POSIX Threads

Introduction

Modern Multiprocessing: Processes & Threads

+ System (kernel) opportunity for processor or hardware
thread utilization (migration)

* Parallel <+ Concurrent

* Memory: Isolated <+ Shared (Safe/Faster)

+ Communication: Standard Inter Process Communication
(IPC) «+ Direct
+ e.g. Named pipes, Message queues, Sockets vs Shared
pointers, Semaphores
+ Management overhead: Normally about the same but
varies a lot

+ More setup on creation for processes, cache pollution,
threadpools

* Lower end and older systems: Poor or non-existent thread
exception handling

Typical Thread Usage Scenarios

Parallel execution: Apportion work, gather results
Defer blocking! and long running? calls
+ 1 e.g. I/O to disk, peripherals, or network
+ 2 e.g. audio mixing thread parallel to main execution
Ul and window applications obliged to respond rapidly to
dispatched messages
+ Offload work from main thread to worker threads

Run parts of programs with different scheduling priorities

pthread Library Interface

+ A standardized (C) interface for creating and managing
threads, mutexes and associated functionality
+ Native or close-to-native support on *nix systems, simulated
or suboptimal in others (most notably Windows)

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void*),
void *restrict arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread,
void **value_ptr)

Listing Output

$ gcec -wall tt.c -o tt
$./ttt

Creating threads

Kk kkkkhkhkdhkkkhkhkhkhkhkhhkkhkkdhrkkhhkdhkkdhhkhkkhkdhhkhkhhkdhkhkhkdhhkhkkhxdk*

R I S A R I e R

Joining threads

R R L B R R R G R R R R K K R R e e
CHEHTHCHHTHTHETHETRETATA AT TR TR
R e e e e e e e
HHHHHHHHHHHHHHHHHHHHHHHHHHH

Exiting

