanged to enable them to operate effectively together. 
Modularity of architecture can be defined as the extent to which the system is made up of 
well-defined, functionally non-overlapping, and modular elements with well-documented 
interfaces. These interfaces must allow updates or replacements of a portion of the system 
without affecting the remainder of the system. The parameters or constituent factors of 
modularity are system partitions completely defined by industry-standard interfaces, module 
orthogonality (non-overlapping functionality) in terms of Are functional requirements 
fragmented across multiple processing elements and interfaces?, Are capacity requirements 
satisfied by multiple synchronized elements?, and Are common specifications identified?, 
physical modularity - ease of upgrading system elements, functional modularity - ease of 
adding new functionality with minimum disruption, and abstraction - Does system 
architecture provide for proper information hiding. Modularity, open architectures, and 
standard interfaces: Functions grouped into modules and connected by standard interfaces in 
such a way that they can “plug and play.” Not independent strategies, but greatly helps 
redundancy, generality, upgradeability, and makes testing easier (sometimes). Modularity is 
the degree to which a system is structured as a configuration of smaller, self-contained 
functional units with well-defined interfaces and interactions (i.e., independently testable), 
moderating design complexity and enhancing its clarity, and enabling design and functional 
flexibility and variety for the system as a whole (McCabe and Pollen, 2004; Open Systems 
Joint Task Force , 2005) 
Responsiveness of architecture can be defined as the ease with which the system can be 
updated in response to changing business needs. The parameters or constituent factors of 
responsiveness are ease of updating solution to reflect updated business process 
requirements, amount of coordination and consensus required with other business areas 
prior to or concurrent with system update, amount of customized design incorporated in 
solution, development time required to incorporate changes, integration and test effort 
required for system updates and operational training cost and complexity. 
Robustness can be defined as the ability of the system to do its basic job in unexpectedly 
adverse environments. Well understood for non-aerospace products; aerospace products 
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tend to be designed for expected adverse environments already, leading to minor 
ambiguities. Worse is the common tendency to use this word for any of the attributes on this 
list (McManus and Hastings, 2006). It is the degree to which a system or component can 
function correctly in the presence of invalid inputs or stressful environmental conditions. 
See also: error tolerance; fault tolerance (IEEE 610.12, 1990) 
Scalability of architecture can be defined as the ease with which the system can grow to 
accommodate increased performance (e.g., higher transaction rates, more customers, etc.), 
expanded functionality (e.g., additional pricing methods) or scaled back to cost-effectively 
support reduced levels of performance or functionality. The parameters or constituent 
factors of scalability are total cost to add system capacity to accommodate more users, 
higher transaction volumes, additional service types, additional products, etc…, 
architectural limitations on growth/scalability - ability of application software to 
accommodate infrastructure changes (greater capabilities and capacities or different 
structure) without incurring degraded performance or unreliable operation, reach - 
architecture limits on expansion of solution into multiple geographic regions, total 
additional cost incurred to upgrade infrastructure to accommodate functionality and capacity 
growth and operational impacts of scaling performance capacities. 
Serviceability/Upgradeability can be defined as the degree to which the (Sub) systems can 
be modified to improve or change function. Obvious difficulty in non-retrievable vehicles 
like satellites, although there are options even in this case (software, swarm components). 
Combining general hardware with upgradeable software is very powerful (McManus and 
Hastings, 2006).  
Simplicity of architecture can be defined as the degree of complexity (how complex is the 
system) in terms of partitioning, interfaces, manual intervention, and synchronization 
relative to other systems of similar functionality. The parameters or constituent factors of 
simplicity are number of independent functional interfaces types, number of interfaces, 
number of independent functional partitions, manual intervention required, operator skill-
level required, system timing synchronization required, data Synchronization requirements 
and infrastructure requirements. 
Versatility can be defined as the ability of the system, as built/designed, to do jobs not 
originally included in the requirements definition, and/or or to do a variety of required jobs 
well. Often confused or combined with Robustness and Flexibility in discussions (McManus 
and Hastings, 2006). 
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SURVEY 

 
Questions 1 Through 5:  
 
Please provide rating ranging from 0 to 10 on the extent to which factor of interoperability 
listed below is needed and addressed (for the corresponding architecture abstraction level) 
to enable an open system design.  Please provide ratings based on your experience of a 
specific system. Note that 0 stands for “Not addressed at all” while 10 indicates “completely 
addressed.” 
  

Physical 
IO 

Uniformity (1), Decomposition (2), Data (3), Standards (4), Throughput (5), 
Levels of service agreements (6), Syntactic (7), Safety (8), Configuration (9), 
Orthogonal (10), Technology (11), Inheritance (Dependency) (12), 
Consistency in allocation (13), Reuse (14), Modularity (15), Dependencies 
Impacting cross-ilities (16), Performance (17), Serviceability (18), Latency 
(19), Recovery (20), Disaster Recovery (21), Contingency plan (22), 
Archiving (23), Virtual prototyping (24), Virtual testing Protection layer 
(safeguard) (25), Access control (26), Security services (27), Interfaces (28), 
Manual intervention (29), Synchronization (30), Traceability (31), Fault 
Isolation (relevant for regression testing) (32) 

Functional 
IO 

Uniformity (1), Decomposition (2), COTS/Non-Development Items (3), Data 
(4), Standards (5), Throughput (6), Levels of service agreements (7), 
Semantics (8), Safety (9), Configuration (10), Orthogonal (11), Technology 
(12), Inheritance (Dependency) (13), Rationalized allocation (14), Functional 
cohesiveness (15), Reuse (16), Modularity (17), Common platform (18), 
Dependencies Impacting cross-ilities (19), Performance (20), Serviceability 
(21), Latency (22), Recovery (23), Capability (24), Disaster Recovery (25), 
Contingency plan (26), Archiving (27), Virtual prototyping (28), Virtual 
testing (29), Safe mode operation (30), Exception handling (31), Baseline 
operation (32), Access control (33), Assurance (34), Auditing (35), Security 
services (36), Interfaces (37), Manual intervention (38), Synchronization (39), 
Traceability (40), Fault Isolation (relevant for regression testing) (41), Fault 
Isolation (relevant for regression testing) (42) 
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System IO 

Uniformity (1), Decomposition (2), Configuration (3), Data (4), Standards (5), 
Throughput (6), Levels of service agreements (7), Semantics (8), Safety (9), 
Orthogonal (10), Maturity (11), Vendor management (12), System evolution 
based on reduced functional dependencies (13), Common Operating Platform 
(14), Commonality (15), User Interface (16), Dependencies Impacting cross-
ilities (17), Performance (18), Serviceability (19), Latency (20), Recovery 
(21), Capability (22), Disaster Recovery (23), Contingency plan (24), 
Archiving (25), Versatility in handling unpredictable environments (26), 
Virtual prototyping (27), Virtual testing (28), Safe mode operation (29), 
Exception handling (30), Baseline operation (31), Modeling and simulation 
(32), Self healing/adapting (33), Intelligence Capability (34), Access control 
(35), Assurance (36), Resilience (37), OPSEC (Operational Security) (38), 
Security services (39), User Interface (40), Traceability (41), Interfaces (42), 
Fault Isolation  (relevant for regression testing) (43), Auditing (44), Exception 
handling (45) 

Enterprise  

Uniformity (1), Organization structure & Processes (2), Governance (3), 
Configuration (4), Data (5), Standards (6), Throughput (7), Levels of service 
agreements (8), Ontology (9), Maturity (10), Vendor management (11), 
Integrated Process (12), Vertical Dependency between goal, objects, and 
business requirements (13), Common Operating Picture (14), Process 
Consistency (15), Dependencies Impacting Cross-ilities (16), Performance 
(17), Serviceability (18), Latency (19), Recovery (20), Capability (21), 
Disaster Recovery (22) 

Extended 
Enterprise 

Uniformity (1), Organization structure & Processes (2), Governance (3), Data 
(4), Standards (5), Throughput (6), Levels of service agreements (7), 
Ontology (8), Configuration (9), Integrated Process (10), Vertical Dependency 
between goal, objects, and business requirements (11), Common Operating 
Picture (12), Dependencies Impacting Cross-ilities (13), Performance (14), 
Serviceability (15), Latency (16), Recovery (17), Capability (18), Disaster 
Recovery (19), Contingency plan (20), Archiving (21), Business continuity 
plan /Mission contingency plan (22), Business impact analysis (23), 
Versatility in handling unpredictable environments (24), Agility (25), 
Adaptability (26), Access control (27), Assurance (28), Resilience (29), 
Policy (30), Technology (31), User Interface (32), Traceability (33), Interfaces 
(34), Fault Isolation  (relevant for regression testing) (35), Configuration (36), 
Auditing (37), Exception handling (38) 

 
Question 6: What is your Current role within your company? 
 
Question 7: In which year was your company founded? 
 
Question8: In which Primary Industry/Products/Services that your company operates? 
 
Question 9: Where is the location of major operations of your company? 
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