Lattices and discrete wave equation

From discrete to continuum

Figures and numerical simulations - Courtesy: G. Theocharis



Lattice dynamics - equations of motion

» Lattice dynamics, and particularly wave propagation in lattices,
appear in studies of crystalline solids, molecular chains in
chemistry and biology, photonic and photonic crystals, etc.
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» Newton’s 2nd law: [mt'jn = _I,:n + Fn+1]
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Force that particle i-1 exerts on particle |




Linear discrete wave equation

Newton’s 2nd law: mUl, =—-F + Fn+1} [
—

’ | mi, =G(u ,—2u +uU_ )
Hook’s law: F,=G(u, —u,_,) Discrete wave equation
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A system of N coupled ODES

The dynamics of particle n depends on the dynamics of n-1 and n+1

Deriving the dispersion relation

Plane waves: U (t) =u,exp[i(knha— at)], na =X

\\

" distance from the origi

Position of particle N ]
n

i =-w’u,exp[i(kna—at)]
u, = u,exp[i(kna — at)] = —Mmao’u = G(eika —2+ eika)/un/
U, =Uu,expli(k(ntl)a- cot)])

2cos(ka) =e"® + e
1—cos(ka) = 2sin’(ka/2)

Use the identities: and derive the dispersion relation




Dispersion relation
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@ 0<w<w,=2VG/m For w > w_ there is no propagation
@ o = w(k) is periodic: w(k) = w(k+I"), I'=27nla

@ o = w(k) needs only to be represented for: —7/a<k<r/a



Plane waves for o < .
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Lattice dynamics: solution of N coupled ODEs

rml'j1 =G(u, —2u, \ Boundary conditions
U, (t) = u, cos(awt) Driver

mu, = G(u, - 2u, + u,)
“Hard wall”

< / Uy, (1) =0




Evanescent waves for o > o,
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When w > w_the dispersion relation becomes: SIﬂZ(;) =—>1
a)C

i.e., K becomes purely imaginary — evanescent waves



The continuous limit
We consider the continuous limit of the discrete wave equation:
mu, =G(u.,—2u, +U_ )
valid for solutions with a width >> lattice spacing a

Imagine that X,=na is a continuous variable,
with nlarge and asmall, i.e., |X,=ha — X

We can then expand the solution in a Taylor series, around X, as:
u.,(t)=u(n(axl),t) =u(xta,t)
~u(x.t) + ux(x,t)a+%uxx(x,t)a2 i%um(x,t)aﬁ +2—14uxxxx(x,t)a4 +0(a’)

Substituting this expansion into the discrete wave equation, and
keeping O(a*) terms the following wave equation is obtained:

2
[ U, —Cz(u +i—2uxxxx) 0, }[cz =Ga’/m speed of sound]




Effective wave equations
It is convenient to introduce the following dimensionless variables:

Y s i VTR &t where L is a characteristic spatial scale, e.g., the system’s
B ’ L length, or the typical wavelength/width of the initial data

2
a
Then, the wave equation U, — Cz(uXX + EUXXXXJ =0 becomes:

[ ] [ 1 (a)z]
utt _ LIxx _ 5uxxxx — O’ O=—|—
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@ Two interesting cases:

» When 0 — 0 the wave equation reduces to: U, —U,, =0

2nd-order wave equation — dispersionless: @ (k) =k*

» When J << 1 the wave equation is of the form of a
linearized Boussinesq equation - dispersive: o°(k) =k’ —-5k"




Scenarios for discreteness-induced dispersion

®» Broad pulses — very small wavenumbers — dispersionless wave equation
®» Intermediate pulses — small wavenumbers — small dispersion
® Short pulses — relatively large wavenumbers kK — strong dispersion

Frequency (w)

Acoustic Band

. Recall:

i wave number (k)
@—) = f , a>0




Broad pulse — negligible dispersion
» 0 = 0. The Cauchy problem for the 2"9-order wave equation:
U, —Uy = 0
u(x,0) = f(x), u,(x0)=gfx)
possesses the D’ Alembert solution:

/

[ u(x,t):%[f(x—t)+ f(x+t)]+%jx“g('é)ds]

X-t 4
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Broad pulse — evolution
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Broad pulse — evolution (contour plot)
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Intermediate pulse — small dispersion

» 0 << 1 To find the solution of the linearized Boussinesq equation:
u, —u, —ou,, =0

XXXX

we use the Fourier transform method:
U, + (k2 —5k4)0 =0
a)z(k) =k?-5k*

j[u(x,t) _ ZLJ‘JFOO [f (k) ei[kX—a)(k)t] n g(k) ei[kX+ia)(k)t]:|dk ]
I ¥
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wave moving to the right wave moving to the left

} = U(k,t) = f (k)e ™" + g(k)e "

f(k) and g(k): Fourier amplitudes determined by the initial conditions

We are interested in approximating the

expression for the right-going wave: U(X,t) o f: f (k)e'!™®"dk



Intermediate pulse — asymptotic behavior

N\

1 et |
Right-going wave:  U(Xx,t) = 2—_[ f (k)e'l™~ttgk
T J-°

Dispersion relation: @(k) =k(1-5k?*)"* = k(l—gkzj =k —ék3

2
SN
[u(x,t) = iL@ fk)e 2 t]dk]

We are interested in the limit of long waves with K — 0, hence

we can Taylor expand f(k) around k = 0: f (k) ~ f(0)+ f'(k)| _k+...

SN g
[U(X,t)zif(O)J.we[k( t) ngt]dk]

The integral is reminiscent of the definition of the Airy function:

[ Ai(z) = %r:exp{i (sz + % spﬂ ds = %jom cos{i (sz + % s?ﬂ ds ]

J




Solution in terms of the Airy function

Comparing:-

fu(x,t) ~ % f (0) f:exp{i

:k(x—t)+}dk

: 1 e :
\AI(Z) = ELO exp{l (sz +

5

we define: [£5k3t :Esﬂ: s> :§5k3t — k=3 is
2 3 2 0t

and finally obtain:

u(x,t) =~ 1

Right-going wave: | u(x,t) =

f(O) +00 i 1 ]
27 33125t JwEXp{ AETR _}ds:‘
g )
O A Xt
2/(312)5t " | 3/(3/2)5t
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Airy function - Behavior of the solution
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L 1’4exp(—§z3’2j, Z — 40
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i|z|“4sin(3|z|3’2 +Enj 75 o

-z 3 4" )

Hence: u(x,t) decays exponentially ahead of x =t
and becomes oscillatory behind x =t
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Intermediate pulse — evolution
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Intermediate pulse — evolution (contour plot)
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