
Burgers equation

Regularized (viscous) shock waves

Cole-Hopf transformation



Burgers' equation is a fundamental PDE occurring in various areas 
of applied mathematics and physics, such as fluid mechanics,
nonlinear acoustics, gas dynamics, traffic flow,… It has the form:

Introducing the Burgers equation

Hopf equation 
(nonlinear transport equation) 

diffusion term 

For instance, for an incompressible fluid, the fluid velocity satisfies 
the Navier-Stokes (NS) equations:

kinematic viscocity pressuredensity

In (1+1)-dimensions, and in the absence of pressure, NS 
equations reduce to Burgers equation [Burgers (1939)] 



The linear counterpart of the Burgers equation is of the form:

Complex dispersion relation:                                    

plane waves                                       are of the form: 

decaying amplitude
short waves attenuate 
faster than long ones

right-going traveling wave

The linear counterpart of the Burgers equation

For  c = 0 (diffusion equation), plane waves are:

These are not traveling waves – they oscillate in x and decay in t



One expects that the nonlinear term uux, will tend to 
steepen the wave up to the formation of a shock (and the 
eventual break up of the wave), while the diffusion νuxx is 
expected to have a smoothing out and broadening effect. 

It is therefore reasonable to ask whether the presence of 
diffusion can prevent the appearance of a discontinuous  
shock wave. 

Indeed, as we will show below, there exist traveling waves,  
in the form of viscous shocks which, for any finite ν, remain  
smooth and well-defined for all times.

Burgers equation – the role of diffusion



Traveling wave solutions
We seek traveling wave solutions of the Burgers equation 

of the form: 

where c is the unknown velocity. Taking into regard that:

we obtain the 2nd-order ODE:

Then, noting that:                             we integrate wrt. ξ and obtain:

where K is a constant of integration



which admits non-constant solutions which either tend to infinity 
or to one of the equilibrium points, as t → ±∞. Since we are 
interested in obtaining bounded solutions, we rewrite (1) as:

The associated dynamical system

(1)

We have thus derived the 1st-order autonomous nonlinear ODE: 

We thus require that:                       ,,  and thus:

and require that the equilibrium points, i.e., the roots u1,2 of the 
quadratic polynomial be real. The roots are:



Fixed points and phase plane

Dynamical system: 

Bounded solutions of the Burgers equation occur for: u1 < u < u2



The traveling shock wave solution

Integrating the ODE:                                                    we obtain: 

where δ is a constant of integration. Then, solving the above 
equation for u, we obtain:

where



Structure of the traveling shock wave

The shock wave (SW) asymptotes the equilibrium points:

Using:                                                                          we obtain:

velocity of the SW consistent with RH condition!

“Shock thickness”                          : diffusion prevents breaks up!
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The Cole-Hopf transformation

It was devised independently by 
Eberhard Hopf (German) (1950) 
and Julian Cole (American) (1951)  
[and also, even earlier, by V. Florin  
(Russian) (1948)].

The Cole-Hopf transformation is a milestone in the field of 
nonlinear PDEs, and has inspired —among others— important  
developments in the theory of solitons

It is a remarkable nonlinear transformation that reduces  
the Burgers equation to the linear diffusion equation. This  
way, the nonlinear Burgers equation can be explicitly  solved. 

E. Hopf J. D. Cole

Background



Introducing the Cole-Hopf transformation (I)
Express the Burgers equation in a conservation law form: 

Introduce the “potential” function U(x, t), which is actually the
antiderivative of u(x, t). The potential function U(x,t) satisfies:

[To see this, use the compatibility condition uxt = utx and (1)]

(1)

(2)

Combine Eqs. (2) to derive the Hamilton-Jacobi equation: 

Introduce the Cole-Hopf relation: 



To this end, substitute the Cole-Hopf relation: 

into the Hamilton-Jacobi equation: 

Then, observing that:

Introducing the Cole-Hopf transformation (II)

the Hamilton-Jacobi equation transforms 
into the linear diffusion equation  for Φ:

Thus, If Φ(x, t) is any nonzero solution of the diffusion equation

then

satisfies the Burgers equation:



Burgers equation vs. diffusion equation
Consider the following Cauchy problem for the Burgers equation:

Then, employing  the Cole-Hopf relation, we can determine Φ0(x)

from u0(x), i.e., the initial condition for the diffusion equation 
from the one for the above Burgers equation:

Thus, thanks to the Cole-Hopf transformation, instead of solving 
the nonlinear problem, we only need to solve the linear problem:



The general solution of the Cauchy problem for the diffusion 
equation can be expressed in terms of the convolution integral:

Solution of the Burgers equation (I)

where:                                                      is the fundamental  solution 

(or Green’s function) of the diffusion equation.

Then, we use the general solution in the form:

and find its derivative with respect to x:



Solution of the Burgers equation (II)
Finally, we can construct the solution u(x, t) of the Burgers 
equation by means of the Cole-Hopf transformation:

We can also use the equation:

and rewrite the solution of the Burgers equation as follows:

where F(x,y,t) is given by:



Consider the following IVP for the Burgers equation:

Riemann problem* for the Burgers equation

x

2u

)(0 xu

where u0(x) reads:
1u

This initial condition has the form of a step-like shock, which will 
evolve to a genuine shock wave in the inviscid limit of ν = 0

*Recall that a Riemann problem is an initial value problem for a hyperbolic PDE (or a 

system thereof) in which the initial data is piecewise constant with a discontinuity.

We wish to employ the results of the analysis above, and find the 
solution of this Riemann problem for the Burgers equation



Solution via the Cole-Hopf transformation (I)

Recall that:

We can find:

where R is given by: 

Then, upon manipulating the integrals in Eq. (1), we can find that 
the solution can be rewritten in the following form:

(1)



Solution via the Cole-Hopf transformation (II)

where:                                    as per the Rankine-Hugoniot condition!

while erfc(x) is the complementary error function defined as:



Asymptotic form of the solution
For fixed x − ct, the asymptotic behavior of the solution as t → +∞ is:

which is identical to the equilibrium solution of the Burgers equation!

The initial discontinuity is eventually smoothed, with the solution 
developing a continuously varying transition layer between the two 
asymptotic values u2 and u1. 

The results of the above analysis can be interpreted as follows. 

Spatial profiles of the solution, at t = 0.01, 1 and 2, for u2 = 1, u1 = 0.1 and ν = 0.03



Profile of the solution

The smoothing effect is more pronounced for larger viscosity ν

Shock wave solution of Burgers equation for high viscosity ν

Shock wave solution of Burgers equation for low viscosity ν



The case of an initial single hump
Consider the following IVP for the Burgers equation:

where u0(x) reads:

This initial condition has the form of a delta function, which will 
evolve as the fundamental solution of the diffusion equation in 
the limit of ν→ 0

As before, we wish to employ the results of the analysis above, 
and find the solution of this initial value problem for the full 
case, i.e., for the Burgers equation



Recall that:

Solution via the Cole-Hopf transformation (I)

where F(x,y,t) is given by:

For u0(x) = Aδ(x), we find: 𝐹 𝑥, 𝑦, 𝑡 = ൞

(𝑥−𝑦)2

2𝑡
, for 𝑦 < 0

(𝑥−𝑦)2

2𝑡
+ 𝐴, for 𝑦 > 0

where the lower limit of integration was taken to be – ∞. 

Then, upon manipulating the integrals in Eq. (1), we can find 
that the solution can be rewritten in the following form:

(1)



Solution via the Cole-Hopf transformation (II)

where erfc(x) is the complementary error function.

Evolution of the initial hump for “large” and “small” viscocity



The limiting case of ν → ∞ 

In the limit ν → ∞ we have:

and the solution becomes:

which is the fundamental solution of the diffusion equation


