The nonlinear Schrodinger (NLS) equation

Modulational instability

and envelope solitons



Nonlinear wave envelopes

Consider a wavepacket, composed by a carrier wave, namely a
plane wave of the form exp[i(k,x — wgt)], which is modulated by a
generally complex field envelope U(X, t), resulting in the real field:

w(x,t) = Re{u(x,t) exp[i(k,x — apt)]}

The spectrum of the wavepacket is located around k, (and )
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Assume that the wave obeys the nonlinear dispersion relation:
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The nonlinear Schrodinger (NLS) equation

Since the spectrum is located around k,, we may Taylor expand
the dispersion relation, i.e., w(k) around K,:
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Using: we obtain the operator:
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and operating on u(x,t):
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Galilei transformation and normalization
For the NLS equation:  1(U, + v, U, ) +%a)c’,’uxx + g\u\zu =0

we introduce the Galilei transformation: Xr—> X — Ugt, tot
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and cast the NLS into the form: 1U, + Ea)(')'uxx +guu=0

Furthermore, using the rescaling: t— @|'t, UH\/| g9/af|u

the NLS is expressed as:
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An example from nonlinear optics

Wave equation — resulting from Maxwell’s equations —

describing optical beam propagation in a nonlinear medium:
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Electric field: E(r,t) = %{u(x, Y, Z)expli(k,z —apt)] + C.C.}

Wave equation: 2 Propagation along z
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NLS — optical beams — spatial solitons

A s
Iu, + — — =0
: 2kO 2k 2 N

v v

Diffraction Nonlinearity

Spatial Solitons in Homogeneous Media

Diffracting bea

Spatial Solitons (1+1)D Spatial Solitons (2+1)D

Planar (slab) waveguide
Bulk medium

(1+1)D - in a slab waveguide
- diffraction in one D

(2+1)D - in a bulk material
- diffraction in 2D

A spatial solitonis a shape invariant self guided beam of light
or a self-induced waveguide




Spatial solitons: an experimental result

Experimental demonstration of an optical spatial soliton
propagating through a 5mm long nonlinear photorefractive crystal

Top: side-view of the soliton beam from scattered light

Bottom: normal diffraction of the same beam when the nonlinearity is ‘turned off’



Mandelung transformation:[ u(x,t) =/ p(x,t) explip(x,t)]

NLS in hydrodynamic form
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The simplest solution and its stability
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Stability: Consider the ansatz: {

Substituting, at O(g), we obtain: !
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Modulational (Benjamin-Feir) instability

Linear homogeneous system:

We obtain:

det

(

\

— 10
1

4p,

— p,K?

K? —iQ

J

( i 2°\
— 10 — 0, K

: Lo 1 )
_s+—K? —i@ |b)

\ 4p, J
4 1 )
:O:>Q2=pOK2[—S+—K2]

4,00
\ J

@ The solution is stable if perturbations at any wave number K
do not grow with evolution. This is the case as long as Q is real.

In particular:
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Gain spectrum
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An alternative path to the dispersion relation
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We start from the linear system: 1
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Using the compatibility condition: @, = @« we obtain the

linearized Boussinesq equation:
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Assuming that: p, oc exp[I(KXx—£7)] we obtain the dispersion relation

for the frequency Q2 and wavenumber K of the perturbation:
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Experimental evidence of Benjamin-Feir
instability in deep water (Benjamin 1967)
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60 m downstream

frequency = 0.85 Hz, wavelength=2.2 m,
waterdepth=7.6 m

Wavetrains in deep water are unstable — they “disintegrate”



Behavior of the Fourier spectra (l)

We have: U= pexp(iqo)z\/p0+,01€Xp(i,Oot+i§01)

with: p, =aexp[i(Kx—Q]+c.c., ¢, =bexp[i(Kx—Q¢)]+c.c.

When the Ml setsin: Q=iQ and

o, =aexp(Lt)cos(K.x+ H),‘
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Thus, the perturbed solution reads:
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Behavior of the Fourier spectra (ll)
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Solution: u=\/,o/0{1+ie9't cos(Kix+0)} exp (ip,t +iQsin®)
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Using the identity: exp(iQsin®)= iJn(Q)exp(inCD) we have:
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Finally, recalling that: w(X,t) = Re{u(x,t) exp[i(k,x — a)ot)]} we find:
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Wavenumber generation!




Behavior of the Fourier spectra (lll)
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MiI: a route to localization
and envelope soliton formation
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