
The nonlinear Schrödinger (NLS) equation 
 

Modulational instability  

and envelope solitons 
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Nonlinear wave envelopes 
Consider a wavepacket, composed by a carrier wave, namely a 
plane wave of the form exp[i(k0x − ω0t)], which is modulated by a 
generally complex field envelope u(x, t), resulting in the real field: 

Assume that the wave obeys the nonlinear dispersion relation: 
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The spectrum of the wavepacket  is located around k0  (and ω0)  
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The nonlinear Schrödinger (NLS) equation 
Since the spectrum is located around k0, we may Taylor expand 
the dispersion relation, i.e., ω(k) around k0:  
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xt ikki   00 , Using:                                                           we obtain the operator: 
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 and operating on u(x,t): 
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Galilei transformation and normalization 
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 we introduce the Galilei transformation: tttxx g  ,

 and cast the NLS into the form: 0
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Furthermore, using the rescaling:  ugutt |/|, 00   

the NLS is expressed as: 
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Focusing NLS 

Defocusing NLS 



An example from nonlinear optics 
Wave equation – resulting from Maxwell’s equations – 

describing optical beam propagation in a nonlinear medium: 
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Wave equation: 
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Slowly-varying envelope  
approximation 

Transverse Laplacian 

Propagation along z 

Linear dispersion relation 
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NLS – optical beams – spatial solitons 
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Diffraction Nonlinearity 



Spatial solitons: an experimental result 

Experimental demonstration of an optical spatial soliton  
propagating through a 5mm long nonlinear photorefractive crystal 

Top: side-view of the soliton beam from scattered light 

Bottom: normal diffraction of the same beam when the nonlinearity is ‘turned off’ 



NLS in hydrodynamic form 










1

1
,0

2

1 2
suusuiu xxt

Focusing NLS 

Defocusing NLS 

Mandelung transformation: )],(exp[),(),( txitxtxu 

NLS: 
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Compressible inviscid fluid: 
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Quantum-mechanical  
pressure 



The simplest solution and its stability 
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NLS: 
Solution:  

ts 00,  

Stability: Consider the ansatz: 








),(

),(),(

10

10

txts

txtx





small perurbations 

Substituting, at O(ε), we obtain: 
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Using: .c.c)](exp[.,c.c)](exp[ 11  ΩtKxibΩtKxia 
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Spatially homogeneous 

we derive the linear system:  



Modulational (Benjamin-Feir) instability 
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Linear homogeneous system:  
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We obtain: 

  The solution is stable if perturbations at any wave number K  
     do not grow with evolution. This is the case as long as Ω is real. 
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In particular: 
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instability 



Gain spectrum 
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Instability band 



We start from the linear system: 
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Using the compatibility condition:                      we obtain the  

linearized Boussinesq equation:  
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An alternative path to the dispersion relation 
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Assuming that:                                        we obtain the dispersion relation 

for the frequency Ω and wavenumber Κ of the perturbation: 

)](exp[1 ΩtKxi 









 2

0

2

0

2

4

1
KsKΩ




 If                                         NO instability  KΩs R1
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Experimental evidence of Benjamin-Feir 
instability in deep water (Benjamin 1967)  

Wavetrains in deep water are unstable – they “disintegrate” 

NLS! 



Behavior of the Fourier spectra (I) 

We have: )exp()exp( 1010  itiiu 

with: c.c.)](exp[,c.c.)](exp[ 11  ΩtKxibΩtKxia 

When the MI sets in:                 and    iiΩΩ 
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Thus, the perturbed solution reads: 
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where: 2/),exp(   xKtΩbQ ii



Behavior of the Fourier spectra (II) 
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Solution: 

Using the identity:                                                            we have:   )exp()(sinexp  
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Finally, recalling that:                                                                 we find:  )](exp[),(Re),( 00 txkitxutx  
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Wavenumber generation! 



Behavior of the Fourier spectra (III) 

0k
iKk 0iKk 0

k

)(kS

iKk 20  iKk 20 



MI: a route to localization  
and envelope soliton formation 
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envelope soliton 
Localization in x 

Broadening in k 


