
The Korteweg-de Vries – Burgers (KdV-B) 
equation 

 

A model for dispersive shock waves 



Introducing the  
Korteweg-de Vries – Burgers (KdVB) equation 

 For μ = ν = 0, i.e., in the absence of dispersion and diffusion,     
    the KdVB becomes the Hopf equation, a prototypical quasi-  
    linear PDE for the study of shock waves 

 For μ = 0 and ν  0, the KdVB becomes the Burgers equation;  
    this model supports monotone viscous shock  waves 

 For ν = 0 and μ  0, the KdVB becomes the KdV equation;  
    this model supports solitons 

 For μ = 0 and in the absence of nonlinearity, the KdVB becomes  
    the linear diffusion equation 

Hopf equation  dispersion diffusion 



We seek traveling wave solutions of the KdVB equation  
 
 

of the form:  

Traveling wave solutions 

and derive the following 3d-order ODE: 

Then, integrating with respect to ξ we obtain: 

where K is a constant of integration 



The associated dynamical system 

In the absence of diffusion (ν = 0), this ODE can be viewed as the 
equation of motion of a particle in the presence of the potential: 

In the presence of diffusion (ν  0), this ODE can be written as: 

,                      negative friction  



The system of 1st-order ODEs 
Introducing the “velocity”                  we rewrite the 2nd-order ODE:  

as  system of 1st-order ODEs:  

We thus require that:                       ,,  and thus: 

Here, u1,2 are the roots of the quadratic polynomial                                        

                                         , assumed to be real. The roots are: 



Fixed points of the system 

The system:  

has the fixed points:  

We are interested in finding solutions of the system with end 
states the above fixed points, so that the solution curve: 

connects one fixed point to the other.  
 
To find such solutions, we have to investigate the stability of 
the fixed points, following basic ODE theory.  



Consider the linearization ansatz: 

Linearization around the fixed points 

where small perturbations 

Substituting, and retaining only the linear terms in the expansion 
of the right-hand sides, we derive the linearized system: 

where                for                                  for      

Then, we evaluate the relevant Jacobian matrix J at the 
equilibrium points 



We can now find the following:  
 
For                  we always have:                  and   

Classification of the fixed points (I) 
Jacobian matrix: 

Eigenvalues λ from the equation: 

Hence:  

Real eigenvalues of opposite signs 



Classification of the fixed points (II) 

Furthermore,  for                  and since:  

we have the following cases: 

Hence: 



Dissipation vs. dispersion  
According to the above analysis, the connection between the  
fixed points depends on the competition (i.e., the relative  
strength) between dissipation and dispersion: 

 If dissipation dominates, i.e., for                                 ,  under  
    the action of the negative friction, the trajectory of the  
    effective particle ascends from the bottom, at the fixed  
    point (u2, 0), to the top of the potential hill, at (u1, 0).  

 If dispersion dominates, i.e., for                                       , the  
    trajectory of the effective particle ascends from the bottom,  
    at the fixed point (u2, 0), to the top of the potential hill,  
    at (u1, 0), in an oscillatory manner.  

 In this case, the solution has the form of a monotone shock wave  

 In this case, the solution has the form of a oscillatory shock wave  



Monotone vs. oscillating shock waves 

 Orange  curve (A): monotone shock wave, for 

 Purple  curve (B): oscillating shock wave, for 

 Green (C) and dark red (D) curves: cnoidal wave and soliton  
                                                                   of the KdV equation for  



The form of the possible solutions 

 Curve (A): monotone shock wave, 
 Curve (B): oscillatory shock wave, 
 Curve (C): cnoidal wave of the KdV equation,   
 Curve (D): KdV soliton,  

 The oscillatory shock wave may, in fact, be regarded as a   
    combination of a KdV soliton and a damped cnoidal wave. 

   Oscillatory shock waves of the KdV-Burgers equation may be  
   used as a prototype for the description of undular bores 



An example of an undular bore 

Three surfers riding a tidal bore at Turnagain Arm, Alaska 


