Παρουσίαση/Προβολή
Συνδυαστική Βελτιστοποίηση
(M148 (ΠΜΣ 506)) - Β. Ζησιμόπουλος
Περιγραφή Μαθήματος
Μαθηματική μοντελοποίηση προβλημάτων συνδυαστικής βελτιστοποίησης που εμφανίζονται σε πρακτικές εφαρμογές όπως των τηλεπικοινωνιακών δικτύων, δικτύων υπολογιστών ή οδικών δικτύων, χρονοπρογραμματισμού, διαχείρισης πόρων, τοποθέτησης εξυπηρετητών και μεταφοράς. Γενικές τεχνικές επίλυσης προβλημάτων συνδυαστικής βελτιστοποίησης. Μέθοδοι διαχώρισης και αποτίμησης (Branch and Bound), ευριστικοί αλγόριθμοι, μεταευριστικοί αλγόριθμοι. Ανάδειξη των ορίων των αλγορίθμων και επεξεργασία των πρόσφατων ερευνητικών εξελίξεων. Δυναμικός προγραμματισμός και προσεγγιστικοί αλγόριθμοι. Πολυωνυμικού χρόνου προσεγγιστικά σχήματα (PTAS, FPTAS). Μέθοδοι τοπικής αναζήτησης, PLS-completeness, δομές γειτονιών, εκθετικές γειτονιές αναζητούμενες πολυωνυμικά, προσεγγισιμότητα. Σύνδεση των μεθόδων τοπικής αναζήτησης με τη θεωρία παιγνίων και τη θεωρία τοπίων. Προβλήματα: Steiner Tree, k-Subgraph Densest, max k-coverage, min Dominating Set, Budgeted Domination, Covering and Packing, Max cut Problem, Scheduling, Knapsack, Placement Problems, Facility Location Problems, Transportation Problems.
Ημερομηνία δημιουργίας
Τρίτη 2 Δεκεμβρίου 2
-
Δεν υπάρχει περίγραμμα