
Nonlinear dispersive wave equations

Basic physically significant models
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➢ This way, we can construct, via simple dispersion 
relations, a wealth of linear dispersive equations.

Constructing linear dispersive PDEs

Recall: Given a linear dispersive PDE, the substitution: 

leads to the dispersion relation, D(ω,k) = 0. 

Reversely: Using: 

the dispersion relation will become a PDE:

where Q is the operator corresponding to D and u(x,t) is a field 
accounting for the wave motion (e.g., the wave amplitude on 
the free surface of water, electric field envelope, etc)



Unidirectional propagation
Consider, e.g., the polynomial dispersion relation:

xt iki −  ,Using:                                         we obtain the operator:

Examples

1) Choose:                                                                                 , a1=c

and obtain:                        Transport equation (dispersionless)   0=+ xt cuu

2) Choose:                                                                                , a1=c, a3=γ

and obtain:                                     Linearized KdV (dispersive)   0=++ xxxxt ucuu 

3) Choosing 𝑎0 = −𝑖𝛤, 𝑎2 = −𝑖𝐷 → 𝑢𝑡 + 𝑐𝑢𝑥 + 𝛾𝑢𝑥𝑥𝑥 = Γ𝑢 + D𝑢xx
diffusionlinear lossdispersion



Introducing nonlinearity
➢ Nonlinearity can be introduced in the linear models as follows. 

A fundamental property of any nonlinear wave, is the field  
amplitude dependence of the phase velocity. 

In the simplest possible case, and using vp = c, this dependence 
assumes the following polynomial form:

Example
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Transport  equation:

Galilei transformation and rescale of time:

Hopf equation



A physical origin of the Hopf equation 

➢ Motion of a fluid / Gas dynamics is governed by the system:

• Continuity equation: 

• Euler equation:

together with a “equation of state”:   

➢ In the limiting case:                 the pressure vanishes: 

Kinetic theory of gases – ideal gas:   

Thus, for “heavy particles” the gas dynamics equations decouple:   

➢ In the case of 1D flow, the velocity field is governed by:

Hopf (Riemann / inviscid Burgers) equation

pV = NkT → p = (ρ/m)kT



The KdV equation (and its cousins)  
a) Choose:                                                                                , a1=c, a3=γ

and obtain:                                     Linearized KdV0=++ xxxxt ucuu 
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c) Galilei transformation:  

KdV equation

b) Introduce nonlinearity through c:

Members of the KdV family
5th-order KdV

Gardner equation

KdV-Burgers 
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Nonlinear wave envelopes
Consider a wavepacket, composed by a carrier wave, namely a 
plane wave of the form exp[i(k0x − ω0t)], which is modulated by a 
generally complex field envelope u(x, t), resulting in the real field:

Assume that the wave obeys the nonlinear dispersion relation:
2

),,( uIIk == 

The spectrum of the wavepacket is located around k0 (and ω0)

carrier

𝑢(𝑥, 𝑡) ),(ˆ tk
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The nonlinear Schrödinger (NLS) equation
Since the spectrum is located around k0, we may Taylor expand 
the dispersion relation, i.e., ω(k) around k0: 
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xt ikki −−−  00 ,Using:                                                           we obtain the operator:
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and operating on u(x,t):
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0 =+++ uuguuvui xxxgt  NLS equation



A bidirectional model: Boussinesq
Consider, e.g., the dispersion relation of the KdV equation:
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and  assume small dispersion and long waves, such that:
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Then, approximate the square of the dispersion relation as:
4222 2 kckc  −

and use                                       to derive the linearized Boussinesq: 
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Next, introduce nonlinearity (with small nonlinearity coefficient β):

and  thus:
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0 =+−− xxxxxxxxtt ucucucu  Boussinesq
equation

leading to:



A bidirectional model: Klein-Gordon

Then, the square of the dispersion relation is approximated  as:

Consider again the polynomial dispersion relation and assume:

Furthermore, consider long waves, such that:

where                         and                  .  This corresponds to:          

Klein Gordon equation

Nonlinear Klein Gordon
φ4

Linear KG

Sine-Gordon


