Nonlinear dispersive wave equations

Basic physically significant models



Constructing linear dispersive PDEs

@ Recall: Given a linear dispersive PDE, the substitution:

0, — —lw, 0, — Ik
leads to the dispersion relation, D(w,k) = 0.

@ Reversely: Using: @ —10,, kK — -0,

the dispersion relation will become a PDE:
Q(io,,—10,)u=0

where Q is the operator corresponding to D and u(x,t) is a field
accounting for the wave motion (e.g., the wave amplitude on
the free surface of water, electric field envelope, etc)

» This way, we can construct, via simple dispersion
relations, a wealth of linear dispersive equations.



Unidirectional propagation
Consider, e.g., the polynomial dispersion relation:
w=w(k)=ap+ a1k + ok’ + aak® + - |
Using: @ > 10,, K > —10, we obtain the operator:
i0, = ag — ik, — and? — iagd? + - -
Examples
1) Choose: id; = t}/— i kd, — t'_t';ﬂ:{— i e g 4ee,a,=C
and obtain:{ut —I:CUX =0 Transport equation (dispersionless)]
2) Choose: i), = .r}/— i k0, — t'.t'}éra‘,{— i&gﬁi + ---,384=C, a3=y
=0 Linearized KdV (dispersive) ]

and obtain:{ut +Cu, +yu

XXX

3) Choosing ag = —il’,a, = —iD - [ut t Uy + YUar = Tu + Dy, ]

dispersion linear loss diffusion




Introducing nonlinearity

» Nonlinearity can be introduced in the linear models as follows.
A fundamental property of any nonlinear wave, is the field
amplitude dependence of the phase velocity.

@ In the simplest possible case, and using v, = C, this dependence
assumes the following polynomial form:

c=co(l + Bru+ Bou’ +---)
Example

T t ti U+ O =0 —>{u +c,(1+ Bu)u O]
ransport equation: .=
@ 8 c=c,(L+ Au) t T Yo 1

Galilei transformation and rescale of time:

u. +c,u, + guu, =0 u + guu =0
t 0™'x /81 X N t 181 X ‘)[ut + uux — O] Hopf equation
X X —Cpt, t>t t— 1/ B)t




A physical origin of the Hopf equation

» Motion of a fluid / Gas dynamics is governed by the system:

* Continuity equation: p; + V(pv) = 0.
* Euler equation: vi+ (vV)v=—(1/p) Vp

together with a “equation of state”: p = p(p)
® Kinetic theory of gases —ideal gas: pV = NKT — p = (o/m)KT
» In the limiting case: m — o¢ the pressure vanishes: p = 0
Thus, for “heavy particles” the gas dynamics equations decouple:

vi +(vV)v=0, pt+ V(pv)=0
» In the case of 1D flow, the velocity field is governed by:

[‘1.-'3 + vv, = 0 Hopf (Riemann / inviscid Burgers) equationJ




The KdV equation (and its cousins)
a) Choose: i), = ?/— i k0, — :'_?ﬂf— i + -+, a,=C, a3=y

and obtain: u, +cu, +yu,,, =0 Linearized KdV

XXX

b) Introduce nonlinearity through c:

u +cu, +yu, =0
_)ut+CO(1+IBu)ux+7/uxxx :O

C=¢C,(1+ pu)
c) Galilei transformation:

ut + Coux + ﬂUUX + 7/uxxx = O

X X—=Cyt, ti>t

Members of the KdV family
Uy + cotly + Pfutly + YUzzr + Viggrze =0 5M-order KdV

: 7 —
Uy + gty + Pun, + du"uy + Ypr, =0 Gardner equation

Uy + Futly + Vilgry = Hllgpy KdV-Burgers

} —>[Ut + fuu, + M, = O] KdV equation




Nonlinear wave envelopes

Consider a wavepacket, composed by a carrier wave, namely a
plane wave of the form exp[i(k,x — w,t)], which is modulated by a
generally complex field envelope u(X, t), resulting in the real field:

w(x,1) = Re{u(x,t)exp[i(k,x — apt)]}

The spectrum of the wavepacket is located around k, (and w,)

> u(x,t)

}

(K1)

carrier _ﬂ Lu

K. k

Assume that the wave obeys the nonlinear dispersion relation:
o=ok1), 1=



The nonlinear Schrodinger (NLS) equation

Since the spectrum is located around k,, we may Taylor expand
the dispersion relation, i.e., w(k) around K,:

0w 10%w 0w
o= w(K, I)za)(ko)+a—k (k—ko)+§W (k—k0)2+...+—

k=kg k=K, ol

| +...

1=0

:>[a)—a)0 - a){,(k—ko)+%wg(k —k,)2-gl, g=-22

Using: ®—aw, — 10,, K—K, > —10, we obtain the operator:

i0, =—iv 0, —%a){)’@i -gl, v,=a)

and operating on u(x,t):

: 1, 2 ,
[ |(ut+vgux)+§a)ouxx+g\u\u:O NLS equation ]




A bidirectional model: Boussinesq

Consider, e.g., the dispersion relation of the KdV equation:
o =k(c—yk?)
and assume small dispersion and long waves, such that: }k* << c
Then, approximate the square of the dispersion relation as:
o° = c’k*—2cyk”
and use @ > 10,, kK > —10, to derive the linearized Boussinesq:
| U, —C%u,, —2)cU, =0
Next, introduce nonlinearity (with small nonlinearity coefficient f):
c=c,(1+ Bu)=c’~c +2¢c,4U
and thus: cu, =0(cu) = o2[(c +2¢c,Bu)u =ciu, +2c,B8(u?),,

leading to: [Utt — CSUXX —2)CoU, i + 2C0,3(U2)xx =0 Boussinesq]

equation




A bidirectional model: Klein-Gordon

Consider again the polynomial dispersion relation and assume:

w=w(k) = a0 + ol + agk® + of” +

Furthermore, consider long waves, such that: /? < Cl:"ﬂ/ﬂ"g

Then, the square of the dispersion relation is approximated as:

w? = k*ct +m?

where q—, 2000cvs and m? = od.. This corresponds to:

\_

[uﬁ — C%‘HI_T +m?u =0 Klein Gordon equation J
4 : : [ (1/2)m?u? ——  Linear KG
Nonlinear Klein Gordon Inear
- ey —— J_ 2 J_ —]: L 4
Ut — E‘abﬂm = —V ;(HJ -I’ () . 1/ )TT? v —(1/4)x H — ¢
l—C-Ob(bﬂ) —> Sine-Gordon

—




