Lattices and discrete wave equation

From discrete to continuum

Figures and numerical simulations - Courtesy: G. Theocharis

Lattice dynamics - equations of motion

Lattice dynamics, and particularly wave propagation in lattices, appear in studies of crystalline solids, molecular chains in chemistry and biology, photonic and photonic crystals, etc.

Linear discrete wave equation

Newton's 2nd law: $m\ddot{u}_n = -F_n + F_{n+1}$ Hook's law: $F_n = G(u_n - u_{n-1})$ linear response A system of N coupled ODEs

The dynamics of particle n depends on the dynamics of n-1 and n+1<u>Deriving the dispersion relation</u>

Plane waves: $u_n(t) = u_0 \exp[i(k na - \omega t)], na \equiv x_n$ Position of particle *n* distance from the origin

 $\begin{aligned} \ddot{u}_n &= -\omega^2 u_0 \exp[i(kna - \omega t)] \\ u_n &= u_0 \exp[i(kna - \omega t)] \\ u_{n\pm 1} &= u_0 \exp[i(k(n\pm 1)a - \omega t)] \end{aligned} \Rightarrow -m\omega^2 u_n = G\left(e^{ika} - 2 + e^{ika}\right) u_n \end{aligned}$

Use the identities: $\frac{2\cos(ka) = e^{ika} + e^{ika}}{1 - \cos(ka) = 2\sin^2(ka/2)}$ and derive the <u>dispersion relation</u>

Dispersion relation

• $0 \le \omega \le \omega_c = 2\sqrt{G/m}$ For $\omega > \omega_c$ there is no propagation

- $\omega = \omega(k)$ is periodic: $\omega(k) = \omega(k+\Gamma)$, $\Gamma = 2\pi/\alpha$
- $\omega = \omega(k)$ needs only to be represented for: $-\pi / a \le k \le \pi / a$

Plane waves for $\omega < \omega_c$

Lattice dynamics: solution of N coupled ODEs

$$\begin{cases} m\ddot{u}_{1} = G(u_{2} - 2u_{1} + u_{0}) \\ m\ddot{u}_{2} = G(u_{3} - 2u_{2} + u_{1}) \\ \vdots \\ m\ddot{u}_{N} = G(u_{N+1} - 2u_{N} + u_{N-1}) \end{cases}$$

Boundary conditions $u_0(t) = u_0 \cos(\omega t)$ **Driver** $u_{N+1}(t) = 0$ **"Hard wall"**

Evanescent waves for $\omega > \omega_c$

When $\omega > \omega_c$ the dispersion relation becomes: $\sin^2\left(\frac{ka}{2}\right) = \frac{\omega^2}{\omega_c^2} > 1$

i.e., k becomes purely imaginary \rightarrow evanescent waves

The continuous limit

We consider the **continuous limit** of the **discrete wave equation**:

$$m\ddot{u}_n = G(u_{n+1} - 2u_n + u_{n-1})$$

valid for solutions with a *width >> lattice spacing a*

Imagine that $x_n = na$ is a continuous variable, with <u>*n large*</u> and <u>*a small*</u>, i.e., $x_n = na \rightarrow x$

We can then expand the solution in a **Taylor series**, around x, as: $u_{n\pm 1}(t) = u(n(a\pm 1),t) = u(x\pm a,t)$ $\approx u(x,t) \pm u_x(x,t)a + \frac{1}{2}u_{xx}(x,t)a^2 \pm \frac{1}{6}u_{xxx}(x,t)a^3 + \frac{1}{24}u_{xxxx}(x,t)a^4 + O(a^5)$

Substituting this expansion into the discrete wave equation, and keeping $O(a^4)$ terms the following wave equation is obtained:

$$u_{tt} - c^2 \left(u_{xx} + \frac{a^2}{12} u_{xxxx} \right) = 0, \quad c^2 = Ga^2 / m \text{ speed of sound}$$

Effective wave equations

It is convenient to introduce the following **dimensionless variables**:

 $x \mapsto \frac{1}{L}x, \quad t \mapsto \frac{c_0}{L}t \quad \text{where } L \text{ is a characteristic spatial scale, e.g., the system's length, or the typical wavelength/width of the initial data Then, the wave equation <math>u_{tt} - c^2 \left(u_{xx} + \frac{a^2}{12} u_{xxxx} \right) = 0$ becomes: $u_{tt} - u_{xx} - \delta u_{xxxx} = 0, \quad \delta = \frac{1}{12} \left(\frac{a}{L} \right)^2$

• Two interesting cases:

- When δ → 0 the wave equation reduces to: $u_{tt} u_{xx} = 0$ **2nd-order wave equation dispersionless:** $\omega^2(k) = k^2$
- When δ << 1 the wave equation is of the form of a linearized Boussinesq equation − dispersive: $ω^2(k) = k^2 - \delta k^4$

Scenarios for discreteness-induced dispersion

- ➡ Broad pulses very small wavenumbers → dispersionless wave equation
- Intermediate pulses small wavenumbers → small dispersion
- **\blacktriangleright** Short pulses relatively large wavenumbers $k \rightarrow$ strong dispersion

Broad pulse – negligible dispersion

 $\geq \delta \rightarrow 0$. The Cauchy problem for the 2nd-order wave equation:

$$u_{tt} - u_{xx} = 0$$

$$u(x,0) = f(x), \ u_t(x,0) = g(x)$$

possesses the D' Alembert solution:

Broad pulse – evolution

Broad pulse – evolution (contour plot)

Intermediate pulse – small dispersion

 \succ δ << 1 To find the solution of the linearized Boussinesq equation:

$$u_{tt} - u_{xx} - \delta u_{xxxx} = 0$$

we use the Fourier transform method:

$$\hat{u}_{tt} + (k^2 - \delta k^4) \hat{u} = 0$$

$$\Rightarrow \hat{u}(k,t) = f(k)e^{-i\omega(k)t} + g(k)e^{+i\omega(k)t}$$

$$\Rightarrow u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[f(k)e^{i[kx - \omega(k)t]} + g(k)e^{i[kx + i\omega(k)t]} \right] dk$$

wave moving to the **right**

wave moving to the left

f(k) and **g(k)**: Fourier amplitudes determined by the initial conditions

We are interested in **approximating** the expression for the **right-going wave**: $u(x,t) \propto \int_{-\infty}^{+\infty} f(k)e^{i[kx-\omega(k)t]}dk$

Intermediate pulse – asymptotic behavior

Right-going wave:
$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(k) e^{i[kx - \omega(k)t]} dk$$

Dispersion relation: $\omega(k) = k(1 - \delta k^2)^{1/2} \approx k \left(1 - \frac{\delta}{2}k^2\right) = k - \frac{\delta}{2}k^3$

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(k) e^{i[k(x-t) + \frac{\delta}{2}k^3 t]} dk$$

We are interested in **the limit of long waves** with $k \rightarrow 0$, hence

we can Taylor expand f(k) around $\mathbf{k} = \mathbf{0}$: $f(k) \approx f(0) + f'(k) \Big|_{k=0} k + \dots$

$$u(x,t) \approx \frac{1}{2\pi} f(0) \int_{-\infty}^{+\infty} e^{i[k(x-t) + \frac{1}{2}\delta k^{3}t]} dk$$

The integral is reminiscent of the definition of the Airy function:

$$\operatorname{Ai}(z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp\left[i\left(sz + \frac{1}{3}s^3\right)\right] ds = \frac{1}{\pi} \int_{0}^{+\infty} \cos\left[i\left(sz + \frac{1}{3}s^3\right)\right] ds$$

Solution in terms of the Airy function

Comparing:
$$\begin{bmatrix} u(x,t) \approx \frac{1}{2\pi} f(0) \int_{-\infty}^{+\infty} \exp\left\{i[k(x-t) + \frac{\delta}{2}k^3t]\right\} dk$$

Ai(z) = $\frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp\left[i\left(sz + \frac{1}{3}s^3\right)\right] ds$
we define: $\frac{1}{2}\delta k^3 t = \frac{1}{3}s^3 \Rightarrow s^3 = \frac{3}{2}\delta k^3 t \Rightarrow k = \sqrt[3]{\frac{2}{3\delta t}}s$

and finally obtain:

$$u(x,t) \approx \frac{1}{2\pi} \frac{f(0)}{\sqrt[3]{(3/2)\delta t}} \int_{-\infty}^{+\infty} \exp\left\{i\left[\sqrt[3]{\frac{2}{3\delta t}}(x-t)s + \frac{1}{3}s^3\right]\right\} ds \Rightarrow$$

Right-going wave:
$$u(x,t) \approx \frac{f(0)}{\sqrt[3]{(3/2)\delta t}} \operatorname{Ai}\left(\frac{x-t}{\sqrt[3]{(3/2)\delta t}}\right)$$

Airy function - Behavior of the solution

$$\operatorname{Ai}(z) \approx \begin{cases} \frac{1}{2\sqrt{\pi}} z^{-1/4} \exp\left(-\frac{2}{3} z^{3/2}\right), & z \to +\infty \\ \frac{1}{\sqrt{\pi}} |z|^{-1/4} \sin\left(\frac{2}{3} |z|^{3/2} + \frac{1}{4} \pi\right), & z \to -\infty \end{cases}$$

Hence: u(x,t) decays exponentially ahead of x = tand becomes oscillatory behind x = t

Intermediate pulse – evolution

Intermediate pulse – evolution (contour plot)

Short pulse – evolution

