Quasi-linear PDEs (II)

Shock waves emerging from localized initial data

Localized initial condition - Example I

Consider the IVP:
$$u_t + u u_x = 0$$
, $u(x,0) = f(x) = \frac{1}{x^2 + 1}$

$$u = f(\xi)$$

and thus:
$$x = \xi + \frac{1}{\xi^2 + 1} t$$

- \blacksquare t = 0: identical map
- \blacksquare As $t \uparrow$ the region of the plot $x(\xi)$ corresponding to points ξ where f'<0 flattens
- \blacksquare At $t = t_h$ the graph acquires a point with a horizontal tangent line
- For $t > t_h$ there exists a region $x < x < x_+$ where each x corresponds to 3 ξ -values and thus to three $f(\xi) \equiv u(x,t)$ values!

Example I (cont.) – the shock wave

Example I (cont.) - the notion of the envelope

The boundary between multi- and single-valued regions in the xt-plane can be found by noticing that, at the relevant points, the plot of $x(\xi)$ has a horizontal tangent line:

$$x = \xi + f(\xi)t \Longrightarrow \frac{dx}{d\xi} = 1 + f'(\xi)t = 0$$

The boundary can be determined by the elimination

of
$$\xi$$
 in the equations: $1 + f'(\xi)t = 0$, $x = f(\xi)t + \xi$

The resulting curve(s) in the xt-plane is the **envelope*** of the characteristics, i.e., here,

$$x^{\pm} = \xi - f(\xi) / f'(\xi), \quad 1 + f'(\xi)t = 0$$

* Envelope is a curve that touches and is tangent to a family of curves

Example I (cont.) - characteristics and envelope

Example I (cont.) – characteristics

Example I (cont.) – breaking time

Breaking time:
$$t_b = \min_{\xi>0} \{t(\xi) = -1/f'(\xi) \mid f'(\xi) < 0 \}$$

Here:

$$f(\xi) = \frac{1}{\xi^2 + 1} \Rightarrow f'(\xi) = -\frac{2\xi}{(\xi^2 + 1)^2} \Rightarrow -\frac{1}{f'(\xi)} = \frac{(\xi^2 + 1)^2}{2\xi}$$

$$\min: \frac{dt(\xi)}{d\xi} = 0 \Rightarrow \frac{d}{d\xi} \left(\frac{(\xi^2 + 1)^2}{2\xi} \right) = 0 \Rightarrow \xi_b = \frac{1}{\sqrt{3}}$$

$$t_b = \frac{(\xi^2 + 1)^2}{2\xi} \bigg|_{\xi_b = \frac{1}{\sqrt{3}}} \Longrightarrow t_b = \frac{8\sqrt{3}}{9}$$

$$x_b = f(\xi_b)t_b + \xi_b = \frac{t_b}{\xi_b^2 + 1} + \xi_b \Rightarrow x_b = \sqrt{3}$$

Example I (cont.) – wave breaking points

The value of ξ_b is equal to the inflection point x_I of f(x), i.e., $f''(\xi_b) = 0$

A more detailed look at the envelope

As noted above, the **envelope** can generally be determined by the elimination of ξ in the equations:

$$x = f(\xi)t + \xi, \quad 1 + f'(\xi)t = 0$$

Characteristics are given by $x = f(\xi)t + \xi$

or
$$G(x,t,\xi)=0$$
 and, thus, for the envelope $\xi=\xi(x,t)$

$$dG = G_x dx + G_t dt + G_\xi d\xi = 0 \quad \text{along the envelope}$$

0 (because the envelope is **tangent** to the family)

Hence:
$$\begin{cases} G(x,t,\xi) = 0 \\ G_{\xi}(x,t,\xi) = 0 \end{cases} \Rightarrow \begin{cases} x - \xi - f(\xi)t = 0 \\ 1 + f'(\xi)t = 0 \end{cases}$$

The envelope and a tractable example

Alternatively, from an analysis point of view, we have:

Consider two characteristics, ξ and $\xi + \delta \xi$, that intersect at (x,t).

Then:
$$x = \xi + f(\xi)t$$
 and $x = \xi + \delta\xi + f(\xi + \delta\xi)t$

and in the limit
$$\delta \xi \to 0$$
 we obtain: $x = f(\xi)t + \xi$, $1 + f'(\xi)t = 0$

In some cases the envelope can be found analytically

Example: Consider the IVP:

$$u_{t} + u u_{x} = 0, \quad u(x,0) = f(x)$$

$$f(x) = \begin{cases} 1 - x^{2}, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

The envelope and a tractable example - cont.

We will use the equations: $x = \xi + f(\xi)t$ and $1 + f'(\xi)t = 0$ to determine the **breaking time** and the **envelope**.

Breaking time

$$|\xi| \le 1$$
: $f(\xi) = 1 - \xi^2 \Rightarrow f'(\xi) = -2\xi$ and $f'(\xi) < 0$ for $\xi \in (0,1)$

For
$$t_B: 1+f'(\xi)t_B=0 \Rightarrow t_B=\min_{0<\xi<1}\left\{-\frac{1}{f'(\xi)}\right\} \Rightarrow \left[t_B=\frac{1}{2}\right]$$

Envelope

$$\frac{1+f'(\xi)t=0 \Rightarrow 1-2\xi t=0 \Rightarrow \xi=\frac{1}{2t}}{x=f(\xi)t+\xi \Rightarrow x=(1-\xi^2)t+\xi} \Rightarrow \boxed{x=\left[1-\left(\frac{1}{2t}\right)^2\right]t+\frac{1}{2t}}$$

The envelope and a tractable example – cont.

To this end, the **envelope** is given by: $x(t) = t + \frac{1}{4t}$

$$x(t) = t + \frac{1}{4t}$$

Localized initial condition - Example II

Consider the IVP: $u_t + u u_x = 0$, $u(x,0) = f(x) = \exp(-x^2)$

Breaking time:
$$t_b = \min_{\xi>0} \{t(\xi) = -1/f'(\xi) \mid f'(\xi) < 0 \}$$

Here:
$$f(\xi) = e^{-\xi^2} \Rightarrow f'(\xi) = -2\xi e^{-\xi^2} \Rightarrow -\frac{1}{f'(\xi)} = \frac{e^{\xi}}{2\xi}$$

$$\min: \frac{dt(\xi)}{d\xi} = 0 \Rightarrow \frac{d}{d\xi} \left(\frac{e^{\xi^2}}{2\xi} \right) = 0 \Rightarrow \xi_b = \frac{1}{\sqrt{2}}$$

Thus:
$$t_b = \frac{e^{\xi^2}}{2\xi} \bigg|_{\xi_b = \frac{1}{\sqrt{2}}} \Rightarrow \boxed{t_b = \sqrt{\frac{e}{2}} \approx 1.16}$$

$$x_b = f(\xi_b)t_b + \xi_b = e^{-\xi^2}t_b + \xi_b \Longrightarrow \left[x_b = \sqrt{2}\right]$$

Example II (cont.) – wave breaking points

The value of ξ_b is equal to the inflection point x_I of f(x), i.e., $f''(\xi_b) = 0$

The role of dissipation - Example I

Consider the IVP:
$$u_t + u u_x = -u$$
, $u(x,0) = f(x) = u_0 \exp(-x^2)$

Here, the Hopf equation incorporates a **linear dissipative term**; indeed, in the absence of nonlinearity, the solution is $\propto \exp(-t)$

Question: Which values of u_0 give rise to wave breaking?

On
$$\Gamma$$
: $x=x(t)$ we have: $\frac{dx}{dt} = u$, $x(0) = \xi$; $\frac{du}{dt} = -u$, $u(0) = u_0 e^{-\xi^2}$

The 2nd eq. leads to:
$$\frac{du}{dt} = -u \Rightarrow u = Ae^{-t}$$
$$u(0) = u_0 e^{-\xi^2}$$

■Thus, the 1st eq. leads to:

$$\frac{dx}{dt} = u = u_0 e^{-\xi^2} e^{-t} \implies \int_{\xi}^{x} dx = u_0 e^{-\xi^2} \int_{0}^{t} e^{-t} dt \implies x(t) = u_0 e^{-\xi^2} (1 - e^{-t}) + \xi$$

The role of dissipation - Example I (cont.)

For the **breaking time** we use: $\frac{dx}{d\xi} = 0, \ x(t) = u_0 e^{-\xi^2} (1 - e^{-t}) + \xi$

$$\frac{dx}{d\xi} = 0 \Rightarrow u_0 e^{-\xi^2} (-2\xi)(1 - e^{-t}) + 1 = 0 \Rightarrow t(\xi) = -\ln\left(1 - \frac{e^{\xi^2}}{2u_0\xi}\right)$$

Wave breaking occurs if: $t_b = \min_{\xi>0} \{t(\xi)\} > 0$

$$\frac{dt(\xi)}{d\xi} = 0 \Rightarrow \frac{1}{1 - \frac{e^{\xi^2}}{2u_0 \xi}} \left(\frac{e^{\xi^2} (2\xi)(2u_0 \xi) - e^{\xi^2} (2u_0)}{4u_0^2 \xi^2} \right) = 0 \Rightarrow \xi_b = \frac{1}{\sqrt{2}}$$

Hence:
$$t_b = t(\xi_b)|_{\xi_b = \frac{1}{\sqrt{2}}} > 0 \implies 0 < \frac{e^{1/2}}{2u_0 \frac{1}{\sqrt{2}}} < 1 \implies u_0 > \sqrt{\frac{e}{2}}$$

The role of dissipation - Example II

Consider the IVP:
$$u_t + u u_x = -au$$
, $u(x,0) = f(x)$

Again, the Hopf equation incorporates a dissipative term

Show that, for $a \ @ 0$, the breaking time $t_b(a)$ is **greater** than the corresponding one, $t_b(0)$, for a=0, i.e., $t_b(a) > t_b(0)$

Here:
$$\frac{dx}{dt} = u$$
, $x(0) = \xi$ (1); $\frac{du}{dt} = -au$, $u(0) = f(\xi)$ (2)

Eq. (2) leads to: $u = f(\xi) \exp(-at)$ and, thus, Eq. (1) gives:

$$\frac{dx}{dt} = u = f(\xi)e^{-at} \implies \int_{\xi}^{x} dx = f(\xi)\int_{0}^{t} e^{-at}dt \implies$$

$$x(t) = \frac{f(\xi)}{a} \left(1 - e^{-at}\right) + \xi$$

The role of dissipation - Example II (cont.)

For the **breaking time** we use: $\frac{dx}{d\xi} = 0$, $x(t) = \frac{f(\xi)}{a} (1 - e^{-at}) + \xi$ Here:

$$\frac{dx}{d\xi} = 0 \Rightarrow 1 + \frac{f'(\xi)}{a} \left(1 - e^{-at} \right) = 0 \Rightarrow at = -\ln \left(1 + \frac{a}{f'(\xi)} \right) \Rightarrow$$

$$t(\xi) = -\frac{1}{a} \ln \left(1 + \frac{a}{f'(\xi)} \right) \text{ and breaking time: } t_b = \min_{\xi > 0} \left\{ t(\xi) \right\}$$

$$t_b = \min_{\xi>0} \left\{ -\frac{1}{a} \ln \left(1 + \frac{a}{f'(\xi)} \right) \right\}$$

This equation is valid in both cases, a = 0 and $a ext{ } ext{ } ext{ } 0$

The role of dissipation - Example II (cont.)

We have:
$$t_b = t_b(a) = \min_{\xi > 0} \left\{ -\frac{1}{a} \ln \left(1 + \frac{a}{f'(\xi)} \right) \right\}$$

Case I: a = 0:

$$t_b(0) = \lim_{a \to 0} t_b(a) = \lim_{a \to 0} \left\{ -\frac{1}{a} \ln \left(1 + \frac{a}{f'(\xi)} \right) \right\}$$

$$=-\lim_{a\to 0} \frac{\left(1+\frac{a}{f'(\xi)}\right)f'(\xi)}{1} \Longrightarrow t_b(0) = -\frac{1}{f'(\xi)}$$

where we used L'Hôpital's rule

Well-known result from the dissipationless case

The role of dissipation - Example II (cont.)

Case II:
$$a ? 0$$
:
$$\frac{dt}{d\xi} = 0 \Rightarrow \frac{1}{1 + \frac{a}{f'(\xi)}} \frac{d}{d\xi} \left(\frac{1}{f(\xi)}\right) = 0 \Rightarrow$$

solution independent of a

We now compare:
$$t_b(a) = -\frac{1}{a} \ln \left(1 + \frac{a}{f'(\xi)} \right), \quad t_b(0) = -\frac{1}{f'(\xi)}$$

It remains to show that $t_h(a) > t_h(0)$. If this holds, then:

$$-\frac{1}{a}\ln\left(1+\frac{a}{f'(\xi)}\right) > -\frac{1}{f'(\xi)} \Longrightarrow \ln\left(1+\frac{a}{f'(\xi)}\right) < \frac{a}{f'(\xi)}$$

This inequality is valid because: ln(1+x) < x, x < 0

Note: $f(x) = \ln(1+x)$ is **concave** and g(x) = x is its tangent