Quasi-linear PDEs (I)

Method of characteristics and
introduction to shock waves



First-order PDEs and useful notions

Consider a first-order linear PDE, in two variables, which
can generally be expressed as:

du du
A(ﬁ,y}a + E(x,y}a + Gi(x,y)u = Gy(x,y)

This equation is called homogeneous if Cy = 0.

More generally, functions A, B, C, may depend on u; in

this case, the first-order PDE of the form:

s, d
[A[:x.y. “}U_: + B(x. y, “)U_; = C(x,y, U)J

is called quasi-linear (in two variables).

Remark:
Every linear PDE is also quasi-linear, because we can set:

C(x,y,u) = Gy(x,y) — Gi(x,y)u.



A prototypical -physically significant- example:
Transport (advection) equation

u, +icu, =0
u +c(x,tu, =0

Linear & homogeneous PDEs

U, + C(X, t)UX =[h(X, t)] Linear & inhomogeneous PDE

U, -I-X =0 Quasi-linear PDE

Remark:
u, +c(u)u, =0=c'(u)u, +c(u)c’'(u)u, =0

- =
c'(u)u, =c,, c(u)c’(u)u, =cc, )

C, +CC, = O Hopf (Riemann / inviscid Burgers) equation




Method of characteristics
Consider the Cauchy problem for the quasi-linear PDE:
[a(x,t,u)|u, +b(x,t,u)|u, =c(x,t,u), u(x,0)= f(x)
X=X(r), x(0)=s
t=t(r), t(0)=0

° Introduce a curve I defined as: T :{

* Assume that, on I': u(x,t) = u(x(r), t(r)), and differentiate wrt r:

du _u at n ou jdx Next, require: E=a, d—X: b
dr otidr] ox|dr dr dr

*Then, on I, the quasi-linear PDE is reduced to the ODE: du —

°The equations:[ﬂ = a, 0 =D, ol = c]:[dt = i = du]
dr dr dr a b C

are called the characteristics of the quasi-linear PDE.

C
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Geometrical interpretation
Consider again the Cauchy problem for the quasi-linear PDE:
a(x,t,u) u, +b(x,t,u) u =c(x,t,u), u(x,0)= f(x)

* Let u(X,t) a solution of the PDE, and its graph z = u(x,t), which
is a surface in the xtu-space. The initial data which define a
curve y in the xt-plane (e.g., if u(x,0)=f(x) then y is the x-axis,
etc) provides a space curve I that lies on the graph.

* Let F=(a, b, c) the vector field defined by PDE’s coefficients

* The normal vector N to the surface z=u(x,t) is: N=(u,, u, -1)

* If u(x,t) a solution of the PDE then

[F-Nzaut+bux—0:0<:>FLN<:>Ftangent to z =u(xt) ]

®» The graph of the solution can be constructed by finding
the stream lines of F that pass through the initial curve .




1. Transport equation with const. velocity

@ Simplest linear 1st-order problem: | u; +cu, = 0.
transport (advection) equation u(x,0) = F(;)Y\

\

» Method of characteristics
Reduce the problem to an ODE along
some curve [: X=X(t) such that du/dt=0

du(x(t),t)  dudx N dudt |du N duff: . dr
dt  Odxdt drdr |dr  Ox dar "

w=ck, " (k) =0

Non-dispersive system

"

dr _ .
-_{ft =C = 1(?‘}=E’.;T‘|‘§
du _
= E=U:> u(x,t) =u(,0) = F(E)

General solution: w(x.7) = Flx—cf) 0



Solution of the transport equation
The IC, F(X), is simply translated without changing shape

J. D. Logan, Applied Mathematics



2. Transport equation with non const. velocity

Consider the Cauchy problem:

u, +2t, =0 (c=2t)
u(x,0) = f (x) =exp(—x?)

On I: x=X(t) we have du/dt=0: A (1)
du oOu dt 8u dx dx
= t + _ux =0 -
dt at dt 8)( dt dt characteristic
(£0) x
This leads to: X(0)=¢& = x(t)=t"+¢&
Also, on I

du/dt =0= u(x,t) = const.
t=0: u(xt)=u(&0)

IC: u(x,0) = f(x) = u(&,0) = (&)

:»@(x,t) ~ (&) = exp[—(x —tﬂ

J. D. Logan, Applied Mathematics



3. A boundary-value problem

Consider the BVP: — ut+ux+tu:0’ x>0, teR
BCat x=0: u(0, t): f (t)

On I: t=t(X) we have: d_u a—Udt ou dx dtut+u

dx ot dx OX dx dx

X

dt

and we choose: — =x :>t——X3-|<:) —— our £in this case
dx t
du 1 du (1
On I: t=t(X) we have: =—tu= ( x> +fju and thus:
dx ) dx

du _ (1x3+rjdx:j —u_j (x+rjdx:
u 3 f#) u

{u: f(r)exp(—%x“—rxj: f(t—%x?’jexp(—%x“—xtj J




3. A nonlinear problem: Hopf equation
[ U +uu, =0, u(x0)=f(x), xeR,t>0 ]

du_audt ou dx qudx
dt otdt oxdt ' dt "
As before: f
du/dt =0 = u(x,t) = const.

dx/dt=u, x(0)=¢& = x(t)=ut+¢

On I: x=X(t) we have: du/dt=0:

Since: I

U(X’O) =1 (X) — U(g,O) =1 (5) C Cha.racter!stics.are

U(X,t) = U(§,O) = f (5) . [u _ f (X - Ut) } again straight lines
E=X—Ut -—

Implicit solution of the Hopf equation



An explicit solution of the Hopf equation
S. Chandrasekhar found (1943) an explicit solution of the following IVP:

[ u+uu,=0, u(x0)=f(x)=ax+b |

We have found: U= f(x—ut)

. a<0:the solution steepens as t—

ax+b
and thus: u:a(x—ut)+b:>[u: ]
1+ at
4 , . A
a > 0: the solution flattens as t—o
/ — Rarefaction wave
\_ / J
4 )
— | I \ Shock wave
\ \ For t=t;=-1/a the

solution blows u

B/




What can we learn from the explicit solution?
2 )

_/j/r ,/ Positive slope

+
0“
.

.
o*
.
«®

f / Rarefaction wave
SN ﬂ\\ Negative slope

=t Shock wave




Breaking time

Consider the general problem: u, +uu, =0, u(x,0) = f(x)

X=Uut+¢

u=1(s)

We have found:

}=>X=<§+f(c§)t (1)

We wish to determine the breaking time t; occurring when
the profile of the solution develops an infinite slope:

5_u du8<§
== O
(1),0,: 1=&,+ f(OE, = & = fl(g)t

D

:,EJX

G
1+ (&)t

If f7(€) > 0 VX then the solution is finite YVt — rarefaction wave
If f’(€) < 0 the solution breaks up at the earliest critical time:

|t = mingso{~1/f'(O)If'(§) < 0} |




What happens before the breaking time 1,

Using [x =&+ F (&)t (1)|we found: [ux - 1+f]:(,2)t (2)]
Similarly:
_ou_duos
4= =g = 5 B
©),0,: 0= &+ (& + (&) = & =~ )
e ‘ 1+ (o)t
C , ) Hence, from (2)-(3), and for t < t,
U =— f(g)’f (5) (3) | the solution remains single-valuzd
q 1+ 1)t ) and satisfies the Hopf equation:
ot = SOL© L SO

1L+ 17()t L+ f7(t



What happens for times t > {; :
Characteristics intersect

The slope of a characteristic passing (x°, t9) is: (¢ =c(f (xo))]
t

Here, ¢ = c(u) is a strictly increasing function:

u +c(uu, =0, cluy=u=c'(u)=1>0

Let f be a strictly decreasing function;
then, c(f) is also strictly decreasing:

X, < X, = c(f(x))>c(f(x))

-t

(X9, t9)

and, hence, characteristics passing - /
through (x/,0), (x;,0) intersect! (x1,0) (=32, 0)

S

At the intersection point, the solution u(Xx,t) becomes
multi-valued because it takes both values f (x;), f(x;)




An example
Consider the IVP: U, +uu, =0, u(x,0)=f(x), xeR

(2. X < 0 2
f(x)=92—-x, 0<x<1 1\
\1, X>1 .
0 1 X
= ut
We have found: r=t +§}:>x:c§+f(§)t
u=1(s)
Characteristics:
] a2 )
2, & <0 &+ 2t, & <0
f(£)=<12-¢&, 0<EL] | x=<1&E+(2-6), 0<£L]
1 >1 +t, >1
\ s 9 & < y




An example (cont.) - characteristics

Characteristics intersect at t = 1: the '

shock wave emerges and the solution ! f >1: X= f +1 :>[t = X— f]

becomes multi-valued fort > 1

E<0: x:§+2t:>t[:%(x—§)]




An example (cont.) — breaking time

How to determine the breaking time t;:

Recall that: [tB = mins{—1/f'@)If' () < 0}]

Here, we have:

() =+

2, <0

2—-¢&, 0<£<1 and hence

1,  £>1

Alternatively, recall that we found: Xx=&+(2-&)t, 0<&£<1

and so

All other characteristics in
this interval pass (x,t) = (2,1)

E=0: x=2t
E=1: x=1+t

—characteristics intersect at[(x,t):(Z,l)J

t

Y r
= '
H

w




An example (cont.) — shock formation
(2, X < 2t

Solution: u(x,t)=<——, 2t<x<t+1




Exercises — linear problems

1) Use the method of characteristics to solve the IVPs:
1.1) u +u +u=0, u(x,0)=f(x)=cosx, xeR

1.2) U +2xtu, =u, u(x,0)=f(x)=x, xeR

2) Use the method of characteristics to show that the
solution of the IVP:

u +cu, =h(xt), u(x,0)="f(x), xeR

is: u(x,t) = f(x—ct)+j; h(x —c(t —t"),t') dt’

In all cases confirm, by direct substitution, that the
solution you found satisfies the corresponding PDE.



Exercises — nonlinear problems

3) Use the method of characteristics to solve the Hopf
equation:
u +uu, =0, u(x,0)=f(x)

in the following cases:

0, X <0 0, X <0
3.1) f(x)=4x, 0<x<1 3.2) f(x)=4-x, 0<x<1
1, X>1 -1, X>1

In both cases:

a) Draw the characteristics in the xt-plane

b) Write down the solution and draw some characteristic
snapshots of the solution at different time instants

c) Determine the breaking time (when relevant)



