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Abstract

A word problem that requires addition of fractions with different denominators was presented
to 11 classes of 4th- or 5th-graders, 10 years of age. It had three answer alternatives: adding
the denominators and numerators separately, transforming fractions into decimals before adding
them, and the standard, most appropriate solution. Students in each class were required to
choose an alternative themselves, state their reason for the choice, and discuss which alternative
would be right. After whole-class discussion, they were asked to choose an alternative again
and nominate the student who had offered the most plausible idea. Then students in six classes
were informed which alternative was the most appropriate, whereas those in five classes were
not. Finally, the students, irrespective of the presence/absence of feedback, were required to
solve the initial problem without the alternatives as the post-test, and two new problems as the
transfer test.

The results showed that (a) the students could offer more or less plausible arguments for or
against each alternative, which in most classes included the correct explanation; (b) both vocal
and silent students could write a mathematical expression for the post-test problem and manipu-
lated it correctly, incorporating other students’ ideas presented during the discussion, with or
without the teacher’s feedback, though their generalization was rather limited; and (c) the stu-
dents could recognize and memorize reasonable explanations offered by other students in the
discussion. 1998 Elsevier Science Ltd. All rights reserved.

In recent years it has been agreed that mathematical knowledge is acquired by construction,
but its acquisition is constrained by sociocultural contexts (Hatano, 1996). Thus, a growing
number of researchers have been interested in studying the learning of mathematics as a
collective enterprise in sociocultural contexts, rather than as a process occurring only
within an individual mind (e.g. Cobb & Bauersfeld, 1995). To put it differently, these
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researchers assume that students’ mathematical ideas develop through their communicative
practices (Roschelle, 1996) or dialogical interactions (Wertsch, 1985) with other members
of the classroom.

Many of these researchers of the sociogenetic orientation have taken it for granted that
much mathematics learning occurs through the discourse between a teacher and students.
Although the conventional classroom discourse often takes the form of the teacher
initiation–student response–teacher evaluation (IRE) sequence, reflecting a transmissionist
view, there have been constructivistic attempts to go beyond it. For example, the teacher
can clarify what a student says by questioning; she can articulate a student’s idea by
paraphrasing or asking him to rephrase it; she can even develop it by requesting an expla-
nation or posing an apparently disconfirming example (Lampart, 1990; Wells, 1993). These
attempts at teacher “revoicing” (O’Connor & Michaels, 1993), unlike the IRE sequence,
leave a student some room for negotiation. A number of discourse-analytic studies have
shown that the target student elaborates his idea in such a dialogue, in other words, through
the negotiation and joint expansion of meanings (see O’Connor, 1994 for review).

Another mode of the teacher’s follow-up of a student’s response is, instead of giving
feedback herself, to invite another student or all other students to examine and evaluate the
response (O’Connor & Michaels, 1996). The teacher may ask other students to elaborate on
the original response or to criticize it. Alternatively, she can just encourage students to
argue among themselves by treating students’ utterances as “thinking devices or objects
to which one can respond” (Wertsch & Bivens, 1992). She may thus be able to organize
whole-class discussion, through which students enhance their mathematical understanding
by assimilating similar ideas into their own and/or contrasting their ideas with opposing
ones (Orsolini & Pontecorvo, 1992).

Facilitating student–student interactions in the classroom is, as recommended by the
National Council of Teachers of Mathematics (1989) in the USA, considered to be a highly
desirable way for students to construct mathematical knowledge. The teacher still plays
a very important role in whole-class discussion, but she no longer treats all students indi-
vidually. In other words, a mathematics class becomes a community for joint learning
activity that is organized by the teacher.

Student–student interactions taking place in the whole class would probably work better
than those occurring in small groups, the effectiveness of which depends heavily on the
constituent members’ ability (Webb, 1991). Whereas in whole-class discussion, the teacher
can indirectly intervene when needed, for example, by connecting students’ arguments
and by providing them with an evaluative criterion, activities in a number of small groups
may go beyond the teacher’s control and result in unproductive outcomes. As many investi-
gators who adopt the sociogenetic approach assume, the teacher’s intervention is essential
for students’ learning, and it is fully compatible with the emphasis on students’ construc-
tion of mathematical knowledge.

However, there have been far fewer studies on student–student discursive interactions
in the classroom than teacher–student ones. In this sense, many mathematics educators
and researchers seem to assume that students cannot readily learn from other students’
proposed ideas, which, unlike the teacher’s, may be erroneous or uninformative. They
seem to have three related concerns about the effectiveness of other students’ utterances
for mathematics learning. The first is that none of the students may offer the correct
solution or interpretation, or its critical components. In other words, students, especially



505CONSTRUCTION OF MATHEMATICAL KNOWLEDGE THROUGH DISCUSSION

those who are academically unsophisticated, may not be able to explore the hypothesis
space extensively enough to offer reasonable alternatives. Second, because students’ utter-
ances may include incorrect but apparently plausible answers, they may mislead other
students, who may not be able to extract promising ideas from those offered in order to
reach the correct answer. Third, because in a large group many students have to remain
silent, the silent students may lose interest in the discourse and thus fail to learn.

In contrast, Hatano & Inagaki (1991) argue for student–student discursive interaction
in the classroom, and suggest answers to the above concerns. They claim that discussion
among students provides good opportunities for them to actively construct target knowl-
edge, because they are supported by social-motivational factors in the classroom.

First, although individual students may have difficulty exploring the hypothesis space
thoroughly by themselves, the division of labor, which occurs quite naturally in a large
group, distributes the task work among the members, making it easier to perform. In a
sense, the more varied the group membership, the more likely it is that the correct idea
will be presented by one of the members due to their different interests and knowledge
bases. In other words, because a class consisting of tens of students has a much richer
database than does any one of its individual members, we can expect the correct answer
to be offered during a discussion or a collective attempt to solve a problem. Especially
when the whole group is divided into a small number of ‘parties,’ students are supposed
to seek good arguments for their own party and arguments against others.

Second, Hatano & Inagaki (1991) argue, students can pick out plausible or promising
ideas and avoid being misled by incorrect ideas offered by other students by relying on
social as well as cognitive cues. It is true that many of the ideas initially proposed by
students who have not yet learned the subject of discussion, may be inaccurate. Some of
them may be completely wrong. However, these weak ideas seldom impress the whole
class. Even academically less sophisticated students of elementary school age can individu-
ally evaluate the plausibility of arguments and selectively pay attention to convincing ones
to some extent. They can be helped socially, if they carefully observe whether each argu-
ment encourages its proponents, silences its opponents, or attracts many ‘third-party’ stu-
dents. In such cases, students can learn a great deal through student–student interaction
by accurately evaluating ideas offered in whole-class discussion and incorporating them
into their own.

Third, although many people are concerned that whole-class discussion is likely to pro-
duce many silent participants, who may not learn anything, Hatano & Inagaki (1991) assert
that even silent students are often involved actively in whole-class discussion, by ident-
ifying a student who acts as an ‘agent’ or ‘spokesperson’ for them. Many silent participants
can nominate peers whose ideas they agree with and can learn through these peers’ utter-
ances.

Although Hatano & Inagaki (1991) provided some preliminary data revealing that both
vocal and silent participants could learn from whole-class discussion about a topic in
biology, many more studies are needed before we can conclude that whole-class discussion
is effective for the construction of mathematical knowledge. First, we have to examine
whether Hatano and Inagaki’s findings can be generalized from science to mathematics
lessons, because the nature of persuasive arguments is supposedly different between these
two disciplines. In this connection, it is worth examining how much students can learn in
mathematics through student–student interaction without being given the correct answer
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by the teacher, because mathematics learning involves logical necessity and consistency
with already learned procedures and principles, rather than on the empirical confirmation
of facts, which is vital in science.

Second, we need to correlate features of the discussion with learning outcomes by
observing whole-class discussion in a fairly large number of classes. Hatano & Inagaki
(1991) could not provide this sort of data, because of a limited number of classes they
dealt with.

Third, we need fine-grained analyses of whole-class discussion in mathematics, for
example, what arguments students offer, how a student elaborates his or her idea through
attempts to incorporate other students’ compatible ideas or by refuting opposing ideas,
and what types of arguments induce conversions in antagonists. We also need to examine
how well students distinguish strong arguments from weaker ones and remember the major
points of strong arguments that may be used in future problem solving. It may be too
hard for students to memorize all different arguments, but they may store plausible ones
that might be used later, assuming that they pay attention only to important statements
(Stigler & Fernandez, 1995).

Thus in the present study, we investigated processes and products of whole-class dis-
cussion in mathematics in 11 elementary school classes. Students had to solve a new
arithmetic word problem by expanding their prior knowledge through whole-class dis-
cussion. We used the format of whole-class discussion that was similar to the one in the
Hypothesis–Experiment–Instruction (HEI) method proposed by Itakura (1967) who had
originally proposed this method for science education. In this method students are
presented with a problem with three or four answer alternatives (which leads them later
to recognize the distribution of choices), and then encouraged to discuss a variety of ideas
for and against these alternatives. We expected that this procedure, unlike that of more
open-ended group discussion, could structure the discussion (Moschkovich, 1996) and
simplify our analysis of it.

Specifically, we primarily examined the following questions:

1. Can students offer plausible arguments, which include correct (or partially correct) and
persuasive ones? Can they elaborate their arguments in whole-class discussion?

2. When an appropriate solution procedure or interpretation is offered in the discussion,
can students, both vocal and silent, incorporate it, change their original ideas, and apply
the elaborated idea obtained through the discussion to other problems, with or without
the teacher’s feedback? To put it differently, can students’ learning outcomes be
explained in terms of features of the discussion?

3. Can students, not only vocal participants but also silent ones, evaluate the reasonable-
ness of explanations offered by other students in the discussion and recall the content
of the most plausible ones?

Method

A word problem that requires addition of fractions with different denominators was
presented, with three answer alternatives, to 11 classes of 4th- or 5th-graders. Students in
each class were required to choose an alternative themselves, state their reason for the
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choice, and discuss which alternative would be right. After whole-class discussion, they
were asked to choose an alternative again and nominate the student who had offered the
most plausible ideas. Then, students in about half the classes were informed which alterna-
tive was correct, and those in the other half were not. Finally, the students, irrespective
of the presence/absence of feedback, were required to solve the initial problem without
the alternatives as the post-test, and two new problems as the transfer test.

Participants

Six classes of 4th-graders (N 5 155) in the last quarter of the school year and five
classes of 5th-graders (N 5 143) in the first quarter, from different public elementary
schools in Osaka, participated in the study. (See Table 2 for the number of participants
per class.) The former students were 10 years 4 months old on average and the latter,
10 years 9 months old, and both of them were mostly from lower-middle-class families.
The numbers of boys and girls in each class were almost the same.

The students had been taught how to add fractions with a common denominator and
also how to add decimals, but not yet how to add fractions with different denominators.
They had not been taught either how to reduce fractions, except for the simple cases of
those reducible to 1/2 and 1/3, nor how to change fractions into decimals, except for
fractions having denominators of 10 or 100.

Target Problem

A word problem concerning the addition of fractions with different denominators was
used in the discussion as the target: Taro drinks 1/2 liter of milk at breakfast and 1/5 liter
at supper. How many liters of milk does he drink a day? X. 1/21 1/5 5 2/7, Answer is
2/7 liter; Y. 0.51 0.25 0.7, Answer is 0.7 liter; Z. 1/21 1/5 5 7/10, Answer is 7/10 liter.

We constructed the three alternatives based on the solutions observed in Takahashi’s
classroom (Takahashi, 1992). We assumed that almost all students would write a math-
ematical expression involving addition for this word problem, but would have difficulty
finding the correct answer. We also made additional assumptions: The alternative X is a
typical error that many students would make. The alternative Y is the response that would
seldom occur spontaneously because it deals with decimals, instead of fractions. We
included it among the three options, because decimals were more familiar than fractions
for children and thus this alternative might be appealing when it was given. However, we
did not treat it as the most appropriate solution, because, although it works for this prob-
lem, it is only an approximation for many fractions, such as 1/3. Alternative Z is univer-
sally correct, and in this sense it is the most appropriate answer. We thus recommended
alternative Z in the feedback provided at the end of the discussion in 6 of the 11 classes.

Procedure

A male experimenter (the third author) who had a diploma for elementary school teach-
ing gave one lesson in each school during one of the regular lessons, using the following
procedures: (1) students were given the target problem individually in the form of a paper-
and-pencil test, and asked to choose one of the three answer alternatives and to write the
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reasons for their choices; (2) the students’ choices, counted by a show of hands, were
tabulated on the blackboard; (3) after one or two students who supported each alternative
were invited to state reasons for their choices, all of the students were encouraged to
discuss them; (4) to examine the effect of the discussion, students were individually given
the initial problem with the three answer alternatives in the paper-and-pencil format and
asked to choose one once again. They were allowed to change their choices. They were
also asked to give the name of the student who had stated the most plausible ideas in the
discussion, and recall these ideas as much as possible; (5) the students were informed
by the experimenter that alternative Z was the most appropriate answer without further
explanation; (6) immediately after the step (5), as the post-test, they were asked to solve
the initial word problem in the open-ended form, in other words, they were required to
write a mathematical expression and find the answer for it; (7) as the transfer test, they
were asked to solve two computation problems that also asked for the addition of fractions
with different denominators, i.e. 1/21 1/3 5 and 1/41 2/5 5 . The computation problems
were used as the transfer test, instead of word problems, to save time; posing computation
problems would suffice, because our subjects’ difficulty was not in writing a mathematical
expression for the word problem but in finding out how to run the addition of fractions
with different denominators. Thus, these transfer problems would serve to clarify what
knowledge the students had acquired, because both problems involved fractions that cannot
be transformed into those having 10 as the denominator, and the numerator of the second
problem’s sum cannot be obtained by adding the two denominators, as in the original prob-
lem.

In the discussion (i.e. step 3), the experimenter took the role of chairperson and repeated
or clarified students’ ideas, as Japanese teachers often do in lessons. However, he avoided
giving any evaluation of the ideas or any suggestion of the correct answer. He also tried
not to elaborate or advance a student’s utterance. When no additional opinions seemed to
be forthcoming from the class, the experimenter ended the discussion. When the dis-
cussion, excluding the initial statements of the reasons for choices, continued for more
than 15 min, the experimenter ended it at the earliest break in the conversation.

In five classes (three 4th-graders and two 5th-graders) step 5 was omitted. That is,
students were not given any information about the correct answer by the experimenter.
These no-feedback classes were G–K, while feedback classes were A–F. All of the steps
were videotaped, and step 3, the discussion period, was transcribed.

Coding of Students’ Utterances

Those students’ utterances that were publicly made in the statement of reasons or the
discussion were divided into arguments. Here ‘utterance’ is defined as the total speech
given by a single student until the experimenter–teacher or another student took the floor,
and an ‘argument’ is defined as a distinct idea for or against one of the alternatives. Thus,
for instance, if a student explained why alternative Z was correct and alternative X must
be incorrect, his or her utterance was treated as involving two arguments. If he or she
repeated the same argument, it was counted as one.

The arguments were classified into either for or against each alternative (X, Y, or Z),
and then classified into subcategories in terms of the major reasoning. See Table 1 for
details. Two categories for X (1/21 1/5 5 2/7): X-simple addition, and X-others. Three
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Table 1
Classification Categories of Students’ Arguments

For X (1/2 1 1/5 5 2/7)
X-simple addition—numbers are simply to be added after being grouped into denominators and numerators.
X-others—other arguments for X.
Against X
NX-semantic—the answer of 2/7 is smaller than 1/2 (one half) despite the fact that another number (1/5) is
added to 1/2.
NX-same denominator—in the previous lesson on the addition of fractions with the same denominators, the
denominators are not added.
NX-others—other arguments against X.
For Y (0.51 0.2 5 0.7)
Y-how—explaining how 1/2 can be changed to 0.5 and 1/5 to 0.2.
Y-correspond—1/2 is 0.5 and 1/5 is 0.2 (without any explanation).
Y-others—other arguments for Y.
Against Y
NY-irrelevant—because the original problem is about fractions, Y is irrelevant.
NY-others—other arguments against Y.
For Z (1/2 1 1/5 5 7/10)
Z-why—explaining why making denominators common is needed before adding.
Z-how—explaining how to make denominators common (by referring to the least common multiple or by
multiplying both the denominator and the numerator by the same number).
Z-how-1/10—explaining how to make denominators 10 (by using 1/10 as a unit).
Z-correspond—1/2 corresponds to 5/10 and 1/5 to 2/10 (without further explanation).
Z-others—other arguments for Z.
Against Z
NZ-wrong answer—the numerator of 7 cannot be obtained, though the denominator of 10 can be.
NZ-others—other arguments against Z.
For both Y and Z
YZ-right—both Y and Z are correct, because 0.7 equals to 7/10.

categories against X: NX-semantic, NX-same denominator, and NX-others. Three for Y
(0.5 1 0.2 5 0.7): Y-how, Y-correspond, and Y-others. Two against Y: NY-irrelevant,
and NY-others. Five for Z (1/21 1/5 5 7/10): Z-why, Z-how, Z-how-1/10, Z-correspond,
and Z-others. Two against Z: NZ-wrong answer, and NZ-others. One for both Y and Z:
YZ-right.

Two raters independently coded all utterances first into arguments and then into the
above categories, based on a written manual including definitions and an example. The
percentage of agreements for the classification into the subcategories was 92.7. Cases of
initial disagreement were negotiated.

Results

This section is divided into three parts. First, we describe how whole-class discussion
proceeded in each class, in other words, what arguments were offered and how they were
elaborated. The description is mostly qualitative in nature. Second, we analyze learning
outcomes and their relationships with features of the whole-class discussion, both class
by class and comparing vocal and silent participants. This part represents more or less
conventional analyses of process–product correlations. Finally, we examine, among the
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vocal students, who was nominated as presenting the most plausible ideas, and whether
both vocal and silent students could recall what the ideas had been.

How Whole-Class Discussion Proceeded

On average, 19 min (range, 15–25 min) were spent for the discussion including the
statement of reasons for choices; the actual time spent varied from class to class depending
on the course of the discussion. In most classes, 6–9 students stated their explanations or
arguments once or twice during this period; these speakers (referred to as ‘vocal’ students
hereinafter) represented one-third to one-fifth of the entire students in the class.

Table 2 shows frequencies of the major categories of arguments for and against alterna-
tives X, Y, and Z. It summarizes the discussion in each class, providing with the bases
for interpreting students’ learning outcomes. In six classes (D, E, F, I, J, and K), one or
more correct, and widely applicable, explanation(s) for the valid procedure (that is, Z-why
or Z-how) was offered. In three more classes (A, B and H), explanation(s), which was
correct for the target problem though not generally applicable (Z-how-1/10), was

Table 2
Frequencies of Coded Arguments For and Against Each Alternative

Classes A B C D E F G H I J K

No. of participants 33 18 14 20 33 28 25 33 32 32 30
No. of vocal students 6 7 7 6 9 6 9 11 7 8 7
Total number of 8 11 8 9 13 6 10 18 10 15 8
utterances
For X (1/2 1 1/5 5
2/7)

X-simple addition 2 1 2 1 1 1 4 1 1 2 2
For Y (0.51 0.2 5
0.7)

Y-how 1 2 0 0 0 0 0 1 1 2 1
Y-correspond 0 1 0 1 1 1 1 1 2 0 1

For Z (1/2 1 1/5 5
7/10)

Z-why 0 0 0 0 1 1 0 0 1 1 1
Z-how 0 0 0 1 2 1 0 0 0 3 2
Z-how-1/10 1 1 0 0 0 1 0 1 6 2 0
Z-correspond 0 3 0 5 0 0 0 1 0 0 0

For Y and Z
YZ-right 0 0 0 0 3 0 0 1 1 5 2

Against X
NX-semantic 3 0 0 1 2 1 1 0 0 1 2
NX-same 0 0 0 0 1 1 0 5 0 1 0

denominator
Against Y

NY-irrelevant 0 0 0 1 2 0 3 0 2 1 2
Against Z

NZ-wrong answer 0 0 1 0 0 0 3 0 0 0 2

Categories of ‘others’ were excluded from this table.
See Table 1 for what we mean by X-simple addition, Y-how, Y-correspond, Z-why, Z-how, Z-how-1/10, Z-
correspond, NX-semantic, NX-same denominator, NY-irrelevant, NZ-wrong answer, and YZ-right.
Classes A, B, C, G, H, and I belonged to the 4th-grade; others, the 5th-grade.
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presented. Only in two classes (C and G) out of the 11, students failed to offer effective
explanations about how to get the answer 7/10. Although the development of discussion
varied, depending upon the distribution of students’ prior responses, the number of
expressive students in a class, and so on, we can conclude that a majority of the classes
could offer correct arguments at least a few times during whole class discussion.

Arguments For and Against Each Alternative

How persuasive were students’ arguments? Arguments for and against each alternative,
if given at all, were highly similar in content across the classes. Proponents of alternative
X (1/2 1 1/5 5 2/7) in all 11 classes asserted that because this problem involved addition,
the numbers had to be added, after they had been grouped into denominators and numer-
ators [coded as X-simple addition]. An auxiliary, less frequent argument was that when
two fractions had the same denominator, that denominator would remain the same after
the fractions were added, but when denominators were different, there would be no other
way than adding them. In contrast, opponents of this alternative gave counter arguments,
relying on either ‘semantics’ (i.e. whether the solution makes sense), or consistency (i.e.
whether the solution is consistent with the procedure that they have learned), or both. That
is, X could not be correct because its answer 2/7 was smaller than 1/2, though another
number (1/5) was added to it [NX-semantic]; when they had learned the addition of frac-
tions with the same denominators, denominators were not added, and if these were added,
the answer would not make sense, as shown, say, in the case of 1/21 1/2 [NX-same
denominator].

Supporters of Y (0.51 0.2 5 0.7) in all classes except class C stated that 1/2 is 0.5
and 1/5 is 0.2, and that 0.5 and 0.2 combined equals to 0.7, either explaining the fraction–
decimal correspondence by drawing a figure or referring to division [Y-how], or just
asserting the correspondence 1/2 to 0.5 and 1/5 to 0.2 without any explanation [Y-corre-
spond]. This argument was rejected by opponents of Y, because the original problem was
about fractions, not about decimals [NY-irrelevant]. This counter argument against Y was
not refuted by the supporter of Y except in classes E and J where a substantial number
of students asserted that both alternatives Y and Z were correct. These refuters claimed
that the wording of ‘how many liters of milk’ should permit both the answer in decimals
as well as the one in fractions. Although 12 students in five classes concluded that both
alternatives Y and Z were correct (because 0.75 7/10) [YZ-right], nobody pointed out
that the procedure relying on the transformation into decimals works only as an approxi-
mation for many fractions. This is probably because the discussion time was short and
because the procedure using decimals worked for the present problem.

Supporters of alternative Z (1/21 1/55 7/10), which was the most appropriate solution,
explicitly or implicitly referred to the necessity of transforming fractions with different
denominators into those with the common denominator, and offered explanations for
obtaining the common denominator, 10 in this case. The Z-why argument, which was
observed in five classes, indicated why making the denominators common is needed before
adding. The Z-how argument, which was observed also in five classes, explained how to
make denominators common by using the least common multiple, or by multiplying both
the denominator and the numerator by the same number. These two types of arguments
are considered to be more advanced than others for Z, because they can be applied to any
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addition of fractions with different denominators. Z-how-1/10, seen in six classes,
explained how to make the common denominator of 10, by using 1/10 as a unit, that is,
1/2 can be expressed as 5/10 (1/103 5) and 1/5, 2/10 (1/103 2). This explanation was
correct in the target problem, but was not always applicable to other fractions. Nine stu-
dents in three classes gave Z-correspond, indicating that 1/2 corresponds to 5/10 and 1/5
to 2/10 without further explanation. Arguments against alternative Z, which were observed
in three classes, were based on some misunderstanding of Z; a few students complained
that they could not get the numerator of 7 in the sum, though they could get the denomi-
nator of 10.

Arguments Inducing Public Conversions

How persuasive these arguments were for other students can be examined by analyzing
cases of public conversion. During the discussion, 22 students in 10 classes indicated that
they had changed their mind. Out of these 22 public conversions, 10 in 9 classes were
from X (1/2 1 1/5 5 2/7) to Z (1/21 1/5 5 7/10), 5 in 4 classes were from Y(0.51
0.2 5 0.7) to Z, and 3 in 2 classes were from X, Y, or Z to the claim that both Y and
Z are right. Five of these 10 conversions from X to Z occurred just after one of the
supporters of Z had pointed out that X could not be correct because its answer, 2/7, was
smaller than 1/2, though another number (1/5) was added to 1/2 [NX-semantic], whereas
the other four occurred without a speaker who expressed his or her opinion against X just
before the conversion. The latter four students referred to a supporter of Z who explained
how to obtain the common denominator. In class G, the argument of NX-semantic was
offered toward the end of the discussion, but no public conversion occurred, except that
one of the students cried, “That’s a sudden complete reversal!” This is probably because
there was no effective explanation about how to obtain the common denominator in this
class, due to the lack of time. This suggests that the argument of NX-semantic may not
be sufficient to induce public conversion, although it seems to be a persuasive argument.

Four of the five conversions from Y (solution by decimals) to Z (solution by fraction)
occurred through reference to the Z supporter’s explanations about how to get the common
denominator. The other occurred through reference to the argument that the original prob-
lem was about fractions, not about decimals.

Conversion to the conclusion that both Y and Z were correct occurred just after the
argument of YZ-right was offered, and these converts pointed out that 0.7 is equal to 7/10;
for example, “Since we learned before that 1/10 is equal to 0.1, I think 7/10 will be equal
to 0.7, and asTanaka(another student’s name) said, we can also change 0.7 into 7/10,
so I think both Y and Z are right.”

Two conversions from Z to Y occurred in class J, where the supporters of Y explained
how to change the fractions into decimals and the supporters of Z explained how to obtain
common denominators by relying on the least common multiple. These converts stated
that the explanations using decimals were more understandable to them than those using
the least common multiple. One of them stated that although both Y and Z were correct,
the procedure of Y was better because it did not require something like the least common
multiple, which was novel to them.

Two conversions from Y (0.51 0.2 5 0.7) to X (1/51 1/2 5 2/7) occurred only in
class G, where there was no supporter of Z at the first choice, and thus no effective
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explanation about why and how to make the common denominator in the discussion. These
converts seemed to have been influenced by the X supporter’s assertion that when two
fractions had the same denominator, the denominator would be the same in the sum of
the fractions, but when the denominators were different, they must be added; one of the
converts stated, “At first I thought that Y was right, but in the addition of these new
fractions that we will learn in the 5th-grade, we may add the denominators.”

Elaborations of Arguments During Discussion: An Example

Although our experimenter–teacher almost never revoiced a student’s utterance, students
sometimes not only changed their choices as mentioned above but also elaborated their
arguments of why X is wrong and why both Y and Z are right, by incorporating other
students’ ideas. This process could be seen most clearly when they were involved in
extended discussion. They often referred to other students’ utterances, either for or against
them, saying, for instance, “I am arguing againstSato(another student name) that...” or
“I do not think Sato is right, because...” in the case of denial and “AsTanakasaid, I
think...” or “Let me add to whatSuzukisaid that...” in the case of support.

We present, as an illustrative example, the sequence of students’ utterances in class E
below. We select it for three reasons: (a) the three alternatives were chosen at similar
rates before discussion; (b) the time spent and the number of vocal students were about
the average; but (c) it revealed respectable learning outcomes. In actuality, the teacher’s
utterances, mostly nominating the next student and repeating or clarifying the preceding
student’s utterance, were inserted, but we have removed them in the protocol so that the
connections among the students’ utterances can be seen more evidently.

Class E

1. S1, a supporter of X: I got the answer by adding the upper ones (numerators) and
lower ones (denominators) separately.

2. S2, a supporter of Y: One half is 0.5 in decimals, and one-fifth is 0.2. So I got 0.7
by changing them into decimals.

3. S3: I think, S2’s solution is OK, though different (from mine), but X is wrong.
4. S4, a supporter of Z: A half is one of the one divided into two, and one-fifth is one

of the whole divided into five. Because we cannot handle numerators unless denomi-
nators are the same, we make them the same, 10, and for this, we multiply two by
five, so this (1/2) becomes 5/10, and five is multiplied by two, so this (1/5) becomes
2/10. 5/101 2/10, that is, there are seven units of the one divided into 10. We
have 7/10.

5. S5: I change from Y to Z. Removing the decimal point, this one, Y, is almost the
same as X.

6. S1: We are studying fractions today, so decimals are irrelevant.
7. S6: Calculation is correct in Y, but the problem is given in fractions, so we have to

give the answer in fractions.
8. S4: S6 said that we have to change the answer (obtained in Y) into fractions, but I

think both Y and Z are right.
9. S7: I choose Z, but adding to S4, I think both are OK because 7/10 is equal to 0.7.

10. S8: In X, 2/7 is smaller than a half of one, that is 1/2.
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11. S9: If so, a number may become bigger by a subtraction.
12. S1: I have changed from X to Z. I thought lower ones (denominators) could be added,

but if we do so, the answer would not make sense. In a previous lesson, for example,
1/6 added to 1/6 equals to 2/6, so we did not add lower ones.

13. S10: I choose Z, but argue against X. A half is 0.5 in decimals, and one-fifth is 0.2,
0.2 and 0.5 combined is equal to 0.7, and 0.7 liter is the same as 7/10 liter. Only the
answer in X is different and thus wrong.

14. S11: S4’s solution seems OK, but I propose my own. I get 10 by multiplying 2 by
5. (Numerators are) 5 by 13 5 and 2 by 13 2. As we did for 1/6 added to 1/6, we
add just the upper numbers, not the lower ones, 10, so we get 7/10.

15. S5: I believe Z is correct, and do not want to shift to X. 2/2 is one liter, and 5/5 is
one liter. 2/7 is much smaller than 1/2 and 1/5 combined.

As can be seen, a group of vocal students in the above example has developed an
understanding of why X is incorrect. S1 (utterance no. 12) referred to an earlier lesson
in which denominators were not added when he converted from position X to Z, probably
influenced by the argument of S8 (utterance no. 10) and other students that the answer,
2/7, was too small. Thus, at the end, all of the students seemed convinced that X could
not be right because of its absurd answer and lack of consistency with previous lessons.
Moreover, at least some of the students correctly recognized through their exchange of
ideas that both Y and Z are correct, although they are apparently different solutions.
Although they did not elaborate on how to obtain the common denominator, they seemed
to grasp that it was necessary to do so before adding fractions with different denominators.

Learning Outcomes and Their Relationships with Features of Discussion

How often could the students, both vocal and silent, acquire through whole class dis-
cussion the correct procedure for adding fractions with different denominators? Could their
learning performances be explained in terms of the arguments offered by other students
during the discussion? In this part we will examine these questions.

Change of Choice Responses After the Discussion

Table 3 shows response frequencies before and after the discussion but before feedback
was given by the experimenter (i.e. the first and second choices) in each class. In six
classes (A, B, D, E, I, and K) the supporters of Z (1/51 1/2 5 7/10) persuaded almost
all the others: 90% or more were supporters of Z after the discussion. However, in the
remaining classes, its supporters could not clearly win. In three classes (F, H and J), the
supporters of alternative Y (0.51 0.2 5 0.7), which is correct and appropriate for the
original problem but cannot readily be used for addition of fractions in general, maintained
or even increased their number. This is probably because the argument that the solution
relying on the decimal was irrelevant was not offered (F and H) or because it was refuted
by one of the supporters of Y, who were a majority (J). In two other classes (C and G),
the supporters of X (1/21 1/5 5 2/7) constituted the largest group before discussion.
Their number decreased after the discussion in both classes, but 20% (3/14) and 40%
(10/25) of the students, respectively, still supported alternative X as the appropriate
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solution after the discussion. This is probably because, as described above, no plausible
explanations for alternative Z were given in these classes.

Post-Test Performances

Table 4 shows students’ performances on the original problem at the post-test, which
was given without answer alternatives. The first row for the feedback group or no-feedback
group shows the number of correct solutions for it, and the second, the number of students
who could write a mathematical expression and manipulated it correctly, in other words,
spontaneously wrote the intermediate step of the solution, such as, 1/21 1/5 5 5/10 1
2/10 5 7/10, or 1/21 1/5 5 0.5 1 0.2 5 0.7 5 7/10. We did not include into this
category such a response as 1/21 1/5 5 2/101 5/10 5 7/10, because students may have
taken 1/2 for 2/10; and did not include either responses without an intermediate step of
manipulation, such as 1/21 1/5 5 7/10.

Almost all students, except for those in class G, solved the target problem correctly,
irrespective of the presence or absence of feedback. It should be reminded that students
in classes G, H, I, J, and K did not get feedback that Z is the most appropriate solution.
In class G, as described above, no effective solutions (Z-why, Z-how, or Z-how-1/10)
were offered during the discussion, and thus a substantial number of students continued
to choose X (1/21 1/5 5 2/7) at the second choice after the discussion. The percentage
of the correct solution on the post-test was 100% in class C (which had three supporters
of X at the second choice) where feedback was given, but 48% in class G (which had 10
supporters of X) where no feedback was given after the discussion. This suggests that
feedback is effective when good ideas are not offered in discussion, though its effect
seems limited, since only three of the 14 students (21%) of class C wrote a mathematical
expression and manipulated it correctly. When plausible ideas are proposed in discussion,
teacher’s feedback may not be necessary, because the students in classes H, I, J, and K
displayed good post-test performances in terms of percentages of the correct solution and
writing and manipulating a mathematical expression correctly. There were no statistically
significant differences between feedback and no-feedback groups as a whole by the Mann–
Whitney U-test in either measure (P > 0.10). Considering that, as feedback, the exper-
imenter–teacher told the students without further explanation only that alternative Z is
most appropriate, and that many students spontaneously wrote a mathematical expression
involving an intermediate step for the target problem at the post-test, it is strongly sug-
gested that the students, irrespective of the presence or absence of feedback, learned how
to solve the target problem from the discussion, not just memorized the correct answer
presented as one of the answer alternatives.

Let us compare the result of the post-test taken by vocal versus silent participants.
Although those who failed to solve the target problem at the post-test were primarily silent
participants (i.e. 19/23), it should be noted that almost all the students except for those
in class G, correctly solved the problem at the post-test. Six of the 12 students in class
G who correctly solved the target problem were also silent participants. Mean percentages
of correctly writing and manipulating a mathematical expression were 69.9 for the vocal
participants versus 55.8 for the silent, and there was no statistically significant difference
between these two groups by the Mann–Whitney U-test (P > 0.10). These findings indicate
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that not only vocal but also silent participants learned how to solve the target problem
through the whole-class discussion.

Performances on Transfer Test Items

Students’ solutions of the transfer problems (1/21 1/3 5 and 1/41 2/5 5 ) were
classified into one of seven categories:correct solutionwhen both problems were solved
correctly; correct-denominators-onlywhen the student solved both problems through
obtaining a common denominator by multiplying both denominators but the sum of numer-
ators by adding denominators (e.g. 1/41 2/5 5 (5 1 4)/(4 × 5)). This was an incorrect
procedure that had happened to work for the original problem;transformation-into-10
when the student approximated fractions to be added always by fractions with 10 as the
denominator (e.g. 1/41 2/5 5 2/10 1 4/10), which was a procedure that also had hap-
pened to work for the original problem (a procedure that relied on decimals for both
problems was included in this category);simple-additionwhen the student added denomi-
nators as well as numerators as in alternative X for the target problem [e.g. 1/41 2/5 5
(1 1 2)/(4 1 5)]; no answerwhen the student gave no answer for either or both of the
two problems;otherswhen solutions that did not fit with any of the above categories or
when inconsistent solutions between the two problems were observed.

Table 4 also shows the results from the transfer test. Few students in each class adopted
the simple-addition strategy (i.e. the same solution as alternative X for the target problem)
for the two transfer problems, except for class G. This indicates that the students learned
that they should not add numbers after grouping them into denominators and numerators.

The mean occurrence of correct solutions was 44% in four classes (E, F, J, and K)
where effective explanations, i.e., both Z-why and Z-how, were offered in the discussion,
whereas it was 16% in five other classes (A, B, C, G, and H) where students proposed
Z-how-1/10, which was not always applicable to all fractions, and/or Z-correspond, which
did not explicitly explain how to make denominators common, or neither of these expla-
nations. The other two classes (D and I) were intermediate in that Z-how and Z-correspond,
or Z-why and Z-how-1/10 were proposed; the mean percentage of correct solutions was
28%. We ran the Kruskal–Wallis one-way analysis of variance by ranks for these three
types of classes and found that these were significantly different (H 5 7.25, P , 0.01).
This indicates that students who successfully solved the two transfer items were more
likely to come from classes in which effective solutions were offered than from classes
in which no such solutions were proposed.

Whereas in most classes Z-how-1/10 arguments were observed with such arguments as
Z-why, Z-how, or Z-correspond, in class A the Z-how-1/10 argument was offered only
once without these supporting arguments (see Table 2). It should be noted that 52% (17/33)
of the students in class A showed the solution strategy of transformation-into-10 at the
transfer test, while the students in the other classes showed this solution strategy at about
10% on the average (range, 0–16%). These results suggest that the influence of a given
argument on students’ learning may be mediated by other arguments for the same alterna-
tive offered in discussion.

Table 5 shows the percentages of correct solutions of vocal and silent participants in
each class at the transfer test. Although the mean percentage was apparently higher among
the vocal participants than the silent ones (41.1% versus 23.7%), there was no statistically
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Table 5
Proportions of Correct Solutions of Vocal and Silent Participants in Each Class on Transfer Test

Classes A B C D E F G H I J K

Vocal 0 42.9 28.9 33.3 66.7 50.0 0 27.3 42.9 75.0 85.7
students
Silent 3.7 0 28.6 21.4 33.3 36.4 0 36.4 28.0 20.8 52.2
students

significant difference between these two groups by the Mann–Witney U-test (P > 0.10).
This finding suggests that silent participants, as well as vocal ones, can learn, through
whole-class discussion, a solution strategy that can be applied to new problems.

Evaluation and Recall of the Remarks Offered During the Discussion

Could the students evaluate a variety of arguments or explanations offered during the
discussion in terms of their reasonableness? Who would they nominate as the student who
had given the most plausible idea in the discussion? Could they recall more or less accu-
rately what the plausible idea was? We will examine these questions below.

Who the Students Perceived Had Proposed the Most Plausible Idea

In the discussion, a total of 83 students publicly spoke once or twice (very few of them
spoke three times). The vocal students who had been supporters of alternatives X (1/21
1/5 5 2/7) or Y (0.51 0.2 5 0.7) at the beginning often converted publicly to Z (1/2
1 1/5 5 7/10), as described above. At the final tally thus 14 were vocal supporters of X,
16 of Y, and 53 supported Z (including eight students who supported both Y and Z). Out
of these 83 speakers, only 15 (18%) nominated themselves. Table 6 shows the patterns
of nominations of speakers as proponents of the most plausible idea. As clearly shown,
there were very few who did not nominate any speaker (percentages of nominations ranged
from 82 to 100%).

The nomination concentrated on only a few speakers in each class. That is, in seven
classes, about 80% or more of the nominations named the same one or two speakers, and
in the remaining four (G, H, I, J) about 50% or more did so. When we take the third-
most-popular students into account, about 70% of the nominations were covered in these
four classes.

The most ‘popular’ nominees (i.e. those yielding the largest number of nominations) in
these 11 classes were, with one exception, vocal supporters of Z (the most appropriate
solution) or students who declared that they had become supporters of Z or both Y and
Z during the discussion. Moreover, supporters of Z were on the average nominated more
often than the supporters of X or Y. We computed for each vocal student the proportion
of nominations (the number of yielded nominations divided by the number of peers in the
class), and calculated mean proportions across classes. The mean proportion for the Z
supporters was 16.2% (SD, 22.7), that for the Y supporters was 6.3% (SD, 8.8), and that
for the X supporters was 2.9% (SD, 5.6). The differences in the mean proportions were
significant,F(2, 80) 5 3.61, P , 0.05, assuming the independence of each proportion
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nominated. This suggests that the students evaluated the arguments made by the supporters
of Z as more plausible than those made by the supporters of X or Y.

Next we examined what types of arguments made by the supporters of Z were evaluated
by the participants as most plausible. We compared occurrence rates of Z-why and Z-how
between the more popular nominees who obtained nominations from more than 20% of
their peers and the less popular nominees who were nominated by less than 10% of their
peers. Out of 13 more-popular nominees, nine (69.2%) gave Z-why and/or Z-how argu-
ments, while 4 of 31 less-popular nominees (12.9%) made such arguments; the difference
was highly significant,χ2 (1, N 5 44) 5 13.96,P , 0.001. This indicates that the parti-
cipants accurately evaluated arguments in the discussion in terms of their plausibility, even
among vocal supporters of Z.

Recall of the Plausible Ideas

How accurately did the students recall the ideas of the vocal participants that they
nominated as the proponents of reasonable ideas? To examine this question, we coded
students’ recalled contents, relying on the coding scheme that was applied to speakers’
utterances in the discussion (see Table 1) with the following three modifications: (a) Y-
how and Y-correspond were combined into one category, and Z-how and Z-how-1/10, into
another, because it was hard to distinguish these ideas in the recall data; (b) A comment or
recall of impression alone, such as “Sato’s explanation was easy to understand,” was coded
as ‘no recall’; (c) When a student’s description was incomplete, it was noted and marked
minus(−), such as Z-how(−). Two raters coded all the students’ recalled contents indepen-
dently. The percentage of agreement was 93.3. Cases of initial disagreement were nego-
tiated.

We divided all the students’ recalled contents thus coded into the following four categor-
ies, by comparing them with the coded categories of the corresponding nominees: ‘accurate
recall’—the coded categories were the same (when a nominee offered multiple arguments,
we judged it as accurate recall if the nominator recalled the gist of at least one of them);
‘simplified/incomplete recall’—the nominator’s description was a simpler or incomplete
version of the argument of their nominees’, for example, while the nominee’s explanation
was Z-how, the nominator’s recalled content was Z-correspond or Z-how(−); ‘no
recall/erroneous recall’—students could not recall their nominee’s utterance, or recalled
the argument of a different vocal student from the student that they nominated; ‘others’—
cases that did not apply to the above categories, including the case in which nobody
was nominated.

Results were as follows. First, there were very few students (12.1%) who nominated
someone but could not recall at all or recalled erroneous contents (the latter case was
observed in only three students in all). About 60% of the students recalled their nominees’
idea more or less accurately, and about 20% recalled it in a simplified or incomplete form.
Second, a great majority of the students recalled only one argument of their nominees’
utterance containing two or more arguments. That is, 19 vocal students in nine classes
made utterances consisting of two or more arguments, and they were nominated by 160
students. Ten of these 160 students recalled two or more arguments of their nominee’s
utterance, but the others recalled only one argument. A majority of the students who
recalled one argument from two or more, such as [Z-why and Z-how], or [Z-how, NX-
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same denominator, and NY-irrelevant], recalled Z-how much more often than Z-why, and
Z-how rather than NX-same denominator or NY-irrelevant. This suggests that the students
selected and incorporated more important aspects of speakers’ utterances in terms of solv-
ing the target problem.

We also compared recalled contents of vocal participants with those of silent parti-
cipants. Table 7 shows accuracies of recall by vocal and silent participants, when 15 vocal
students who nominated themselves were excluded. The vocal participants tended to recall
more accurately than the silent ones. Chi-square analysis for ‘accurate recall,’
‘simplified/incomplete recall,’ and ‘no/erroneous recall’ by the two types of participants,
excluding the column of ‘others,’ indicated a significant difference in the distributions,χ2

(2, N 5 259) 5 7.92, P , 0.05. However, we would like to emphasize that more than
3/4 of the silent participants recalled vocal participants’ ideas, though some of their recall
contents tended to be simplified. This suggests that silent participants also attended to
vocal participants’ utterances and tried to incorporate their arguments.

Discussion

The present study showed that (a) upper elementary school children could offer in
whole-class discussion plausible arguments for or against each of the alternative solutions
of the target problem, which in most classes included the correct explanation; (b) both
vocal and silent students tended to shift through the discussion toward the most appropriate
solution of the target problem with or without the teacher’s feedback, incorporating ideas
from other students, though their generalization was rather limited; and (c) the students
could recognize and memorize reasonable explanations offered by other students in the
discussion. In this section, we will present our preliminary model of students’ mathemat-
ical knowledge construction through whole-class discussion, interpret the above results in
terms of the model, and discuss cross-cultural and methodological issues.

The Construction of Knowledge Through Discussion

We assume that individual students, through participating in whole-class discussion,
take as well as give a set of interesting and promising ideas that serve as the material for
constructing new knowledge (Resnick, 1987). Unlike ideas presented by the teacher or a
textbook, students’ ideas may be weak, inaccurate, or even false. Nevertheless, social and

Table 7
Accuracies of Recall by Vocal and Silent Participants

Vocal students (68) Silent students (215)

Accurate recall 72.1 (49) 54.0 (116)
Simplified/incomplete recall 10.3 (7) 24.2 (52)
No recall/erroneous recall 10.3 (7) 13.0 (28)
Others 7.4 (5) 8.8 (19)

Figures show occurrence rates (%) and figures in parentheses indicate the number of students.
Fifteen vocal students who nominated themselves were excluded from the table.



523CONSTRUCTION OF MATHEMATICAL KNOWLEDGE THROUGH DISCUSSION

cognitive constraints enable students to focus on and incorporate plausible ideas only.
Students are helped a great deal by social cues, for example, whether ideas are offered
by students who are known to be high achievers in mathematics, whether their peers agree
with the ideas, etc. They also tend to acquire pieces of knowledge that are consistent with
their prior understanding and useful for solving the target problem. Because whole-class
discussion is a collaborative attempt to solve the target problem and to understand why
the solution is valid, participating in the discussion enables students to readily recognize
the pragmatic relevance of the presented ideas.

In the discussion in a large group, many participants have to remain silent. We assume,
however, that many silent participants actively try to find ‘agent(s)’ who ‘speak for’ them
in the discussion, and if they can, they participate in the discussion vicariously and enhance
their understanding as a result. Even when silent participants cannot find such an agent,
some of them may respond to the proponents’ and opponents’ arguments in their mind.
In other words, active participation is the prerequisite for the construction of knowledge,
but it may take forms other than speaking out.

The results of the present experiment, summarized above, can be interpreted using this
model. A majority of the students in this study seemed to learn that, when fractions are
to be added, they should first make the denominators common, and not add denominators
and numerators separately. Some of them even learned how to make denominators of
fractions common through participating in the discussion (See Table 4). We must admit,
however, that not many arguments offered by the students were informative for learning
how to make denominators common or why it is a legitimate procedure. In other words,
the whole-class discussion we organized elicited a small number of plausible ideas embed-
ded in many ideas that were less plausible, sometimes even incomprehensible, misleading,
or erroneous (see Table 2).

The secret for the success of whole-class discussion can be found in students’ active
and socially sensitive minds. Students somehow picked out the most plausible ideas from
those offered either by their proponents or opponents. They somehow recognized them as
plausible, and memorized the part that was most useful for solving the target problem
(see the results regarding the most popular nominees and what the students recalled). In
a sense, students’ active and socially sensitive minds allowed the infrequent reasonable
ideas to survive and influence themselves. In addition, the students interpreted the success-
ful solution of the target problem as the one they could generally apply to other problems.
Although their generalization was rather limited in the present study using the single target
problem, we can expect that students will make better use of the solution of prior problems
as the number of problems they have solved increases.

Japanese Sociocultural Contexts

The results reported above may have been due to the sociocultural contexts of the
Japanese classroom and/or to the students’ Japanese mentalities. It has been pointed out
that the practice of teaching/learning mathematics differs between the United States and
Asian countries including Japan (e.g. Stevenson & Stigler, 1992).

Hatano & Inagaki (1998) have proposed that two tendencies of Japanese students are
particularly important in creating distinctly Japanese educational practice in mathematics
that heavily depends on whole class discussion. The first characteristic is the students’
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involvement in class. The Japanese classroom often constitutes a community of learners
(Brown, 1994) or, more precisely, a caring community, where “all children, regardless of
their academic achievements, are genuinely valued members” (Lewis, 1995, p. 177). In
this classroom every child can and should expect moral support for her serious attempt
to learn, because enhancing individual students’ learning is a supreme goal of lessons in
that community. It also implies that a student has to offer her ideas in detail, even when
the ideas may be erroneous, because such an attempt at sharing contributes to the group’s
successful comprehension.

The second tendency might be called socialization for listenership. Japanese children
are good listeners, trained to listen to significant others eagerly and carefully, whereas
they are not good at expressing their ideas clearly and persuasively. They are not frustrated
nor do they become inattentive even when they have little opportunity for verbally express-
ing their own ideas, as long as they have some sense of participation. This may be an
important prerequisite for an extended whole-class discussion in Japan.

Similarly, as noted by O’Connor & Michaels (1996), Japanese students may tend to
refer to other students often. However, as far as the present experiment is concerned,
students’ frequent reference to other students was probably caused by the form of the
target problem—that it was presented with three answer alternatives. This form, even
without the experimenter–teacher’s explicit attempt to connect students’ utterances, struc-
tured the discussion so that every argument was either for or against each alternative. We
predict that similar patterns of utterances will be observed in other countries, as long as
the lesson is organized as in Hypothesis–Experiment–Instruction, including the form of
presentation of the target problem. Teachers may collect different solutions from their
students, instead of using prearranged set of solutions; this strategy works equally well in
terms of students learning (Morita & Inagaki, 1997), though it may complicate analyses
from the researchers’ point of view.

Methodological Issues: A Two-Level Analysis

The present experiment was based on what might be called the sociocultural-constraints
approach. Although we have stressed the importance of the social—participation in dis-
cussion, peers’ ideas, social cues, etc.—in the construction of knowledge, the analysis
based on this approach is, and must be, individualistic, because individuals are supposed
to remain individuals. In other words, although participants influence and are influenced
by others, they are not supposed to construct a collective understanding as a product of
a series of negotiations.

A better strategy for analyzing the relationship between collective problem solving and
comprehension activity on the one hand and individual understanding on the other would
be a two-level analysis of activity (Hatano & Inagaki, 1994). This analysis assumes that
through interactions, some discussed and negotiated meanings or understandings are first
constructed collectively, and then participants incorporate this ‘information’ individually
for generating, elaborating, and revising their comprehension.

We propose, in a Vygotskian fashion, to investigate the target phenomenon of collective
comprehension activity with individual outcomes as a collective or intermental process,
as well as an individual or intramental process (as reflecting the intermental process). On
the one hand, we should observe what occurs in a group as a whole, i.e. how members
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collaborate for joint understanding. At the same time, however, we should examine cogni-
tive changes in the constituent members, because what has been achieved collectively may
not be shared individually. More concretely, we might investigate in future studies (a)
how collective problem solving and comprehension activity successfully takes place
among those participants who are academically unsophisticated, and (b) how each individ-
ual member deepens her comprehension by assimilating information offered in the collec-
tive activity. We can examine the former by asking the participants to make a joint sum-
mary that all of them think reflects the preceding collective activity as well as by analyzing
a transcription of the collective activity. We can investigate the latter by tracing how
individual members actively participate in the collective activity and incorporate ideas
offered during the activity, through their individual review of the discussion as well as
their performance on test items. We believe such innovative methodologies will enable
us to understand more deeply how students construct mathematical knowledge through
whole-class discussion.
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