Nonlinear dispersive wave equations

Basic physically significant models

Constructing linear dispersive PDEs

Recall: Given a linear dispersive PDE, the substitution:

$$
\partial_t \mapsto -i\omega, \ \partial_x \mapsto ik
$$

leads to the dispersion relation, $D(\omega, k) = 0$.

 $\boldsymbol{\alpha} \mapsto i \partial_{t}, \; k \mapsto -i \partial_{x}$

the dispersion relation will become a PDE:

$$
Q(i\partial_t, -i\partial_x)u = 0
$$

where Q is the operator corresponding to D and $u(x,t)$ is a field accounting for the wave motion (e.g., the wave amplitude on the free surface of water, electric field envelope, etc)

➢ **This way, we can construct, via simple dispersion relations, a wealth of linear dispersive equations.**

Unidirectional propagation

Consider, e.g., the **polynomial dispersion relation**:

$$
\omega = \omega(k) = \alpha_0 + \alpha_1 k + \alpha_2 k^2 + \alpha_3 k^3 + \cdots,
$$

Using: $\omega \mapsto i\partial_{t}$, $k \mapsto -i\partial_{x}$ we obtain the operator:

$$
i\partial_t = \alpha_0 - i\alpha_1 k \partial_x - \alpha_2 \partial_x^2 - i\alpha_3 \partial_x^3 + \cdots
$$

Examples

1) Choose: $i\partial_t = \alpha \sqrt{-i\alpha_1 k \partial_x - \alpha_2 \partial_x^2 - i\alpha_2 \partial_x^3 + \cdots}$, $a_1 = c$ and obtain: $\left| u_t + c u_x \right| = 0$ Transport equation (dispersionless) **2)** Choose: $i\partial_t = \alpha \sqrt{-i\alpha_1 k \partial_x - \alpha_2 \partial_x^2 - i\alpha_3 \partial_x^3 + \cdots}$, $a_1 = c$, $a_3 = \gamma$ and obtain: $u_t + cu_x + \gamma u_{xxx} = 0$ Linearized KdV (dispersive) **3)** Choosing $a_0 = -i\Gamma$, $a_2 = -iD \rightarrow u_t + cu_x + \gamma u_{xxx} = \Gamma u + Du_{xx}$ dispersion linear loss diffusion

Introducing nonlinearity

➢ **Nonlinearity** can be introduced in the linear models as follows. *A fundamental property of any nonlinear wave, is the field amplitude dependence of the phase velocity.*

 \bullet In the simplest possible case, and using $v_p = c$, this dependence assumes the following **polynomial** form:

$$
c = c_0(1+\beta_1u+\beta_2u^2+\cdots)
$$

Example

Transport equation:

$$
u_{t} + cu_{x} = 0
$$

$$
c = c_{0}(1 + \beta_{1}u)
$$
 \rightarrow $\left[u_{t} + c_{0}(1 + \beta_{1}u)u_{x} = 0 \right]$

Galilei transformation and **rescale of time:**

$$
\begin{aligned}\nu_t + c_0 u_x + \beta_1 u u_x &= 0 \\
x \mapsto x - c_0 t, \ t \mapsto t\n\end{aligned}\n\rightarrow\n\begin{aligned}\nu_t + \beta_1 u u_x &= 0 \\
t \mapsto (1/\beta_1)t\n\end{aligned}\n\rightarrow\n\begin{aligned}\n\frac{u_t + u u_x &= 0}{u_t + u u_x} &= 0\n\end{aligned}\n\rightarrow\n\text{Hopf equation}
$$

A physical origin of the Hopf equation

➢ **Motion of a fluid / Gas dynamics** is governed by the system:

- **Continuity equation:** $\rho_t + \nabla(\rho v) = 0$,
- **Euler equation:** $\mathbf{v}_t + (\mathbf{v}\nabla)\mathbf{v} = -(1/\rho)\nabla p$

together with a "equation of state": $p = p(\rho)$

- Kinetic theory of gases ideal gas: $pV = NkT \rightarrow p = (\rho/m)kT$
- \triangleright In the limiting case: $m \to \infty$ the pressure vanishes: $p = 0$

Thus, for "heavy particles" the gas dynamics equations decouple:

 $\mathbf{v}_t + (\mathbf{v}\nabla)\mathbf{v} = 0$, $\rho_t + \nabla(\rho \mathbf{v}) = 0$

 \triangleright In the case of 1D flow, the velocity field is governed by:

 $h_i v_t + v_i v_x = 0$ Hopf (Riemann / inviscid Burgers) equation

The KdV equation (and its cousins)

a) Choose: $i\partial_t = \alpha \sqrt{-i\alpha_1 k \partial_x - \alpha_2 \sqrt{2 \pi}} - i\alpha_3 \partial_x^3 + \cdots$, $a_1 = c$, $a_3 = \gamma$

and obtain: $u_t + cu_x + \gamma u_{xxx} = 0$ Linearized KdV

b) Introduce nonlinearity through *c*:

$$
u_{t} + cu_{x} + \gamma u_{xxx} = 0
$$

$$
c = c_0(1 + \beta u) \qquad \qquad \rightarrow u_{t} + c_0(1 + \beta u)u_{x} + \gamma u_{xxx} = 0
$$

c) Galilei transformation:

$$
u_t + c_0 u_x + \beta u u_x + \gamma u_{xxx} = 0
$$
\n
$$
x \mapsto x - c_0 t, \ t \mapsto t
$$
\n
$$
\int \frac{u_t + \beta u u_x + \gamma u_{xxx} = 0}{\beta u_t + \beta u u_x + \gamma u_{xxx} = 0} \text{ KdV equation}
$$

Members of the KdV family

$$
\begin{array}{ll}\n\underline{u_t + c_0 u_x + \beta u u_x + \gamma u_{xxx} + \nu u_{xxxxx} = 0 & \text{5th-order KdV} \\
\underline{u_t + c_0 u_x + \beta u u_x + \delta u^2 u_x + \gamma u_{xxx} = 0 & \text{Gardner equation}} \\
\underline{u_t + \beta u u_x + \gamma u_{xxx} = \mu u_{xx}} & \text{KdV-Burgers}\n\end{array}
$$

Nonlinear wave envelopes

Consider a **wavepacket**, composed by a carrier wave, namely a plane wave of the form $exp[i(k_0x - \omega_0 t)]$, which is modulated by a generally complex field envelope *u*(*x*, *t*), resulting in the real field:

$$
\psi(x,t) = \text{Re}\{u(x,t)\exp[i(k_0x-\omega_0t)]\}
$$

The spectrum of the wavepacket is located around $k_0^{\,}$ (and $\omega_0^{\,})$

Assume that the wave obeys the nonlinear dispersion relation:

$$
\omega = \omega(k, I), \quad I = |u|^2
$$

The nonlinear Schrödinger (NLS) equation

Since the spectrum is located around k_0 , we may Taylor expand **the dispersion relation**, i.e., $\omega(k)$ around k_{0} :

$$
\omega = \omega(k, I) \approx \omega(k_0) + \frac{\partial \omega}{\partial k} \bigg|_{k=k_0} (k - k_0) + \frac{1}{2} \frac{\partial^2 \omega}{\partial k^2} \bigg|_{k=k_0} (k - k_0)^2 + \dots + \frac{\partial \omega}{\partial I} \bigg|_{I=0} I + \dots
$$

$$
\Rightarrow \bigg[\omega - \omega_0 \approx \omega_0'(k - k_0) + \frac{1}{2} \omega_0''(k - k_0)^2 - gI, \quad g = -\frac{\partial \omega}{\partial I} \bigg|_{I=0}
$$

Using: $\omega - \omega_0 \mapsto i\partial_t$, $k - k_0 \mapsto -i\partial_x$ we obtain the operator:

$$
i\partial_t = -iv_g \partial_x - \frac{1}{2} \omega_0'' \partial_x^2 - gI, \quad v_g = \omega_0'
$$

and operating on $u(x,t)$:

$$
i(u_t + v_g u_x) + \frac{1}{2} \omega_0'' u_{xx} + g |u|^2 u = 0
$$
 NLS equation

A bidirectional model: Boussinesq

Consider, e.g., the **dispersion relation** of the **KdV equation**: $\omega = k(c - \gamma k^2)$

and assume small dispersion and long waves, such that: $\gamma k^2 << c$

Then, approximate the **square** of the dispersion relation as:

$$
\omega^2 \approx c^2 k^2 - 2c\gamma k^4
$$

and use $\omega \mapsto i\partial_{t}$, $k \mapsto -i\partial_{x}$ to derive the linearized Boussinesq:

$$
u_{tt} - c^2 u_{xx} - 2\gamma c u_{xxxx} = 0
$$

Next, introduce nonlinearity (with small nonlinearity coefficient *β*):

$$
c = c_0(1 + \beta u) \Rightarrow c^2 \approx c_0^2 + 2c_0 \beta u
$$

and thus: $c^2u_{xx} = \partial_x^2(c^2u) = \partial_x^2[(c_0^2 + 2c_0\beta u)u = c_0^2u_{xx} + 2c_0\beta(u^2)_{xx}$ $0\mathcal{V}$ (μ) $_{\chi\chi}$ 2 \cdot \sim $0P^{u}$ $\mu - c_{0}^{u}$ _{xx} μ 2 Ω Ω $0 \perp$ $\sim 0 \nu$ $2u = \frac{\partial^2}{\partial u^2}$ = $\frac{\partial^2}{\partial u^2}$ = $\frac{\partial^2}{\partial u^2}$ $\partial_x^2 (c^2 u) = \partial_x^2 [(c_0^2 + 2c_0 \beta u) u = c_0^2 u_{xx} + 2c_0 \beta (u^2)_{xx}]$

 $2\gamma c_0^{}u_{_{\rm\scriptscriptstyle YXYY}}^{}+2c_0^{}\beta(u^2)_{_{\rm\scriptscriptstyle YY}}^{}=0\quad$ Boussinesd 0^{ν} xxxx ~ 0 P (ν / x) $u_{tt} - c_0^2 u_{xx} - 2\gamma c_0 u_{xxx} + 2c_0 \beta (u^2)_{xx} = 0$ Bo leading to: $|u_{tt} - c_0^2 u_{xx} - 2\gamma c_0 u_{xxxx} + 2c_0 \beta(u^2)_{xx} =$ **Boussinesq equation**

A bidirectional model: Klein-Gordon

Consider again the **polynomial dispersion relation and assume**:

$$
\omega = \omega(k) = \alpha_0 + \alpha_1 k + \alpha_2 k^2 + \alpha_3 k^3 + \cdots,
$$

Furthermore, consider long waves, such that: $k^2 \ll \alpha_0/\alpha_2$

Then, the square of the dispersion relation is approximated as:

$$
\omega^2 \approx k^2 c_0^2 + m^2
$$

where $c_0^2 = 2\alpha_0\alpha_2$ and $m^2 = \alpha_0^2$. This corresponds to:

$$
u_{tt}-c_0^2u_{xx}+m^2u=0\quad \text{Klein Gordon equation}
$$

Nonlinear Klein Gordon Φ^4 Linear KG Sine-Gordon