
Lattices and discrete wave equation

From discrete to continuum

Figures and numerical simulations - Courtesy: G. Theocharis



Lattice dynamics - equations of motion

➢Lattice dynamics, and particularly wave propagation in lattices, 
appear in studies of crystalline solids,  molecular chains in  
chemistry and  biology, photonic and photonic crystals,  etc.
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Force that particle i-1 exerts on particle i
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Linear discrete wave equation
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Newton’s 2nd law:

Hook’s law:

linear response

A system of N coupled ODEs

The dynamics of particle n depends on the dynamics of n-1 and n+1

Discrete wave equation

Deriving the dispersion relation

nn xnatnakiutu −= )],(exp[)( 0 Plane waves: Position of particle n
distance  from the origin

Use the identities:
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Dispersion relation

ω = ω(k) is periodic: ω(k) = ω(k+Γ), Γ=2π/α

0kk = akk /20 −=

mGc /20 =  For ω > ωc there is no propagation

ω = ω(k) needs only to be represented for: 
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Lattice dynamics: solution of N coupled ODEs
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Plane waves for ω < ωc

Boundary conditions

Driver

“Hard wall”



Evanescent waves for ω > ωc

When ω > ωc the dispersion relation becomes: 1
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i.e., k becomes purely imaginary  → evanescent waves



The continuous limit 
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We consider the continuous limit of the discrete wave equation:

valid for solutions with a width >> lattice spacing  a 

Imagine that  xn = na is a continuous variable,  
with  n large and   a small,  i.e., 

We can then expand the solution in a Taylor series, around x, as:
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Substituting this expansion into the discrete wave equation, and 
keeping O(a4) terms the following wave equation is obtained:
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Effective wave equations 
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It is convenient to introduce the following dimensionless variables:
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where L is a characteristic spatial scale, e.g., the system’s 
length, or the typical wavelength/width of the initial data

Then, the wave equation                                                 becomes: 
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➢ When δ→ 0 the wave equation reduces to:

Two interesting cases:
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2nd-order wave equation – dispersionless:  
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➢ When δ << 1 the wave equation is of the form of a 
linearized Boussinesq equation – dispersive: 422 )( kkk  −=
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Scenarios for discreteness-induced dispersion

Recall:

Broad pulses – very small wavenumbers → dispersionless wave equation
Intermediate pulses – small wavenumbers → small dispersion 
Short pulses – relatively large wavenumbers k → strong dispersion 
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Broad pulse – negligible dispersion
➢ δ→ 0. The Cauchy problem for the 2nd-order wave equation:
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possesses the D’ Alembert solution:
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Broad pulse – evolution 



Broad pulse – evolution (contour plot) 

NO dispersion



Intermediate pulse – small dispersion
➢ δ << 1 To find the solution of the linearized Boussinesq equation:
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we use the Fourier transform method: 
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f(k) and g(k): Fourier amplitudes determined by the initial conditions
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wave moving to the right wave moving to the left

We are interested in approximating the 
expression for the right-going wave:
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Intermediate pulse – asymptotic behavior
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Right-going wave:
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Dispersion relation:

We are interested in the limit of long waves with k → 0, hence 

we can Taylor expand f(k) around k = 0: ...)()0()(
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The integral is reminiscent of the definition of the Airy function:
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Solution in terms of the Airy function

Comparing:

we define: s
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and finally obtain:
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Right-going wave:



Airy function - Behavior of the solution
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Hence: u(x,t) decays exponentially ahead of  x = t

and becomes oscillatory behind  x = t



Intermediate pulse – evolution 



Intermediate pulse – evolution (contour plot) 

emergent high-frequency 
oscillations  absorb energy 
of the “core” of the pulse

Effect of dispersion:



Short pulse – evolution 


