Markovian: exponential probability of arrival $e^{-\lambda t}$ Markovian: probability of completing service $e^{-\mu t}$ k-Servers m/m/k Queueing System

- λ Rate to move from P_i to P_(i+1),
- μ rate to move from $P_{-}(i+1)$ to $P_{-} \mathrm{i}$,
- $P_{-} k=\left(P _0\right)^{*}(\lambda / \mu)^{k}$, Average No of people $N=\Sigma\left(k^{*}\left(P _k\right)\right)=\lambda /(\mu-\lambda)$
- Given: Stationary, Little's law, the delay is $N / \lambda=1 /(\mu-\lambda)$, even with k independent queues
- Therefore, the $m / m / k$ has $k^{*} \lambda$ arrival and $k^{*} \mu$ service
- delay of the $m / m / k$ is $1 /\left(k^{*} \mu-k^{*} \lambda\right)=1 / k(\mu-\lambda)$

Queue

