
Linear dispersive wave equations 
 

The effect of dispersion 



Linear PDEs and useful notions 
 Consider a differentiable scalar function  u(x,t),  

    a partial differential operator L, and the PDE:  L[u] = 0  

    Let  u1  and  u2  two different solutions of the PDE;  

    the latter is said to be linear iff:  L[u1+u2] = L[u1] + L[u2] = 0  

 Dispersive wave equations: existence of plane waves:  

                     u(x,t) = u0exp(iθ),  θ = kx-ωt,    k, ω  R 

  Temporal period: T=2π/ω.  

 Spatial period (wavelength): λ=2π/k  

   Long waves: correspond to small k 

  Short waves: correspond to large k 



Dispersion relation 
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)](exp[0 tkxiuu Substituting                                           into the PDE we can 

find that u0 factors out (because the equation is linear), 
while k and ω should be related by an equation of the  form: 
 

             D(ω,k) = 0   or   ω = ω(k)    Dispersion relation 
 
so that the plane wave satisfies  L[u] = 0  

Examples 

Transport equation 

2nd-order wave equation 

Schrödinger equation 

Linearized KdV equation 



Phase and group velocities  
Given the dispersion relation ω= ω(k) we can find: 

  Phase velocity: vp = ω/k 

 [ Plane wave: u(x,t) ~ exp(iθ),  θ = kx-ωt = k[x-(ω/k)t] = k(x- vpt)  ]  

  Group velocity: vg=ω/k ω(k) 

Let a pulse-shaped wave be represented as a sum of Fourier harmonics,  

with the dispersion relation ω= ω(k). In the case of two harmonics with  

close wavenumbers and frequencies: 
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Wave’s envelope 
The sum of the two harmonics has the form of a modulated wave: 
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The envelope function  
   propagates with the group velocity:  

])()cos[(2),( txkatxA 

vg = Δω/Δk 

Generalization: arbitrary wavepacket with narrow spectrum of k’ s:  
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Wave’s envelope and group velocity 

Rewrite                                                                        as: 
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and taking into account that the spectrum is narrow, expand 
the frequency in powers of (k-k0): ...))(()( 000  kkkk 

Then: 
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which means that the envelope function  
A(x,t) propagates with the group velocity  0
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Phase and group velocities – an example 

An example of an envelope (blue) and a carrier wave (red). 
The envelope moves with the group velocity cg, while the 
carrier inside it moves with the phase velocity cp. 

The red square moves with the phase velocity, and  
the green circles propagate with the group velocity. 



 Recall: Phase velocity: vp = ω/k  - Group velocity: vg=ω/k ω(k) 

 If ω(k)  R and ω(k)  0 or vp  vg: the PDE/wave: Dispersive  

Dispersive and non-dispersive PDEs 
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Examples 
Transport equation    Non-dispersive equation 

2nd-order wave equation   Non-dispersive equation 

Schrödinger equation   Dispersive equation 

Linearized KdV equation   Dispersive equation 



A physical example: gravity water waves 
As an example of a dispersive 
wave system, consider surface 
water waves (WWs). If the 
surface of water is disturbed, 
then the gravity force will try to 
restore the equilibrium, which 
leads to the emergence of the 
surface water wave. 

Dispersion relation: )tanh()( khgkk 

   Two physically relevant regimes: 
 

   Shallow WWs:   λ >> h  kh <<1 
   Deep WWs:       λ << h  kh >> 1  



Shallow WWs – dispersionless case (I) 

(Lagrange formula) kghkhgkk  )tanh()(

For shallow WWs,  kh <<1, the dispersion relation reduces to:  

Then, the phase of the plane waves is:   tghxktkx  

and the water’s free surface (1D)  is:   tghxkAtx  cos),(

Thus, ALL plane waves have the same phase velocity: ghvp 

NOTE: The shallow WWs regime is relevant to tsunamis that 
may result from earthquakes in the oceans. In this case, for 
ocean depth h = 4 km, and g = 10 m/s2, one obtains:   

)(!/720/200 hkmsmghvp 



dkekxx ikx)(ˆ
2

1
)()0,( 00 





 




To show this , we will derive a PDE for η(x,t) and solve the IVP.  

ghcckghk xt  ,0)(  

Shallow WWs – dispersionless case (II) 
  Since ALL plane waves have the same phase velocity, a 

wavepacket composed by these harmonics also has the same 
velocity; hence, any initial disturbance propagates undistorted. 
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Thus: 
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Recall that using :                                          PDE  ω = ω(k) 
Reversely,                                        ω = ω(k)  PDE: 

Let the initial disturbance                         presented as a sum of  

of its Fourier harmonics:                                                     .  Then:                                      
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Shallow WWs – dispersive case (I) 
 Take into regard two terms in the Taylor series expansion  

    of the dispersion relation (for shallow WWs with kh << 1): 
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Thus, the phase velocity now becomes k-dependent: 

gh
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Harmonics with shorter wavelengths  
(longer waves) propagate faster   DISPERSION 



Shallow WWs – dispersive case (II) 

In the dispersive case, each harmonic: 
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The Fourier Transform method (I) 

Consider the IVP: 

1) Use the Fourier Transform: 

and obtain: 

2) Find the time evolution of             , i.e.,             via the PDE:  

This equation gives: 



The Fourier Transform method (II) 
3) Use the Inverse Fourier Transform and derive the solution:   

The Fourier Transform Method can be described as follows:   

The above scheme can be generalized to certain nonlinear PDEs   
INVERSE SCATTERING TRANSFORM METHOD 



Shallow WWs in the presence of dispersion 

Linearized KdV equation 

We will use the Fourier Transform method to solve the IVP: 

Taking into account that the dispersion relation is: 

we find: 

where Fourier amplitudes are given by: 



Substituting A(k) into the solution, we obtain: 

The Green function 

where G(x,t) is the Green function of the linearized KdV: 

Then, taking into regard that the Airy function is defined as: 

we can express G(x,t) as: 



The effect of dispersion (I)  
Decay of a step-like pulse 

Consider an initial condition in  
the form of a  step-like pulse: 

Then, the pulse profile, at time t, is given by: 

The dispersion leads to  
generation of oscillations  

at the edge of the pulse 
Courtesy: Anatoly Kamchatnov 



The effect of dispersion (II)  
Decay of a Gaussian pulse 

Courtesy: Dmitry Pelinovsky 



Exercises 

1) Consider the Klein-Gordon (KG) equation: 

which is a relativistic wave equation occurring in the description of 
weak interaction  (in this case, m is the boson mass), in plasmas 
(with m being the plasma frequency), in waveguides (in this case, 
m plays the role of the cutoff frequency of the waveguide), etc.  

a) Derive the dispersion relation ω=ω(k) and plot it. Then, identify 
bands and gaps, where propagation may, or not, be possible. 
 
b) Determine the phase and group velocity, vp and vg. Show that  
vp > c and vg < c, and provide a geometrical interpretation of this 
result, using the plot of ω=ω(k).  Show that vp vg = c2. 



c) Use the Fourier Transform method to solve the initial value   
    problem for the KG equation: 

Exercises (cont.) 

Show that in the special case:                            and 
one obtains: 



2) Quasi-1D Bose-Einstein condensates (BECs) are described by the  
    Gross-Pitaevskii equation (GPE): 

Exercises (cont.) 

where      is the Planck’s constant, m is the atomic mass, and g is 
the interaction coefficient. Let  g > 0 (for repulsive interactions).  



a) Show that the GPE possesses the solution (BEC’s ground state): 

where μ is the chemical potential. Show that: μ = ρ0 g. 



Exercises (cont.) 

b) We seek the dispersion relation for linear waves propagating on  
     top of the ground state. To derive this, follow this procedure: 

    iti  )/(exp0 

where ρ = ρ(x,t) and φ = φ(x,t) are small perturbations (ρ, φ << 1). 

 Substitute into the GPE the ansatz: 

 Separate real and imaginary parts, and linearize the resulting  
     two equations with respect to ρ, φ. Show that, this way, the  
     following linear system can be derived: 
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Exercises (cont.) 
 Seek solutions of the above system in the form: 

)](exp[~)],(exp[~ tkxitkxi  

and derive a linear homogeneous system for the unknown  
amplitudes            This will lead to the desired, so-called,  
Bogoliubov dispersion relation. 

.~,~ 

c) Derive the (same of course!) dispersion relation as follows:  
    Eliminate ρ, from the above mentioned linear system for ρ and φ; 
    derive  a  PDE for φ, and show that it has the form of a linearized  
    Boussinesq equation, namely: 
 

 

     Then determine the dispersion relation of this model.  
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Exercises (cont.) 

d) Once the dispersion relation is found, consider right-going  
    waves, and show:  
 
 For long waves, the dispersion relation reduces to ω = kc. 
     Determine c  (this is usually called the “speed of sound”). 
 
 In the absence of interactions (g=0), the dispersion relation  
     reduces to the so-called de Broglie form: E=p2/2m, where 
 ., kpE   


