Quasi-linear PDEs (Il)

Shock waves emerging from
localized initial data



Localized initial condition - Example |

Consider the IVP: U, +uu, =0, u(x,0)= @
X=Ut+¢

We have found: 0= £ (&) }:> X=¢&+ T (E)
and thus: {x:§+ 21 t]
E°+1

E t =0: identical map

E Ast7 the region of the plot X(¢)
corresponding to points ¢ where
f’<0 flattens

E Att =1, the graph acquires a point
with a horizontal tangent line

E Fort>t, there exists aregion x. < x<x,
where each x corresponds to 3 ¢-values
and thus to three (&) = u(x,t) values!




Example | (cont.) — the shock wave

u(x, t)
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Example | (cont.) — the notion of the envelope

The boundary between multi- and single-valued regions in
the xt-plane can be found by noticing that, at the relevant
points, the plot of x(&¢) has a horizontal tangent line:

dx o
X=E+ f(§)t:>&:1+ f (f)t—O]

" The boundary can be determined by the elimination

of & in the equations: [1+ f'(E)=0, x= f(f)t+.§]

\_

J

The resulting curve(s) in the xt-plane is the envelope™ of the
characteristics, i.e., here,

X*=&-1(5)/1'(6), 1+f(Ht=0

* Envelope is a curve that touches and is tangent to a family of curves



Example | (cont.) — characteristics and envelope
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Example | (cont.) — characteristics




Example | (cont.) — breaking time

Breaking time: [tb =min,,, {t(.ff) =-1/1'(¢) ‘ f'(&)<0 }J

Here:
| 25 1 (E2+1)
f(&) = = /(&) =— - -
(£)= 52 I T T T S

.. dt($) (& +1)°
min: 0 =0= d.f[ 2 j [b \@}

N GEE :{tb:@]
fo L

2& 9

"3

%= TG +6 =5 =& 2% =3 |




Example | (cont.) — wave breaking points

The value of &, is equal to the inflection point X, of f(x), i.e., T”(&,)=0

u(x,t)
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A more detailed look at the envelope

As noted above, the envelope can generally be determined
by the elimination of ¢ in the equations:

x=F1f(E)+&, 1+ 1'(E)1=0 & 3

Indeed, from a geometry point of view, we have:

Characteristics are given by x = f (&)t + &
or [G(x,t, E) = O] and, thus, for the envelope & = £(X,1)

dG :\GM_I_ G.d& =0 alongthe envelope

|
O (because the envelope is tangent to the family)

Hence: (G(x,t,&) =0 X—&— F(E)t=0
G.(x,t,&) =0 :{ 1+ f/(&)t =0




The envelope and a tractable example

Alternatively, from an analysis point of view, we have:

Consider two characteristics, £ and &+ 6¢, that intersect at (x,t) .
Then: x=6+ (&)t and x=&+ 65+ F(E+ 0N

and in the limit 66 — 0 we obtain: {X =f(EN+&, 1+ 1'(E)t = OJ

In some cases the envelope can be found analytically
Example: Consider the IVP:

u +uu, =0, u(x0)="f(x)

-

v T(X)
1-x%, |x|<1 A
f(X) =« X 71N\

O, ‘ X‘ >1 "; H" >

—1 1

\



The envelope and a tractable example — cont.

We will use the equations: x=&+ (&)t and 1+ f'(E)t=0

to determine the breaking time and the envelope.

Breaking time

<1t f(&)=1-& = f/(&)=—-2& and '(£) <0 for £e(0,1)
For t, : 1+f’((§)tB:O:>tB:mino<§<1{— . }:[thl]

() 2
Envelope
1+1"(\»§)t:0:>1—2§t:O:>./§=i T 1\? 1\
——————————— 2t>:>X: 1— Z_t t+2_t
x=f(Et+Ex=1-&Nt+¢ | UL . y



The envelope and a tractable example — cont.

r \
. o 1
To this end, the envelope is given by: | X(1) =t + —
N at
{
I
i T =1+ ﬁ
Envelope
t, :% 5
I H
£ 1




Localized initial condition - Example Il

Consider the IVP: U, +uu, =0, u(x,0) =[f (X) = exp(—xz)]
Breaking time:| t, = min,_, {t(&) =1/ f'(£) | (&) <0 ||

1 e¢

fr(&) 28

. dt(é) d 1
min : 0 =0=> d§[2§j :[fb T]
e* \f
Thus: T = ~1.16
255
"2

Xp = f(éb)tb_i_gb:e tb+§b [ b:\/z]

Here: f(&)=e* = f'(&)=-2&° = -




Example Il (cont.) — wave breaking points

The value of &, is equal to the inflection point X, of f(x), i.e., T”(&,)=0

" (a) [ (b)




The role of dissipation - Example |
Consider the IVP: U, +UU, : u(x,0) =|f (x) = u, exp(—x°)

Here, the Hopf equation incorporates a linear dissipative term:
indeed, in the absence of nonlinearity, the solution is oc exp(-t)

[guestion: Which values of u, give rise to wave breaking? ]

On I: Xx=x(t) we have:[d—x = u} x(0) = &; [d_u — _UJ u(0) = er_§2

dt dt
du_ —U=u=Ae"
B The 2" eq. leads to: dt >
u(0) =u,e )

¥ Thus, the 1st eq. leads to:

dX L « et g2 _
E:u:uoe 6Cet:>_[§ dX=er§ joetdt X(t)zuoe§ (1_et)+é




The role of dissipation - Example | (cont.)

For the breaking time we use: g—x =0, Xx(t) = uoe‘(f2 (1- e‘t) + &

Here: X
3_2 =0= U (-28)(1-e ") +1=0= t(g) - In[l_ ;j

\_
[Wave breaking occurs if: t, = min§>o {t(.f)}> O]

at(e) _ L (e (25)(2ug) - e (2uy) _1
0 —O:>1_ 7 [ 1025 j O:fb—ﬁ
2U,é
Hence: t, =t(§b)‘§b:% >0 = 0< 2ueol<1 :>[u0 >\/§ ]




The role of dissipation - Example Il
Consider the IVP: U, +UU, = u(x,0) = f(x)

Again, the Hopf equation incorporates a dissipative term

‘Show that, for a @ 0, the breaking time t,(a) is greater than the
corresponding one, t,(0), for a=0, i.e., t,(a) > t,(0)

Here: C—X:u, Xx(0)=¢& (D); d—u:—au, u(0)= (&) (2
dt dt

EEqg. (2) leads to: [u = (&) exp(—at)] and, thus, Eq. (1) gives:
dx

U= f(Ee™ = L dx = f (&) jo e ldt =

[x(t) = %(1— e )+ & ]




The role of dissipation - Example Il (cont.)

For the breaking time we use: CC:_X =0, x(t) = E(l_ e—at)+ £
d

Here:

d—X:O:>1+f(g)(l—eat):O:at:—ln£1+ 2 j:>

dé a F'(¢)
&(5) — _gln(lJr f'?é)ﬂ and breaking time: [tb =min,, {t(é‘)}]
4 ) )
: 1 a
t, =min, —gln[lJr f’(g‘)j}
N \ y

This equation is valid in both cases,a=0and a0




The role of dissipation - Example Il (cont.)

: 1 a )
We have: t, =t (a)=min, ,q ——In[ 1+ -

Casel:a=0:

'

t,(0) =1lim_,t,(a) :Iima—m{ —iln£1+ 4 j

1

14+ 2 ]f'(g)
( f(f) :>tb(0):— 1
1 f'($)

where we used L'Hopital's rule Well-known result from
the dissipationless case

:_Ilma—>0




The role of dissipation - Example Il (cont.)

Casell: aO0: £:0:> 1 d ( L j:O:>
dg L& dg\ 1(5)
solution independent of a )
1 a 1
We now compare: t, (a) :——In[1+ ' j t,(0) = ——
oa U fe) /(&)

It remains to show that t,(a) > t,(0). If this holds, then:

1 [ a ] 1 ( a j a
——In| 1+ > — = In| 1+ <
a t'($) t'($) t'()) 1)

This inequality is valid because: In(1+x)< x, x<0

Note: f (X) = In(1+ x) is concave and g(X) = X is its tangent
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