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Three experiments used multiple methods—open-ended assessments, multiple-choice
questionnaires, and interviews—to investigate the hypothesis that the development of stu-
dents’ understanding of the concept of real variable in algebra may be influenced in fundamental 10
ways by their initial concept of number, which seems to be organized around the notion of natural
number. In the first two experiments 91 secondary school students (ranging in age from 12.5 to
14.5 years) were asked to indicate numbers that could or could not be used to substitute literal
symbols in algebraic expressions. The results showed that there was a strong tendency on the part
of the students to interpret literal symbols to stand for natural numbers and a related tendency to 15
consider the phenomenal sign of the algebraic expressions as their “real” sign. Similar findings were
obtained in a third, individual interview study, conducted with tenth grade students. The results were
interpreted to support the interpretation that there is a systematic natural number bias on students’
substitutions of literal symbols in algebra.

INTRODUCTION 20

The experiments presented in this article investigate the hypothesis that there is a strong tendency
in students to substitute literal symbols in algebra only with natural numbers. Prior research has

1By “variable” we mean “real variable,” that is a variable whose range is a subset of the real numbers. Also, the term
“concept” is used to refer to the normative, socially shared, and culturally accepted concept, while the term “conception”
is used in this paper to refer to individuals’ subjective constructions of the mathematical concept (see also Leinhardt,
Zaslavsky, & Stein, 1990; Sfard, 1991). The term “initial concept” is also used to refer to what is assumed to be the
initial, psychological, concept of number, which we argue is close to the mathematical notion of natural number.

Correspondence should be sent to Stella Vosniadou, Department of Philosophy and History of Science, National and
Kapodistrian University of Athens. E-mail: svosniad@phs.uoa.gr
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concentrated on students’ difficulties in understanding that literal symbols in algebra stand for
more than one number. We argue, however, that the development of students’ understanding of
the concept of real variable is also influenced by their initial concept of number, which seems to 25
be organized around the notion of natural number.1 In other words, there is a natural number bias
that influences students’ substitutions of literal symbols in algebra causing further difficulties,
even after the notion of generalized number has been achieved. To the best of our knowledge
this tendency has not been investigated systematically so far, although acknowledged by some
researchers (Booth, 1984; Graham & Thomas, 2000; Kuchemann, 1981; Malara & Iaderosa, 30
2000; Schmittau, 2005). In the pages that follow we start with a selective review of the literature
on students’ use of literal symbols in algebra and continue to develop our theoretical framework
and hypotheses.

Selective Review of Prior Research

The use of literal symbols is an important source of difficulty in students’ transition from arith- 35
metic to algebra (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Hart, 1981; Nathan &
Koellner, 2007). Many students refer explicitly to the use of literal symbols as their main
problem with algebra, saying that they understood mathematics until literal symbols appeared
(Sackur, 1995). Prior research has shown that some students have no idea about how to interpret
such literal symbols, thinking that they stand for abbreviated names of people or objects or as 40
coded numbers, with values corresponding to their positions in the alphabet (Booth, 1984, 1988;
Kuchemann, 1981; Wagner, 1981). While such mistakes are usually abandoned by tenth grade
(Asquith, Stephens, Knuth, & Alibali, 2007; Knuth, Alibali, McNeil, Weinberg, & Stephens,
2005; Stacey & MacGregor, 1997), some other difficulties are more persistent and not so easily
corrected. One such difficulty is the tendency to think that literal symbols can stand for only 45
one, specific, unknown number as opposed to the generalized number (Asquith et al., 2007;
Booth, 1988; Collis, 1975; Knuth et al., 2005; Kuchemann, 1981). Booth (1984) found that such
difficulties persist even when students receive detailed instructions to correct them.

Students’ difficulties with the generalized number were originally explained in terms of
Piagetian theory. More specifically, it was claimed that generalized number is an abstract con- 50
cept that cannot be understood until students reach the stage of formal operations (Collis, 1975;
Kuchemann, 1978, 1981). This interpretation was originally criticized on the grounds that there
is no empirical evidence to support it (Booth, 1988; Stacey & MacGregor, 1997). Recent research
has shown, however, that students can deal with abstract mathematical entities, such as the gen-
eralized number, much earlier than the Piagetian theory would predict (Carraher, Schliemann, & 55
Brizuela, 2001; Schmittau, 2005).

Another explanation focuses on the negative role that can be possibly played by prior knowl-
edge in arithmetic (Booth, 1984; Herscovics & Linchevski, 1994; Kieran, 1992; MacGregor &
Stacey, 1997; Matz, 1980; Stacey & MacGregor, 1997). For example, Booth has argued that
students carry in algebra their erroneous knowledge of arithmetic, while Matz has claimed that 60
students’ difficulties reflect inappropriate use of arithmetic to interpret the use of literal symbols
in algebra.

In general, many researchers agree that arithmetic is a system that is procedural and concrete
and where transformations take place in specific numbers resulting in numerical responses, while
algebra is more structural and abstract and where transformations take place with/on algebraic 65
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expressions and not with/on specific numbers (Booth, 1984; Graham & Thomas, 2000; Kieran,
1992; Lee & Wheeler, 1981; Linchevski & Herscovics, 1996; Nickson, 2000; Schmittau, 2005).
In other words, there is a fundamental difference between the arithmetic and algebraic system
of conventions—often referred to as the “cognitive gap” (Herscovics & Linchevski, 1994), “cut
point,” or “didactic cut” (Filloy & Rojano, 1989)—which can account for a series of mistakes 70
and difficulties in students’ learning of algebra, such as the “lack of closure” error, which refers
to students’ unwillingness to accept algebraic expressions containing literal symbols as final
answers (Collis, 1975; Sfard & Linchevski, 1994; Tirosh, Even, & Robinson, 1998). Despite the
noted differences between arithmetic and algebra, there are a number of possible ways to use
students’ knowledge of arithmetic to facilitate learning in algebra (e.g., Carpenter & Fennema, 75
1992; Carraher et al., 2001).

When it comes to explain why it is so difficult for students to understand literal symbols as
generalized number, some researchers refer to the duality of mathematical ideas (Sfard, 1991).
Sfard has argued that mathematical ideas can be viewed both as a process and as a product of this
process, a product that can also stand on its own right as a self-existent entity. Other researchers 80
have proposed similar models such as the process/concept duality (Gray & Tall, 1994), the
process/structure distinction (Kieran, 1992), and the APOS theory, which is an acronym of the
sequence: action, process, object, and schema (Dubinsky, 1991). Using this distinction, algebraic
expressions can be conceived both as the process of the calculations notated and also as algebraic
entities on their own right. 85

According to these approaches, students initially understand mathematical ideas procedurally.
A more sophisticated understanding develops when students understand the structural side of
mathematical ideas and even more as they become able to switch flexibly between the proce-
dural and the structural views. This is what Sfard (1991) characterized as reification. According
to this position, only after practice on the procedural level is it possible to develop a higher 90
level of understanding, that is, the structural aspect of a mathematical idea (see also Kieran,
1992). Arriving at a new structural description of the number concept, Sfard (1991) argued
“is an ontological shift, a qualitative jump. Such conceptual upheaval is always a rather com-
plex phenomenon, especially when it is accompanied by subtle alterations of meaning and
applications” (p. 30). 95

We agree with Sfard’s position that it is useful to analyze students’ difficulties with the number
concept as requiring an ontological shift. From our perspective, this ontological shift complicates
the transition from arithmetic to algebra. More specifically, we argue that there is a “natural
number bias” that influences students’ substitutions of literal symbols even when the notion of
generalized number has been understood. This position will be described in the next section. 100

Students’ Conceptions of Number and the Interpretation
of Literal Symbols in Algebra

The kind of numbers students think literal symbols can represent is an important source of
meaning for the use of literal symbols in algebra. Most researchers who study the develop-
ment of students’ mathematical ideas agree that algebraic expressions can take their meaning 105
not only from the formal system of algebra but also from their reference, that is the quantities
and relations between quantities to which they refer, as well as from their linkage to the “world
of numbers” (see Kieran, 2007; Resnick, 1987). Even when students accept the more abstract,
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structural aspect of an algebraic expression as an entity on its own right, they do not neces-
sarily disengage this entity from its initial reference to numbers and relations between numbers 110
(Arcavi, 1994; Sfard, 1995). The reference of literal symbols—the numbers literal symbols stand
for—is an important source of meaning, which influences performance in various mathematical
tasks (Crowley, Thomas, & Tall, 1994; Demby, 1997; Graham & Thomas, 2000; Kaput, 1989;
Kieran, 1992; Malara, 1999; Warren & Pierce, 2004). For instance, “guess and check” with spe-
cific numbers has often proven to be an effective strategy for dealing with mathematical problems 115
(see Cerulli & Mariotti, 2001; Johanning, 2004) despite the fact that it rarely provides mathemat-
ically accepted solutions. Moreover, the reference to specific numbers can result in difficulties in
a range of other mathematical tasks, depending on the kinds of numbers used. It has been amply
demonstrated, for example, that the kind of multiplicand used has an impact on problem solution
when the multiplier is smaller than one (Fischbein, Deri, Nello, & Marino, 1985; Harel, Behr, 120
Post, & Lesh, 1994).

It would be reasonable to assume that students will find it easy to understand that literal
symbols stand for any real number, that is, natural or non-natural, rational or irrational, positive
or negative, because they usually have years of instruction at least on rational number before
they are introduced to the concept of variable. However, research shows that even at the end 125
of high school many students do not have a unified concept of number as real number, and that
their ideas remain tied around natural numbers and their properties (Moss, 2005; Vamvakoussi &
Vosniadou, 2007).

Students’ number knowledge is based on their initial experience with counting numbers (see
Gelman, 2000). Such a conceptualization of number is already apparent in the preschool years 130
and is further confirmed and strengthened during the first years of primary school, when stu-
dents learn systematically the symbolism and the properties of natural numbers (Vosniadou,
Vamvakoussi, & Skopeliti, 2008). It is also strengthened by the continuous use of natural num-
bers throughout the mathematics curriculum. Although there are positive ways to build on
students’ knowledge of natural numbers to introduce them to non-natural numbers (Mack, 1988; 135
Olive, 1999; Steffe, 1992), these are not usually taken into consideration in instruction. The result
is that students have persistent difficulties and misconceptions caused by the interference of natu-
ral number on their interpretation of rational and real numbers (Behr, Harel, Post, & Lesh, 1992;
Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2007; Verschaffel & Vosniadou,
2004). This interference is known in the literature as the “whole number bias” (Ni & Zhou, 2005). 140

Vosniadou and her colleagues (Vosniadou, 2003; Vosniadou et al., 2008) have argued that the
initial understanding of number, constructed around the notion of natural number, constitutes
a “framework theory” that guides the development of more advanced mathematical ideas. The
term “framework theory” is used to denote a skeletal structure, which is however generative in
the sense that it can generate explanations and predictions, and not an explicit, well-formed, and 145
socially shared scientific theory (Vosniadou et al., 2008). It is possible that many components of
the initial framework theory of number are based on children’s experiences, an assumption con-
sistent with the “ knowledge-in-pieces” approach (diSessa, 2008; Schoenfeld, Smith, & Arcavi,
1993). According to diSessa (2008), the physical knowledge system of novices consists of an
unstructured collection of many, relatively isolated, self-explanatory elements known as phe- 150
nomenological primitives (p-prims) that originate from superficial interpretations of physical
reality. Learning requires collecting and systematizing those pieces of knowledge into larger
systems of more complex knowledge structures, such as physics laws.
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Although we agree that such phenomenological primitives may form part of the knowledge
system of novices, we nevertheless believe that these elements are integrated from early on, 155
under the influence of lay culture and language, into a skeletal conceptual structure, which guides
the knowledge acquisition process. Within this larger conceptual structure, or framework theory,
number is essentially natural number. Students’ initial framework theory of number encompasses
a number of interrelated beliefs that underlie students’ expectations about what counts as number
and how it is supposed to behave—namely, that numbers have a distinct symbolic representation, 160
refer to absolute quantities, have a distinct successor and obey the principal of discreteness, and
that they behave like natural numbers with respect to ordering and operations (Vamvakoussi &
Vosniadou, 2010).

The framework theory approach is a constructivist approach and as such it assumes that learn-
ing is built on prior knowledge mainly through additive, enrichment types of mechanisms, such 165
as assimilation, internalization, and appropriation. In the great majority of cases these mecha-
nisms promote learning. Sometimes, however, the incoming information is incompatible with
what is already known, requiring the revision of existing ideas. In such cases, the use of additive
learning mechanisms can destroy the coherence of the initial conceptual structure creating either
fragmentation (diSessa, 2008) or systematic misconceptions—otherwise known as synthetic 170
conceptions (Vosniadou et al., 2008). For example, many students believe that multiplication
always makes a number bigger (Fischbein et al., 1985), that longer decimals are bigger (Moss,
2005), that the bigger the numerator and the denominator the bigger the fraction (Mack, 1988;
Stafylidou & Vosniadou, 2004), and that discreteness may apply to decimals but not to fractions
(Vamvakoussi & Vosniadou, 2010). Thus, although students’ exposure to instruction and texts 175
usually triggers top-down coherence in their knowledge organization (diSessa, 1993), we believe
that fragmentation, or synthetic conceptions, can be a first product of instruction in cases when a
rather coherent but incompatible structure is already established.

If we are correct in that there is such an initial understanding of number that influences the
knowledge acquisition process in fundamental ways, it makes sense to assume that it would also 180
influence the way students interpret the use of literal symbols. For example, it could be hypoth-
esized that students may start by thinking that literal symbols refer only to natural numbers,
and continue to think this way even after they have understood the notion of generalized num-
ber. In addition, the framework theory approach would predict that the process of understanding
literal symbols as standing for any real number would not be an all or nothing process, but 185
would be characterized by intermediate steps. Those steps would have the characteristics either
of internally inconsistent (fragmented) conceptions (diSessa, 1993) or of synthetic conceptions
(Vosniadou et al., 2008), reflecting students’ attempts to make sense of the new information to
which they are instructed. In other words, some students may be inconsistent in their substi-
tutions, sometimes thinking that fractions, for example, can be substituted for literal symbols 190
and some other times not. Alternatively, they may form a synthetic conception according to
which, for instance, only decimals but not fractions can be substituted for literal symbols in a
systematic way.

Interestingly, there is some evidence coming from the history of mathematics that seems to
support this point of view. For a long time after Viete’s 1591 introduction of the use of literal 195
symbols as variables in algebra mathematicians used literal symbols to stand only for natural
numbers. As a result, algebra was originally an algebra in which only natural numbers could be
substituted for variables, or, in Peackock’s words, an arithmetical algebra (Kline, 1980, p. 159.
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According to Kline, it was Peacock’s argument on “the principle of the permanence of equivalent
forms” in 1833 that opened the way for mathematicians to fully accept the symbolic algebra of 200
real numbers.

To sum up, we hypothesize that students start with an initial belief that literal symbols stand
for natural numbers only and continue with some possible intermediate steps characterized by
fragmentation or synthetic conceptions before they eventually understand that literal symbols
can stand for any real number. Initial support for this hypothesis was obtained in a pilot study 205
(Christou & Vosniadou, 2007) in which 13 students were interviewed on their understanding
of the use of literal symbols in equations and inequalities. The students attended tenth grade
(approximately 15 years of age) and had extensive instruction on the use of variables in equations
and inequalities since eighth grade. They were asked questions such as whether there are some
numbers that could be substituted for “b” so that “4b” would equal “3” (they were also presented 210
with the formal equation “4b = 3”); whether a/b is always smaller than “1” (a/b < 1) in cases
where “a” is smaller than “b” (a < b); and whether it is always true that “4b > 4/b”(< i > b <

/i >�= 0). Many students interpreted the literal symbols as referring only to natural numbers, a
tendency that resulted in specific mistakes. For example, in the first equation, 5 of the 13 students
responded by substituting the literal symbols only with natural numbers, thus concluding that 215
“4b” is always bigger than “4.” Only three students gave the correct response, namely that there
is certainly such a number, possibly a fraction or a decimal. The remaining five students solved
the equation using the formal way.

Quite similar were the results regarding the inequalities. In the case of “a/b < 1” (given
that a < b), only two of the students tried to solve the inequality, and the rest decided to check 220
by substituting numbers for the literal symbols. Six of the 13 students tried only with natural
numbers and another 4 used a negative integer as well. Only one student tried with at least one
rational number. Similar results were obtained in the remaining cases. When the students were
asked about the numbers that could be assigned to “4b” or “a/b”, half the students responded by
substituting only natural numbers for the literal symbols and their responses were multiples of 225
“4” in the case of “4b” and positive fractions in the case of “a/b.”

The three experiments presented in this article investigate in a more systematic way the
hypothesis that the natural number bias influences students’ substitutions of literal symbols in
algebra.

EXPERIMENT 1 230

The first experiment tested the hypothesis that secondary school students who had been intro-
duced to the concept of variable through systematic instruction would nevertheless exhibit a
strong tendency to substitute literal symbols in algebraic expressions with natural numbers only.
Because we had already conducted an initial individual interview pilot study with a small number
of students (Christou & Vosniadou, 2007), we were interested in testing this hypothesis using a 235
larger sample. For this reason, a group questionnaire methodology was used.

Considering the absence of previous relevant studies, the decisions regarding the questions
used and the coding of the responses were guided by our theoretical considerations. The materials
were validated through discussions with experts in mathematics education and researchers in the
field of learning. They were also pilot tested with small groups of students, such as the pilot study 240
mentioned previously.
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Two open-ended questionnaires were constructed each consisting of the same seven algebraic
expressions. In Questionnaire A (QR/A) the students were asked to indicate various possible
numbers that could be assigned to the algebraic expressions. We hypothesized that a mathemat-
ically sophisticated person would understand that the expected response in QR/A was that “all 245
numbers can be assigned to the literal symbols” in all the algebraic expressions.2 Nevertheless,
technically, any number—natural or non-natural—that the students would choose to substi-
tute could be considered to be correct. For that reason a second questionnaire was designed,
Questionnaire B (QR/B), in which the students were asked to indicate all numbers that could
not be assigned to the algebraic expressions. In QR/B only one mathematically correct response 250
applies, namely, that “there is no such number.”

It was hypothesized that regardless of the type of questionnaire used, there would be a strong
tendency on the part of the students to interpret literal symbols to stand for natural numbers
only. It was also hypothesized that there will be intermediate steps in the process of understand-
ing the concept of real variable, with the students producing internally inconsistent or synthetic 255
responses.

METHOD

Participants

The participants were 57 students from two middle class, public high schools in Athens, Greece.
Thirty-six (36) of these students attended eighth grade and 21 attended ninth grade (mean age 260
13.5 years). Twenty-nine (29) students completed QR/A, and 28 completed QR/B. The sample
was almost equally divided between boys and girls (26 boys and 31 girls).

Materials

Both questionnaires presented the students with the following seven algebraic expressions: a,
–b, 4g, 1/g, a/b, d+d+d, and k+3 (Q1 to Q7 respectively). The students were given the fol- 265
lowing instructions: “In algebra, we use literal symbols (such as a, b, x, y, etc.) to stand for
numbers. In this questionnaire we use literal symbols in this way. Read the following questions
carefully and respond with as many numbers as you can.” In QR/A the students were asked to
“Write down as many numerical values as you think can be assigned to . . .”; while in QR/B
they were asked to “Write down as many numerical values as you think cannot be assigned 270
to . . .”

Procedure

The two questionnaires were distributed randomly to the students in their classroom and were
completed in the presence of their mathematics teacher and one of the experimenters. Only
clarification questions were answered. 275

2With a few exceptions such as that a denominator cannot equal zero.
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RESULTS AND DISCUSSION

Correct vs. Incorrect Responses

Both questionnaires showed high reliability (Cronbach’s Alpha > 0.844). Students’ responses
in QR/A were originally categorized in three main categories: “Correct,” “Incorrect,” and “No
Response.” “Correct” were considered the responses “all numbers can be assigned to the alge- 280
braic expression” and those including both natural and non-natural numbers.3 “Incorrect” were
considered the responses that included only natural numbers or numbers of a specific kind, such
as positive fractions. As can be seen in Table 1, the majority of the responses fell in the incorrect
category. Only 23.6% of the total responses were placed in the correct category.

The same procedure was followed for QR/B. As shown in Table 1, 32.7% of students’ total 285
responses fell in the “Correct” category and 46.9% in the “Incorrect” category. The differences
in students’ performance between QR/A and QR/B were investigated using an independent
sample t-test but were not found to be statistically significant, [t(54) = 0.041, p = .323]. In order
to deal with a small deviation from the normal distribution, nonparametric tests were applied
with the same results. The effects of other possible covariates such as gender or grade were 290
examined using a regression analysis but were not found to be significant predictors of students’
performance in the two questionnaires. Logarithmic transformation of the dependent variable
was also applied and the analysis was run again showing the same results.

The finding that about 70% of the students gave erroneous responses, despite the fact that they
had been exposed to extensive relevant instruction, clearly supports the hypothesis that there is a 295
strong tendency to substitute natural numbers for the literal symbols.

Responses for the Algebraic Expressions “a” and “–b”

We continued with an examination of students’ substitutions for the algebraic expressions “a”
and “–b” in both questionnaires. We did this because they were the simplest expressions used in
the questionnaires, containing only one variable. Although these two expressions had the same 300
form, they differed in that a negative sign used in the second expression but not in the first.

Four types of mathematically incorrect responses were distinguished: (1) “Positive Integers”
(natural numbers) such as 1, 2, 3, etc.; (2) “Negative Integers” such as -1, -2, -3, etc.; (3) “Positive

TABLE 1
Frequency and Percent of Students’ Responses in Questionnaires A and B

Categories of Responses Questionnaire A Questionnaire B

Incorrect 138 (68.0%) 92 (46.9%)
Correct 48 (23.6%) 64 (32.7%)
No Response 17 (8.4%) 40 (20.4%)

3The response that zero cannot be substituted for “g” or “b” in the case of “1/g” and “a/b” respectively was also
considered as correct.
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Non-Integers” such as 2.3, 1/3, etc.; and (4) “Negative Non-Integers” such as -2.3, -1/3, etc.
Positive and negative non-integer responses could include natural numbers and negative integers 305
but should also include at least one positive or negative non-integer number respectively. The
great majority of the erroneous responses in Questionnaire A fell in the positive integer category
for the expression “a”, and in the negative integer category for the expression “–b” (Table 2).

Naturally, the question arises as to whether the negative integer responses for –b represent
truly negative numbers. If those responses were to be considered as representing negative num- 310
bers, then our hypothesis, namely that is there is a strong tendency in students to substitute literal
symbols with natural numbers, would not be supported. However, we doubt that the same stu-
dents, who used predominately natural numbers in all the other algebraic expressions, suddenly
understood that in the case of “–b” they should use non-natural numbers. Rather, we believe
that a different interpretation is more likely. More specifically, it can be argued that even in the 315
case of “–b” the students substituted the literal symbol with natural numbers but retained the
phenomenal sign of the variable—the negative sign. If we accept this interpretation, we come
to the conclusion that not only there is a “natural number bias” as hypothesized but that there
might also be a “phenomenal sign bias.” The “phenomenal sign bias” is the tendency to consider
the phenomenal sign of an algebraic expression—the external sign that a variable (or a simple 320
algebraic expression which contains one or more variables) has as a superficial characteristic of
its form—to be its real sign.

Given this, we categorized students’ responses as (a) “Natural Number” (NN) or “Non-Natural
Number” (nNN) depending on whether students substituted natural or non-natural numbers for
the literal symbols, and (b) “Same Phenomenal Sign” (sPS) or “Different Phenomenal Sign” 325
(dPS) depending on whether students’ responses retained the phenomenal sign of the given
expression or not. If this type of categorization is used, the differences between “a” and “–
b” do not hold anymore. As can be seen in Table 2, both in the case of “a” and “–b” the
great majority of the responses fell in the categories natural number and same phenomenal
sign (NN/sPS). In other words, the students observed both the natural number bias and the 330
phenomenal sign bias, thus responding with positive integers for “a” and negative integers for
“–b” in QR/A. Interestingly, in QR/B, the majority of the responses fell in the category Natural

TABLE 2
Frequency and Percent of Students’ Responses for the Algebraic Expressions “a” and “–b”

in Questionnaires A and B

Questionnaire A Questionnaire B
Categories of
Responses a −b a −b

Positive Integers 19 (65.5%) [NN/sPS] 2 (6.9%) [NN/dPS] 1 (3.6%) [NN/sPS] 14 (50.0%) [NN/dPS]
Negative Integers 1 (3.5%) [NN/dPS] 21 (72.4%) [NN/sPS] 13 (46.4%) [NN/dPS] 1 (3.6%) [NN/sPS]
Positive

Non-Integers
– 2 (6.9%) [nNN/dPS] 2 (7.1%) [nNN/sPS] 4 (14.3%) [nNN/dPS]

Negative
Non-Integers

– – 3 (10.7%) [nNN/dPS] 2 (7.1%) [nNN/sPS]

Correct 9 (31.0%) 4 (13.8%) 8 (28.6%) 5 (17.9%)
No Response – – 1 (3.6%) 2 (7.1%)

Note. NN: Natural Number; nNN: non-Natural Number; sPS: same Phenomenal Sign; dPS: different Phenomenal Sign.
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Number/Different Phenomenal Sign (NN/dPS), which means that they changed the phenomenal
sign of the algebraic expressions in QR/B but kept the natural number substitutions intact.

In order to further examine the differences between QR/A and QR/B statistically, we per- 335
formed a set of chi square analyses. We compared students’ combined responses in the two
questionnaires based on whether they substituted the literal symbols with natural numbers or
with non-natural numbers such as fractions or decimal numbers (Table 3). The analysis showed
significant differences between the two questionnaires, [χ2 (3) = 11,922, p < .05]. This dif-
ference could have resulted from the way the questions were phrased. However, as shown in 340
Table 3, when the responses were categorized on a NN vs. nNN basis, in both questionnaires the
dominant category of responses was the NN category, indicating that the majority of the students
still tended to respond with numbers within the set of integers.

In a second analysis, we compared students’ combined responses in the two questionnaires
based on whether they used the same or different sign with the sign of the given algebraic expres- 345
sions (see Table 3). There were significant differences in the two questionnaires [χ2 (3) =49,675,
p < .001]. Chi square analysis in the “Same Phenomenal Sign” (sPS) vs. “Different Phenomenal
Sign” (dPS) categories of Table 3 indicated that the differences were due to students’ tendency
to observe the phenomenal sign bias in QR/A (category sPS) but not in QR/B (category dPS)
[χ2(1)=46,56, p < .001]. 350

The previously mentioned differences in the distribution of students’ responses support our
argument that there is a natural number and also a phenomenal sign bias in the ways students sub-
stitute numbers for the literal symbols. The same effect also appeared in the rest of the algebraic
expressions used.

Analysis of Responses in the Remaining Algebraic Expressions 355

Students’ responses in the remaining algebraic expressions were placed in the following
six categories: “Correct,” “Natural Number/Same Phenomenal Sign” (NN/sPS), “Natural
Number/Different Phenomenal Sign” (NN/dPS), “Non-Natural Number/Same Phenomenal
Sign” (nNN/sPS), “Non-Natural Number/Different Phenomenal Sign” (nNN/dPS), and “No
Response.” Examples of possible responses for each category are given in Table 4. The responses 360

TABLE 3
Frequency and Percent of Students’ Responses for the Combined Algebraic Expressions “a” and “–b” When
Categorized on Natural Number (NN) vs. Non-Natural Number (nNN) Basis or on Same Phenomenal Sign

(sPS) vs. Different Phenomenal Sign (dPS) Basis in Questionnaires A and B

Categories of Responses Questionnaire A Questionnaire B

Responses Categorized on NN vs. nNN Basis NN 43 (74.1%) 29 (51.8%)
nNN 2 (3.4%) 11 (19.6%)

Responses Categorized on sPS vs. dPS Basis sPS 40 (69.0%) 6 (10.7%)
dPS 5 (8.6%) 34 (60.7%)

Correct 13 (22.4%) 13 (23.2%)
No Response 0 (0.0%) 3 (5.4%)

Note. NN: Natural Number; nNN: non-Natural Number; sPS: same Phenomenal Sign; dPS: different Phenomenal Sign.
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TABLE 4
Examples of Students’ Responses in Each Category for Q3 to Q7 in Both Questionnaires A and B

Algebraic Expressions

Categories of Responses 4g
1

g

a

b
d+d+d κ+3

NN/sPS 4·1, 4·2
1, 2, 3

1

2
,

1

3
1, 2, 3

2

3
,

3

4
1+1+1
2+2+2
1, 2, 3

2+3, 3+3,
numbers larger

than 3

NN/dPS 4·(–1),
4·(–2)

1

−2
,

1

−3

−2

−3
,
−3

−4
(–1)+(–1)+(–1)
(–2)+(–2)+(–2)

(–2)+3, (–3)+3

nNN/sPS [2.3,
2

3
] [2.3,

2

3
] 2.3,

2

3
[2.3,

2

3
] 2.3, 3.7

nNN/dPS –2.3,
2

3
–2.3,

−2

3
–2.3,

−2

3
–2.3,

−2

3
–2.3,

−2

3

Note. NN: Natural Number; nNN: non-Natural Number; sPS: same Phenomenal Sign; dPS: different Phenomenal Sign.

placed in the square brackets represent possible expected responses, which, however, were not
obtained in the actual sample.

One experimenter scored all the responses, while a second experimenter scored half of the
responses using the same criteria. Agreement between the two scorers was 97%. All disagree-
ments were discussed until consensus was achieved. Table 5 presents the frequencies and percent 365
of students’ responses in each of the above mentioned categories for the combined algebraic
expressions Q3 to Q7, in QR/A and QR/B. In QR/A, 59.3% of the students substituted only
natural numbers for the literal symbols and they also kept the phenomenal sign of the variable
intact. In QR/B, the most frequent erroneous response was the NN/dPS response, meaning that
the students continued to observe the natural number bias but not the phenomenal sign bias. 370

In order to examine statistically the differences between the two questionnaires we again com-
pared the NN substitutions and the PS substitutions in the combined responses (see Table 6). Chi
square analysis showed that there were statistically significant differences in students’ responses
in QR/A and QR/B [χ2 (3) = 37,681, p < .001]. In QR/B there was an increase in nNN in

TABLE 5
Frequency and Percent of Students’ Responses in Each Category for the

Combined Algebraic Expressions (Q3–Q7) in Questionnaires A and B

Categories of Responses Questionnaire A Questionnaire B

NN/sPS 86 (59.3%) 4 (2.9%)
NN/dPS – 30 (21.4%)
nNN/sPS 2 (1.4%) 3 (2.1%)
nNN/dPS 5 (3.4%) 15 (10.7%)
Correct 35 (24.1%) 51 (36.4%)
No Response 17 (11.7%) 37 (26.4%)

Note. NN: Natural Number; nNN: non-Natural Number; sPS: same Phenomenal Sign; dPS:
different Phenomenal Sign.
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TABLE 6
Frequency and Percent of Students’ Responses for the Combined Algebraic Expressions (Q3–Q7) When
Categorized on Natural Number(NN) vs. Non-Natural Number (nNN) Basis or on Same Phenomenal Sign

(sPS) vs. Different Phenomenal Sign (dPS) Basis in Questionnaires A and B

Categories of Responses Questionnaire A Questionnaire B

Responses Categorized on NN vs. nNN basis NN 86 (59.3%) 34 (24.3%)
nNN 7 (4.8%) 18 (12.9%)

Responses Categorized on sPS vs. dPS basis sPS 88 (60.7%) 7 (5.0%)
dPS 5 (3.4%) 45 (32.1%)

Correct 35 (24.1%) 51 (36.4%)
No Response 17 (11.7%) 37 (26.4%)

Note. NN: Natural Number; nNN: non-Natural Number; sPS: same Phenomenal Sign; dPS: different Phenomenal Sign.

“Correct” and also in “No Response” categories, apparently due to the differences in the way the 375
questions were posed. Still, as shown in Table 6, students tended to respond with natural num-
bers or specific kinds of non-natural numbers such as integers but not with fractions or decimal
numbers.

There were significant differences between students’ responses in the two questionnaires
when PS substitutions were compared [χ2 (3) =111,394, p < .001]. A chi square analysis of 380
the categories sPS vs. dPS in Table 6 indicated that the previously mentioned differences were
due to students’ tendency to retain the phenomenal sign in QR/A (sPS category) but to change it
in QR/B (dPS category) [χ2(1)=97.25, p < .001]. Students’ tendency to change the phenomenal
sign of the algebraic expressions in order to indicate the numbers that cannot be assigned for it
in QR/B can be considered as an intermediate step in the process of understanding the concept 385
of variable and further supports the interpretation that students consider the phenomenal sign of
the algebraic expression to be its real sign.

EXPERIMENT 2

While the results of Experiment 1 supported our hypothesis, it could be argued that the students
provided mostly natural numbers for the literal symbols because these are the most commonly 390
used numbers, and therefore, they thought that this is what they were expected to do. This crit-
icism cannot, of course, explain why some of the students chose to give the mathematically
correct answer. It cannot also explain the systematic errors that the students made, such as the
substitution of “–b” only with negative integer numbers or the exclusion of negative numbers as
numbers that could be substituted for the positive-like algebraic expressions in QR/B. 395

Nevertheless, in order to further test our hypothesis, a second experiment was conducted using
a multiple-choice instead of an open-ended questionnaire. In the multiple-choice questionnaire
the students were presented with a set of responses that included an explicit version of the math-
ematically correct response. More specifically, the last alternative stated that “any number can
be assigned to the algebraic expressions.” In this task there could be no doubt as to what was the 400
mathematically correct response. Questionnaire C (QR/C) used the same algebraic expressions
as in the previous questionnaires. The negative form was used to pose the questions: “select the



LITERAL SYMBOLS IN ALGEBRA 13

numbers that cannot be assigned to the algebraic expressions,” because only under this condi-
tion (as in the case of QR/B in Experiment 1) there is an undisputed correct answer from a
mathematical point of view. 405

It was hypothesized that students’ interpretations of the literal symbols in algebra would be
constrained both by the natural number bias and the phenomenal sign bias. It was also hypothe-
sized that there would be intermediate steps of understanding, taking the form of fragmented or
synthetic conceptions.

METHOD 410

Participants

The participants were 34 students from eighth and ninth grade attending the same two schools
used in Experiment 1. The sample was almost equally divided between boys and girls (19 boys,
15 girls) and eighth and ninth graders (18 eighth and 16 ninth graders), and had a mean age of
13.5 years. 415

Materials

The students were presented with the same algebraic expressions as in the first study, namely the
expressions: a, –b, 4g, a/b, d+d+d, and k+3 (Q1 to Q6), with the exception of expression “1/g,”
which was excluded because in Experiment 1 the students responded to it in a similar way as in
“a/b.” The students were given the following instructions: “In algebra, we use literal symbols 420
(such as a, b, x, y, etc.) mostly to stand for numbers. In this questionnaire we use literal symbols
this way. Read the following questions carefully. If you think there are some numbers among the
given alternatives that you think cannot be assigned to the given algebraic expressions, please
place a circle around them. You may choose more than one number if you wish.”

The students were given a set of alternatives consisting of 11 number choices, which included 425
positive and negative fractions, positive and negative decimals, and positive and negative integers.
The twelfth alternative was always the correct response, namely, that “No, all numbers can be
assigned to it.”

Procedure

The same procedure was used as in the previous experiment. 430

RESULTS AND DISCUSSION

Despite the relatively small sample, there was a big effect size between correct (18.6%) and
incorrect responses (81.4%), supporting our hypothesis that the students would tend to think of
specific numbers only as possible substitutions for the literal symbols. This finding indicates that
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even students who may have understood that literal symbols in algebra stand for the generalized 435
number may not know that literal symbols can stand for any real number.

In order to further examine our hypothesis we focused the analysis on the numbers from the
given set that the students tended to exclude as numbers that could not be assigned to the given
expressions. Students’ responses in the first two questions (“a” and “–b”) were grouped into the
five categories presented in Table 7. The “Correct” category included only the correct response. 440
The “Natural Number” category was divided in two subcategories: (1) “Natural Number Only”
(NNO), which excluded all numbers except those that would have come up if only natural num-
bers were substituted for the literal symbols, and (2) “Specific non-Natural Number” (SNN),
which excluded only a specific category of non-natural numbers (for example, all fractions in
the case of “a”, but not the decimals). The “Phenomenal Sign” category included responses 445
that excluded numbers based on the positive/negative sign distinction. The “Non-Systematic”
category included responses that lacked any obvious systematicity.

One of the experimenters scored all the responses while the second scored half of the
responses using the same criteria. Agreement between the two scorers was 96%. All disagree-
ments were discussed until consensus was achieved. 450

As can be seen in Table 7, only a few students chose the mathematically correct response
even though it was explicitly stated in the questionnaire as an alternative. Most of the students
excluded specific numbers from the given set. Chi square analysis showed no statistically sig-
nificant differences between students’ responses in expressions “a” and “–b” [χ2 (5) = 8.45,
p = .133]. In both cases the responses were consistent with the belief that literal symbols stand 455
for natural numbers or that the phenomenal sign of the expressions must be retained.

Responses in the remaining algebraic expressions were categorized in a similar way. Table 7
presents the frequency and percent for each category and Table 8 shows examples of students’
responses for each category.

Again, only a few students gave the correct response. The erroneous responses fell mostly 460
in the “Natural Number” category and fewer in the “Phenomenal Sign” category. There were,
however, a relatively large number of non-systematic responses, possibly due to the complexity
and counter-intuitiveness of the questions in QR/C and the fact that they were expressed in
the negative form. Those responses could be explained as fragmented or synthetic responses

TABLE 7
Frequency and Percent of Students’ Responses for the Algebraic Expressions in Questionnaire C

Algebraic Expressions

Categories of Responses a −b Rest Algebraic Expressions Combined

Natural Numbers NNO 7 (20.5%) 2 (5.9%) 36 (26.5%)
SNN 3 (8.8%) 2 (5.9%) 12 (8.8%)

Phenomenal Sign 13 (38.2%) 18 (52.9%) 21 (15.4%)
Non-Systematic 1 (2.9%) 5 (14.7%) 27 (19.9%)
Correct 10 (29.4%) 6 (17.6%) 22 (16.2%)
No Response 0 (0.0%) 1 (2.9%) 18 (13.2%)

Note. NNO: Natural Numbers Only; SNN: Specific non-Natural Numbers.
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TABLE 8
Examples of Students’ Responses for Algebraic Expressions (Q3–Q6) in Questionnaire C

Algebraic Expressions

Categories of Responses 4g
a

b
d+d+d κ+3

Natural Numbers NNO all but natural
numbers

all but positive
fractions

all but natural
numbers

all but natural
numbers

SNN fractions integers fractions fractions
Phenomenal Sign negatives negatives negatives Negatives

Note. NNO: Natural Numbers Only; SNN: Specific Non-Natural Numbers.

representing intermediate steps of understanding between the belief that literal symbols can stand 465
only for natural numbers and understanding that any real number can be a possible substitute.
In addition, some students appeared willing to lift the natural number constraint but only in a
limited fashion. These students accepted that literal symbols can stand, in addition to natural
numbers, for specific types of non-natural numbers only, such as the decimal numbers (the SNN
category). 470

EXPERIMENT 3

Experiment 3 investigated the same hypotheses using an individual interview methodology and
by placing the algebraic expressions in a more familiar mathematical domain, namely that of
inequalities. An individual interview makes it possible to better examine the strength of students’
tendency to substitute natural numbers for the literal symbols and their willingness to change 475
when provided with appropriate hints.

In this experiment the students were presented with algebraic expressions in algebraic inequal-
ities. They were asked to validate six inequalities that expressed relations between algebraic
expressions and to say whether these relations are true for any number that could be substituted
for the literal symbols. In order to encourage the students to check the validity of the inequal- 480
ities by substituting numbers and not by trying to solve the inequalities formally, the questions
were phrased in ways that evoked the semantic meaning of the inequalities as relations between
number quantities. We deliberately did not use the usual way such questions are posed in the
school context (i.e., “find the solution of the inequality”). For the same reason, the inequalities
used were specifically designed to make formal solutions more difficult compared to following 485
the strategy of trying with numbers.

It was hypothesized that the students would again try to substitute the literal symbols only with
natural numbers and that this tendency would result in specific mistakes in the given questions.
However, we were also interested in finding out the strength of this tendency by giving hints
to the students to try with different kinds of numbers and by encouraging them to think of non- 490
natural number substitutions for the literal symbols. For this reason, the following two hints were
used:

• Hint 1 (h1): Are you certain about your response? Would you like to try with another
(number)?
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• Hint 2 (h2): Do you think this is true (or not true) for every number that you know? Would 495
you like to try with another kind of number? Could you find a number which could change
your initial response?

It was hypothesized that these two hints would help students think of non-natural numbers
in their substitutions but that they would not totally eliminate the effects of the natural number
bias. 500

METHOD

Participants

The participants were eight students attending tenth grade (mean age 15 years) in the same
schools used in the previous experiments. The sample was equally divided between boys and
girls. The students had been taught the formal way of solving inequalities and had at least two 505
years of experience using real variables in functions, equations, and inequalities.

Materials

An open-ended questionnaire (QR/D) was designed, which included six questions that con-
cerned the validity of algebraic inequalities. The questions were posed as follows: “Is it always
true that 5d > 4/d, regardless of the number that could be substituted for d?” 510

The inequalities used were the following: 5d > 4/d (d �= 0)∗, 7a < 6/a (a �= 0), a+1>1/a
(a �= 0) ∗, 9x < 3 + 1/x (x �= 0), −k−1>2/k (k �= 0) , −y < y+1/y (y �= 0)∗. They were specif-
ically designed to be correct or incorrect for the small set of natural numbers that we expected
students to substitute in order to check their validity. Half of the inequalities (those noted with
an asterisk) were valid for the first series of natural numbers (i.e., 1, 2, . . .) while the rest were 515
invalid for those numbers. The correct response was that “the validity of the inequality depends
on the numbers used; there are some numbers for which the inequality is true and others for
which it is false.”

If the students checked the validity of the inequalities with an asterisk only with natural
numbers, they would erroneously conclude that they were valid and that the remaining inequal- 520
ities were invalid. When this happened we continued the interview giving the hints mentioned
earlier.

Procedure

The students were given the questions one by one, in the same order. They were given some time
to read the question, respond with yes or no, and explain why. If they gave an erroneous response 525
the interviewer continued with the hints in the order presented earlier.
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TABLE 9
Students’ Final Responses in Each of the Given Inequalities in Experiment 3

Inequalities Used

Participants 5d>4/d 7a<6/a a+1>1/a 9x<3+1/x –k–1>2/k –f<f+1/f

P1 IN IN IN IN IN IN
P2 NN NN NN NN NN NN
P3 NN NN NN NN IN IN
P4 RN RN RN RN RN RN
P5 NN NN NN NN NN IN
P6 NN NN NN IN IN IN
P7 NN NN NN NN NN IN
P8 NN NN NN NN NN NN

Note. NN: Natural Numbers; IN: Integers; RN: Rational Numbers.

RESULTS AND DISCUSSION

The kinds of numbers students used for their final substitutions4 (after the hints) were grouped
in the categories: “Natural Numbers” (NN) if they used only natural numbers; “Integers” (IN) if
they used at least one negative integer; and “Rational Numbers” (RN) if they used at least one 530
rational number (Table 9).

Only one of the students (P4) responded to all the questions using at least one rational
number, which was always a positive decimal number. This student concluded that the given
inequalities are not always valid or invalid for any number but that their validity depends
on the kind of numbers used. The responses of this student were the closest to the correct 535
response.

Five of the eight students insisted on checking with natural numbers even after the first hint
from the interviewer. However, after the second hint, they tried with at least one negative integer
(Integer category) in some of the given questions. They never tried, however, with a rational
number. 540

Two students (P2 and P8) responded to the first two questions without even checking with
numbers. They argued that 5d > 4/d is always true because multiplying any numbers by 5 would
always make bigger than dividing 4 by this number. They also argued that multiplying a number
with 7 would never be smaller than 6 divided by this number, and thus they said that the inequality
7a < 6/a would never be true. Following the interviewers’ hints to check their conclusion with 545
some other numbers, they continued to check only with natural numbers, which vouched for
their initial response. These students never tried with any non-natural number despite the first
two hints provided by the interviewer.

The following exchange is representative of the way one of the students reacted to the
suggestions by the experimenters to think of other kinds of numbers in his substitution. 550

4Only one of the students tried to solve the first two inequalities formally but she did not succeed and accepted the
interviewers’ suggestion to try with numbers.



18 CHRISTOU AND VOSNIADOU

John (tenth grader, 14.5 years old)
Exp: In the question “Is it always true that 5 < i > d < /i >> 4/ < i > d < /i > for any

number d?” you responded that it is always true. How did you think of that?
John: If we substitute 2 for b, 2∗5 = 10 and 4:2 = 2, so it (the inequality) is valid.
Exp: Do you think it is valid for any number? 555

John: Yes.
Exp: Would you like to try with another number?

John: Ok, let’s try with 3, 15 > 4/3, so it is valid.
Exp: Would it be valid for all the numbers that you know?

John: Mmm! Yes. 560
Exp: Would you like to try with another kind of number?

John: Let’s try with 4, 20 > 1, also valid.
Exp: Do you think it would be possible to find a number which wouldn’t hold for the

inequality?
John: I don’t believe we could. No. 565

At the end of the interview, the interviewer explicitly suggested to these two students who
insisted on trying only with natural numbers throughout the interview, to try with non-natural
numbers: “Could we try with a negative number, let’s say –2?” and “Could we also try with
a fraction, let’s say 1/2?” Both students agreed that it would be possible. An excerpt from the
continuation of the interview with the student we call John is given next. 570

Exp: Could we try with a negative number; let’s say –2?
John: Well, yes, of course. Mmm! that is –10 > –2, which is not valid, well, this changes

everything.
Exp: So, now do you think we could find a number which wouldn’t hold for the inequality?

John: Certainly, the negative numbers. 575
Exp: Any other kind of number?

John: We have tried everything, positives and negatives.
Exp: Could we try with a fraction; let’s say 1/2?

John: Yes, we could [he tries it]. This also wouldn’t hold.
Exp: Why you didn’t try with such kind of numbers before? 580

John: I don’t know, I should have thought both of negatives or fractions.

The finding that the two students who responded only with natural number substitutions
throughout the interview were willing to accept non-natural numbers as possible substitutes when
the interviewer explicitly suggested this shows that they were familiar with the idea that literal
symbols in algebra could stand for non-natural numbers. Nevertheless, there was a natural num- 585
ber bias which continued to influence their substitutions, even after the hints, in the absence of
direct external input.

A quantitative analysis of the total 48 responses (8 students, 6 responses each) indicated that
the majority of the substitutions (29/48 or 60%) involved only natural numbers. Twenty-eight
percent of the responses (13/48) involved at least one negative integer number. As it appears 590
in Table 9, in all those cases the students initially tried with natural numbers only, but after
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the second hint, they tried with a negative integer in some of the questions. They also tried
substitutions with at least one negative integer in the last two inequalities, which contained alge-
braic expressions with a negative phenomenal sign (i.e., –k–1 > 2k). These findings further
support the hypothesis that when students substitute numbers for the literal symbols they tend 595
to think of numbers within the set of integers rather than with fractions or decimals. They also
demonstrate the influence of the phenomenal sign bias.

GENERAL DISCUSSION

The results of the three experiments can be summarized in the following main findings. First,
students tended to substitute mostly natural numbers for the literal symbols, both when they 600
appeared in algebraic expressions and in a more familiar mathematical domain, such as that
of inequalities. This was true for open-ended and multiple-choice tasks and appeared also in
individual interviews where the experimenter encouraged the students to think with other kind of
numbers. We called this tendency the “natural number bias.” This finding has not been reported
in the literature before, and we believe it adds to the existing literature. It shows that even when 605
students realize that literal symbols in algebra can stand for the generalized number they may
mean any natural number rather than any real number.

Second, there was a strong tendency to substitute the algebraic expression “–b” with nega-
tive integers, while algebraic expressions that did not contain a negative sign were considered
to represent only positive values. This finding indicates that students interpreted the phenomenal 610
sign of the variables to be the actual sign of the algebraic expressions. We called this tendency
the “phenomenal sign bias.” Some other researchers have also noted a similar phenomenon
(Chiarugi, Fracassina, & Furinghetti, 1990; Crowley et al., 1994; Gallardo, 2002; Vlassis, 2004).

It is possible to explain this finding as a byproduct of the natural number bias. That “no sign”
implies positive value and minus sign means “negative value” is a characteristic of numbers 615
in arithmetic. If students think that literal symbols should be substituted with natural numbers,
then it is natural to conclude that the phenomenal sign of a variable is its “real” sign. The phe-
nomenal sign bias could also be obtained from the interpretation of literal symbols to stand for
positive rational numbers. This is a less likely interpretation, however, given that substitutions
with rational numbers were very rare. 620

Third, in addition to substituting “–b” with negative integers there was a strong tendency
in students to respond with integer numbers with a different sign from the phenomenal sign
of the given expressions when asked which numbers cannot be assigned for “–b” in QR/B.
These kinds of responses allowed students to retain their natural numbers substitutions but also
change something, namely the phenomenal sign, in response to the negative demands of the 625
questions. Indeed this type of response can be interpreted as an intermediate step—as a synthetic
conception—in the process of understanding that literal symbols can be substituted with any real
number.

Students showed some other intermediate steps in this process, where they accepted some but
not all kinds of non-natural numbers as possible substitutes, especially in Questionnaire C. The 630
kinds of non-natural number substitutes accepted appeared to depend on the kind of questions
asked and the form of the algebraic expression used. Some students in Experiment 2 accepted
decimals but not fractions for some of the cases, or fractions but not decimals for other. Some
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students were willing to accept non-natural numbers substitutes as long as they did not violate the
phenomenal sign of the algebraic expressions. It was not possible due to the small sample size 635
to determine how systematic these responses were—they could be characterized either as syn-
thetic or as fragmented. Regardless of their exact nature, they reveal the presence of intermediate
steps in the process of moving beyond only natural number substitutions without having fully
acquired the mathematical concept of the real variable. It is of course important to investigate
this phenomenon further using larger populations and in a greater variety of mathematical tasks. 640

These results support the predictions of the framework theory that there will be a strong ten-
dency in students to substitute literal symbols with natural numbers, and that the process of
developing the concept of real variable will be characterized by intermediate steps of under-
standing. Nevertheless, there are a number of alternative interpretations of the findings that also
need to be examined. 645

It could be argued, for example, that the students provided mostly natural numbers for the
literal symbols by default, since these are the most commonly used numbers and, therefore,
that the natural number and the phenomenal sign bias are not robust and can be easily overcome.
Such an interpretation could possibly explain why students substituted mostly natural numbers in
Questionnaire A but could not explain why they excluded non-natural numbers in Questionnaire 650
B or in the multiple-choice Questionnaire C, where the correct response was one of the alterna-
tives. Over and above it could not explain students’ tendency to try only with natural numbers
in the interview study, despite the interviewers’ consecutive hints to try with different kinds of
numbers. Students’ repeated reluctance to respond with non-natural numbers in the three exper-
iments, which used different methodologies, indicates that this is a prevalent phenomenon. The 655
fact that some students accepted the interviewers’ explicit suggestion to try with a rational num-
ber in Experiment 3 does not, we believe, reduce the severity of the natural number and the
phenomenal sign bias. It only affirms that the students had been exposed to non-natural number
substitutions and that they were willing, in principle, to check with non-natural numbers when
told to do so. 660

Additional support for our hypothesis comes from an intervention study in which we
attempted to make students aware of the natural number and the phenomenal sign bias
(Christou & Vosniadou, in preparation). The students were explicitly told that they should always
try with at least one negative number when they needed to validate the sign of an expression and
were provided with counterexamples creating cognitive conflict. Immediately after the interven- 665
tion the students appeared less likely to show the phenomenal sign bias, but only for the set of
tasks that were used as examples in the intervention. The majority of them did not transfer this
knowledge to tasks that concerned inequalities and absolute values that were not used in the inter-
vention as examples. Furthermore, the profits were not maintained one month later, suggesting
that both the natural number bias and the phenomenal sign bias are deep rooted and difficult to 670
overcome.

It could be argued that students’ tendency to substitute only natural numbers for literal sym-
bols could be an artifact of Greek students’ experiences in school. It is true that mathematics
curriculum materials use natural numbers exceedingly, in examples, implementation of rules,
coefficients, or even in solutions of equations, etc., strengthening the natural number bias (see 675
also Greer, 2006), and this applies to the Greek curricula also. Nevertheless, the Greek students,
who are introduced to algebra in the seventh grade and have acquired extensive experience using
literal symbols in a variety of algebraic tasks by tenth grade, are explicitly instructed to use as
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many different kinds of numbers as possible when substituting numbers for variables in order
to draw the graph of a function, when looking for counterexamples in determining the validity 680
of square root functions, when calculating the absolute values of algebraic expressions, or when
making transformations for solving algebraic inequalities.

Further support for the argument that the natural number bias is not an artifact of the
Greek curriculum comes from a replication study in which our multiple-choice questionnaire,
Questionnaire C, was administered to 128 Flemish ninth graders. It should be mentioned here 685
that Flemish students were placed first in mathematics in the 2003 Programme for International
Student Assessment (PISA, 2003). Although the Flemish students were less susceptible to the
natural number bias than the Greek students, 76% of them excluded some of the numbers in
the multiple-choice questionnaire from being assigned to literal symbols at least in one of the
algebraic expressions (Christou, Vamvakoussi, & VanDooren, 2010). 690

Finally, it could be argued that students do not substitute literal symbols with fractions because
they think of fractions as pairs of whole numbers and not as single numbers (Mack, 1993, 1995;
Streefland, 1991). We agree with such an interpretation, which we think is in line with the frame-
work theory approach. According to the framework theory, students do not think of fractions
as numbers with the same status as natural numbers because their beliefs about what counts as 695
a number stand in the way of understanding natural and non-natural numbers within a unified
system of real numbers (see also Vamvakoussi & Vosniadou, 2010).

To sum up, the results of the three experiments reported in this article reveal that students
face a number of interrelated difficulties in substituting numbers for literal symbols. We have
argued that these difficulties stem from a systematic influence of the natural number bias rather 700
than from occasional intrusions of prior knowledge, or from other incidental factors, supporting
the framework theory approach. These results suggest that many students are initially restricted
to an algebra of natural numbers, similar in some respects to the historical case (see Kline,
1980).

This restriction has important implications for students’ performance in many other math- 705
ematical tasks. For example, students often interpret graphs as discrete points and ascribe no
meaning to line segments connecting those points (Leinhardt et al., 1990). This is probably due
to their tendency to interpret variables as symbols that represent a series of natural numbers,
which correspond to discrete points in the x-axes. As mentioned earlier, preliminary research in
our lab supports this interpretation (Christou & Vosniadou, in preparation). Students who misin- 710
terpret literal symbols to stand for natural numbers only can also have difficulties with algebraic
transformations in equations and inequalities and with calculating the absolute value of algebraic
expressions (Chiarugi et al., 1990).

For students to welcome themselves to the “real” world of algebra, they need to develop the
number concept beyond the constraints of the initial framework of numbers, which is grounded 715
on natural numbers (see also Greer, 2006). In other words, developing the mathematical concept
of real variable may require understanding the concept of rational number in arithmetic, some-
thing that few students have achieved by the time they are exposed to variables. It is also possible,
however, that the development of a mathematically sophisticated conception of the use of literal
symbols in algebra could support a deeper understanding of the number concept (Schmittau, 720
2005). It would certainly be interesting in future research to compare students’ understanding of
real numbers before and after they are introduced to the concept of variable in order to better
investigate the possible interactions between these two factors.
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The findings reported in this article are generally consistent with and further enrich exist-
ing mathematics learning theories. For example, Schoenfeld and colleagues (1993) provided a 725
very detailed analysis of a single students’ acquisition of graphs and equations of simple alge-
braic functions in the Cartesian plane based on the description of an architecture of four levels
of knowledge structures, with “knowledge schemata” being the highest level of organization
(macro-organization) and contextual primitive elements (such as diSessa’s p-prims; see 1993,
2008) at the lowest level of organization. They then proceeded to show in a very detailed analy- 730
sis the evolution of the participant’s knowledge structures as revealed by her performance over a
period of seven hours in seven weeks. One of the important conclusions of their paper is that the
higher level structures constrain in very important ways the knowledge acquisition process. Here
is what they said:

We have outlined the benefits of a tightly connected (and correct) knowledge structure. It is, we 735
noted, resistant to change: Knowledge that does not fit the structure has a hard time taking hold, and
knowledge that does fit is resilient and tends to be regenerated. In fact, this is true whether or not
the knowledge elements and connections in a tightly connected structure are correct. In IN’s case,
although many of the knowledge elements were unstable and many of the connections among them
were tenuous, there were enough connections to import some degree of stability and resilience to her 740
knowledge. The implications of her having this structure were extremely important. It shaped what IN
perceived in the domain, what she attended to, and what she learned (i.e., which knowledge elements
were created, modified, strengthened, or weakened, and which connections she made). (p. 137)

We completely agree with this, with one important exception, namely, that the construct
“schema” represents the highest level knowledge structure in this hypothetical conceptual anal- 745
ysis. We argue that it is more accurate to assume that schemata are embedded within even larger
belief networks, which we call “framework theories.” A framework theory is not, of course,
an explicit, well-defined, and socially shared scientific theory. The natural number concept in
arithmetic appears to meet the criteria to count as such a framework theory. In our view, the
erroneous schema structure that constrained IN’s knowledge acquisition in the Schoenfeld and 750
associates’ (1993) study was possibly a synthetic conception, which caused further fragmentation
and erroneous conceptions down the road.

We would like to clarify once more that our position with respect to the fragmentation per-
spective (diSessa, 1988, 1993) is not that fragmentation does not exist and that students move
from one coherent “theory” to another. On the contrary, we argue that there is a great deal of 755
fragmentation and instability, which is produced because of the incompatibility between the
new information and students’ prior knowledge, the complexity of the required changes, and
the additive nature of the learning mechanisms employed.

Finally, as discussed in the introduction, we agree with Sfard’s (1991) analysis of the forma-
tion of a new structural conception in mathematics. We think that it is useful to analyze students’ 760
difficulties with the number concept in the transition from arithmetic to algebra as requiring an
ontological shift. Sfard (1991) does not discuss the problem of misconceptions in the transition
from one structural conception to another, but it is natural to assume that when students are
taught new procedures that depend on a different structural conception from the one they have,
they may create various systematic errors in the process. 765

In general, the framework theory approach to conceptual change focuses on learning in cases
where well-established prior knowledge can stand in the way of learning new concepts and where
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learning may require the radical revision of existing ideas. We believe that foregrounding such
cases in mathematics learning is an important point to make because mathematics teaching has
often underestimated the amount of knowledge revision that may be required in the process 770
of acquiring mathematical expertise. Although we believe that it is important to alert students
to the fact that some aspects of their prior knowledge may not be always consistent with the
new, to-be-acquired information, we also think that it is necessary to try to locate elements of
prior knowledge that can be used constructively to build new learning (see also Resnick, 2006;
Vosniadou et al., 2008). A number of projects, such as the Early Algebra project (see for exam- 775
ple Carraher et al., 2001; Carraher, Schliemann, & Schwartz, 2007), examine possible ways to
build on students’ prior knowledge of numbers and arithmetic to assist then to develop algebraic
reasoning (see also Carpenter & Fennema, 1992; Carpenter, Fennema, & Franke, 1996; Kaput,
2001; Kaput & Blanton, 2005).

Other researchers have suggested ways to foster students’ generalization abilities (see for 780
example, Fujii, 2003), or use computer based environments, spreadsheets, and graphic calcula-
tors to help students create meaning for algebraic notation and understand algebraic operations
(Cedillo & Kieran, 2003; Dettori, Garuti, & Lemut, 2001; Filloy, Rojano, & Rubio, 2003;
Graham & Thomas, 2000). From our perspective, these suggestions could easily be enriched
to include non-natural numbers in the various activities in order to help students consider differ- 785
ent types of numbers as possible substitutes for literal symbols. Students could also be helped to
expand their conceptual fields beyond natural numbers by using quadratic equations of the sort
2.67x2 – 3.86x – 12.23 = 0, which could be easily solved with the use of a calculator (Greer,
2006).
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