The nonlinear Schrödinger (NLS) equation

Modulational instability and envelope solitons

Nonlinear wave envelopes

Consider a **wavepacket**, composed by a carrier wave, namely a plane wave of the form $exp[i(k_0x - \omega_0 t)]$, which is modulated by a generally complex field envelope *u*(*x*, *t*), resulting in the real field:

$$
\psi(x,t) = \text{Re}\{u(x,t)\exp[i(k_0x-\omega_0t)]\}
$$

The spectrum of the wavepacket is located around $k_{\textbf{0}}^{\text{}}$ (and $\omega_{\textbf{0}}^{\text{}}$)

Assume that the wave obeys the **nonlinear dispersion relation:**

$$
\omega = \omega(k, I), \quad I = |u|^2
$$

The nonlinear Schrödinger (NLS) equation

Since the spectrum is located around k_0 , we may Taylor expand **the dispersion relation**, i.e., $\omega(k)$ around k_{0} :

$$
\omega = \omega(k, I) \approx \omega(k_0) + \frac{\partial \omega}{\partial k}\bigg|_{k=k_0} (k - k_0) + \frac{1}{2} \frac{\partial^2 \omega}{\partial k^2}\bigg|_{k=k_0} (k - k_0)^2 + \dots + \frac{\partial \omega}{\partial I}\bigg|_{I=0} I + \dots
$$

$$
\Rightarrow \bigg[\omega - \omega_0 \approx \omega_0'(k - k_0) + \frac{1}{2} \omega_0''(k - k_0)^2 - gI, \quad g = -\frac{\partial \omega}{\partial I}\bigg|_{I=0}\bigg]
$$

Using: $\omega - \omega_0 \mapsto i\partial_t$, $k - k_0 \mapsto -i\partial_x$ we obtain the operator:

$$
i\partial_t = -i\,\nu_g \partial_x - \frac{1}{2} \omega_0'' \partial_x^2 - gI, \quad \nu_g = \omega_0'
$$

and operating on $u(x,t)$:

$$
i(u_t + v_g u_x) + \frac{1}{2} \omega_0'' u_{xx} + g |u|^2 u = 0
$$
 NLS equation

Galilei transformation and normalization

For the NLS equation:
$$
i(u_t + v_g u_x) + \frac{1}{2} \omega_0'' u_{xx} + g |u|^2 u = 0
$$

we introduce the Galilei transformation: $x \mapsto x - \nu_g t$, $t \mapsto t$

and cast the NLS into the form**:**

$$
i u_t + \frac{1}{2} \omega_0'' u_{xx} + g |u|^2 u = 0
$$

Furthermore, using the rescaling:

$$
t \mapsto \omega_0'' \, t, \quad u \mapsto \sqrt{\mid g / \omega_0'' \mid} \, u
$$

the NLS is expressed as**:**

$$
i u_t + \frac{1}{2} u_{xx} + s |u|^2 u = 0, \quad s = \begin{cases} +1 & \text{Focusing NLS} \\ -1 & \text{Defocusing NLS} \end{cases}
$$

An example from nonlinear optics

Wave equation – resulting from **Maxwell's equations** –

describing **optical beam propagation in a nonlinear medium**:

$$
\left(\Delta \mathbf{E} - \frac{1}{c^2} \mathbf{E}_u = \frac{1}{\varepsilon_0 c^2} \mathbf{P}_u \right) \underbrace{\left(\mathbf{P} = \mathbf{P}_L + \mathbf{P}_{NL} = \varepsilon_0 \chi_L \mathbf{E} + \varepsilon_0 \chi_{NL} \mathbf{E} \mathbf{E} \mathbf{E}\right)}_{\text{Electric field:}}\n\left.\mathbf{E}(\mathbf{r}, t) = \frac{1}{2} \left\{ u(x, y, z) \exp\left[i(k_0 z - \omega_0 t)\right] + \text{c.c.}\right\}
$$
\nWave equation:

\n
$$
u_{2x} + 2ik_0 u_z + \Delta_\perp u + \left[-k_0^2 + \frac{\omega_0^2}{c^2} (1 + \chi_L) \right] u + \frac{\omega_0^2}{c^2} \chi_{NL} |u|^2 u = 0
$$
\n
$$
|u_{zz}| \ll |k_0 u_z|
$$
\nSlowly-varying envelope

\nTransverse Laplacian linear dispersion relation

NLS – optical beams – spatial solitons

or a self-induced waveguide

Spatial solitons: an experimental result

Experimental demonstration of an optical spatial soliton propagating through a 5mm long nonlinear photorefractive crystal

Top: side-view of the soliton beam from scattered light

Bottom: normal diffraction of the same beam when the nonlinearity is 'turned off'

NLS in hydrodynamic form

$$
\begin{cases}\n\dot{u}_t + \frac{1}{2} u_{xx} + s |u|^2 u = 0, & s = \begin{cases}\n+1 & \text{Focusing NLS} \\
-1 & \text{Defocusing NLS}\n\end{cases}\n\end{cases}
$$

Mandelung transformation: $u(x,t) = \sqrt{\rho(x,t)} \exp[i\varphi(x,t)]$

The simplest solution and its stability

NLS:
\n
$$
\begin{cases}\n\rho_t + (\rho \varphi_x)_x = 0 \\
\varphi_t - s\rho + \frac{1}{2} \varphi_x^2 - \frac{1}{2} \rho^{-1/2} (\rho^{1/2})_{xx} = 0\n\end{cases}
$$
\nSolution:
\n
$$
\rho = \rho_0, \ \varphi = s\rho_0 t
$$
\nSpatially homogeneous

Stability: Consider the ansatz: $\overline{\mathcal{L}}$ $\big\{$ $\left\lceil$

$$
\rho(x,t) = \rho_0 + \epsilon \rho_1(x,t)
$$

$$
\varphi = s\rho_0 t + \epsilon \varphi_1(x,t)
$$
 small permutations

Substituting, at O(
$$
\varepsilon
$$
), we obtain:
$$
\begin{cases} \rho_{1t} + \rho_0 \varphi_{1xx} = 0 \\ \varphi_{1t} - s\rho_1 - \frac{1}{4\rho_0} \rho_{1xx} = 0 \end{cases}
$$

Using: $\rho_1 = a \exp[i(Kx - \Omega t)] + c.c., \quad \rho_1 = b \exp[i(Kx - \Omega t)] + c.c.$

 $\overline{}$

 \setminus

 I

 I

 $\bigg($

we derive the linear system:

$$
-i\Omega \qquad -\rho_0 K^2 \qquad \rho_0 K^2 \qquad \rho_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

$$
-s + \frac{1}{4\rho_0} K^2 \qquad -i\Omega \qquad \qquad \rho_0
$$

Modulational (Benjamin-Feir) instability

 $\overline{}$ $\overline{}$

 $\overline{}$ I

 $\Big\} =$

 \int

instability

 $\overline{}$ I

 $\bigg($

 \setminus

b

a

 $\overline{}$

 \int

 $\overline{}$

 $\overline{}$

 $\left.\rule{0pt}{10pt}\right.$

2

0

 $\rho_{\scriptscriptstyle (}$

 $\left.\rule{0pt}{12pt}\right)$

 $\bigg($

 \setminus

 $\left\{ \right.$

 \int

0

0

Linear **homogeneous** system:

We obtain:

$$
\det\begin{pmatrix} -i\Omega & -\rho_0 K^2 \\ -s + \frac{1}{4\rho_0} K^2 & -i\Omega \end{pmatrix} = 0 \Rightarrow \boxed{\Omega^2 = \rho_0 K^2 \left(-s + \frac{1}{4\rho_0} K^2 \right)}
$$

 $\overline{}$

 $-s+\frac{1}{1-K^2}$ –

0

 $\rho_{\scriptscriptstyle (}$

4

 $-i\Omega$ -

 $i\Omega$ $-\rho_0 K$

 $1 \nightharpoonup \mathbf{v}^2$

 $s + \frac{1}{\epsilon} K^2 - i\Omega$

 \setminus

 I

 I

 $\bigg($

 The solution is stable if perturbations at **any** wave number *K* **do not grow** with evolution. This is the case as long as *Ω* **is real.** In particular:

If
$$
s = -1 \Rightarrow \Omega \in \mathbb{R} \quad \forall K \to \mathbb{N}0
$$
 instability
If $s = +1$ then for $[K] \le 2\sqrt{\rho_0} \Rightarrow \text{Im}|\Omega(K)| = \sqrt{\rho_0}|K| \left(1 - \frac{1}{4\rho_0}K^2\right)^{1/2} \neq 0$

An alternative path to the dispersion relation

 ϵ

We start from the linear system:

$$
\begin{cases}\n\rho_{1t} + \rho_0 \varphi_{1xx} = 0 \\
\varphi_{1t} - s\rho_1 - \frac{1}{4\rho_0} \rho_{1xx} = 0\n\end{cases}
$$

Using the compatibility condition: $\varphi_{1,xx} = \varphi_{1,txx}$ we obtain the

linearized Boussinesq equation:

$$
\boxed{\rho_{1tt} + s\rho_0 \rho_{1xx} + \frac{1}{4}\rho_{1xxxx}} = 0
$$
 s =
$$
\begin{cases} +1 : \text{elliptic} & \text{(focusing NLS)}\\ -1 : \text{hyperbolic} & \text{(defocusing NLS)} \end{cases}
$$

Assuming that: $\rho_1 \propto \exp[i(Kx - \Omega t)]$ we obtain the **dispersion relation**

for the **frequency** *Ω* and **wavenumber** *Κ* of the perturbation:

$$
\Omega^2 = \rho_0 K^2 \left(-s + \frac{1}{4\rho_0} K^2 \right)
$$
 If $s = -1 \Rightarrow \Omega \in \mathbb{R} \quad \forall K \to \mathbb{N}$ instability
If $s = +1 \Rightarrow \exists K \in \mathbb{R}: \text{Im}(\Omega) \neq 0 \to \text{instability}$

Experimental evidence of Benjamin-Feir instability in deep water (Benjamin 1967) NLS!

near the wavemaker

60 m downstream

frequency = 0.85 Hz, wavelength = 2.2 m, water depth = 7.6 m

Wavetrains in deep water are unstable – they "disintegrate"

Behavior of the Fourier spectra (I)

We have:
$$
u = \sqrt{\rho} \exp(i\varphi) = \sqrt{\rho_0 + \rho_1} \exp(i\rho_0 t + i\varphi_1)
$$

 $\text{with: } \rho_1 = a \exp[i(Kx - \Omega t)] + \text{c.c., } \varphi_1 = b \exp[i(Kx - \Omega t)] + \text{c.c.}$

When the MI sets in: $\Omega = i\Omega_i$ and

 $\rho_1 = a \exp(\Omega_i t) \cos(K_i x + \theta), |\varphi_1| = b \exp(\Omega_i t) \cos(K_i x + \theta), |\nK_i| \in [0, 2\sqrt{\rho_0}]$

Thus, the **perturbed solution** reads:

$$
u = \sqrt{\rho_0 + a e^{\Omega_i t} \cos(K_i x + \theta) \exp[i\rho_0 t + ib e^{\Omega_i t} \cos(K_i x + \theta)]}
$$

= $\sqrt{\rho_0} \left[1 + \frac{a}{\rho_0} e^{\Omega_i t} \cos(K_i x + \theta) \right]^{1/2} \exp(i\rho_0 t + iQ \sin \Phi)$

where: $Q = b \exp(Q_i t)$, $\Phi = -K_i x - \theta - \pi/2$

Behavior of the Fourier spectra (II)

Solution:
$$
u = \sqrt{\rho_0} \left[1 + \frac{a}{\rho_0} e^{\Omega_i t} \cos(K_i x + \theta) \right]^{1/2} \exp(i \rho_0 t + i Q \sin \Phi)
$$

Using the identity: $\exp(iQ\sin\Phi) = \sum J_n(Q)\exp(in\Phi)$ we have: $+\infty$ *n*=−∞ $iQ \sin \Phi$ = $\sum J_n(Q) \exp(i n \Phi)$

$$
u = \sqrt{\rho_0} \left[1 + \frac{a}{\rho_0} e^{\Omega_i t} \cos(K_i x + \theta) \right]^{1/2} \sum_{n=-\infty}^{+\infty} J_n(b e^{\Omega_i t}) \exp(in \Phi) \exp(i \rho_0 t)
$$

Finally, recalling that: $\psi(x,t) = \text{Re}\{u(x,t)\exp[i(k_0x-\omega_0t)]\}$ we find:

$$
\mathcal{W} = \sqrt{\rho_0} \left[1 + \frac{a}{\rho_0} e^{\Omega_i t} \cos(K_i x + \theta) \right]_{n = -\infty}^{1/2} \sum_{n = -\infty}^{+\infty} J_n (be^{\Omega_i t})
$$

× $\exp[i(k_0 - nK_i)x - i(\omega_0 - \rho_0)t - in(\theta - \pi/2)]$
Wavenumber generation!

Behavior of the Fourier spectra (III)

MI: a route to localization and envelope soliton formation

