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Abstract

In this paper we reflect on the meaning and evolution of the microworld idea. We point

out a crucial distinction between user manipulation and modification at three distinct but

mutually dependent levels — the interface, superstructural and platform levels. We

exploit a case study of two 8-year-old girls playing and rebuilding a simple video game,

to argue for the importance of ease of interplay between these levels.  We reflect on the

ways in which newly-created alternatives to textual forms of representation are

redefining the utility and power of microworlds, and offering advantages (as well as

disadvantages) for mathematical learning in the sense of understanding inference and

mechanism — how things work and why.



What is a microworld?

The microworld idea is about three decades old, time enough for the idea to have

become debased. Like 'constructivism', it is a Good Thing, a designation to which the

creators of even the dullest and least instructive software often aspire. Despite this, the

idea of a microworld as a place where the student, though playing, may stumble over

and then ponder important inspirations and concepts, is one that nicely captures at least

one crucial organising feature of the original idea.

The pedigree of the concept is indicative of the inspiration behind it: Hoyles (1993)

charts its evolution from an AI description of a simple and constrained aspect of the real

world to part of a knowledge domain which is changing and growing and which has

epistemological significance. Laurie Edwards's (1995) extensive review of

microworlds similarly stresses knowledge as a central element, and makes a useful

distinction between structural and functional views of the idea. The former view

prioritises the idea of a microworld as a concrete embodiment of a mathematical

structure that is extensible (so tools and objects can be combined to build new ones),

but also transparent (so its workings are visible) and rich in different representations.

The latter view prioritises features of the microworld that become apparent in use,

where learners are expected to explore and build, learn from feedback while involved in

the iterative design of long term projects — rather than in trying to master

decontextualised knowledge fragments (following diSessa, 1985).

Clearly the structural and functional views of a microworld are not antithetical, and

microworld designers are at pains to try to keep both in mind, most usefully by

focussing on the activity structures the microworld is designed to offer, where students

construct their own meanings, representations and expressions. It is this facet which,

incidentally, provides researchers and teachers with such a helpful 'window' onto the

evolution of learners' thinking, and which we have discussed in depth in our book

(Noss and Hoyles, 1996).

Thus microworlds are environments where people can explore and learn from what

they receive back from the computer in return for their exploration. It follows,

therefore, that a microworld has its own set of tools and operations that are open for

inspection and change. In this sense, learners themselves are in the position

simultaneously of user and designer (interestingly, this is true for computer scientists

too — any good programming language casts the programmer in the role of language

designer, as they create tools and objects for the solution of problems; see Abelson and

Sussman, 1985). These twin roles for the learner lead directly to the idea of

constructionism, which argues that effective learning 'will not come from finding better
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ways for the teacher to instruct but from giving the learner better opportunities to

construct (Papert, 1991, p 3). We view constructionism as giving the learner

opportunities to build her own physical, virtual and mental knowledge structures. It is

this belief, that building things is a locus of significant educational change, that drove

the initial rationale for microworlds and provides a crucial organising distinction

between systems which put the child in the role of builder and thinker, and those which

place him or her in the role of listener or receiver.

To build physical or mental structures requires tools, and a means of employing them.

What should these tools be and how are they deployed and combined? To what extent

can tools be recast by learners? This is the technical face of a thorny question that we

want to explore in this paper, a question which has troubled many microworld

designers: to put it bluntly, does the constructionist ethic (at least in so far as it entails

computer use) involve the learner in programming? There is little doubt that it originally

did: in the past, the creation and reconstruction of executable actions were precisely

what characterised programming, the construction of the bits and pieces of (textual)

code which produced an effect on the screen (or in the case of Logo, on the turtle's

behaviour). Slowly, as the idea of programming evolved and as what was possible and

accessible on the screen developed microworlds — even Logo microworlds — were

designed which expressly excluded the learner from delving down into the core

language1. In fact, Edwards argued that a Logo microworld did not necessarily involve

Logo programming, modification of Logo code or interaction with Logo at all

(Edwards 1995 p. 134, emphasis in original). In these cases, the learner only operated

with the microworld tools, which may have been written in Logo but were not open for

inspection (examples of such microworlds have been designed by Thompson, 1992,

Edwards, 1991 and more recently by Kalas, 1997, Turcsányi-Szabó, 1999).

This issue of the availability of programming is not merely of Talmudic importance.

After all, programming is the prototypical tool for the constructionist vision, and a

microworld without programming runs the risk of avoiding just the thing that gives a

microworld its power. If children cannot program at all, how can they build the tools

that they need to model and come to understand a mathematical idea? More crucially,

how do they know that models can evolve and change? In our view, the key question

is: Are students still in the position to build new tools if they have no access to or

appreciation of programming?

                                                

1 Actually, such attempts were often accompanied by descriptions and reports which stated that the

learner could in fact interact with the code and modify the microworld: in our experience hardly any ever

did unless very specific help and guidance to do so was on hand.
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Our answer to date has been consistently in the negative, although the microworlds we

have developed have tended over the years to become more focussed on mathematical

structures in order to contain the problems of lack of programming expertise (see for

example, Hoyles and Noss, 1987a). Yet in the years since the microworld idea has

taken hold, it is precisely this point — the idea of children programming computers —

which has become so problematic. For one thing, there are practical objections —

programming takes too much time in what is already a crowded mathematics

curriculum; programming is too hard (for teachers as well as students); programming

diverts attention from the underlying knowledge goals. If the last point is true then there

clearly is no place for programming, at least within an explicitly educational setting (like

school) where the objective is to learn mathematics, say — not programming. But at a

deeper level, some have questioned whether the objectives we have outlined for

programming are still only attainable in this way.

In this paper, we ask whether it still makes sense to insist on programmability as a

vehicle for creativity and constructionist learning. There is an interesting evolution here;

of developments in programming languages, the scope of what is possible, and the

slow but sure increase in our knowledge base of how children learn within

microworlds. We do not intend to trace these developments in this paper (many are

available in diSessa, Hoyles and Noss, 1995). Rather we will re-examine our own

work, as a way to assess the extent to which both the microworld idea and the meaning

of programming have evolved.

The symbolic core of a mathematical microworld

In an early paper of ours (Hoyles and Noss, 1987b), we critiqued a promising and

certainly useful program of its time — let's call it software X. When software X is run

it displays sequences of numbers that children are asked to inspect, spot a pattern and

generalise. We pointed out that:

There is no opportunity [with X] to develop a constructive approach to

the formalisation of the program; the pupils cannot build up the

symbolic language for themselves, attach meaning to the specific parts

of the syntax or learn through the computer feedback the effects of

modification or extensions of the symbolic form. Try to generate a

geometric progression within the available framework of the program

and it will be clear what the distinction is. (ibid., p. 590-591).

The details of X are irrelevant here. Rereading our critical remark more than a decade

later, we are struck by our insistence that the learner ought to be able to do the

unexpected, to attain expressive power over tasks which the designer had not
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preconceived — a demanding criterion, which assumes a great deal about the learning

culture and activity structures of the learners' environment. From another, more

specifically mathematical perspective, we were unhappy that the mathematical structures

which underpinned the sequences under investigation were invisible; there was no

access to the code so users were restricted to searching for patterns in the output data

rather than within the processes by which they were constructed. This point we still

regard as central to learning mathematics. All too often children (at least in UK) are

diverted by surface relationships between numbers and ignore the structural,

mathematical reasons why they may or may not be related (Healy and Hoyles, 1999).

Thus far we think we were right: we remain convinced of the constructionist ethic, and

the extent to which programmability of one kind or another is an essential precondition

for it. Building up pieces of knowledge on the screen as external representations for

knowledge structures necessitates some means of expressing the ideas under

construction and that still, by our definition at least, means programming. We are

relieved to see that we recognised even then, the importance of serendipitous learning,

of finding ways to open rather than close down alternative learning paths, interesting

avenues or activities that the designer had not intended. Clearly this aspiration raises

challenges for the teacher, (which we have discussed in Noss and Hoyles, 1996) and

we recognise that it is precisely this aspect of openness that leads many, if not most,

software designers to try to do quite the opposite.

There is, however, one interesting assumption behind our early work, which is evident

in the quotation above. It is the identification of formalisation with construction,

between the symbolic language and the mathematical ideas embedded in the

microworld. Our statement rested on an assumption that the expression of complex

ideas and its communication to a computer in a program necessitated formal, rigorous

collections of symbols in the form of textual strings. This, we thought, was at the heart

of the microworld's utility for learning and we were unashamed on this point.

Regarding software X, we said,

[It] fails as a microworld because it does not offer an algorithmic

representation of the concept to be explored. It thus does not provide the

'hooks' to the power of the language that, in our view, provides the

essential interplay between mathematical concepts and their

formalization. (ibid., p. 591)

And some ten years later, we were still saying in Windows on Mathematical Meanings:



… the fundamental facet of programming environments is the imperative

of formalization inherent within them. We will provide many examples

of the critical role played by the linguistic formalization of programming

in aiding learners' mathematical expression and in developing their

mathematical understandings. (Noss and Hoyles, 1996; p. 62, emphasis

added).

Before we criticise (with considerable hindsight) the assumptions behind this position,

we should try to defend ourselves. In Windows we give a number of examples of the

critical role played by the linguistic formalisation of programming in aiding learners'

mathematical expression. Unsurprisingly, these privileged the textual side of

programming. But we were also keen to find ways to forge links between textual and

other representations. It may help if we describe the examples, one sentence each. They

were: a classical microworld for exploring non-Euclidean geometry, employing an

object-oriented version of Logo; a conventional application of Logo as a cumulative

device for exploring convergence and divergence of series; a new way of representing

functional relationships among terms of a sequence; an unexpectedly powerful solution

to an old problem, using a massively parallel version of Logo (StarLogo); and a Logo

approach to the mathematics of banking, which illustrated programming as a means to

unify apparently disparate pieces of banking knowledge.

Looking back on these examples, we remain convinced that student-accessible

programming is an essential prerequisite for expressivity (in addition to all the Logo

literature here, see also the work on Boxer, diSessa and Abelson, 1986). In one

example however, programming was given a slightly altered role, namely to serve as

the symbolic representation of a mathematical function as well as the glue that bound all

the representational modes together. We have considered this example in much detail

elsewhere (see, Noss, Healy and Hoyles, 1997). Here we simply summarise the main

points relevant to the idea of a microworld.

An example of a microworld

We built a microworld, Mathsticks, (written in Microworlds Logo) which involves the

learner in constructing sequences of objects on the screen, and manipulating them

directly. The key interesting feature of this program is that while the user is

manipulating objects directly, there is also graphical feedback as to the results of their

actions and a visible (conventional, Logo) program constructed to provide a formal

representation of what has been done. By exploiting the relative advantages of direct

manipulation and text-based programming, we aimed therefore to construct an

environment in which users would learn by linking their actions with the graphical or
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the symbolic representations — both representations were consistently available. We

have noted in the past the problems that children have with maintaining a connection in

Logo programming between the symbolic commands and their visual effects (Hoyles

and Sutherland, 1989). In terms of elementary geometry, Turtle Math has gone a long

way to overcome this problem through its maintenance of a close correspondence

between representations and the bidirectionality between the different modes — that is

the student can move the mouse and the Logo commands are created automatically (see

Clements & Sarama, 1995, Clements, Battista, Sarama, Swaminathan, 1996). We tried

to build something similar in our Mathsticks  microworld.

The main feature of the microworld was that purpose-built tools were designed to

simulate the arrangement of matches in a sequence (see Figure 1), with the

mathematical goal that students would come to appreciate number patterns as functional

relationships.

An example screen from the Mathsticks microworld

Here we simply summarise our agenda and findings. First the students would be asked

to build by direct manipulation of the screen matches, a model of how they saw a given

term in a sequence of matches. For example in Figure 1, the students had constructed

the fifth term of a sequence of squares. Through this process of construction, we



anticipated that students would come to notice the structure of the given term in itself

and in relation to others; they would begin to see the particular case as an instance of the

general. Our expectation stemmed from two sources: firstly because their mental image

of the task could be reflected in their actions in the microworld (for example picking up

and putting together the matchstick icons shown on the top right of the screen), and in

the rhythm of their pointing and clicking; and secondly because it could be realised

simultaneously in symbols (programming code) appearing in the box labelled 'history'

and visually as an array of graphical objects. (For details of how the different images

the students held of the task, see Healy and Hoyles, 1999).

But Logo did not only serve the role of a symbolic representation of the mathematics

involved. We encouraged the students to write a general Logo procedure that could be

used to build any term of the sequence. This, we hoped, would force the distinction

between those aspects of their code that were significant for sequence structure from

those that represented the characteristics of a particular term. In this way too, the

dynamic algebra of the programming code would — and did — become a means for

them to think about the relationships in the sequence.

Beyond Mathsticks

Our findings convinced us of the power of the Mathsticks microworld and its potential

for learning. Our conclusion was that it was the interplay between learners' actions and

the different representations of the mathematical relationships embedded in the

microworld that was crucial to our students’ learning. It seemed to us that we were not

only seeing the power of students building connections between multiple

representations — although this is of course of considerable importance (see for

example software such as SimCalc; Kaput and Roschelle, 1999). The design of

Mathsticks aimed for more: we were strongly influenced by the notion of a general

programming language from which to build an application, and we saw this as

generative of expressive power, beyond that which is possible with the multiple

representation approach. It is instructive to consider this approach in the light of the

'programmable application' proposed by Eisenberg, 1994, although this starts at the

applications end. His ideal is, however, one with which we have considerable

sympathy: to create software that 'allows students to work with both a powerful (and

ideally learnable) interface and a powerful (and ideally learnable) programming

language (ibid., p 181). It is this gain in expressive power which is also at the heart of

diSessa's Boxer idea: in this case, the interface and the language are so tightly

integrated that it is sometimes difficult to know whether one is programming are 'just'

editing text.



We want to draw attention to two facets of Mathsticks that we regard as important. In

the first place, we provided tools to focus on what mattered to us — just enough of the

relevant structures were embedded in the tools so that they could be thought and talked

about, explored and manipulated, at a level 'above' that of Logo. There is an important

methodological point here. In order to study the forms of expression employed by

learners to mediate their understandings of mathematical ideas, we must tread a careful

path between allowing free range to that expression and constraining it too tightly. In

the former case, it might be difficult to capture any traces of the learner's thinking — let

alone any traces that could be used as resources for mathematical learning. The latter

approach runs the risk of constraining thinking to the point of total predictability, in

which case we would merely be studying our own preferences (this phenomenon is

closely connected with the idea of the didactic contract, Brousseau, 1984, although here

we are concerned with constraints built into tools while Brousseau's construct concerns

teachers' constraining behaviour). As researchers, let alone educators, we have to

respect and constrain diversity.

The second point is that at the same time, nothing was ruled out: the students had a

working knowledge of Logo, knew how it worked in the sense of editing and writing

programs, changing interface objects, and were free to adopt any method of

construction. Thus the tools could be manipulated by programming, as well as by direct

manipulation in a way that maintained connections between the Mathsticks interface

level and the level of the language below.

In trying to make deeper sense of the microworld idea, we will now attempt to clarify

some of the casual references we have made so far about levels, and introduce the

distinction between platform and superstructure. By platform, we mean the base level at

which it is possible for users (rather than professional programmers) to interact. A

platform would include high level programming languages but not for example machine

code. In most cases, users interact with the platform because the designer expects them

to do so. Most software (including educational software and, as we mentioned earlier,

even some applications in Logo) takes pains to make the platform level completely

invisible, and, in general, make a virtue out of this perceived necessity on the grounds

that only programmers need to know how to program.

Superstructure, on the other hand, describes the objects in the microworld and ways to

manipulate them (the matches in Mathsticks). For the moment, it doesn't matter

whether this form of manipulation is direct (e.g. via a mouse or speech input), or by

entering lines of text which may or may not be the same as the language of the

platform. The point is that the kinds of interactions which users’ experience and the

HCI tools they employ are a subject for the designer, and determine to a great extent



what activities and experiences the user has as she interacts with the program. For most

users with most software, there is only superstructure.

The idea of superstructure raises new dilemmas. How visible is the platform level?

How easy is it for the user to 'descend' to the platform level? How permeable is the

barrier that separates superstructure from platform? How rich is the potentiality of

modifying tools at the superstructural level along with the interactions that go with it?

How familiar can and should the user be with platform tools?

The answer, of course, depends on the pedagogical aim. The issue is not, of course,

whether the mechanisms should be open to the user, but how much of them should be.

But there is a problem, and this time it is primarily technical. Whereas it makes sense to

maintain a certain eclecticism regarding user interface at the superstructural level (as we

did with Mathsticks), it is very difficult to adopt the same approach as regards the

platform, where text is all there is.

We should not underestimate this distinction — non-linguistic (iconic, GUI) interfaces

are now the way that people expect to interact with machines. They do not, in general,

expect to program in any conventional sense. There is therefore an interaction barrier2:

the things you have to do to gain a sense of the microworld's mechanism may be

substantially different from the things you do within the microworld. It is not just the

things on the screen that are different; it is the ways you move them around that

conventionally distinguishes platform from superstructural interaction. Finding ways to

break down this distinction may turn out to represent a significant advance for

mathematical learning with digital technologies.

This issue raises a second major question of microworld design, which is related to but

separate from the interface issue above. What is the appropriate grain size for objects

and relationships at the superstructural level? What level of complexity is appropriate

for users; how far, in other words, should be the distance between superstructural

elements and the platform on which they are built? We cannot hope to answer this

question in the abstract; it is a research question which we (and many others) are

currently addressing, and which we will discuss below in the context of our current

work.

                                                

2 We use this term by analogy with the idea of abstraction barrier in computer science, the means by

which programmers  can wrap up pieces of programs to use as tools whose workings need not be

visible in the larger program. This is a key means of controlling complexity: 'By isolating the

underlying representations of data objects, we can divide the task of designing a large program into

smaller tasks that can be performed separately" (Abelson and Sussman, 1985, p.126).



The Playground project: aims and methodologies

In our ongoing research project we have moved to a new arena for constructionism —

that of computer games. In this, we are building on the work of Harel and Kafai

(Harel, 1988 and Kafai, 1995) who have pointed out that we should endeavour to tap

in to children's games culture by adding a new dimension whereby they build their own

games. Our project is to design and try out computational worlds — playgrounds — in

which the objects in a game and the means for expressing them are engaging; where the

programming of a game is itself a game. We have set ourselves the task of working

with young children (aged as young as 4 and at most 8) where it is obvious that we

cannot rely on the written word as a means of communication. This has challenged us

considerably and forced us to take seriously other modalities of interaction, such as

speech as well as direct manipulation. We want to give the children the opportunity to

construct creative and fun games, and at the same time, offer them an appreciation of

— and a language for — the rules, which underpin them.

In real playgrounds, children play with the objects they find, like swings and

roundabouts, balls and sticks. They create new games with new rules (stand on the

swings, have three people on the seesaw), make up new games with the existing

objects (who can go fastest around the seesaw, climbing frame and slide?), and ignore

the objects they find to create new ones (like hopscotch). And in a real playground,

kids engage in a wide range of personal styles — through talking and shouting,

moving, hearing seeing and so on. All their senses are engaged.

Our virtual playgrounds aim at a similar level of engagement. Unlike most computer

games, in which the metaphors are simple, and the tools immediate to provide

entertainment, our games are being constructed for learning. And to achieve this, we

have had to resurrect the notion of programming (however unfashionable that may be),

and reject systems which only allow direct manipulation of the interface but are severely

limited in their expressive power.

Using the terminology introduced earlier in this paper, games are played at the level of

superstructure, but to change or rebuild them requires an appreciation of and some

access to the platform. It is managing this access — both in terms of what can be seen

and what can be done — in order to build a game of one’s choice that enables us to help

children become aware of how rules operate and the implications of rules. We want to

blur the boundaries between user and programmer, between fun at the superstructural

level and engagement with the semantics of the platform. In short, we are trying to

build a system for children to play with the rules.

Just what we end up building and just what the children learn is a matter of ongoing

investigation but at its heart lie many classical questions of microworld design. From all



the foregoing discussion, it should be clear that we expect the platform to be intrusive,

that is, we anticipate that children will, at some level at least, know what is happening

below the superstructural level, understand how to interact with it, and appreciate the

mechanism which makes it work. Actually we are coming to believe that the most

important appreciation of mechanism is the idea of mechanism — knowing that there

are rules which makes things work represents quite a few steps towards understanding

precisely how something works.

But wanting children to have access to the platform has raised problems of choice of a

platform that affords access to very young children.  We decided to base the design and

construction of playground on ToonTalk (Kahn, 1999). Its appeal for our purposes is

in its “concretizations” of computational abstractions based on the animated metaphors

of the computer game. The new concepts of ToonTalk design are twofold: the

provision of powerful high-level constructs for expressing programs at the platform

level and the provision at the interface level of concrete, intuitive, easy-to-learn,

systematic game analogues to every construct.

The fundamental idea behind ToonTalk is that source code is animated. (ToonTalk is so

named because one is “talking” in (car)toons.) This does not mean that it takes a visual

programming language and replaces some static icons by animated icons. It means that

animation is the means of communicating to both humans and computers the entire

meaning of a program. Program sources are not static collections of text or even text

and pictures, but are animated, tactile, enhanced with sound effects, and clearly

physical. The programs of ToonTalk are encapsulated in the actions of robots which are

trained by example to perform a role. The conditions, which determine subsequent

performance of the actions at run time, can be generalised or specialised after the

training has taken place. Details of how ToonTalk works, its design principles and

some applications can be found at http://www.toontalk.com/

We are aiming to design our prototype games in ways that make it straightforward to

interact both with the objects in the games and the mechanisms behind the objects

which give them their behaviours. To achieve this we are engaged in iterative designing

and prototyping with children to find the appropriate level of expression for these

mechanisms. Unsurprisingly, we have found that if the level is too low, (e.g. raw

ToonTalk at the platform level) such young children are typically unable to grasp what

is happening; if it is too high (e.g. all the mechanisms are wrapped up in black boxes)

the children might be able to play the games, but are not even aware of the rules that

make them work, let alone able to inspect and modify.

Our solution to this challenge was to consider the mechanism in levels, thus using and

developing the theoretical constructs presented earlier. Figure 2 presents an example of



a game and the different levels of mechanism that are accessible to the user. This

example will be helpful in both focusing the discussion and allowing us to present

some illustrative work with children.

In games, there are a range of components we shall call play objects: balls that bounce

and make noises, wizards which turn into frogs, or dice that control a move. Figure 2a

presents a simple Pong game that we built in ToonTalk. It consists of a background,

two paddles, a ball and a score. There is a scoring connection between the top paddle

and the score, so that when the ball is hit by the top paddle the score increases by ten

points.  Changes can be made at the interface level by direct manipulation and by using

ToonTalk tools (for example, there is a simple way to change the colour of the

background, or make copies of any play objects using the 'magic wand').

Our effort in microworld design has been to build a superstructural level on top of

ToonTalk which allows children to manipulate the 'things that matter' in the game — in

this case the behaviours of the play objects. We have created a class of playground

objects called ‘behaviours’ which are portable components packaging the functionality

of robots into manageable pieces. Functionality for play objects is realised through

adding trained robots to their flipside. A key design principle of the behaviours is that

Figure 2

Three levels of mechanism in a Pong game: interface, superstructural and

platform



we judge them (sometimes correctly!) to be the right grain size for children: that is, they

provide an appropriate level of complexity and functionality so that they can be

appreciated and used in the design of new objects and rules. Figure 2b shows how

flipping the top paddle in Pong exposes its behaviours which comprise robots that

‘make sound when hit’ and ‘when hit send message to score’. At

present, the descriptions of the behaviours are mainly in the form of natural language

(i.e. text), although we are currently adding graphical and audio descriptions of a

behaviour, so that its functionality becomes evident in its (dynamic) representation.

At the platform level, as we have said, there are robots dealing with the interactions and

events. For example, the robot shown in Figure 2c represents one mechanism

belonging to the top paddle. The robot has been trained to play the sound Be Yaw

when hit by a ball: There are two inputs to this program in the box in front of the robot,

and the conditions under which it will act are shown in its thought bubble. These initial

conditions are set in the training stage but can be modified subsequently. The ‘hit

who?’ hole of the input box is a dynamic sensor which shows what is currently

colliding with the paddle. In order for the robot to be triggered into action (i.e. its

condition satisfied), a picture of a ball needs to appear (this will happen when a ball

collides with the paddle). In the second input box, the only requirement is that some

sound is present. In figure 2c, the 'hit who?' sensor is black showing that there is

no current collision. However, when the paddle is hit by a ball, all the robot’s

conditions will be fulfilled and it will play the sound in the second hole of the input

box.

We have found that children are able to understand the principles of programming by

example, the role of input boxes, the generalisation of conditions etc. However, we

have found the robots most useful when used as part of the superstructural level, that is

when embedded in behaviours used for carrying out a specific task, such as the ‘make

sound when hit’ behaviour. We shall illustrate this conjecture in the following

section.

We are unable in this paper to provide further details of either the platform or the

playground/microworlds we are building: these and details of the research objectives

can be found at http://www.ioe.ac.uk/playground. Instead, we will illustrate our

general line of reasoning by reference to a case study of two children interacting in out

Pong microworld.

The relationship between platform and superstructure

Two girls, Rachel and Heather, both aged 8, started with a two-player Pong game

similar to the one in Figure 2a. One of them used the SHIFT and CTRL keys to control



the left and right movement of the top paddle, while the other (they took turns) used the

mouse to move the bottom paddle. The ball bounced around and the girls each tried to

hit it with their paddle. The score (bottom right hand corner) increased by 10 points

whenever the top paddle hit the ball and there was also a ‘be yaw’ noise every time

the ball hit the top paddle. At this level of playing the game, the mechanisms which

drove these actions were largely invisible — but, as we shall see, they were not

inaccessible.

At first Rachel and Heather simply treated the game as a closed system during which

they noticed that the score was changed by the top paddle only. They invented a new

twist — they took turns to play against the clock, trying to get the most points in 30

seconds. However, after a short while they both pronounced the game as 'boring'.

Changes at the superstructural level

Because of the culture we had developed in our classrooms of changing games, the

girls began to think about how they could change the game. The simplest changes they

could make involved changing colours and sizes of objects at the interface level.

Heather: “Make it more colourful… it’s a bit dark!”

They made the background light blue and the bottom bar brown. (The programming

environment allows colour changes to certain objects simply by pointing at them and

pressing keys). Interestingly enough, these apparently trivial modifications immediately

changed the look and feel of the game, and generated some new suggestions.

Rachel: “[We] could have two scores, one for bottom one for top”

Heather: “…you could have like the paddle as a fish”

Rachel: “I’ve got an idea … Bammer hits the thing down  and hits the ball.”

Rachel's idea was that the ball should be changed into a picture of Bammer the mouse,

one of the creatures who inhabit the ToonTalk platform (Bammer's jobs include adding

numbers, merging pictures and concatenating strings of text). The new object (a picture

of Bammer) needed to retain the functionality of the old object (the paddle) but have a

different face. This, Heather and Rachel realised, could be achieved by transferring all

the behaviours — something the girls knew how to do.

Heather: “I know — you stick the paddle on the back.”

The girls transferred the functionality of the paddle to a picture of Bammer, by turning

both over and placing one on the other. This operation at the superstructural level has

platform level functionality because of ToonTalk's object oriented design. Similarly the

behaviour objects on the back of the paddle transfer their functionality, giving Bammer

the right behaviours. This is illustrative of the delicate relationship that has to exist in



our playground design: while the platform provides the means to effect the behaviour

transfer, it is having the right things in the right place at the superstructural level which

enables the children to make use of this functionality.

The two girls could effect other changes at this intermediate level. They changed the

ball to a bird and transformed all its functionalities to give the game the appearance

shown in Figure 3, in which paddles and ball are replaced by bammers and bird.

Now the changes in colour stimulated more ideas as it supported the girls’ inclination to

build an underwater narrative: watching this, we suddenly recalled that Rachel had

mentioned earlier that she wanted to change the paddle to a fish!

Rachel: “I know that’s like the sea and he’s [Bammer] running down into it! Cos

that’s like there’s a hill and there’s sand going down.”

Heather: “There’s a problem! He’s walking on… the water!”

Rachel: “It doesn’t matter”

The new game was structurally very similar to the original, but to the girls it had

suddenly become far from boring! On the contrary, it was now a compelling game, not

least because they had made it themselves.

In the next session, we gave the girls some new pictures of fish and sharks to help

them in their objective of making their game ‘go underwater’. They made two copies of

the shark picture — one for each of the paddles, and discussed further changes: Rachel

wanted to have lots of fish bouncing up and down, an idea she had picked up from

other children who had made multiple balls in their games. They then started to change

the paddles to sharks, an easy enough task involving essentially the same procedure of

behaviour transfer as they had used in changing the paddle into Bammer. At this point,

Figure 3
Pong with changed appearance but same functionality



they similarly changed the ball to a fish and made copies of it to place underwater (see

Figure 4).

How much programming were Heather and Rachel doing? It is tempting to say that at

this point, they were simply replacing pictures with other pictures. But in the process,

they exposed the static representation of the programming platform. While the grain

size of their actions was large when programming at the behaviour level, a finer grain

size was made visible —the mechanisms were visible even if they remained intact.

Heather and Rachel were also familiar with robots and had programmed at this level in

some simple cases. They therefore had an idea of what it was that was inside the

behaviours and caused them to work.

At the beginning of the session only the top shark scored points — as in the original

Pong game. The girls wanted to make their game competitive by adding the same

functionality to the bottom paddle, so they could play against each other. They copied

the score object on the bottom right of the game so it also appeared on the left (see

Figure 4). They also realised that they had to add some functionality to the bottom

shark so copied the ‘when hit send message to score’ behaviour on the

top shark (as shown in Figure 2b) and put it on the flip side of the bottom shark. These

two changes, the first at interface level and the second at the superstructural level,

revealed a bug in their thinking about the mechanism of the scoring system and required

an intervention at the platform level as we shall describe later.

Changes at the Platform level

The sight of the sharks in an underwater context with fish, provoked the two girls to

make more suggestions for changes:

Figure 4

Sharks, fish and two copies of the same score



Rachel: “The sharks are the paddles. And if one of those hit the sharks- any of them

…”

Heather: “it goes like this … ‘chomp’!”

They wanted a different sound that played whenever the sharks hit the fish. At this

point, only the top shark had a sound behaviour (left over from being a paddle in the

Pong game). To change the sound they removed the behaviour labelled ‘make

sound when hit’ (see Figure 5) and dug down towards the platform level to

investigate the mechanism. They found that the robot was trained to play the sound ‘be

yaw’ every time its conditions were satisfied. So in order to reconfigure this

behaviour they had to remove ‘be yaw’ and replace it with ‘crunch’. This they

managed easily, demonstrating how the two children interacting at superstructural level

could, in simple cases when it mattered to them, move into the platform and modify the

program.

While playing this new version, Heather controlled the top shark and Rachel the bottom

one. It took them some while to notice that both scores ‘belonged’ to both sharks and

were always the same.

Heather: “You see! I said we shouldn’t have copied it!”

Heather knew there was a problem and explained again that they were planning to have

a separate score for each shark:

Heather: “We want to…change it so that each one has its own score… so each shark

has its own score.”

There had been a bug in their thinking, but to fix it they had to find out more about the

mechanics of the score system: they needed to see the nature of the connection between

the sharks and the scores. This is quite a complicated business. Any object oriented

They remove the ‘be
yaw’ sound object in
the input and replace it
with ‘crunch’.

The robot remains the same as it
has the same imperative
‘play sound’, only the input

changes.

Figure 5

The robot that makes a sound when hit



language needs a mechanism by which objects can send messages to each other — this

is one of the powerful ideas of object oriented programming. ToonTalk is no exception.

But it is different in one important respect — the message passing is instantiated in a

concrete metaphor; quite simply, birds take messages to nests, (see Figure 6) so by

programming a robot to give something to a bird whose nest is on another object, a

message is passed to that object and the bird returns to its starting place. This gives a

one-to-one communication channel.

Heather and Rachel took off the top shark and looked again at its behaviours by

flipping the picture over. They found the scoring behaviour, “hit picture send

message to score” and took it out. We explained that the robot had been trained

to give the number 10 to the bird each time the shark hit a picture. This 10 then

‘magically’ was added to the score. How did it get there?

In the case of the scoring mechanism, the bird in the “hit picture send

message to score” behaviours on a shark had a corresponding nest in a

behaviour on a score. An understanding of this platform level metaphor would be

crucial if the girls were to implement their competitive shark game successfully.

To make the platform visible in a dynamic way, we suggested that the girls took off one

score and put it next to the game. The game worked as before, until someone scored.

At this point, the score was incremented: but the mechanism of the increment had now

become visible — when either shark was hit a bird flew out and delivered the message

‘10’ to the score, accompanied by dramatic wing-flapping sound effects (all this is part

of the animation of the platform).

When the second score was removed and placed next to the game, the visibility of the

scoring mechanism was even more dramatic. If the bird has been copied, both birds fly

Figure 6

A bird takes a message to its nest: the

communication metaphor in ToonTalk



to the same nest giving many to one communication. This essentially is what had

happened when the girls copied the ‘when hit send message to score’

behaviour. But if the nest is also copied (as the girls did when they copied the score),

the bird makes a copy of itself and the message — two identical messages are

delivered, one to each nest (one-to-many). We have tried to illustrate this in Figure 7,

which shows two birds emerging from the flip side of the bottom shark after it had

been hit by the ball.

After the children had played their new game and watched the birds delivering their

scores, we decided to check if the metaphor was transparent:

Researcher: “What do you think is going to happen, Heather, when we start the

game?”

Heather: “Both sharks are going to have numbers coming out of them.”

Researcher: “Where are they going to go to?”

Rachel: “Into the Points.”

Now the girls could see two birds fly out each time a shark was hit, one bird flying to

each score. Although still playing the game, a change at the superstructure level

(removing the scores) had led to an exposure of the platform, an interplay between

superstructural and platform levels. At the simplest level, a mechanism built into the

platform revealed the bug in the girls’ game design and showed Heather and Rachel

why the scores were not responding as they wanted them to.

At a deeper level, revealing the mechanism in this way gave an entry into the bigger

ideas of using the generative power of programming. Constructing further insight into

the mechanism now means another connection into the scheme of the code that can be

used for construction later.

Figure 7

Two identical birds flying to their different



Finally, to complete the description of the evolution of Heather and Rachel's game, we

explained that if two separate scores were required we needed to have one bird per

shark. We helped them replace the bottom shark-score connection with a new bird-nest

pair. Their two-player game was now complete as illustrated in Figure 8.

Discussion and Conclusions

Our episode is not so divergent from Logo microworlds at their best: the sense of

engagement, the need for powerful ideas that arises naturally, the explorability and

engagement without sacrificing extensibility and expressive power.

There are differences, which we think delineate an evolution of the microworld idea.

Comparing Heather and Rachel's activities with the Mathsticks microworld, the most

obvious surface-level change is in the substitution of directly manipulable (animated)

elements for text-based programs. This difference is, however, a symptom of

evolutionary change. The key difference, we believe, is not only in the new kind of

language (certainly important) but also in the interplay between superstructure and

platform.

The search for replacements to old kinds of formalism based on textual strings is

certainly going to be a defining difference of the new century's mathematical expression

(see Kaput, 1994, for a thought-provoking discussion). In general, its potential lies in

the broadening of expressive power, to include more immediate, graphical, dynamic

and expressive entities and the exposure of relationships between them. In

programming terms, therefore, this will allow a richer set of metaphors which provide

mappings from abstract computational entities and actions to the concrete world of

objects, sounds and even gestures.

Figure 8

Shark game with two separate scores
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Using ToonTalk as a platform has shown us that even quite young children can

recognise that they can build objects from scratch (by training robots), combine,

generalise and debug. More generally, they can come to think about mechanisms —

how things work, why they work, how they can be rebuilt. In the twenty-first century,

where the opportunity to strip down working systems with spanners and screwdrivers

are much more limited than they were, we will need to consider virtual alternatives,

ways for children to take things to pieces, look at what makes them tick, and put them

back together (see Noss, 1998, for a discussion of the implications of this view for

mathematical learning).  

There are also prices to be paid. While our case study illustrates the expressive power

of a non-textual programming language, and the opportunities it affords for building

superstructures which are appealing and powerful, the absence of a textual description

frequently renders the programming to be cumbersome and time-consuming for

designers and seriously limits communicability to peers and teachers. This latter issue

resonates with the heated debates over the advantages and disadvantages of direct

manipulation and text-based interfaces for the learning of mathematics (see, for

example, diSessa, Hoyles, & Noss, 1995 for a report of one such debate in the context

of dynamic geometry): proponents of the former point to a sense of engagement

developed with screen objects; advocates of the latter stress the importance of a

language for description, reflection and communication. Perhaps our criticism at that

time of direct manipulation missed an essential point — that point and click is precisely

the right mechanism for building an expression of the relationships, but precisely the

wrong one for reflecting on it and communicating it. There is a duality between

expression and reflection, and we must find new ways to play one off against the other.

We are currently undertaking a more controlled comparison between ToonTalk-based

and Logo-based playgrounds, which will allow us to explore the relative strengths and

weaknesses of the two approaches, hopefully leading us to design more successfully in

both.

Our superstructural level of behaviours seem to have hit on a way to offer young

students some of the power and manipulability of programming and, at the same time,

some awareness of the mechanisms of the platform. They are of about the correct grain-

size for children: But they also open a window on to deeper issues. The different

representations of the behaviours afford a means to think about a rule, what makes it

true, and the limits of its validity (e.g. is A hits B the same as B hits A?). In our case

study we described the simple rule ‘make sound when hit’ which later became

transformed into the more complicated ‘if hit, score 10 points’. Our

contention is that by looking at how these mechanisms work, and changing them,

Nikoleta
Highlight

Nikoleta
Highlight



children are better able to be appreciate inference and conditionality and even make

these relationships explicit.

In retrospect, it seems that these metaphors of grain size, levels and permeability

between levels are crucial for incremental learning. Perhaps this is the reason why there

are not many examples of computational worlds which afford interesting and creative

directions for children to learn mathematical ideas and which provide an entrée into the

world of formal systems which child-programming had always claimed to offer: the set

of tools and metaphors appropriate for navigating around at the interface level were not

functional below that level — to get below, one had to enter a new world of arcane

(usually textual) difficulty. Reflecting on our earlier position, we see that we identified

platform with text. Now we can explore how new platforms offer new opportunities

which preserve what is essential about microworlds, but which increase the

functionality at the programming level for learners.

Our purpose is not to claim that we have found a 'solution'. In any case, there are new

difficulties emerging: we currently have no mechanism for abstraction — which is

combining a collection of programs into a new program and naming this. And the

directly manipulable animated elements of programming robots come at the price of no

sensible editing mechanism. The case of Heather and Rachel is, however, indicative of

possible futures for microworld design. Exposing the birds to reveal the mechanism of

message passing feels like an example of a more general possibility: ought we not to be

thinking about building systems more generally whose mechanisms are visible and

accessible at some level? Mathsticks showed us the importance of linking actions,

visual and symbolic representations whilst maintaining the symbolic as a programming

tool. It pointed to the importance of permeability between levels of mechanism. Our

hope is that our playgrounds are taking a further step in this direction.
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