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Many exciting frontiers of science and engineering require understanding of the spa-
tiotemporal properties of sustained nonequilibrium systems such as fluids, plasmas,
reacting and diffusing chemicals, crystals solidifying from a melt, heart muscle, and
networks of excitable neurons in brains.

This introductory textbook for graduate students in biology, chemistry, engineer-
ing, mathematics, and physics provides a systematic account of the basic science
common to these diverse areas. This book provides a careful pedagogical motivation
of key concepts, discusses why diverse nonequilibrium systems often show similar
patterns and dynamics, and gives a balanced discussion of the role of experiments,
simulation, and analytics. It contains numerous illustrative worked examples, and
over 150 exercises.

This book will also interest scientists who want to learn about the experi-
ments, simulations, and theory that explain how complex patterns form in sustained
nonequilibrium systems.
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“This book by Cross and Greenside presents a comprehensive introduction to an
important area of natural science, and assembles in one volume the essential con-
ceptual, theoretical, and experimental tools a serious student will need to obtain a
modern understanding of pattern formation outside of equilibrium. The masterful
50-page Introduction lays out the essential questions and provides motivation to the
reader to explore the subsequent chapters, beginning with simple ideas and growing
progressively in mathematical sophistication and physical depth. Careful attention
is paid to the relationship between the theoretical methods and controlled labora-
tory experiments or numerical simulations. I can highly recommend this book to
any student or researcher interested in a deepened understanding of nonequilibrium
spatiotemporal patterns.’’

Pierre Hohenberg, New York University

“This book gives an excellent didactic introduction to pattern formation in spatially
extended systems. It can serve both as the basis for an advanced undergraduate
or graduate course as well as a reference. It is one of those books that will never
outlive its usefulness. It is a must for anyone interested in nonlinear, nonequilibrium
physics.’’

Eberhard Bodenschatz, MPI for Dynamics and Self-Organization,
University of Goettingen, Cornell University

“This book fills a long-standing need, and is certain to be an instant classic. The
physics of pattern forming systems is diverse but the theoretical core of the subject,
along with many of the most important applications, can be learned from this
splendid book. It is bound to be a key text for courses, as well as a much cited
reference.’’

Stephen Morris, University of Toronto
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Preface

This book is an introduction to the patterns and dynamics of sustained nonequi-
librium systems at a level appropriate for graduate students in biology, chemistry,
engineering, mathematics, physics, and other fields. Our intent is for the book to
serve as a second course that continues from a first introductory course in nonlinear
dynamics. While a first exposure to nonlinear dynamics traditionally emphasizes
how systems evolve in time, this book addresses new questions about the spatiotem-
poral structure of nonequilibrium systems. Students and researchers who succeed in
understanding most of the material presented here will have a good understanding
of many recent achievements and will be prepared to carry out original research on
related topics.

We can suggest three reasons why nonequilibrium systems are worthy of study.
First, observation tells us that most of the Universe consists of nonequilibrium sys-
tems and that these systems possess an extraordinarily rich and visually fascinating
variety of spatiotemporal structure. So one answer is sheer basic curiosity: where
does this rich structure come from and can we understand it? Experiments and sim-
ulations further tell us that many of these systems – whether they be fluids, granular
media, reacting chemicals, lasers, plasmas, or biological tissues – often have sim-
ilar dynamical properties. This then is the central scientific puzzle and challenge:
to identify and to explain the similarities of different nonequilibrium systems, to
discover unifying themes, and, if possible, to develop a quantitative understanding
of experiments and simulations.

A second reason for studying nonequilibrium phenomena is their importance to
technology. Although the many observed spatiotemporal patterns are often inter-
esting in their own right, an understanding of such patterns – e.g. being able to
predict when a pattern will go unstable or knowing how to select a pattern that
maximizes some property like heat transport – is often important technologically.
Representative examples are growing pure crystals, designing a high-power coher-
ent laser, improving yield and selectivity in chemical synthesis, and inventing new

xiii



xiv Preface

electrical control techniques to prevent epilepsy or a heart attack. In these and other
cases such as forecasting the weather or predicting earthquakes, improvements in
the design, control, and prediction of nonequilibrium systems are often limited by
our incomplete understanding of sustained nonequilibrium dynamics.

Finally, a third reason for learning the material in this book is to develop specific
conceptual, mathematical, and numerical skills for understanding complex phenom-
ena. Many nonequilibrium systems involve continuous media whose quantitative
description is given in terms of nonlinear partial differential equations. The solu-
tions of such equations can be difficult to understand (e.g. because they may evolve
nonperiodically in time and be simultaneously disordered in space), and questions
such as “Is the output from this computer simulation correct?,’’ “Is this simulation
producing the same results as my experimental data?’’ or “Is experimental noise
relevant here?’’ may not be easily answered. As an example, one broadly useful
mathematical technique that we discuss and use several times throughout the book
is multiscale perturbation theory, which leads to so-called “amplitude equations’’
that provide a quantitatively useful reduction of complex dynamics. We also discuss
the role of numerical simulation, which has some advantages and disadvantages
compared to analytical theory and experimental investigation.

To help the reader master the various conceptual, mathematical, and numerical
skills, the book has numerous worked examples that we call etudes. By analogy
to a musical etude, which is a composition that helps a music student master a
particular technique while also learning a piece of artistic value, our etudes are
one- to two-page long worked examples that illustrate a particular idea and that
also try to provide a non-trivial application of the idea.

Although this book is intended for an interdisciplinary audience, it is really a
physics book in the following sense. Many of the nonequilibrium systems in the
Universe, for example a germ or a star, are simply too complex to analyze directly
and so are ill-suited for discovering fundamental properties upon which a general
quantitative understanding can be developed. In much of this book, we follow
a physics tradition of trying to identify and study simple idealized experimental
systems that also have some of the interesting properties observed in more complex
systems.

Thus instead of studying the exceedingly complex dynamics of the Earth’s
weather, which would require in turn understanding the effects of clouds, the solar
wind, the coupling to oceans and ice caps, the topography of mountains and forest,
and the effects of human industry, we instead focus our experimental and theoretical
attention on enormously simplified laboratory systems. One example is Rayleigh–
Bénard convection, which is a fluid experiment consisting of a thin horizontal layer
of a pure fluid that is driven out of equilibrium by a vertical temperature difference
that is constant in time and uniform in space. Another is a mixture of reacting and
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diffusing chemicals in a thin layer of gel, with reservoirs of chemicals to sustain
the reaction. The bet is then that to understand aspects of what is going on in the
weather or in an epileptic brain, it will be useful to explore some basic questions
first for convection and other well-controlled laboratory systems. Similarly, as we
discuss later in the book, there are conceptual, mathematical, and computational
advantages if one studies simplified and reduced mathematical models such as the
Swift–Hohenberg and complex Ginzburg–Landau equations when trying to under-
stand the much more difficult partial differential equations that describe physical
systems quantitatively. The experiments, models, simulations, and theory discussed
in this book – especially the numerous comparisons of theory and simulation with
experiment – will give the reader valuable insights and confidence about how to
think about the more complex systems that are closer to their interests.

As background, readers of this book should know the equivalent of an introduc-
tory nonlinear dynamics course at the level of Strogatz’s book [99]. Readers should
feel comfortable with concepts such as phase space, dissipation, attractors (fixed
points, limit cycles, tori, and strange attractors), basins of attractors, the basic bifur-
cations (super- and subcritical, saddle-node, pitchfork, transcritical, Hopf), linear
stability analysis of fixed points, Lyapunov exponents, and fractal dimensions. A
previous exposure to thermodynamics and to fluid dynamics at an undergraduate
level will be helpful but is not essential and can be reviewed as needed. The reader
will need to be competent in using multivariate calculus, linear algebra, and Fourier
analysis at a junior undergraduate level. Several appendices in this book provide
concise reviews of some of this prerequisite material, but only on those parts that
are important for understanding the text.

There is too much material in this book for a single semester class so we give here
some suggestions of what material could be covered, based on several scenarios of
how the book might be used.

The first six chapters present the basic core material and should be covered in
most classes for which this book is a main text. By the end of Chapter 6, most of
the main ideas have been introduced, at least qualitatively. The successive chapters
present more advanced material that can be discussed selectively. For example,
those particularly interested in the systematic treatment of stationary patterns may
choose to complete the semester by studying all or parts of Chapters 7 and 8, which
provide quantitative discussions of two-dimensional patterns and localized struc-
tures, and Chapter 9 which is a more qualitative discussion of stationary patterns far
from onset. For a less mathematical approach, it is possible to leave out the more
technical Chapters 7 and 8 and move straight to Chapter 9 although we recommend
including the first three subsections of Section 7.3 on the central question of the
competition between stripes, two-dimensional lattices, and quasiperiodic patterns
(these sections can be read independently of the remainder of the chapter). If the
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interest is more in dynamical phenomena, such as oscillations, propagating pulses,
and waves (which may be the case if applying the ideas to signalling phenomena
in biology is a goal), the class may choose to skip Chapters 7–9, pausing briefly
to study Section 8.3 on fronts, and move immediately to Chapters 10 and 11 on
oscillatory patterns and excitable media. Numerical simulations are vital to many
aspects of the study of pattern formation, and to nonlinear dynamics in general, and
so any of the above suggestions may include all or parts of Chapter 12.

In learning about nonequilibrium physics and in writing this book, the authors
have benefited from discussions with many colleagues and students. We would like
to thank Philip Bayly, Bob Behringer, Eshel Ben-Jacob, Eberhard Bodenschatz,
Helmut Brand, Hugues Chaté, Peilong Chen, Elizabeth Cherry, Keng-Hwee Chiam,
Bill Coughran Jr., Peter Daniels, David Egolf, Bogdan Epureanu, Paul Fischer,
Jerry Gollub, Roman Grigoriev, James Gunton, Craig Henriquez, Alain Karma,
Kihong Kim, Paul Kolodner, Lorenz Kramer,Andrew Krystal, Eugenia Kuo, Ming-
Chih Lai, Herbert Levine, Ron Lifshitz, Manfred Lücke, Paul Manneville, Dan
Meiron, Steve Morris, Alan Newell, Corey O’Hern, Mark Paul, Werner Pesch,
Joel Reisman, Hermann Riecke, Sam Safran, Janet Scheel, Berk Sensoy, Boris
Shraiman, Eric Siggia, Matt Strain, Cliff Surko, Harry Swinney, Shigeyuki Tajima,
Gerry Tesauro, Yuhai Tu, Wim van Saarloos, and Scott Zoldi. We would like to
express our appreciation to John Bechhoefer, Roman Grigoriev, Pierre Hohenberg,
Steven Morris, and Wim Van Saarloos for helpful comments on early drafts of this
book. And we would like especially to thank Guenter Ahlers and Pierre Hohenberg
for many enjoyable and inspiring discussions over the years.

We would also like to thank the Department of Energy, the National Science
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1

Introduction

In this opening chapter, we give an informal and qualitative overview – a pep talk –
to help you appreciate why sustained nonequilibrium systems are so interesting and
worthy of study.

We begin in Section 1.1 by discussing the big picture of how the Universe is filled
with nonequilibrium systems of many different kinds, a consequence of the fact
that the Universe had a beginning and has not yet stopped evolving. A profound and
important question is then to understand how the observed richness of structure in
the Universe arises from the property of not being in thermodynamic equilibrium.
In Section 1.2, a particularly well studied nonequilibrium system, Rayleigh–Bénard
convection, is introduced to establish some vocabulary and insight regarding what
is a nonequilibrium system. Next, in Section 1.3, we extend our discussion to
representative examples of nonequilibrium patterns in nature and in the labora-
tory, to illustrate the great diversity of such patterns and to provide some concrete
examples to think about. These examples serve to motivate some of the central ques-
tions that are discussed throughout the book, e.g. spatially dependent instabilities,
wave number selection, pattern formation, and spatiotemporal chaos. The humble
desktop-sized experiments discussed in this section, together with theory and sim-
ulations relating to them, can also be regarded as the real current battleground for
understanding nonequilibrium systems since there is a chance to compare theory
with experiment quantitatively.

Next, Section 1.4 discusses some of the ways that pattern-forming nonequilib-
rium systems differ from the low-dimensional dynamical systems that you may
have seen in an introductory nonlinear dynamics course. Some guidelines are also
given to determine qualitatively when low-dimensional nonlinear dynamics may
not suffice to analyze a particular nonequilibrium system. In Section 1.5, a strategy
is given and explained for exploring nonequilibrium systems. We explain why fluid
dynamics experiments have some advantages over other possible experimental sys-
tems and why certain fluid experiments such as Rayleigh–Bénard convection are

1



2 Introduction

especially attractive. Finally, Section 1.6 mentions some of the topics that we will
not address in this book for lack of time or expertise.

1.1 The big picture: why is the Universe not boring?

When people look at the world around them or peer through telescopes at outer
space, a question that sometime arises is: why is there something rather than noth-
ing? Why does our Universe consist of matter and light rather than being an empty
void? While this question remains unanswered scientifically and is intensely pur-
sued by researchers in particle physics and cosmology, in this book we discuss
a second related question that is also interesting and fundamental: why does the
existing matter and light have an interesting structure? Or more bluntly: why is the
Universe not boring?

For it turns out that it is not clear how the existence of matter and light, together
with the equations that determine their behavior, produce the extraordinary com-
plexity of the observed Universe. Instead of all matter in the Universe being clumped
together in a single black hole, or spread out in a featureless cloud, we see with our
telescopes a stunning variety of galaxies of different shapes and sizes. The galax-
ies are not randomly distributed throughout space like molecules in a gas but are
organized in clusters, the clusters are organized in super-clusters, and these super-
clusters themselves are organized in voids and walls. Our Sun, a fairly typical star
in a fairly typical galaxy, is not a boring spherical static ball of gas but a complex
evolving tangled medium of plasma and magnetic fields that produces structure in
the form of convection cells, sunspots, and solar flares. Our Earth is not a boring
homogeneous static ball of matter but consists of an atmosphere, ocean, and rocky
mantle that each evolve in time in an endless never-repeating dynamics of weather,
water currents, and tectonic motion. Further, some of the atoms on the surface of
our Earth have organized themselves into a biosphere of life forms, which we as
humans particularly appreciate as a source of rich and interesting structure that
evolves dynamically. Even at the level of a biological organism such as a mammal,
there is further complex structure and dynamics, e.g. in the electrical patterns of
the brain and in the beating of the heart.

So again we can ask: why does the matter and light that exist have such interesting
structure? As scientists, we can ask further: is it possible to explain the origin of
this rich structure and how it evolves in time? In fact, how should we define or
quantify such informal and qualitative concepts such as “structure’’ or “patterns’’
or “complexity’’or “interesting?’’On what details does this complexity depend and
how does this complexity change as various parameters that characterize a system
are varied?
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While this book will explain some of what is known about these questions, espe-
cially at the laboratory level which allows controlled reproducible experiments, we
can say at a hand-waving level why the Universe is interesting rather than boring:
the Universe was born in a cosmological Big Bang and is still young when measured
in units of the lifetime of a star. Thus the Universe has not yet lasted long enough to
come to thermodynamic equilibrium: the Universe as a whole is a nonequilibrium
system. Because stars are young and have not yet reached thermodynamic equilib-
rium, the nuclear fuel in their core has not yet been consumed. The flux of energy
from this core through the surface of the star and out into space drives the complex
dynamics of the star’s plasma and magnetic field. Similarly, because the Earth is
still geologically young, its interior has not yet cooled down and the flux of heat
from its hot core out through its surface, together with heat received from the Sun,
drives the dynamics of the atmosphere, ocean, and mantle. And it is this same flux
of energy from the Earth and Sun that sustains Earth’s intricate biosphere.

This hand-waving explanation of the origin of nonequilibrium structure is
unsatisfactory since it does not lead to the quantitative testing of predictions by
experiment. To make progress, scientists have found it useful to turn to desktop
experimental systems that can be readily manipulated and studied, and that are also
easier to analyze mathematically and to simulate with a computer. The experiments
and theory described in this book summarize some of the systematic experimental
and theoretical efforts of the last thirty years to understand how to predict and to
analyze such desktop nonequilibrium phenomena. However, you should appreciate
that much interesting research remains to be carried out if our desktop insights are
to be related to the more complex systems found in the world around us. We hope
that this book will encourage you to become an active participant in this challenging
endeavor.

1.2 Convection: a first example of a nonequilibrium system

Before surveying some examples that illustrate the diversity of patterns and dynam-
ics in natural and controlled nonequilibrium systems, we first discuss a particular
yet representative nonequilibrium system, a fluid dynamics experiment known as
Rayleigh–Bénard convection. Our discussion here is qualitative since we wish to
impart quickly some basic vocabulary and a sense of the interesting issues before
turning to the examples discussed in Section 1.3 below. We will return to con-
vection many times throughout the book, since it is one of the most thoroughly
studied of all sustained nonequilibrium systems, and has repeatedly yielded valuable
experimental and theoretical insights.

A Rayleigh–Bénard convection experiment consists of a layer of fluid, e.g. air
or water, between two horizontal plates such that the bottom plate is warm and
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Cold T2

Warm T1

L

d

Fig. 1.1 Rayleigh–Bénard convection of a fluid layer between two horizontal
plates is one of the simplest sustained nonequilibrium systems. The drawing shows
a featureless square room of lateral width L and height d with copper-covered floor
and ceiling, and supporting walls made of wood. By appropriate plumbing and
control circuits, the floor and ceiling are maintained at constant temperatures of T1
and T2 respectively. When the temperature difference �T = T1 −T2 is sufficiently
large, the warm less-dense air near the floor and the cold more-dense air near the
ceiling spontaneously start to move, i.e. convection sets in. The rising and falling
regions of air eventually forms cellular structures known as convection rolls. The
characteristic roll size is about the depth d of the air.

the upper plate is cool. As an example to visualize (but a bit impractical for actual
experimentation as you will discover in Exercise 1.5), consider a square room whose
lateral width L is larger than its height d , and in which all furniture, doors, win-
dows, and fixtures have been removed so that there is only a smooth flat horizontal
floor, a smooth flat horizontal ceiling, and smooth flat vertical walls (see Fig. 1.1).
The floor and ceiling are then coated with a layer of copper, and just beneath the
floor and just above the ceiling some water-carrying pipes and electronic circuits
connected to water heaters are arranged so that the floor is maintained at a constant
temperature T1 and the ceiling is maintained at a constant temperature T2.1 Because
copper conducts heat so well, any temperature variations within the floor or within
the ceiling quickly become negligible so that the floor and ceiling can be considered
as time-independent constant-temperature surfaces. The supporting sidewalls are
made of some material that conducts heat poorly such as wood or Plexiglas.

A typical nonequilibrium experiment for the room in Fig. 1.1 would then be
simply to fix the temperature difference �T = T1 − T2 at some value and then
to observe what happens to the air. “Observe what happens’’ can mean several

1 Uniformly warming the floor and cooling the ceiling is not the usual way that a room is heated. Instead, a
convector – a localized heat source with a large surface area – is placed somewhere in the room, and heat is lost
through the windows instead of through the ceiling. (What we call a convector everyone else calls a radiator
but this is poorly named since the air is heated mainly by convection, not by radiation.) But this nonuniform
geometry is more complicated, and so less well suited, than our idealized room for experiment and analysis.
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things depending on the questions of interest. By introducing some smoke into the
room, the pattern of air currents could be visualized. A more quantitative obser-
vation might involve recording as a function of time t some local quantity such
as the temperature T (x0, t) or the x-component of the air’s velocity vx(x0, t) at a
particular fixed position x0 = (x0, y0, z0) inside the room. Alternatively, an experi-
mentalist might choose to record some global quantity such as the total heat H (t)
transported from the floor to the ceiling, a quantity of possible interest to mechan-
ical engineers and architects. These measurements of some quantity at successive
moments of time constitute a time series that can be stored, plotted, and analyzed.
A more ambitious and difficult observation might consist of measuring multivariate
time series, e.g. measuring the temperature field T (x, t) and the components of the
velocity field v(x, t) simultaneously at many different spatial points, at successive
instants of time. These data could then be made into movies or analyzed statisti-
cally. All of these observations are carried out for a particular fixed choice of the
temperature difference �T and over some long time interval (long enough that
any transient behavior will decay sufficiently). Other experiments might involve
repeating the same measurements but for several successive values of �T , with each
value again held constant during a given experiment. In this way, the spatiotemporal
dynamical properties of the air in the room can be mapped out as a function of the
parameter �T , and various dynamical states and transitions between them can be
identified.

The temperature difference �T is a particularly important parameter in a convec-
tion experiment because it determines whether or not the fluid is in thermodynamic
equilibrium. (It is precisely the fact that the nonequilibrium properties of the entire
room can be described by a single parameter �T that constitutes the idealization
of this experiment, and that motivated the extra experimental work of coating the
floor and ceiling with copper.) If �T = 0 so that the ceiling and floor have the
same common temperature T = T1 = T2, then after some transient time, the air will
be in thermodynamic equilibrium with zero velocity and the same uniform temper-
ature T throughout. There is typically a transient time associated with approaching
thermodynamic equilibrium because the air itself is rarely in such equilibrium with-
out taking special precautions. For example, there might be a small breeze in the
air when the door to the experimental room is closed or some part of the air may
be a bit warmer than some other part because someone walked through the room.
But as long as the room is sealed and the floor and ceiling have the same tempera-
ture, all macroscopic motion in the air will die out and the air will attain the same
temperature everywhere.

As soon as the temperature difference �T becomes nonzero (with either sign),
the air can no longer be in thermodynamic equilibrium since the temperature is
spatially nonuniform. One says that the air is driven out of equilibrium by the
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temperature difference since the nonequilibrium state is maintained as long as there
is a temperature difference. For the case �T > 0 of a warm floor and cool ceiling,
as �T becomes larger and larger (but again held constant throughout any particular
experiment), more and more energy flows through the air from the warm floor to
the cooler ceiling, the system is driven further from equilibrium, and more and
more complicated spatiotemporal dynamical states are observed. A temperature
difference is not the only way to drive a system out of equilibrium as we will
discuss in other parts of the book. Other possibilities include inducing relative
motion (e.g. pushing water through a pipe which creates a shear flow), varying
some parameter in a time-dependent fashion (e.g. shaking a cup of water up and
down), applying an electrical current across an electrical circuit, maintaining one
or more chemical gradients, or creating a deviation from a Maxwellian velocity
distribution of particles in a fusion plasma.

For any particular mechanism such as a temperature difference that drives a sys-
tem out of equilibrium, there are dissipative (friction-like) mechanisms that oppose
this driving and act in such a way so as to restore the system to equilibrium. For the
air convecting inside our room, there are two dissipative mechanisms that restore
the air to a state of thermodynamic equilibrium if �T is set to zero. One is the
viscosity of the fluid, which acts to decrease any spatial variation of the velocity
field. Since it is known from fluid dynamics that the velocity of a fluid is zero at
a material surface,2 the only possible long-term behavior for a fluid approaching
equilibrium in the presence of static walls is that the velocity field everywhere
decays to zero. A second dissipative mechanism is heat conduction through the air.
The warm regions of air lose heat to the cooler regions of air by molecular dif-
fusion, and eventually the temperature becomes constant and uniform everywhere
inside the room. These dissipative mechanisms of viscosity and heat conduction
are always present, even when �T �= 0, and so one often talks about a sustained
nonequilibrium system as a driven-dissipative system.

Rayleigh–Bénard convection is sometimes called buoyancy-induced convection
for reasons that illustrate a bit further the driving and dissipative mechanisms com-
peting in a nonequilibrium system. Let us consider an experiment in which the air in
the room has reached thermal equilibrium with �T = 0 and then the temperature
difference �T is increased to some positive value. Small parcels of air near the
floor will expand and so decrease in density as they absorb heat from the floor,
while small parcels of air near the ceiling will contract in volume and increase in
density as they lose heat to the ceiling. As illustrated in Fig. 1.2, buoyancy forces
then appear that accelerate the lighter warmer fluid upwards and the heavier colder

2 More precisely, the fluid velocity at a wall is zero in a frame of reference moving with the surface. Exercise 1.9
suggests a simple experiment using an electric fan to explore this point.
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T1

T2

Fig. 1.2 Illustration of the driving and dissipative forces acting on small parcels
of air near the floor and ceiling of the experimental room in Fig. 1.1 whose floor
is warmer than its ceiling. The parcels are assumed to be small enough that their
temperatures are approximately constant over their interiors. The acceleration of
the parcels by buoyancy forces is opposed by a friction arising from the fluid
viscosity and also by the diffusion of heat between warmer and cooler regions of
the fluid. Only when the temperature difference �T = T1 − T2 exceeds a finite
critical value �Tc > 0 can the buoyancy forces overcome the dissipation and
convection currents form.

fluid downwards, in accord with the truism that “hot air rises’’ and “cold air falls.’’
These buoyancy forces constitute the physical mechanism by which the tempera-
ture difference �T “drives’’ the air out of equilibrium. As a warm parcel moves
upward, it has to push its way through the surrounding fluid and this motion is
opposed by the dissipative friction force associated with fluid viscosity. Also, as
the parcel rises, it loses heat by thermal conduction to the now cooler surrounding
air, becomes more dense, and the buoyancy force is diminished. Similar dissipative
effects act on a cool descending parcel.

From this microscopic picture, we can understand the experimental fact that
making the temperature difference �T positive is a necessary but not sufficient
condition for the air to start moving since the buoyancy forces may not be strong
enough to overcome the dissipative effects of viscosity and conduction. Indeed,
experiment and theory show that only when the temperature difference exceeds a
threshold, a critical value we denote as �Tc, will the buoyancy forces be sufficiently
large that the air will spontaneously start to move and a persistent spatiotemporal
structure will appear in the form of convection currents. If the room’s width L is
large compared to its depth d so that the influence of the walls on the bulk fluid
can be ignored, a precise criterion for the onset of convection can be stated in
the form

R > Rc. (1.1)
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Table 1.1. The isobaric coefficient of thermal expansion α, the kinematic
viscosity ν, and the thermal diffusivity κ for air, water, and mercury at
room temperature T = 293 K and at atmospheric pressure. These
parameters vary weakly with temperature.

Fluid α (K−1) ν (m2/s) κ (m2/s)

Air 3 × 10−3 2 × 10−5 2 × 10−5

Mercury 2 × 10−4 1 × 10−7 3 × 10−6

Water 2 × 10−4 1 × 10−6 2 × 10−7

The parameter R is defined in terms of various physical parameters

R = αgd3�T

νκ
, (1.2)

and the critical value of R has the approximate value

Rc ≈ 1708. (1.3)

The parameters in Eq. (1.2) have the following meaning: g is the gravitational accel-
eration, about 9.8 m/s2 over much of the Earth’s surface; α = −(1/ρ)(∂ρ/∂T )|p
is the fluid’s coefficient of thermal expansion at constant pressure, and measures
the relative change in density ρ as the temperature is varied; d is the uniform depth
of the fluid; �T is the uniform temperature difference across the fluid layer; ν is
the fluid’s kinematic viscosity; and κ is the fluid’s thermal diffusivity. Approximate
values of the parameters α, ν, and κ for air, water, and mercury at room temperature
(T = 293 K) and at atmospheric pressure are given in Table 1.1.

The combination of physical parameters in Eq. (1.2) is dimensionless and so has
the same value no matter what physical units are used in any given experiment,
e.g. System Internationale (SI), Centimeter-Gram-Seconds (CGS), or British. This
combination is denoted by the symbol “R’’ and is called the Rayleigh number in
honor of the physicist and applied mathematician Lord Rayleigh who, in 1916, was
the first to identify its significance for determining the onset of convection. The pure
number Rc is called the critical Rayleigh number Rc since it denotes the threshold
that R must exceed for convection to commence. The value Rc can be calculated
directly from the equations that govern the time evolution of a convecting fluid
(the Boussinesq equations) as the criterion when the motionless conducting state of
the fluid first becomes linearly unstable. The general method of this linear stability
analysis is described in Chapter 2.
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Despite its dependence on six parameters, you should think of the Rayleigh
number R as simply being proportional to the temperature difference �T . The
reason is that all the parameters in Eq. (1.2) except �T are approximately constant
in a typical series of convection experiments. Thus the parameters α, ν, and κ in
Eq. (1.1) depend weakly on temperature and are effectively fixed once a particular
fluid is chosen. The acceleration g is fixed once a particular geographical location
is selected for the experiment and the depth of the fluid d is typically fixed once
the convection cell has been designed and is difficult to vary as an experimental
parameter. Only the temperature difference �T is easily changed substantially and
so this naturally becomes the experimental control parameter.

You should also note that the numerator αgd3�T in Eq. (1.2) is related to quanti-
ties that determine the buoyancy force, while the denominator νκ involves quantities
related to the two dissipative mechanisms so Eq. (1.1) indeed states that instability
will not occur until the driving is sufficiently strong compared to the dissipation.
Most nonequilibrium systems have one or more such dimensionless parameters
associated with them and these parameters are key quantities to identify and to
measure when studying a nonequilibrium system.

What kind of dynamics can we expect for the air if the Rayleigh number R is
held constant at some value larger than the critical value Rc? From Fig. 1.2, we
expect the warm fluid near the floor to rise and the cool fluid near the ceiling to
descend but the entire layer of ascending fluid near the floor cannot pass through the
entire layer of descending fluid near the ceiling because the fluid is approximately
incompressible. What is observed experimentally is pattern formation: the fluid
spontaneously achieves a compromise such that some regions of fluid rise and
neighboring regions descend, leading to the formation of a cellular convection
“pattern’’ in the temperature, velocity, and pressure fields. The distance between
adjacent rising and falling regions turns out to be about the depth of the air. Once
the air begins to convect, the dynamics becomes too complicated to understand by
casual arguments applied to small parcels of air and we need to turn to experiments
to observe what happens and to a deeper mathematical analysis to understand the
experimental results (see Figs. 1.14 and 1.15 below in Section 1.3.2). However, one
last observation can be made. The motion of the fluid parcels inside the experimental
system transport heat and thereby modify the temperature gradient that is felt in a
particular location inside the system. Thus the motion of the medium changes the
balance of driving and dissipation in different parts of the medium, and this is the
reason why the dynamics is nonlinear and often difficult to understand.

The general points we learn from the above discussion about Rayleigh–Bénard
convection are the following. There are mechanisms that can drive a system out of
thermodynamic equilibrium, such as a flux of energy, momentum or matter through
the system. This driving is opposed by one or more dissipative mechanisms such



10 Introduction

as viscous friction, heat conduction, or electrical resistance that restore the sys-
tem to thermal equilibrium. The relative strength of the driving and dissipative
mechanisms can often be summarized in the form of one or more dimensionless
parameters, e.g. the Rayleigh number R in the case of convection. Nonequilibrium
systems often become unstable and develop an interesting spatiotemporal pattern
when the dimensionless parameter exceeds some threshold, which we call the crit-
ical value of that parameter. What happens to a system when driven above this
threshold is a complex and fascinating question which we look at visually in the
next section and then discuss in much greater detail throughout the rest of the book.
However, the origin of the complexity can be understood qualitatively from the fact
that transport of energy and matter by different parts of the pattern locally modifies
the balance of driving and dissipation, which in turn may change the pattern and
the associated transport.

1.3 Examples of nonequilibrium patterns and dynamics

1.3.1 Natural patterns

In this section we discuss examples of pattern-forming nonequilibrium systems as
found in nature while in the next section we look at prepared laboratory systems,
such that a nonequilibrium system can be carefully prepared and controlled. These
examples help to demonstrate the great variety of dynamics observed in pattern-
forming nonequilibrium systems and provide concrete examples to keep in mind
as we try to identify the interesting questions to ask.

We begin with phenomena at some of the largest length and time scales of the
Universe and then descend to human length and time scales. An example of an
interesting pattern on the grandest scales of the Universe is the recently measured
organization of galaxies into sheets and voids shown in Fig. 1.3. Observation has
shown that our Universe is everywhere expanding, with all faraway galaxies moving
away from each other and from the Earth, and with the galaxies that are furthest
away moving the fastest. The light from a galaxy that is moving away from Earth
is Doppler-shifted to a longer wavelength (becomes more red) compared to the
light coming from an identical but stationary galaxy. By measuring the extent to
which known spectral lines are red-shifted, astronomers can estimate the recessional
speed v of a galaxy and convert this speed to a distance d by using the so-called
Hubble law v = H0d , where the Hubble constant H0 has the approximate value
65 km s−1 Mpc−1 (and a megaparsec Mpc is about 3 × 1019 km or about 3 × 106

light years).
Figure 1.3 summarizes such distance measurements for about 100 000 galaxies

out to the rather extraordinary distance of about four billion light years which is
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Fig. 1.3 Spatial distribution of 106 688 galaxies as measured in the 2dF (Two-
degree Field) Galaxy Redshift survey out to a depth of over 4 billion light years
from Earth. The left and right halves represent investigations over two separate
arcs of the sky; the angles indicate astronomical declination, which is the angular
latitude of a celestial object north or south of the celestial equator. Each point
represents a galaxy whose distance from Earth is indicated in billions of light
years or equivalently in terms of its redshift z = �λ/λ = v/c of the galaxy’s
light spectrum, where v is the velocity of recession from Earth. The distribution
of galaxies is a nonuniform fractal-like structure with huge voids and walls.

comparable to the size of the Universe itself. Rather surprisingly, the galaxies do not
fill space uniformly like molecules in a gas but instead are clustered in sheets and
walls with large voids (relatively empty regions of space) between them. Here the
pattern is not a geometric structure (e.g. a lattice) but a statistical deviation from
randomly and uniformly distributed points that is difficult for the human visual
system to quantify. Perhaps the closest earthly analogy would be a foam of bubbles
in which the galaxies are concentrated on the surfaces of the bubbles. The reason
for this galactic structure is not known at this time but is presumably a consequence
of the details of the Big Bang (when matter first formed), the expansion of the
Uuniverse, the effects of gravity, and the effects of the mysterious dark matter that
makes up most of the mass of the Universe but which has not yet been directly
observed or identified.

Asecond example of grand pattern formation is the M74 galaxy shown in Fig. 1.4.
Now a galaxy consists of a huge number of about 1010 stars and has a net angular
momentum from the way it was born by the condensation of a large hydrogen cloud.
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Fig. 1.4 Photograph of the M74 spiral galaxy, a gravitationally bound island of
100 billion stars, approximately 100 000 light years wide, that lies about 35 000 000
light years from Earth in the Pisces constellation. Why galaxies form in the
first place and why they appear in spiral, elliptical, and irregular forms remains
incompletely understood. (Gemini Observatory, GMOS team.)

From just these facts, you might expect galaxies to be rotating featureless blobs of
stars with a mass density that varies monotonically as a function of radius from the
center. Such blobs do in fact exist and are known as elliptical galaxies. However
many galaxies do have a nonuniform mass density in the form of two or more spiral
arms as shown in Fig. 1.4. Our own galaxy, the Milky Way, is such a spiral galaxy
and our Solar System lives in one of its high-density spiral arms.

Why galaxies evolve to form spiral arms is poorly understood and is an important
open question in current astrophysical research. As we will see in the next section
and in Chapter 11, laboratory experiments show that spiral formation is common
for nonequilibrium media that have a tendency to oscillate in time or that support
wave propagation. Further, experiments show that a tendency to form spirals is
insensitive to details of the medium supporting the spiral. So a galactic spiral may
not be too surprising since there are mechanisms in galaxies that can produce wave
propagation. For example, some researchers have proposed that the spiral arms are
detonation waves of star formation that propagate through the galaxy, somewhat
analogous to the excitation waves observed in the Belousov–Zhabotinsky reaction–
diffusion system shown below in Fig. 1.18 and discussed later in Chapter 11. Some
interesting questions to ask about Fig. 1.4 are what determines the frequency of
rotation of the spiral arms (which is not the same as the orbital rotation rate of the
matter within a spiral arm) and what determines the spiral pitch (how tightly the
spiral is wound)?
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Fig. 1.5 Photograph of the Sun’s surface in ultraviolet light, showing a complex
time-dependent granular structure. The small bright regions are granules approx-
imately 1000 km across (the Sun itself is about 100 Earth diameters in size) and
correspond to hot plasma rising from the interior while the darker borders of the
granules correspond to cooler plasma descending back to the interior. The filamen-
tary structure exuding from the surface are plasma filaments following magnetic
field lines.

Figure 1.5 descends from the scale of a galaxy to that of a star and shows a
snapshot of the ultraviolet light emitted from the highly turbulent plasma in the
so-called photosphere of the Sun. Heat diffuses by collisions from the Sun’s small
dense and extremely hot core (20 million degrees Kelvin) out to about two-thirds
of the radius of the Sun, at which point the heat is transported to the cooler surface
(about 6000 K) by convective motion of the Sun’s plasma. The small bright dots
in Fig. 1.5 are 1000 km-sized features called “granules’’ and correspond to the top
of convection cells, the darker boundaries are where the cooler plasma descends
back into the interior. The Rayleigh number R in Eq. (1.1) can be estimated for
this convecting plasma and turns out to have the huge value of 1012 so Fig. 1.5
represents a very strongly driven nonequilibrium system indeed.

Figure 1.5 and related movies of the Sun’s surface suggest many interesting
questions related to pattern formation, many of which are not yet answered. One
question is that of what determines the distributions of the sizes and lifetimes of the
granules.Another question is that of how any organized structure persists at all since,
at any given point, the plasma is varying rapidly and chaotically. Other solar images
show that the smallest granules are found to cluster together to form convective
structures called super-granules which may be 30 times larger on average. Why



14 Introduction

does this happen and what determines this new length scale? And what is the role
of the magnetic field in all of this? Unlike the convecting air in Fig. 1.1, the Sun’s
plasma is a highly conducting electrical medium and its motion is influenced by
the Sun’s magnetic field (by a Lorentz force acting on currents in the plasma) and
the magnetic field in turn is modified by the motion of the plasma (by Ampère’s
law, since currents generate a magnetic field). The magnetic field is known to be
especially important for understanding the occurrence of sunspots, whose number
varies approximately periodically with a 22-year cycle. There is evidence that the
Earth’s climate is partly influenced by the average number of sunspots and so a
full understanding of the weather may require a deeper understanding of the Sun’s
spatiotemporal dynamics.

Our next example of pattern formation should be familiar to readers who have
followed the observations of the planet Jupiter by the Voyager spacecraft and by the
Hubble Space Telescope. Figure 1.6 shows a photograph of Jupiter in which one can
see a nonequilibrium striped pattern that is common to all of the gas giants (Jupiter,
Saturn, Neptune, and Uranus). Careful observation of the bands and of their dynam-
ics shows that they are highly turbulent time-dependent flows of the outer portion
of Jupiter’s atmosphere, with adjacent bands flowing in opposite directions with
respect to Jupiter’s axis of rotation. Again numerous questions suggest themselves
such as why do the bands form, what determines their wavelength of approximate

(a) (b)

Fig. 1.6 (a) Photograph of the planet Jupiter (about 11 Earth diameters in size),
showing a colored banded nonequilibrium structure. Such bands and spots are
common to all the outer gaseous planets and arise from convection together with
shear flow driven by the planet’s rotation. (b) Blow-up of the famous great Red
Spot, which is about the same size as the Earth. The persistence over many centuries
of this turbulent spot within the surrounding turbulent atmosphere remains an
intriguing mystery.
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periodicity (their spacing is fairly uniform across the planet), and how do such
bands survive in such a highly fluctuating fluid medium? The Red Spot and other
similar spots pose a problem of their own, namely how do such large localized
features (which are themselves time-dependent and strongly turbulent) survive in
the middle of such a strongly fluctuating time-dependent fluid? The Red Spot was
first observed by Galileo in the 1500s and so has been a persistent feature for at
least 500 years.

The mechanisms that drive these nonequilibrium stripes and spots are not hard
to identify. Jupiter’s core is known to be hot and the transport of heat from the
core out through its atmosphere causes convection in the outermost layer, just as
in Fig. 1.1. However, the convection is substantially modified by Jupiter’s rapid
rotation around its axis, about once every 10 hours. As warm and cold parcels of
fluid rise and descend, they are pushed to the side by large Coriolis forces and so
follow a spiraling path.

We next turn to terrestrial examples of natural pattern formation and dynamics.
While visiting a beach or desert, you have likely seen nonequilibrium pattern for-
mation in the form of approximately periodic ripples found in sand dunes or sand
bars, an example of which is shown in Fig. 1.7(a). The driven-dissipative nature
of sand ripples is readily understood although the particular details of this pattern
formation are not. The driving comes from wind (or water) flowing over the sand.
When moving fast enough, the wind lifts sand grains into the air, transferring trans-
lational and rotational energy to them. These grains eventually fall back to earth
and dissipate their energy into heat by friction as they roll and rub against other
sand grains. The formation of nearly regular stripes is understood in rough outline,
both from laboratory experiments and from computer simulations that can track
the motion of tens of thousands of mathematical grains that collide according to
specified rules. One surprise that came out of studying the stripes in sand dunes is
that there is not a well-defined average wavelength as is the case for a convection
pattern, for which the average wavelength is determined simply by the depth of
the fluid. Instead, the average wavelength grows slowly with time, and can achieve
kilometer length scales as shown in the Martian sand dunes of Fig. 1.7(b).

Another familiar and famous terrestrial example of pattern formation is a
snowflake (see Fig. 1.8). This is a nonequilibrium system rather different than
any described so far in that the pattern is formed by crystalline dendrites (these are
the needle-like branches of a snowflake) that grow into the surrounding air. Unlike
a convecting fluid in a fixed geometric box, the dendrite’s shape itself changes
as the system evolves. The nonequilibrium driving for snowflake formation is the
presence of air that is supersaturated with water vapor. (In contrast, an equilibrium
state would involve a static ice crystal in contact with saturated water vapor.) Each
tip of the snowflake grows by adsorbing water molecules onto its surface from the
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(a)

(b)

Fig. 1.7 (a) Pattern formation in wind-swept sand at the Mesquite Flat Sand Dunes
in Death Valley, California. The ripple spacing is about 10 cm. The foreground of
the picture is the top of a dune, and the remainder shows ripples on the valley floor.
(Photo by M. C. Cross.) (b) Sand dunes in the Proctor Crater on Mars, as taken by
the Mars Global Surveyor spacecraft in September of 2000 (Malin Space Science
Systems). The average distance between dune peaks is about 500 m.

surrounding air, and the rate at which the tip grows and its shape are determined in
a complex way by how rapidly water molecules in the surrounding air can diffuse
to the crystalline tip, and by how rapidly the heat released by adsorption can be
dissipated by diffusion within the air.

There are many fascinating questions associated with how snowflakes form. For
example, what determines the propagation speed of the tip of a dendrite and is
there a unique speed for fixed external conditions? Is there a unique shape to the
tip of a dendrite and on what details does this shape depend? Why are the arms
of a snowflake approximately the same length and have approximately the same
intricate shape but are not exactly identical? And what causes the formation of
the side-branches, whose rich spatial structure is such that no two snowflakes are
presumably ever alike? Scientists have made progress over the last twenty years in
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Fig. 1.8 Photographs by Kenneth Libbrecht of three snowflakes. The over-
all hexagonal symmetry reflects the underlying crystalline structure of water
molecules while the intricate structure of the similar but not identical branches
is a consequence of the instability of the dendritic tips, which propagate at an
approximately constant speed into the surrounding supersaturated water vapor.
(Photos courtesy of Kenneth Libbrecht.)

answering many of these questions. As a result of this progress, snowflakes rank
among the best understood of all nonequilibrium systems.

Beyond their aesthetic beauty, you should appreciate that snowflakes belong to a
technologically valuable class of nonequilibrium phenomena involving the synthe-
sis of crystals and alloys.An example is the creation of meter-sized ultra-pure single
crystal boules of silicon from which computer chips are made. One way to create
such an ultra-pure boule is to pull a crystal slowly out of a rotating and convect-
ing liquid silicon melt. In such a process, scientists and engineers have found that
they need to understand the instabilities and dynamics of the solid–liquid interface
(called a solidification front) since the extent to which undesired impurities can be
prevented from diffusing into and contaminating the crystal depends delicately on
the dynamics of the front. The metals that are the fabric of our modern world are
also usually formed by solidification from the melt. Their strength, flexibility, and
ductility are largely determined by the size and intermingling of small crystalline
grains rather than by the properties of the ideal crystal lattice. This microstruc-
ture depends sensitively on the nonequilibrium growth process, for example how
the solidification fronts propagate from the many nucleation sites. The tip of a
snowflake dendrite is also a solidification front (although now between a solid and
gas) and basic research on snowflakes has provided valuable insights for these other
more difficult technological problems.

We turn finally to two examples of biological natural patterns and dynamics. A
heroine of biological pattern formation is the slime mold Dictyostelium discoideum,
which is a colony of tiny amoeba-like creatures – each about 10 microns in size –
that live on forest floors. These cells spend most of their lives as solitary creatures
foraging for food but when food becomes scarce, the cells secrete an attractant
(cyclicAMP) into their environment that triggers pattern formation and the eventual
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aggregation of about 105 cells into a central mass. (This mass later evolves into
a multicellular structure that can distribute cells to new regions where resources
may be available, but that is another story.) Of interest to us is the spontaneous
spatiotemporal pattern of propagating spiral waves of cells that is observed in the
early stages of aggregation (Fig. 1.9). This pattern turns out to be remarkably similar
to that observed in carefully prepared reacting and diffusing inorganic reagents (see
Fig. 1.18(a) below), and you will indeed learn later in Chapter 11 that such multi-
spiral states are observed in many nonequilibrium media and that many details of
such states are understood theoretically.

Experiment and theory have shown that, in rough outline, the slime-mold pattern
arises from a nonlinear dynamics in which cells secrete an attractant, cells move
toward higher concentrations of the attractant (a process known as chemotaxis),
and attractant is destroyed by secretion of an appropriate enzyme. The slime-mold
dynamics is nonequilibrium because there are sustained chemical gradients; tem-
perature and velocity gradients are not important here as they were for a convecting
flow. Figure 1.9 suggests some quantitative questions similar to those suggested by
Fig. 1.4, namely what determines the frequency and velocity of the waves in the
spirals and how do these quantities vary with parameters?And biologists would like
to know why slime molds use this particular spatiotemporal pattern to self-organize
into a new multicellular structure.

Fig. 1.9 Photograph of a starving slime-mold colony in the early stages of aggre-
gation. The cells were placed on an 8-cm-wide caffeine-laced agar dish with
an average density of 106 cells/cm2. The field of view covers 4 cm. The light
regions correspond to elongated cells that are moving with a speed of about
10 microns/minute by chemotaxis toward higher secretant concentrations. The
dark regions correspond to flattened cells that are stationary. The spiral waves
rotate with a period of about 5 minutes. This early aggregation stage persists for
about four hours after which the pattern and cell behavior changes substantially,
forming thread-like streams. (Figure courtesy of Dr. Florian Siegert.)
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Our second biological example of a natural pattern formation is the important
medical problem of ventricular fibrillation. This occurs when the thick muscle tissue
surrounding the left ventricle (the largest of the four heart chambers) enters into
an irregular spatiotemporal electrical state that is no longer under the control of
the heart’s pacemaker (the sinoatrial node). In this fibrillating state, the ventricular
muscle cannot contract coherently to pump blood, and the heart and the rest of
the body start to die from lack of oxygen. A common but not always successful
treatment is to apply a massive electrical current to the heart (via a defibrillator) that
somehow eliminates the irregular electrical waves in the left ventricle and that resets
the heart tissue so that the ventricle can respond once again to the sinoatrial node.

Why the dynamics of the left ventricular muscle sometimes changes from peri-
odic coherent contractions to a higher-frequency nonperiodic incoherent quivering
is still poorly understood. One intriguing observation is that ventricular fibrilla-
tion is observed primarily in mammals whose hearts are sufficiently large or thick.
Thus mice, shrews, and guinea pigs do not easily suffer ventricular fibrillation
while pigs, dogs, horses, and humans do. Experiments, theory, and simulations
have begun to provide valuable insights about the spatiotemporal dynamics of ven-
tricular fibrillation and how it depends on a heart’s size and shape, as well as on
its electrical, chemical, and mechanical properties. An example is Fig. 1.10, taken

Fig. 1.10 Visualization of the surface voltage potential of an isolated blood-
perfused dog heart in a fibrillating state. The surface of the left ventricle was
painted with a dye whose fluorescent properties are sensitive to the local trans-
membrane voltage (which is of order 80 millivolts), and then the fluorescence
under a strong external light source was recorded as a function of time. The waves
propagate at a speed of about 20–40 cm/s (heart tissue is anisotropic and the speed
varies with the direction of propagation), a range that is about the same for most
mammalian hearts. (From Witkowski et al. [114].)
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from a pioneering experiment that visualized the time-dependent voltage pattern on
the surface of a fibrillating dog heart. This electrical pattern is complex and consists
of spiral-like waves that move around, and that sometimes terminate or are created
through collisions with other waves. Since muscle tissue contracts shortly after an
electrical wave front passes through it, the irregular geometric shape of the waves
in Fig. 1.10 explains directly why the heart is not contracting coherently and so has
difficulty pumping blood. The similarity of the dynamics to that observed in slime
molds and in reacting and diffusing chemical solutions is likely misleading. Left
ventricular muscle is a rather thick three-dimensional nonequilibrium medium and
recent theoretical research suggests that the surface patterns in Fig. 1.10 are likely
intersections by the surface of more intricate three-dimensional electrical waves
inside the heart wall that experimentalists have not yet been able to observe directly.

Given that ventricular fibrillation kills over 200 000 people in the United States
each year and is a leading cause of death in industrial countries worldwide, under-
standing the onset and properties of ventricular fibrillation and finding ways to
prevent it remain major medical and scientific goals. Chapter 11 will discuss heart
dynamics in more detail since it turns out to be one of the more exciting current fron-
tiers of nonequilibrium pattern formation and illustrates well many of the concepts
discussed in earlier chapters.

1.3.2 Prepared patterns

The previous section surveyed some of the patterns and dynamics that are observed
in natural nonequilibrium systems. For the most part, these natural systems are
difficult to study and to understand. Unlike the idealized room of convecting air in
Fig. 1.1, natural systems are often inhomogeneous and so difficult to characterize,
they are subject to many different and simultaneous mechanisms of driving and
dissipation (some of which are not known or are not well understood), and some
systems are simply too remote or too big for direct experimental investigation.
In this section, we survey some nonequilibrium phenomena observed in idealized
carefully controlled laboratory experiments and reach the important conclusion that
even such highly simplified systems can produce a dazzling variety of complex
patterns and dynamics, often with properties similar to those observed in natural
systems.

Figure 1.11 shows several patterns and dynamical states in a Taylor–Couette fluid
dynamics experiment. The experiment is named after the French scientist Maurice
Couette who, in the late 1800s, was one of the first to use this apparatus to study
the shearing of a fluid, and after the British scientist Geoffrey Taylor who used this
system in the early 1920s to make the first quantitative comparison in fluid dynamics
of a linear stability analysis with experiment (see Figs. 2.5 and 2.6 in Section 2.4).
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(a) (b) (c)

(d) (e)

Fig. 1.11 Five examples of pattern formation in a Taylor–Couette fluid dynamics
experiment, in which a fluid filling the thin annular gap between two concentric
cylinders is sheared by rotating the inner and outer cylinders at constant but differ-
ent speeds. The flow pattern was visualized by shining light through the transparent
outer cylinder and scattering the light off a low concentration of shiny impurities
such as aluminum flakes. In panels (a)–(d), the outer cylinder is at rest, while the
inner cylinder is rotating at different angular frequencies corresponding respec-
tively to inner Reynolds numbers of Ri/Rc = 1.1, 6.0, 16.0, and 26.5, where Rc is
the critical value at which laminar flow becomes unstable to Taylor cells. The fluid
is water at T = 27.5 ◦C with kinematic viscosity ν = 8.5 × 10−7m2/s. The height
of the two glass cylinders is H = 6.3 cm while the outer and inner radii are respec-
tively r2 = 2.54 cm and r1 = 2.22 cm. Only pattern (a) is time-independent. (e) A
so-called stripe-turbulent state found in a different Couette experiment with param-
eters r1 = 5.3 cm, r2 = 5.95 cm, and H = 20.9 cm. The inner and outer Reynolds
numbers are Ri = 943 and Ro = −3000. (Panels (a)–(d) from Fenstermacher
et al. [35]; panel (e) from Andereck et al. [3].)

Taylor–Couette flow has some similarities to Rayleigh–Bénard convection in that
a fluid like water or air is placed between two walls, here the inner and outer
boundaries of two concentric cylinders (with the outer cylinder usually made of
glass to facilitate visualization). But instead of being driven out of equilibrium by
a temperature gradient, the fluid is driven out of equilibrium by a velocity gradient
that is sustained by using motors and gears to rotate the inner and outer cylinders at
constant angular frequencies ωi and ωo respectively (not necessarily with the same
sign). The fluid temperature is constant throughout.

As was the case for convection, a dimensionless combination of system parame-
ters can be identified as the “stress’’parameter that measures the strength of driving
compared to dissipation. When both cylinders are spinning, there are two such
parameters and they are traditionally called the inner and outer Reynolds numbers.
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They have the form

Ri = ωiri(ro − ri)

ν
, Ro = ωoro(ro − ri)

ν
, (1.4)

where ri is the radius of the outer wall of the inner cylinder, ro is the radius of the
inner wall of the outer cylinder, and ν is again the fluid’s kinematic viscosity. Note
that there are many other valid ways to define dimensionless stress parameters here,
e.g. for an inner stress parameter the combinations ωir2

i /ν, ωi(r2
o − r2

i )/ν, or even
(1/2)ω2

i (ro+ri)(ro−ri)
3/ν2 could be used instead. (This last combination is called

the Taylor number and is basically the square of a Reynolds number.) Often the
appropriate choice of a stress parameter is suggested by a linear stability analysis
of the dynamical equations but in some cases the choice is simply set by historical
precedent.

Let us consider first the situation of a fixed outer cylinder so that ωo = 0 and Ro =
0. Then experiments show – in agreement with theory – that the velocity field v of
the fluid is time-independent and featureless3 until the inner Reynolds number Ri

exceeds a critical value Rc ≈ 100. (The specific value of Rc depends on the ratio
of radii ro/ri and on the height of the cylinders.) For R > Rc, interesting patterns
appear and these can be visualized by doping the fluid with a small concentration
of metallic or plastic flakes that reflect external light. Unlike the natural systems
described in the previous section, a Taylor–Couette cell can be accurately controlled
with the temperature, inner and outer radii, and rotational velocities all determined
to a relative accuracy of 1% or better. The results of such experiments are highly
reproducible and so the response of the system to small changes in the parameters
can be carefully and thoroughly mapped out.

Figure 1.11 shows examples of the patterns observed in particular Taylor–Couette
cells of fixed fluid, height, and inner and outer radii, for different constant values
of the Reynolds numbers Ri and Ro. For Ro = 0 and Ri > Rc just larger than
the critical value Rc at which a uniform state becomes unstable, Fig. 1.11(a) shows
that the fluid spontaneously forms a time-independent pattern of uniformly spaced
azimuthally symmetric donut-like cells called Taylor cells. Given the static one-
dimensional nature of this pattern, there is really only one interesting question to ask,
which is the question of wave number selection: what determines the wavelength
of the Taylor cells and is this wavelength unique for fixed external parameters? This
is a basic question in pattern formation, and we will return to it a number of times
in this book.

As the inner Reynolds number Ri is increased further, the static Taylor cells
become unstable to a time-periodic state consisting of waves that propagate around

3 “Featureless’’ here means that the velocity field v is independent of the azimuthal and axial coordinates and has
a simple monotonic dependence on the radial coordinate.
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each Taylor cell. Such a transition in a dynamical system is often called a bifurca-
tion.4 This regime is called the wavy vortex state, a snapshot of which is shown
in Fig. 1.11(b). The angular frequency of the waves is somewhat less than the
rotational frequency of the inner cylinder and is known experimentally to depend
on the values of the parameters ro, ri, and ν. For still larger Ri, a second Hopf
bifurcation takes place, leading to time-quasiperiodic dynamics and a more com-
plex spatial motion known as the modulated wavy vortex state (see Fig. 1.11(c)).
For still larger values of Ri (see Fig. 1.11(d)), the fluid becomes turbulent in that
the time dependence is everywhere nonperiodic, there is no longer any identifiable
wave motion, and the spatial structure is disordered. Note how one can perceive the
ghostly remains of the Taylor cells in this turbulent regime, raising again a question
similar to the one we asked about the Red Spot of Jupiter, namely how can some
kind of average structure persist in the presence of strong local fluctuations? (A
theoretical understanding of this strongly driven regime has not yet been devel-
oped.) A practical engineering question to answer would be to predict the average
torque on the inner cylinder as a function of the Reynolds number R. How does
the complex fluid motion modify the resistance felt by the motor, which is turning
the inner cylinder at constant speed?

Figure 1.12 summarizes many of the dynamical states that have been discovered
experimentally in Taylor–Couette flows for different values of the inner and outer
Reynolds numbers.5 This figure raises many interesting questions. Where do all
these different states come from and are these the only ones that can occur? Is
the transition from one state to another, say from Couette flow to Taylor vortex
flow or from spiral turbulence to featureless turbulence, similar to an equilibrium
phase transition corresponding to the melting of a crystal to form a liquid or the
evaporation of a liquid to form a gas? Little is known about most of these states
and their transitions. One of the few theoretical successes is the heavy black line,
which Taylor predicted in 1923 as the boundary separating the featureless laminar
regime of Couette flow from various patterned states.

While quite interesting, the patterns in Taylor–Couette flows tend to have mainly
a one-dimensional cellular structure and so we turn next to laboratory experiments
of Rayleigh–Bénard convection that show two- and three-dimensional pattern for-
mation and dynamics. As you learn by answering Exercise 1.5, a room like that
described in Fig. 1.1 is impractical for convection experiments because the onset of
convection is reached for a tiny difficult-to-achieve temperature difference, and the

4 A bifurcation of a dynamical system that introduces an intrinsic temporal oscillation is called a Hopf bifurcation,
so the transition of Taylor cells to the wavy vortex state in Fig. 1.11(b) is a spatiotemporal example of a Hopf
bifurcation.

5 This diagram is not complete since some regimes are hysteretic. One can then observe different states for the
same values of Ri and Ro, depending on the history of the experiment.
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Fig. 1.12 Phase diagram of patterns observed in Taylor–Couette flow as a function
of the inner Reynolds number Ri and the outer Reynolds number Ro. The heavy
line denotes the boundary between featureless flow below the line and patterned
states above the line. (Redrawn from Andereck et al. [3].)

time scales for observation are uncomfortably long. Instead, experimentalists use
tiny convection cells that are Swiss watches of high precision, with a fluid depth
of perhaps d ≈ 1 mm and a width L ≈ 5 cm. The bottom and top plates of such
apparatuses are machined and polished to be flat to better than one micron and then
aligned to be parallel to better than one part in 104. The bottom plate may be made
of gold-plated copper which has a thermal conductivity about 1000 times higher
than water or air. The upper plate is often made of a thin, wide (and expensive!) sap-
phire plate, which has the nice properties of being optically transparent (allowing
visualization of the flow) and of being an excellent thermal conductor. The mean
temperature of the fluid and the temperature difference �T across the plates can be
controlled to better than 1 milliKelvin (again about one part in 104) for more than
a month of observation at a time. A Rayleigh–Bénard convection experiment has
a significant advantage over Taylor–Couette and other fluid experiments in hav-
ing no moving parts in contact with the fluid. Thus motors or pumps that oscillate
and vibrate can be avoided and the observed dynamics of the convecting fluid is
intrinsic since the fluid is bounded by time-independent spatially homogeneous
boundaries.

The patterns of a convecting flow are usually visualized by a method called
shadowgraphy (Fig. 1.13). The index of refraction of a fluid is weakly dependent
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Fig. 1.13 Schematic drawing of the shadowgraphy method for visualizing a
Rayleigh–Bénard convection pattern. Monochromatic light from a light emitting
diode (LED) is reflected by a beam splitter through the transparent top plate (often
made of sapphire) of the convection experiment. The light beams are refracted
by the warm and cold regions of the fluid which act as diverging and converg-
ing lenses respectively. The light is then reflected off the mirror bottom plate, is
refracted once more through the convection rolls, back through the beam split-
ter, and is then analyzed by a CCD (charge-coupled-device) videocamera. (From
deBruyn et al. [30].)

on temperature so that the warm rising plumes of fluid act as a diverging lens and the
cold descending plumes of fluid act as a converging lens. A parallel beam of light
passing through the convecting fluid will be refracted by the convection rolls, and
focused toward the regions of higher refractive index. The convection rolls act as an
array of lenses producing, at the imaging plane, a pattern of alternating bright and
dark regions, with the bright regions corresponding to the cold down-flow and the
dark regions corresponding to the warm up-flow. These images are often sufficient
to identify the interesting patterns and their dynamics, and can be recorded by a
video camera and stored in digital form for later analysis.

Given this background, you can now appreciate the experimental data of
Fig. 1.14, which shows three convection patterns in large cylindrical geome-
tries. As we will see, the typical size of the structures in the convecting flow
is set by the depth of the layer of fluid. The important parameter describing the
“size’’ of the experimental system is therefore the aspect ratio defined as the lat-
eral extent of the convecting fluid (e.g. the radius of a cylindrical cell) divided
by the fluid depth. We will use the symbol 	 for the aspect ratio. The convecting
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(a) (b) (c)

Fig. 1.14 Visualization of convecting fluid patterns in large cylindrical cells by the
shadowgraphy method of Fig. 1.13. The white regions correspond to descending
colder fluid and the dark stripes to rising warmer fluid. (a) A stationary stripe
pattern just above onset for R = 1.04Rc, with a local wavelength that is close to
twice the depth of the fluid. This cell has an aspect ratio of 	 = r/d = 41. (b)
A remarkably uniform stationary lattice of hexagonal convection cells is found in
gaseous CO2 for R = 1.06Rc. Here the fluid is descending in the middle of each
hexagonal cell and rising along its boundaries. Only a portion of an aspect-ratio
	 = 86 cell is shown. With a small increase in the Rayleigh number to R = 1.15Rc,
the hexagonal cells in (b) change into a slowly-rotating spiral. A three-armed spiral
pattern is shown in (c). (Panels (a) and (b) from deBruyn et al. [30]; (c) from the
website of Eberhard Bodenschatz.)

fluid in the experiments shown in Fig. 1.14 is compressed carbon dioxide at room
temperature.

Figure 1.14(a) shows a most remarkable fact. After some transient dynamics not
shown, the rising and falling plumes of fluid self-organize into a time-independent
periodic lattice of straight lines, often called “stripes.’’ The surprise is that the
circular geometry of the surrounding walls has little effect on this final geometric
pattern; one might have expected instead the formation of axisymmetric (circular)
convection rolls with the same symmetry as that of the lateral walls.

Under slightly different conditions Fig. 1.14(b) shows that a nearly perfect time-
independent lattice of hexagonal convection cells forms. In each hexagon, warm
fluid rises through its center and descends at its six sides, and the diameter of each
hexagon is about the depth of the fluid. As was the case for the stripe pattern,
the cylindrical shape of the lateral walls seems to have little effect on the pattern
formation within the fluid except for the few cells directly adjacent to the lateral
wall.

In Fig. 1.11(b) and in Figs. 1.14(a) and (b), we seem to be observing an intrinsic
ordering of the convection cells which you might guess is analogous to the formation
of a crystalline lattice of atoms as some liquid is slowly cooled. However, as we
discuss in the next chapter and later in the book, the mechanism for formation
of stationary nonequilibrium periodic lattices is fundamentally different than the
mechanism by which periodic equilibrium crystalline lattices form, e.g. the cubic
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lattice of sodium and chlorine atoms in table salt. In the latter case, atoms attract
each other at long distances and repel each other at short distances so that the lattice
spacing is determined by the unique energy minimum for which the repulsive and
attractive forces balance. In contrast, the lattice spacing in a nonequilibrium system
is determined by dynamic mechanisms that have nothing to do with repulsion or
attraction and with which no energy-like quantity can generally be associated. A
consequence is that nonequilibrium lattices may lack a unique lattice spacing for
specified experimental conditions.

For the same fluid and geometry of Fig. 1.14(b), if the Rayleigh number is
increased just a tiny bit more to the value R = 1.15Rc, the hexagonal lattice dis-
appears and is replaced by a large slowly rotating spiral. A similar spiral pattern in
a smaller aspect ratio cell is shown in Fig. 1.14(c). If you look carefully, you will
see that the spiral terminates before reaching the lateral wall by merging with three
topological defects called dislocations. The three convection patterns of Fig. 1.14
raise obvious interesting questions about pattern formation in nonequilibrium sys-
tems. Why do we see stripes in one case and hexagons in another? What determines
the lattice spacing? Why do the hexagons disappear with a small increase in R, to be
replaced by a large rotating spiral? And what determines the angular frequency of
the spiral’s rotation? We will be able to answer some of these questions in Chapters 6
through 9 later in the book.

The patterns in Fig. 1.14 are time-independent or weakly time-dependent. In
contrast, Fig. 1.15 shows snapshots from two different time-dependent states that
have been observed in a convecting fluid close to the onset of convection. Figure
1.15(a) shows a most remarkable dynamical state called spiral defect chaos. Spirals
and striped regions evolve in an exceedingly complex way, with spirals migrating
through the system, rotating (with either sense) as they move, sometimes annihi-
lating with other spirals, and sometimes giving birth to spirals and other defects. It
seems almost inconceivable that rising and falling air can spontaneously develop
such a complicated dynamical dance, especially under conditions such that the
air is constrained by time-independent and spatially homogeneous boundaries.
Experiments and numerical simulations have further shown that, under identical
experimental conditions (although in a large rectangular convection cell), one can
see spiral defect chaos or a time-independent lattice of stripes similar to Fig. 1.14(a),
i.e. there are two dynamical attractors and which one is observed depends on the
initial conditions of the experiment. So the same fluid can convect in two very
different ways under the same external conditions. Another interesting feature of
spiral defect chaos is that it is found only in convection systems that are sufficiently
big. For geometries with aspect ratio 	 smaller than about 20, one finds other
less-disorganized patterns. This dependence on size is not understood theoretically.



28 Introduction

(a) (b)

Fig. 1.15 Two spatiotemporal chaotic examples of Rayleigh–Bénard convection.
(a)Asnapshot of spiral defect chaos in a large cylindrical cell of radius r = 44 mm,
and depth d = 0.6 mm (	 = 73), for Rayleigh number R = 1.894 Rc. The fluid is
gaseous carbon dioxide at a pressure of 33 bar. (From Morris et al. [75]) (b)Asnap-
shot of domain chaos, which occurs in a Rayleigh–Bénard convection cell that is
rotating with constant angular frequency about the vertical axis. The figure actu-
ally shows results from numerical simulations of equations to be introduced in
Chapter 5 but the experimental pictures are similar. Each domain of rolls is unsta-
ble to the growth of a new domain with rolls oriented at about 60◦ with respect to
the old angle, and the pattern remains dynamic. (From Cross et al. [27].)

If a convection apparatus is rotated at a constant angular frequency ω about its
center, a different chaotic dynamics is observed called domain chaos (Fig. 1.15(b)).
The rotation rate can be expressed in dimensionless form using a rotational Reynolds
number


 = ωd2

ν
, (1.5)

where we use an uppercase Greek omega, 
, to distinguish this quantity from the
Reynolds numbers R defined in Eq. (1.4) for Couette flow. Provided that 
 exceeds
a critical value 
c (which has the value 
c � 12 for gaseous CO2), experiments
show that the domain chaos persists arbitrarily close to the onset of convection. As
the Rayleigh number for convection R approaches Rc from above, the size of the
domains and the time for one domain to change into another domain of a different
orientation both appear to diverge. The experimental discovery of domain chaos
was quite exciting for theorists since, in the regime arbitrarily close to onset, there is
a good chance of understanding the dynamics by developing a perturbation theory
in the small quantity ε = (R − Rc)/Rc � 1.

These two kinds of spatiotemporal chaos raise some of the most difficult concep-
tual questions concerning sustained nonequilibrium states. How do we understand
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such disordered states, as well as the transitions into and out of such states?Are such
states analogous to the liquid and gas phases of some equilibrium system and are
the transitions between spatiotemporal chaotic states possibly similar to thermody-
namic phase transitions? As one example to consider, as the Rayleigh number R is
increased with zero rotation rate, a pattern consisting mainly of stripes evolves into
the spiral defect chaos state. What then is the effect of rotation on this spiral defect
chaos, and how does this state change into domain chaos with increasing 
?

We now turn away from convection to discuss patterns found in other controlled
laboratory experiments. Figure 1.16 shows three new kinds of nonequilibrium

Fig. 1.16 Three patterns observed in crispation experiments, in which a shallow
horizontal layer of fluid (here a silicon oil with viscosity ν = 1 cm2/s) is shaken up
and down with a specified acceleration a(t) Eq. (1.6). Bright areas correspond to
flat regions of the fluid surface (peaks or troughs) that reflect incoming normal light
back toward an imaging device. (a) A mixed pattern of stripe and chaotic regions.
The fluid is being driven sinusoidally with parameters a1 = 0 and a2 ≈ 8g (about
1.45ac) and f1 = 45 Hz in Eq. (1.6). (From Kudrolli and Gollub [58].) (b) A time-
periodic superlattice pattern consisting of two superimposed hexagonal lattices
with different lattice constants (ratio

√
3) and rotated with respect to one another

by 30◦. This figure was obtained by averaging over two drive periods for parameter
values m = 4, n = 5, a4 ≈ 4.4g, a5 ≈ 7.9g, f = 22 Hz, and φ = 60◦ in Eq. (1.6).
(c) For the same parameters as those of panel (b) but with a relative driving phase φ
set to 16◦, a spatially quasiperiodic pattern is observed that has 12-fold symmetry
around various points in the pattern. ((b) and (c) from Kudrolli et al. [59].)
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patterns that are observed in a so-called crispation or Faraday experiment, named
after the British scientist Michael Faraday who was the first to report some observa-
tions of such a system in the year 1831. In these particular crispation experiments, a
dish containing a fluid layer was shaken up and down with a specified acceleration
of the form

a(t) = an cos(2πnft) + am cos(2πmft + φ). (1.6)

Here the acceleration amplitudes an and am are measured in units of the Earth’s
acceleration g, the basic frequency f is varied over the range 10–200 Hz, m and n are
integers, and φ is a specified phase.6 For the case of sinusoidal driving with an = 0
and m = 1, when the acceleration amplitude am or shaking frequency f exceeds
some threshold, the fluid’s flat surface becomes unstable to the formation of cap-
illary waves (short-wavelength surface waves for which the surface tension of the
fluid is a stronger restoring force than gravity) and the nonlinear interaction of these
waves leads to intricate patterns, including lattices of stripes, squares, or hexagons,
and spatiotemporal chaos.7 An advantage of crispation experiments over convection
and Taylor–Couette experiments is that the effective system size of the system can
be easily increased by simply increasing the driving frequency f , which decreases
the average wavelength of the patterns.

In Fig. 1.16(a), a cup 32 cm in diameter containing a 3 mm layer of viscous
silicon oil was shaken sinusoidally (an = 0, m = 1) with frequency f = 45 Hz
and acceleration am ≈ 8g. For these parameters, the fluid surface spontaneously
evolves to a novel mixed state for which part of the fluid is evolving chaotically
and part is an approximately stationary stripe pattern. Unlike the stripe-turbulent
state of Fig. 1.11(e), the fronts separating the chaotic and laminar regimes do not
propagate. Increasing the amplitude a1 further causes the chaotic regions to grow in
size at the expense of the stripe region until the stripe region disappears completely.
These results are not understood theoretically.

The patterns in Figs. 1.16(b) and (c) are obtained for the case of periodic external
driving with two frequencies such that the ratio of the driving frequencies is a
rational number m/n. If one frequency fm = 4f is an even multiple and the second
frequency fn = 5f is an odd multiple of a base frequency f = 22 Hz, there is a
regime of parameters such that the fluid surface spontaneously forms a new kind
of structure called a superlattice that can be understood as the superposition of two
different lattices. Superlattices are found in other nonequilibrium systems as well

6 As a simple experiment, you can try placing a loud speaker face up to the ceiling, put a small board on the
speaker cone, and then put a cup of water on the board. Playing various tones at different volumes through
the speaker will then shake the cup up and down with a prescribed amplitude and frequency and you should be
able to see some interesting patterns.

7 Crispation patterns are all time dependent and vary subharmonically with the driving frequency f . A stationary
pattern is then one that looks the same after two driving periods.



1.3 Examples of nonequilibrium patterns and dynamics 31

as in equilibrium structures. If the relative phase of the driving is decreased from
φ = 60◦ to 16◦, an intricate time-independent pattern is now observed (Fig. 1.16(c))
that is called quasicrystalline since it is spatially nonperiodic yet highly ordered in
that its wave number spectrum P(k) has sharp discrete peaks.

Quasicrystalline states are rather extraordinary. Since the development of X-ray
crystallography and associated theory in the early twentieth century, scientists had
believed that sharp peaks in a power spectrum (corresponding to discrete points in
a X-ray film) could arise only from a periodic arrangement of the objects scatter-
ing the X-rays. This orthodoxy was proved wrong in 1984 when experimentalists
announced the synthesis of the first quasicrystal, an Al-Mn alloy whose X-ray
diffraction pattern had the seemingly impossible properties of a 5-fold symmetry
(not possible for a space-filling periodic lattice) and sharp peaks (indicating the
absence of disorder). Figure 1.16(c) is a nonequilibrium example of a quasicrys-
talline pattern with a 12-fold symmetry, and experiments show that the pattern is
intrinsic since it is not sensitive to the shape or size of the container. Why is panel (c)
quasicrystalline rather than striped or hexagonal as we saw for Rayleigh–Bénard
convection in Figs. 1.14(a) and (b)? As various parameters are varied, what kinds
of transitions into and out of this state exist?

Pattern formation in a rather different kind of crispation experiment is shown in
Fig. 1.17, which involves the vertical shaking of a granular medium consisting of
thousands of tiny brass balls.8 This pattern formation is not related to the capillary
waves of a Faraday experiment since a granular medium does not possess a surface
tension (the brass balls do not attract each other as do the molecules in a fluid). When
the dimensionless amplitude of shaking is sufficiently large, the granular layer is
actually thrown into the air, somewhat like a pancake from a frying pan, and then
the layer starts to spread out vertically since the brass balls are not all moving with
identical velocities. It is then possible for the bottom of the container to be moving
upwards at the same time as the bottom of the granular layer is descending, causing
some balls to strike the bottom (changing their direction) while other balls remain
suspended in the air and continue to fall. This can lead to an alternating pattern in
which peaks and valleys of balls formed at one cycle become respectively valleys
and peaks at the next cycle or every four cycles, and so on.

In Figs. 1.17(a)–(e), we see stripe and hexagonal regions somewhat similar to
those observed in convection near onset (Fig. 1.14) but the regions appear in new and
unusual combinations, e.g. two kinds of hexagonal regions separated by a front (b),
two flat regions (c), a region of locally square cells abutting a stripe region (d), a
pattern consisting of three kinds of hexagonal regions (e), and spatiotemporal chaos

8 This experiment was originally carried out not to study crispation dynamics but to explore the properties of
granular media, a major research area of current nonequilibrium science.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1.17 Six patterns observed in a granular crispation experiment. A shallow
layer (depth = 1.2 mm) of tiny brass balls (diameters ranging from 0.15–0.18 mm)
was vertically shaken up and down in an evacuated cylinder of diameter 127 mm
at a constant angular frequency ω = 421 s−1 with a varying vertical amplitude A.
Each pattern is characterized by the dimensionless acceleration parameter 	 =
ω2A/g where g is the gravitational acceleration. (a) 	 = 3.3, a disordered stripe
state that is found just above the onset of the instability of a flat uniform state; (b)
	 = 4.0, a state consisting of two different kinds of locally hexagonal structures;
(c) 	 = 5.8, two flat regions divided by a kink; (d) 	 = 6.0, a phase of locally
square-symmetry states coexisting with a phase of stripes; (e) 	 = 7.4, different
kinds of coexisting hexagonal phases; (f) 	 = 8.5, a spatiotemporal chaotic state.
(From Melo et al. [73].)

consisting of short stripe-like domains (f). Unlike convection, Taylor–Couette flow,
or crispation experiments with a fluid, it is not clear what sets the length scales of
these cellular patterns. The similarities of these patterns to those observed in fluids
and in other systems such as lasers is intriguing and puzzling. Is there an underlying
continuum description of these brass balls, similar to the Navier–Stokes equations
of fluid dynamics? If so, what is that description and how is it derived? What are
the properties of the granular media that determine these different spatiotemporal
phases?

For our last example of controlled nonequilibrium patterns and dynamics, we dis-
cuss experiments involving chemical solutions. Figure 1.18(a) shows a snapshot
of a time-dependent two-dimensional chemical reaction known as the Belousov–
Zhabotinsky reaction, named after two Russians who, in the 1950s and 1960s,
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(a) (b) (c)

Fig. 1.18 Representative patterns in reaction–diffusion systems. (a) Time-
dependent many-spiral state observed in a Belousov–Zhabotinsky excitable
reaction consisting of chemical reagents in a shallow layer of fluid in a Petri-
like dish. Since the system is closed, the pattern becomes time-independent after
a long-lived complicated transient state. (From Winfree and Strogatz [112].) (b)
Nearly time-independent hexagonal pattern of spots observed in a chlorite-iodide-
malonic-acid (CIMA) system of chemicals that are reacting in a thin cylindrical
polyacrylamide gel of diameter 25.4 mm and thickness 2.00 mm. Unlike (a), this is
a sustained nonequilibrium system since reagents are fed to and reaction products
removed from the gel. The gel suppresses fluid motion and provides a way to visu-
alize the iodide concentration field since the iodide binds with starch embedded
in the gel to produce a blue color. The spacing between dots is about 0.2 mm,
substantially smaller than the thickness of the gel. (c) For slightly different exter-
nal conditions, a nearly time-independent stripe pattern is observed instead of
comparable wavelength. (From Ouyang and Swinney [84].)

established the remarkable fact that chemical systems could approach equilibrium
with a non-monotonic dynamics, e.g. by oscillating in time or by propagating waves
in space. When first announced, the experimental discovery was greeted with dis-
belief and ridicule since most scientists at that time believed incorrectly that the
second law of thermodynamics (that the entropy of a system can only increase
monotonically toward a maximum value corresponding to thermodynamic equi-
librium) implied a monotonic evolution of chemical concentrations toward their
asymptotic equilibrium values. With the hindsight of several decades of nonlin-
ear dynamics research that has established convincingly the existence of periodic,
quasiperiodic, and chaotic attractors in many experimental systems as well as the
occurrence of complicated transients leading to these attractors, it is difficult for
contemporary scientists to appreciate this initial disbelief.

Current interest in the Belousov–Zhabotinsky reaction lies primarily in its value
as an experimental metaphor for studying more complicated continuous media such
as lasers and heart tissue that have the property of being excitable. An excitable
medium is such that a local weak perturbation decays while a perturbation whose
strength exceeds some threshold grows rapidly in magnitude and then decays. An
example is a field of dry grass for which a local increase in temperature causes
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no change until the temperature exceeds the kindling point. The temperature then
rapidly increases as the grass combusts, a wall of flame propagates through the
grass, and then the temperature decays to the ambient temperature once the grass
has been consumed. Excitable media such as the Belousov–Zhabotinsky reaction,
heart tissue, and dry grass fields show similar spatiotemporal patterns and so inves-
tigations of the disordered rotating and propagating spiral waves in Fig. 1.18(a), of
target patterns of concentric circular propagating waves (not shown and believed
to be induced by impurities such as a piece of dust), and their generalization to
three-dimensional chemical media in the form of scroll waves give insight simulta-
neously to many different systems. The questions of interest are ones that we have
discussed earlier in the context of a galaxy’s spiral arms and of the aggregation
of slime mold. What determines the speed of a front and its frequency of rotation
and how do these quantities vary with parameters? For many-spiral states, what
happens when one spiral interacts with another spiral or with a boundary? In a
three-dimensional medium, what are the possible wave forms and how do their
properties vary with parameters?

The reaction–diffusion patterns of Figs. 1.18(b) and (c) involve different chemi-
cals and are qualitatively different in that the medium is not excitable and there are
no propagating waves. Also, these figures represent true sustained nonequilibrium
states since porous reservoirs in physical contact with opposing circular surfaces
of a thin cylindrical gel (see Fig. 3.3 on page 110) feed chemical reagents into the
interior of the gel where the pattern formation occurs, and also withdraw reaction
products. The small pores of the gel suppress fluid motion which greatly simplifies
the theoretical analysis since the spatiotemporal dynamics then arises only from
the reaction and diffusion of chemicals within the gel. The patterns were visual-
ized by using the fact that one of the reacting chemicals (iodide) binds to starch
that is immobilized in the gel, causing a color change that reflects the local iodide
concentration.

A typical experiment involves holding the temperature and reservoir chemical
concentrations constant except for one chemical concentration which becomes the
control parameter. For one choice of this concentration (Fig. 1.18(b)), the chem-
icals spontaneously form a locally hexagonal pattern similar to the convection
pattern Fig. 1.14(b) and granular crispation patterns in Fig. 1.17. Other param-
eter values lead to a stripe state, superlattices, and spatiotemporal chaos. These
chemical patterns are cellular just like the convection patterns that we discussed in
Figs. 1.14 and 1.15 but here the length scale is determined dynamically by a balance
of diffusion and chemical reaction rates rather than by the geometry of the container.

When the experiments in Figs. 1.18(b) and (c) and others were first reported
around 1990, there was great scientific excitement, not because they were the first
examples of nonequilibrium pattern formation but because they were the first to
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confirm a remarkable insight of Alan Turing. In 1952, Turing observed that dif-
fusion, which by itself tends to make chemical concentrations spatially uniform,
could lead to the formation of cellular patterns if chemical reactions were also to
occur. (We will discuss some details of Turing’s insight in Chapter 3, when we
discuss the linear stability of a uniform state.) Turing then went on to speculate
that patterns generated by reaction and diffusion might suffice to explain biolog-
ical morphogenesis, the formation of structure during the growth of a biological
organism. Examples Turing had in mind included the formation of stripes or spots
on animal surfaces (tigers, zebras, cheetahs, giraffes, fish, seashells), the formation
of symmetrically arranged buds that grow into leaves or tentacles, and the ques-
tion of how a presumably spherically symmetric fertilized egg (zygote) could start
the process of dividing and differentiating into the many different kinds of cells
found in an adult organism. Ironically, while Turing’s insight of pattern formation
by reaction and diffusion was finally confirmed forty years later by nonbiological
experiments, pattern formation in biological systems has turned out to be more
complicated than originally conceived by Turing, and a picture as simple as the one
he proposed has not yet emerged.

1.3.3 What are the interesting questions?

To summarize the many nonequilibrium states discussed in Sections 1.3.1 and 1.3.2,
let us list here the scientific questions raised by our discussion:

Basic length and time scales: Many of the patterns that we discussed have a cellular
structure, consisting locally of stripes, squares, or hexagons of a certain typical size,
or of waves or spirals that evolve with a certain frequency and velocity. An obvious
question is what determines the basic length and time scales of such patterns? In some
cases such as Taylor–Couette flow and Rayleigh–Bénard convection, the cellular size
is determined by the experimental geometry (e.g. the thickness of the fluid layer) but
this is not always the case. For example in the limit that the thermal conductivity of
a convecting fluid becomes large compared to that of the floor and ceiling in Fig. 1.1
(liquid mercury between two glass plates would be an example), the cellular length
scale can become much larger than the depth of the fluid. For reaction–diffusion
chemical systems and related media such as the heart or a slime mold, the length and
time scales are determined dynamically by diffusion constants and reaction rates.

Wave number selection: For some parameter ranges, stationary spatially periodic lat-
tices are observed that can be characterized by a single number, the lattice spacing.
In these cases, we can ask the question of wave number selection: is a unique lat-
tice spacing observed for specified parameters and boundary conditions and what
determines its value? If there are multiple spacings, what determines their values?

Related questions arise in other systems. Thus the spirals in spiral galaxies
(Fig. 1.4), in slime-mold aggregation (Fig. 1.9), in spiral defect chaos (Fig. 1.15),
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and on the surface of a fibrillating heart (Fig. 1.10) all raise the question of what
determines the frequency of rotation and the velocity of the arms in the observed spi-
rals. In snowflakes (Fig. 1.8) and in the domain chaos of a convecting fluid (Fig. 1.15),
there is propagation of a tip or front and one can ask if the propagation occurs with a
unique velocity and what determines that velocity.

You should appreciate that the question of length and time scales and the question
of wave number selection are distinct. The question of scales corresponds to knowing
what unit of measurement is appropriate (say meters versus millimeters or days versus
seconds). The question of wave number selection then corresponds to making precise
measurements on this scale. For example, the lattice spacing of hexagonal rolls may be
about one millimeter in order of magnitude (the length scale) but in actual experiments
we would be interested to know if the precise value is 0.94 or 1.02 mm and whether
these values repeat from experiment to experiment.

Pattern selection: For patterns that form in two- and three-dimensional domains, mul-
tiple patterns are often observed for the same fixed external conditions. The question
of pattern selection is why one or often only a few patterns may be observed or why,
in other cases, certain patterns are not observed? An example we discussed above was
the occurrence of a spiral defect chaos state (Fig. 1.15(a)) or of a stripe-pattern state
under identical conditions in a large square domain. On the other hand, a quasiperiodic
pattern like Fig. 1.16(b) has never been observed in a convecting flow. Why not?

Transitions between states: A given nonequilibrium state will often change into some
other state as parameters are varied and so we can ask: what are the possible transitions
between nonequilibrium states? Of special interest are supercritical transitions – in
which a new state grows continuously from a previous state – since analytical progress
is often possible near the onset of such a transition.

Arelated question is whether supercritical nonequilibrium transitions have interest-
ing critical exponents associated with the transition. For second-order thermodynamic
phase transitions and for nonequilibrium supercritical transitions, a quantity Q that
characterizes the system may converge to zero or diverge to infinity at the transition
point as a power law of the form

Q ∝ |p − pc|α , as p → pc, (1.7)

where p is the parameter that is being varied with all others held fixed, pc is the critical
value of p at which the supercritical transition occurs, and the quantity α is the critical
exponent which determines the rate of convergence or divergence of Q.9 Some of the
great advances in twentieth-century theoretical and experimental science concerned
the discovery and explanation for “universal’’ values of these critical exponents. In
equilibrium systems, their values turn out to depend remarkably only on the symmetry

9 An example of a second-order equilibrium phase transition is the loss of magnetism of pure iron as its tem-
perature T is increased to its Curie temperature Tc ≈ 1043 K. The magnetization M of the iron decreases to
zero according to Eq. (1.7) with an exponent α ≈ 0.3. The onset of convection in Fig. 1.1 is a supercritical
nonequilibrium transition for which the maximum magnitude of the velocity field maxx‖v‖ vanishes according
to Eq. (1.7) with an exponent α ≈ 1/2.
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and dimensionality of the system undergoing the phase transition, but not on the
possibly complicated details of its atomic structure. So we can ask: do universal
exponents occur in spatially extended nonequilibrium systems? If so, on what details
of the system do they depend?

Stability: In addition to classifying the possible transitions between different nonequi-
librium states, can we predict when transitions will occur for particular states as
particular parameters are varied? For many experiments, the underlying dynamical
equations are known and a linear stability analysis of a known state can be attempted
numerically (more rarely, analytically). In other cases such as granular flow or neural
tissue, the underlying equations are not known (or might not exist or might not be
practical to work with mathematically or computationally) and one might instead try
to identify empirical features in experimental data that could suggest when a transi-
tion is about to occur. Two examples are attempts to predict an economic crash from
stock market time series, and efforts to predict the onset of an epileptic seizure from
19-electrode multivariate EEG time series.

Boundaries: Even in experimental systems that are large compared to some basic cel-
lular length scale, the lateral boundaries confining the medium (e.g. the walls in
Fig. 1.1) can strongly influence the observed patterns and dynamics. How do the
shape, size, and properties associated with lateral boundaries influence the dynam-
ics? One example we discussed in Section 1.3.2 was the fact that spiral defect chaos
(Fig. 1.15(a)) is not observed until a convection system is sufficiently wide. Some-
how the lateral boundaries suppress this state unless the boundaries are sufficiently
far from each other.

Transients: For spatially extended nonequilibrium systems, it can be difficult to deter-
mine how long one must wait for a transient to end or even if an observed state is
transient or not. Mathematical models of spatially extended systems suggest that the
average time for transients to decay toward a fixed point can sometimes grow expo-
nentially rapidly with the system size and so be unobservably long even for systems
of moderate size. What determines the time scale for a transient spatiotemporal pat-
tern to decay? Is it possible to distinguish long-lived transient states from statistically
stationary states?

Spatiotemporal chaos: Many systems become chaotic when driven sufficiently away
from equilibrium, i.e. their nontransient dynamics are bounded, are neither station-
ary, periodic, nor quasiperiodic in time, and small perturbations grow exponentially
rapidly on average. Chaotic pattern forming systems in addition may develop a nonpe-
riodic spatial structure that is called spatiotemporal chaos. Several examples discussed
above include spiral defect chaos and domain chaos in Fig. 1.15 and a chaotic pattern
in a granular crispation experiment, Fig. 1.17(f). Spatiotemporal chaos raises difficult
conceptual questions about how to characterize the spatiotemporal disorder and how
its properties depend on parameters.

Transport: For engineers and applied scientists, an important question is how does
the transport of energy and matter through a spatiotemporal nonequilibrium system
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depend on its parameters? For example, computer chips generate heat and a mechani-
cal engineer may need to design the geometry of a computer board so that convection
can remove the heat efficiently. Similarly, the synthesis of an ultrapure crystal from a
molten substrate is a nonequilibrium problem for which a chemical engineer needs to
know how the transport of impurities into the crystal depends on parameters so that
this transport can be minimized.

Control: For many applied science problems, it is not sufficient to observe a nonequilib-
rium system passively, one needs to control a system actively by applying an external
perturbation. An example is the dynamics of left ventricular muscle (Fig. 1.10), for
which one might hope to use gentle electrical perturbations to prevent the onset of
fibrillation when an arrhythmia appears. Similarly, an electrical engineer may need to
apply an external perturbation to a laser to stabilize a regime of high-power coherent
emission, or a plasma physicist may want to confine a hot thermonuclear plasma for
long times by modulating some external magnetic field, and one can speculate about
a futuristic technology that perturbs the atmosphere to prevent the formation of a
tornado or hurricane. These goals raise many unsolved questions regarding how a
nonequilibrium system responds to external perturbations and how to choose such
perturbations to achieve a particular goal.

1.4 New features of pattern-forming systems

The variety of nonequilibrium patterns discussed in the previous sections and the
many scientific questions suggested by these patterns are possibly overwhelming
if you are learning about these for the first time. To give you some sense about
what features of these systems are significant, we discuss in this section some
ways that pattern-forming nonequilibrium systems differ from those that you may
have encountered in introductory courses on nonlinear dynamics and on thermody-
namics. We first discuss some conceptual differences and then some specific new
properties.

1.4.1 Conceptual differences

An important new feature of pattern-forming systems and a direct consequence
of their nonequilibrium nature is that the patterns must be understood within a
dynamical framework. This is the case even if we are interested in just time-
independent patterns such as panels (a) and (b) of Fig. 1.14. In strong contrast,
the geometry and spacing of a spatial structure in thermodynamic equilibrium can
be understood as the minimum of the system’s energy (or, more precisely, as the
minimum of the system’s free energy for systems at a finite temperature T ).Afamil-
iar equilibrium example is a periodic lattice of atoms or molecules in a crystal. The
positions of the atoms can be determined directly from the energy of their mutual
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interaction, independently of the dynamics of the atoms, since the minimum energy
is achieved for zero velocity of each atom and so depends only on the positions of
the atoms.10 This is not the case for nonequilibrium systems since generally there
is no free-energy-like quantity whose extremum corresponds to the static nonequi-
librium pattern. (We will discuss this point in more detail later in the book but note
for now that the absence of a free energy is partly a consequence of the fact that
nonequilibrium systems are open systems subjected to imposed external fluxes and
so a system’s energy, mass, and momentum are often not conserved.) Furthermore,
we are often interested in the breakdown of stationary patterns to new patterns that
remain dynamic indefinitely, a phenomenon that obviously requires a dynamical
formulation and that has no thermodynamic analogy.

Introductory nonlinear dynamics courses discuss systems that are well described
with just a few variables, e.g. the logistic map, the Hénon map, the standard map, the
driven Duffing equation, and the Lorenz model. A pattern-forming system differs
fundamentally in that many variables are needed to describe the dynamics (the
phase space is high-dimensional). New concepts and methods are then needed to
study pattern formation, and indeed many basic ideas that you may have learned
in an introductory nonlinear dynamics course will not be applicable in this book.
For example, the strategy of studying a continuous-time dynamical system via its
associated discrete-time Poincaré map is no longer useful, nor is it productive to
analyze an experimental time series by embedding it into some low-dimensional
phase space. As mentioned above, a high-dimensional phase space is needed even
to describe a fixed point (an attractor with zero fractal dimension) such as the static
pattern of convection rolls in Fig. 1.14(a) since the transient orbit meanders through
the high-dimensional space as it approaches the fixed point.

Figure 1.19 gives a physical insight into why pattern-forming systems have a
high-dimensional phase space by contrasting two convection systems. The ther-
mosyphon shown in Fig. 1.19(a) is a thin closed circular pipe filled with a fluid
that is heated over its bottom half and cooled over its top half. From our discussion
of convection in Section 1.2, you will not be surprised to learn that if the circular
pipe is placed vertically in a gravitational field, then for a temperature difference
between the top and bottom halves that exceeds some critical value, the fluid begins
to circulate around the tube, forming a simple convection “roll.’’ (Which way does
the fluid begin to circulate? This is not determined a priori, and the circulation
will be clockwise for some experimental runs, anticlockwise for others – a good
example of what is known as a broken symmetry.) If the temperature difference in

10 We are thinking about the atoms classically here, a good approximation except for the lightest atoms such
as hydrogen and helium. In a full quantum mechanical description the atoms are no longer at rest in the
crystal even at zero temperature due to zero point motion. However, the lattice structure is still obtained as the
minimum energy state, albeit involving a more complicated calculation of the energy.
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(a) (b)

Fig. 1.19 Two convection systems: (a) a thermosyphon and (b) Rayleigh–Bénard
convection with many rolls. The light and dark regions denote respectively warm
and cool fluid regions. The thermosyphon is well-described by attractors in a three-
dimensional phase space whereas the patterns in Rayleigh–Bénard convection
require a high-dimensional dynamical description even to describe its static states.

this simple system is set to some still larger value, the direction of flow shows spon-
taneous chaotic reversals at what appear to be random time intervals. And indeed
experimentalists have shown that these reversal events are described well by the
three-variable Lorenz equations, one of the most famous systems in the study of
low-dimensional chaos.11 We can easily understand why a three-variable descrip-
tion might be adequate for Fig. 1.19(a). Although there are other dynamical degrees
of freedom of the fluid such as variations of the flow transverse to the axis of the
pipe, these turn out to be rapidly damped to constant values by the fluid viscosity
since the walls are close together and the fluid velocity is zero at the wall. Thus
these transverse degrees of freedom do not enter into the thermosyphon dynamics.

This thermosyphon should be contrasted with the pattern-forming convection
system in Fig. 1.19(b). Roughly, we might consider each convection roll to be
analogous to a separate thermosyphon loop so that the dimension of the phase
space needed to describe the convection system will be proportional to the number
of convection rolls (or alternatively proportional to the length of the convection
experiment). In fact, if we drive this system at a strength corresponding to the onset
of chaos in the thermosyphon, we would find that we not only have to include for
each roll three Lorenz-type variables of circulation velocity, temperature perturba-
tion and heat flow, but also new variables associated with distortions of each roll
caused by the coupling of each roll to other rolls. A pattern like Fig. 1.14(a) with
about 40 rolls may then well involve a phase space of dimension at least 150, huge
compared to any dynamical system described in introductory nonlinear dynamics
courses. We will indeed have to develop new concepts and methods to work with
such high-dimensional phase spaces.

11 The Lorenz variables X , Y , and Z are now interpreted as the fluid circulation velocity, the asymmetry of
temperature between the right and left halves of the loop, and the heat transported.
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By the way, Fig. 1.19 illuminates another (although somewhat technical) point,
that the essential difference between the two convection systems is not that the
thermosyphon is described by a few coupled ordinary differential equations while
the convection system is described by a few coupled partial differential equations
(abbreviated throughout this book as pdes). This might appear to be the case since
dynamical systems described by partial differential equations in principle have
infinite-dimensional phase spaces with the dynamical variables specified at a con-
tinuum of points labeled by their position in space. In fact, both systems in Fig. 1.19
are described by the partial differential equations of fluid dynamics and heat trans-
port. However for the thermosyphon, the dynamics of interest can be understood
within a truncated approximation of a few important dynamical degrees of freedom
(because of the strong damping by nearby lateral walls), whereas the interesting
dynamics in the pattern-forming system, such as the approach to a stationary state
or the transition of a stationary state to persistent dynamics, cannot. In Chapter 6,
we will see that even reduced descriptions of pattern-forming systems are often
described by partial differential equations (amplitude equations) and so remain
infinite dimensional.

We have argued that an important difference between the dynamical systems stud-
ied in an introductory nonlinear dynamics course and the pattern-forming systems
discussed in this book is that a description of the latter requires a high-dimensional
phase space. This is all well and good but you may ask, is there some easy way to
determine the phase-space dimension of an experiment or of a simulation? For-
tunately, there are two informal ways to estimate whether some system has a
high-dimensional phase space. One is simply visual inspection. If a nonequilib-
rium system is large compared to some basic characteristic length (e.g. the width of
a convection roll), then a high-dimensional phase space is likely needed to describe
the dynamics. We will call such systems spatially extended. A second way to iden-
tify a high-dimensional phase space is to simulate the system on a computer. If many
numerical degrees of freedom are needed (e.g. many spatial grid points or many
modes in a Fourier expansion) to reproduce known attractors and their bifurcations
to some reasonable accuracy, then again the phase space is high-dimensional.

Using visual inspection to estimate whether the phase space of some system is
high-dimensional assumes that we somehow know some characteristic length scale
with which we can compare the size of an experimental system. Identifying such a
length can be subtle but is often clear from the context of the system being studied.
As we have seen in Section 1.3, many pattern-forming systems involve cellular
structures (e.g. stripes and hexagons) or propagating waves in the form of spirals or
scroll waves which all have a well-defined wavelength. In these cases, a system is
spatially extended with a high-dimensional phase space if its geometric size is large
compared to the size of this wavelength. For more strongly driven nonequilibrium
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systems, there can be structure over a range of length scales12 and often no single
length can be identified as being special (for example, in Fig. 1.11(d), there is
structure on length scales substantially smaller than the width of a Taylor cell). But
then the fact that there is structure over a range of lengths itself indicates the need
for a high-dimensional phase space. For strongly driven systems we might need
to introduce other length scales called correlation lengths that quantify over what
distance one part of the system remains correlated with another part. A system is
spatially extended and high dimensional if it is geometrically large compared to
any one of these correlation lengths.

The high-dimensional phase space of pattern-forming systems has the unfortu-
nate implication that data analysis is challenging, both technically and conceptually.
Current desktop spatiotemporal experiments and simulations may require stor-
ing and analyzing hundreds of gigabytes of data as compared to a few tens of
megabytes for low-dimensional dynamical systems. Several satellite-based obser-
vational projects investigating the dynamics of Earth’s ecology, geology, and
meteorology are approaching hundreds of terabytes in storage. By comparison,
the total printed contents of the Library of Congress constitute about 10 terabytes
and several independent estimates suggest that the amount of information stored
in the human brain over a lifetime is perhaps 1–10 gigabytes of compressed data.
There is then a great need for theoretical insight that can suggest ways to reduce
such vast quantities of data to manageable amounts and to identify questions that
can be answered. We will touch on some of these data analysis issues several times
throughout the book but you should be aware that these are difficult and unsolved
questions.

Closely related to the challenge of analyzing large amounts of spatiotemporal
data is the challenge of simulating spatially extended dynamical systems. In an
introductory nonlinear dynamics course, no sophistication is needed to iterate a
map with a few variables or to integrate the three-variable Lorenz equations for a
long period of time, one simply invokes a few appropriate lines in a computer math-
ematics program like Maple or Mathematica. But to integrate numerically in a large
box the partial differential equations that describe Rayleigh–Bénard convection (the
Boussinesq equations) for the long times indicated by experiments is much more
challenging. One can rarely look up and just use an appropriate algorithm because
there are numerous subtleties concerning how to discretize three-dimensional time-
dependent nonlinear partial differential equations and how to solve the related linear
algebra problems efficiently (which may require solving hundreds of millions of

12 A “range of length scales’’ can be made more quantitative and objective by Fourier analyzing some observ-
able u(x, t) associated with the system and then by calculating the time-averaged wave-number spectrum P(k).
The range of length scales then corresponds to the range of wave numbers [k1, k2] such that P(k) differs
significantly from zero.
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simultaneous linear equations at each successive time step). Writing, validating,
and optimizing an appropriate code can take several years, even for someone with
a Ph.D. with special training in computational science. Further, even if a validated
code were instantly available, powerful parallel computers are needed to simulate
such equations in large domains over long time scales and such computers are still
not widely available or easy to use.

1.4.2 New properties

In addition to a high-dimensional phase space, spatially extended sustained
nonequilibrium systems have some genuinely new features when compared to
dynamical systems that evolve only in time. One such feature concerns how a
fixed point becomes unstable. For a system that evolves only in time (e.g. a driven
nonlinear pendulum), an infinitesimal perturbation of an unstable fixed point sim-
ply grows exponentially in magnitude (or perhaps exponentially with oscillations if
the imaginary part of the growth rate is nonzero). But for pattern-forming systems,
an infinitesimal perturbation of an unstable fixed point can grow spatially as well
as temporally. Further, there are two distinct kinds of spatial growth. One kind is
an absolute instability in which a perturbation that is localized over some region of
space grows at a fixed position. The second kind is a convective instability in which
the instability propagates as it grows. For this second kind of instability, there is
exponential growth only in a moving frame of reference. At any observation point
fixed in space, there is growth and then asymptotic decay of the instability as the
propagating disturbance moves beyond the observation point.

The linear instability of the uniform motionless state of air to convection rolls
in the convection experiment Fig. 1.1 is an example of an absolute instability. The
instability of snowflake dendritic tips in Fig. 1.8 is an example of a propagating
convective instability. This convective instability explains why no two snowflakes
are ever alike since it has the remarkable property of magnifying noise arising from
the molecular collisions near the tip of the growing dendrite. Perturbations from
this noise later influence the formation of the dendrite’s side branches.

Another new property is that a large pattern-forming system can consist of dif-
ferent spatial regions that each, by itself, could be a pattern for the entire system.
Further, such a quilt of different states can persist for long times, possibly indefi-
nitely.An example is Fig. 1.16(a), where a region of nearly time-independent stripes
coexists with chaotic disordered regions. Similarly, Fig. 1.17 shows several quilt-
like patterns, e.g. a square lattice adjoining a hexagonal lattice, each one of which
could fill the entire domain on its own. The localized region of a system separating
one pattern from another is called a front. Theoretical progress can often be made
by analyzing fronts as separate and simpler dynamical systems.
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1.5 A strategy for studying pattern-forming nonequilibrium systems

As you now appreciate from the above examples and discussion, the scope of
nonequilibrium physics is actually enormous since any system that is not in ther-
modynamic equilibrium is by definition a nonequilibrium system. Necessarily, the
phenomena we discuss in a book must be limited and in this section we describe the
kinds of nonequilibrium systems that we do and do not consider and also a strategy
for investigating the systems of interest.

We will be concerned primarily with nonequilibrium systems that are main-
tained in a state away from thermodynamic equilibrium by the steady injection and
transport of energy. Most interesting to us are systems displaying regular or nearly
regular spatial structures, some examples of which we discussed in Section 1.3. We
will discuss stationary spatial structures, their breakdown to persistent dynamical
states that are also disordered in space, and also systems supporting propagating
spatial structures. A major focus of this book is also on systems that may be inves-
tigated by precise, well-controlled laboratory experiment and for which there is
a well-understood theoretical formulation. The idea is to learn about the complex
phenomena of nonequilibrium systems through the study of these systems (“pre-
pared patterns’’), exploiting the close connection between theory and experiment.
The ultimate goal is then to apply this knowledge to a wider range of problems
(“natural patterns’’), perhaps where experimental intervention such as changing
parameters is not possible (e.g. the climate and many biological systems).

Figure 1.20 provides a way to understand how the systems described in this
book fit into the broader scheme of sustained nonequilibrium systems. A par-
ticular nonequilibrium system can be thought of as occupying a point in a
three-dimensional parameter space with axes labeled by three dimensionless
parameters R, 	, and N that we discuss in turn.

The parameter R is some dimensionless parameter like the Rayleigh number,
Eq. (1.1), that measures the strength of driving compared to dissipation. For many
systems, driving a system further from equilibrium by increasing R to larger values
leads to chaos and then to ever-more complicated spatiotemporal states for which
there is ever finer spatial structure and ever faster temporal dynamics. A canonical
example of a large-R system is highly turbulent fluid flow, e.g. the flow generated
behind a propeller rotating at high speeds. When discussing Fig. 1.6, we saw that the
Sun’s turbulent outer layer corresponds to a Rayleigh number of order 1012 so there
are some systems for which the R-axis can span at least 12 orders of magnitude.

Some nonequilibrium systems disintegrate or change their properties when
driven too strongly and so cannot be driven to arbitrarily large values along the R
axis. Examples might be a laser that burns through confining mirrors if pumped
too strongly, a biological system that becomes poisoned and dies if given too much
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R

N

Γ

Fig. 1.20 Aparameter space for categorizing sustained spatially extended nonequi-
librium systems. The R-axis is the “driving’’ or fluid-dynamics axis that measures
how far a system has been driven from equilibrium. The 	 axis is the “size’’ or
pattern-forming axis, indicating the size of a system relative to some basic length
scale such as the depth of a fluid. The N axis is the number of distinct components
that interact and can be thought of as the “biological’’ axis since living systems
have large numbers of different interacting components. Most of what is currently
known about nonequilibrium systems involves regions for which at least two of
the three variables R, 	, and N are small. Most of this book will concern the regime
of small N , small R, and large 	 as indicated by the thin vertical arrow.

of some nutrient like salt, or the medium in a crispation experiment that might be
thrown clear from its container if shaken up and down too strongly. Also some sys-
tems have stress parameters that simply cannot be raised above some finite value.
An example would be the concentration of some reagent that drives a solution of
reacting chemicals out of equilibrium. The concentration cannot be increased indef-
initely since, at some point, the solution becomes saturated and the reagent starts
to precipitate. Since fluids are the most widely studied systems that can be driven
strongly out of equilibrium, we can think of the R-axis in Fig. 1.20 as also being a
“fluid dynamics’’ axis.

The vertical axis labeled by 	 (upper-case Greek gamma) is the “aspect ratio’’
axis, and indicates how large a system is compared to some characteristic length
scale such as the size of some cellular structure or the depth of the medium. We can
also consider this axis to be the “pattern-forming’’axis since for larger 	 (bigger sys-
tems), the influence of lateral confining boundaries is reduced and the phenomenon
of pattern formation becomes more clear. Nonequilibrium desktop experiments
using liquid crystals as a medium have attained values of 	 as large as 1000 while
numerical simulations in one-space dimension have reached 	 ≈ 10 000. These
might seem like impressively large values but you should keep in mind that crystals
can be considered to have a much bigger aspect ratio of order 1 cm/10−7 cm ≈ 107

(ratio of macroscopic crystal size to its lattice spacing), so nonequilibrium exper-
iments are not yet “macroscopic’’ compared to their characteristic length scale.
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Earth’s ocean and troposphere (layer of the atmosphere closest to Earth where the
weather evolves) both have a depth of about 10 km and a lateral expanse of order the
radius of the Earth (6400 km) and so are big nonequilibrium systems with 	 ≈ 600.

The 	-axis is important because experiments have shown that simply increasing
the system size with all other parameters held fixed can induce interesting dynam-
ics such as a transition from a stationary to chaotic behavior. This was first shown
in a seminal experiment of Guenter Ahlers and Robert Behringer in 1978, when
they studied the dynamics of a convecting fluid (liquid helium at the cryogenic
temperature of 4 K) just above the onset of convection for several cylindrical con-
tainers whose aspect ratios 	 (ratio of radius to depth) varied from 	 = 2.1 to
	 = 57. Ahlers and Behringer then discovered that simply making a convection
system larger and larger for a fixed Rayleigh number was sufficient to cause the
dynamics to eventually become chaotic. This discovery has since been verified
more carefully and in other nonequilibrium systems and is now considered a gen-
eral, although poorly understood, feature of sustained nonequilibrium systems. We
note that although many systems cannot be driven strongly from equilibrium, at
least in principle all nonequilibrium systems can be made arbitrarily large. Explor-
ing the large-	 limit is therefore experimentally and theoretically interesting for
many nonequilibrium systems.

Finally, the third axis labeled N indicates the number of distinct components that
interact at each point in a given system. This number can usually be determined by
inspection of the mathematical equations (if known) by simply counting the number
of distinct fields. For example, a complete mathematical description of a Rayleigh–
Bénard experiment involves five coupled fields – the fluid pressure p(x, t), the fluid
temperature T (x, t), and the three components of the fluid’s velocity field vi(x, t)
for i = x, y, and z – and so N = 5 for a convecting fluid. Biological, ecologi-
cal, economic, and chemical systems are often characterized by large values of N
so one can think of the N -axis as the “biological’’ axis for the space of nonequi-
librium systems. Nonequilibrium systems with large values of N are perhaps the
least well understood and are associated with some of the most interesting current
scientific questions. Did life arise on Earth by a spontaneous self-organization in
some primordial soup consisting of many chemicals? What determines the number
of species in a large ecosystem? How do the many genes coordinate their dynamics
and so guide the development of an organism over its lifetime? How does a human
brain of 1010 neurons assemble itself and how do these neurons with their network
of 1013 connections act dynamically to produce our cognitive abilities of pattern
recognition, associative memory, language, and creative thinking?

Figure 1.20 suggests a simple strategy for investigating nonequilibrium systems,
which is to allow only one of the three variables N , R, and 	 to become large
at a time. (In contrast, the physical systems studied in an introductory nonlinear
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dynamics course correspond to having all three variables small or moderate at the
same time, and many of the natural systems discussed in Section 1.3.1 have all three
variables large at the same time.) This book is largely concerned with phenomena
for large values of 	, and small to moderate values of N and R, as indicated by the
thin vertical arrow near the 	-axis in Fig. 1.20. Although this regime might seem
excessively restricted, experiments like those discussed in Section 1.3.2 show that
there is an enormous richness of dynamics in this regime and so there is, if anything,
an excess of phenomena to understand. Much future work will be needed, however,
to explore the regimes corresponding to two or three of these variables having large
values simultaneously.

In this book, we will therefore study mainly systems with large 	 and moderate
values of R and N . However, there are some further assumptions to make if we
are to obtain experimental systems that are as simple as possible and for which the
associated theory is manageable. We will emphasize experimental systems that:

(i) are large in one or more spatial directions so that the influence of lateral boundary
conditions on pattern formation can be reduced, simplifying subsequent theoretical
analysis.

(ii) are homogeneous so that the pattern formation is intrinsic rather than driven by inho-
mogeneities. Coating the floor and ceiling of a room with flat uniform layers of copper
(Fig. 1.1) was an example of how an experimental system could be made spatially
homogeneous. Studying convection over a bumpy floor would be less instructive than
convection over a homogeneous floor since the bumps influence the pattern formation
and their influence would have to be studied as a separate problem.

(iii) involve few fields (small N ) which reduces the mathematical and computational effort.
For nearly all examples discussed in this book, N will be 6 or less.

(iv) have local space-time interactions, a technical mathematical assumption that the
dynamical equations involve only fields and finitely many spatial and temporal
derivatives of the fields. This assumption is mainly a convenience for theorists and
computational scientists since it reduces the mathematical effort needed to analyze
the system. Most systems discussed in Section 1.3 have such local interactions so
this assumption is not a severe restriction. An example of a nonequilibrium system
with nonlocal interactions would be neural tissue since a given neuron can connect
to remote neurons as well as to neighboring neurons. Further, there are various time
delays associated with the finite propagation speed of signals between neurons. The
dynamics then depends nonlocally on information over some time into the past and
the mathematical description involves delay-differential equations that can be hard to
analyze.

All the systems we will discuss in detail satisfy these basic criteria. In addition the
following conditions are also desirable. The systems should
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(i) be described by known equations so that quantitative comparisons between theory,
numerics, and experiment are feasible;

(ii) be well characterized, for example the parameters changing the behavior should be
easily determined, and the geometry and boundary conditions should be accurately
prescribed; and

(iii) permit easy diagnosis, allowing accurate quantitative measurements of one or more
of the fields relevant to the pattern formation.

Historically, fluid systems have been found to approach many of these ideals.
First, many fluid systems have few interacting components (velocity and pressure
and sometimes temperature or concentration fields). Second, the fluid dynamics
is described by mathematical equations such as the Navier–Stokes equations that
experiments have confirmed to be quantitatively accurate over a large range of
parameters. Third, the fluid equations involve just a few parameters such as the
kinematic viscosity ν or thermal diffusivity κ and these parameters can be measured
to high accuracy by separate experiments in which issues of pattern formation do
not arise. Fourth, fluids are often transparent and so visualization of their spatial
structure is possible at any given time. Finally, experiments have shown that many
phenomena observed in non-fluid nonequilibrium experiments often have some
analog in a fluid experiment so one can study general features of nonequilibrium
phenomena using some fluid experiment.

Of all the possible fluid experiments, Rayleigh–Bénard convection has been espe-
cially favored in basic research because the fluid is in contact with time-independent
and spatially homogeneous boundaries that are especially easy to characterize and
to maintain. In other fluid experiments (e.g. Fig. 1.11 or Fig. 1.16), the fluid is set
in motion by some pump or motor that oscillates and these oscillations can be an
additional source of driving that complicates the identification of intrinsic pattern
formation. We do note that steady technological improvements allow increasingly
well-controlled experiments on more exotic systems such as chemical reactions
in a gel layer (fed by opposing reservoirs) or on a carefully prepared rectangular
slab of heart muscle. The possibilities for careful comparisons between theory and
experiment are rapidly improving.

1.6 Nonequilibrium systems not discussed in this book

For lack of space, time, and expertise, we cannot reasonably address all the nonequi-
librium systems that have been studied or even all the systems that have received
the deep scrutiny of the research community. Some of the topics that we will leave
out include the following:

Quenched states: If the driving of a nonequilibrium system is turned off sufficiently
quickly or if a parameter describing some equilibrium system is abruptly changed
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to some new value (e.g. if the temperature of a liquid is quickly decreased below its
freezing point), the system can “freeze’’ into a so-called quenched state that is often
disordered and that can take a long time to return to thermodynamic equilibrium.
Quenched states are technically nonequilibrium but differ from the systems discussed
in this book in that they are not sustained systems.There are many interesting questions
concerning how a quenched state approaches its usually ordered equilibrium limit,
e.g. by the formation of small ordered domains that grow in size at certain rates. Two
examples of quenched states are glass (like that found in a window) and a soap-bubble
foam that coarsens over time.

Pattern formation by breakdown: Some patterns in nature are formed by some stress
slowly increasing to the point that some threshold is crossed, at which point the
medium relaxes quickly by creating a pattern. Examples include cracks propagating
through a brittle material, electrical breakdown of an insulator from a high-voltage
spark, and the occurrence of an earthquake in response to the buildup of stress in a
tectonic plate.

Fully developed fluid turbulence: In our discussion of Fig. 1.20 above, we observed
that fluids are one of the few continuous media that can be driven strongly out of
equilibrium. There is in fact extensive theory, experiment, and applications in the
fully developed fluid turbulence regime of large R, moderate N , and moderate 	.
However a reasonable discussion would be lengthy and technical to the point of almost
requiring a book of its own. Also, the subject of high-Reynolds-number turbulence is
sufficiently special to fluids that it falls outside our intent to discuss mainly ideas and
mechanisms that apply to several nonequilibrium systems.

Adaptive systems: Economic, ecological, and social systems differ from many of the
systems discussed in the book in that the rules under which the components interact
change over time, the systems can “adapt’’ to changes in their environment. One
example is the evolutionary development of language and increased intelligence in
homo sapiens which greatly changed the rules of how humans interact with each other
and with the world.

1.7 Conclusion

This has been a long but important chapter. We have introduced and discussed
representative examples of pattern formation and dynamics in sustained nonequi-
librium systems, and have identified questions to pursue in later chapters. The
experimental results discussed in Section 1.3 are an especially valuable source
of insight and direction since mathematical theory and computer simulations still
lag behind experiment in being able to discover the properties of pattern-forming
systems. In the following chapters, we develop the conceptual, analytical, and
numerical frameworks to understand sustained nonequilibrium spatially extended
systems.
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1.8 Further reading

(i) A comprehensive and broad survey of pattern-formation research, although at a more
advanced level than this book, is “Pattern formation outside of equilibrium’’ by Cross
and Hohenberg [25]. This article is a good place to find discussions of pattern-
forming systems that are not mentioned in this book, to see deeper discussions of
pattern-forming systems, and to see many applications and discussions of theory to
experimental systems.

(ii) Many examples of patterns are discussed at a non-technical level in the book by Ball
The Self-Made Tapestry: Pattern Formation in Nature [9].

(iii) An introductory article on the large-scale structure of the Universe is “Mapping the
universe’’ by Landy [61].

(iv) Many beautiful photographs showing the enormous diversity of snowflakes can be
found in the book The Art of the Snowflake: A Photographic Album by Libbrecht [64].

(v) A classic paper in pattern formation in chemical reactions and the possible relevance
to morphogenesis is Turing’s “The chemical basis of morphogenesis’’ [106].

(vi) A history of pattern formation in chemical systems is given in the first chapter of
Epstein and Pojman’s book [34]. If you have access to a chemistry laboratory, you
can explore the Belousov–Zhabotinsky reaction by following the recipe given in the
appendix of the book by Ball [9].

(vii) For an introduction to low-dimensional dynamical systems see Nonlinear Dynamics
and Chaos by Strogatz [99].

Some articles on specific topics discussed in this chapter (in addition to those
referenced in the figure captions) are listed below.

(i) The thermosyphon: “Nonlinear dynamics of a convection loop: a quantitative
comparison of experiment with theory’’ by Gorman et al. [41].

(ii) Cracks and fracture patterns: “How things break’’ by Marder and Fineberg [68].
(iii) The importance of aspect ratio in the onset of chaos: “The Rayleigh–Bénard instability

and the evolution of turbulence’’ by Ahlers and Behringer [1].
(iv) Spiral defect chaos: “Spiral defect chaos in large-aspect-ratio Rayleigh–Bénard

convection’’ by Morris et al. [77].

Exercises

1.1 End of the Universe: In Section 1.1, the interesting structure of the Universe
was traced to the fact that the Universe was still young and evolving. But
will the Universe ever stop expanding and reach an equilibrium state? If so,
what kind of structure will exist in such a Universe? What might happen
to the Universe in the long term has been discussed in a fascinating article
“Time without end: Physics and Biology in an open universe’’ by the physicist
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Freeman Dyson in the article Reviews of Modern Physics 51, 447 (1979). Read
this article and then answer the following questions:

(a) What is the difference between an “open’’ and “closed’’ universe and
what are the implications for whether the universe will ever reach
thermodynamic equilibrium?

(b) What experimental quantities need to be measured to determine whether
our Universe is open or closed? According to current experimental
evidence, is our Universe open?

(c) According to Dyson, how long will it take our Universe to reach
thermodynamic equilibrium, assuming that it is open?

(d) Can life, as we know it on Earth, persist arbitrarily into the future if our
Universe is open and approaching an equilibrium state?

1.2 Just six numbers: In the book Just Six Numbers: The Deep Forces That
Shape the Universe (Basic Books, New York, 1999), cosmologist Martin Rees
argues that our Universe can form interesting patterns – and life in particular –
only because certain key parameters that describe the Universe fall within
extremely narrow ranges of values. For example, one parameter is the fractional
energy ε = 0.004 released when four hydrogen nuclei fuse to form a helium
nucleus in the core of a star. If this value were just a tiny bit smaller, condensing
clouds of gas would never ignite to become a star. If just a tiny bit bigger, stars
would burn up so quickly that life would not have enough time to evolve.

Skim through this book and explain briefly what are the six parameters that
Rees has identified as being critical to the existence of pattern formation in the
Universe. Discuss qualitatively how the Universe would be different from its
present form if these parameters had significantly different values.

1.3 A sprinkling of points: pattern or not? Like the stars in Earth’s sky, some
patterns are less a geometric lattice (or distortions of such a lattice) than a
statistical deviation from randomness. To explore this point, assume that you
are given a data file that contains the coordinates (xi, yi) of 4000 points in a unit
square (see Fig. 1.21). Discuss how to determine whether these dots constitute a
“pattern’’or are “random,’’ in which case we would not expect any meaningful
structure. What are some hypotheses that a random distribution would satisfy?
How would you test the consistency of the data with your hypotheses? Two
possibilities to explore are a chi-squared test [89] and a wave-number spectrum.

1.4 Properties of the Rayleigh number: Answer the following questions by
thinking about the criterion Eq. (1.1) for the onset of convection.

(a) Two identical convection systems of depth d are filled with air and mercury
respectively at room temperature. Using the values in Table 1.1, determine
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Fig. 1.21 Exercise 1.3: Do these 4000 dots in a unit square constitute a “pattern’’
that deviates statistically from points thrown down randomly and uniformly?

which fluid will start to convect first as the temperature difference �T is
increased in small constant steps through onset.

(b) The bottom plate of a certain wide square convection cell is machined to
have a square bump that is 5% of the fluid depth in height and four times
the depth of the fluid in width as shown schematically in this figure:

The bump is far away from the lateral walls. As the temperature difference
is increased in small constant steps starting with the stable motionless fluid,
where will convection first start in this system? Guess and then sketch what
kind of pattern will be observed when the convection rolls first appear.

1.5 Suitability of a room for a convection experiment:

(a) Assume that the room in Fig. 1.1 has a height of d = 3 m, that the floor and
ceiling are isothermal surfaces of temperature T1 and T2 respectively (both
close to room temperature T = 300 K), and that high-precision laboratory
experiments can control a temperature difference to at best about one part
in 104. Determine whether or not this room is suitable for convection
experiments.

(b) An unstated assumption for almost any laboratory experiment is that the
experiment can be finished within a practical amount of time, say a week or
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less. Theory discussed later in the book shows that one of the slowest time
scales associated with convection is the so-called vertical thermal diffusion
time tv = d2/κ , where d is the depth of the fluid and κ is the fluid’s thermal
diffusivity. This is the time for a localized temperature perturbation near,
say, the bottom plate to be detected by a probe near the top plate if the
perturbation spreads out purely by diffusion. There is an even longer time
scale called the horizontal thermal diffusion time th = (L/d)2tv = 	2tv,
which is the time taken for a localized temperature perturbation on one
side of the system to be detected on the far side of the system a lateral
distance L away if the perturbation again spreads out purely by diffusion.
Any given convection experiment, or simulation of such an experiment,
needs to span many multiples of these time scales in order for enough time
to pass that transients die out and a statistically stationary state is attained.

1. What are the times tv and th in units of days for air in a square room of
height d = 3 m and width L = 8 m? Are these reasonable time scales
for a convection experiment?

2. Answer these same questions for air in a laboratory convection
apparatus with d = 1 mm and L = 5 cm.

1.6 Temperature profile and heat transport of a conducting fluid:

(a) For Rayleigh numbers in the range 0 < R < Rc, plot the vertical tempera-
ture profile T (z) of the air in Fig. 1.1. Assume z = 0 is the floor and z = d
is the ceiling.

(b) For this same regime of Rayleigh number, plot the heat flux H = H (R)

(heat energy per unit area per unit time) through the ceiling.
(c) To get a feeling for the order of magnitude of the heat transport, estimate

the total heat transported by the air through the ceiling for a square room
of height d = 3 m and width L = 5 m, when the temperature difference is
the critical value �Tc. For comparison, a typical room heating device has
a power consumption of a few kilowatts (thousands of joules per second).

(d) When R > Rc so that the air in Fig. 1.1 starts to convect, discuss and
sketch qualitatively how the temperature profile and total heat transport
will change.

(e) Invent and explain a method to measure the instantaneous heat flux H (t)
experimentally for a fixed Rayleigh number R.

Hint: For a continuous medium with thermal conductivity K the heat flux
is H = −K ∇T (units of energy per unit time per unit area). Assuming
most of the air in the room is close to room temperature T = 293 K, you
can use the value K = 2.5 × 10−6 J m−1 s−1 K−1 everywhere inside the
room.
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1.7 Scaling of time, length, and magnitude scales for the Swift–Hohenberg
equation: To gain experience simplifying a dynamical equation and iden-
tifying dimensionless parameters, consider the following partial differential
equation for a real-valued field u(x, t) that depends on time t and one spatial
coordinate x:

τ0 ∂tu(x, t) = ru − ξ4
0

(
q4

0 + 2q2
0 ∂2

x + ∂4
x

)
u − g0u3. (E1.1)

This is the so-called Swift–Hohenberg equation which we will discuss in
Chapters 2 and 5 as one of the more important models of pattern formation.
Eq. (E1.1) seems to have five distinct parameters, namely the time scale τ0, the
coherence length ξ0, the critical wave number q0, the nonlinear strength g0,
and the control parameter r.

By a clever choice of time, length, and magnitude scales t0, x0, and u0, i.e. by
changing variables from t, x, and u to the scaled variables τ , y, and v by the
equations

t = t0τ , x = x0y, u = u0v, (E1.2)

and by redefining the parameter r to a new value r̂, show that Eq. (E1.1) can
be written in a dimensionless form with only one parameter:

∂τ v = r̂v −
(

1 + 2 ∂2
y + ∂4

y

)
v − v3. (E1.3)

This is a substantial simplification since the mathematical and numerical
properties of this equation can be explored as a function of a single parameter r̂.

1.8 Applications of the Reynolds number: For problems in which an isothermal
fluid flows through a pipe or past an object like a cylinder, an analysis of the
Navier–Stokes equations reveals a dimensionless stress parameter called the
Reynolds number R,

R = vL

ν
, (E1.4)

where v is a characteristic magnitude of the fluid’s velocity field (say the
maximum speed of the fluid before it encounters some obstacle), L is the size
of the object with which the fluid interacts (e.g. the diameter of the pipe or of
the cylinder), and ν is the kinematic viscosity of the fluid, the same parameter
that appears in the Rayleigh number Eq. (1.1).

For small flow speeds corresponding to R < 1, the fluid is usually lam-
inar, i.e. time independent and without an interesting spatial structure (the
stream lines are approximately parallel). For Reynolds numbers larger than
about 1, laminar flows usually become unstable and some new kind of pattern
or dynamics occur. When R becomes larger than about 1000, the fluid often
becomes chaotic in time and irregular in space.
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The following questions give you a chance to appreciate the many useful
predictions that can be made by studying a parameter like Eq. (E1.4).

(a) Show that the Reynolds number is a dimensionless quantity and so has the
same value in any system of units.

(b) For an airplane traveling at v = 500 km/hour, will the air flow over the
wing be laminar or turbulent?

(c) As you walk around a room, show that the air in the vicinity of your foot
will be turbulent. This implies that a cockroach will need some way to
locate your foot in the midst of a turbulent flow to avoid being stepped on.

(d) By flipping a coin, estimate the speed with which it falls and the speed
with which it rotates and then determine whether fluid turbulence plays a
role in the supposedly “random’’ behavior of flipping a coin to call heads
or tails.

(e) From a human physiology book or from the web, find the typical speed
of blood flowing through your arteries and through your heart. Does the
blood flow in any of your arteries become turbulent? What about through
a heart valve?

(f) When the wind blows transversely past a telephone wire, you sometimes
hear an eerie whistling sound called an aeolian tune. Using the kinematic
viscosity of air at room temperature from Table 1.1 and a wire diameter of
L = 2 mm, what is the smallest wind velocity for which you would expect
to hear an aeolian tune?

1.9 Simple experiment to demonstrate the no-slip fluid boundary condition:
To convince yourself of the fact that a fluid’s velocity goes to zero at a material
wall in the frame of reference of that wall, try the following simple experiment.
Get a desktop fan and sprinkle some talcum powder (or any fine powder) over
the blades of the fan. Then turn the fan on so that the blades rotate at high
speed for several seconds and switch off the fan. Has the talcum powder been
blown completely off the blades?
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Linear instability: basics

Perhaps the most magical moment in a pattern-forming system is when a pattern
first appears out of nothing, the genesis of structure. The “nothing’’ that one starts
with is not empty space but some spatially uniform system. From our study of
equilibrium systems, we are used to expecting that if the external conditions are
constant in space and time, then, perhaps after some transient dynamics, the system
will relax to a state that is time independent and spatially uniform on macroscopic
scales. However, as the system is driven further and further out of equilibrium by
turning some experimental knob in small successive steps, it is often the case that
a point is eventually reached such that a spatial structure spontaneously appears.
This is the beginning of pattern formation. In many examples of interest, the novel
state with spatial structure develops because the spatially uniform state becomes
unstable toward the growth of small perturbations.1 Analyzing this linear instability
provides a first approach to understand the beginnings of pattern formation.

In this chapter, we discuss linear instability: how to predict when a spatially
uniform time-independent state becomes unstable to tiny perturbations. We also
discuss some details of the growing spatial structure such as its characteristic length
and time scales, and how the structure depends on symmetries of the system. As
you will see, the linear stability analysis of a spatially uniform stationary state is
valuable because it provides the easiest opportunity to make predictions that can
be tested by experiment. It is also a useful first step toward understanding how the
properties of a nonequilibrium system depend on parameters. Finally, the linear
stability analysis suggests a way to classify nonequilibrium systems in regard to
their pattern-forming tendencies.

1 For the macroscopic finite-temperature systems discussed in this book, small perturbations are always present.
Examples are spatial imperfections of the surfaces containing the nonequilibrium medium, mechanical vibrations
of the experimental apparatus through its supports, tiny fluctuations in pressure, density, chemical concentration,
or velocity arising from random molecular collisions, and small variations in electrical control signals arising
from collisions of electrons in wires and in integrated circuits.

56



2.1 A conceptual framework 57

In the first section of the chapter, we set up a simple conceptual framework for
the linear stability analysis. This framework will help us to identify some essential
ways that the linear stability analysis of a pattern-forming system differs from
the linear stability of fixed points of odes and maps that you might have seen in
an introductory nonlinear dynamics course. These differences include the role of
uniform stationary states, the simplification obtained when lateral boundaries are
replaced with infinite or spatially periodic ones, and the identification of the growth
rate σq as a function of the wave vector q as the central quantity of interest.

The technical aspects of the linear instability analysis for a pattern-forming sys-
tem are introduced in Section 2.2 using a simple model equation known as the
Swift–Hohenberg equation. Although this equation is not a precise description of
any particular experimental system, it serves as a simple model that captures many
of the basic features of pattern formation. From this detailed, specific calculation,
we extract in Section 2.3 the key steps in a general linear stability analysis. To
connect the abstract analysis back to the real world, we discuss the experimental
investigation of the linear instability in pattern-forming systems, first generally, and
then by a review of an historic application of linear stability theory to a laboratory
experiment, namely the Taylor–Couette experiment (the system shown in Fig. 1.11).
Chapter 3 will discuss another application, to chemical reaction–diffusion systems.

In the final two sections of the chapter, we introduce concepts that lay the foun-
dation for the subsequent chapters, namely the classification of different types of
linear instability in physical pattern forming systems, and the role of symmetry in
the linear instability.

2.1 Conceptual framework for a linear stability analysis

Before formulating a mathematical theory of linear instability and discussing appli-
cations, we would like to set up a framework of an idealized pattern-forming system
that will help us to identify the essential concepts. The idealization is attained
by three simplifications: choosing a uniform geometry for the walls that confine
the pattern-forming medium; replacing the lateral boundaries with ones consistent
with translational symmetry; and choosing to study the linear instability toward
time-independent patterns that are consistent with translational symmetry.

The phenomenon of pattern formation is most easily defined when a pattern
develops from a uniform state, which is a state that has no spatial structure. Math-
ematically, a state is uniform if the medium is translationally invariant:2 if the
medium is translated physically by an arbitrary amount in an arbitrary direction

2 A translationally invariant medium is sometimes also called homogeneous but we prefer to avoid this term since
it has other meanings in the context of applied mathematics.
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(mathematically the substitution x → x+x0 is made everywhere in the description
of the medium, where x0 is some constant vector) there is no way to distinguish
the translated medium from the original medium. A medium that is translation-
ally invariant is a mathematical idealization since only infinitely big objects can
have this symmetry. Any finite object will occupy space in a different way after a
translation and so cannot be translationally invariant.

An experimental nonequilibrium system such as the fluid in a convection experi-
ment cannot be completely translationally invariant. Most importantly, the gradients
of energy, momentum, or matter that drive the medium out of equilibrium “break’’
the translational symmetry since the properties of the medium vary along the direc-
tion of a gradient. Also, any real experiment is necessarily finite in extent which
also breaks the translational symmetry.

These considerations suggest that the simplest and purest example of pattern
formation by an instability would be an experiment like Fig. 2.1. A continuous
medium, whose equilibrium state is uniform, is contained between two parallel
uniform plates A and B whose width L is large compared to their separation d . The
medium is driven out of equilibrium, usually by gradients of temperature, velocity,
or chemical concentration maintained by the plates A and B. These gradients drive
currents of energy, momentum, or matter from one plate to the other. The presence

d

L

A

B

x
y

z

Fig. 2.1 An idealized pattern-forming system consisting of a continuous medium
between two flat spatially-uniform parallel plates A and B that are separated by a
distance d . The medium is driven out of equilibrium by gradients of temperature,
velocity, or chemical concentrations that cause currents of energy, momentum,
or mass to flow from one plate to the other. Because the plates are uniform, the
gradients are normal to the plates. Coordinates parallel to the gradients (here the
vertical direction z) are denoted by the vector x‖ and are called confined. Coordi-
nates perpendicular to the gradients (here the horizontal directions x and y) are
denoted by the vector x⊥ and are called extended. Pattern formation is defined
to occur when there is spatial structure in the extended directions x⊥. It is most
clearly understood when the description of the system is translationally invariant
in the extended directions. Translational invariance can be achieved by assuming
that the system is infinitely wide (L → ∞) or is spatially periodic in the extended
coordinates x⊥.
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of such gradients and currents means the system is out of equilibrium, since in
thermodynamic equilibrium they must be zero. Because the plates are uniform,
the gradients are normal to the plates and independent of their position along the
plates, except possibly near the edges as discussed below. In experiment, often the
system is driven further and further out of equilibrium by varying one experimental
knob. The corresponding property of the system that is changed we call the control
parameter.

Many laboratory experiments can accurately approximate the geometry of
Fig. 2.1. For example, in Rayleigh–Bénard convection (Fig. 1.1), A and B would
be good thermal conductors maintained at different temperatures and the resulting
temperature gradient creates a flow of energy across the fluid. In a Taylor–Couette
experiment (Fig. 1.11), the plates would be rigid circular walls that rotate at different
constant speeds. The shearing creates a velocity gradient and a flow of momentum
from one wall to the other. In a sustained chemical reaction–diffusion experiment
(Figs. 1.18(b) and (c), also Fig. 3.3), A and B would be porous walls through which
chemicals can flow from reservoirs. The resulting concentration gradients lead to a
flux of mass from one plate to the other. In all three cases, experimentalists can make
the plates wide compared to their separation so that the assumption of uniformity
within any plane parallel to the plates is good.

The natural patterns discussed in Section 1.3.1 are rarely described by the ide-
alized geometry of Fig. 2.1. However, if the spatial extent of a pattern-forming
region is large compared with the intrinsic scale of the pattern (a fairly common
occurrence), the pattern in such a region can often be understood as involving small
corrections to the pattern observed in an idealized geometry. So even for natural pat-
terns, it can be useful to understand first the basic mechanism of pattern formation
in an idealized geometry.

The idealized system Fig. 2.1 suggests some useful notation and vocabulary.
We define the directions in the plane of the plates to be the extended directions
since the size of the system in these direction will usually be large compared to the
length scale of the patterns and to the separation of the plates. The corresponding
coordinates will be represented by the vector x⊥ (pronounced “x-perp’’) since they
are perpendicular to the direction of the gradients. In Fig. 2.1, x⊥ would be the
two-dimensional vector (x, y), but in other situations may be one dimensional or
even three dimensional. The direction normal to the plates we will call the confined
direction since the distance between the plates is often small compared to their
width. In Fig. 2.1, there is only one such direction (the z coordinate) but for gener-
ality we will use a vector notation here as well and denote the coordinates parallel
to the gradients by the vector x‖ (pronounced “x-parallel’’). With this notation, a
field u(x, y, z, t) can be written as u(x⊥, x‖, t) when we want to emphasize the coor-
dinates normal and parallel to the gradients. Similarly, we will write ∇‖ and ∇⊥
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(pronounced as “grad-parallel’’ and “grad-perp’’) to indicate gradients with respect
to the variables x⊥ and x‖ respectively. Finally, the boundaries that constrain the
medium on the sides are called the lateral boundaries. As you might suspect, these
boundaries play a secondary role in pattern formation provided that the plates are
sufficiently wide compared to the scale of the pattern.

For small deviations from thermodynamic equilibrium (corresponding to gra-
dients of small magnitude), the medium will be uniform in any plane parallel to
the plates. We will call this a uniform nonequilibrium state since it is spatially
constant in the extended directions, and we will see that these are the states of a
pattern-forming system whose linear stability can be analyzed and understood most
completely. An example of a uniform nonequilibrium state is the conducting state
in a convection experiment for which the velocity field is zero everywhere and
the temperature field varies linearly in space from its constant value T1 at z = 0
on the warm bottom plate to its constant value T2 at z = d on the cold top plate.
Figure 3.4 in the next chapter shows a numerically calculated uniform state for a
chemical reaction-diffusion experiment similar to Figs. 1.18(b) and (c). The depen-
dence on x‖ is complicated and yet the concentration fields are uniform in planes
normal to the confined direction.

Once we have identified uniform nonequilibrium states as the appropriate starting
point for a stability analysis, we define pattern formation to be the formation of
structure in the extended directions x⊥. Thus the formation of convection rolls
corresponds to the temperature, velocity, and pressure fields of the fluid becoming
nonuniform within each plane parallel to the plates.

The last idealization that we make to prepare for a linear stability analysis is
to eliminate the physical lateral boundaries altogether and make the system trans-
lationally invariant in the extended directions. This can be arranged theoretically
in two ways. First, we can suppose the system to be infinitely wide in the lateral
directions in which case there are no lateral boundaries to talk about. This is the
most natural way of eliminating the boundaries, but the infinite system size can
introduce mathematical difficulties, e.g. infinitely many modes can go unstable at
the same time during a bifurcation, a situation that theory cannot at present handle.

A second way to make the system translationally invariant is to assume that the
system “wraps around’’ in the extended directions so that a particle exiting one
lateral boundary immediately reenters from the opposing lateral boundary. Elim-
inating physical boundaries in this second way is described as imposing periodic
boundary conditions on the fields characterizing the medium. For a one-dimensional
system, periodic boundaries would correspond to defining the system on a circle of
circumference L rather than on a line; the azimuthal direction in the Taylor–Couette
apparatus of Fig. 1.11 would be an experimental example. For a three-dimensional
medium like that of Fig. 2.1, imposing periodic boundaries on pairs of opposing
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sides turns the medium topologically into the interior of a torus. Although impossi-
ble to achieve experimentally, it is a valuable simplification conceptually and easily
studied by numerical simulation.3

Provided that the experimental plates are large in the extended directions com-
pared to the basic length scale of the pattern, we expect (and comparisons of theory
with experiment largely confirm) that only small differences arise between experi-
ment and calculations based on an idealized geometry consistent with translational
invariance.4 This two-step approach to pattern formation – first consider the prob-
lem in the idealized geometries with translational invariance and then investigate
the small corrections of actual lateral boundaries – has proven to be most instructive.
We emphasize that the boundaries A and B are crucial in establishing the nonequi-
librium state and cannot be idealized away via some assumption like translational
invariance. As a result, the structure of the state in the confined direction must be
understood prior to the onset of pattern formation via a proper formulation of the
effect of these boundaries.

Three conceptual simplifications have now been introduced: the idealized geom-
etry of Fig. 2.1, the elimination of lateral boundaries by assuming translational
invariance in the extended directions, and the identification of stationary uniform
nonequilibrium states as the starting point for pattern formation. The reward for
introducing these simplifications is that the linear stability analysis is enormously
simplified, conceptually and mathematically. The linearized problem (equations
and boundary conditions) that governs the evolution of tiny perturbations of the
uniform state can be solved with a single simple Fourier mode of the form

eσqteiq • x⊥ . (2.1)

This mode varies periodically in the extended direction x⊥ with wave vector q,
and grows exponentially in time with a q-dependent complex-valued growth rate
σq. For systems that are not translationally invariant or that are linearized about
a non-uniform state, only superpositions of such expressions for different wave
vectors can satisfy the mathematical problem and there is no simple understanding
of the growth rate in terms of a single parameter like the wave vector q.

3 A finite periodic domain, which is often used to simulate pattern-forming systems when comparing dynamics
with a linear stability analysis, is not physically equivalent to an infinite domain. To see this, consider a pattern
consisting of parallel straight stripes. In an infinite domain, there is no problem to rotate the stripes by a small
angle about some axis perpendicular to the plane of the stripes. But for parallel stripes in a finite periodic
domain, a small rotation, say about the center of the domain, will cause the ends of the stripes to move in
opposite directions so that, as one stripe leaves the periodic domain, it can’t continue smoothly onto a stripe
from the other side. This lack of symmetry under infinitesimal rotations can be a strong constraint on the
dynamics, especially in periodic domains whose size is not much bigger than the stripe wavelength.

4 The boundaries may actually eliminate many of the steady states found in the unbounded system, as in the
example of wave number selection by boundaries discussed in Section 6.4.1. The effect of the boundaries on
the surviving states is small, and the steady states of the unbounded system are long-lived transients in a large
but finite system.
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The growth rate σq as a function of the wave vector q contains much of the
useful information in a linear stability analysis of a stationary uniform state. It is
the key quantity to calculate analytically or numerically as a function of the system
parameters for each uniform state of interest. A given uniform state is linearly
stable – all small perturbations asymptotically decay to zero – if the real part of its
growth rate Re σq is negative for all wave vectors q. As some parameter is varied,
the uniform state becomes linearly unstable when Re σq first becomes positive at a
critical parameter value. The instability signals a change in character of the solution
and is called a bifurcation. The wave vector qc for which the maximum of the real
part of the growth rate, maxq Re σq, first becomes positive is called the critical wave
vector of the linear instability and its magnitude qc the critical wave number. This
value qc is one of the most important quantities obtained from the linear stability
analysis since it predicts the length scale 2π/qc of the growing perturbation. We
might also expect that qc sets the length scale of the nonlinear states just beyond
the onset of the instability. This is true for the case of a supercritical or forward
bifurcation of a uniform state, see Section 4.1.2.

It is useful to introduce some additional language to describe the onset of insta-
bility. The imaginary part of the growth rate evaluated at the critical wave number
determines a critical frequency ωc given by

ωc = − Im σqc , (2.2)

that defines a characteristic oscillatory time scale for the growing perturbation.5

If ωc is nonzero, this is an oscillatory or Hopf6 bifurcation. In many cases, ωc = 0
and the instability is toward a stationary state. This type of instability is called
stationary.

The first bifurcation from the uniform state is sometimes called the primary
bifurcation of the pattern-forming system. As will be discussed in Section 2.5,
there turn out to be only a few physically distinct common ways that the function
Re σq develops positive values as a parameter is varied. These different ways lead to
a classification of pattern-forming systems into six classes. The amplitude equation
theory discussed in Chapters 6, 7, and 10 for weakly nonlinear pattern formation
just above the onset of the instability of the uniform state depends especially on
which class a pattern-forming system belongs to. Successive bifurcations leading
to new states are sometimes called secondary and tertiary bifurcations. You should
keep in mind that not all patterns arise as a sequence of bifurcations from a uniform
state, a point that we will return to in Chapter 9.

5 We insert the minus sign in Eq. (2.2) so that the space-time dependence takes the conventional form ei(qcx−ωct)

for a wave traveling in the +x direction for positive ωc.
6 There are some additional technical restrictions for an oscillatory bifurcation to be properly called a Hopf

bifurcation, but these need not concern us here.
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2.2 Linear stability analysis of a pattern-forming system

In this section, we carry out our first linear stability analysis of a uniform nonequi-
librium state. To avoid unnecessary mathematical details, we analyze a simple yet
representative evolution equation for a single field u(x, t) in a one-dimensional
domain described by the coordinate x. In Chapter 3, we will study more realis-
tic and correspondingly more complicated examples involving multiple fields that
depend on two or more spatial variables.

We will study the linear stability of a uniform state belonging to an evolution
equation known as the one-dimensional Swift–Hohenberg equation. As we discuss
later in Chapter 5, this is a model equation that was written down, based on the
insights of the authors, to capture some of the essential features of pattern-forming
systems. The initial context was Rayleigh–Bénard convection. We use this model
since it provides one of the simplest ways to illustrate the key steps and insights of
a linear stability analysis.7

2.2.1 One-dimensional Swift–Hohenberg equation

The one-dimensional Swift–Hohenberg equation is the evolution equation for a
single field u(x, t) in a one-dimensional domain 0 ≤ x ≤ L

∂tu(x, t) = (r − 1)u − 2 ∂2
x u − ∂4

x u − u3. (2.3)

All these derivatives may look intimidating but this equation is easier to understand
than might appear at first glance. A more compact way to write the equation (that
becomes more intuitive after gaining some experience with this type of equation) is

∂tu(x, t) = ru − (∂2
x + 1)2u − u3. (2.4)

The parameter r in Eq. (2.3) or (2.4) plays a role of the control parameter. The
coordinate x is an extended coordinate x⊥ of the sort that we discussed in the
previous section. There is no confined coordinate x‖ in this simple model. In the
context of Rayleigh–Bénard convection, which motivated the invention of this
model, the parameter r is related to the Rayleigh number R and you can think of
the field u(x, t) as the z-component of the fluid’s velocity field vz(x, y0, z0, t) at
mid-height (z0 = d/2) and midway across (y0 = Ly/2) a long narrow convection
experiment of dimensions Lx × Ly × d with Lx � Ly > d . In the derivation of
Eq. (2.3) from the convection system, the confined direction of the convection cell

7 In using the Swift–Hohenberg model to introduce the methods of linear instability, we are reversing the historical
order since the form of the equation was motivated largely to reproduce the structure found in the linear instability
analysis of a variety of pattern-forming system in the simplest possible equation.
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is eliminated by a mathematical technique to be discussed in Chapter 6. For now,
these various details are not important.

As you can easily verify, Eq. (2.3) has a simple uniform solution u = 0. (In
a convection experiment, this solution corresponds to the uniform zero-velocity
conduction state as the fluid is driven out of thermodynamic equilibrium.) As the
parameter r is varied, we would like to determine the critical value rc when the
state u = 0 becomes linearly unstable, i.e. when the magnitude of an arbitrary
infinitesimal perturbation about u = 0 begins to grow exponentially in time. We
would also like to identify the critical wave number qc and critical frequency ωc

associated with the onset of instability.

2.2.2 Linear stability analysis

To carry out the linear stability analysis, we denote the solution u = 0 as a base
state ub and ask whether the difference or perturbation field

up(x, t) = u(x, t) − ub, (2.5)

between an arbitrary nearby solution u(x, t) and the base state will grow in
magnitude over time. The perturbation up evolves according to the evolution
equation

∂tup = N̂
[
ub + up

] − N̂ [ub] , (2.6)

where the nonlinear operator N̂ is defined by considering the right-hand side of
Eq. (2.3) to be a function of the field u:

N̂ [u] = (r − 1)u − 2 ∂2
x u − ∂4

x u − u3. (2.7)

If the field up is sufficiently small, we can approximate N̂
[
ub + up

]
in Eq. (2.6)

by linearizing about ub, that is by keeping only terms on the right-hand side of
Eq. (2.6) that involve a single factor of up or of its spatial derivatives. We then find
that an infinitesimal perturbation up(x, t) satisfies the evolution equation

∂tup =
(

r − 1 − 2 ∂2
x − ∂4

x − 3u2
b

)
up. (2.8)

Notice that this equation is linear in the field up (for example, multiplying up by
a constant factor leaves the equation unchanged), although the base solution ub

occurs nonlinearly. Specializing immediately to the particular base state ub = 0,
Eq. (2.8) becomes

∂tup =
(

r − 1 − 2 ∂2
x − ∂4

x

)
up. (2.9)

This is a linear differential equation with constant coefficients. (The coefficients are
constant precisely because the base state is stationary and uniform.) We can then
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generalize a well-known result for solving linear constant-coefficient odes (see for
example Section 8.11 of Ref. [55]) and argue that there is a particular solution to
Eq. (2.9) that will depend exponentially on time and exponentially on space

up(x, t) = Aeσ teαx. (2.10)

Here the constant σ is a growth rate, and σ and the constant α are possibly complex.
Since partial derivatives of any order acting on an expression of the form Eq. (2.10)
turn into multiplication of that expression by some algebraic factor (e.g. ∂2

x becomes
multiplication by α2), substituting Eq. (2.10) into the linear constant-coefficient
partial differential equation Eq. (2.9) yields a simple algebraic relation that can be
satisfied by choosing a particular value of σ for each value of α

σ = r − (α2 + 1)2. (2.11)

The meaning of the constant α can be deduced by considering the boundary
conditions that apply to the field u and to the perturbation up. The simplest possible
cases are the idealized geometries for which the lateral boundaries are eliminated
by using infinite or periodic boundaries. We discuss these two cases in turn.

(i) Infinite boundary conditions: If the system is infinitely large in the x coordinate (L =
∞), then there are no boundaries to speak of. This is consistent with a uniform state
ub that is constant everywhere in space but is not consistent with the exponential
dependence eαx in Eq. (2.10) unless the constant α is purely imaginary α = iq with q
real. Otherwise, eαx will diverge in one of the limits x → ∞ or x → −∞, violating
the assumption that the perturbation up is everywhere small.

(ii) Periodic boundaries: Alternatively, we can assume that the system is finite but periodic
with length L, i.e. the system is topologically equivalent to a ring.Aconstant solution ub

is automatically periodic over any length but a perturbation up(x, t) is periodic with
period L only if it satisfies the periodic boundary condition

up(x, t) = up(x + L, t), (2.12)

for all times t and all positions x. The particular solution Eq. (2.10) will be periodic
with period L if and only if

eαx = eα(x+L) for all x. (2.13)

This implies that eαL = 1 or αL = (2π i)m for some integer m so that the quantity
α = iq is purely imaginary, just as was the case for infinite boundaries. But now the
real number q is restricted to one of the infinitely many quantized values

q = m

(
2π

L

)
, m = 0, ±1, ±2, . . . (2.14)
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We conclude that infinite and periodic boundary conditions are consistent with a
uniform base state ub and with a single exponential mode Eq. (2.10) provided that
the mode has the form

up(x, t) = Aeσ teiqx, (2.15)

with q a real number. The spatial dependence of up is then periodic with wave
number q (alternatively, with wavelength 2π/q). For infinite domains, q can be any
real number while for finite periodic domains, q can be any one of the infinitely
many discrete values Eq. (2.14). The fact that the linearized evolution equation
can be solved by a single exponential mode is the key conceptual simplification of
using boundaries (infinite or spatially periodic) that are consistent with translational
invariance.

Substituting α = iq into Eq. (2.11) gives the wave-number-dependent growth
rate

σq = r − (q2 − 1)2. (2.16)

Eq. (2.16) says that a small-amplitude spatially periodic perturbation with wave
number q (about the base solution ub = 0) will grow or decay exponentially in
time with a growth rate σq that depends on q. Because the evolution equation
Eq. (2.9) is linear, a general solution can be obtained as a superposition of the
particular solutions Eq. (2.10)8

up(x, t) =
∑

q

cqeσqteiqx, (2.17)

where the coefficients cq are complex numbers and where the sum goes over the
discrete set Eq. (2.14) for periodic boundary conditions. (For infinite boundaries,
the sum would be replaced by an integral

∫ ∞
−∞ dq . . . over all wave numbers q, and

Eq. (2.17) becomes a Fourier integral.) The base state ub = 0 is therefore linearly
stable if each exponential in Eq. (2.17) decays in the limit t → ∞. This will be
true if the maximum real part of all the growth rates is negative:

max
q

Re σq < 0, (2.18)

which is true for negative r.

8 Eq. (2.17) is none other than a Fourier analysis of the perturbation δu(t, x). At each moment in time t, we
represent the spatial dependence of δu as a Fourier sum or Fourier integral depending on whether we have
periodic or infinite boundary conditions. For a constant-coefficient pde evolution equation, the time-dependent
Fourier coefficient cq(t) for mode eiqx has the particular form of cqeσ t , a constant cq times an exponential in
time. Since δu is real-valued, the Fourier coefficients cq(t) of positive and negative wave number q > 0 are
complex conjugates of each other, c−q(t) = c∗

q(t).
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2.2.3 Growth rates and instability diagram

Let us examine in detail how the growth rate σq determines the linear stability of
the uniform base state ub = 0. We saw above in Eq. (2.16) that the growth rate σq

is given by

σq = r −
(

q2 − 1
)2

. (2.19)

Since this expression is real-valued for all wave numbers q, the critical frequency ωc

of Eq. (2.2) is zero. Instability will occur without temporal oscillations.
We next want to determine when the maximum of the curve Re σq versus q

changes from a negative to positive value as the parameter r is varied, indicating the
onset of linear instability. Since the quantity (q2 −1)2 in Eq. (2.19) is non-negative
and vanishes for q = 1, the maximum value of σq occurs for the value qmax = 1
independently of r. The value of σq at its maximum is therefore

max
q

Re σq = r. (2.20)

We have made two discoveries. First, the uniform state u = 0 is linearly stable
when the Swift–Hohenberg parameter r < 0 and is linearly unstable when r > 0
so the critical parameter value for linear instability is rc = 0.9 Second, the critical
wave number qc at which the curve Re σq first attains a positive value is qc = 1
since this is the location of the maximum, independent of the value of r.

Additional insight can be obtained by plotting the curve Re σq versus q for several
values of r. Figure 2.2 confirms visually our analytic conclusion that the growth
rate is everywhere negative if r < 0 (the bottom light-gray curve) but provides fur-
ther insight. First, the Fourier modes eiqx with wave numbers q near the maximum
at q = 1 are the least slowly decaying in time and the modes with q � 1 are the
most rapidly decaying. For r = 0.2 just a bit larger than rc = 0, there is a narrow
band of wave numbers 0.75 < k < 1.2 centered around q = 1 whose correspond-
ing Fourier modes will grow. This means that if the initial state up(x, t = 0) is a
small-amplitude noise such that all the Fourier coefficients in Eq. (2.17) are nonzero
but with tiny amplitude, then a cellular pattern will start to grow out of this noise
since, in Eq. (2.17), only Fourier coefficients with wave numbers close to qc = 1
will grow in magnitude. Thus Fig. 2.2 suggests the beginning of pattern forma-
tion and predicts some kind of cellular structure with a characteristic wavelength
2π/qc.

An alternative and commonly used way to summarize the information in
Eq. (2.16) and in Fig. 2.2 is to plot the neutral stability curve r = rc(q) for which

9 The case r = rc of marginal stability requires a separate stability analysis involving higher-order terms in the
expansion Eq. (2.8) to see whether small perturbations will grow or decay. However, such marginal cases are
rarely interesting physically since, in practice, no experimental system can be tuned precisely to a critical value.
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Fig. 2.2 Plot of the growth rate σq, Eq. (2.16), versus the wave number q for
the uniform base state ub = 0 of the one-dimensional Swift–Hohenberg equation
Eq. (2.3) in an infinite domain. Three curves are shown for parameter values of
respectively r = −0.2 (light gray), r = 0 (black), and r = 0.2 (dark gray). These
correspond to a stable, marginally unstable, and unstable base state. The critical
parameter value rc = 0 and the critical wave number qc = 1 are identified from
the r = 0 curve as where Re σq first becomes zero as r is varied. For r = 0.2 just
positive, only a narrow band of Fourier modes centered on the critical wave number
can grow, predicting the appearance of a pattern with a characteristic length scale
2πq−1

c .

the real part of the growth rate vanishes, Re σq = 0. (We can also write this as
q = qN (r).) For the Swift–Hohenberg equation, Eq. (2.19) implies that the neutral
stability curve for the uniform state ub = 0 is given by σq = 0 or by the curve

r =
(

q2 − 1
)2

, (2.21)

which we plot in Fig. 2.3. For all points (r, q) below this curve, a perturbation
of wave number q about the uniform state u = 0 will decay, whereas above
this curve a perturbation at wave vector q will grow. The critical parameters rc

and qc are now determined graphically by the global minimum of the neutral
stability curve. Figure 2.3 again suggests that cellular patterns with wave num-
ber q ≈ qc might be expected for r just larger than rc since there is a narrow
band of wave numbers for which the uniform state is unstable. Unlike Fig. 2.2, the
neutral stability curve gives no information about the growth rate of the instabil-
ity. However the diagram gives a single picture showing the range of modes that
would grow from the uniform state, and that, loosely, might be available for pattern
formation.
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Fig. 2.3 Plot of the neutral stability curve r = rc(q), Eq. (2.21), for the uniform
state ub = 0 of the one-dimensional Swift–Hohenberg equation Eq. (2.3). The
uniform state is stable below this curve and pattern formation can be expected
above this curve. The critical parameter rc = 0 and critical wave number qc = 1
can be identified visually from the global minimum of this curve. The horizontal
line segment indicates the band of unstable wave numbers for r = 0.2 and should
be compared with the r = 0.2 curve of Fig. 2.2.

2.3 Key steps of a linear stability analysis

From the linear stability analysis of the Swift–Hohenberg equation, we can identify
the following steps for carrying out the linear stability analysis of a stationary
uniform state associated with some pattern-forming system.

(i) Obtain explicitly the evolution equations for the system.
(ii) Rewrite the evolution equations in dimensionless form to reduce the number of

parameters p and to obtain the parameters in dimensionless form.
(iii) Replace the boundary conditions in the extended directions with infinite or periodic

boundary conditions.
(iv) For a given vector of system parameters p, find explicitly at least one time-

independent state u = ub(x‖) that is uniform with respect to the extended
coordinates x⊥.

(v) Linearize the evolution equations about the uniform base state ub to obtain the linear
evolution equations for an infinitesimal perturbation up. The coefficients of this linear
differential equation will not depend on the extended coordinates x⊥ nor on time.

(vi) Use a particular solution of the form

up = uq(x‖)eσqteiq • x⊥ . (2.22)
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to solve the linearized evolution equations and to obtain the wave vector depen-
dent growth rate σq. If the uniform state ub(x‖) has a nontrivial dependence on the
constrained coordinates x‖, a numerical calculation may be needed to determine the
functions uq(x‖).

(vii) Analyze the function Re σq versus wave vector q visually and mathematically. The
interesting features to look for are local maxima (especially the global maximum)
and the wave vectors q corresponding to these maxima. The uniform state is linearly
stable for the chosen parameters if maxq Re σq < 0, unstable otherwise.

(viii) Map out the linear stability of the uniform states as a function of the system parameters
by repeating steps (iv) through (vii) for different values of the parameter vector p
and possibly for different uniform states. In particular, for any parameter p of special
interest, identify its critical value pc (if one exists) defined by maxq Re σq = 0. Also
identify the corresponding critical frequency ωc and critical wave number qc (or, in
the case of anisotropic systems, critical wave vectors, qc).

Step (i) can be difficult since a detailed knowledge of the physics, chemistry, or
biology of the system is needed to derive possible evolution equations and much
experimental work is needed to validate proposed equations. Thus it is still not
known whether the flow of a granular medium like sand can be described by contin-
uum evolution equations, and physiologists still struggle to identify quantitatively
accurate evolution equations for the electrical waves in cardiac muscle. For known
evolution equations, finding a uniform state (step iv) can be hard since there is no
mathematical algorithm that is guaranteed to find even a single solution of the non-
linear partial differential equations satisfied by a uniform state. In the laboratory,
a uniform state can sometimes be found by starting from an equilibrium state and
driving this state slowly out of equilibrium but this won’t work for many natural
systems such as the Sun or the weather whose parameters cannot be varied. The
remaining steps are easier since they involve simple mathematical manipulations
or finding the eigenvalues of a matrix. The latter is straightforward using modern
numerical software.

2.4 Experimental investigations of linear stability

2.4.1 General remarks

In this section, we change our point of view and consider how to study experimen-
tally the linear stability of a stationary uniform state.10 Experimentalists are, in fact,
often in the position of not having any theory for guidance and yet they routinely

10 Similar questions and solutions arise for a computational scientist who can only run some complicated evolution
code. For some codes, the nonlinearities may be defined through functions that use iterative algorithms or look-
up tables so that it is not possible to linearize the dynamical equations explicitly. However, the computational
scientist often has two big advantages over the experimentalist: the ability to specify periodic boundary
conditions in the extended directions and the ability to set the initial conditions to any desired value.
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measure quantities such as the critical bifurcation parameter pc, the critical wave
number qc, and the critical frequency ωc.11 The most progress can be made if the
bifurcation of the uniform state is known experimentally to be supercritical so that
nonlinear states grow continuously out of the uniform state. We will assume this to
be the case. For the opposite case of subcritical bifurcations, it is straightforward to
determine experimentally when the uniform state becomes unstable, but difficult
to determine the critical wave number and frequency since the finite-amplitude
nonlinear state may have no relation to the uniform state.

For a pattern-forming system of interest, let us assume that the experimental-
ist has taken the difficult step of making the medium as large as possible in the
extended directions so that the lateral boundaries are likely to be a weak perturba-
tion. There is then a possibility to compare the experimental results with a linear
stability calculation based on infinite or periodic boundary conditions. We will also
assume that the experimentalist has discovered by trial and error that varying some
parameter p causes a stationary uniform state to undergo a supercritical bifurcation
to some nonuniform patterned state. We would then like to determine the critical
values pc, qc, and ωc associated with the instability.

To make progress, the experimentalist must identify some appropriate order
parameter �(p) whose measured values are able to distinguish the uniform state
from the nonuniform state. It is conventional to choose a quantity that is zero
in the uniform state, and nonzero in the pattern state. For Rayleigh–Bénard con-
vection, a suitable order parameter would be the magnitude |vz(x0, y0, z0, t)| of
the z-component of the velocity field at some fixed point (x0, y0, z0) in the fluid.12

For media that are not optically accessible, or for experimental convenience, other
order parameters can often be found that are related to the transport of heat or
electrical current through the medium, since transport is often enhanced by the
pattern. For example, for Rayleigh–Bénard convection the total heat transport may
be convenient, often quoted in dimensionless form as the Nusselt number N (the
ratio of the total heat transported to the heat transported by conduction alone). The
quantity N −1 is then zero in the conduction state, and serves as an order parameter.

The linear instability theory discusses the evolution of a small amplitude pertur-
bation. This is hard to measure experimentally because the signal is weak and

11 Theory provides much more information in the form of the growth rate σq as a function of parameters. But
it is difficult in most experiments to impose a periodic small-amplitude disturbance of known wave vector q
and to measure how its amplitude grows over time since the experimental lateral boundaries are not generally
consistent with the periodicity of the perturbation.

12 Provided that the velocity field v is not changing too rapidly, the technique of laser Doppler velocimetry can
be used to measure one or several components of the velocity at a point in the medium without perturbing
the fluid. The fluid is doped with a tiny concentration of neutrally buoyant light-scattering particles such as
white latex spheres about one micron in diameter. The frequency of laser light bouncing off these particles is
Doppler shifted by the average velocity of the fluid in the vicinity of the spheres. The frequency shift is easily
measured and converted into the velocity component along some direction.
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because it is difficult to measure time-varying transients. It turns out that the
quantities that characterize the linear instability point are best estimated by fit-
ting curves to data obtained just above the onset of the instability, in the weakly
nonlinear regime for which the exponentially growing perturbations have saturated
to some constant small magnitude. We will discuss this nonlinear state in more
detail in Chapter 4. All we need here is the simple result that, for supercritical
bifurcations, the size of �(p) grows continuously from zero as p increases above
the critical value pc.13

The experimentalist therefore measures �(p) after transients have died out at
some set of values pi of p. Then by fitting the data points to a suitably chosen
smooth curve, the critical value pc is identified by extrapolating the fitted curve for
�(p) to � = 0. Often, the theory of the nonlinear state can be a guide to the fit.
For example, the amplitude equation theory of Chapter 6 suggests that strengths
of field variables such as a fluid velocity should grow as (p − pc)

1/2 for p close
enough above pc, and intensity variables such as velocity squared, or convected heat
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Fig. 2.4 Plot of the Nusselt number N (the total heat transport divided by the
amount of heat transported by conduction) against the temperature difference
across the fluid (proportional to the Rayleigh number R) in a Rayleigh–Bénard
convection experiment. A linear fit to a portion of the data is used to estimate the
critical Rayleigh number. Note that there is some deviation of the data from the fit
for small values of the convected heat N − 1, often called “rounding of the tran-
sition.’’ This rounding suggests that the bifurcation is imperfect (see Appendix 1),
which could be a result of tiny experimental imperfections. (From Hu et al. [48].)

13 If �(p) does not grow continuously, the case of a subcritical bifurcation, this method cannot be used and
finding the linear instability point is more difficult. In some cases, the growth of transients is indeed studied.
In other investigations, the experimentalists have cleverly stabilized the unstable small amplitude state that
develops near a subcritical bifurcation.
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transport should grow linearly in p −pc for p near pc. Figure 2.4 shows an example
taken from a Rayleigh–Bénard experiment, where the heat transport, plotted as
the dimensionless Nusselt number N is measured as a function of the temperature
difference across the fluid, plotted as the dimensionless Rayleigh number.

The critical frequency ωc and critical wave number qc can be estimated by a
similar data-fitting procedure. For example, the critical frequency could be esti-
mated by measuring several different time series ui(t) of some observable (e.g. the
velocity component at a fixed point in space or the total heat transport) for differ-
ent parameter values pi in the weakly nonlinear regime. For each time series i, a
corresponding power spectrum Pi(ω) could be calculated and the position ωi of the
peak of largest magnitude estimated.14 Similarly a mean wave number 〈q〉i could
be identified from the spatial wave number spectrum Pi(q), where q is the magni-
tude of a two-dimensional wave vector q. Finally, the values of ωc and qc would
be obtained by fitting the data {pi, ωi} and {pi, 〈q〉i} to appropriate curves and then
by evaluating these curves at the critical parameter value pc, which was obtained
separately and previously.

There are other subtleties that require consideration when estimating critical
values. Every time the parameter pi is changed to a new value pi+1 to record more
data, the experimental system is perturbed and the experimentalist must wait for a
transient to die out before continuing to record data. Since the time for a transient to
decay is usually not known in advance, this has to be studied as a separate problem.
A related difficulty is that the transient times get longer and longer the closer the
parameter p gets to its unknown critical value pc, a phenomenon known as critical
slowing down. This occurs for any supercritical transition including bifurcations of
odes and maps and for phase transitions in equilibrium systems.Another issue is that
since the goal is eventually to compare experimental estimates with a linear stability
theory based on infinite or periodic boundaries, it is sometimes necessary to obtain
estimates of critical parameters for different system sizes and then extrapolate to
the infinite size limit. With care and effort, these difficulties can be conquered
and impressive agreement found between theory and experiment, in some cases
exceeding three significant digits.

After all this work, the experimentalist has estimates of the three numbers pc,
ωc, and qc. But p is usually not the only parameter controlling the experiment.
With further work, the critical values pc(s), qc(s), and ωc(s) can often be traced out
as functions of some secondary parameter s (or even as functions of several sec-
ondary parameters). The comparison of these functions with corresponding results

14 The experimental paper by Gollub and Benson [38] discusses some of the details and subtleties of identifying
the frequencies of peaks in a power spectrum. The amplitude equation theory of Chapter 6 shows that the
higher harmonics in the power spectrum become smaller in magnitude the closer one approaches the value pc
so identifying the largest peak actually becomes easiest in this limit.
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calculated from the linear stability analysis provide some of the strongest tests of
whether theory and experiment agree with one another.

2.4.2 Taylor–Couette instability

One of the most famous comparisons of experiment and theory for the linear insta-
bility of a uniform nonequilibrium state is also the first. In a pioneering paper
published in 1923, G. I. Taylor studied experimentally and theoretically the lin-
ear instability of the laminar uniform fluid state between two rotating concentric
cylinders (see Fig. 1.11). He studied the onset of instability and the critical wave
number qc as a function of two parameters, the angular frequency �1/ν of the rotat-
ing inner cylinder, and the angular frequency �2/ν of the rotating outer cylinder.15

Experimentally, Taylor made the axial direction as long as he possibly could to
avoid end effects. He was able to attain aspect ratios 
 of 80 to 370 depending on
the choice of inner radius ri. Theoretically, Taylor assumed that the axial (extended)
coordinate was periodic so he could take advantage of translational invariance. For
technical reasons (he didn’t have a computer in 1923!), he restricted the possible
infinitesimal perturbations of the uniform fluid state to be axisymmetric, which his
own experiments confirmed to be a reasonable assumption.16

In a typical experiment, Taylor used gears to fix the ratio µ = �2/�1, injected
a trace amount of ink near the inner cylinder, and then slowly increased �1 in
small successive steps until the uniform state became unstable. The instability was
visually obvious by the spontaneous self organization of the ink into a stack of
horizontal toroidal vortices that were easily seen through a glass portion of the
outer cylinder. By carefully sweeping the ratio µ back and forth and by analyzing
pictures of the resulting vortices, Taylor was able to estimate the critical ratio µc and
corresponding critical wave number qc as plotted in Figs. 2.5 and 2.6 respectively.
For µ > 0 (corotating cylinders), the widths of the vortices are about the same
as the width ro − ri of the fluid layer, but for µ < 0 (counter-rotating cylinders),
the vortices are smaller than the fluid width. The agreement between theory and
experiment over a range of µ values is impressive. The situation before Taylor’s
paper is well summarized in his own words [102]:

A great many attempts have been made to discover some mathematical representation
of fluid instability, but so far they have been unsuccessful in every case.

15 Taylor normalized both frequencies �i to the fluid’s kinematic viscosity ν but did not scale out the length as
we did in Eq. (1.4).

16 Theory developed years later confirmed that axisymmetric perturbations are the most “dangerous’’ in that they
grow faster than nonaxisymmetric perturbations. An exception is counter-rotating cylinders (�2/�1 < 0) for
which the outer cylinder is rotating much faster than the inner cylinder (|�2/�1| � 1). In this regime, there
is a small systematic correction to the results calculated by Taylor based on axisymmetric perturbations.
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Fig. 2.5 G. I. Taylor’s classic comparison of experiment with theory for the lin-
ear instability of the uniform (laminar) fluid state of a Taylor–Couette cell (see
Fig. 1.11). The experimental apparatus consisted of an outer cylinder with inner
radius ro = 4.04 cm rotating with angular frequency �2, and of an inner cylin-
der with outer radius ri = 3.55 cm, rotating with frequency �1. The cylinders
were 90 cm tall so the aspect ratio was 
 = 90/(4.04 − 3.55) ≈ 184. The fluid
was water at close to room temperature with kinematic viscosity ν. Instability
was observed visually through a glass window in the outer cylinder, when small
amounts of injected ink suddenly self organized into horizontal vortices (Taylor
cells). The small black points are experimental data while the larger open points
are theoretical points calculated from a linear stability analysis of the Navier–
Stokes equations. The smooth curve through the points is a guide to the eye, not
a theoretical fit. The uniform state is stable below the curve, unstable above. The
agreement is impressive, within two percent over a large range of inner and outer
frequencies. (Redrawn from a figure in the paper “Stability of a viscous liquid
contained between two rotating cylinders’’ by Taylor [102].)

Taylor’s results in Figs. 2.5 and 2.6 leave no doubt that a linear stability analy-
sis based on the Navier–Stokes equations of fluid dynamics gives a quantitative
explanation of when and how the Taylor–Couette uniform state becomes unstable.

2.5 Classification for linear instabilities of a uniform state

The linear stability analysis of the Swift–Hohenberg equation in Section 2.2.2
demonstrates the importance of how the growth rate Re σq passes through zero
for q near qc as the control parameter p is increased through pc. The critical wave
number qc tells us about the basic length scale of the pattern formation, and the band
of unstable wave numbers for p > pc gives an estimate of the range of modes that
are accessible for pattern formation. Analysis of many physical systems and other
models suggests a useful classification scheme for various types of linear instability
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Fig. 2.6 G. I. Taylor’s comparison of the predicted critical half-wavelength λc/2 =
π/qc (large open dots) with experimental values (small black dots) as a function of
the ratio µ = �2/�1 of outer to inner rotation frequencies. The wavelengths were
estimated by measuring the average separation between vortices in photographs
that were taken of flows as close as possible to onset. The height, outer radius,
and inner radius were respectively L = 90 cm, ro = 4.04 cm, and ri = 3.80 cm.
Taylor’s vertical label d/θ is the average width of a vortex in centimeters. Exper-
iment and theory agree to about five percent, not quite as good as for the onset of
instability in Fig. 2.5. (Source as in Fig. 2.5.)

important in pattern-forming systems.17 This classification will also turn out to be
useful for analyzing the weakly nonlinear pattern-forming tendencies of a sustained
nonequilibrium system near the onset of a supercritical bifurcation of the uniform
state. In the present section, we consider a system with one extended direction as
in Section 2.2. In the next section, we discuss a larger number of extended directions
and the role symmetry plays in these cases.

For some idealized pattern-forming system with infinite or periodic lateral bound-
aries, let us consider some parameter p such that a stationary uniform state of the
system becomes linearly unstable when p exceeds a critical value pc. Since we are
interested in the first instability of the uniform state, we focus our attention around
the maximum of the growth rate curve Re σq, for example around q = 1 in Fig. 2.2.
The classification scheme is based on whether this maximum growth rate passes
through zero at a zero or a nonzero value of the wave number q as the control

17 This classification scheme was introduced by Cross and Hohenberg [25].
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parameter p is varied, and on whether the instability is stationary or oscillatory at
this point. Then the linear instabilities can be classified as belonging to one of three
classes that we designate by Roman numerals as type I, type II, or type III as shown
in Figs. 2.7, 2.8, and 2.9.18 Each of these three types can be further divided into
two categories depending on whether the imaginary part of the growth rate at onset
given by ωc is zero or nonzero. If zero, we call the instability stationary and add a
label “s’’ to the type, e.g. the symbol I-s denotes a stationary type-I instability. If
nonzero, we call the instability oscillatory and add a label “o,’’ e.g. the symbol III-o
denotes a type-III oscillatory instability at onset. We will concentrate on stationary
instabilities in the next seven chapters since they are more relevant for the formation
of time-independent structures. Chapter 10 will discuss pattern-forming oscillatory
instabilities.

We now describe the classes in turn. Here and later, it is useful to introduce a
dimensionless reduced bifurcation parameter

ε = p − pc

pc
, (2.23)

so that ε = 0 defines the onset of instability, and consider the functional form of
Re σq for ε close to zero and q close to qc.

2.5.1 Type-I instability

For a type-I instability, the instability occurs first at a nonzero wave number, i.e. the
quantity Re σq first becomes positive at a critical wave number qc > 0. This
is the case we encountered for the Swift–Hohenberg analysis. The length 2π/qc

sets the characteristic scale of the patterns. For p > pc, the uniform state is unstable
to perturbations over a band of wave numbers between the neutral stability values

q−
N (p) < q < q+

N (p). (2.24)

Assuming that Re σq varies smoothly as a quadratic near its greatest value and
assuming a smooth variation with respect to the control parameter p, the behavior
of the linear instability is pictured in Fig. 2.7.

The key aspects of the behavior of the growth rate near threshold are captured
by a simple algebraic expression that turns out to be useful in defining a time-scale

18 We restrict the likely types of behavior by assuming that σq is everywhere finite, that Re σq varies smoothly
near its greatest value (i.e. the curve shows a quadratic maximum, not a cusp), and that Re σq < 0 for large q.
These assumptions are physically reasonable, although simple mathematical models may violate one or more
of them. If these restrictions are lifted, a much wider range of behavior is possible, some of which are described
in the book by Murray [79]. However, the present classification into the three main classes described here is
convenient and sufficiently general.
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Fig. 2.7 Growth rate for a type-I instability. Re σq is shown as a function of q
for three values of the control parameter p. Only the region of the curve near the
maximum growth rate is plotted. The value of p when this maximum value passes
through zero identifies the critical parameter pc and the wave number where this
happens is the critical wave number qc.

parameter τ0 and a length-scale parameter ξ0 that are also relevant in the weakly
nonlinear analysis.

For q = qc, the growth rate passes through zero at p = pc. Expanding about this
value in a Taylor expansion for small ε gives

σqc � 1

τ0
ε, (2.25)

which defines a parameter τ0 that is the characteristic time scale of the instability.
A few points are worth explaining. The lowest-order constant term in the Taylor
expansion is absent by virtue of our choice to expand about pc where the growth
rate is zero. On the other hand, since σqc is “passing through zero,’’ we make
the reasonable assumption that the coefficient of the first term in the expansion is
nonzero. (This is known as the transverse assumption in bifurcation theory.) The
coefficient of the first-order term has the dimensions of an inverse time and so we
write the coefficient as τ−1

0 . Finally, we ignore higher-order terms for small ε.
For a growth rate curve with a smooth maximum, we expand about the maximum

value. For p = pc, the maximum occurs at q = qc and so we have

σq(p = pc) ≈ −ξ2
0

τ0
(q − qc)

2. (2.26)

The coefficient of the quadratic term is written as −ξ2
0 /τ0, which introduces the new

constant ξ0 which has dimensions of length and is called the coherence length. As
we will discuss in Chapter 6, ξ0 determines the spatial range over which some local
disruption (e.g. a lateral boundary or topological defect) perturbs the surrounding
pattern.
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Finally, we can combine the two expansions to give

σq ≈ 1

τ0

[
ε − ξ2

0 (q − qc)
2
]
, (2.27)

where there will be higher-order terms of order ε2, ε(q−qc), (q−qc)
3, etc. Note the

implication of this expression that the width of the band of unstable modes q+
N −q−

N
shrinks to zero as ε1/2 in the limit ε → 0+.

The instability may be stationary of type I-s or oscillatory of type I-o. In the latter
case, the space and time dependence is that of a standing or traveling wave.

2.5.2 Type-II instability

For a type-II instability, the growth rate at q = 0 is always zero. This is often the
case when one of the evolving fields obeys a conservation law so that the integrated
value of the field over all space is constant over time. Typical curves of Re σq for p
near pc are shown in Fig. 2.8, for the case that the growth rate is symmetric under
the substitution q → −q. The curves can be parameterized for small q and p � pc

by the form

Re σq ≈ D

(
εq2 − 1

2
ξ2

0 q4
)

. (2.28)

Here the constant D actually has the dimensions of a diffusion constant, and ξ0 is
again the coherence length. Note that the maximum growth rate occurs at a small
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Fig. 2.8 Growth rate for a type-II instability. The real part of the growth rate Re σq
is shown as a function of wave number q for three values of the control parameter p,
as in Fig. 2.7. For p < pc, the growth rate decreases quadratically from q = 0,
whereas for p > pc, the growth rate increases quadratically from q = 0, eventually
decreasing at larger q. For p = pc, the growth rate decreases more slowly. Note
that the instability occurs first at p = pc at q = 0 but the wave number for the
maximum growth rate occurs at a value of q that increases for p > pc.
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wave number, q = qm = ξ−1
0

√
ε. This implies a tendency toward pattern formation

with a long wavelength ξ0ε
−1/2. Unlike a type-I instability, the characteristic length

of pattern formation diverges to infinity as ε → 0+. Like a type-I instability, the
width of the band of unstable wave numbers shrinks in the same limit to zero as ε1/2,
but now the band stretches to zero wave number.19

The instability can again be of two types, stationary of type II-s and oscillatory
of type II-o.

2.5.3 Type-III instability

For a type-III instability, the growth rate is maximized at zero wave number, q = 0,
above and below threshold as shown in Fig. 2.9. The dependence near threshold
can be characterized by the expression

Re σq ≈ 1

τ0

[
ε − ξ2

0 q2
]

(2.29)

near onset (see Exercise 2.3 for an example). Since the maximum growth rate
occurs for q = 0, the linear analysis predicts that there is the possibility of spatial

q

Re sq

p < pc

p = pc 

p > pc 

Fig. 2.9 Growth rate for a type-III instability. The maximum growth rate always
occurs at q = 0.

19 Sometimes the expansion of Re σq for q � 0 is not smooth and the growth rate takes the form

Re σq ∝ ε |q| − ξ0q2.

The maximum growth rate now occurs at qm ∝ ε for ε > 0, and the band of unstable wave numbers similarly
scales proportional to ε.
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structure on a large length scale just above threshold, with a band of unstable
wave numbers whose width is proportional to ε1/2. The type-III instability is often
encountered for oscillatory instabilities (i.e. type III-o). For example, an oscillatory
type-III-o instability can occur for the two-chemical reaction–diffusion system we
will discuss in Chapter 3. A system with a type-III-o instability typically supports
nonlinear waves over a band of wave numbers of width proportional to ε1/2 near
threshold. A weakly nonlinear state near this type of instability provides a simple
model to begin to understand nonlinear wave states in pattern forming system, as
discussed in Chapter 10.

The significance of these three classes applies not just to the linear instabil-
ity but also to the pattern state that ensues, at least for control parameter values
not too far from the critical one. As will become clear in Chapters 6 and 10,
just above the instability of a uniform state, the pattern formation has a univer-
sal behavior20 that depends only on the class of linear instability, not on particular
details of the evolution equations themselves. Thus systems that seem unrelated
such as Rayleigh–Bénard convection, reaction–diffusion systems, and plasmas may
all have similar qualitative behavior near the onset of the type-I-s instability of their
uniform states. An experimental or theoretical study of one system can then give
insight about other systems.

2.6 Role of symmetry in a linear stability analysis

So far, our discussion of linear instability has concerned mainly systems with one
extended spatial dimension, in which case the growing disturbance is characterized
by a single number, the wave number q. If there are two or more extended spatial
dimensions, the dependence of the growth rate on the direction of the wave vec-
tor q of the unstable mode must also be considered. This is especially important
if the physical medium is governed by rotational symmetries, since many distinct
modes can then become unstable at the same time and with the same growth rate.
In these cases, superpositions of the growing modes can occur that lead to a more
complicated spatial dependence. In this section, we discuss the relation between
symmetries and growth rates and the implication of this relation for pattern forma-
tion. We first discuss some consequences of symmetry using qualitative arguments,
and then give brief pointers to the more formal discussion that can be found in
advanced texts and in the published literature.

20 The word “universal’’ has a special meaning in physics that arose in the study of second-order equilibrium
phase transitions. “Universal’’means that certain details of a certain phenomenon do not depend on microscopic
details but rather on more abstract details such as the symmetry or dimensionality of the system.
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2.6.1 Rotationally invariant systems

Many pattern-forming systems are isotropic in the extended directions so that the
medium is unchanged by a rotation through an arbitrary angle about any axis per-
pendicular to these directions.21 For example the partial differential equations that
describe convection of a free fluid or that describe reacting and diffusing chemicals
in the geometry of Fig. 2.1 are unchanged by a rotation about the vertical axis. (The
lateral boundaries may break this symmetry, but, as we have discussed before, it
is valuable to study first the idealized situation for which the effects of the lateral
boundaries are ignored.)

A simple model for a pattern-forming system that is rotationally invariant in two
dimensions is the two-dimensional Swift–Hohenberg equation for the evolution of
a scalar field u that is a function of two space coordinates:

∂tu(x, y, t) = ru − (∂2
x + ∂2

y + 1)2u − u3. (2.30)
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Fig. 2.10 Plot of the growth rate Re σq for a type-I pattern forming system that
is rotationally invariant in the xy plane. The surface plot is shaded according to
the value of Re σq on a grey scale with light corresponding to larger values. The
actual result plotted is for Eq. (2.30) with r = 0.1.

21 Mathematically, this corresponds to rotating the coordinate system about the origin, i.e. making the substitution
x → Ox everywhere in the mathematical description of the medium, where O is an orthogonal (length-
preserving) matrix .
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Fig. 2.11 Contour plot of Re σq for a type-I instability in a system with rotational
symmetry in the two extended directions x⊥. For simplicity, just the Re σq = 0
curves are plotted, i.e. the neutral stability wave numbers q±

N (p) for some choice
of p > pc. The hatched region shows where Re σq > 0. Sufficiently close to onset,
nonlinear states can be constructed as a superposition of modes Eq. (2.22) whose
wave vectors lie in this shaded annular region.

The growth rate Re σq as a function of the wave vector q = (qx, qy) for this
equation with a value r = 0.1 slightly above threshold is shown in Fig. 2.10.
This is the two-dimensional generalization of the upper curve in Fig. 2.7. (It is too
cumbersome to show all three curves on the same plot for the two-dimensional case.)
The implications of the symmetry can be clarified by a contour plot of Re σq as a
function of q = (qx, qy). For a rotationally symmetric system, these contours will be
circles in the (qx, qy) plane. In Fig. 2.11, we just show the neutral stability contours
given by Re σq = 0 for a particular value of p > pc. (These correspond to the points
q±

N for the one-dimensional case.) The annular region between the neutral contours
corresponds to the range of growing modes, Re σq > 0, in the linear analysis. This
annular strip generalized the range of wave numbers 0.75 < k < 1.2 for the r = 0.2
curve in the plot of the growth rate for the one-dimensional Swift–Hohenberg
equation in Fig. 2.2.

The rotational symmetries lead to a degeneracy of the unstable modes above
onset: for any wave vector q that is unstable, modes with wave vectors related to
this one by a rotational symmetry are also unstable with the same growth rate. (The
mode with wave vector −q does not give a new solution but instead combines
with the mode at q to give a real solution, but other symmetry-related wave vectors
do.) In the linear analysis, solutions formed out of superpositions of the symmetry-
related modes also grow at the same rate, so that an enormous range of patterns
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appears possible. As Chapter 4 discusses, this degeneracy is eliminated or strongly
reduced by nonlinearities in the system. The nonlinearities thus act as a pattern
selection mechanism.

2.6.2 Uniaxial systems

An example of a translationally invariant but not isotropic medium is a nematic
liquid crystal. This is a liquid of identical rod-like molecules. In the nematic phase,
the molecules are preferentially aligned parallel to one another so that the average
alignment defines a particular orientation in the liquid called the director n̂.22 The
liquid is said to be uniaxial, since there is a single preferred orientation. Translating
the liquid crystal in any direction preserves the properties of the medium since the
liquid still looks locally like many rods preferentially oriented the same way. But
at any given point, the medium is anisotropic, with properties (e.g. the dielectric
constant) that depend on the direction of measurement relative to the director.
Rotating the medium around the director leaves the medium unchanged but not so
for axes that are not parallel to the director since this changes the mean orientation
of the molecules.

Convection experiments with liquid crystals and with the geometry of Fig. 2.1
have been carried out such that the molecules preferentially line up along a particular
direction in the xy plane. (This can be achieved by treating the surfaces of the
horizontal plates in a special way that forces the nematic axis to be parallel to a
particular direction in the plate.)The pre-convection state remains spatially uniform,
but is no longer isotropic in the plane. However, the system still has inversion
symmetry (x and −x are equivalent).23

The possible forms of Re σq slightly above threshold for such a uniaxial sys-
tem with director along the x-axis are shown in Fig. 2.12.24 The corresponding
contour plots for Re σq = 0 are shown in Fig. 2.13. For some parameter val-
ues,25 convection may occur first for a wave vector aligned along the preferred
direction: qc = ±qcx̂, as in Figs. 2.12(a) and 2.13(a). (It is also possible for the
maximum growth rate to be along the y axis.) In these cases, for values of the control
parameter slightly above threshold, the range of unstable wave vectors form small

22 Since the molecular alignment of the rods does not have any sense (backwards and forwards are equivalent),
the director n̂ is not a vector but a unit line segment that indicates just an orientation.

23 In a system without this symmetry, disturbances with wave vectors q and −q are not equivalent. Once the
“forward’’and “backward’’directions are not equivalent, we would typically expect the disturbance to propagate
in one direction or the other, leading to a type-“o’’ oscillatory instability of the uniform state.

24 The actual equation used to construct the plots is discussed in Exercise 2.7.
25 Convection in this system is actually driven by anAC applied voltage, rather than by a time-independent thermal

gradient. The frequency of the applied voltage provides a second control parameter that can be tuned indepen-
dently of the voltage (which plays the role of the temperature difference in Rayleigh–Bénard convection). We
discuss electroconvection further in Chapter 6, see Fig. 6.2.
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Fig. 2.12 Growth rate Re σq as a function of the wave vector q = (qx, qy) for a
type-I instability in a uniaxial (non-isotropic) system. The preferred direction is
taken to be the x-axis and the control parameter has a value slightly above critical.
There are two possibilities: (a) the growth rate is maximum at two points, either
on the qx or qy axes (qy = 0, qx = ±qc as shown, or qx = 0, qy = ±qc); or (b) the
growth rate is a maximum at four symmetry-related points qc = (± cos θ , ± sin θ).

elliptical regions around two points, as in Fig. 2.13(a). Another possibility is that
the maximum growth rate and critical wave vectors lie at an angle θ with respect
to the x-axis that is neither 0 nor π/2, as shown in Figs. 2.12(b) and 2.13(b). There
will then be four symmetry-related values of qc given by the vectors (±qc cos θ ,
±qc sin θ).

Just above onset, there are elliptical regions of growing modes around these
critical wave vectors (although the axes of the ellipses are not necessarily aligned
with the directions of qc).Above threshold, we expect patterns formed out of modes
near these elliptical regions, either from a plus/minus pair or from all four regions.
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Fig. 2.13 Two possible forms of the neutral stability contours Re σq for a type-I
instability in a uniaxial system as in Fig. 2.12. The neutral stability contours for p
slightly greater than pc are ellipses centered on qc. In (b), the axes of the ellipses
will in general not be parallel nor perpendicular to the critical wave vector qc.

These possibilities will lead to patterns with different geometries than ones formed
from the annulus of unstable modes as in Fig. 2.11 for the rotationally invariant
system.

2.6.3 Anisotropic systems

Finally we consider the case of no rotational symmetry in the plane of extended
directions. We do not know of any experimental examples of instabilities in fluid or
reaction diffusion systems that show this absence of symmetry but we include it for
completeness. To show a stationary type-I instability, the system must retain invari-
ance under x → −x in the extended directions (parity symmetry), as discussed in
footnote 23. Thus the instability will occur first at a pair of critical wave vectors qc

at some particular orientation given by ±(qc cos θ , qc sin θ), as shown in Fig. 2.14.
The contours of maximum growth rate slightly above threshold will be ellipses with
major and minor axes at no special orientation relative to qc. This case is identical
to Fig. 2.13(b) if only modes near one plus/minus pair of ellipses are excited.

2.6.4 Formal discussion

Symmetry is key to understanding much of nature, and mathematical tools to
describe symmetry and understand its consequences are well developed and have
had many successes. An example that might be familiar to some readers is quan-
tum mechanics, where symmetry plays a vital role in classifying quantum states,
simplifying calculations of states and energies, and understanding energy level
degeneracy. The mathematical formulation of symmetry, known as group theory,
was largely developed in this context. The linear stability analysis in pattern-
forming systems deals with the properties of linear operators, such as the quantity
acting on up on the right-hand side of Eq. (2.8), just as quantum mechanics does.
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Fig. 2.14 Neutral stability contours Re σq for a type-I instability in a system with-
out rotational symmetry. The neutral stability contours for p slightly greater than
pc will be ellipses about qc. The axes of the ellipses will in general not be parallel
nor perpendicular to the critical wave vector qc.

As you might expect, the group-theory formalism is a valuable and useful tool in
pattern formation.

We introduced perhaps the simplest result of group theory using algebraic
arguments, namely the result that, for a translationally invariant system, the expo-
nentially growing modes may be taken as single Fourier modes in space. In the
language of group theory, we might have phrased the argument by saying that trans-
lations in the plane are symmetries of the linear operator of the instability analysis
so that the growing solutions form a representation of the translation group. For this
elementary result, the mathematical formalism is not really necessary. However,
as the symmetries become richer, for example including rotational symmetries or
temporal symmetries that are involved once oscillatory instabilities are studied, the
formalism becomes more essential. In the study of pattern formation, the linear
analysis is just the first step, and it is also crucial to understand the nonlinear sat-
uration of the exponential growth. This is the topic of later chapters in this book.
The application of the tools of group theory to this topic is known as equivariant
bifurcation theory. We will proceed using intuitive arguments, rather than these
formal tools.

Another interesting situation where degeneracy can arise is by varying two sys-
tem parameters simultaneously. (For example, we could vary the inner and outer
Reynolds numbers for the Taylor–Couette system in Fig. 1.11.) It may then be
possible to arrange for two distinct maxima of the curve Re σq to become zero at
the same time. For such a codimension-two bifurcation, the possibilities for pat-
tern formation are particularly rich since, for example, there will be two different
annuli in the isotropic case of Fig. 2.11. Symmetry arguments, and the tools of
equivariant bifurcation theory, then play a particularly important role in identifying
combinations of unstable modes that are relevant in the nonlinear state.
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2.7 Conclusions

This chapter has discussed the linear stability analysis of a stationary uniform
nonequilibrium state for systems with idealized infinite or periodic lateral bound-
aries. The analysis is usually a tractable, although not necessarily analytic or easy,
scheme for investigating even complicated systems provided that the evolution
equations and appropriate boundary conditions on the confined coordinates are
known. The analysis can predict for what parameter values the uniform state will
become unstable to small-amplitude perturbations and predict some details of the
growing instability such as its characteristic length and time scales and the spatial
structure in the confined direction. For a supercritical bifurcation, these length and
time scales as well as the symmetry of the neutral stability surface play an important
role in the weakly nonlinear pattern formation just above the onset of instability.
The classification into six different types of instabilities (Section 2.5), together with
the discussion of symmetries (Section 2.6), unifies the pattern formation of diverse
systems, at least for large aspect ratio systems undergoing a supercritical bifurca-
tion of a uniform state. In this chapter, we have used a simple, perhaps artificial
example to illustrate the issues and techniques. In the next chapter, we apply what
we have learned to the example of reacting and diffusing chemicals.

2.8 Further reading

(i) The paper by Taylor [102] discussed in Section 2.4.2 is a readable example of
theoretical linear stability analysis and its application to an experimental system.

(ii) A second classic paper on linear instability in fluid dynamics is Rayleigh’s analysis of
the convection instability [91].

(iii) The books Hydrodynamic and Hydromagnetic Stability by Chandrasekhar [18] and
Hydrodynamic Stability by Drazin and Reid [32] provide advanced discussions of
many examples of linear instability in fluid and plasma systems.

(iv) For an account of the role of symmetry in instability theory see Pattern Formation:
An Introduction to Methods by Hoyle [47].

(v) A recent book on the unifying role that symmetry plays in pattern formation and
dynamics in general is The Symmetry Perspective: from Equilibrium to Chaos in Phase
Space and Physical Space by Golubitsky and Stewart [39].

Exercises

2.1 Confined and extended directions: Describe a nonequilibrium experiment
such that the confined coordinates x‖ are two-dimensional and the extended
coordinate x⊥ is one-dimensional. Can you describe an experiment such that
the extended coordinates x⊥ are three-dimensional?
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2.2 Linear stability of the uniform state for a different Swift–Hohenberg
model: For what range of r is the uniform base state u = 0 linearly stable if
the nonlinear term −u3 in Eq. (2.3) is replaced with the cubic term u(∂xu)2?

2.3 Linear stability analysis of a one-variable reaction–diffusion system:
Perform a linear stability analysis for the one-variable one-dimensional
reaction–diffusion system

∂tu(x, t) = f (u) + D ∂2
x u, (E2.1)

about a constant base solution u = ub (which therefore satisfies f (ub) = 0).

(a) Show that the growth rate σq is largest for the wave number q = 0.
(b) What are the conditions on f (u) for instability of the fixed point?
(c) Explain why parts (a) and (b) still hold if the concentration field u(x, t)

depends on two spatial variables x = (x, y) so that the evolution equation
has the form

∂tu(x, t) = f (u) + D ∇2u, (E2.2)

where ∇2 = ∂2
x + ∂2

y .

2.4 Linear stability analysis of an ode system: This exercise illustrates a linear
stability analysis in the simpler context of ordinary differential equations.
Consider the system of ordinary differential equations known as the Lorenz
model26

dtX = −σ(X − Y ), (E2.3a)

dtY = rX − Y − XZ , (E2.3b)

dtZ = −bZ + XY , (E2.3c)

where σ and b are positive constants and r is the control parameter. These
equations, used by Lorenz in his pioneering investigation of chaos, may be
derived as a simple truncated-mode description of convection. We will use
Eqs. (E2.3) just as a mathematical model.

(a) Show that X = Y = Z = 0 is a fixed point (time-independent solution)
of Eqs. (E2.3) for all values of σ , r, and b.

(b) Now consider the equations linearized about this fixed point, and look
for a solution in the form δX , δY , δZ ∝ eλt to show that the fixed point
is stable for r < 1 and unstable for r > 1. Is the instability stationary or
oscillatory?

26 For conciseness, we use here and later in the book the notation dt to denote the time derivative d/dt. This is
by analogy to the notation ∂t used to represent the partial derivative ∂/∂t.



90 Linear instability: basics

(c) For r > 1, show that there are additional fixed point solutions X = Y =√
b(r − 1), Z = r − 1.

(d) By an appropriate linearization, derive a cubic equation that gives the
growth rate for perturbations about these new fixed points. For σ = 10
and b = 8/3, show that the nonzero fixed points become unstable for
r > 24.74. What is the nature of the instability when it occurs: stationary,
oscillatory?

2.5 Linear stability analysis of the Kuramoto–Sivashinsky equation: In
this problem you investigate the linear instability of the uniform state
in an equation known as the Kuramoto–Sivashinsky equation. This is a
one-dimensional evolution equation for the real field u(x, t)

∂tu = −r∂2
x u − ∂4

x u − u ∂xu. (E2.4)

Here r is the control parameter.

(a) Show that u = 0 is a solution for all values of r. This is the uniform
solution.

(b) Show that as r passes from negative to positive values, the uniform solu-
tion becomes unstable toward solutions of the form u ∝ eσqteiqx with
positive growth rate σq. Calculate how σq depends on q and r.

(c) What type of instability is this in the classification scheme of Section 2.5?
(d) Show that by a suitable rescaling of the variables x, t, and u, Eq. (E2.4)

can be written in a form that does not depend on the magnitude of r. Write
down the equation for both positive and negative values of r.

(e) The scaled version of the equation has no explicit control parameters.
However, for a finite domain 0 ≤ x ≤ l and r > 0, with periodic
boundary conditions or boundary conditions of u = ∂xu = 0 at each
boundary, the length of the domain in the scaled units acts as a control
parameter. Show that this is proportional to r1/2l, so that this combination
of parameters of the original system acts as the control parameter.

The Kuramoto–Sivashinsky equation, which we discuss further in Section 5.5,
has received much attention since the solutions that evolve from unstable
uniform states for sufficiently large domains (large l) are not steady solu-
tions with spatial periodicity but are chaotic in time and disordered in space.
Equation (E2.4) has therefore served as a model equation for the phenomenon
of spatiotemporal chaos.

2.6 Pattern formation in a liquid of square molecules: Suppose we could find a
system with molecules in the shape of squares that all lie in a horizontal plane
of two extended coordinates, and whose sides are parallel to one another. What
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would the figure corresponding to Fig. 2.13 look like for a pattern forming
instability in this case? How many qualitatively different possibilities are
there?

2.7 Uniaxial Swift–Hohenberg equation: The particular equation used to
construct the plots in Fig. 2.12 was a modified Swift–Hohenberg equation

∂tu =
[
r − (∂2

x + cos2θ)2 − (∂2
y + sin2θ)2

− b(∂2
x + cos2θ)(∂2

y + sin2θ)
]
u − u3, (E2.5)

where θ is a fixed angle and where b is an anisotropy parameter with |b| < 2.
The values used in the figure were r = 0.1, θ = 0, and b = −0.5 and r = 0.1,
θ = 3π/16, and b = −1.

(a) Show for b < 2 that the linear growth of a disturbance at wave vector q
is maximum at q = (± cos θ , ± sin θ).

(b) Make plots with Mathematica or some other graphing program for Re σq

to elucidate the role of the parameters b. Use, for example, r = 0.1,
θ = 3π/16, and try various values of b < 2.

(c) [Optional] Simulate the full dynamical equation in a square domain with
periodic boundary conditions for these values of r, b, and θ . Then explore
whether the patterns that you get are what you might expect based on your
linear stability analysis. Chapter 12.1 explains some of the details needed
to simulate an evolution equation like Eq. (E2.5).

2.8 Linear stability analysis of a discrete coupled-map system: A coupled
map lattice (abbreviated CML) is a discrete-time discrete-space model of a
spatially extended dynamical system. In this problem, you carry out a linear
stability analysis of the uniform states of a one-dimensional CML on an
infinite integer lattice. In Exercise 9.9 of Chapter 9, you will have a chance
to explore its dynamics, especially spatiotemporal chaotic states.

Consider the CML defined by the expression

ut+1
i = f (ut

i) + D
(

f (ut
i+1) − 2f (ut

i) + f (ut
i−1)

)
, (E2.6)

where the function f (u) is the quadratic

f (u) = au(1 − u), (E2.7)

associated with the logistic map.At each successive integer time t = 0, 1, . . . ,
the state of this dynamical system is an infinity of real numbers ut

i corre-
sponding to the values of a u variable that is associated with each integer
lattice point i = . . . , −1, 0, 1, . . . Eq. (E2.6) is then an evolution equation
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that evolves a known state ut
i at time t to a future state ut+1

i at time t + 1.
The spatial coupling parameter D determines how strongly the neighboring
lattice values ut

i±1 are coupled to the value ut
i at a given site. For zero cou-

pling D = 0, the CML turns into an infinity of independent one-dimensional
maps ut+1

i = f (ut
i), one at each lattice site.

(a) Show that the uniform solution ut
i = u� is a fixed point of the CML if and

only if u� is a fixed point of the map f so that

u� = f (u�). (E2.8)

(b) Derive and state an analytic criterion in terms of the function f (u) and
of the coupling constant D for when the uniform fixed point ut

i = u�

becomes linearly unstable. Discuss whether a nonzero spatial coupling
constant D (which can be positive or negative for this problem) enhances
or suppresses instability of the fixed point.

(c) What is the spatial structure of the most unstable mode for D negative?
(d) Assume that the function f (u) maps the unit interval into itself so that

0 ≤ f (u) ≤ 1 for 0 ≤ u ≤ 1. Assume also that, at time t = 0, all the
lattice values are initialized with values inside the unit interval so that
0 ≤ u0

i ≤ 1. For what values D of the coupling constant will all lattice
values u1

i at time t = 1 remain in the unit interval?
Restricting the spatial coupling D to these values is a simple way to ensure
that the solution is bounded for all time, although other values of D might
be consistent with bounded solutions for particular choices of f (u).

(e) Explain how to generalize the classification of type-I, type-II, and type-III
instabilities (Section 2.5), both stationary and oscillatory, to CMLs.

(f) There are many other interesting questions related to CMLs that you may
enjoy exploring. For example, if the isolated map Eq. (E2.7) undergoes a
periodic-doubling sequence to chaos as some parameter a is varied, how
does the spatial coupling D and the system size N affect this sequence? In
particular, does the infinitely fine detail of the bifurcation diagram of the
logistic map survive spatial coupling in the thermodynamic limit N →
∞? Some details are given in Waller and Kapral [110].

2.9 Linear stability analysis in a finite geometry: In Section 2.2.2, we studied
the linear instability of the uniform state for the one-dimensional Swift–
Hohenberg equation in an infinite domain, or for a finite domain with periodic
boundary conditions. This problem guides you through an analysis that illus-
trates how the onset of instability can be suppressed by boundary conditions
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on a finite domain that correspond to physical side walls.27 The suppression
or enhancement of a bifurcation is an important effect that shows up in
many laboratory experiments and that can complicate the comparison of
experiments with a linear stability analysis based on infinite or periodic
boundaries.

Consider the one-dimensional Swift–Hohenberg equation for a field u(x, t),

∂tu =
(

r −
(
∂2

x + 1
)2

)
u − u3, (E2.9)

on the finite interval [−l/2, l/2] with the boundary conditions

u = ∂xu = 0, at x = −l/2, x = l/2. (E2.10)

(a) Derive the evolution equation and boundary conditions for an infinitesi-
mal perturbation up(x, t) of the zero homogeneous state u = 0.

(b) Since the equation for up is linear with time-independent coefficients, we
can seek solutions that are exponential in time with growth rate σ :

up = eσ t f (x). (E2.11)

The state u = 0 is marginally unstable when σ = 0. Show that the func-
tion f of the marginally stable mode must satisfy the time-independent
equation

rf =
(
∂2

x + 1
)2

f , (E2.12)

with boundary conditions f = 0 and ∂x f = 0. (See Eq. (E2.10.))
Equation (E2.12) is an eigenvalue problem where r is the eigenvalue
and f is the eigenfunction; the linear operator (∂2

x + 1)2 acting on f is
analogous to multiplication of a vector by a matrix and the right side can
be expected to be parallel to f only for special choices of the parameter r.
The resulting eigenvalues r determine the onset of instability in the finite
geometry.

(c) Since Eq. (E2.12) is an equation with constant coefficients, the solutions
are sinusoidal functions of x. Because of the symmetric formulation of
the problem about x = 0, the solutions will either be even (pure cosine)
or odd (pure sine). Substituting cos(qx) or sin(qx) into Eq. (E2.12) shows
that q must take on one of two values:

q± =
√

1 ± √
r. (E2.13)

27 More specifically, the boundary conditions are related to a so-called no-slip boundary condition in which the
fluid velocity is zero at a side wall in the rest frame of the wall.
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(d) The previous result and linearity suggests that the general symmetric
solution of Eq. (E2.12) will be of the form

f (x) =
{

A+ cos(q+x) + A− cos(q−x), even,
A+ sin(q+x) + A− sin(q−x), odd,

(E2.14)

where A+ and A− are constants. Use Eq. (E2.14) and the boundary
conditions Eq. (E2.10) to derive the transcendental equation

q+ tan [(l/2)q+] = q− tan [(l/2)q−], (E2.15)

that relates the parameters r and l.
(e) For a given system size l, the onset of pattern formation will correspond

to the first positive root of the transcendental equation Eq. (E2.15). Show
that, for large system sizes l, the first positive root is given approximately
by:

rc ≈
(

2π

l

)2

. (E2.16)

Graphical plots of your transcendental equation may help you to see what
kind of approximations are needed to get this result.
Equation (E2.16) answers the original question of how finite boundaries
modify the onset of a type-I-s instability for boundary conditions corre-
sponding to those of a fluid. It is indeed harder to initiate the instability
and the critical parameter value increases roughly as 1/l2 as the sys-
tem size l is decreased. This is a specific prediction that can be tested
experimentally.

(f) For a length l = 10π , calculate numerically the critical value rc to three
digits, compare this answer with Eq. (E2.16), and plot the correspond-
ing eigenfunction Eq. (E2.14). Mathematica or a similar program will
facilitate these calculations.

(g) Harder: Using Mathematica or a similar program, calculate and plot the
solutions r versus l of your transcendental equation and so confirm the
overall accuracy of the approximation Eq. (E2.16). Is it possible for the
uniform state u = 0 to become unstable to a pattern for arbitrarily small
system sizes l?

2.10 Non-normal stability of a fixed point: All infinitesimal perturbations of a
stable fixed point decay asymptotically to zero. However, it is sometimes
possible for a tiny perturbation of a stable fixed point to increase substan-
tially in magnitude before ultimately decaying exponentially away, in some
cases becoming so large that instability might occur through some nonlinear
mechanism. This situation can arise when the N × N Jacobian matrix J(u0)

that determines the linear stability of some fixed point u0 has eigenvectors
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that are not orthogonal. One can show that a matrix J has non-orthogonal
eigenvectors when the matrix is non-normal, which means it satisfies the
condition

JJ† �= J†J, (E2.17)

where J† denotes the complex conjugate of the matrix transpose of J. (Diag-
onal, symmetric, Hermitian, and unitary matrices are classes of normal
matrices but not all normal matrices are of these types.) Non-normal matri-
ces have been found to occur in various stability problems associated with
pattern-forming systems, especially fluid dynamic problems for which there
is net transport of fluid through the system such as flow of water through a
pipe. The growth of small perturbations by a non-normal mechanism to large
magnitudes has been suggested by the theoretical meteorologist Brian Farrell
to play a role in the formation of cyclones.

As a simple example of non-normal stability of a fixed point, consider the
following dynamical system du/dt = f(u) with quadratic nonlinearities:

dtu1 = −2εu1 +
(

u2
1 + u2

2

)1/2
u2, (E2.18)

dtu2 = −εu2 + u1 −
(

u2
1 + u2

2

)1/2
u1. (E2.19)

The positive parameter ε is considered to be small and corresponds to the
inverse Reynolds number 1/R of a fluid problem in the limit of large R.

(a) Show that the zero fixed point u0 = (u1, u2) = (0, 0) is always linearly
stable.

(b) Show that the 2×2 Jacobian matrix J of the evolution equations dt(δu) =
J δu linearized around u0 is non-normal.

(c) Construct an explicit analytical solution of the linearized evolution
equations (about u0) that passes through the initial data δu1(0) = εu10

and δu2(0) = 0 for some nonzero constant u10. Show that, no matter how
small ε > 0, the perturbation δu2(t) grows in magnitude to order u10 over
a time scale ε−1 before decaying to zero.

(d) Using Mathematica or a similar program, integrate the above nonlinear
evolution equations numerically for ε = 0.01 and for different initial
conditions of the form u0 = (u10, 0), where the constant u10 varies over
successive powers of ten ranging from 10−6 to 10−1. Summarize the
effect of nonlinearities on the non-normal linear growth.

You can learn more about non-normality and its role in fluid instability
in the article “Hydrodynamic stability without eigenvalues’’ by Trefethen
et al. [105].
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Linear instability: application to reacting
and diffusing chemicals

In Section 2.2 of the previous chapter we used a simplified mathematical model
Eq. (2.3) to identify the assumptions, mathematical issues, and insights associ-
ated with the linear stability analysis of a stationary uniform nonequilibrium state.
In this chapter, we would like to discuss a realistic set of evolution equations
and the linear stability analysis of their uniform states, using the example of
chemicals that react and diffuse in solutions (see Fig. 1.18). Historically, such
a linear stability analysis of a uniform state was first carried out in 1952 by Alan
Turing [106]. He suggested the radical and highly stimulating idea that reaction and
diffusion of chemicals in an initially uniform state could explain morphogenesis,
how biological patterns arise during growth. Although reaction–diffusion systems
are perhaps the easiest to study mathematically of the many experimental systems
considered in this book, they have the drawback that quantitative comparisons with
experiment remain difficult. The reason is that many chemical reactions involve
short-lived intermediates in small concentrations that go undetected, so that the cor-
responding evolution equations are incomplete. Still, reaction–diffusion systems are
such a broad and important class of nonequilibrium systems, prevalent in biology,
chemistry, ecology, and engineering, that a detailed discussion is worthwhile.

The chapter is divided into two halves. In the first part, we introduce the simple
model put forward by Turing, and give a careful analysis of the instability of the
uniform states. In the second part, we apply these ideas to realistic models of
experimental systems.

3.1 Turing instability

Realistic equations that describe chemical reactions in experimental geometries are
complicated to formulate and difficult to investigate. We will postpone a discussion
of realistic experimental chemical pattern forming systems to Section 3.2. The same
was true in the 1940s when Alan Turing was thinking about morphogenesis. These

96
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difficulties did not stop Turing who, in the tradition of great theoretical science, set
as his goal not the quantitative explanation of morphogenesis but the discovery of a
clear plausible mechanism that could guide researchers in how to think about such
a complex phenomenon. Indeed, the opening paragraph of his 1952 paper begins
with these classic words1

In this section a mathematical model of the growing embryo will be described. This
model will be a simplification and an idealization, and consequently a falsification. It is
to be hoped that the features retained for discussion are those of greatest importance in
the present state of knowledge.

We will follow Turing in his 1952 paper and examine analytically the linear
stability analysis of the simplest possible reaction–diffusion system that forms a
pattern from a uniform state. The analysis will lead to several insights, some unex-
pected. One insight is that at least two interacting chemicals are needed for pattern
formation to occur. Second is Turing’s most surprising insight, that diffusion in
a reacting chemical system can actually be a destabilizing influence that causes
instability. This is contrary to intuition since diffusion by itself smooths out spatial
variations of a concentration field and so should prevent pattern formation. A third
insight is that the instability caused by diffusion can cause the growth of struc-
ture at a particular wavelength. This provides a possible mechanism for producing
patterns like the segmentation patterns in the developing fly embryo, the periodic
arrangement of tentacles around the mouth of the Hydra organism, or zebra stripes.
A fourth insight (which was not clearly stated until after Turing’s paper) is that
pattern formation in a chemical system will not occur unless the diffusion coeffi-
cients of at least two reagents differ substantially. The difficulty of satisfying this
condition for chemicals in solution partially explains why nearly 40 years passed
after Turing’s paper before experiments were able to demonstrate the correctness
of his ideas.

3.1.1 Reaction–diffusion equations

Since you can show in Exercise 2.3 that an evolution equation for a single chemical
species does not show interesting pattern formation, we will study theTuring model2

1 The technical level of Turing’s paper is about the level of this chapter and we encourage you to track down and
read this visionary paper. The paper has many bold and interesting ideas that draw upon Turing’s interdisciplinary
thinking about biology, chemistry, and mathematics. His paper is also interesting from a historical point of view,
to see what facts Turing used to develop his hypotheses. For example, Turing could only speculate about how
an organism knew how to grow since the role of DNA would only be announced a year later in 1953. The last
section of the paper mentions one of the first simulations on a digital computer and Turing states his belief that
these new computers (which he helped to invent) will be important for future scientific research.

2 In his paper, Turing examined two kinds of models, spatially coupled odes that modeled discrete biological
cells and coupled pdes of the form that we analyze here, that treated the tissue as a continuous medium.
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for two reacting and diffusion chemicals of the form

∂tu1 = f1(u1, u2)+ D1 ∂
2
x u1, (3.1a)

∂tu2 = f2(u1, u2)+ D2 ∂
2
x u2, (3.1b)

or in vector form

∂tu = f(u)+ D ∂2
x u, (3.2)

where we have introduced a diagonal 2 × 2 diffusion matrix D defined by

D =
(

D1 0
0 D2

)
. (3.3)

Equations (3.1) describe the evolution of two concentration fields ui(x, t) that are
functions of one space coordinate and time. The nonlinear functions fi(u1, u2) are
the reaction rates of the two chemicals while the Di are the corresponding diffusion
coefficients. The simplest possible model is obtained by assuming that there is no
prior spatiotemporal structure in the system so that the functions fi and the diffusion
coefficients Di do not depend explicitly on time t or on position x. For simplicity, we
further assume that the diffusion coefficients are constants and so do not depend on
the field values ui. These assumptions are all quite reasonable for many experimental
situations. For ease of presentation, we also make the simplification to the one-
dimensional case. For higher dimensions, if we assume that the evolution equations
have rotational symmetry, the one-dimensional Laplacian ∂2

x becomes a higher-
dimensional Laplacian ∇2. The analysis in this case is not significantly harder
since the combination qx in the spatial dependence assumed in Eq. (3.8) below
becomes everywhere a dot product q • x with a wave vector q, and the wave-number
squared q2 becomes the quantity q • q.

As we will see more explicitly in Section 3.2, Eqs. (3.1) cannot accurately
describe a sustained nonequilibrium chemical system since they lack a transverse
confined coordinate along which reactants can be fed into the system and products
removed. The neglect of a confined coordinate is a major simplification. Indeed, an
accurate treatment of the feed direction introduces complicated spatial structure of
the sort shown in Fig. 3.4, which makes the linear stability analysis considerably
harder. Conceptually, you can think of the Turing model Eq. (3.2) as attempting
to describe pattern formation along a single line parallel to the plates A and B
in Fig. 2.1. Actually, many early experiments on pattern formation in chemical
reactions could be rather well approximated by ignoring the confined coordinate.
Typically these experiments were done using a thin layer of chemicals in a Petri
dish, or chemicals soaked in filter paper. The variation of chemical concentration
across the layer or thickness of filter paper is perhaps small in these experiments
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(typically the conditions are not well controlled, so this is just an assumption). A
reduction to equations describing just the spatial variation in the plane (Eqs. (3.1)
but with ∂2

x → ∇2 = ∂2
x + ∂2

y ) would be a reasonable approximation. However,
since in these experiments there is no feed of refreshed chemicals to sustain the
reactions, any pattern formation or dynamics is a transient and eventually the sys-
tem would approach a uniform chemical equilibrium. This difficulty may be hidden
in the simple reduced equations (3.1) by approximating some dynamical chemical
concentrations as constants in the reaction term f(u).

3.1.2 Linear stability analysis

We now perform the linear stability analysis of uniform solutions of the two-
chemical reaction–diffusion model Eqs. (3.1). Turing’s surprising and important
discovery was that there are conditions under which the spatially uniform state is
stable in the absence of diffusion3 but can become unstable to nonuniform pertur-
bations precisely because of diffusion. Further, for many conditions the instability
first occurs at a finite wavelength and so a cellular pattern starts to appear.

The following discussion is not mathematically difficult but has many details.
You will likely best appreciate the discussion if you take your time and derive
the results for yourself in parallel with the text. The goal of the discussion is to
derive, and then to understand physically, conditions that are sufficient for the real
parts of all growth rates to be negative. When these conditions are first violated
and instability occurs, it is then important to think about the values of the wave
numbers corresponding to the fastest growing modes.

We begin by assuming that we have somehow found a stationary uniform base
solution ub = (u1b, u2b). This satisfies the Turing model with all partial derivatives
set to zero, leading to f(ub) = 0 or

f1(u1b, u2b) = 0, (3.4a)

f2(u1b, u2b) = 0. (3.4b)

These are two nonlinear equations in two unknowns. Finding a uniform solu-
tion can be hard since there is no systematic way to find even a single solution
of a set of nonlinear equations. Numerical methods such as the Newton method
(see Section 12.4.2 and Exercise 12.16) can find accurate approximations to solu-
tions of nonlinear equations but only if a good guess for a solution is already known.
For two nonlinear equations like Eqs. (3.4), a graphical way to find solutions that
is sometimes useful is to plot the nullclines of each equation. An equation of the

3 Diffusion can be suppressed in several ways. Mathematically, we simply set the diffusion coefficients to zero.
Experimentally, we can stir the chemicals to eliminate spatial nonuniformity.
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form f1(u1, u2) = 0 defines an implicit relation u2 = g1(u1) between the two vari-
ables u1 and u2 called the nullcline of that equation. If the functions fi(u1, u2) are
sufficiently simple, their nullclines gi(u1) can sometimes be found explicitly and
then plotted on a single plot with axes labeled by u1 and u2. Any intersection of the
two nullclines is then a solution of the nonlinear equations. We will make substantial
use of nullclines in Chapter 11 when we discuss two-variable models of excitable
media. Exercise 12.16 also explains how to estimate nullclines numerically.

By linearizing about the base state ub, you can show that an arbitrary infinitesimal
perturbation up(x, t) = (up1(x, t), up2(x, t)) of the base state will evolve in time
according to the following linear constant-coefficient evolution equations

∂tup1 = a11up1 + a12up2 + D1 ∂
2
x up1, (3.5a)

∂tup2 = a21up1 + a22up2 + D2 ∂
2
x up2. (3.5b)

The constant coefficients aij come from the 2 × 2 Jacobian matrix A = ∂f/∂u
evaluated at the constant base solution ub,

aij = ∂fi
∂uj

∣∣∣∣
ub

. (3.6)

The mathematical structure of Eqs. (3.5) can be clarified by writing them in vector
form

∂tup = Aup + D ∂2
x up, (3.7)

where D is the 2 × 2 diffusion matrix previously introduced in Eq. (3.3). Because
Eq. (3.7) is linear with constant coefficients and because the boundaries are periodic
or at infinity, we can use translational symmetry to seek a particular solution up(x, t)
that is a constant vector uq times an exponential in time times an exponential in
space

up = uqeσqteiqx =
(

u1q

u2q

)
eσqteiqx, (3.8)

with growth rate σq and wave number q. Note that both components of the pertur-
bation vector up have the same dependence on time and space since only with this
assumption can the spatial and temporal dependencies be eliminated completely
from the linearized evolution equations and a simple solution found.

If we substitute Eq. (3.8) into Eq. (3.7), divide out the exponentials, and collect
some terms, we obtain the following eigenvalue problem

Aquq = σquq, (3.9)
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where the 2 × 2 real matrix Aq is defined by

Aq = A − Dq2 =
(

a11 − D1q2 a12

a21 a22 − D2q2

)
. (3.10)

Equation (3.9) tells us that the growth rate σq and constant vector uq form an
eigenvalue–eigenvector pair of the matrix Aq, and that there is one such 2 × 2
eigenvalue problem for each wave number q. The eigenvalue problem for a given q
has generally two linearly independent eigenvectors that we will denote by uiq

for i = 1, 2. If the corresponding eigenvalues are σiq, the particular solution with
wave number q will have the form(

c1qu1qeσ1qt + c2qu2qeσ2qt) eiqx, (3.11)

where the coefficients ciq are complex constants that depend on the initial pertur-
bation at t = 0.4 This solution decays if Re σiq < 0 for i = 1, 2. An arbitrary
perturbation up(x, t) is a superposition of expressions like Eq. (3.11) over all wave
numbers q. The uniform solution ub is stable if both eigenvalues σiq have negative
real parts for all wave numbers q, i.e. if maxi maxq Re σiq < 0.

The characteristic polynomial for the eigenvalue problem Eqs. (3.9) and (3.10)
can be written

0 = det
(
Aq − σqI

) = σ 2
q − (tr Aq)σq + det Aq, (3.12)

where tr Aq denotes the trace (sum of diagonal elements) of the matrix Aq and
det Aq the determinant. The eigenvalues are then σ1q and σ2q given by

σq = 1

2
tr Aq ± 1

2

√
(tr Aq)2 − 4 det Aq. (3.13)

The regions of stability (both Re σq negative) and instability (at least one Re σq

positive) in the tr Aq–det Aq plane are shown in Fig. 3.1. From this figure or from the
expression Eq. (3.13) a simple criterion can be derived that determines when the real
parts of both eigenvalues are negative: the trace of the matrix must be negative and
the determinant of the matrix must be positive. For the matrix Aq in Eq. (3.10),
these criteria for stability take the explicit form

tr Aq = a11 + a22 − (D1 + D2)q
2 < 0, (3.14a)

det Aq = (a11 − D1q2)(a22 − D2q2)− a12a21 > 0. (3.14b)

If both conditions hold for all wave numbers q, the stationary uniform base state ub

is linearly stable.

4 A real solution can be obtained as usual by adding the complex conjugate solution.
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Re s1,2     > 0

Im s1,2     ≠ 0 

Im s1,2 = 0

Re s1 > 0 Re s2 < 0

Im s1,2 = 0
Re s1,2 > 0

Re s1,2 < 0     
Im s1,2 ≠ 0      

detAq

oscillatory

stationary

stable

trAq

Fig. 3.1 Stability regions of the Turing system in the tr Aq–det Aq plane. The
plot shows regions of different characteristics of the two eigenvalues σ1 and σ2

calculated from Eq. (3.12). The parabola det Aq = 1
2 tr Aq divides the plane into

two halves such that above this curve the two eigenvalues are complex (and are
complex conjugates of one another), and below this curve both eigenvalues are
real. The shaded region is the stable region, Re σ1,2 < 0. Over the unshaded portion
there is at least one eigenvalue with positive real part.Astationary instability occurs
passing through the negative tr Aq axis to negative values of det Aq, whereas an
oscillatory instability occurs passing through the positive det Aq axis to positive
values of tr Aq.

For N interacting chemicals whose dynamics satisfy equations analogous to
Eq. (3.2), we would need to solve a N × N eigenvalue problem Eq. (3.9) for
each wave number q. For N ≥ 3, analytical criteria that all the eigenvalues of
a N × N matrix Aq have negative real parts become cumbersome to work with5

and so the case N = 2 that Turing discussed in his paper hits the mathematical
sweet spot of being manageable and leading to interesting results. For experiments
with N > 3 reacting chemicals, it is usually easiest to study the corresponding model
by numerical methods. With modern computers and modern numerical algorithms,
it is straightforward to find all the eigenvalues of a N × N matrix quickly for N
as large as 10 000. As you can imagine, it would be exceedingly difficult to map
out the reaction rates for so many interacting chemicals. Progress in studying the

5 In Appendix 2 of his book [79], Murray discusses some necessary and sufficient analytical criteria that all the
eigenvalues of a real N × N matrix have negative real parts. The Routh–Hurwitz criterion states that a certain
sequence of determinants from size 1 to N all have to be positive. Determinants are difficult to work with
symbolically since they involve a sum of N ! products of matrix elements.
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linear stability of chemical systems with large N is therefore limited by scientific
knowledge, not by the ability to calculate eigenvalues.

We now discuss the physical meaning and implications of the mathematical cri-
terion Eqs. (3.14) in the context of pattern formation.6 There are many abstract
symbols and equations here and some careful thinking is needed to see how to
extract some physical insights. A first step is to identify the precise scientific ques-
tion of interest, not just the technical mathematical question of when some base
state ub becomes linearly unstable. Turing’s insight was that diffusion of chemi-
cals may somehow cause a pattern-forming instability. If so, then the starting point
is to imagine that somehow the diffusion has been turned off (mathematically by
setting the diffusion coefficients or the wave number q to zero, experimentally by
stirring the solutions at high speed) and then we slowly turn on the diffusion to see
if instability ensues. If we adopt this as our strategy, then we need to assume that
the reacting chemicals form a stable stationary state in the absence of diffusion.
Setting the diffusion constants Di to zero in Eqs. (3.14), we obtain the following
criteria for linear stability of the uniform state in the absence of diffusion

a11 + a22 < 0, (3.15a)

a11a22 − a12a21 > 0. (3.15b)

If these criteria are satisfied, a well-mixed two-chemical solution will remain sta-
ble and uniform. Comparing Eq. (3.15a) with Eq. (3.14a) and remembering that
diffusion constants Di and the quantity q2 are non-negative, we conclude that

tr Aq = a11 + a22 − (D1 + D2)q
2 < a11 + a22 < 0, (3.16)

so the trace of the matrix Aq is always negative. We conclude that the only way for
diffusion to destabilize the uniform state is for the second criterion Eq. (3.14b) to
become reversed so that the determinant of Aq becomes negative.

The next step is therefore to figure out when the determinant det Aq changes
sign from positive to negative. Equation (3.14b) tells us that the determinant det Aq

is a parabola in the quantity q2 that opens upwards, being positive for q2 = 0
by Eq. (3.15b) and positive for large q2. A condition for linear instability in the
presence of diffusion is then obtained by asking when the minimum value of this
parabola first becomes negative. Setting the derivative of det Aq with respect to q2

to zero, we learn that the minimum occurs at the wave number qm given by (see
also Exercise 3.1)

q2
m = D1a22 + D2a11

2D1D2
. (3.17)

6 Our discussion here follows that of a paper by Segel and Jackson [94] that clarified Turing’s original analysis.
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The corresponding value of det Aq at this minimum is

det Aqm = a11a22 − a12a21 − (D1a22 + D2a11)
2

4D1D2
. (3.18)

This expression is negative when the inequality

D1a22 + D2a11 > 2
√

D1D2(a11a22 − a12a21) (3.19)

is satisfied. The term inside the square root is positive because of Eq. (3.15b). As a
corollary, Eq. (3.19) implies that

D1a22 + D2a11 > 0, (3.20)

which can also be deduced directly from Eq. (3.17) since q2
m is a non-negative real

number. From Eqs. (3.15a) and (3.20), we see that one of the quantities a11 and a22

must be positive and the other negative. For concreteness, let us choose a11 > 0
and a22 < 0 in the subsequent discussion. Then Eq. (3.15b) further implies that the
quantities a12 and a21 must also have opposite signs.

Equation (3.19) is a necessary and sufficient condition for linear instability of a
uniform state that is stable in the absence of diffusion Eqs. (3.15). As some exper-
imental knob is turned, the matrix elements aij will change their values smoothly
through their dependence on the experimental parameter. (Again, diffusion con-
stants Di can be considered constant for many experiments and so usually do not
play the role of an easily varied bifurcation parameter.)At some parameter value, the
inequality Eq. (3.19) may become true and the uniform state will become unstable
to perturbations growing with a wave number close to the value qm in Eq. (3.17).

The condition Eq. (3.19) can be expressed alternatively in terms of two diffusion
lengths

l1 =
√

D1

a11
and l2 =

√
D2

−a22
, (3.21)

in the form

q2
m = 1

2

(
1

l2
1

− 1

l2
2

)
>

√
a11a22 − a12a21

D1D2
. (3.22)

This implies that the length l2 must be sufficiently larger than the length l1. Now
our assumption that a11 > 0 implies that chemical 1 enhances its own instability
and so could be called an activator. Similarly, since a22 < 0, chemical 2 inhibits
its own growth and could be called an inhibitor. The necessary condition l2 > l1
for a Turing instability is then sometimes referred to as “local activation with long-
range inhibition.’’
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The condition l2 > l1, when expressed in the equivalent form D2/D1 >

(−a22/a11) partly explains why experimentalists had such a hard time finding
a laboratory example of a Turing instability. The diffusion coefficient D2 of the
inhibitor has to exceed the diffusion coefficient D1 of the activator by a fac-
tor (−a22)/a11 which can exceed 10 for some realistic models of reaction–diffusion
experiments. Since the diffusion coefficients of most small ions in water have the
same value of about 10−9 m2/s, some ingenuity is required to create a Turing insta-
bility. Experimentalists found that one way to achieve a large disparity in diffusion
coefficients was to introduce a third molecule (starch in the CDIMA case discussed
in Section 3.2) that was fixed to an immobile matrix in the solution (the walls of the
porous gel). The effective diffusion coefficient for a chemical that reversibly binds
to this immobile molecule is substantially smaller than that for chemicals that do
not bind.

The criteria Eqs. (3.15) and Eq. (3.19) for the instability of a uniform state
are rather abstract and so we now apply these criteria to a simple two-variable
mathematical model known as the Brusselator7 to illustrate the ideas.

Etude 3.1 The Brusselator reaction–diffusion model
The Brusselator is a reaction–diffusion model that describes the evolution of two
chemical concentrations u1(x, t) and u2(x, t)

∂tu1 = a − (b + 1)u1 + u2
1u2 + D1 ∂

2
x u1, (3.23a)

∂tu2 = bu1 − u2
1u2 + D2 ∂

2
x u2. (3.23b)

The parameters a, b, D1, and D2 are positive constants. Although invented with
the goal of understanding the Belousov–Zhabotinsky reaction of Fig. 1.18(a) and
although successful in producing uniform oscillations and traveling waves, this
model was intended not to describe a specific chemical experiment but to show how
an invented plausible sequence of chemical reactions could reproduce qualitative
but difficult to understand features of actual experiments. The context in which this
model was invented suggests assigning the following parameter values

a = 1.5, D1 = 2.8, D2 = 22.4, (3.24)

and varying the parameter b as the bifurcation parameter. We now show how to
predict analytically for what value of b a uniform base state becomes linearly
unstable.

A stationary uniform base state ub = (u1b, u2b) can be found by looking for
solutions of Eqs. (3.23) with all partial derivatives set to zero. It is straightforward

7 Two of the more widely studied models of reaction–diffusion dynamics are named after the geographical location
where the model was invented. Thus the Brusselator is named after Brussels, in Belgium, and the Oregonator
is named after the state of Oregon in the USA.
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to show that there is only one uniform state given by

u1b = a, u2b = b

a
. (3.25)

Please keep in mind that it is rarely this easy to find the stationary uniform state of
some set of nonlinear evolution equations!

By linearizing the Brusselator model around this base state, you can show that
the Jacobian matrix A = ∂f/∂u is given by

A =
(

a11 a12

a21 a22

)
=
(

b − 1 a2

−b −a2

)
. (3.26)

The off-diagonal elements have opposite signs as required for a Turing instability,
but the diagonal elements have opposite signs only if

b > 1. (3.27)

When this inequality holds, we conclude that chemical 1 is an activator (a11 > 0)
and that chemical 2 is an inhibitor (a22 < 0).

The uniform state is stable in the absence of diffusion when Eqs. (3.15) hold

tr A < 0 =⇒ b < 1 + a2 = 3.25, (3.28a)

det A > 0 =⇒ a2 > 0. (3.28b)

Only the first condition leads to a constraint, that the parameter b must be smaller
than the value 3.25. Using the matrix elements Eq. (3.26) and the fact that a11a22 −
a12a21 = a2, the criterion for linear instability Eq. (3.19) can be manipulated into
the form

b ≥
(

1 + a

√
D1

D2

)2

. (3.29)

The critical value bc is determined by equality and the parameter values Eq. (3.24)
imply

bc ≈ 2.34. (3.30)

The corresponding wave number qc at instability is given by Eq. (3.17)

qc =
√

D1a22 + D2a11

2D1D2
≈ 0.435, (3.31)

which corresponds to a wavelength of 2π/qc ≈ 14.5.
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Fig. 3.2 Solid curves: plots of the maximum real part of the growth rate,
maxi Re σiq versus wave number q, for infinitesimal perturbations of the uniform
state Eq. (3.25) of the Brusselator model Eqs. (3.23), for the choice of parameters
Eq. (3.24). Three curves are plotted corresponding to a b-parameter below instabil-
ity (b = 0.6bc ≈ 1.40), to the critical value (b = bc ≈ 2.34), and above instability
(b = 1.4bc ≈ 3.28). The critical wave number qc ≈ 0.435 is identified as the wave
number for which the maximum real part of the growth rate first becomes zero.
The wave number corresponding to the fastest growing mode increases slowly
with increasing b. The dotted line is the imaginary part of the eigenvalue that has
the maximum real part for b = bc. The imaginary parts for the other b values are
not shown since they are nearly identical.

The onset of instability can be understood visually by plotting the maximum
growth rate curve maxi Re σiq as a function of the wave number q for values of
the parameter b below, equal to, and above the critical value bc (see Fig. 3.2).
The maximum growth rate can be calculated explicitly as the maximum of the real
part of the two eigenvalues σiq associated with each wave number q (recall the
discussion associated with Eq. (3.11)). We summarize the results in Fig. 3.2. The
growth rate σq is actually complex for small q (the dotted line in the figure indicates
the imaginary part of the eigenvalue with the largest real part) but becomes real for
larger q. In particular, the imaginary part is zero near the peak corresponding to
the fastest growing mode. For a given parameter b, note how the curve maxi Re σiq

has a kink – the slope changes discontinuously – because the eigenvalues switch
from complex to real at this point.

Since the Brusselator does not describe an actual experiment, you may wonder
whether it is possible to test independently the above predictions of the critical
parameter bc and critical wave number qc. This can be done by numerical methods.
It is straightforward to write a computer code that integrates the evolution equations
Eqs. (3.23) in a large periodic interval. The parameter values could then be set to
those of Eq. (3.24) and the initial conditions of the fields u1 and u2 set to be the
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uniform values Eq. (3.25) plus some random noise of tiny amplitude. For b < bc,
the small-amplitude noise should decay exponentially and the fields will converge
toward their uniform values. For b just larger than bc, the uniform state should
be unstable and a cellular structure with wave number close to Eq. (3.31) should
appear. What happens in the long term as the exponential growth starts to saturate is
not predicted by the linear stability analysis but would be revealed by the numerical
integration. The unstable uniform state could evolve onto a stationary, periodic,
quasiperiodic, or chaotic attractor.

3.1.3 Oscillatory instability

The analysis of the previous section focused on the Turing instability, an instability
that first occurs with a wave number q �= 0. However, the analysis also shows that
the two reaction–diffusion equations may also undergo an oscillatory type-III-o
instability at q = 0. This occurs when tr Aq=0 passes to a positive value while det Aq

is positive for all q. As mentioned in Section 2.5.3, since on the unstable side of
a type-III-o transition there is a band of growing oscillatory modes with wave
numbers centered around zero, we might expect this system to support spatially
uniform nonlinear oscillations and long wavelength nonlinear wave states. We
discuss the weakly nonlinear oscillation or wave states that occur near a supercritical
type-III-o instability in Chapter 10.

In fact, at the same time Turing was doing his theoretical work on reaction–
diffusion systems in Britain, the chemist B. P. Belousov in the Soviet Union was
observing oscillating chemical reactions in his laboratory. For many years, this work
was not believed and was rejected for publication since chemical oscillations were
thought to be inconsistent with the idea that a closed system of mixed chemicals
must relax monotonically to equilibrium. Later, A. M. Zhabotinsky continued the
investigation and published work on both spatially uniform oscillations and wave
states from the late 1960s onwards. It is now a common demonstration experiment
to mix chemicals in a shaken test tube or stirred beaker, and watch the color period-
ically change (from blue to red and back for a modern version of the reaction used
by Belousov). The shaking or stirring effectively mixes the chemicals, eliminating
spatial inhomogeneities so that only a spatially uniform (q = 0) oscillation is seen.
In an unstirred Petri dish on the other hand, beautiful patterns of propagating waves
are seen, as in Fig. 1.18.

In most cases, experimental chemical systems showing oscillations or waves are
not near a linear instability and the oscillations or waves are highly nonlinear so
that a description based on the linear modes is not quantitatively useful. We return
to this type of system in Chapter 11 where other theoretical tools more suited to the
highly nonlinear regime are developed to study the phenomena.
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3.2 Realistic chemical systems

We now turn to realistic systems of reacting and diffusing chemicals that experi-
mentalists use to study pattern formation in chemical systems. As is often the case,
the apparatus is quite complex to approach the ideal conditions for which the phe-
nomena are most cleanly seen, and which allow a quantitative comparison with
theory. An additional difficulty in observing the Turing instability is that the diffu-
sion constants of some of the chemical participants must usually differ by a large
ratio, which is hard to arrange for chemical reactions between small molecules in
solution. This criterion does not apply for the study of oscillations and waves. The
dynamical equations describing the evolution of the chemicals are also much more
complicated than the simple two-variable Turing system, and we spend some time
explaining how the equations are deduced.

3.2.1 Experimental apparatus

Figure 3.3 shows schematically the design of an experiment that studied pattern
formation of reacting and diffusing chemical solutions. (Two patterns from this
experiment were previously discussed in Section 1.3.2, see Figs. 1.18(b) and (c).)
The geometry is similar to that of Fig. 2.1 but with several refinements. The flat
parallel circular plates are made of a transparent porous glass through which chemi-
cals can diffuse and that allows visual observation of the pattern between the plates.
The thin cylindrical volume between the plates is filled with a transparent uniform
porous gel whose pores are so small (about 80 Å) that they suppress fluid motion.
This simplifies the experiment conceptually since the pattern formation is due only
to chemicals reacting and diffusing. The gel also renders the pattern visible by
changing color according to the concentration of one of the reaction products. A
system of reservoirs, pumps, and continuously fed stirred tank reactors (CSTRs)
provides a constant flow of fresh reagents across the outer surfaces of plates A
and B. As a result, these outer boundaries are surfaces of constant chemical con-
centrations for each of the reagents. The chemicals diffuse through the glass into
the gel where they react, and reaction products diffuse back out into the flowing
solutions where they are swept away and permanently removed. Thus the outer
boundaries are also surfaces of zero concentration for the reaction products. The
diameters of the plates (about 25 mm) are over 100 times larger than the typical
length scale of the cellular patterns (about 0.2 mm) so that the system is approxi-
mately translationally invariant in the extended directions. In the actual experiment,
no influence of the lateral boundaries was observed for the instability and resulting
patterns, although a systematic study was not carried out by varying the diameter of
the gel.
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Fig. 3.3 Schematic design of an experiment to study the pattern formation of
reacting and diffusing chemicals in solution. (a) The chemical reactions take place
near the middle of a uniform transparent porous gel 2 mm thick, that is confined
between two wide (25 mm), thin (0.4 mm), uniform, porous, and transparent glass
plates A and B. (b) Details of how the chemicals from two reservoirs are fed to the
gel. Reservoirs A and B contain mixtures of chemicals that are inert by themselves
but react when combined. The contents of these reservoirs are pumped into a
“continuously fed stirred tank reactor’’ or CSTR where the solutions are mixed
thoroughly so that the concentrations are spatially uniform. The contents of each
CSTR are then pumped to provide a steady flow at known concentrations past
the outer sides of the porous plates of part (a). The chemicals diffuse through the
porous plate into the gel, react, and reaction products diffuse out and are swept
away. Pattern formation within the gel is visualized through a transparent quartz
window. The gel is kept at a constant temperature throughout any given experiment.
The chemical concentrations in the reservoirs or the temperature can be used as
bifurcation parameters. (From Ouyang and Swinney [86].)

3.2.2 Evolution equations

With this experiment in mind, we now discuss how to derive the evolution equations
that mathematically describe the experiment. The small pores of the gel in Fig. 3.3
suppress any fluid motion so an evolution equation is not needed for the velocity,
which is zero everywhere. It also turns out that the diffusion of heat is so fast
compared to the diffusion of chemicals that the temperature field can be assumed
to be constant and so does not evolve. The state of the system at any given time t
is therefore given by the values at each point in space of continuously varying
concentration fields ui(x, t), which have the meaning of the local concentration of
the ith chemical at point x at time t. Note that the concentrations can be treated
as continuous variables because the pattern formation occurs on a length scale
of millimeters that is huge compared to the mean free path of collisions between
molecules, of order nanometers.
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The evolution equations for the system, together with mathematical descriptions
of the boundaries and initial values for the concentration fields, determine how the
concentration fields change from one moment in time to the next. The concentration
fields change their values by two mechanisms. Chemical reactions change concen-
trations of reagents and of products according to the concentration values at each
point in space. Diffusion by molecular collisions decreases the values of concentra-
tion fields where they are locally larger than surrounding values. We discuss these
in turn and then combine their contributions to get the final evolution equations.

Let us first consider just the effects of chemical reactions by assuming that the
chemical concentrations are spatially uniform so that diffusion can be ignored. Then
the rate of reaction ν(t) for some chemical reaction is defined in terms of the time
derivatives of concentrations and of stoichiometric coefficients. For example, let us
consider a binary chemical reaction in which a moles of molecules labeled A and
b moles of molecules labeled B react to produce c moles of molecules labeled C
and d moles of molecules labeled D. In standard notation, this reaction would be
written in the form

a A + b B → c C + d D. (3.32)

The coefficients a, b, c, and d are the stoichiometric coefficients for molecules A,
B, C, and D respectively. By definition, the reaction rate ν(t) for the entire reaction
is the non-negative quantity given by

ν(t) = −1

a

d [A]
dt

= −1

b

d [B]
dt

= 1

c

d [C]
dt

= 1

d

d [D]
dt

. (3.33)

The notation [X] denotes the concentration of molecule X.
For simple chemical reactions in gases or solutions, the reaction rate ν(t) is given

by the law of mass action, which states that the reaction rate is proportional to the
product of powers of reactant concentrations giving a rate law

ν(t) = k[A]mA [B]mB, (3.34)

with the powers mA = a and mB = b given by the stoichiometry factors. (Chemists
call these powers the orders of the reaction with respect to the concentrations.) The
positive proportionality constant k is called the rate constant. Reactions obeying
this law are called elementary reactions. For reactions that are not elementary, the
functional form Eq. (3.34) still sometimes applies but with exponents mA and mB

whose values may not be simply related to the stoichiometry and so need to be
deduced from experiments. In the most general case, the reaction rate may be some
arbitrary nonlinear function of the concentrations. Note that if the concentration
of B is so large that it can be treated as constant, Eq. (3.34) takes the form

ν(t) = −1

a

d [A]
dt

= k1[A]mA . (3.35)
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The effective rate constant k1 now depends on the concentration of B and so can
be varied as a control parameter.

Let us next consider the effects of diffusion without chemical reaction. In this
case, the concentration of each chemical species i can only change if there is flux
of that species. This is described mathematically by the conservation equation

∂tui = −∇ • ji, (3.36)

which states that the rate of change of the concentration ui at a point x is given
by the negative of the total flux of ui into an infinitesimal region surrounding that
point, given by the divergence of a current ji. We must now determine the cur-
rent. Associated with the ith chemical species there is a chemical potential µi(x, t)
that is the thermodynamic variable conjugate to the concentration field ui(x, t).
Gradients in the chemical potentials drive currents of the chemicals, and, in turn,
these currents can be related to gradients in the concentrations. To a good approxi-
mation, a gradient in the concentration of the ith species drives a current only of the
ith concentration.8 Thus we have the current ji of ui at the point x is proportional
to the gradient in the concentration of ui:9

ji = −Di ∇ui. (3.37)

The positive number Di is the diffusion coefficient for ui and has SI units of m2/s.
These two equations can be combined to yield a diffusion equation

∂tui = ∇ • (Di ∇ui) = Di ∇2ui, (3.38)

where the last expression Di∇2ui holds if the diffusion coefficient is constant, a
good approximation for many experiments.

By combining the effects of reaction and diffusion, Eqs. (3.33), (3.34), and (3.38),
we conclude that the evolution equations for the concentration fields ui(x, t) take
the general reaction–diffusion form

∂tui = fi({uj})+ Di ∇2ui, (3.39)

with one such equation for each chemical concentration. Here the ith chemical
diffuses with a constant diffusion coefficient Di and the reaction rates fi are nonlinear
functions of the chemical concentrations. For simple rate laws of the form Eq. (3.34),
the fi are multinomials in the concentrations ui but more complicated nonlinear
functions are common.

8 This statement is not as obvious as it might seem at first. For example, in convection of a binary fluid mixture,
a gradient in the temperature can drive a concentration current in addition to an energy current, a phenomenon
known as the Soret effect.

9 The direction of the concentration current j is the negative of the gradient since a chemical flows in the direction
from larger to smaller concentration values.
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To obtain a unique solution of the evolution equations Eq. (3.39), further infor-
mation is needed in the form of initial values of the concentration fields at some
starting time t0 and of mathematical conditions that describe how the boundaries
constrain the fields. Since the reactor geometry of Fig. 3.3 has been constructed in
such a way that the contents of the reservoirs flow quickly past the outer surfaces
of plates A and B, to a good approximation each concentration field ui(x, t) corre-
sponding to a reagent has a constant positive value on this outer surface equal to the
concentration in the corresponding reservoir. The concentration of a reagent is zero
on the opposing plate since the flowing solutions sweep away any of the chemical
that reaches that side. For the same reason, the concentration fields corresponding
to products are zero on the outer surfaces of both plates. Finally, the chemicals
are sealed in by the lateral boundary of the gel and so all the concentration fields
satisfy a zero-flux condition n̂ • ji = −Din̂ • ∇ui = 0 at each point on the lateral
boundary, where n̂ is the unit vector normal to the lateral boundary at a given point.
As we discussed in Section 2.1, these no-flux lateral conditions would typically
be replaced by infinite or periodic boundary conditions when carrying out a linear
stability analysis.

The derivation of equations such as Eq. (3.39) involves various approximations
that are less well justified than those used to derive the evolution equations for
fluids. With a few exceptions, a simple rate law of the form Eq. (3.34) holds only for
elementary reactions in dilute solutions or for ideal gases. Whether some particular
reaction is elementary can be difficult to establish experimentally. Further, the
identification of the reaction mechanism – the sequence of elementary steps that lead
from reagents through intermediates to final products – often requires separating
the important reactions (those that are slower and so rate limiting) from a much
larger list of possible reactions that produce various short-lived and often unknown
intermediate molecules. This separation is a rather ad hoc procedure since there is
no small parameter that can be exploited in a perturbation theory to improve the
validity systematically.

In contrast, the fundamental approximation leading to the evolution equations
for a fluid (the Navier–Stokes equation) is that the flow varies spatially over much
larger distances than the microscopic scale set by the mean free path for molecular
collisions. This is an excellent approximation for typical laboratory fluid experi-
ments whose spatial variations are millimeters or larger, and can be improved, if
necessary, by increasing the size of the experiment.

We illustrate the above points with the following Etude, which discusses the
reaction diffusion equations used to describe a particular experimental reaction
system known as the CDIMA reaction. (For another example, see Exercise 3.9.)
The Etude also discusses a numerical calculation using the CDIMA reaction of the
state that is uniform with respect to the extended coordinates for a realistic gel and
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for experimentally reasonable chemical gradients. A surprise is that the structure
along the transverse confined coordinate is surprisingly complicated (see Fig. 3.4),
too much so to handle by analytical means.

Etude 3.2 Evolution equations for the chlorine dioxide–iodine–malonic acid
CDIMA reaction
Following the work by the chemists I. Lengyel, G. Rábai, and I. Epstein [62, 63],
let us write down the evolution equations for the pattern-forming chlorine
dioxide–iodine–malonic acid reaction (abbreviated CDIMA) that has been stud-
ied experimentally. In Fig. 3.3, reservoir A would contain chlorine dioxide ClO2

and iodine I2 which do not react together while reservoir B would contain mal-
onic acid CH2(COOH)2 (abbreviated as MA). The reaction between the ClO2, I2,
and MA molecules produces further reactants such as the iodide ion I− and the
chlorite ion ClO−

2 , and also produces products that take no further part in the
reaction. The iodide concentration

[
I−
]

is visualized with an immobile starch indi-
cator S that is embedded in the gel and that turns blue reversibly upon binding to
iodide.

By comparing theory and experiment for stirred CDIMA reactions such that
diffusion did not play a role, the chemists proposed a simplified reaction mechanism
consisting of the following four reactions:

MA + I2 → IMA + I− + H+, (3.40a)

ClO2 + I− → ClO−
2 + 1

2 I2, (3.40b)

ClO−
2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O, (3.40c)

S + I2 + I− � SI−3 . (3.40d)

Since the reactions are sustained out of nonequilibrium, with new reagents ClO2, I2,
and MA constantly being supplied and reaction products steadily being removed,
we can assume that the reverse reactions for the first three equations proceed at a
negligible rate. The reversible formation of the starch complex SI−3 in Eq. (3.40d)
plays a doubly important role in the pattern formation. First, this is the colored
indicator that actually allows the pattern to be seen. Second, because this complex
is fixed to the gel, the effective diffusion constants of the iodine and iodide are
reduced since these molecules become immobile for the fraction of the time that
they are bound to the starch. As we suggested in Section 3.1, significantly different
diffusion coefficients of at least two reactants are a necessary condition for the
linear instability of a uniform state. This condition would be hard to attain without
the immobile starch since the diffusion coefficients of small ions in solution are all
comparable.
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A comparison of theory with experiment for the stirred CDIMA reaction suggests
the following respective reaction rates rj(t):

r1 = k1a [MA] [I2]

k1b + [I2]
, (3.41a)

r2 = k2 [ClO2]
[
I−
]

, (3.41b)

r3 = k3a
[
ClO−

2

] [
I−
] [

H+]+ k3b
[
ClO−

2

]
[I2]

[
I−
]

h + [I−]2
, (3.41c)

r4 = k4a [S]
[
I−
]

[I2] − k4b
[
SI−3

]
. (3.41d)

The various parameters are determined by fits to experimental data. The reaction
rates r2 in Eq. (3.41b) and r4 in Eq. (3.41d) have the simple form expected of an ele-
mentary reaction but the other two have more complicated nonlinear dependencies
on the concentrations. This complexity can be partly understood as arising from
the elimination of short-lived intermediate products from the rate equations, along
the lines discussed in Exercise 3.9. You should keep in mind that these reaction
rates are plausible deductions from empirical data rather than obtained from first
principles by a theoretical argument. It is even possible that the functional form of
these expressions could change in the future since research still continues on how
best to quantify the CDIMA system.

Using the definition of reaction rate Eq. (3.33) and allowing the chemicals to
diffuse, we obtain the following six coupled evolution equations for the CDIMA
pattern-forming system:

∂t [ClO2] = −r2 + DClO2 ∇2 [ClO2], (3.42a)

∂t
[
ClO−

2

] = r2 − r3 + DClO−
2

∇2 [ClO−
2

]
, (3.42b)

∂t [MA] = −r1 + DMA ∇2 [MA], (3.42c)

∂t [I2] = −r1 + 1

2
r2 + 2r3 − r4 + DI2 ∇2 [I2], (3.42d)

∂t
[
I−
] = r1 − r2 − 4r3 − r4 + DI− ∇2 [I−], (3.42e)

∂t
[
SI−3

] = r4. (3.42f )

The linear combination of reaction rates in each equation follows from the corre-
sponding stoichiometry in the reaction mechanism Eq. (3.40). There is no diffusion
term in Eq. (3.42f) for the starch-triiodide complex since the starch is immobile.
The values of the five diffusion coefficients have to be determined by experi-
ment. Together with the parameters in the reaction rates Eq. (3.41), this system is
described by a total of 13 parameters (which can be reduced to five dimensionless
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parameters by changing to dimensionless units of space, time, and concentration).
In contrast, two dimensionless parameters – the Rayleigh number R and Prandtl
number σ – are needed to characterize a Rayleigh–Bénard convection experiment.
Each of the equations in Eqs. (3.42) also requires boundary conditions and initial
data to complete the mathematical description. As noted before, the boundary con-
ditions have a simple form, being constant on the plate surfaces or having a zero
flux on the lateral boundaries of the gel.

If no reactions were to occur within the gel, we would expect the concentrations
[ClO2], [MA], and [I2] to interpolate linearly between their boundary values on
either side of the plates. Such linear profiles would be analogous to the linear tem-
perature profile of the conducting uniform state in Rayleigh–Bénard convection. In
fact, the reactions in the interior of the gel produce a much more complicated set
of profiles for the chemicals, with a z dependence that cannot be calculated ana-
lytically. As an example, we show in Fig. 3.4 the concentration profiles deduced
from a numerical calculation based on the above evolution equations with exper-
imentally estimated parameters and with experimentally plausible concentrations
in reservoirs A and B. The stationary concentrations are plotted as a function of
a dimensionless confined variable x‖ = z, whose value is z = 0 at the surface of
plate B and z = 1 at the surface of plate A. The six concentration fields are constant
and uniform in each plane transverse to the z direction. This complicated struc-
ture – a direct consequence of the tight coupling to the strong chemical gradients
imposed by the reservoirs – constitutes the “spatially uniform solution’’ that would
be the starting point of a full linear stability analysis. Pattern formation would then
be the occurrence of spatial structure in the concentration fields within each plane
transverse to z.

Besides the explicit example Eqs. (3.42) of realistic evolution equations, perhaps
the most important conclusion of this Etude is that the stationary uniform solution
of a sustained nonequilibrium system can have a surprisingly rich structure in the
confined directions even before pattern formation occurs in the extended directions.
This structure can be quite hard to calculate and by no means can we always do
this analytically.

3.2.3 Experimental results

Examples of the stationary Turing patterns observed in the experimental system
described in Section 3.2.1 have already been shown in Figs. 1.18(b) and (c). The
variety of patterns – stripes, hexagons, spots, and spatiotemporal chaos – is not
something that can be discussed using linear theory, and we will discuss these
nonlinear states in later chapters such as Chapters 4, 7, and 9.Aquantitative analysis
of the onset of a reaction–diffusion chemical pattern is shown in Fig. 3.5. The
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Fig. 3.4 The uniform solution may have complicated structure in the confined
directions: numerically calculated profiles (chemical concentrations as a function
of the confined coordinate x‖ = z) for the stationary uniform state of the CDIMA
reaction, Eqs. (3.40), in the reactor geometry of Fig. 3.3. The gel was assumed
to have a thickness of d = 0.3 cm and the z coordinate measures the fractional
distance across the gel, with z = 0 corresponding to plate B and z = 1 corre-
sponding to plate A. The boundary conditions are [MA]L = 1 × 10−2 M at the
left boundary z = 0, and [I2]R = 1 × 10−3 M and [ClO2]R = 6 × 10−4 M at
the right boundary z = 1. All other boundary conditions are zero concentration.
Especially for the intermediates like iodide and the starch-triiodide complex, the
profiles have a surprisingly complicated rapidly varying spatial structure. The con-
centrations are spatially uniform in each plane of constant z. (From Setayeshgar
and Cross [95].)
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Fig. 3.5 Amplitude of a chemical pattern at onset, showing the linear instability of
a uniform state at a temperature of about 18 ◦C. In this case, the instability occurs
as the temperature is lowered. The amplitude was measured as the magnitude of the
two-dimensional Fourier transform of a visualization of the pattern in the vicinity
of the pattern periodicity. (From Ouyang and Swinney [84].)

plot follows the scheme discussed in Section 2.4. The order parameter used is
the magnitude of the two-dimensional Fourier transform integrated over a wave
number band near the peak intensity. This is zero in the ideal spatially uniform state
(noise in the experiment or measurement would contribute a small value), and is
a good measure of the strength of the pattern. The control parameter used in the
experiment was the temperature, which is easy to control and to vary. However,
rate constants typically change their values by different amounts as the temperature
is varied and these amounts need to be measured experimentally if a quantitative
link is desired between this control parameter and the parameters of the theoretical
model. Such measurements have not yet been made. Figure 3.5 suggests a linear
onset at around 18 ◦C.10

For other chemical combinations, oscillatory wave states can be observed as
discussed in Section 3.1.3 and shown in Fig. 1.18(a). If the states are sustained in a
continuously fed reactor similar to Fig. 3.3, the controlled conditions allow quanti-
tative measurements to be made. Figure 3.6 shows results from a reaction–diffusion
chemical experiment in which the order parameter is “intensity contrast,’’ an opti-
cal measure of the difference in indicator concentration between wave crests and
troughs. The measurements suggest a linear onset at a sodium bromate concentra-
tion [NaBrO3] of about 0.018 M, although there is a small amount of hysteresis at

10 When we investigate the nonlinear theory (see Section 7.3.3 and Fig. 7.2), we will discover that a hexagonal
pattern is not expected to grow continuously from the uniform state. Instead, either an intervening stripe state
at small amplitudes or a discontinuous jump to nonzero amplitude is expected. Perhaps one or the other occurs
on a finer scale than is resolved by the data.
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Fig. 3.6 Onset of an oscillatory wave pattern: (a) intensity contrast across a spiral
wave front as a function of NaBrO3 concentration. The onset is almost continuous
at a concentration of about 0.018M, but, as shown in the inset, there are small
jumps and a small amount of hysteresis; (b) the wave propagation velocity and
wavelength do not go to zero at onset (note offset zeros in this plot). (Redrawn
from Tam et al. [101].)

the onset (so that the bifurcation is slightly subcritical, rather than supercritical). The
fact that the wavelength and velocity of the waves (and therefore also the frequency)
tend to nonzero values at the onset represents an experimental demonstration that
this transition is a type-I-o instability.

3.3 Conclusions

With the material of this and the previous chapter, you now have the tools to look at
a key aspect of pattern formation in diverse systems, namely the linear instability
from the uniform state toward a state with spatial, and perhaps temporal, structure.
As we have seen, the linear stability analysis tells us about the characteristic length
and time scales that might be expected in the pattern. Conversely, a prediction from
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a theoretical model of a precise spatial periodicity that is observed in experiment
can help to validate the basic equations of the model. Such validation is often a
serious issue in many real-world examples of pattern formation. In Chapter 2, we
presented the basic formalism in the context of a simple toy example, Eq. (2.4). In the
present chapter, we described the more complex and realistic example of reacting
and diffusing chemicals in a three-dimensional medium with realistic boundary
conditions. The exercises that follow will give you more practice in applying these
ideas.

After all this work, we are left with a physically unrealistic solution, namely a
perturbation up(x, t) that grows exponentially in time to a magnitude that violates
the assumption of small amplitude that was used to derive the linearized evolution
equations (by neglecting higher-order terms). Furthermore, as we saw in the preced-
ing chapter, we are left with too many growing modes. For the case of an isotropic
base state, the perturbation can be an arbitrary superposition of modes Eq. (2.22)
whose wave vectors q can point in any direction (Fig. 2.11). The next step in our
discussion of pattern formation is therefore to include the effects of nonlinearity.
A naive expectation would be that nonlinearity saturates the exponential growth of
the modes at some finite value without changing the spatial structure too much, so
that the state is at least qualitatively reminiscent of the critical mode at onset. In the
presence of symmetries, nonlinearity also serves to reduce the degeneracy giving
pattern selection. In later chapters, we will discuss first the qualitative aspects of
nonlinear effects (Chapter 4), and then analytical techniques to make these ideas
more precise and quantitative (Chapters 6 and 7).

3.4 Further reading

(i) Alan Turing’s paper “The chemical basis of morphogenesis’’ [106] presents many of
the basic ideas of pattern formation.

(ii) Chapters 14–17 of the book Mathematical Biology, Third Edition by Murray [79],
describe the Turing instability in some detail, as well as implications of linear stability
analysis to various mechanisms of pattern formation in biological systems.

(iii) An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and
Chaos by Epstein and Pojman [34] gives an extended discussion of pattern formation
and dynamics in chemical systems.

Exercises

3.1 Wave number of fastest growth rate in the Turing model: The wave num-
ber qm given by Eq. (3.17) was obtained from the condition that the criterion
for linear stability Eq. (3.14b) first became reversed.
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(a) Show that qm is also the wave number that maximizes the growth rate σq

at the onset of instability.
(b) Show that qm is no longer the wave number of the fastest growing

mode once the system is a small but finite distance beyond the onset
of instability.

Hint: you might find it easiest to start from Eq. (3.12).
3.2 A two-chemical Turing instability cannot be an oscillatory bifurcation: A

Turing instability is a linear instability at a finite wave number of a stationary
uniform state that is stable in the absence of diffusion. Show that a reaction–
diffusion system of two chemicals of the form Eqs. (3.1) cannot be oscillatory
at onset, i.e. it cannot be of type I-o with Im σqc �= 0, qc > 0.

For a greater challenge, show that a Turing instability with three chemicals
can be oscillatory.

3.3 Type of instability for two coupled reaction–diffusion equations: Consider
the following reaction–diffusion evolution equations

∂tu = au + ∂2
x u − b ∂2

x v −
(

u2 + v2
)
(u + cv), (E3.1a)

∂tv = av + b ∂2
x u + ∂2

x v −
(

u2 + v2
)
(v − cu), (E3.1b)

for the fields u(x, t) and v(x, t) on the real line, where the parameters a, b,
and c are arbitrary real constants. Derive a condition for the linear instability
of the zero base solution ub = (ub, vb) = (0, 0), and determine whether the
instability is of type I-s, I-o, or III-o.

Note: This is not a Turing problem, you do not have to assume that the
base solution is stable in the absence of diffusion.

3.4 Stability of the stirred Brusselator: For the stirred Brusselator given by
Eqs. (3.23) without the diffusion terms, plot in the a−b parameter plane the
region of stability of the uniform solution, the region (if any) of its instability
via an oscillatory instability, and the region (if any) of its instability via a
stationary instability.

3.5 Nullclines of the stirred Brusselator: For the stirred Brusselator of the
previous problem:

(a) Plot the nullclines u2 = g1(u1) and u2 = g2(u1) of Eqs. (3.23a)
and (3.23b) for a = 1 and b = 2.5. Use this plot to confirm graphi-
cally that the nullclines intersect at a single point so that there is only
one uniform solution ub. Draw horizontal and vertical arrows in each
sector defined by the intersecting nullclines to indicate the direction of
the evolution dtu1 and dtu2.
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(b) Numerically solve for the time evolution for the parameters a = 1
and b = 2.5.After transients, you should find a periodic orbit (limit cycle).
Superimpose this orbit on the nullcline plot. Is the resulting diagram
consistent with what the nullclines and evolution arrows tell you?

3.6 Linearized Brusselator equations: For the Brusselator Eqs. (3.23):

(a) Derive the linearization of the reaction rates Eq. (3.26) for small
perturbations about the stationary uniform solution.

(b) Determine and plot the neutral stability curve b = b(q) of the uniform
state Eq. (3.25) for the parameter values Eq. (3.24).

(c) Using b as the control parameter and defining ε = (b−bc)/bc with bc the
value at onset, determine the numerical value of the coherence length ξ0

(see Eq. (2.27)) for the parameter values Eq. (3.24) and compare that
value with the critical wavelength 2π/qc ≈ 14.4 (see Eq. (3.31)).

3.7 Type-III-s instability: Convince yourself that a type III-s instability (a sta-
tionary instability first occurring at q = 0) is not possible for Eqs. (3.1) One
possibility is to show that when a stationary instability occurs at q = 0, the
system is already unstable toward modes with q �= 0.

3.8 Type-III-o instability in the Brusselator: Can the Brusselator model
Eqs. (3.23) show a type III-o instability? If so, find an example of parameter
values for which this happens.

3.9 The Oregonator: A more realistic, but still simplified, model of the
Belousov–Zhabotinsky reaction is given by the following five reactions:

BrO−
3 + Br− + 2H+ → HBrO2 + HOBr, (E3.2a)

HBrO2 + Br− + H+ → 2HOBr, (E3.2b)

BrO−
3 + HBrO2 + 3H+ + 2Ce3+ → 2HBrO2 + 2Ce4+ + H2O, (E3.2c)

2HBrO2 → BrO−
3 + HOBr + H+, (E3.2d)

Z + Ce4+ + ?H2O → hBr− + Ce3++ ?HCOOH

+ ?CO2 + ?H+, (E3.2e)

where h is some number (the stoichiometry factor) and the last reaction
is a reaction of Ce4+ with a mixture of CH2(COOH)2 (malonic acid) and
CHBr(COOH)2 (bromomalonic acid) written as Z. The question marks “?’’
in Eq. (E3.2e) denote numerical factors depending on h that are not necessary
for this exercise.

(a) Use the law of mass action (that the reaction rate satisfies Eq. (3.34)
with exponents equal to the stoichiometric coefficients of the reactants
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on the left-hand side) to derive dynamical evolution equations for the
three concentrations

u = [HBrO2], (E3.3a)

v =
[
Ce4+], (E3.3b)

w = [
Br−

]
. (E3.3c)

Assume that the concentrations
[
H+], [BrO−

3

]
, [CH2 (COOH)2], [CHBr

(COOH)2],
[
Ce3+], and [H2O] are constant. The resulting three odes

constitute the Oregonator model of the Belousov–Zhabotinsky reaction.
The name comes from the University of Oregon, where a group of research
chemists first proposed and analyzed this model.

(b) By an appropriate rescaling of time t and of the various concentrations,
show that the rescaled equations can be written in the form

η ∂tu = qw − uw + u − u2, (E3.4a)

∂tv = u − v, (E3.4b)

η′ ∂tw = −qw − uw + bv. (E3.4c)

The constants η, η′, q, and b are related to the reaction rates and to the
concentrations that are held constant.

(c) For some parameter values, the inequalities η′ 
 η 
 1 hold. Assuming
in this case that the left side of Eq. (E3.4c) is approximately zero, show
that the variable w can be eliminated so that Eqs. (E3.4) reduce to a
two-variable model

η ∂tu = u − u2 − bv
u − q

u + q
, (E3.5a)

∂tv = u − v. (E3.5b)

This illustrates how a non-polynomial reaction rate can arise from the
elimination of a slowly changing variable.

3.10 Time scales in realistic reaction diffusion experiments: Small molecules
in water all have about the same diffusion constant of D ≈ 2×10−9 m2/s. By
extending the discussion of Exercise 1.5(b) on lateral diffusion times, esti-
mate the minimum observation time in days for an experiment as in Fig. 3.3
that involves a gel that is 25 mm in diameter. Compare your answer with
the longest observation time of about a week in the Ouyang and Swinney
experiment.
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3.11 Turing instability in a finite one-dimensional domain with no-flux bound-
aries: Consider a one-dimensional Turing system Eq. (3.1) with parameters
that are just at the critical values that give the onset of a stationary Turing
pattern in an infinite domain. Now confine the system to a domain of length L
with no-flux boundary conditions ∂xu = 0 at x = 0 and at x = L. Show that
as L is varied, instability occurs in the finite domain whenever L takes the
value mπ/qc with qc the critical wave number in the infinite domain (given
by qm, Eq. (3.17) with the right-hand side evaluated at their onset values).

This result is atypical of pattern-forming systems. In general, as we will see
in Chapter 6, there is a systematic suppression of the onset in finite domains
with realistic (not periodic) boundary conditions.

3.12 Onset of instability for reaction–diffusion equations with no-flux bound-
aries in a two-dimensional system with arbitrary shape: Consider the
general reaction diffusion system in two spatial dimensions

∂tu = f(u)+ D ∇2u, (E3.6)

with D a diagonal diffusion matrix and ∇2 = ∂2
x +∂2

y with parameters chosen
to be at the Turing instability point as in Exercise 3.11. In the following you
find a condition for instability in a finite two-dimensional domain with no-
flux boundaries of arbitrary shape as the domain size L increases (at fixed
shape).

Let us assume that we can first solve a scaled “vibrating drumhead’’
eigenvalue problem

∇2
Xψm + λmψm = 0 (E3.7)

with Neumann boundary conditions

n̂ •∇Xψ = 0, (E3.8)

for a domain of the given shape but of some reference size (e.g. maximum
chord of size unity). The λm are eigenvalues characteristic of the shape of the
boundary, and theψm(X) are the corresponding eigenfunctions. There will be
some smallest positive eigenvalue λ0, and an infinite sequence of larger ones
extending to infinite value. Next, consider solutions to the linear instability
problem of the form

u(m)i (x) = ū(m)i ψm(x/L)eσmt . (E3.9)

Show that the growth rate σm is the same as that of a mode of the infinite
system with wave number

√
λm/L. Also show that u(m)i (x) satisfies Neumann

boundary conditions in a system which is the reference system scaled up by
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the factor L. Hence show that instability in the finite domain occurs at the
same parameter values as in the infinite domain whenever L = √

λm/qc with
qc the critical wave number of the infinite domain.

3.13 Turing instability in a cellular system: Turing also studied the instability in
a discrete model appropriate to a cellular system. For a ring of cells he used
a model with two concentrations Un, Vn defined as a function of an index n
around the ring of l cells

dtUn = f (Un, Vn)+ D1 (Un+1 − 2Un + Un−1), (E3.10a)

dtVn = g(Un, Vn)+ D2(Vn+1 − 2Vn + Vn−1), (E3.10b)

where the last terms give the transfer of chemicals to adjacent cells at
a rate proportional to the differences in concentrations. Suppose that the
linearizations of f and g around the steady-state solutions are

f (Un, Vn) � a11 δUn + a12 δVn, (E3.11)

g(Un, Vn) � a21 δUn + a22 δVn. (E3.12)

(a) Show that the ansatz δUn, δVn ∝ eiqneσ t can be used to reduce the
equations for the linear stability analysis to a simple matrix problem
as in the continuous case.

(b) What are the possible values of q and what restricted range of q is sufficient
to give all possible solutions?

(c) Find the modified criteria for the Turing instability to take place in this
system.

(d) Describe the nature of the disturbances in Un and Vn at the onset of the
q = π mode.
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Nonlinear states

The linear stability analysis of Chapter 2 predicts that a small perturbation about a
uniform state will grow exponentially in magnitude when the uniform state becomes
unstable. Over time, the magnitude of a perturbation will grow so large that the
nonlinear terms that were neglected when deriving the linearized evolution equation
can no longer be ignored.1 These nonlinear terms play a fundamental role in the
resulting pattern formation: they saturate the exponential growth, and they select
among different spatial states. It is the essential role of nonlinearity in a spatially
extended system that makes the study of pattern formation novel and hard.

We can gain a great deal of insight about the nonlinear regime of pattern for-
mation by considering spatially periodic patterns. This is natural when considering
the fate of a single exponentially growing Fourier mode of the linearized evolution
equations associated with a linear stability analysis. Nonlinearities in the evolution
equations for the system generate spatial harmonics (Fourier modes with wave vec-
tors nq with n an integer) of this growing mode so that the finite-amplitude solution
maintains the periodicity over the length 2π/q. A key role of the nonlinearity is
to quench the exponential growth of the solution, leading to steady spatially peri-
odic solutions for a stationary instability, and nonlinear oscillations or waves for
an oscillatory instability. If this steady or periodic solution is to be physically rele-
vant, we must also require that it be stable with respect to small perturbations. Thus
we will study the existence and stability of steady or oscillatory spatially periodic
(for qc �= 0) solutions.

The growth and saturation of a single mode can be expressed conveniently in
terms of a complex-valued multiplicative factor that is called the amplitude of the
mode (see Section 4.1.1 below). Close to the threshold of the instability, expansion
techniques based on the assumption of a small amplitude lead to a quantitative

1 For example, when going from the evolution equation Eq. (2.3) to the linearized evolution equation Eq. (2.9)
for a small perturbation up, we discarded the terms −3ubu2

p − u3
p that were nonlinear in up and so negligible

compared with up for small up.
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theory of the existence of a nonlinear spatially periodic solution, and of its stability
with respect to perturbations of the same spatial periodicity. These are in fact the
tools of bifurcation theory that you have probably seen in a class or text on dynamical
systems. Appendix 1 gives a brief overview of the elementary ideas of bifurcation
theory relevant to the following discussion. More generally, the amplitude equation
formalism provides a quantitative description of pattern formation near the onset of
instability, even for patterns that are more complex than periodic stripes, that evolve
in time, and for general boundary conditions. We will discuss this quantitative
theory with some applications in Chapters 6, 7, and 8. The phase of the complex
amplitude is itself an interesting field since it is closely connected with translational
symmetries of the system. When the spatial structure of a pattern changes slowly
over a distance that is large compared to the cellular structure of the pattern, an
evolution equation for the phase called a phase equation can be derived that is valid
even when the system is not close to the onset of instability and when nonlinear
effects are no longer small. Chapter 9 discusses these phase equations and some of
the insights that can be derived from them.

In this chapter, we first use general ideas to study the existence of stripe patterns,
i.e. patterns with spatial variation of the form e±iq • x plus harmonics. Stripe patterns
might arise in the context of a strictly one-dimensional system, such as in the
demonstration calculation of Section 2.2.1, or for a physical system with just one
extended and two or three confined dimensions, or for a system with two or more
extended directions where we only seek solutions that are spatially periodic in one
of the extended directions.

We next consider the stability of stripe patterns with respect to general classes
of perturbations. Physical realizability requires stability for all small perturbations.
This criterion restricts realizable spatially periodic solutions to a narrower range of
possible wave numbers than the criterion for existence. As various control param-
eters are changed, this band of stable wave numbers traces out what is called the
stability balloon of the stripe solutions.2 For example, the Prandtl number σ and
Rayleigh number R can be varied independently in a Rayleigh–Bénard experiment,
and so one gets a three-dimensional balloon-like region of linearly stable stripe
wave numbers in the space with axes σ , R, and wave number k.

The stability balloon provides a basic conceptual starting point for the study of
more complex patterns including the parameter dependence of patterns and of the
range of observed wavelengths. For example, there may be a choice of parameters
for which all the nonlinear stripe states are unstable. In this case, a time-dependent

2 The stability balloon for stripe patterns of a Rayleigh–Bénard convection system is often called the Busse balloon
in honor of the fluid dynamicist Fritz Busse. Over many years, Busse and his collaborators investigated in great
detail the stability balloons for stripes as a function of Rayleigh number and Prandtl number. His calculations
yielded many valuable insights about pattern formation for convection and for other type-I-s systems.
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state or a stationary state with a new geometry (say curved stripes or a hexagonal
lattice) is likely to be observed experimentally. Provided that the evolution equations
are known to a reasonable accuracy and that the associated numerical work is not too
hard, calculating stability balloons for various system parameters and comparing
their properties with experiments is the next most useful step toward understanding
a pattern-forming system, after the linear stability analysis of the uniform state that
we discussed in the previous two chapters.

We next discuss more general nonlinear stationary solutions that are periodic
for two extended directions and discuss how they are represented mathematically
and how they differ by symmetry. Here the interesting question is the competi-
tion between different two-dimensional lattices, say rectangles and hexagons, and
stripes.3 This question dramatically illustrates the importance of nonlinearity in
selecting amongst different states since the lattice states are simply linear combi-
nations of stripes with different orientations and all such superpositions are equally
good solutions of the linearized evolution equations. The question of whether say
stripes or hexagons are expected in an experimental or naturally occurring physical
system is one that has been asked in many different areas of science and engineering.
We will see in Chapter 7 that, at least in the weakly nonlinear regime near threshold,
general arguments may be brought to bear on this question. Further from onset, one
can again calculate stability balloons of linearly stable wave vectors for lattices of
a given symmetry, using symmetries suggested by mathematical arguments or by
experiment.

Although different ideal symmetric states can be readily constructed theoretically
or studied numerically by imposing periodic boundary conditions on the extended
coordinates, the observation of ideal states in the laboratory relies on careful choices
of the cell geometry and of the experimental protocol. Typically, patterns in labora-
tory experiments and in nature will be disordered. These patterns may locally take
the form of stripe or lattice states, but the orientation of these local structures may
vary over the system, as can be seen in Fig. 4.8 below and in other figures from
Chapter 1. The lack of order might be a residual effect of the growth of perturba-
tions from uncontrolled random initial conditions or from localized irregularities
at different points in the system, perhaps on the walls (e.g. a small bump or thermal
inhomogeneity). Alternatively, the disorder may reflect the long-range influence
of the system’s lateral boundaries, which are rarely compatible with the stripe or
lattice structure of the idealized infinite system. If a region of disorder occupies

3 We will use the term “lattice’’ to refer generally to two-dimensional lattices such as squares and hexagons,
in distinction to stripe states. Strictly, stripes also are a lattice – a one-dimensional lattice. Three-dimensional
lattices do not play a major role in our discussion, since in most pattern-forming systems, at least one spatial
dimension is confined.
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only a small fraction of the pattern’s area and is one of several often observed char-
acteristic types, it is called a defect. Defects with a stability implied by topological
arguments are of particular interest since their structure and dynamics can often be
understood by general arguments. On the other hand, there might be large disor-
dered regions over which no regular structure exists. As you might guess, these are
hard to classify and to understand.

In the present chapter, we introduce these ideas largely through qualitative argu-
ments. In subsequent chapters, we will revisit many of them using more formal tools,
including amplitude equations in Chapters 6–8, and phase equations in Chapter 9.
Our discussion in all these chapters will mainly concern pattern formation via a
supercritical type-I-s instability, since this is the type most thoroughly studied by
experiment, and is also the case for which the mathematical details are more easily
worked out. Later in Chapter 10, we will develop a qualitative and quantitative
understanding of type-I-o and type-III-o oscillatory instabilities.

4.1 Nonlinear saturation

The linear stability analysis of Chapter 2 leaves us with exponentially growing
solutions, which are unphysical at long times. (Long means compared with 1/σq,
the reciprocal of the exponential growth rate.) The cause of the problem is clear: we
linearized the equations by assuming a tiny perturbation. This assumption is good
at short times and for an initial condition that has a small magnitude, but at long
times the nonlinear terms left out in the linear approximation become important. One
effect of nonlinearity is to quench the exponential growth. A system just beyond the
onset of a stationary instability might then eventually approach a time-independent
state solution such that the nonlinear terms have the same magnitude as the linear
terms and so balance them.4 We call the resulting solution a saturated nonlinear
steady state. If the control parameter is only slightly above threshold, a small con-
tribution of the nonlinear terms is sufficient to balance the small linear growth rate,
and we expect the stationary solution to have a magnitude that grows continuously
from zero as the control parameter is increased from the onset value. The linear
instability of the base state is then called a supercritical bifurcation. The reasons
for this nomenclature will become clearer shortly (also see Appendix 1). Such a
bifurcation is also known as a forward bifurcation, or a continuous or second-order
transition. For supercritical bifurcations, the weakly nonlinear state for a control
parameter just above the bifurcation value is close in structure to the growing linear
mode, and is particularly accessible to theoretical approximation.

4 A nonlinearity might also cause saturation but result in a time-dependent state, say oscillatory or chaotic. In
this case, the linear growth terms balance the nonlinear terms only on average. We do not discuss this more
complicated situation in this chapter.
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On the other hand, the nonlinear terms may initially serve to enhance the growth
rate further. In this case, even if the control parameter is only slightly larger than
the threshold value, the magnitude of the disturbance will typically grow to a large
value before saturation occurs. (Physically we do not expect growth to an infinitely
big value.) The resulting nonlinear state may not have any simple relationship to
the linearly growing mode and theoretical treatment is much harder. For example,
the saturated state may be chaotic even though the linear instability was a stationary
instability. The linear instability of the base state is then called a subcritical bifurca-
tion, also called a backward bifurcation, or a discontinuous or first-order transition.
Our focus in this chapter is mainly on the more easily treated supercritical case.

For oscillatory instabilities, the same ideas apply except that the saturated nonlin-
ear state will have a periodic time dependence and be a state of nonlinear oscillations
or waves.

4.1.1 Complex amplitude

We can gain useful initial insights into the effects of the nonlinearity by retaining the
idea that the size of the perturbation to the uniform solution is small, but continuing
the perturbative expansion to higher order than the first term giving the linear
approximation. Near enough to the threshold of the linear instability, the first few
higher-order terms can provide a quantitatively accurate description of the pattern
formation.

Let us first ask what happens to a single exponentially growing Fourier mode
for a system with a stationary instability, for example Eq. (2.15) or (2.22). First,
note that the exponentially growing solution u(x, t) with wave vector q can be
written as5

u(x, t) = A(t)eiq • x⊥uq(x‖) + c.c. (4.1)

The time-dependent amplitude of the perturbation A(t) satisfies the equation

dtA = σA. (4.2)

Equation (4.2) results from the linearization. We can think of this approximation as
the first term in an expansion of the dynamics in the size of the perturbation, now
represented by A. Thus, we can learn useful things by continuing the expansion in
Eq. (4.2) to higher order in A.

In Eq. (4.1), it is useful to take A to be a complex number |A|ei�. The magni-
tude |A| of A gives us the size of the perturbation. What does the phase � of A tell

5 The notation “c.c.’’appearing after an addition sign means “complex conjugate of the preceding expression.’’For
Eq. (4.1), “c.c.’’ therefore stands for A∗e−iq • x⊥ u∗

q(x‖). The symbols A∗ and u∗
q denote the complex conjugates

of A and uq respectively.
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us? By rewriting the first two factors in Eq. (4.1) as

Aeiq • x⊥ = |A|eiq • (x⊥+q̂�/q), (4.3)

(dropping the time dependence for now and with q̂ a unit vector in the direction of
the wave vector), we see that a change � → �+ δ� in the phase by an amount δ�

is the same as a displacement of the solution through a distance −δ�/q along the
direction of the wave vector q̂. The phase tells us the position of the pattern! Note
that a displacement δx perpendicular to the wave vector q (along the stripes) does
not lead to any change in the structure.

What about the dynamics of |A| and �? Remember that for a stationary instability
the growth rate σ is real. Equation (4.2) can therefore be rewritten as the two
equations

dt|A| = σ |A| and dt� = 0. (4.4)

(To get these equations, substitute A = |A|ei� into Eq. (4.2), multiply both sides
by e−i� and take real parts of both sides to get the first equation, imaginary parts of
both sides to get the second equation.) The dynamics of the magnitude of A capture
the exponential growth or decay given by σ . The phase does not change with time
which is not surprising since we do not expect any time-dependent translation for
a stationary instability.

We can now proceed by expanding the evolution equation for A to higher order in
the magnitude of A. There are two ways of doing this. One is to substitute Eq. (4.1)
into the evolution equation for u(x, t) and use a perturbation technique to derive
the evolution equation for A to some order in the small quantity |A|. This approach
depends on taking a specific physical system or model, and Exercise 4.5 gives
you the chance to work through the details for the relatively simple case of the
Swift–Hohenberg equation.

A second approach is to use casual arguments based on smoothness assumptions
and symmetry. This is the approach we take in this chapter since it can be completed
(up to some unknown coefficients) without knowing the details of a specific system
and the resulting evolution equation often provides a fruitful starting point. The
symmetry of the system leads to constraints on the form of the complex amplitude’s
evolution equation. In particular, the translational invariance of the system leads to
the conclusion that the evolution equation for A must be invariant under a constant
change in the phase of A. This means that if we define Ā = Aei� with � any
real-valued constant, then the evolution equation for Ā must be the same as that
for A. This is true since the phase change just shifts the pattern and, by the assumed
translational invariance of the system, we know that a shifted pattern must follow
the same dynamics as the original. That the phase of the complex amplitude captures
symmetry aspects of the pattern is an extremely important insight for analyzing the



132 Nonlinear states

dynamics of patterns. We will take advantage of this insight numerous times later
in the book.

Expanding the equation of motion for A to higher order now gives

dtA = σA − γ A2A∗ + · · ·, (4.5)

where γ is a constant and the dots . . . denote higher-order terms that are negligible
provided that the magnitude |A| is small enough. Recognizing that AA∗ = |A|2, we
obtain a more commonly written form

dtA = σA − γ |A|2 A + · · ·. (4.6)

In developing the expansion Eq. (4.5), we use the rule that each term can contain
non-negative integer powers of A and A∗.6 After writing down the possible terms,
we can choose to simplify the expression via the replacement AA∗ → |A|2 but we
must first develop the expansion using this rule.

Note that there are no quadratic terms in Eq. (4.6) because none of the terms AA,
AA∗, or A∗A∗ satisfies the requirement of translational invariance, that the equation
remain unchanged by the substitution A → Aei�. The term |A| A is not allowed
since it is not a product of integer powers of A and A∗. The cubic term in Eq. (4.6)
is thus the unique leading order correction to the linear approximation.

We will usually be interested in this equation near threshold where the growth
rate approaches zero, σ → 0. It is then useful to expand σ in the control parameter p
about the critical value p = pc. We introduce the dimensionless reduced control
parameter

ε = p − pc

pc
, (4.7)

which is zero (ε = 0) at the onset of linear instability p = pc, and is small near onset
when p is close to the critical value pc. We next expand σ about ε = 0 where by
definition σ = 0 for the onset of a stationary instability. Since σ has the dimensions
of inverse time, we write this expansion as

σ = τ−1
0 ε + O(ε2), (4.8)

with τ0 a constant with the dimensions of time. (Note that ε and τ0 are the same
parameters that were introduced in Section 2.5.) Equation (4.8) implies that the
time constant τ0 can be explicitly calculated from the dependence of the growth
rate σ(p) on the parameter p via the expression

τ−1
0 = dσ

dε

∣∣∣∣
ε=0

= pc
dσ

dp

∣∣∣∣
p=pc

. (4.9)

6 This is because the nonlinear terms are generated from powers of u and its derivatives, which from Eq. (4.1)
will lead to this type of expression.
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Assuming that the instability occurs for increasing p, the constant τ0 is positive.
Equation (4.6) now becomes

τ0 dtA = εA − g|A|2 A + · · ·, (4.10)

with g = γ τ0.
If the growth rate σ is real-valued near onset – the case for a stationary instability –

we can argue from symmetry that, in almost all cases, the coefficient g of the
cubic nonlinearity will be real-valued. (The minus sign in Eq. (4.10) is included
by convention, and g may be positive or negative depending on the details of the
system.) This is because we expect a stationary instability only if the physical
system is unchanged under the inversion x⊥ → −x⊥. Without this symmetry, a
spatially periodic state is likely to propagate, either to the right or to the left. We
might still be able to set the propagation speed at threshold to zero by carefully
tuning a second control parameter (we varied one parameter to tune the system to
the threshold of instability), but this is a special case that would almost never be
found experimentally in the most common situation that an experimentalist varies
just one parameter at a time. (This special case is a codimension-two bifurcation
in the language of Section 2.6.) The reflection symmetry of the physical system
translates into the requirement that the evolution equation for A must be unchanged
by the substitution A → A∗, and this leads to the constraint that g must be real.

It is worth understanding the details of this argument to gain experience
with manipulating amplitudes under symmetry transformations. The amplitude is
introduced as

u(x, t) =
(

A(t)eiq • x⊥ + A∗(t)e−iq • x⊥
)

uq(x‖), (4.11)

where we have explicitly included the complex conjugate to make u a real field,
and we have assumed that uq(x‖) can be chosen to be real. Now suppose we
look at the same physical system, but with a new horizontal coordinate defined by
x̄⊥ = −x⊥. The dynamical equations with all variables expressed as functions of
x̄ will be unchanged, as follows from the reflection symmetry. We suppose that
u is comprised of variables that do not change under this operation, such as a
position rather than an x-velocity. (The argument can be generalized to other cases
if needed.) Then we have

u(x̄, t) = (A(t)e−iq • x̄⊥ + A∗(t)eiq • x̄⊥)uq(x‖), (4.12)

= (Ā(t)eiq • x̄⊥ + Ā∗(t)e−iq • x̄⊥)uq(x‖). (4.13)

A new amplitude Ā = A∗ has been introduced to get the same equation for the
introduction of the amplitude in the new coordinate system. The physics must “look
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the same’’ with respect to the new coordinates and amplitude. Thus the equation of
motion for Ā must be the same as for A or, more loosely, the equation of motion
for A must not change under the substitution A → A∗.

Our informal discussion of the saturation of the growing mode near a type I-s
bifurcation has introduced the concept of the complex amplitude A. We will see in
Chapter 6 that this quantity can be generalized to include a slowly varying spatial
dependence which then provides a powerful tool to study many aspects of pattern
formation near onset. The same type of arguments we have used for the stationary
instability can be made for oscillatory instabilities. In fact, the same equation for the
complex amplitude, Eq. (4.5), is obtained but now g (and of course σ ) are complex
numbers. This is the topic of Exercises 4.6 and 4.7.

4.1.2 Bifurcation theory

We can now use Eq. (4.10) to begin the investigation of the effects of nonlinearity.
To study these issues, we ignore the higher-order terms in Eq. (4.10) and use the
resulting equation to investigate the existence and stability of the solutions saturated
by the nonlinearity. We argue that it makes sense to retain the cubic term, but not
higher-order terms, if the control parameters of the system are near the ones giving
linear instability so that the growth rate σ is small (or has a small real part in the
oscillatory case). Then the leading linear term on the right-hand side of Eq. (4.10)
with a small coefficient might be comparable with the next order cubic term, whereas
further terms in the expansion remain negligible. Thus an expansion in the complex
amplitude is useful near the threshold of pattern formation.

Since the parameters τ0, ε, and g in Eq. (4.10) are real, the evolution equation
for the phase of A is still dt� = 0 (see Eq. (4.4) above) so the phase is constant.
For a translationally invariant system, the value of the constant phase cannot matter
and so we can set � = 0, in which case the amplitude A becomes a real-valued
variable. Equation (4.10) then becomes the slightly simpler evolution equation for
a real amplitude A(t)

τ0 dtA = εA − gA3 + · · ·. (4.14)

We emphasize, though, that generally one cannot assume the amplitude to be real
and that the phase will be time dependent.

We can now ask about the existence and stability of solutions for Eq. (4.14).
We seek solutions where the growth has ceased7 dtA = 0. For any given value of
the control parameter ε, there can be two symmetrically related nonzero solutions

7 It is not too hard to show that the only bounded nontransient solutions of any one-variable ode like Eq. (4.14)
are fixed points so there is no need to consider oscillatory or chaotic solutions.
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Fig. 4.1 Existence and stability of stationary nonlinear saturated amplitude solu-
tions A(t) near onset according to the amplitude equation Eq. (4.10). Panel (a)
plots the possible solutions A0 given by Eq. (4.15) as a function of the reduced
parameter ε = (p − pc)/pc for the forward-bifurcation case of g > 0. Panel (b)
shows the case for a backward bifurcation, with g < 0. The solid and dashed lines
represent linearly stable and unstable solutions respectively. The arrows show the
evolution of A according to Eq. (4.14) and give useful insight into the dynamics.

A = ±A0 that satisfy

A2
0 = ε/g. (4.15)

Remember that ε > 0 signifies the instability of the uniform state. Since A2
0 is

necessarily positive, Eq. (4.15) shows us that the nonzero saturated solution exists
on the unstable side of the bifurcation for g > 0, but on the stable side for g < 0.
We can now understand the motivation for the terms “forward bifurcation’’ and
“backward bifurcation’’ for these two cases, as shown in Fig. 4.1. For g positive,
the new solution grows in the forward direction of p > pc (taking the convention
that the instability occurs as the control parameter is increased), whereas for g
negative, the new solution develops in the backward direction. The magnitude of
the nonlinear solution increases as

|A0| = |g|−1/2
√|ε|, (4.16)

with increasing |ε| on the positive-ε side for the forward bifurcation, and on the
negative-ε side for the backward bifurcation. This square-root dependence on the
control parameter near threshold will appear many times throughout this book, and
is a behavior that has been verified in many experiments and simulations near onset.
The shape of the solution curves in Fig. 4.1 leads to the nomenclature pitchfork
bifurcation for this type of instability.

The discussion so far has concerned the existence of solutions. But we can go
further and deduce a useful fact: the new branch of solutions is necessarily unstable
for the backward bifurcation but may be stable for the forward bifurcation. This is
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easy to see by studying a particular perturbation

A(t) = A0(1 + δ(t)), (4.17)

of the steady saturated solution A0 and then linearizing in the tiny perturbation δ(t).
(When working with amplitude equations, it is often useful to write a perturbation
in terms of a multiplicative factor of the base state, here A0δ(t).) Substituting into
the evolution equation Eq. (4.14), we find that

τ0 dtδ =
(
ε − 3gA2

0

)
δ = −2gA2

0δ, (4.18)

where we used Eq. (4.15) to obtain the second equality. The perturbation δ therefore
decays exponentially for g > 0, but grows exponentially for g < 0. The nonlin-
ear saturated solutions for g < 0 are therefore themselves linearly unstable (see
Fig. 4.1). This implies that the corresponding solutions Eq. (4.11) of the original
evolution equation are linearly unstable and so will not be seen in most experiments.

The case of g > 0 is more complicated. Our analysis has only shown stability with
respect to a particular class of perturbations Eq. (4.17). There may be instability
toward other perturbations such as the growth of other modes at different wave
vectors. We will return to this question in Section 4.2.1 but note for now that
the new nonlinear solution may be stable for a forward bifurcation. Of course, a
single demonstration of instability is sufficient to demonstrate the instability for the
backward bifurcation.

Our analysis as summarized in Fig. 4.1 is a simple example of bifurcation the-
ory. The theory sets up a formalism for predicting the properties of the nonlinear
state that develops from linear instabilities, and is also a useful preliminary step
in calculating the quantitative properties of the nonlinear states. The connection
between symmetries and the algebraic form of simple evolution equations near the
instability or bifurcation point (“near’’ in the control parameter and in the small
amplitude of the perturbation), and the connection between the nature of the bifur-
cation (forward or backward) and the stability of the new solutions, illustrate the
type of results that are derived in bifurcation theory.

There is an important difference between the bifurcation of a spatially uniform
state and the bifurcation of a fixed point of some arbitrary set of odes, as discussed in
most introductory texts on nonlinear dynamics: the bifurcation to stripes in a system
with translational symmetry is always of the pitchfork type as shown in Fig. 4.1. The
analog to the transcritical bifurcation in simple bifurcation theory (see Appendix 1)
does not exist in this case. Such a case occurs when there is a quadratic nonlinearity
in the equation for the growth of the mode as in Eq. (A1.2) of Appendix 1, which,
as we have seen, is forbidden for a stationary instability at nonzero wave number
in a translationally invariant system. We will see in Section 7.4 that the transition
to a hexagonal state may be transcritical.



4.1 Nonlinear saturation 137

4.1.3 Nonlinear stripe state of the Swift–Hohenberg equation

The discussion in the previous section of the saturation of exponential growth
by nonlinearity was rather general and so abstract. Here, we make the discussion
more concrete by constructing explicitly a saturated nonlinear periodic solution to
lowest order near onset for the rather simple Swift–Hohenberg evolution equation.
We introduced this equation in Section 2.2 as a simple model of a pattern-forming
system whose uniform state undergoes a type-I-s instability.

In one spatial dimension, the Swift–Hohenberg equation has the form

∂tu = ru −
(
∂2

x + 1
)2

u − u3. (4.19)

We found in Chapter 2 that, as the control parameter r is increased from nega-
tive values, the uniform state u = 0 becomes linearly unstable at r = 0 to an
exponentially growing mode that we can write as8

u ∝ ert cos x. (4.20)

with critical wave number qc = 1. We wish to understand the nonlinear saturation
of this state for small r. Note that we have chosen a mode whose wave number is
the critical wave number. In Exercise 4.11, you may work out the corresponding
analysis for a general wave number q, with the cos x term in Eq. (4.20) replaced
with cos(qx).

A natural guess for the steady saturated solution u(x) is to look for a solution
with the same periodicity as the perturbation,

u = a1 cos x, (4.21)

with the coefficient a1 to be determined. To see whether this ansatz is a solution,
we substitute it into Eq. (4.19) with ∂tu = 0 to get

0 =
(

ra1 − 3

4
a3

1

)
cos x −

(
1

4
a3

1

)
cos(3x). (4.22)

Here we have rewritten cos3x (generated by the u3 term) as a sum of cos x
and cos(3x) terms. Since the Fourier modes cos(nx) are linearly independent,
the coefficient of each mode on the right-hand side must be zero. This gives two
equations. From the coefficient of cos x, we find the first equation

ra1 − 3

4
a3

1 = 0. (4.23)

8 We could use the complex notation u ∝ ert(eix + c.c.) of Eq. (4.14) but for calculating numbers, rather than
displaying symmetry aspects, the real notation is simpler.
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This equation has three solutions, the solution a1 = 0, (which is just the unstable
uniform state, and the two solutions

a1 = ±√
4r/3, (4.24)

which seem to fix the amplitude of the nonlinear state. However, the second equation
obtained by setting the coefficient of cos 3x to zero gives a contradiction that a1

must be zero:

−1

4
a3

1 = 0 =⇒ a1 = 0 . (4.25)

This inconsistency shows that the original guess Eq. (4.21) is incomplete: the cos x
generates a harmonic cos(3x) via the cubic nonlinearity and there is nothing in
Eq. (4.21) to balance that term. The inconsistency can be removed by adding a
small amount of cos 3x to the original ansatz so that now

u � a1 cos x + a3 cos(3x). (4.26)

Substituting this new ansatz into Eq. (4.19) with ∂tu = 0 and setting the coefficient
of cos 3x to zero now gives instead of Eq. (4.25) the equation

(r − 64)a3 − 1

4
a3

1 = 0. (4.27)

Since Eq. (4.24) implies that a1 = O(r1/2) as r → 0, we have a3 = O
(
r3/2

)
, a factor

of r smaller than a1 close to onset. Furthermore, adding this small term a3 cos(3x)
to the ansatz for u causes only a small O(r) correction to the coefficient a1 that
we calculated with the assumption that a3 = 0. To see this, you can verify that,
after substituting Eq. (4.26) into Eq. (4.19) with ∂tu = 0 and reducing products of
trigonometric terms to sums of harmonics, the first equation Eq. (4.23) becomes

ra1 − 3

4
a3

1 = 3

4
a2

1a3 + 3

2
a1a2

3. (4.28)

The left side is as before and its terms are of order r3/2 near onset. Close enough to
onset, the two terms on the right-hand side are at least a factor of r smaller than the
left-hand side and so can be ignored, again leading to Eq. (4.23). For example, for
a3 = O(r3/2) the term a2

1a3 = O(r5/2) is a factor of r smaller than the left-hand-
side terms, and the term a1a2

3 = O(r7/2) is smaller still. Including the right side in
Eq. (4.28) causes the value of a1 to change by an amount of order r compared to
the value when the right-hand side is set to zero.

We have resolved the inconsistency arising from considering the cos(3x) coeffi-
cient. But now when we substitute the new ansatz Eq. (4.26) into the stationary
Swift–Hohenberg equation, the nonlinearity produces the additional harmon-
ics cos(5x), cos(7x), and cos(9x) and we will need to add small portions of these
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terms to Eq. (4.26) for consistency. It should now be apparent that, in fact, all odd
modes must be included in the ansatz

u =
∑
n odd

an cos(nx), (4.29)

and that the nth coefficient an will go to zero as rn/2 as r approaches zero. For
sufficiently small r, Eq. (4.24) is the correct expression for a1 and the coefficients
an can be calculated iteratively.

The above discussion has effectively proven the existence of stationary nonlinear
stripe solutions of the Swift–Hohenberg equation close enough to onset, at least for
stripes with the critical wave number qc = 1. The solution has the form

u = ±√
4/3 r1/2 cos x + O

(
r3/2

)
cos(3x), (4.30)

and consists of a dominant term that has the same shape as the linear mode, that
can take either sign, and that grows in magnitude from threshold as r1/2. These
results are consistent with a pitchfork bifurcation. In addition, there are spatial
harmonic corrections, with amplitudes that grow with r progressively more slowly
with increasing order of the harmonic.

Further from onset, the explicit form of the spatially periodic nonlinear steady
states must usually be calculated numerically. A conceptually simple numerical
strategy is the Galerkin method, which represents each unknown stationary field as
a finite linear combination of basis functions with unknown coefficients. (Equation
(4.26) is an example where only two basis functions of Fourier modes are used.)
Substituting the linear combinations into the stationary evolution equations and then
expanding the resulting expressions themselves into a finite linear sum of basis
functions leads to a set of nonlinear equations for the coefficients. A numerical
method such as Newton’s method (see Section 12.4) can then be used to find
approximate values for the coefficients from the set of nonlinear equations. Fourier
modes with the spatial periodicity of the unstable modes are appropriate basis
functions for the transverse spatial dependence x⊥. For the spatial dependence in
the confined direction(s) x‖, any convenient complete set of functions may be used.

4.2 Stability balloons

4.2.1 General discussion

To determine the physical relevance of the steady, nonlinear, spatially periodic
states formed above the instability of the spatially uniform state, we must in turn
test their stability against all small perturbations, not just those of the same spatial
periodicity as we did in Section 4.1.2. Unlike that analysis in Chapter 2, the base
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state ub(x⊥, x‖) about which we linearize to study stability is no longer constant in
the extended coordinates x⊥ but spatially periodic in these coordinates. (As before,
the dependence of the base state on the confined variables x‖ usually does not have
any simple form.) If you review the discussion leading up to Eq. (2.8) in Chapter 2,
you will see that, in general, the linear evolution equation for an infinitesimal
perturbation about this base state will no longer have constant coefficients, but
coefficients that are functions of the base state ub and so are themselves spatially
periodic in the vector x⊥.

How to solve linear evolution equations with spatially periodic coefficients was
first worked out by Felix Bloch in the early days of quantum mechanics. (In 1928,
Bloch solved the Schrödinger equation, which is also a linear evolution equation,
to understand the behavior of electrons in a spatially periodic crystalline lattice of
atoms.) Bloch’s analysis tells us that solutions to the linear evolution equation for
perturbations must have the form

δu = eσ(Q,q)teiQ.x⊥uQ(x⊥, x‖), (4.31)

which generalizes the simple sinusoidal solution for the uniform base state
Eq. (2.22) and is called a Bloch state.9 The Bloch states are parameterized by a
wave vector Q, which is analogous to the wave vector q of Eq. (2.22). The func-
tion uQ(x⊥, x‖) depends on Q and has the same periodicity with respect to the
extended coordinates x⊥ as the base state ub. For example, if the base state is a
periodic stripe state with wave vector q, then the function uQ will be periodic with
wave vector q. The growth rate will depend on the two vectors Q and q, so we can
write σ = σ(Q, q).

Because the linear stability of stripe states have been more thoroughly studied
theoretically and experimentally than the linear stability of other spatially periodic
patterns, we will restrict our discussion in the rest of this section to the linear stability
of stripe patterns. It is straightforward but more tedious to work out similar details
for nonlinear states that are periodic in two or more extended variables such as the
two-dimensional lattice states described in the next section. In the following, we
will also assume for simplicity that the two extended coordinates are the x and y
coordinates and that the single confined coordinate is z so x⊥ = (x, y) and x‖ = z.
For a stripe base state with wave vector q, we will align our xy coordinates so that x
points in the direction of q, which means that y points along the length of the stripes.
With these assumptions, the vector Q = (Qx, Qy) is a two-dimensional wave vector,
and the function uQ(x, y, z) is periodic in the variable x with period 2π/q.

For a given stripe base state with wave vector q = (q, 0) and for given system
parameters, we want to determine if the real part of the growth rate Re[σ(Q, q)]

9 A similar expression arises in the Floquet theory for the stability of time-periodic states of some system of odes.
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ever becomes positive (implying linear instability) as the wave vector Q is varied
over all possible values. For a stripe base state, it turns out conveniently that we
have to investigate only a restricted range

−q

2
< Qx ≤ q

2
, (4.32)

for the x-component of Q. This follows from the observation that, since uQ(x, y, z)
is periodic in x with wave number q, the function

eimqxuQ, (4.33)

is also periodic in x with wave number q for any integer m. So a Bloch state
Eq. (4.31) can be written as another Bloch state

eσ tei((Qx−mq)x+Qyy)
[
eimqxuQ

]
, (4.34)

with the x component of Q shifted by an arbitrary integer multiple of q. For
example, a Bloch-state perturbation with wave vector Q = (2q/3, Qy) outside
the range Eq. (4.32) can be expressed as some other Bloch state with wave vector
Q = (2q/3 − q, Qy) = (−q/3, Qy) inside this range, provided we redefine the
function uQ to be the function eiqxuQ.10

Equation (4.31) allows us to identify the following classes of instabilities of the
stripe state according to the values of the wave vector Q:

(i) Q may be zero, which means the perturbation does not change the basic spatial
periodicity of the pattern;

(ii) Qx may equal q/2 (Q is “on the zone boundary’’in the language of solid state physics) so
that the spatial period in the x-direction is doubled at the instability. The y component Qy

may be zero (no structure in the y-direction) or have a general value;
(iii) The instability may occur at long wavelength, with Q → 0;
(iv) Q may take on a general value, with Qx incommensurate with the base wave number.

In addition, there may be different instability types characterized by different behav-
ior under discrete symmetries. For example, if the dynamical equations and base
state are unchanged by the parity transformation x → −x, then perturbations
with Qx = 0 or Qx = q/2 can be classified according to the parity of uQ as
an even or odd function under this transformation. (A general Qx eliminates the
x → −x symmetry, and uQ does not reflect the parity symmetry for these values.)
Finally the instability may be stationary or oscillatory.

Clearly the stability analysis about a spatially periodic base state allows for a
much larger range of possibilities than the analysis about the uniform state. The

10 In signal processing, a similar restriction of the range of frequencies in the power spectrum analysis is known
as the Nyquist range, and in the study of waves in periodic structures in solid state physics the range is known
as the first Brillouin zone [7].
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situation for the stability of lattice states such as hexagonal or square patterns is
even more complicated so that a careful analysis of the different possibilities using
the symmetry of the system and the tools of group theory is a useful first step.

Conceptually, the steps for mapping out the set of stable wave numbers are as
follows. After having identified the possible types of instabilities, for each control
parameter p of interest, and for each wave number q for which a nonlinear saturated
stripe state is known to exist for the given p value (these q lie inside the neutral
stability curve Eq. (2.24)), we find the largest growth rate Re [σ(Q; q)] over all
possible Bloch wave vectors Q and over the different types of instabilities at each Q.
We can then determine the range of q

q−
S (p) < q < q+

S (p), (4.35)

for which the base state is linearly stable, maxQ Re[σ(Q; q)] < 0. (The subscript S
indicates an instability that bounds stable wave numbers.) This range will be smaller
than the range for which stationary periodic solutions exist, Eq. (2.24).11 The region
bounded by q±

S (p) as p varies is known as the stability balloon of the stripe states
and is indicated by the shaded regions in Fig. 4.2.

The spatially periodic state becomes unstable to a particular perturbation at q±
S (p).

As p varies, instabilities of different symmetries and geometrical form may bound
the stability region. Some of the instabilities are long wavelength instabilities that
appear in the limit of vanishing Bloch wave number Q → 0. These derive from
the nature of the broken symmetry and so are universal for a given type of pattern,
as we will see in Section 9.1.1. For a stripe state, such instabilities are the Eckhaus
instability, which corresponds to a long-wavelength longitudinal perturbation (Qx

small, Qy = 0), and the zigzag instability, which is a long-wavelength transverse
distortion (Qx = 0, Qy small). Whether these two instabilities are the ones that
form the boundary of the stability balloon depends on details of the system and
parameter values.

Although some details of the stability balloon can be determined analytically
near onset, most often the stability balloon is determined numerically by extending
the Galerkin approach. Since the function uQ in Eq. (4.31) has the same period as
the spatially periodic state uq, it can be expanded in the same set of functions. The
linearized evolution equations about uq can then be written as linear coupled odes
for the expansion amplitudes of uQ. These can be readily solved for the growth
rates σ(Q) using standard numerical linear algebra packages. This rather complex
procedure is illustrated in the following Etude, which calculates the transverse
instability of the Swift–Hohenberg equation.

11 In most cases studied, the stable wave numbers form a single connected domain, but in a few cases two or
more disconnected ranges are found for some values of p.
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Fig. 4.2 (a)Arepresentative stability balloon for a stripe state with wave number q.
The vertical axis is a system parameter p such that, as p is increased, the uniform
state undergoes a type-I-s instability. The shaded region denotes stable nonlinear
stationary stripe states bounded by instabilities labeled by the curves q±

S (p). As
the parameter p is increased for fixed q, or as the wave number q is increased or
decreased for fixed p, the stripe states become unstable to different instabilities.
(b) Near threshold (small reduced parameter ε), the instability boundaries have a
universal form, with the Eckhaus (E) and cross-stripe (CS) instabilities having a
parabolic dependence on q, and the zigzag (ZZ) instability having a linear depen-
dence on q − qc. Depending on the system, either the Eckhaus or the cross-stripe
instability may bound the stable region for q > qc.

Etude 4.1 Zigzag instability in the Swift–Hohenberg model
For the Swift–Hohenberg equation in two spatial dimensions (which we assume
have infinite extent)

∂tu = ru −
(
∂2

x + ∂2
y + 1

)2
u − u3, (4.36)

we determine the linear stability of stationary nonlinear stripe solutions uq(x) to
transverse perturbations. We obtain analytical results by going so close to onset
that the stripe state and other fields can be approximated by a single Fourier mode.

In Exercise 4.11, you show that the coefficient a1 in Eq. (4.24) for a saturated
nonlinear stripe state uq � aq cos(qx) with general wave vector qx̂ satisfies

a2
q = 4

3

(
r − (q2 − 1)2

)
. (4.37)

Within this single-mode approximation, stripes exist whenever the right-hand side
is non-negative, which gives the neutral stability band

√
1 − √

r ≤ q ≤
√

1 + √
r. (4.38)
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For r sufficiently small, this can be approximated as

1 − √
r/2 ≤ q ≤ 1 + √

r/2. (4.39)

We now expand the Bloch form of the perturbation Eq. (4.31) using a Fourier
expansion of the periodic function uQ.

δu � eσ teiQ • x
∞∑

n=1

(c+einqx + c−e−inqx). (4.40)

A transverse perturbation of the base state varies only in the y direction (perpen-
dicular to the stripes) so that the perturbation vector has the form Q = Qŷ. In this
case, it is simplest to use the parity symmetry of the base state aq cos(qx) to argue
that we may use two separate Bloch forms, one for “even’’transverse perturbations
for which the periodic function uQ(x) is an even function of x

δu � eσ teiQy
∞∑

n=1

cn cos(nqx), (4.41)

and a similar form for odd perturbations

δu � eσ teiQy
∞∑

n=1

sn sin(nqx). (4.42)

In these equations, σ(Q, q) gives the growth rate. We have used the reflection
(even) symmetry of the base state aq cos(qx) to argue that the perturbation must be
even or odd in x. To simplify the calculation further, we will truncate the Galerkin
expansion of uQ to a single mode (cn = sn = 0 for n > 1), which is consistent with
the calculation of the base solution. The Bloch forms now become

δu = eσ teiQy cos(qx) and δu = eσ teiQy sin(qx), (4.43)

respectively for the even and odd cases.
The perturbations δu satisfy the Swift–Hohenberg equation linearized about the

base solution uq

∂tδu = r δu − (∂2
x + ∂2

y + 1)2 δu − 3u2
q δu. (4.44)

Substituting Eq. (4.43) and uq = aq cos(qx) with Eq. (4.37) yields for the even
perturbation

σ = r − (q2 + Q2 − 1)2 − 3
[
r − (q2 − 1)2

]
, (4.45)

and for the odd perturbation

σ = r − (q2 + Q2 − 1)2 −
[
r − (q2 − 1)2

]
. (4.46)
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Here we reduced the product of Fourier modes to a sum of Fourier modes via
identities such as

cos2(qx)cos(qx) = 3
4 cos(qx) + 1

4 cos(3qx), (4.47)

and dropped the higher harmonic terms cos(3qx) and sin(3qx) terms to be
consistent with the single-mode truncation scheme.

The most interesting result is for the odd perturbation, since the r terms cancel
to give

σ = 2(1 − q2)Q2 − Q4. (4.48)

If we interpret this expression as having a fixed stripe wave number q while varying
the perturbation wave vector Q to look for instability, we can think of Eq. (4.48) as a
parabola σ = Q2(c−Q2) in the quantity Q2 with constant coefficient c = 2(1−q2).
This parabola always has positive values (σ > 0 so instability) if c > 0 (which
implies q < 1) and has no positive values (σ ≤ 0 so stability) if c ≤ 0 (which implies
q ≥ 1). We conclude that stripes with wave numbers q < 1 are always unstable to
this odd transverse perturbation, while stripes with wave numbers q ≥ 1 are stable,
at least with respect to this specific perturbation. Equation (4.48) further predicts
that the instability first occurs at long wavelengths (long compared to the stripe
wavelength), corresponding to a small value of Q. Indeed, for q slightly less than
unity,σ(Q) is positive only for small Q. So as q decreases below 1 and passes into the
unstable range, the instability develops as a small-Q long-wavelength instability.
This is the zigzag instability. Figure 4.3(a) shows an experimental example of how
the zigzag instability grows from a zigzag-unstable stripe state, although most of
the evolution shown is already in a nonlinear regime.

Close to threshold, the instability boundaries may be calculated using the ampli-
tude equation formalism to be introduced in Chapter 6, and they take on a universal
form as discussed there and in Chapter 7. As well as the Eckhaus and zigzag insta-
bilities, a cross-stripe instability,12 in which the stripes become unstable toward
the growth of a set of stripes at a different orientation and wave number, may be
important. The boundaries of the Eckhaus and cross-stripe instabilities vary as

q±
S (p) − qc ∝ ε1/2. (4.49)

The proportionality constant for the Eckhaus instability is such that the ratio of the
width of the Eckhaus stable band to the existence band (given by qN) is always 1/

√
3

near threshold, independent of the details of the system. The proportionality con-
stant for the cross-stripe instability depends on the specific system, and either the

12 The instability was discussed first in the context of Rayleigh–Bénard, where it was called the cross-roll
instability.
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Eckhaus or the cross-stripe instability may form the boundary to the stable region
for q > qc. For a rotationally invariant system, the zigzag boundary varies linearly
with ε for small ε, and always forms the boundary of the stable region on the small-q
side near threshold.

Experiments and simulations have shown that stability balloons are much more
widely useful than suggested by the derivation in terms of the stability region of
spatially periodic states in a laterally infinite system. Often applying the stability
criteria to a locally defined wave vector gives a good guide to the behavior, even in
small geometries or for disordered states. The question of what stationary patterns
might form can be crudely formulated in terms of what states may be generated
from the range of wave vectors that fall within the stability balloon. The onset
of time dependence can similarly often be associated with the local wave vector
in some portion of the system passing outside of the stable band. The local wave
vector distribution in the pattern may sometimes be predicted from other consider-
ations, therefore providing a route to predicting the onset of time dependence in the
system. For example, in geometries in which the number of stripes is constrained
by the boundaries, the wave number will be approximately constant as the control
parameter is varied, and a boundary of the stability balloon may be encountered
along a vertical path in Fig. 4.2. On the other hand, if the system size is slowly
varied under the same circumstances, the wave number changes at a fixed control
parameter as the fixed number of stripes are compressed or stretched. In this case,
the stability balloon is traversed horizontally. The instabilities encountered on a
slowly growing domain may be important in biological systems such as young fish
with stripes that grow bigger as they age. Thus the stability balloon is often a useful
first guide to the range of behavior expected as system parameters are varied.

The stability balloon does have limitations that experimentalists and computa-
tional scientists should consider. One limitation is that the stability boundaries are
calculated for an idealized infinite domain. A finite domain or a domain with cer-
tain boundary conditions might shift or suppress some of the linear instabilities;
the onset and manifestation of long-wavelength instabilities can be especially sen-
sitive to the size and shape of an experimental domain. Another limitation is that
the balloon only takes into account the effects of tiny perturbations: instability to
other states might occur for finite perturbations. An example is the spiral defect
chaos state in Rayleigh–Bénard convection that we show in Fig. 1.15. This state is
observed experimentally for parameter values that correspond to stable stationary
stripe states according to the stability balloon. Indeed, numerical calculations of
the convection evolution equations confirm the stability of the ideal stripe state in
geometries consistent with this state (e.g. periodic boundary conditions), but show
that, even in these idealized geometries, most initial conditions evolve into the spi-
ral chaos state rather than a stripe state. Thus multistability is known to occur with
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periodic boundary conditions. With other boundary conditions, the multistability
may disappear, and only the chaotic state may survive, or there may be multistabil-
ity between the chaotic state and a different time-independent state that is consistent
with the boundary conditions and may be spatially disordered.

4.2.2 Busse balloon for Rayleigh–Bénard convection

The stability balloon for stripe states in Rayleigh–Bénard convection – called ideal
roll states by fluid dynamicists – was worked out by Fritz Busse and coworkers via
numerical Galerkin calculations over a number of years starting around 1965 and
represents the most detailed theoretical study of the existence and stability of stripe
states of any physical system. These researchers also performed extensive experi-
ments to verify their many predictions. This work pioneered what we might label
the “second phase’’ of pattern-formation research, in which the novel implications
of nonlinearity in the phenomenon were pursued. (We would characterize the linear
stability studies of Taylor, Rayleigh, Turing, Chandrasekhar, and others as the first
stage.) In honor of Busse and his many contributions, the stability balloon in the
context of convection is called the “Busse balloon.’’

Many different types of stripe instabilities are encountered in convection and
these are classified in several ways. One is through the properties of the Bloch wave
vector Q in Eq. (4.31). For example, if instability first occurs when Q has a small
magnitude, one has a so-called long-wavelength instability such that perturbations
first grow on length scales large compared to the roll wavelength. Instability may
also occur first for finite-size Q – with a wave number Q comparable to the roll
wave number q – and these are called finite-wavelength instabilities (also short-
wavelength instabilities). As we saw in the previous section, the linear instabilities
can also be classified by the orientation of Q with respect to q: longitudinal if the
vectors are parallel, transverse if the vector are orthogonal, or skew if the vectors
are neither parallel nor perpendicular. One can distinguish the instabilities further
by whether the growth rate σ at onset is real or complex, and in addition through
discrete parity and inversion properties of the function uQ in Eq. (4.31).

Because of these different length scales and symmetries, the different instabilities
have distinct geometric shapes and their visual appearance has led to a rich nomen-
clature. Figure 4.3 shows two experimental examples in which an initial stripe state
was created13 in a large-aspect-ratio convection experiment such that the initial

13 We recommend that the reader look through the original paper by Busse and Whitehead for the experimental
details. Briefly, a physical template with the desired stripe wavelength was created by attaching parallel strips
of opaque black tape to a large sheet of glass. While the Rayleigh number was below critical, a strong light
source was shone through the template which caused a small local heating of the fluid in the form of thermal
stripes. The Rayleigh number was then increased above the critical value, at which point the thermal imprinting
strongly favored convection rolls to form at the desired wavelength.
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(a)

(b)

Fig. 4.3 Shadowgraph images of evolving convection stripe states whose ini-
tial wave numbers lie outside the stability balloon for a silicon oil of Prandtl
number σ ≈ 1.0 × 102 in a cell of aspect ratio 
 ≈ 160. (a) For Rayleigh num-
ber R = 3600 ≈ 2Rc and initial wave number q ≈ 2.8, the stripes are unstable
to the long-wavelength transverse zigzag instability. At successive times (left to
right, first row then second row), small inhomogeneities cause the instability to
grow at different points in the fluid. The instability rapidly reaches a nonlinear
regime for which the zigzags have a rather short wavelength and large amplitude.
Time intervals between panels are 9, 10, 10, 26, and 72 minutes respectively.
(b) For R = 3000 ≈ 1.7Rc, and for an initial wave number q = 1.64, the stripes
are unstable to a cross-roll instability. Again inhomogeneities in the cell cause
the instability to have a nonuniform appearance. The final pattern (lower right
panel) has a new average wave number that is distinctly smaller than the original
wave number. This illustrates how a new wavelength can be introduced by a linear
instability. [Adapted from Busse and Whitehead, J. Fluid Mech. 47, 305 (1971).]

wave number lay outside the stability balloon and so the stripes become unstable
to distinct instabilities. Figure 4.3(a) follows the evolution of the transverse zigzag
instability to a nonlinear disordered state consisting of roll patches that are oriented
at about 45 ◦ with respect to the original roll state. The analytical calculation (see
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Etude 4.1 above for the Swift–Hohenberg model as a simple example and the more
general discussion in Section 7.1.4) shows that the zigzag should first grow at long
wavelengths but the instability rapidly enters a nonlinear regime that causes the
zigzags to appear at a finite wavelength, and to increase in magnitude to the point
that zigzags from neighboring rolls can connect, leading to the structure in the last
lower right panel. Similarly, in Fig. 4.3(b), the stripes are unstable to the cross-roll
instability and the final result are new stripes that are oriented 90◦ with respect to
the original stripes and that have a substantially smaller wave number.

Figure 6.6 in Chapter 6 shows schematically how the stationary long-wavelength
longitudinal Eckhaus instability affects the underlying stripe patten, by compress-
ing and expanding the separation between successive rolls. Figure 9.5(d) shows
schematically the effect of a stationary, long-wavelength, skew instability, which
causes the spacing of adjacent rolls to contract or expand like the Eckhaus but along
a direction that makes a nonzero angle with the roll axis. Finally Fig. 4.5(b) shows
a snapshot of an experimental roll state that has become unstable to an oscillatory,
finite-wavelength, transverse instability called the oscillatory instability. This turns
out to be a type-I-o instability and the transverse structure on each roll is observed
to propagate along the length of the roll.

For all of these instabilities, it is often difficult to compare the theoretical geomet-
rical shape of the linear instability with experimental data since many Bloch states
with adjacent wave vectors Q typically become unstable at once (so one observes a
complicated superposition growing out of noise rather than a single mode), and the
perturbations are often not visible experimentally until they have become so large
that nonlinear effects distort the Bloch states via saturation and selection.

Two examples of Busse balloons are shown in Fig. 4.4, for a fluid like air at room
temperature with a Prandtl number of 0.71, and for water at elevated temperatures,
which has a Prandtl number of 7.0. There are several features to learn from such
stability balloon diagrams. For each value of the control parameter (the Rayleigh
number R in this case), there is a range of wave numbers q for stable stationary
rolls but only up to some maximum value of R. Above this maximum value (which
depends on system parameters, note how stable rolls persist for higher Rayleigh
numbers for the large Prandtl number case panel (b)), all roll states are unstable
and either some other stationary state will be observed or a time-dependent state
will occur. Many fluid pattern-forming systems have stability balloons restricted to
small values of the control parameter, but other systems such as chemical reaction–
diffusion systems often have stable stationary stripe patterns for parameter values
far from the linear instability of the uniform state.

Another feature of the Busse balloon is that the shaded region of stable rolls
is bounded by particular instability curves. One can therefore predict from these
instabilities the geometric shape and some dynamical properties of roll states that
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Fig. 4.4 Stability balloons for stripe states (called ideal roll states by fluid dynam-
icists) of wave number q in Rayleigh–Bénard convection for different values of
the Rayleigh number R, see Eq. (1.2). Panel (a) is for a Prandtl number of 0.71
(say air at room temperature), while (b) is for a Prandtl number of 7.0 (say water
near 40 ◦C). The hatched regions indicate where convection rolls in an infinite
domain are linearly stable. The stability region is bounded by various instabil-
ities that are named according to the geometry of the perturbation that begins
to grow: E Eckhaus (stationary, long-wavelength, and longitudinal); Z zigzag
(stationary, long-wavelength, and transverse); SV skew-varicose (stationary, long-
wavelength, skew); K knot (stationary, finite-wavelength, and transverse); O
oscillatory (oscillatory, finite-wavelength, and transverse); and CR cross-roll (sta-
tionary, finite-wavelength, and transverse). The dashed line is the neutral stability
curve, above which the uniform (thermal conduction) state becomes unstable to
perturbations of wave number q. (From Cross and Hohenberg [25].)

have become unstable. For example, in Fig. 4.4(b), Eckhaus and zigzag instabilities
(labeled E and Z respectively in the figure) limit the stable range for small R, while
the skew-varicose (SV) and cross-roll (CR) instabilities cause instability of rolls
for larger R. These are all stationary instabilities such that Im σ = 0 at onset. In
contrast, for lower Prandtl number fluids such as Fig. 4.4(a), the so-called oscillatory
instability (labeled O) becomes important at larger values of R (around 5 × 103).
As the name implies, this instability is of oscillatory type with Im σ �= 0 at onset.
When this instability occurs, transverse ripples are observed that propagate along
rolls, and these ripples have a frequency that is predicted by the linear stability
analysis (although these values are not traditionally indicated on the Busse balloon).
Figure 4.5(b) shows a snap-shot of straight rolls that were unstable to the oscillatory
instability.

For finite-wavelength instabilities like the cross-roll, knot, and oscillatory insta-
bilities, the linear stability analysis can also predict that a new length scale might
appear, namely the finite wavelength of the most unstable (fastest growing) Bloch
state. For short-wavelength instabilities, there is no reason why the wavelength



4.2 Stability balloons 151

5

4

3

2

1

0

2

CR E

(a) (b)

SV

3
qd

«

Fig. 4.5 (a) Comparison of the Busse balloon with experiment for a Rayleigh–
Bénard convection experiment in a large square domain (aspect ratio 
 = 50) and
for a fluid with Prandtl number σ = 1.03. The horizontal axis is the dimensionless
variable qd (roll wave number q times the depth of the fluid) while the vertical axis
is the reduced control parameter ε = (R − Rc/Rc). The continuous lines are the
theoretical instability boundaries while the discrete symbols are experimental data.
The instability labels CR, E, and SV are the same as in Fig. 4.4. The arrows indi-
cate the experimental parameter path taken while increasing ε. Symbols have the
following meaning: open circles, before skew-varicose instability; upside-down
triangles, after skew-varicose instability; diamonds, onset of oscillatory instabil-
ity; squares, cross-roll instability for decreasing ε. (b) Picture of convection rolls
whose wave number q is unstable to the oscillatory instability. [Adapted from the
Ph.D. thesis of B. B. Plapp, Cornell University, Ithaca, New York, 1997.]

of the fastest growing mode must itself lie within the Busse balloon and so an
interesting dynamics can arise if an initial set of stripes is unstable to a new set of
stripes whose wave number is itself unstable. Something like this happens in the
domain chaos state of Fig. 1.15(b), in which a small region of rolls in a rotating
convection experiment becomes unstable to new rolls of the same wave number
that are oriented 60◦ away, and these new rolls are themselves unstable to the same
mechanism and so there is a never ending dynamics.

Figure 4.5 shows results from experiments that were designed to test the Busse
balloon. In these experiments, a state of nearly uniform straight parallel rolls was
formed by first tilting the whole convection apparatus away from the horizontal.
This sets up a large scale circulating flow in the tilt direction that tends to align
the rolls preferentially, and that also eliminates roll curvature and defects induced
by the lateral walls. The apparatus is then returned to the horizontal position to
study the Rayleigh–Bénard configuration. The skew-varicose instability line, for
example, is traced out by increasing ε from an initially stable straight roll state.
When the instability boundary is crossed, the skew-varicose instability develops,
and eventually leads to the elimination of a pair of rolls through the production of a
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pair of dislocation defects, and so a decrease in the wave number q. Since this insta-
bility boundary increases in ε as q decreases, the control parameter can be further
raised until the boundary is reached again. Other protocols lead to information on
the other instabilities, although with less detail. Figure 4.5(b) shows the effects of
the oscillatory instability. This is a type-I-o instability to waves of undulation of the
rolls that propagate along the rolls. The waves are traveling in the upwards direc-
tion in the figure, but on other runs they might propagate in the opposite direction.
The observation that the amplitude of the oscillations is largest toward the upper
end of the figure can be understood from the discussion of type-I-o instabilities in
Section 10.4.2.

Other experiments on less well controlled initial conditions have shown that the
stability balloon gives a useful phenomenological understanding of approximately
straight roll regions in the disordered patterns encountered in most experimental
convection geometries. In particular, the balloon gives an approximate account of
the observed range of wave numbers. In addition, the range in control parameter
for which steady states exist, and the types of dynamics found when the pattern is
stressed beyond these limits, are predicted well. Thus the stability balloon provides
a useful organizational principle for the nonlinear states in this experimental system.

4.3 Two-dimensional lattice states

So far, we have assumed that the observed patterns are based on the stripe state
that develops from a single Fourier mode that grows from the unstable uniform
state. If the physical system has rotational symmetry, for example full rotational
symmetry in the horizontal plane as in Fig. 2.11 or the discrete symmetry as in
Fig. 2.13(b), stripes at different orientations may begin to grow.14 We will focus
on the case of full rotational symmetry in the plane, Fig. 2.11. The linear stability
analysis then gives us a critical circle of unstable modes defined by |q| = qc. The
growing solution near threshold may be a superposition of a few or of an infinite
number of modes with wave vectors on or near this circle. Once the amplitude of
the modes becomes large enough, their interaction through the nonlinearity of the
evolution equations will lead to a competition between them. The ultimate result
of this competition will be a pattern that may be ordered or disordered, static or
dynamic.

Since it is not possible to catalog all possible solutions to nonlinear pdes math-
ematically nor explore all possibilities experimentally, we need some strategy to

14 As usual, we imagine the third spatial dimension to be involved in maintaining the system out of equilib-
rium, and so we do not consider the possibility of symmetries spanning three dimensions. The extension to
three dimensions would not be difficult, and indeed we may well have more intuition of this case based on
the extensive prior study of equilibrium crystals. (See for example Chapter 4 in the book by Ashcroft and
Mermin [7].)
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guess the possible patterns. It is again useful to consider first a subset of possible
nonlinear states, in particular those states that retain some subset of continuous
or discrete translational and rotational symmetries out of the original symmetry.
Patterns that retain symmetry under a reduced set of translations are the stripe state
(discrete translational symmetry in one direction, full translational symmetry in the
other, see Fig. 4.6(a)) and the two-dimensional lattices for which only discrete trans-
lational symmetries remain. The lattices are further distinguished by the allowed
discrete rotational symmetries about each lattice point. A classical result is that
only n-fold rotational symmetries with n = 2, 3, 4, and 6 are consistent with a peri-
odic planar structure.15 Patterns with the symmetry of a two-dimensional periodic
lattice are often observed in experiment, either as ordered patterns throughout the
whole domain (see Fig. 1.14, panel (b)), or as local structures in disordered patterns
(see Fig. 1.17, panels (b) and (e)). There are also exotic quasicrystalline patterns,
analogous to those observed in certain crystals, that retain rotational symmetries
but are not periodic in space (see Fig. 1.16, panel (c)).

Just as was the case for our discussion of stripe states earlier in this chapter (see
especially Section 4.1.3), for each lattice of a given symmetry, we want first to
establish if stationary nonlinear saturated states exist. For those states that exist,
we then want to determine if they are physically realizable by being linearly stable
to arbitrary infinitesimal perturbations. Close to onset, existence and stability can
often be calculated analytically using the amplitude equation formalism of the next
few chapters. Further from onset, existence and stability can be determined by
numerical methods, leading to a generalization of the stability balloons discussed
in Section 4.2.1.

A new aspect of the stability test for lattices is to determine whether one kind of
lattice state (stripes would be included) is unstable specifically toward the formation
of a different kind of lattice state. For example, a calculation might show that a stripe
state is unstable to the growth of an orthogonal set of stripes in which case a square
lattice state might ultimately form.Alternatively, a square lattice state may be found
to be unstable toward the decay of stripes in one direction and the further growth
of stripes in the orthogonal direction, a situation that might produce a stripe state.
In such cases, we would say that “the stripes are unstable toward squares,’’ or that
“the squares are unstable toward stripes,’’although the linear analysis cannot predict
the structure of the final nonlinear saturated state, which must be determined by
experiment or simulation.

It is insightful to write down explicit mathematical expressions for representa-
tive stationary nonlinear saturated lattice states and plot their geometric structure
(Fig. 4.6). Before doing so, we observe that nonlinear states that form just above

15 See Ashcroft and Mermin [7] for a proof of this.
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Fig. 4.6 Ideal stationary nonlinear periodic lattice patterns in an isotropic sys-
tem: (a) stripes; (b) squares formed from two perpendicular sets of stripes; (c)
orthorhombic state formed from two sets of stripes at a general angle; (d) hexagons
formed from three sets of stripes at 120◦. The left column shows the component
stripes for each pattern. The middle column shows the corresponding wave vectors
of modes on the critical circle q = qc. The right column is a gray-scale density
plot of the pattern u(x⊥, x‖,0) for some fixed value x‖,0 of the confined coordinate
and suggests what might be observed in an optical experiment. Close enough to
onset, a spatial power spectrum of a panel in the right column would produce the
dots in the middle column since harmonics and sum and difference of peaks would
be fainter in this regime. There are two inequivalent hexagonal states as shown
in (d). If the harmonic and sum and difference terms are ignored in Eq. (4.54), the
two states are related by the symmetry u → −u (black interchanged with white
in the gray-scale plot). However, this is not true in general.
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a supercritical type-I-s instability of a uniform state are composed of modes with
wave vectors q on the critical circle q = qc. The simplest periodic lattices that can
be formed from wave vectors of equal magnitude are the hexagonal state (6-fold
symmetry), the square state (4-fold symmetry), and the orthorhombic state (only
2-fold symmetry) based respectively on 6, 4, and 2 wave vectors on the critical
circle q = qc. (The middle column of Fig. 4.6 shows the critical circle with loca-
tions of the corresponding wave vectors.) In the following, we assume that the
state of the system is described by a vector field u(x⊥, x‖) with two extended
coordinates x⊥ = (x, y) and zero or one confined coordinate x‖.

Expressions for representative nonlinear periodic states sufficiently close to
threshold are then the following. We use the subscripts S, Q, O, and H respectively to
denote the stripe, square, orthorhombic, and hexagonal states. In the mathematical
expressions, the dots . . . represent sums and differences of modes (which includes
spatial harmonics) that are generated by the nonlinearity but that are negligibly
small close enough to onset. (The example in Section 4.1.3 explains why the terms
generated by nonlinearities are negligible near onset.)

(i) Stripe state, Fig. 4.6(a):

u = ASuq(x‖)
[
eiq1 • x⊥ + c.c.

]
+ · · ·. (4.50)

The wave vector q1 = qcq̂1 is the wave vector of the stripes normal to the direction q̂1.
The real parameter AS sets the magnitude of the field in the saturated state16 and is
calculated from the dynamical equations.

(ii) Square state, Fig. 4.6(b):

u = AQuq(x‖)
[
eiq1 • x⊥ + eiq2 • x⊥ + c.c.

]
+ · · ·. (4.51)

Here q1 = qcq̂1, q2 = qcq̂2 and the two wave vectors are perpendicular so q̂1 • q̂2 = 0.
The real-valued parameter AQ again sets the magnitude of the saturated state.

(iii) Orthorhombic state, Fig. 4.6(c):

u = AOuq(x‖)
[
eiq1 • x⊥ + eiq2 • x⊥ + c.c.

]
+ · · ·. (4.52)

Here q1 = qcq̂1, q2 = qcq̂2 and the directions q̂1 and q̂2 are neither parallel or
perpendicular. The nonlinear magnitude of the orthorhombic state is determined by
the real parameter AO. Note that we may write the bracketed term as

eiq1 • x⊥ + eiq2 • x⊥ + c.c. = 4 cos(Q1 •x⊥)cos(Q2 •x⊥), (4.53)

with Q1 = 1
2 (q1 + q2) and Q2 = 1

2 (q1 − q2) so that Q1 •Q2 = 0. Thus the nodes of
the pattern form a rectangular mesh, and the pattern will have the visual appearance of
rectangles, as is apparent in the grey-scale plot in Fig. 4.6(c). The wave vectors made
from linear combinations of q1 and q2 form a centered rectangular lattice.

16 More strictly: the magnitude of the deviation of the field from the spatially uniform solution.
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(iv) Hexagonal state, Fig. 4.6(d):

u = AHuq(x‖)
[
eiq1 • x⊥ + eiq2 • x⊥ + ei�3 eiq3 • x⊥ + c.c.

]
+ · · ·. (4.54)

Here q1 = q2 = q3 = qc and the angle between any two of the unit vectors q̂1, q̂2,
and q̂3 is 120◦. The magnitude of the hexagonal nonlinear state is given by the real
number AH. Note that in Eqs. (4.50)–(4.52), we could have multiplied each exponential
term by an arbitrary phase factor ei�i . However, these phases can be absorbed into a
redefinition of the origin of coordinates, and do not change the pattern except for this
translational shift. For Eq. (4.54), the two degrees of freedom given by choosing the
position of the origin may be used to absorb two phase factors, e.g. for the first two
terms, but then the third term will have a phase factor ei�3 . This phase is not related
to any symmetries, and its value is prescribed by the dynamical equations. In fact, we
will see in Etude 7.4 in Section 7.3 that there are two possible choices of this phase
giving two inequivalent hexagonal states, as shown in Fig. 4.6(d).

More exotic states with these translational and rotational symmetries can also
be formed. For example, consider the state based on equal amplitudes of the eight
modes with wave vectors distributed on the q = qc circle as shown in Fig. 4.7(a).
The state produced also has square symmetry, but has a spatial periodicity that is
larger than 2π/qc. This can be seen by observing that the eight wave vectors, and
all their possible sums and differences, can be written as linear combinations with
integer coefficients of the vectors17 q1 = q1x̂ and q2 = q1ŷ with q1 = qc/

√
5.

Correspondingly, the spatial period is 2π
√

5q−1
c even though the dominant peaks

in the spatial power spectrum will be the spots on the critical circle with wave
number qc. The spatial structure takes the appearance of a superlattice, as shown in
the gray-scale plot of Fig. 4.7(a). Similarly, hexagonal superlattice states may be
constructed, as in Fig. 4.7(b).

Only n-fold symmetry axes with n = 2, 3, 4, and 6 are consistent with a peri-
odic lattice in two dimensions. However, in the context of crystalline materials,
researchers discovered nonperiodic crystals whose X-ray diffraction pattern (a
measure of its spatial power spectrum) showed sharp discrete peaks (indicating
a regular order) and rotational symmetries for other values of n such as n = 5.
Such structures are called quasicrystals. Analogous structures may readily be con-
structed at pattern-forming instabilities and indeed had been hypothesized in the
context of fluid instabilities (where they were called regular structures [92]) before
their discovery by the materials scientists. This type of quasiperiodic structure may
be constructed from the superposition of N Fourier modes with wave vectors that
are equally distributed over the upper half of the critical circle q = qc circle (the

17 The vectors q1 and q2 are then the basis vectors of the lattice in q-space, called the reciprocal lattice, that
contains all the wave vectors represented in the pattern. The reciprocal lattice is shown as the empty circles in
Figs. 4.7(a) and (b).
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Fig. 4.7 More complicated patterns made from superpositions of modes on the
critical circle: (a) a superlattice with 4-fold symmetry; (b) a superlattice with 6-fold
symmetry; (c) a quasicrystal with 12-fold symmetry. In each case, the first panel
shows the wave vectors of the modes used, and the second panel the resulting
patterns. In (a), there are eight wave vectors on the q = qc circle that go unstable
together, but they produce a 4-fold symmetry. The primitive basis vectors of the
reciprocal lattice may be chosen to be q1 and q2, which have magnitude qc/

√
5.

A similar construction with 12 vectors leads to the hexagonal superlattice in (b).
On the other hand, 12 vectors equally spaced around the circle as in (c) give a
quasiperiodic pattern.

complex conjugate modes fill in the lower half circle) like this:

u = ACuq(x‖)
N∑

i=1

[
ei�i eiqi • x⊥ + c.c.

]
+ · · ·. (4.55)
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Here qi = qc, q̂i • q̂1 = (i−1)π/N , and the numbers�i are real phases. Figure 4.7(c)
shows an example with N = 6 that gives a quasicrystalline pattern with 12-fold
rotational symmetry, while Fig. 1.16(b) is an experimental example of this pattern.

For readers who are not familiar with equilibrium phase transitions (as often
discussed in undergraduate physics and engineering courses on thermodynamics),
it is worth pointing out that, in our discussion of possible states, there is little that
is specific to nonequilibrium systems and an analysis of the possible equilibrium
phase transitions of a two-dimensional periodic structure would follow similar
arguments, e.g. in studying solidification or the formation of liquid crystal states.
In that context, the approach is known as Landau theory. Indeed, many of the
ideas and methods developed in Landau theory may be transferred to the present
discussion, and, in turn, some insights gained in pattern formation may be useful
in the context of equilibrium phases.

4.4 Non-ideal states

4.4.1 Realistic patterns

The ideal ordered state of straight parallel stripes or of a regular lattice over the
whole system is rarely seen in experiment or nature. More typical is the type of
disordered pattern shown in Fig. 4.8 which is taken from a convection experiment.
Over much of the system, the local structure consists of stripes as expected from
the analysis of the ideal infinite system. However, the stripes are curved rather than
straight and the orientation of the stripes is different in different parts of the system.
Experiments like Fig. 4.8 and related fluid simulations strongly suggest that the
lateral boundaries play an important role in inducing the disordered pattern since
the stripes tend to approach the boundaries orthogonally.18

Since disordered patterns are common, we would like some quantitative tools
to describe them. At some point x in a region where stripes are apparent, their
orientation and periodicity can be defined by a local wave vector q(x). This quantity
is not precisely defined mathematically in a disordered pattern, but in practice is
a useful construction. We could find q(x) over much of Fig. 4.8 for example, by
measuring the spacing of adjacent stripes with a ruler, giving a local wavelength
or inverse wave number. The direction of q is then determined as the local normal
to the stripes. Many other algorithms have been proposed as practical schemes of

18 Remarkably, although the perpendicular orientation is often observed in a wide variety of experimental and
numerical systems, there is no clear understanding of why this is so. Indeed, the result does not seem to be a
strict boundary condition, but rather a common occurrence. In addition, the effect is weaker near threshold,
and close enough to threshold straight stripes with an orientation unaffected by the boundaries are sometimes
seen (see Fig. 1.15(a)), which is consistent with a prediction of the amplitude equation formalism discussed
in the next chapter.
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Fig. 4.8 Shadowgraph image of a time-dependent state of disordered convection
rolls in gaseous carbon dioxide (Prandtl number σ ≈ 0.96) near onset (Rayleigh
number R = 1.16Rc) in a cylindrical geometry of aspect ratio 
 = 78. The
lateral walls tend to orient the rolls so that they are nearly perpendicular to the
lateral wall which causes defects to form in the bulk of the pattern. Examples of
common defects are marked: D for a dislocation, Dn for a disclination, F for a
focus singularity, and G for a grain boundary. (From Morris et al. [77].)

estimating the local wave vector, for example ones based on wavelet analysis, and
the degree to which different schemes agree can be used to estimate the accuracy
of the constructions.

Just as in the completely ordered state, the wave vector q is not a complete
description of the pattern, since we still need to fix the position of the stripes. To do
this, we generalize the idea of the phase variable introduced in Section 4.1.1. The
appearance of stripes corresponds to a structure that locally has a spatial periodicity.
We can therefore write an approximate expression for the variables defining the
patterns as19

u(x, y) � uq(φ(x, y)) with ∇φ = q(x, y). (4.56)

19 The phase φ is related to the phase � of the complex amplitude by φ = � + qcx, assuming that the reference
stripes used to set up the amplitude equation are normal to the x-direction.
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Here uq is the same function that would define an ideal stripe state at wave number
q. For example, for ideal stripes normal to the x-axis we would have

u(x, y) = uq(qx). (4.57)

The expression for u(x, y) in Eq. (4.56) is not exact if q is varying in space, but
will be a good approximation for slowly varying q, which is the case if locally the
stripes are well defined. This introduction of a phase variable whose gradient gives
the local wave vector is an important concept. In Chapter 9, we will generalize
Eq. (4.56) to time-dependent situations to study the dynamics of patterns in terms
of the phase dynamics.

Although the pattern over much of the system in Fig. 4.8 locally appears as
stripes, there are regions of more complex structure where a stripe pattern cannot
be clearly identified – overlapping stripes, stripes that terminate, sharply curved
regions, and others. There are some regions of more complex structure, either near
points or lines, that reappear in different locations, and in different experiments
and systems. Indeed many have geometrical structures that are familiar from other
branches of physics, such as the study of solids and liquid crystals. Such motifs are
called defects. These defects are also seen in lattice states, although their structure
is more complicated there. Since the defects can be identified as the regions where
the structure is not locally periodic in space, Eq. (4.56) is not a good approximation
here, and the phase φ and wave vector q are not well defined at these regions. Defects
are therefore often described as singularities where the wave vector or phase cannot
be defined. (The singular behavior refers only to the simplified description in terms
of q and φ. The underlying physical fields such as fluid velocities, temperature, or
concentration always vary smoothly everywhere.)

Some defects have a topological character, which makes the task of studying
them easier. A topological defect is a defect that can be identified from the behavior
of the pattern away from the defect, where the stripes are well defined and so the
phase description applies. Common examples in the stripe state are a dislocation,
where a stripe-pair ends at some point in the system; a disclination, which is a point
where stripes of different orientations come together; and a grain boundary, which
is a line separating two regions or domains of different stripe orientation. Since
topological defects are a prominent feature of patterns, we now discuss some of the
ideas in more detail.

4.4.2 Topological defects

The nature of the topological arguments used to discuss defects can be illustrated
by the target or focus defect shown in Fig. 4.9. A simple target is an axisymmetric
pattern of stripes. The wave vector is normal to the stripes, and points out from the
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Fig. 4.9 A topological defect called a target. The arrows denote the local wave
vector q. The dashed line shows a possible choice of contour circling the defect
for defining the winding number. The presence of the target can be deduced by
the fact that the local wave vector rotates by an amount 2π while tracing once a
circuit around the contour.

center. At the center, the direction of the stripes is not defined, and so the center of
the target is singular at the level of the wave vector description. The presence of the
center can be predicted purely from the behavior far away where the wave vector is
well defined and varies smoothly. Consider for example, the behavior of the wave
vector around the dashed contour in Fig. 4.9. If we follow the contour around, say
in an anticlockwise direction, the orientation of the wave vector also rotates in the
anticlockwise direction, by an amount 2π in a complete circumnavigation. The
number of 2π rotations in a single circumnavigation is called the winding number.
In Fig. 4.9, the winding number of the wave vector is +1, with a plus sign because
the winding has the same sense as the direction of going around the contour.

This winding number is a topological characteristic of the defect. Its value does
not depend on the geometry of the contour since any closed contour that circles
the center of the target just once, say a contour of different radius or a non-circular
loop, will also produce a winding number of +1. The nonzero winding number
necessarily implies the singular behavior somewhere inside the contour, since we
can imagine shrinking the contour while restricting it to regions where q is well
defined. The winding number is preserved as the contour shrinks, and eventually
we end up with a tiny contour around which the wave vector rotates by the winding
number, which is a singular behavior.
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Atopological defect with a nonzero winding number for the direction of the wave
vector is called a disclination. An interesting subtlety arises because the sign of q̂
has no meaning, all that matters is the line along which the normal to the stripes lies.
So it is better to treat q̂ as a mathematical object called a director, which is a headless
vector such that −q̂ ≡ q̂. This means that the winding number for q̂ can take on
half-integral as well as integral values. The defects associated with q̂ are in fact
similar to those found in a two-dimensional nematic liquid crystal, whose states are
specified by a director n̂. (See the discussion of uniaxial systems in Section 2.6.2.)
Various disclination configurations are shown in Fig. 4.10. In addition to the +1
disclination in Fig. 4.9, there is a +1

2 disclination shown in Fig. 4.10(a) in which
the direction of the wave vector (denoted by the double headed arrow) rotates by π

around the core. The configurations in Fig. 4.10(b) and (c) also yield a nonzero
winding number for q̂, but do not usually correspond to defects in a stripe state
since the wave number (proportional to the inverse of the separation between the
lines in the figure) varies over a large range and so can lie outside the stability
balloon. For such a large distortion, the stripe state typically evolves into other
defects. For example, the configuration in Fig. 4.10(c) will usually evolve into a
defect consisting of one or more grain boundaries (see Fig. 4.12) along the directions
where the stripe orientation changes most rapidly.

Another type of topological defect characteristic of locally striped patterns is the
dislocation, which can be identified as a point in the stripe pattern where a stripe-
pair ends. Unlike the disclination, there is no large variation of the direction of the
wave vector at large distances from the dislocation, so the winding number of the

(a) (b) (c)

Fig. 4.10 Examples of topological defects known as disclinations that have a
nonzero winding number in the wave vector direction. The thick lines show the
direction along the stripes and the double headed arrows indicated the direction of
a wave vector. (a) A disclination with winding number + 1

2 . As the dotted contour
is circumnavigated, the normal to the stripes (denoted by the double headed arrow
since the direction but not the sign is significant) rotates in the same direction but
at half the rate giving a total rotation of π . (b) A putative configuration for a +1
disclination; (c) A putative configuration for a − 1

2 disclination. In (b) and (c), the
lines are along the stripes. These configurations are not consistent with a stripe
wavelength that is roughly fixed and are not commonly observed.
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C

Fig. 4.11 A topological defect known as a dislocation, where a pair of stripes ends.
Notice that there is one less spatial period in the lower half of the figure (below
the dislocation) than there is in the upper half. The dashed line shows a possible
choice of the integration contour C for defining the winding number via Eq. (4.58).

wave vector is zero. However, a different winding number W can be defined for
the dislocation in terms of a phase variable rather than in terms of the angle of the
wave vector. The dislocation winding number is defined by

W = 1

2π

∮
C

∇φ •d l = 1

2π

∮
C

q •d l, (4.58)

where the line integral is taken around any closed contour surrounding the point
(see Fig. 4.11). Since the quantity eiφ must be single valued away from the defect,
the number W must be an integer. A nonzero value of W implies the existence of
one or more dislocations within the contour, by the same sort of argument that we
used above.

Disclinations and dislocations are point defects since the singularity in the coarse-
grained description occurs at a point. There are also line defects, for which the
singularity extends along some finite region of the pattern. An example of such a
line defect is a grain boundary where two domains of stripes with different ori-
entations come together along a line. (This line is also called a domain wall.)
Figure 4.12 shows two examples of grain boundaries. Panel (a) shows the case
where the boundary is at some general angle relative to the stripes. Panel (b) is a
perpendicular grain boundary, for which case the boundary is normal to one set of
stripes.
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(b)(a)

Fig. 4.12 Two examples of grain boundaries, which are topological line defects.
(a) Two sets of stripes with different orientations meet along a line that has a
general orientation relative to the stripes. (b) A perpendicular grain boundary is a
special case for which the boundary is normal to one set of stripes.

4.4.3 Dynamics of defects

The motion of defects is important in pattern selection, the transient relaxation from
an initial condition to a final steady state, and in situations where there is persistent
dynamics. This is because defects can be dynamic in situations where the rest of the
pattern is held stationary, by boundaries or by constraints from other regions of the
pattern. If the defects are well separated or few in number, it might be possible to
develop a theoretical understanding of the pattern dynamics directly in terms of the
defect dynamics. Phenomena such as the nucleation of defects (or of defect pairs
if there are topological constraints), their interaction and motion, and annihilation
on close approach, are often apparent in experiment and simulation. On the other
hand, conditions for a stationary defect configuration may determine properties of
the pattern in the ordered region far away from the defect, and so issues of pattern
selection may sometimes be addressed by finding these conditions.

As an example, consider the dislocation in Fig. 4.11. It may move in the vertical
direction which is called dislocation climb. If the dislocation moves upwards in
the figure, the number of periods in the upper half plane decreases and similarly
a downwards motion increases the number of periods in the lower half plane.
Thus dislocation climb will increase or decrease the number of spatial periods
in the pattern and so will change the mean wave vector. The climb motion of
the dislocation is in turn found to depend on the mean wave number qb of the
surrounding pattern (the “background’’ wave number). The dislocation will move
up if qb > qd or down if qb < qd, where qd is a particular wave number that we
might call the dislocation selected wave number. The value of qd depends on the
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system and the control parameter. Dislocation climb tends to shift the wave number
toward qd so that the dislocation is stationary only if the wave number is equal to qd.
Dislocation climb is studied further in Section 8.1.2.

On the other hand, horizontal motion of the dislocation in Fig. 4.11 through a
stationary background roll configuration requires the successive breaking off and
reconnection of the stripes. This so-called glide motion will be jerky and so more
difficult to characterize mathematically than the climb motion.

The climb dynamics of dislocations tends to move the wave number to qd, and
is a mechanism of wave number selection in the nonlinear state. There are other
instances of wave number selection through defects. For example, the focus or
target disclination shown in Fig. 4.10(a) is only stationary if the wave number far
away tends to a particular value qf , whose value is again dependent on the system
and parameters. For other wave numbers, the target will either emit or suck in
stripes. This is discussed further in Section 9.1.2, and the general question of wave
number selection is discussed in Section 9.1.4.

4.5 Conclusions

This chapter has presented a mainly qualitative introduction to the vital role that
nonlinearity plays in pattern formation. The linear stability analysis is useful in
suggesting the beginnings of pattern formation, the physics involved in the structure
formation, and the length and time scales of the patterns. But the linear stability
cannot provide information on the actual patterns that will be observed. Nonlinearity
is essential in saturating the exponential growth of the linear analysis, and selecting
between many states that are typically degenerate in the linear analysis. Important
steps in the analysis of the effects of nonlinearity are studying the existence of
solutions, and then the stability of these solutions. Since it is not possible to list all
possible solutions that might exist, we are led to look at certain simple classes of
solutions, such as ideal stripe and lattice states, and versions of these periodic with
disorder of a special kind, namely defects (particularly topological defects).

The ideas presented in this chapter build on ones you may have encountered
before. In particular, bifurcation theory, developed in the context of nonlinear odes
or low-dimensional dynamical systems, is useful in understanding the nonlinear
states that might occur near threshold. The ideas developed in the study of crystals
in solid state physics provide suggestions for type of patterns that might arise and
how to treat their symmetries. The important role of defects, particularly topolog-
ical defects, also arises in the solid state and other ordered equilibrium systems,
and sophisticated tools have been developed to classify them mathematically (see
further reading below).
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Many of the questions of pattern formation, such as wave number and pat-
tern selection, have been introduced in this chapter. In the succeeding chapters,
we develop and apply the amplitude equation formalism and the nonlinear phase
diffusion equation that can be used to address these questions quantitatively.

4.6 Further reading

(i) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry
and Engineering by Strogatz [99] is an excellent introduction to nonlinear dynamics
in systems described by odes and bifurcation theory.

(ii) For further discussion of the Busse balloon in convection discussed in Section 4.2.2
see the paper by Busse and Whitehead [16] and the review “Nonlinear properties of
convection’’ by Busse [15].

(iii) There are many standard textbooks in solid state physics that provide an introduction
to lattices, for example Solid State Physics by Ashcroft and Mermin [7].

(iv) Principles of Condensed Matter Physics by Chaikin and Lubensky [17] is a good
source for more information on Landau theory (see in particular Chapter 4) and
topological defects (Chapter 9).

(v) The article “Natural patterns and wavelets’’by Bowman and Newell [14] describes the
application of wavelet theory to characterizing patterns. You can also find references
to general discussions of wavelets there.

(vi) Topological defects play an important role in ordered equilibrium phases. The review
article “The topological theory of defects in ordered media’’by Mermin [74] describes
the mathematical homotopy theory behind the “winding number’’ classification of
defects.

(vii) We only discussed dislocations in stripe states. For a theoretical and experimen-
tal discussion of dislocations in hexagonal patterns see “Defects in roll-hexagon
competition’’ by Ciliberto et al. [22].

Exercises

4.1 Definition of the amplitude for stripes: We could perversely have chosen
to define the amplitude A in terms of the expression

u(x, t) =
[
iA(t)eiq • x⊥ − iA∗(t)e−iq • x⊥

]
uq(x‖), (E4.1)

rather than by Eq. (4.1).

(a) In this case, how does A change under the space reflection x⊥ → −x⊥?
(b) Show that the coefficient g of the lowest-order nonlinear term is still real

in the evolution equation for this new A.
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4.2 Real formulation of the amplitude: Suppose we had used a real formulation
of the amplitude, writing

u = a(t)cos(q •x⊥)uq(x‖), (E4.2)

rather than Eq. (4.1).

(a) Explain how to generalize the ansatz Eq. (E4.2) to include displacements
of the stripes.

(b) Explain why no quadratic terms can appear in the amplitude equation for
this a.

4.3 Higher-order terms in the amplitude equation: The discussion just after
Eq. (4.5) explained that the symmetry of translational invariance prevents
terms quadratic in the amplitude A or its complex conjugate A∗ from appearing
in the amplitude’s evolution equation. Extend this discussion a bit further:

(a) Discuss whether any even power (term proportional to Am(A∗)n with m+n
an even integer) can occur in Eq. (4.5).

(b) Determine all possible fifth-order terms that can appear in Eq. (4.5).

4.4 Harmonics: Why is there no cos(2x) term in Eq. (4.26)? What about a sin (3x)
term?

4.5 Values of σ , τ0, and g for the amplitude equation of the Swift–Hohenberg
equation: For the exponentially growing solution at the critical wave number

u(x, t) = A(t)eix + c.c., (E4.3)

with amplitude A, derive the amplitude equation Eq. (4.10) with explicit values
for τ0, ε, and g if u satisfies the Swift–Hohenberg equation Eq. (4.19).

4.6 Complex amplitude for an oscillatory instability at zero wave number:
In anticipation of the study of oscillatory instabilities in Chapter 10, work
through the discussion of Section 4.1.1 for the case of a type-III-o instability
with complex-valued growth rate at onset (Im σqc �= 0). You must now use the
invariance of the system under a time translation to argue for the invariance
of the equation for A to a constant phase change.

(a) Derive an equation analogous to Eq. (4.5) for the complex amplitude of
the mode going unstable at a q = 0 (type-III-o) instability. You should
find the same equation but with g (and σ ) complex. Note: For a type-III-o
instability, the amplitude A(t) is now defined by the expression

u(x, t) = A(t)e−iωctuq(x‖) + c.c.,

where ωc is given by Eq. (2.2).
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(b) Now derive equations for dt |A| and dt�. Show that the equation for |A| is
the same as Eq. (4.14) for the real amplitude, except for the replacements
σ → Re σ and g → Re g. Interpret the phase equation in the linear
(small |A|) approximation, and then when the leading-order nonlinearity
is included. Show that the same pictures for the bifurcation hold, Fig. 4.1.

4.7 Complex amplitude for type-I-o oscillatory instability at finite wave num-
ber: Repeat the first part of Exercise 4.6 for the case of the growth of a
single Fourier mode eiq • x⊥ at an oscillatory instability with a finite wave
number qc > 0.

4.8 Traveling or standing waves: For an oscillatory instability at nonzero wave
number q in a one-dimensional system with inversion symmetry the modes
at q and −q go unstable together and with the same frequency ωq. A small
amplitude solution constructed from these modes is

u(x, t) � A+ei(qx−ωqt) + A−ei(−qx−ωqt) + c.c. (E4.4)

(a) Argue that the complex amplitudes will satisfy equations of the form

dtA+ = σA+ − g1 |A+|2 A+ − g2 |A−|2 A+, (E4.5a)

dtA− = σA− − g1 |A−|2 A− − g2 |A+|2 A−, (E4.5b)

where σ , g1, and g2 are complex in general.
(b) Now consider two classes of solutions: traveling waves A+ = AT �=

0, A− = 0 (or the opposite); and standing waves A+ = A− = AS. (In the
later case, any phase difference between A+ and A− can be eliminated by
a shift of coordinates.)

1. While the saturated solutions are defined by no exponential growth of
A±, there may be a phase evolution A± = |A±|e−it corresponding to
a shift in the frequency from the onset frequency ω = ωq +. Find the
magnitudes and frequency shifts |AT|, T and |AS|, S in the saturated
nonlinear states.

2. Find the condition for a forward or backward bifurcation of the
traveling and standing wave states.

3. Show that for the backward bifurcation the nonlinear state is unstable
in either case.

4. For the case where the bifurcations to traveling and standing waves
are both forward, show that within the description of Eqs. (E4.5) either
the standing wave is stable and the traveling wave is unstable, or vice
versa, depending on properties of g1 and g2.
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4.9 Nonlinear saturation in the Swift–Hohenberg equation: In the calculation
of the nonlinear saturation for the Swift–Hohenberg equation we started with
a cosine linear mode Eq. (4.20). What would we have found if we instead
started with the linear solutions

(a) u ∼ eεt sin x,
(b) u ∼ eεteix (take care!)?

4.10 Coefficient of next higher harmonic in stationary nonlinear state: Calcu-
late the value of the coefficient a3 in Eq. (4.26) to order r3/2.

4.11 Nonlinear saturation at general wave numbers:

(a) Repeat the derivation of Eq. (4.30) for a general wave number q by
calculating the coefficient aq in the expression

u = aq cos(qx) + · · ·, (E4.6)

such that this expression satisfies the time-independent one-dimensional Swift–
Hohenberg equation sufficiently close to onset. Equation (E4.6) represents
the truncation of a Galerkin approximation of u to a single mode.

(b) Determine the order of the next harmonic cos(3qx) close to onset: does it
scale as r3/2, which is the case for q = 1 in Eq. (4.30)?

4.12 Lack of field inversion symmetry does not give a transcritical bifurca-
tion for a stripe state: In simple bifurcation theory we associate a pitchfork
bifurcation with a system that is symmetric under the change in sign of
the dynamical variable, e.g. u → −u. Consider, however, the generalized
Swift–Hohenberg equation for u(x, t) in one spatial dimension

∂tu = ru −
(
∂2

x + 1
)2

u − g2u2 − u3, (E4.7)

which for nonzero g2 does not have this symmetry.

(a) By considering the ansatz

u =
∞∑

n=0

an cos(nx), (E4.8)

show that the bifurcation remains of pitchfork character and calculate a1

to lowest order in an expansion in small r.
(b) What is the condition on g2 for the bifurcation to remain supercritical?
(c) Calculate a0 and a2 to lowest nontrivial order in r.
(d) Show that the two nonlinear solutions are not in general related simply

by a change of sign.
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Note that in two dimensions, a transcritical transition to a hexagonal state
is indeed obtained for nonzero g2.

4.13 Growth and saturation in a modified Swift–Hohenberg equation: Con-
sider the equation (which actually describes Rayleigh–Bénard convection
when the top and bottom plates are poor thermal conductors)

∂tu = ru − (∇2 + 1)2u + ∇ •
[
(∇u)2 ∇u

]
(E4.9)

for u(x, y, t) a real field in a two-dimensional space and r the control parameter.
(These types of models are discussed in Section 5.2.)

(a) What is the growth rate σ(q) of a small perturbation at wave vector q
from the uniform state u = 0? What is the critical wave number qc and
the critical value of the control parameter rc giving the first instability as
r is raised?

(b) For a nonlinear saturated stripe solution

u = a cos x + · · · (E4.10)

find out how the amplitude a varies with r − rc near threshold to lowest
non-trivial order.

(c) Repeat the calculation for a square solution

u = a(cos x + cos y) + · · ·. (E4.11)

In these expressions, the · · · denote higher-order terms.

4.14 Phases in the lattice states: Determine the change in the phase factors �j

for each component mode in the expression

u = Auq(x‖)
∑

j

ei(qj • x⊥+�j) (E4.12)

for the stripe, square, and hexagonal states sketched in Fig. 4.6 for shifts of
the coordinate origin to positions (1, 0), (0, 1), and (1, 1). You may assume∣∣qj

∣∣ = 1.
4.15 Hexagonal patterns: Consider the superposition of modes

u(x, y) = ei(q1 • x+�1) + ei(q2 • x+�2) + ei(q3 • x+�3) + c.c. (E4.13)

with x = (x, y) and the wave vectors q1, q2, q3 forming an equilateral triangle

q1 + q2 + q3 = 0, |qi| = q (E4.14)
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and where the �i are the possible phases of the modes. Since q sets the scale
of the pattern, let’s choose q = 1, and orient our axes so that q1 = (1, 0).

(a) Show that by redefining the origin of coordinates we may set �1 and �2 to
zero, so that the form of the pattern (outside of translations and rotations)
is determined by a single phase variable �3 = �.

(b) Using Mathematica, Matlab, or some other convenient plotting environ-
ment make some contour or density plots of the field u(x, y) for various
choices of �.

(c) As we will discuss later in Section 7.3.3, the amplitude equation analysis
near the onset of the instability shows that the sum of the phases �1 +
�2 +�3 (and so the reduced phase �) will asymptotically evolve toward
0 or π . Plot the patterns for these two values (choosing �1 = �2 = 0).
Describe the locations of the maxima and minima of the two patterns.

(d) How are the patterns for � = 0 and � = π related in the approximation
Eq. (E4.13)?

4.16 Quasicrystalline states: Write down the superposition of modes with wave
number q = 1 giving quasicrystalline states with 8-fold and with 10-fold
rotational symmetry. Using Mathematica, Matlab, or some other convenient
plotting environment plot the resulting patterns.

4.17 Stability of square state: Show, using a Galerkin method truncated to the
lowest modes, that the square state in Exercise 4.13 is stable for Bloch wave
vector Q = 0 perturbations.

4.18 Eckhaus instability in the Swift–Hohenberg equation: Calculate the
stability of the solutions to the Swift–Hohenberg equation near onset to a lon-
gitudinal perturbation in the one-mode approximation, following the methods
of Etude 4.1. Focus on small-Bloch-wave vectors Q and show by expanding
up to O(Q2) that there is an eigenvalue of the form σ = α(r, q)Q2 + · · ·
Find the value of q − 1 when α passes through zero, signaling instability,
for small r and compare with the neutral stability value qN − 1. You will
probably find the complex notation Eq. (4.40) reduces the complexity of the
algebra.

4.19 Galerkin calculation of the stability balloon: Set up the calculation of the
linear stability analysis for general perturbation wave vector Q of the nonlin-
ear state of the Swift–Hohenberg equation calculated in Exercise 4.11 using
the Galerkin expansion Eq. (4.40) truncated to the lowest mode. Derive the
equation that needs to be solved to find the growth rate σ . Leaving the equation
in the form of a determinant set to zero is a good way to eliminate messy alge-
bra. Solving this equation in the general case is not informative, but you might
find particular limits (e.g. small Q) interesting.
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4.20 Stability balloon in Rayleigh–Bénard convection: Investigate the original
literature to discover the geometrical nature and symmetry characteristics of
the various instabilities bounding the stability balloon for Rayleigh–Bénard
convection shown in Fig. 4.4.

4.21 Dislocations: Use Mathematica, Matlab, or some other convenient plotting
environment to plot the field

u(x, y) = ei[θ(x,y)+�]eix + c.c., (E4.15)

where θ(x, y) is the polar angle of the point (x, y) and � is some constant,
which represents a dislocation defect in a stripe state of unit background wave
vector. Verify that the winding number defined in Eq. (4.58) is indeed unity.
What happens to the dislocation as you vary �? You might notice that the
field is actually singular at the origin – the value depends on how the origin is
approached. How could you change the expression (E4.15) to make the field
nonsingular?
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Models

In this chapter, we discuss model evolution equations that serve as a bridge between
the previous chapter on the qualitative properties of nonlinear saturated states and
later chapters on the amplitude equation and phase diffusion equation, which pro-
vide a way to understand many quantitative details of pattern formation. Model
equations are a natural next step after the previous chapter because they demon-
strate a nontrivial insight, that many details of experimental pattern formation can
be understood without having to work with the quantitatively accurate but often
difficult evolution equations that describe pattern formation in say a liquid crys-
tal or some reaction–diffusion system. Analytical and numerical calculations show
that if a simplified model contains certain symmetries (say rotational, translational,
and inversion), has structure at a preferred length scale (generated say by a type-I
instability), and has a nonlinearity that saturates exponentially growing modes, the
model is often able to reproduce qualitative features, and in some cases quantitative
details, observed in experiments.

The same insight that mathematically simplified models can have a rich pat-
tern formation is useful for later chapters because model equations provide a more
efficient way to carry out and test theoretical formalisms than would be the case
for quantitatively accurate evolution equations. We have already used the Swift–
Hohenberg model in this way, for example to calculate how the growth rate σq of
an unstable mode depends on the perturbation wave number q (Eq. (2.11)), or to
calculate approximate stationary nonlinear stripe solutions near onset (Eqs. (4.21)
and (4.24)). Model equations can also usually be studied numerically more thor-
oughly than the fully quantitative equations.Ageneralized Swift–Hohenberg model
described below, that describes the evolution of a convection stripe pattern near
onset, has just two fields (versus five for experimental convection) that depend on
only two spatial variables (versus three for experimental convection). As a result,
this model allows aspect ratios and observation times to be investigated that are
an order of magnitude larger than would be possible by integrating the Boussinesq
equations in a three-dimensional domain. The dependence of the dynamics on
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parameters can also be examined for many more parameter values than would be
the case for the Boussinesq equations.

But model equations are much more important than just being mathematically
simpler and numerically more efficient, they often provide valuable scientific intu-
ition. The reason is that many pattern-formation problems have so many details
that it is rarely possible to understand which detail is the cause of some observed
behavior. For example, researchers have succeeded in reproducing essentially all
the features of the spiral defect chaos state of Fig. 1.15(a) by numerical integra-
tions of the three-dimensional Boussinesq equations that quantitatively describe a
convecting fluid. While replication of an experimental state by simulation is sat-
isfying, the simulations do not answer some of the most basic questions: why do
spirals, rather than stripes, occur in the first place? Why is the dynamics chaotic?
Why does the spiral defect chaos change to some other spatiotemporal state as the
Rayleigh and Prandtl numbers are varied? And can we expect spiral defect chaos in
systems other than a convecting fluid? We will see below that a state similar to spi-
ral defect chaos occurs in a generalized Swift–Hohenberg model that has just two
extended variables and no confined variables (see Section 5.2.3). It is then unlikely
that the structure of the convecting fluid in the vertical coordinate is essential for
understanding spiral defect chaos.

Similarly, the Turing model discussed in Chapter 3 is a classic example of how
a simplified model can provide a deep scientific insight. When Turing published
his ideas in 1952 as a proposed mechanism for biological morphogenesis, no one
knew what fundamental evolution equations to write down that might describe
morphogenesis, and the expectation was that any mathematical description would
be extremely complicated because of the known complexity of cells and of how
cells interact with one another. Turing’s model and his related linear stability anal-
ysis gave a brilliant insight, that the essence of morphogenesis – the emergence
from a uniform state of a patterned structure with a preferred length scale – could
be understood in terms of just two diffusing and reacting morphogens in a homo-
geneous medium. Even though Turing’s paper provided no quantitative details, it
suggested the radical idea that morphogenesis could have a simple origin and the
paper stimulated much theoretical and experimental work.

Because model equations are usually based on just symmetry and instability
arguments, they are often not constrained by basic conservation laws of energy,
momentum, and mass so there is greater flexibility to add or remove terms that
can test various hypotheses. For example, we will discuss how it is easy to modify
the Swift–Hohenberg equation to be potential, in which case the only nontransient
dynamics are time-independent states, or to be nonpotential, in which case peri-
odic, quasiperiodic, or chaotic behavior is possible. Other simple modifications can
eliminate an inversion symmetry so that hexagons rather than stripes occur near



5.1 Swift–Hohenberg model 175

onset, break a chiral symmetry which would correspond to a constant rotation of
a convection experiment and that leads to spatiotemporal chaos near onset, mimic
the effects of horizontal plates of poor thermal conductivity which cause square lat-
tice states to form, make the primary bifurcation subcritical which allows localized
states to occur, and so on.

Of course to some degree, any theoretical description of a real system is a model
that involves various approximations that might be controlled and valid in some
limit, or uncontrolled or more phenomenological, and so a complete description
of models will be no simpler than a complete description of pattern formation.
In this chapter, we discuss representative models that have been important in the
study of pattern formation, with an emphasis on models that have been proposed
to understand qualitative features, rather than those that are derived by controlled
approximations and so are intended to apply quantitatively to experimental phe-
nomena. These models are simplified compared to the fully quantitative evolution
equations, not in having a “few degrees of freedom’’ as is the case for the logistic
map and Lorenz equations but by having fewer spatial dimensions and fewer fields.

A final purpose of this chapter is to give the reader a sense of how one discovers
or invents model equations. Pattern-formation models have diverse origins. Some
of them were guessed at using scientific intuition, some of them were accidentally
discovered when using perturbation theory to derive approximate solutions from
fully quantitatively evolution equations, and others were derived by putting together
the simplest ingredients consistent with known symmetries and linear instabilities.
We begin our discussion with an example of this last case, the Swift–Hohenberg
model that was originally invented and studied in the context of convection but
since has been applied to other topics such as laser patterns, material science, and
orientation maps of the mammalian visual cortex.

5.1 Swift–Hohenberg model

We have already used the Swift–Hohenberg model several times in this book to
illustrate some of the formal techniques for analyzing pattern formation. Study-
ing the Swift–Hohenberg model before studying more realistic evolution equations
actually reverses the historical development of pattern formation in that most ana-
lytical techniques were first developed in the context of fully quantitative evolution
equations and only later were simplified models derived and investigated.1 The great
diversity of phenomena observed in convection experiments near onset together

1 It is interesting to note that Swift and Hohenberg’s original motivation to write down their equation in 1977 was
not to study pattern formation, but to understand to what extent the nonequilibrium transition from a uniform to
nonuniform convecting state was similar to an equilibrium phase transition. Only several years after this model
was published did numerical calculations (some shown in Fig. 5.2) reveal its unexpectedly rich spatiotemporal
dynamics, which in turn motivated others to study this equation as a model of pattern formation.
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with the ease with which many of these phenomena could be investigated by sim-
ple changes to the original Swift–Hohenberg equation have made this equation one
of the better examples of how model equations can be developed and studied to
understand pattern formation.

In this section, we discuss the Swift–Hohenberg equation in greater detail. We
explain how this equation can be derived heuristically from symmetry arguments
and from the assumption of a type-I-s transition, we show that the equation is poten-
tial, we illustrate the richness of its dynamics with some numerical simulations, and
we discuss how to compare experimental parameter regimes of convection with
parameter regimes of this equation. In the following section, we discuss general-
izations of the Swift–Hohenberg equation that take new physical phenomena into
account, often by adding terms that break some symmetry such as a rotational or
inversion symmetry.

5.1.1 Heuristic derivation

The starting point of a heuristic derivation is to assume that we are interested in a
stationary type-I-s instability of some uniform state in a system that is itself rotation-
ally invariant in a two-dimensional plane. The uniformity of the base state together
with the rotational invariance of the system implies that the growth rate σq of
an infinitesimal sinusoidal perturbation of the uniform state with two-dimensional
wave vector q can only depend on the magnitude q of the wave vector but not on
its orientation. (It may be helpful to review the related discussion in Section 2.1.)
We can then expand this growth rate to lowest order about the onset of the primary
instability and about the finite critical wave number qc to obtain the following
expression:

σq � p − c(q − qc)
2. (5.1)

Here p is the control parameter, and we have subtracted off constants so that the
primary instability of the uniform state occurs at p = 0 with wave number q = qc

as p increases from negative values. For a type-I-s instability, the constant c must
be positive if Eq. (5.1) is to have a local maximum at q = qc for p = 0.

If we multiply both sides of Eq. (5.1) by the single Fourier mode

u(x, t) = eσqteiq • x⊥ , (5.2)

and observe that σqu = ∂tu while q2u = (−∇2)u (where ∇2 = ∂2
x + ∂2

y is the
two-dimensional Laplacian), then the growth rate Eq. (5.1) can be interpreted as an
evolution equation for a Fourier mode:

∂tu(t) =
(

p − c
(√

−∇2 − qc

)2
)

u, (5.3)
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and this becomes a starting point for obtaining an evolution equation for some
general field u(x, t) related to a type-I-s pattern-forming system.

Equation (5.3) has two serious flaws as a possible more general evolution
equation. One is associated with the expression

√−∇2 which is too difficult to
work with unless used inside the Fourier expansion of some field.2 Fourier expan-
sions are generally not convenient for pattern-forming problems since the Fourier
representation of some nonlinear term in an evolution equation involves convo-
lutions (sums of products of Fourier coefficients) that are difficult to work with
analytically. A second difficulty is that Fourier representations are best suited for
problems on periodic or infinite spatial domains, and such domains exclude most
of the experimentally interesting situations.

The difficulty of obtaining an evolution equation that does not require a Fourier
representation can be traced to the wave number magnitude q that appears in
Eq. (5.1); the difficulty would go away if we could rewrite this equation in terms
of q2, which corresponds to the familiar Laplacian −∇2 of a field which is easy
to work with analytically and numerically. Equation (5.1) can in fact be expressed
in terms of q2 if we are willing to allow a small systematic error. As discussed in
Chapter 2, sufficiently close to onset (here corresponding to the parameter p being
positive and arbitrarily small), only wave numbers q close to the critical wave num-
ber qc occur. Thus sufficiently near onset, q + qc ≈ 2qc, so we can approximate
the right-hand side of Eq. (5.1) as follows:

σq � p − c(q − qc)
2 � p − c

(
q + qc

2qc

)
2(q − qc)

2, (5.4)

� p − c

4q2
c
(q2 − q2

c)
2. (5.5)

Equation (5.5) reduces to Eq. (5.1) to lowest order in q − qc on expanding about
qc and suggests that the linear terms in the evolution equation for some real field
u(x, y, t) could be3

∂tu = ru −
(
∇2 + 1

)2
u, (5.6)

where we have chosen spatial units such that qc = 1, chosen time units such that
c/(4q2

c) = 1, and then defined r ∝ p to eliminate any constant factors in the first
term on the right-hand side. (Problem 1.7 on page 53 gives you a chance to work
out these scalings.)

2 There are several ways to define a real-space “fractional derivative’’ like
√

−∇2 and they all involve infinite
sums of integer powers of the Laplacian, too awkward to work with analytically and impractical to work with
numerically. Section 5.3 does discuss the possibility of using the exact growth rate σq in a model equation, but
the calculations are practical only for Fourier representations in periodic domains.

3 The expression (∇2 + a)2 for a a constant should be understood as an abbreviation for (∇2)2 + 2a ∇2 + a2,
which is called a generalized constant-coefficient biharmonic operator.
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For r > 0, Eq. (5.6) yields exponentially growing solutions

aeiq • x⊥eσqt + c.c., (5.7)

with growth rate
σq = r − (q2 − 1)2. (5.8)

For finite solutions to exist at long times, some nonlinear term that decreases the
growth rate must be added to Eq. (5.6). Often the cubic term −u3 is used since this
is arguably the simplest nonlinearity that is consistent with the inversion symme-
try u → −u which is often present in physical systems (for example the Boussinesq
equations describing convection).4 This cubic term yields the Swift–Hohenberg
equation

∂tu(x, y, t) = ru −
(
∇2 + 1

)2
u − u3. (5.9)

By an appropriate choice of units for the field u, the coefficient of the cubic term
can be assumed to have the value one.

To model systems on a realistic finite spatial domain, conditions for the field u
must be given at each point on the boundaries of the domain. Since Eq. (5.9)
involves fourth-order spatial derivatives (from the Laplacian squared), two arbitrary
conditions need to be specified at each boundary point to have a well-defined initial-
boundary-value problem. If n̂ denotes the unit vector normal to the boundary at a
given point (and that points away from the interior for a simply connected domain),
then the boundary conditions

u = 0 and
(
n̂ •∇)

u = 0, (5.10)

are commonly used. Empirically, numerical simulations with these boundary con-
ditions reproduce the tendency often seen in large-aspect-ratio experiments that
unconstrained stripes approach the boundary orthogonally. Analytically, one can
show that these boundary conditions reproduce a result to lowest order of the
amplitude equation formalism discussed in Section 6.2.4 of the next chapter, that
the amplitude goes to zero at the boundary for stripes that are constrained to be
parallel to a straight boundary. But other boundary conditions are possible and
have been investigated with the goal of understanding how constraints at the lateral
boundaries affect pattern formation in the domain’s interior.

Equation (5.9) with boundary conditions Eq. (5.10) is an attractively simple
model and numerical investigations show that interesting patterns occur that are
similar to those observed near onset in large convection experiments. However,
it should be clear that the above derivation involved several ad hoc uncontrolled

4 A quadratic term ±u2 is not by itself saturating, since this enhances the growth of one sign of u. The behavior
of the equation with the combination αu2 − u3 is discussed later.
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steps so quantitative agreement with experiments is not guaranteed, even close to
onset. Firstly, replacing Eq. (5.1) by Eq. (5.5) introduces terms into the growth rate
that are higher order in the quantity q − qc and these presumably will not match
the higher order terms for a real physical system. The effect of such higher-order
terms on the model’s dynamics is not known in advance. However, since larger
wave numbers q correspond to smaller length scales, we might expect the model to
reproduce slow long-wavelength (small q) spatial modulations of a stripe pattern
well, but some short length scale behavior less reliably, such as perhaps stripe
pinch-off events in which a stripe is eliminated, leaving one or two dislocations in
its place. Secondly, the form of the nonlinear term is motivated purely by simplicity
rather than by accuracy. Although there is considerable flexibility in what nonlinear
terms to use (see the examples in Section 5.2.1 below), a choice has to be made
carefully since changes in the functional form or even in the numerical values of
coefficients of a given functional form can lead to stripe dynamics (the case for the
Swift–Hohenberg equation) or to rectangular or hexagon lattice dynamics. (As an
example, see Exercise 5.6 on page 204.) Finally, although the form of the equation
is motivated by an expansion of the growth rate about threshold r � 0, the model
behavior is often investigated for larger values of r.

5.1.2 Properties

An important property of the Swift–Hohenberg is that it has so-called potential
dynamics (also called in various contexts relaxational dynamics or a gradient flow).
This means that there is a potential (also called a Lyapunov functional) which
is a functional5 of the Swift–Hohenberg field u(x, y, t) that has the property of
decreasing monotonically during the dynamics. The potential is thus analogous to
the total energy (potential and kinetic) of a frictionally damped ball in a potential,
or to the free energy of a thermodynamic system that is nearly in equilibrium. Just
as we know that the motion of a damped ball will eventually cease with the ball
at a minimum of the total energy, the evolution of the Swift–Hohenberg field will
eventually cease, leaving a pattern that corresponds to some local minimum of the
potential. The potential greatly simplifies the analysis of the equation but actually
detracts from its use as a representative model of pattern formation since sustained
nonequilibrium systems are generally not expected to show potential dynamics.6

5 A functional is some mathematical rule that associates a number with a function. Some simple examples of
functionals are the definite integral of a function or its global maximum over some domain. Most of the func-
tionals discussed in pattern formation are integrals over some domain of some nonlinear expression containing
fields, and spatial derivatives of the fields, related to some pattern-forming system.

6 One reason is that potential dynamics represents a strong mathematical constraint and there is no known
reason, say related to conservation laws or some symmetry, why nonequilibrium systems should satisfy such a
constraint. A second reason is that experiments and simulations of stripe-forming systems show that a sustained
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We define the potential V [u] by the following area integral over the domain of
interest7

V =
∫ ∫

dx dy

{
−1

2ru2 + 1
4u4 + 1

2

[(
∇2 + 1

)
u
]2

}
, (5.11)

and claim that, for periodic boundary conditions or for the boundary conditions
Eq. (5.10), V evolves according to the equation

dV

dt
= −

∫ ∫
dx dy(∂tu)

2. (5.12)

Equation (5.12) implies that whenever ∂tu �= 0 anywhere in the system, the potential
is decreasing, which establishes that the Swift–Hohenberg equation has potential
dynamics. Since you can show in Exercise 5.2 that Eq. (5.11) is bounded below by
the quantity −1

4r2S with S the area of the domain, V cannot decrease forever and
the dynamics must become constant at long times.

Potential dynamics with a potential bounded from below therefore has the impli-
cation that all initial states eventually become time-independent. This means that the
Swift–Hohenberg model with periodic boundaries or with the boundary conditions
Eq. (5.10) cannot have periodic, quasiperiodic, or chaotic dynamics.8 However,
the potential dynamics does not rule out the possibility that the transient leading
to some stationary state might have a complicated temporal dependence that could
appear to be periodic or chaotic if observed over an insufficiently long time. Indeed,
the Belousov–Zhabotinsky chemical reaction discussed in Section 3.1.3 is an exam-
ple of a pattern-forming system with potential dynamics since the experiment is a
closed system (no influx of reagents, no efflux of chemical products) and so the
system must eventually reach thermal equilibrium. (The free energy is the potential
for this system.) But the transient toward a stationary state is long lived and the short
time dynamics is periodic to good accuracy. The first reports of oscillatory dynam-
ics were initially doubted, because of the mistaken thought that a monotonically
decreasing potential implies that the concentrations must themselves monotonically
change over time, which is not the case.

time dependence can occur quite close to onset and such a time dependence is not consistent with potential
dynamics.

7 Expressions like V are not just snatched out of thin air, there is a considerable history of researchers thinking
about such potentials in the context of soft condensed matter physics, such as the theory of liquid crystals. In
fact, the dynamics of the Swift–Hohenberg model has several similarities to the dynamics of smectic liquid
crystals.

8 That the asymptotic dynamics of the Swift–Hohenberg model with appropriate boundary conditions must be
stationary is a rigorous result. However, this conclusion does not necessarily hold for simulations of Eq. (5.9)
which necessarily involves approximations of the mathematics (Chapter 12 discusses some of these issues).
And indeed numerical integrations with time or spatial resolutions that are too coarse, or with a time integration
algorithm that is unstable, can lead to oscillatory or even chaotic dynamics that have nothing to do with the
mathematical solutions.
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To establish Eq. (5.12), take the time derivative of both sides of Eq. (5.11) to get

dV

dt
=

∫ ∫
dx dy

{(
−ru + u3

)
∂tu +

[(
∇2 + 1

)
u
] [(

∇2 + 1
)
∂tu

]}
, (5.13)

and twice integrate by parts the term
[(∇2 + 1

)
u
]∇2∂tu to transfer the operation

of ∇2 from ∂tu to the quantity
(∇2 + 1

)
u. The first integration by parts creates

a vector term
[(∇2 + 1

)
u
]∇u that is evaluated on the domain’s boundary, and

the second integration by parts creates a vector term ∂tu ∇[(∇2 + 1
)
u
]

that is
also evaluated on the domain’s boundary. You may work through the details in
Exercise 5.2, where you show that the boundary (surface) terms vanish for periodic
boundary conditions and for the boundary conditions Eq. (5.10). What remains
after the two integration by parts is the expression

dV

dt
=

∫ ∫
dx dy

{[
−ru + u3 +

(
∇2 + 1

)2
u

]
∂tu

}
. (5.14)

The bracketed term is just −∂tu so that Eq. (5.14) indeed becomes Eq. (5.12).
The Swift–Hohenberg equation itself can be written in terms of the functional
derivative δV /δu of V

∂tu = −δV
δu

, (5.15)

which shows directly that the dynamics of u “runs down’’ the potential, by analogy
to Newton’s second law of motion m(dv/dt) = −∇V for a particle of mass m
responding to a potential force F = −∇V .

The existence of a potential leads to many useful deductions. An example is
the question of the competition between two patterns, e.g. between a stripe state
and hexagonal lattice state, if both are present in the system with a wall or domain
boundary between them. We can argue that if there is any motion of the wall, it must
be in the direction that increases the fraction of the pattern with the lower value of
the potential density v = V /S (the potential per unit area).9 The contribution to the
potential density from the domain wall itself does not change as the wall translates.
Thus the parameter value for which the two states have equal potential densities
can be used to identify the point at which the preferred pattern switches from one
to the other.

Two caveats should be stated. The first is that the result applies only in the con-
text of an experiment in which the competition between bulk saturated regions,
in contact via a domain wall, occurs. Other experimental conditions, such as the

9 We can see from the definition Eq. (5.11) that, for patterns that are periodic, the potential is an approximately
extensive quantity, whose value for some field is approximately proportional to the area for large areas, since
Eq. (5.11) simply adds up the identical contributions of each identical unit cell and there will be many unit cells
in a large domain. So the appropriate quantity to compare for two competing periodic states that may occupy
different areas in some domain is the intensive potential per unit area, i.e. the potential density.
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Fig. 5.1 Competition between patterns for a system with potential dynamics. The
variation of the potential density v between states of ideal stripes and hexagons is
shown for the case that (a) the stripe state has the lower potential density, (b) the
stripe and hexagon states have the same potential density, and (c) the hexagon
state has the lower potential density. In general, there will be a potential density
maximum or barrier between the two minima so that dynamics from the higher
minimum to the lower cannot be inferred. Also a dynamical path that connects one
state with another (e.g. in (a), the higher hexagon minimum to the lower stripe
potential minimum) can be a long winding path, corresponding to a long-lived
transient with complex spatiotemporal structure.

growth from small initial conditions, may give different results. This is because
in general there is a potential barrier between the two ideal states (see Fig. 5.1)
and only in special physical circumstances, for example the domain wall between
two coexisting regions, is there a dynamical path between the two states that flows
monotonically down the potential. Secondly, the motion may be impeded, for exam-
ple by pinning of the wall to the stripes themselves, in which case there may be no
motion even if the potentials are different. This situation, which is discussed briefly
in Section 9.2.1 in the context of “nonadiabatic effects,’’ would then give a finite
range of parameters for coexistence.

A second application of the potential is to the question of wave number selection,
the precise value of the wave number in a stripe state or unit cell size in the lattice
states. Again we can argue that any local dynamics that mediates between two ideal
states (that occupy large portions of the system) will evolve so as to favor the state
with a lower value of the potential v(q), which will then dominate the integral
that forms the potential. (Here v(q) is the potential density evaluated for the ideal
periodic state with wave number q.) In the case of potential dynamics, different
dynamical mechanisms that allow the wave number to change, such as dislocation
motion, boundary relaxation etc., will all tend to yield the same wave number,
namely the one that minimizes v(q). For systems without a potential, there is no
such argument, and different dynamical mechanisms may lead to different wave
numbers. Conversely, this leads to the following conclusion: it is possible to test a
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sustained nonequilibrium system experimentally for the existence of a potential –
without knowing the evolution equations of the system – by examining whether
different wave number selection mechanisms lead to the same wave number.

The motion of defects can also be considered using the potential. If we consider
the climb of an isolated dislocation in a large system (see Section 4.4.2), the disloca-
tion must move in a direction that changes the wave number to a value that decreases
the potential, in accordance with Eq. (5.15). Thus a question that is generally hard –
which way a dislocation moves – becomes easy to answer for an equation with a
potential. Similarly a target defect also discussed in Section 4.4.2 will be stationary
if the asymptotic wave number is the one that minimizes the potential.

The importance of the Swift–Hohenberg equation in the discussion of pattern
formation points out an interesting fact, that some of the intriguing and difficult
questions associated with pattern formation come from the complicated geometrical
structure of the patterns and not particularly from the fact that the systems are far
from equilibrium. Even for equilibrium systems, the understanding of stripe systems
is far less advanced than that of two- and three-dimensional lattices. (Examples of
equilibrium stripe systems are smectics and diblock copolymers.) In addition to
the range of questions that arise in general for stripe structures, we must come to
grips with the nonequilibrium aspects of the systems for stripe patterns far from
equilibrium. The original Swift–Hohenberg equation is not of use here and so
various modifications that eliminate the potential nature of the dynamics have been
proposed.

5.1.3 Numerical simulations

The Swift–Hohenberg equation is too difficult to solve analytically except in simple
cases such as time-independent stripe or lattice states in periodic domains close to
onset, and so numerical simulations10 have played an important role in exploring
what kinds of dynamics are possible. Since the equation is potential, the main
insights learned concern how some initial state relaxes to a steady state pattern, and
the role of the lateral boundaries in influencing the pattern. We illustrate with a pair
of examples.

Figure 5.2 shows some simulations in large square and rectangular geometries
with the boundary conditions Eq. (5.10). Note that these simulations, which were
performed over twenty-five years ago at the time of writing, were carried out to times
of order 104 characteristic time scales in domains with aspect ratios of 16 or larger.
Comparably long computations on systems such as the fluid and heat equations for

10 Chapter 12, especially Section 12.3.3 and Exercise 12.10 (E12.16), indicates some of the details associated
with integrating the Swift–Hohenberg and Kuramoto–Sivashinsky models that have a biharmonic operator.
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Fig. 5.2 Simulations of the Swift–Hohenberg equation: (a), (b), (e), and (f) for
r = 0.1 and (c), (d) for r = 0.9. The initial conditions were parallel stripes for (a)
and (c) and random for the others. The values of τ give the time of the snapshot,
F is the value of the potential at that time (the V of Eq. (5.11)), and N is mean
square average of u. Panel (e) is still evolving in time, eventually giving the pattern
in (f). The other states have reached a steady state to within the resolution of the
simulations. (From Greenside et al. [42].)

three-dimensional Rayleigh–Bénard convection are only just becoming feasible on
the most powerful parallel supercomputers. Insights gained from these simulations
include the tendency of the stripes to approach the boundaries at a perpendicular
orientation, either through a short set of cross-stripes near the boundary (panels (a)
and (f)) or by forcing curvature of the stripes over the scale of the system. The wide
variety of defects induced by the boundaries and curvature is also apparent. The
values of the potential (called F in the figure) can be used to compare the “relative
stability’’ of the various patterns that may occur in the same geometry and at the
same value of the control parameter. Since the potential can only decrease in the
dynamics, a state of lower F cannot evolve into one with higher F . On the other
hand, the system may get stuck in a non-optimal state such as panel (d) which has
a larger value of F than the pattern in panel (c).

Simulations of the Swift–Hohenberg equation can also be used to study the
quantitative aspects of the approach to steady state from random initial conditions,
as shown in Fig. 5.3. The simulations show that the pattern evolves through states
that can be characterized as domains of relatively well ordered stripes with an
average domain size that increases steadily as time evolves; the pattern is said
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t = 10 t = 10000

Fig. 5.3 Simulation of the Swift–Hohenberg equation in a large periodic geom-
etry of size 256 × 256 with r = 0.25, starting from random initial conditions.
The increase in the average domain size from time 10 to time 10 000 is called
“coarsening.’’ (From Elder et al. [33].)

to coarsen. In the simulations shown, the typical size ξd of a domain, which can
be obtained by a numerical Fourier analysis of the field u(x, t), is found to grow
as a power law ξ ∝ tp with p about 0.2. Whether this is a true description of the
coarsening process and whether the exponent p has different values for nonpotential
models are topics that remain under active discussion at the time of writing.

5.1.4 Comparison with experimental systems

Although simple models such as the Swift–Hohenberg equation cannot be expected
to give a quantitatively accurate description of an experimental system, the practical
question arises of how to choose the parameters of this or other models to correspond
to a given experiment. For example, in the Swift–Hohenberg equation we might
ask: “What value of the parameter r, what aspect ratio of a circular cell, and what
integration time should be used to model a Rayleigh–Bénard convection experiment
for Rayleigh number R = 2000 in a cylindrical cell of aspect ratio � = 30 for ten
horizontal diffusion times?’’ A first step would be to match the length and time
units of the model and experimental system so that observation times and domain
sizes correspond. For the Swift–Hohenberg model, Eq. (5.9), length is measured
in units such that qc = 1, whereas in a Rayleigh–Bénard experiment, length might
be measured in units of the cell depth, in which case qc � 3.12. In this case, an
experimental aspect ratio � would have to be divided by 3.12 (made smaller) to
obtain the aspect ratio for a corresponding model equation simulation.
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A second step would be to choose model parameters to match the growth near the
linear instability for the particular physical system of interest as well as possible.11

(The value of the field at saturation is determined by normalization conventions,
and does not lead to any further matching conditions.) If this is done, the model
equation should give a good description of the slow space and time modulations
of a regular pattern, and a comparison of the model and convection dynamics may
reveal that some details (say of a spatiotemporal chaotic state) are not sensitive to
details on “fast’’ length and time scales such as defect nucleation and annihilation.

To perform the matching we expand the growth rate of a mode at wave number
q near the critical wave number qc = 1 and for small r for the Swift–Hohenberg
equation to give

σq � r − 4(q − 1)2. (5.16)

On the other hand, the growth rate near a general type-I-s instability is parameterized
in terms of parameters τ0 and ξ0 in Eq. (2.27). We want to match these expressions
for some particular value of the reduced control parameter ε. Since threshold for
the Swift–Hohenberg equation is at r = 0, we write

r = λε, (5.17)

where λ is the proportionality constant to fix. Dividing Eq. (5.16) through by λ
leads to

λ−1σq = ε − 4λ−1(q − 1)2. (5.18)

This should be compared with the general expression for a type-I-s instability
written in the form

τ−1
0 σq = ε − (ξ0qc)

2(q/qc − 1)2. (5.19)

Matching parameter values gives

(qcξ0)
2 = 4λ−1 and τ0 = λ−1. (5.20)

The parameter τ0 is measured in some “Swift–Hohenberg time unit,’’ and we are
still free to choose the relationship of this unit to the physical time unit so that τ0

matches the corresponding value for the physical system. However, the product ξ0qc

is dimensionless (its value does not change with a change in length units) so this is a
quantity that should be matched between the two equations. For Rayleigh–Bénard
convection, ξ2

0 � 0.148 and qc � 3.12 giving ξ0qc � 1.20, and so to match a Swift–
Hohenberg equation to this system λmust have the approximate value 2.78 to make
these two expressions equal. We conclude that the Swift–Hohenberg parameter

11 More formally we would match the coefficients of the amplitude equation to be introduced in Chapters 6 and 7
that quantitatively describe this regime.
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value should be about three times bigger than the numerical value of the reduced
Rayleigh number ε = R/Rc − 1

r � 2.78ε, (5.21)

for a model simulation to correspond to some convection experiment near onset.
Similar comparisons can be made for other stripe-forming systems.

The behavior of the Swift–Hohenberg equation depends on the single parameter
r and so there are no other parameters (except the system size) to tune. In more
complicated examples such as the generalized models studied in the next section,
there may be more parameters to tune. In this case, a third step to match parameters
can be carried out, which is to compare the stability balloons of the model and of
the experimental system. Here some choices must be made since the model will
only have a few parameters, and so a match to the whole stability balloon will not
be possible.

5.2 Generalized Swift–Hohenberg models

In this section, we introduce some of the generalizations that have been made to
the Swift–Hohenberg model to incorporate additional physics. As in the motivation
for the original equation, the key consideration in developing these enhancements
is the symmetry of the new physical effect that it is desired to include.

5.2.1 Non-symmetric model

The original Swift–Hohenberg equation is symmetric under inversion of the field
u → −u. Physical systems without this symmetry12 can be modeled by includ-
ing a quadratic nonlinearity γ u2, which is one of the simplest possible terms that
eliminates this symmetry

∂tu = ru − (∇2 + 1)2u + γ u2 − u3. (5.22)

For reasons to be discussed in Section 7.3.3, in two dimensions the uniform solu-
tion u = 0 undergoes a transcritical bifurcation to a hexagonal pattern. Equation
(5.22) can be used to study several questions related to the competition between
stripe and hexagonal states such as wave number selection, front propagation, and
defect motion.

12 An example would be a convection system for which the temperature difference between the bottom and top
plates is so large that some fluid parameters such as the fluid viscosity start to vary significantly with position.
This is called “non-Boussinesq convection,’’ and the experimental observation of hexagons near onset is a
common indicator of such convection.
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5.2.2 Nonpotential models

The potential nature of the Swift–Hohenberg equation can be eliminated by
changing the form of the nonlinearity. One nonpotential version is

∂tu = ru − (∇2 + 1)2u + α∇ •
[
(∇u)2 ∇u

]
+ β(∇u)2 ∇2u. (5.23)

Unlike most Swift–Hohenberg models, Eq. (5.23) can actually be derived system-
atically near onset as the nonlinear equation that describes convection between thin
poorly conducting plates, for example a layer of liquid mercury convecting between
thin glass plates. An interesting feature of such convection is that the critical wave
number qc becomes small as the plate conductivity becomes small so that the size of
a convection roll becomes much larger than the depth of the fluid. This is a convec-
tion example of what is already familiar with reaction–diffusion systems, that the
basic length scale of some pattern is not always determined by the geometry of the
container, for example by the depth of the fluid. For β = 0, the equation is poten-
tial, but for general values of α and β, there is no known potential. Equation (5.23)
with α = 0 can be used as a simple Swift–Hohenberg model without a potential.

An even simpler nonpotential model is

∂tu = ru − (∇2 + 1)2u − (∇u)2u. (5.24)

Numerical simulations of Eq. (5.24) in large square domains (starting with various
initial conditions) always lead to states that become time independent. Thus nonpo-
tential dynamics is necessary but not sufficient for oscillatory or chaotic dynamics
to be observed. Usually some specific mechanism, like the mean flow discussed
in the following subsection, must be included to observe sustained time-dependent
states.

5.2.3 Models with mean flow

As we will discuss later in Section 9.1.3, an additional ingredient in the physics
of pattern formation in fluid systems such as Rayleigh–Bénard convection is a
mean flow that tends to advect the pattern, and is in turn driven by slow spatial
modulations of the pattern such as curvature of stripes and gradients of the wave
number. The mean flow introduces new physical behavior since it acts as a long-
range coupling between different regions of the pattern. The Swift–Hohenberg
equation can be modified to include this physics by adding a second field V(x, t)
representing the velocity of the mean flow, which then advects or carries along
the field u representing the stripes. The advection is incorporated by modifying
the dynamical equation for u(x, t) to include an advection term V •∇u in the time
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derivative

∂tu → ∂tu + V •∇u, (5.25)

where ∇ is the two-dimensional gradient (∂x, ∂y). Including an advection term can
be done for either the original or generalized Swift–Hohenberg equations, e.g. the
original Swift–Hohenberg equation becomes

∂tu + V •∇u = ru − (∇2 + 1)2u − u3. (5.26)

The mean flow V is an incompressible two-dimensional velocity field, and can
therefore be written in terms of a stream function ζ

V = (Vx, Vy) = ∇ × (ζ ẑ) = (∂yζ , −∂xζ ). (5.27)

Thinking of x and y as horizontal coordinates, this stirring flow in the horizontal
plane corresponds to a vertical vorticity  given by

 ẑ = ∇ × V = −∇2ζ ẑ. (5.28)

The mean flow V is in turn driven by distortions of the pattern, so we must now
find these driving terms. In the spirit of the type of arguments that went into the
original Swift–Hohenberg equation, we seek the simplest terms that are consistent
with the symmetries of the problem such as rotational invariance and inversion
symmetry u → −u. If we formulate the argument in terms of the vorticity, we need
to construct an axial vector in the z-direction, and the only vector we can form out
of the scalar field u is ∇u and its derivatives. To get an axial vector, we must form
a cross product out of these vectors. Since ∇u ×∇u is zero, the cross product must
involve different (scalar) derivatives of ∇u. The form with the smallest number of
derivatives is ∇u × ∇(∇2u). This string of arguments leads to the driving term for
the mean flow

 = −gẑ •∇u × ∇(∇2u), (5.29)

with g a constant that specifies the strength of the mean flow. (Roughly, g is inversely
proportional to the fluid Prandtl number, and becomes negligible in the limit of large
Prandtl number.) The mean flow velocity is calculated from this using Eq. (5.28)
to write an equation that can be solved for the stream function

∇2ζ = gẑ •∇u × ∇(∇2u), (5.30)
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and then using Eq. (5.27) to evaluate the mean flow velocity.13 With some work,
one can show that Eq. (5.29) reproduces Eq. (9.16) in a weakly nonlinear treatment
of the equations, which further confirms that this is a sensible expression to use.

Notice that Eq. (5.30) is reminiscent of the Poisson equation for an electrostatic
potential with the right-hand side acting as the source charge density. We know that
electrostatics involves long-range interactions, and so this equation suggests that
adding the mean flow equation will introduce long-range coupling into the pattern
formation problem.

Equation (5.29) specifies the vorticity instantaneously in terms of the local pat-
tern. On the other hand we know that a flow will have some inertia, and so will
continue to respond for some time after the application of a driving force. To include
this inertia, sometimes a dynamical equation is used for the vorticity

τv ∂t+ = −gẑ •∇u × ∇(∇2u), (5.31)

which gives a vorticity field that relaxes to the value specified by the right-hand
side on some time scale specified by τv. Usually we are interested in applying the
generalized Swift–Hohenberg equation to look at the slow evolution of the pattern
over time scales that are long compared with the basic time scales of the equation.
In these situations, the time derivative term in Eq. (5.31) will be small compared
with the second term on the left-hand side and can be neglected.

The coupled equations (5.26) and (5.29) or (5.31) are complicated, and most
investigations of their properties have involved numerical simulations. The cou-
pling to the mean flow eliminates the potential nature of the equations, and one
interesting result that has been studied in some detail is the existence of spatiotem-
poral chaos with visual structure quite similar to the spiral defect chaos seen in
Rayleigh–Bénard and other experiments.

5.2.4 Model for rotating convection

If a horizontal convecting fluid layer is physically rotated with a constant angular
frequency about an axis perpendicular to the layer, experiments show that a state
of spatiotemporal chaos called “domain chaos,’’ shown in Fig. 1.15, is found arbi-
trarily close to threshold for sufficiently large rotation rates. (Domain chaos will be
discussed further in Section 9.2.4.) This discovery is enormously interesting since
chaotic states near supercritical bifurcations of uniform states are rare, and, for such

13 A natural boundary condition for Eq. (5.30) would be that the mean flow field vanishes, V = 0 but this imposes
two conditions at each boundary point, ∂yζ = ∂xζ = 0, while only one condition is needed for a Poisson
problem. While one could choose arbitrarily a boundary condition such as ζ = 0 or n̂ •∇ζ = 0, another
possibility is to replace the Laplacian ∇2 with a biharmonic ∇4 which would allow two conditions at each
boundary point to be imposed. Only a small physical error is incurred with such a substitution.
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states, researchers can investigate spatiotemporal chaos using the weakly nonlinear
amplitude equation formalism that will be discussed in the following three chapters.
The dynamics leading to the chaos can be associated with a reduction in the symme-
try of the system since clockwise and counter-clockwise rotations of the pattern are
no longer equivalent. Since symmetries motivated the form of the Swift–Hohenberg
equation, we might expect a modified form of the equation to describe the rotat-
ing system, leading perhaps to chaotic dynamics whereas the unmodified equation
cannot show chaos. This is indeed the case. The resulting model is of great interest
since it provides a way to study an example of spatiotemporal chaos without using
the full fluid equations.

There are no new linear terms that can be constructed deriving from this reduced
symmetry,14 and this is consistent with the physical observation that stationary
stripe states remain solutions of the rotating Rayleigh–Bénard system (stationary
in a frame corotating with the container). At the nonlinear level, however, we can
find new terms that would necessarily have zero coefficients when forward and
backward rotations are equivalent. The simplest nonlinear term has a structure
identical to the driving term of the vorticity, which should not be surprising since
rotation and vorticity have the same structure of an axial vector in the ẑ-direction.
These considerations motivate the following equation

∂tu(x, y, t) =
(

r −
(
∇2 + 1

)2
)

u − u3

+ g2 ẑ •∇ ×
[
(∇u)2 ∇u

]
+ g3∇ •

[
(∇u)2 ∇u

]
, (5.32)

where ẑ is a unit vector pointing along the positive-z-axis (perpendicular to the xy
plane of the fluid layer), r is the usual control parameter, and the parameters g2

and g3 are new constants. The term with coefficient g2 is the new term that reflects
the asymmetry between clockwise and anticlockwise rotations, and the constant g2

should be proportional to the angular frequency of rotation, at least for not too
large rotation rates. The term with coefficient g3 maintains all the symmetries of
the conventional Swift–Hohenberg equation (and was used in the modified equation
(5.23)). This term is convenient to include here since it allows the tuning of the
angle of the cross-roll instability, which is the instability leading to the break down
of the stripe state to spatiotemporal chaos. Several exercises in Chapter 7 apply the
amplitude-equation formalism to understand the properties of Eq. (5.32) and we
encourage you to explore this model further after reading that chapter.

14 This is not true near the lateral boundary, where the normal to the boundary provides an orientation reference.
In this case, new linear terms arise, such that, for large enough rotation rates, an entirely new linear instability
occurs to a state of traveling convection rolls (a type-I-o instability) radially localized near the boundary.
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5.2.5 Model for quasicrystalline patterns

The Swift–Hohenberg equation is formulated to describe patterns with a single
length scale, set by the critical wave number qc of a type-I-s instability. A sim-
ple modification to incorporate two incommensurate length scales leads to the
Lifshitz–Petrich equation that has quasiperiodic spatial patterns. As was discussed
in Section 4.3, quasiperiodic patterns were first realized in atomic systems, where
they are called quasicrystals. In nonequilibrium pattern-forming systems, they
have been observed in the Faraday crispation instability where a pattern of stand-
ing waves develops on the surface of a fluid shaken vertically. Patterns that are
quasiperiodic in space are found if the shaking has a time dependence comprised of
two frequencies, as shown in Fig. 1.16. It is easy to see how this leads to two length
scales, through the resonance condition of the dispersion relation of the surface
waves with the driving frequencies (actually half the driving frequencies, since this
is a parametric instability).

The Lifshitz–Petrich equation takes the form

∂tu = ru − (∇2 + 1)2(∇2 + q2)2u + γ u2 − u3. (5.33)

(It turns out that the symmetry-breaking term γ u2 must be included, as in
Section 5.2.1, since the stabilization of the quasicrystal pattern rests on three-wave
interactions generated by such a term.) The parameter q sets the second length
scale q−1. Quasicrystalline patterns are expected when this length is chosen to be
an appropriate incommensurate ratio to the other length scale (given by the unit

wave number q = 1 in the term
(∇2 + 1

)2
on the right-hand side of Eq. (5.33)).

An example of the stationary patterns generated by Eq. (5.33) is shown in Fig. 5.4.
Note that, by rescaling the u variable, the control-parameter set can be reduced to
the combination r/γ 2 and q.

5.3 Order-parameter equations

Our motivation for the Swift–Hohenberg equation was to find a simple partial
differential equation that reproduces some of the features of the linear instability
spectrum, that includes nonlinear terms to saturate the growth, and that could be
solved efficiently on finite spatial domains with boundary conditions of experimen-
tal relevance. The desire to obtain a simple real-space (local) form for the linear
terms when expressed in terms of differential operators led to uncontrolled approx-
imations of how the linear growth rate σq depended on the wave number q. Further
uncontrolled approximations were associated with the cubic nonlinear term, which
was chosen purely for simplicity. If we relax some of these constraints and instead
use a Fourier-space formulation that is best suited for periodic spatial domains, a
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Fig. 5.4 A12-fold symmetric quasiperiodic pattern formed by the Lifshitz–Petrich
equation (5.33). Parameters used were r/γ 2 = 0.015 and q = 2 cos(π/12). (After
Lifshitz and Petrich [66].)

better quantitative account of the behavior of real physical systems near threshold
can be achieved with an evolution equation that is still substantially simpler than the
fully quantitative evolution equations. The resulting equation is sometimes called
an order-parameter equation.

The order parameter in Fourier space ψq(t) can be introduced as the coefficient
of the linear mode at wave vector q, Eq. (2.22), at the critical parameter pc(q) for
that wave vector (giving Re σq = 0), so that the deviation from the uniform solution
becomes

up(x, t) =
∑

q

ψq(t)uq(x‖)eiq • x⊥ + c.c. + · · ·. (5.34)

This is an expansion in the linear modes, and so is expected to be useful near thresh-
old. We have written the expansion in terms of a sum over modes (a Fourier series)
as would be appropriate for a finite geometry with periodic boundary conditions.
In an infinite geometry, a Fourier integral would be used. The · · · in Eq. (5.34)
represent correction terms that are small near threshold. An evolution equation for
ψq(t) can be derived in the spirit of a Galerkin expansion by substituting Eq. (5.34)
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into the physical equations and collecting equations of the mode coefficients. Since
the evolution of ψq(t) is slow near threshold and for q near critical, the coefficients
of the spatial harmonics are calculated quasistatically, that is as the values given by
time-independent equations and the instantaneous values of ψq(t). Truncating this
procedure at cubic order in the expansion leads to an equation of the form

dψq

dt
= σqψq(t)+

∑
q1q2

K̄(q, q1, q2)ψq1(t)ψq2(t)ψq−q1−q2(t). (5.35)

Here σq is the exact linear instability spectrum. The interaction kernel K̄(q, q1, q2)

is some complicated function that must be calculated for each physical system. The
wave vector q − q1 − q2 of the third field in the nonlinear term is fixed by the
translational invariance of the system.

We could attempt to write this equation in terms of the real-space order parameter

ψ(x⊥, t) =
∑

q

ψq(t)e
iq • x⊥ . (5.36)

This would give an equation reminiscent of the Swift–Hohenberg equation except
that both the linear and nonlinear terms would involve nonlocal effects

∂tψ(x⊥, t) =
∫

L(x⊥, x′⊥)ψ(x′⊥, t) d2x′⊥

−
∫ ∫ ∫

K(x⊥, x′⊥, x′′⊥, x′′′⊥)ψ(x′⊥, t)ψ(x
′′
⊥, t)ψ(x

′′′
⊥, t) d2x′⊥ d2x

′′
⊥ d2x

′′′
⊥,

(5.37)

so that the resulting equation is not too informative. The Swift–Hohenberg equation
is obtained if we approximate the linear terms as a simple form in terms ofψ(x′⊥, t)
and its derivatives, and if the interaction kernel is replaced by a completely local
function δ(x⊥ − x′⊥)δ(x⊥ − x

′′
⊥)δ(x⊥ − x

′′′
⊥). The form of these equations is suf-

ficiently general that the mean flow effects common in fluid systems could be
included as part of the interaction kernels K̄ and K . However, it is useful to sepa-
rate out these long-range effects and to include them explicitly in ways analogous to
Section 5.2.3, leaving the explicit interaction kernel K(x⊥, x′⊥, x′′⊥, x′′′⊥) short range
(nonzero only for x′⊥, x′′⊥, x′′′⊥ close to x⊥).

Equations (5.35) and (5.37) are derived as weakly nonlinear expansions near
threshold and for q near qc (although the linear term is correct for all q). However
for Rayleigh–Bénard convection, where these equations have been compared with
more complete calculations, they often give quite accurate results even up to twice
the critical Rayleigh number. Figure 5.5 shows the good agreement for the stability
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Fig. 5.5 Comparison of the stability balloon for Rayleigh–Bénard convection for
a fluid with Prandtl number 0.71 calculated with the order-parameter equation
(5.35) (dashed lines and open circles) and the more complete Galerkin calculation
(solid lines and crosses). The instabilities are skew-varicose (SV), Eckhaus (E),
zigzag (ZZ), and knot (K). (From Decker and Pesch [31].)

(a) (b)

Fig. 5.6 Comparison of spiral defect chaos in (a) numerical simulations of the
order-parameter equation (Eq. (5.35) supplemented with mean flow terms) and (b)
experiment, for a fluid with Prandtl number 0.7 at a Rayleigh number R/Rc = 2. In
(a) the temperature field at midplane, and in (b) the shadowgraph image is shown.
(Source as for Fig. 5.5.)

balloon of Rayleigh–Bénard convection for a fluid of Prandtl number 0.71 (see
Section 4.2.2), and Fig. 5.6 shows the remarkably good reproduction of the spiral
defect chaos state. Quantitative measures such as the variation of the mean wave
number with Rayleigh number are also well reproduced.
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5.4 Complex Ginzburg–Landau equation

So far we have concentrated on model equations for stripe patterns arising from a
type-I-s instability. The complex Ginzburg–Landau equation is a model evolution
equation with complex coefficients for a complex-valued field A(x, t) that describes
the properties of nonlinear oscillations and waves such as might develop from a
type-III-o instability (oscillatory instability at zero wave number). The equation
can be written in a simple form that eliminates unnecessary constants,

∂tA = A + (1 + ic1)∇2A − (1 − ic3)|A|2 A, (5.38)

where the only two parameters, c1 and c3, are real numbers. Commonly used
boundary conditions are periodic boundaries and the condition A = 0.

Equation (5.38), often described as the CGLE, has been studied in one, two,
and three spatial dimensions, usually with periodic boundary conditions or with
the condition that A = 0 on one or more boundaries. Unlike the Swift–Hohenberg
equation, the complex Ginzburg–Landau equation can be derived by a systematic
multiple scales perturbation analysis for the weakly nonlinear behavior near a type-
III-o instability as described in Section 10.2.2, and so there is an increased likelihood
of obtaining quantitative agreement with some experimental details sufficiently
close to onset. On the other hand, in contrast to the corresponding equation for the
weakly nonlinear behavior near a type-I-s instability (the real amplitude equation
Eq. (6.9) to be introduced in Chapter 6), which had already been studied in other
branches of physics such as the theory of the phase transition to superfluidity and
superconductivity, the complex version had not been studied before. As analytical
and numerical investigations of the CGLE accumulated, researchers realized that
this equation has a rich and interesting set of dynamics, and started studying this
equation intensely in its own right as a model of the type of complex behavior that
can occur in nonequilibrium systems.

The behavior of Eq. (5.38) is rich and diverse. However, our discussion here
will be brief since this equation will be described in detail in Chapter 10. The
limit c1 = c3 = 0 yields the real Ginzburg–Landau equation. In the opposite limit
of c−1

1 , c−1
3 → 0, when the imaginary terms dominate, the equation becomes the

nonlinear Schrödinger equation, an equation that is famous in applied mathematics
for being analytically solvable in one spatial dimension with soliton solutions. The
nonlinear Schrödinger equation also is used in the study of Bose condensation and
superfluidity at zero temperature, where the field A then has the physical significance
of the wave function of the Bose condensate, and the equation is known as the
Gross–Pitaevski equation. The nonlinear Schrödinger equation also shows up in
the study of light pulses propagating down fiber optics and therefore is fundamental
to the transmission of information through the Internet.
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If c1 = 0 and c3 �= 0, Eq. (5.38) reduces to a simple example of a “λ−ω’’ system,
much studied in the applied mathematics literature. Perturbing about the real case
c3 = 0 then provides an analytic approach to studying the properties of the complex
case. Solutions of Eq. (5.38) in which the field magnitude |A| is time independent
can be related through length and time rescaling to solutions for different parameter
values c′

1 and c′
3, satisfying

c′
1 + c′

3

1 − c′
1c′

3
= c1 + c3

1 − c1c3
. (5.39)

This allows a restricted set of solutions for the λ−ω equation to be transferred to
the more general case.

5.5 Kuramoto–Sivashinsky equation

As one of the simplest continuum models that has spatiotemporal chaos, the
Kuramoto–Sivashinsky equation has been widely used to develop and to test ideas
about how to quantify spatiotemporal chaos. The original form is the evolution
equation for a scalar field u(x, t)

∂tu = −∂2
x u − ∂4

x u − u ∂xu, (5.40)

on a spatial interval [0, L] of length L, which is the only parameter. The most
commonly used boundary conditions are periodic boundaries, such that u(x, t) =
u(x + L, t) for all x, or the conditions u = ∂xu = 0, which are similar to the
conditions Eq. (5.10) used for the Swift–Hohenberg equation.

Kuramoto derived this equation to describe the dynamics on the unstable side of
the Eckhaus instability in a stationary stripe state. In this context, u = ∂xφ is the
gradient of a phase field φ(x, t) that describes the positions of the stripes. Equation
(5.40) can alternatively be written as an evolution equation for the phase

∂tφ = −∂2
xφ − ∂4

xφ − 1
2(∂xφ)

2. (5.41)

This is a nonlinear phase diffusion equation with a negative diffusion term −∂2
x u that

causes instability, and with a fourth-order derivative term that quenches the insta-
bility at short length scales. Independently and about the same time as Kuramoto,
Sivashinsky derived Eq. (5.40) to describe the dynamics of a combustion front,
with u the displacement of the front from a straight line and x the coordinate along
the front. (Think of a Bunsen burner that has been beaten with a hammer to form
a long one-dimensional slot through which the flame emerges.) This equation also
arises when studying the flow of a thin film of liquid down an inclined plane, in
which case u(x, t) describes the height of the liquid film along a horizontal line that
is parallel to the base of the plane.
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Fig. 5.7 Numerical space-time solutions u(x, t)of the one-dimensional Kuramoto–
Sivashinsky equation, Eq. (5.40), for the boundary conditions u = ∂xu = 0. For
both panels, the spatial coordinate x is the horizontal axis while time t increases
upwards along the vertical axis. (a) For a domain of size L = 50, most initial
conditions evolve into a spatiotemporal chaotic state with Lyapunov fractal dimen-
sion D ≈ 8.8. Spatial curves u(x, ti) are plotted every �T = 1 time units starting
at time t = 50 000 so this is an approximately nontransient state. (b) For a slightly
larger cell with L = 54, most initial conditions lead to a periodic attractor of
period T = 127.6 time units. (From Tajima and Greenside [100].)

The Kuramoto–Sivashinsky equation can also be derived as a limiting case of
the complex Ginzburg–Landau equation when the parameters c1 and c3 are chosen
to be close to an interesting stability boundary. We will see in Chapter 10 that the
nonlinear oscillation and wave solutions of the CGLE become unstable for c1c3 > 1
through an Eckhaus-like instability known as the Benjamin–Feir instability. Again
a reduction to a phase description in terms of the phaseφ of the complex amplitude is
possible near this instability, and the Kuramoto–Sivashinsky equation in the form
Eq. (5.41) is then the lowest-order dynamical equation for the evolution of this
phase.The interesting dynamics seen in numerical simulations has led to widespread
interest in Eq. (5.40), independently of these physical contexts.

Writing Eq. (5.40) in the form

∂tu = 1
4 −

(
∂2

x + 1
2

)2
u − u ∂xu, (5.42)
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reveals some similarities to the one-dimensional version of the Swift–Hohenberg
equation, Eq. (5.9). The linear term

[
1/4 − (∂2

x + 1/2)2
]
u is the same as in Swift–

Hohenberg for r = 1/4 except the critical wave number here has a value of 1/2
instead of 1. From our discussion in Section 5.1, we see that the uniform state u = 0
is unstable to the growth of cellular structures over a band of wave numbers from
q = 0 to q = 1 with a maximum growth rate at q = 1/2.

In fact, stable stationary nonlinearly saturated spatially periodic structures have
been shown to exist over a band of wave numbers. However numerical simulations
show that most initial conditions do not lead to one of these periodic states (even over
long simulation times) but rather to a persistent time-dependent state that is chaotic
according to numerical estimates of the largest Lyapunov exponent λ1 and by the
observation of broad power spectra of time series. Although Eq. (5.40) is simple to
write down and easy to simulate numerically, it is still extremely difficult to study
analytically. In particular, no one has yet rigorously proved that any solution of the
Kuramoto–Sivashinsky equation is chaotic. For most scientists, this is a moot point
since the properties of the presumably chaotic dynamics are empirically statistically
stationary and the chaos endures for as long as any one has had the patience to look
(over 106 time units in some simulations). Still, it would be useful to know whether
spatiotemporal chaos truly exists or whether the observed simulations correspond
to long-lived transients.

Sometimes a “generalized Kuramoto–Sivashinsky’’ equation is used, in which a
linear term −ηu with control parameter η is added:

∂tu = −ηu − ∂2
x u − ∂4

x u − u ∂xu. (5.43)

The u = 0 state is now stable for η > 1/4, and, as η decreases toward zero,
this state undergoes a type-I-s instability at η = 1/4 with a critical wave number
of qc = 1/

√
2. For large spatial domains, there is an interesting transition as η is

decreased from η = 1/4, for which the dynamics is periodic, to η = 0, for which the
dynamics is chaotic, via a mechanism called spatiotemporal intermittency. Here the
periodic state breaks up into a mix of disordered lower-amplitude regions (called
“chaotic’’) and ordered higher-amplitude regions (called “laminar’’). The chaotic
regions become a larger and larger fraction of the domain until, at η = 0, the entire
domain is chaotic.

5.6 Reaction–diffusion models

The focus of Turing’s work was on instabilities to stationary spatial structure (type-
I-s), but we have already seen in Chapter 3 that the simple two-variable model
can lead to an instability to spatially uniform oscillations (type-III-o), and this
gives propagating waves above onset. Reaction–diffusion models are therefore
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used to understand the oscillatory and wave phenomena in chemical systems, such
as shown in Fig. 1.18(a). As we discussed in Section 3.2.2, there is not a systematic
method for precisely formulating the reaction terms in a chemical system, since
there may be many unknown intermediate complexes. Thus much of the work in
this area involves simplified models of a reduced set of chemical concentrations,
such as the Brusselator model introduced in the Etude 3.1 on page 105. The reaction
rates often involve phenomenological nonlinear functions, rather than the products
of powers of concentrations as expected for elementary reactions from the Law
of Mass Action, with the more complicated function representing the effect of
short-lived intermediaries not included in the equations retained in the model.

The combination of reaction (a rate of change of a field depending in a nonlinear
manner on the component fields) and diffusion (a rate of change of a field at a
point depending on nearby field values) is a general concept that applies to diverse
systems in physics, chemistry, biology, and other fields. Reaction–diffusion models
are therefore widespread, even outside the field of reacting and diffusing chemical
(or gene product) concentrations. For example, a simple model in neurobiology
known as the Wilson–Cowan model simplifies the complex neuronal structure to
two populations: a population E(x, t) of excitory neurons whose activity stimulates
the activity of other neurons to which they are connected; and a population I(x, t)
of inhibitory neurons, whose activity tends to reduce the activity of connected
neurons. The rate of change of each population will depend in a nonlinear way on
a combination such as aE − bI with a and b positive constants that quantify the
degree of connectivity of the two sets of neurons. This gives the reaction terms.
The diffusion terms come naturally from the spatial distribution of the neurons and
the connections between them. The complex connections can be reduced to simple
Laplacian operators for phenomena in which E and I vary over distances large
compared to the range of connections.

As we will study in detail in Chapter 11, a pair of nonlinear reaction–diffusion
equations can lead to propagating pulses. As a consequence, simple reaction–
diffusion models have been used to understand dynamic phenomena in excitable
media such as the propagation of electrical pulses in nerve fibers and in heart tis-
sue. The “diffusion’’ in these equations actually represents the effects of electrical
resistance,15 and one of the variables is an electrical voltage across the cell mem-
brane. As you can readily appreciate, nerve fibers or heart tissues, are complex
structures, and various levels of models are used to get approximate descriptions.
The simplest models are two-variable descriptions such as the FitzHugh–Nagumo
model described in Section 11.1.3, with one variable that represents the voltage
across the membrane, the other variable represents an ion concentration. The

15 In the presence of a nonzero resistivity, charges placed at a point will spread diffusively.
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original Hodgkin–Huxley equation, which we will discuss in Section 11.1.1, is
a more complicated and more quantitatively accurate reaction–diffusion equation
that was motivated by careful experiments on squid axons. It has four variables,
a membrane voltage and three gating variables which represent the time- and
voltage-dependent probabilities for channels in the nerve membrane to open that
selectively allow potassium and sodium ions to flow. As a wealth of experimental
information has accumulated since the Hodgkin–Huxley model was published in
the 1950s, models involving more ions and gating variables have been developed
to improve agreement with the data, with some models involving more than 20
coupled nonlinear pdes. These complicated modern mathematical equations are a
good example of how the distinction between a model and a theory can become
blurred.

5.7 Models that are discrete in space, time, or value

We have formulated most of our discussion of pattern formation in terms of partial
differential equations that describe continuously varying media. Other kinds of
models have been widely studied, for example models that are discrete in space
such as a network of coupled odes, that are discrete in space and time such as a
network of coupled maps, or even cellular automata models that are discrete in
time, space, and in their field values. The use of models with discrete features may
be motivated by the attempt to describe particular physical systems (for example,
pattern formation in a biological system may take place at a scale comparable with a
cell size in which case a discrete model may be more appropriate than a continuum
one) or simply for the numerical convenience. In the latter case, if the results are
used as a basis for understanding pattern formation in continuum systems, the
role of the discretization must be carefully investigated since the numerical mesh
may have a geometric structure that can bias the numerical results. For example,
a square grid of mesh points introduces an anisotropy such that numerical stripe
solutions may incorrectly align along a grid axis, contrary to the rotational isotropy
of the mathematical model and of the domain on which the problem is studied.
Of course, at some level, essentially all numerical simulations involve some kind
of discretization, as we discuss briefly in Chapter 12. Testing the convergence of
the numerical results as some discretization is refined is an essential part of any
simulation.

5.8 Conclusions

The preceding sections have shown that model equations can capture a surprisingly
broad range of pattern formation, despite the fact that these equations are greatly
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simplified compared to a full quantitative description. The reduced dimensional-
ity and reduced number of fields makes the model equations more analytically
tractable. They are also much easier to simulate, for example in larger domains, for
longer times, and for a greater choice of parameter values. Especially important is
that it is easy to turn on or off specific physical effects in a model equation that
would be difficult to do with a more complete description.

Model equations are, in fact, used heavily in nearly all frontiers of science to
obtain insights into complex phenomenon. The role of model equations in cur-
rent science represents a substantial shift in the philosophy of what it means
to “understand’’ some experiment. Before computers became widely available,
understanding meant obtaining analytical solutions of fully quantitative evolution
equations whose structure could be related to fundamental conservation laws of
mass, momentum, and energy. But the observations of diverse nonequilibrium phe-
nomena such as those discussed in Chapter 1 show that the spatiotemporal structure
of even the simplest nonequilibrium systems are so complex that it is pretty much
useless to write down analytical solutions that describe such complexity, even if
this were possible. Instead, scientists often use their mathematical skills to discover
simplified mathematical models of the kind discussed in this chapter and elsewhere
in the book, and then use a combination of analytical and numerical insights to
understand their properties.

5.9 Further reading

(i) An extensive review of the complex Ginzburg–Landau equation is “The world of the
complex Ginzburg-Landau equation’’ by Aranson and Kramer [6].

(ii) Theory and Applications of Coupled Map Lattices by Kaneko [52] describes pattern
formation and chaos in coupled map lattices. A recent compilation of reviews edited
by Chazottes and Fernandez on the same topic is Dynamics of Coupled Map Lattices
and of Related Spatially Extended Systems [20].

Exercises

5.1 Analysis of symmetries in a model equation: Consider the following
nonlinear partial differential equation

∂tu(x, y, t) = ru −
(
∇2 + 1

)2
u + ∇ •

(
u2 ∇u

)
, (E5.1)

for a real-valued field u(x, y, t) in an infinite two-dimensional plane,
where ∇2 = ∂2

x + ∂2
y is the two-dimensional Laplacian. Justifying your

answers, explain whether this equation is

(a) time-translational invariant under the substitution t → t+c for a constant c
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(b) translationally invariant under x → x + c for a constant vector c
(c) space-inversion symmetric under x → −x
(d) time-inversion symmetric under t → −t
(e) field-inversion symmetric under u → −u
(f) rotationally invariant under x → Mx, where M is an orthogonal (length-

preserving) matrix such that MTM = I .

Why is it important to know about such symmetries?

5.2 Potential of the Swift–Hohenberg equation:

(a) For a spatial domain with periodic boundary conditions and for a domain
with the boundary conditions Eq. (5.10), show that Eq. (5.12) follows from
Eq. (5.11) provided that u(x, t) evolves according to the Swift–Hohenberg
equation, Eq. (5.9). To carry out the multivariate version of “integration
by parts,’’ you will want to use the vector identity

∇ • (f ∇g) = ∇f •∇g + f ∇2g, (E5.2)

and the two-dimensional form of Gauss’s law∫ ∫
V

∇ •v dA =
∫

S
v • n̂ dl, (E5.3)

that relates the “volume’’ integral of the divergence of a vector field v(x, y)
over the two-dimensional domain to the “surface’’ integral of v over the
closed boundary of the domain, where n̂ is the unit vector that is locally
normal to the boundary and pointing to the exterior direction.

(b) Show that the potential V [u(x, y, t)], Eq. (5.11), is bounded below by the
quantity (−1/4)r2S, where S is the area of the domain. This lower bound
implies that the monotonic decrease of V implied by Eq. (5.12) cannot
continue forever.

5.3 Fastest growing mode of the Swift–Hohenberg model does not minimize
the potential: Consider the one-dimensional Swift–Hohenberg equation for a
field u(x, t) in an infinite domain that is close to onset, with r � 1. Using a
“Galerkin approximation’’ truncated at second order for a uniform stripe state
at wave number q,

ψ � a1 cos(qx)+ a3 cos(3qx), (E5.4)

find the value of the wave number qm correct to O(r2) that minimizes the
potential per unit length v(q). Show that qm is not the same as the wave
number qmax for the maximum growth rate of a small perturbation from the
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uniform u = 0 state. (Hint: evaluate a1, a3, and qm to sufficient order in r by
minimizing the potential with respect to each parameter.)

Your result has the interesting implication that the wave number selected by
the fastest growing mode is not the wave number preferred by the potential so
that a nonlinear evolution of the wave number is expected.

5.4 Model integration times and experimental observation times: Based on
the discussion of Section 5.1.4, if a convection experiment is observed for a
time T in seconds, for what length of time T ′ should a numerical simulation
of the Swift–Hohenberg equation be carried out to match the experimental
observation time?

Note: Recall that for the dimensionless Boussinesq equations, time is mea-
sured in units of the vertical thermal diffusion time d2/κ , where d is the
thickness of the convecting fluid layer and κ is the fluid’s thermal diffusivity.
Assume for this problem that the convecting fluid has a depth of d = 1 mm
with a mean temperature of 20 ◦C so you can use the data in Table 1.1 on
page 8.

5.5 Mean flow vanishes for straight or radial rolls: Show that the right side
expression of Eq. (5.30), which drives the mean flow Eq. (5.27), vanishes for
stripe solutions u(k •x) (where k is some constant wave vector) and vanishes
for radially oriented rolls of the form u(kr) in a polar coordinate system (r,φ).
Thus mean flows arise from deviations from straight or radial stripes, as well
as from variations in the local roll amplitude.

5.6 A model with rectangular cell patterns: Consider the generalized Swift–
Hohenberg equation (5.23) with α = 1 and β = 0.

∂tu(t, x, y) = ru −
(
∇2 + 1

)2
u + ∇ •

(
(∇u)2 ∇u

)
. (E5.5)

(a) Show that Eq. (E5.5) with periodic boundary conditions or with the bound-
ary conditions Eq. (5.10) has potential dynamics so that nontransient
oscillatory or chaotic behavior is not possible.

(b) Sufficiently close to onset (0 < r � 1), a Fourier mode expansion of a
stationary state u(x, y) can be approximated by the lowest-order Fourier
modes:

u(x, y) = Ax cos(qxx)+ Ay cos(qyy). (E5.6)

Substitute Eq. (E5.6) into Eq. (E5.5) and obtain expressions for the coef-
ficients Ax and Ay to lowest order, in terms of the parameter r and the
wave numbers qx and qy. Determine numerically the shape of the region
in the qxqy plane over which solutions exist for r = 1/4. The special case
qx = qy gives square cells.
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Is it necessary to consider rectangular patterns of other symmetry, e.g.
involving just sine modes or a combination of sine and cosine modes?

(c) Show that for small r, the square solution with qx = qy = 1 and Ax =
Ay = AQ (with AQ to be calculated by minimizing the potential) has a
lower potential density than a stripe solution with wave number qx = 1
given by Ax = AS, Ay = 0 (with AS to be calculated by minimizing the
potential density). Also show that as a function of Ax and Ay the stripe state
is a saddle of the potential density, whereas the square state is a minimum,
so that squares would be expected to be the physical state near onset.

Why might rectangles also be seen, even though they have a higher
potential than squares?

(d) Advanced and open ended: Study numerically the properties of Eq. (E5.5)
in a large periodic square box and in a large square box with boundary con-
ditions Eq. (5.10). Starting from small-amplitude random initial conditions,
what kinds of patterns form? Are square or rectangular cells prevalent?
How do the rectangular cells change (if at all) near the lateral boundaries?
Modify Eq. (E5.5) to break rotational symmetry as in Section 5.2.4 and
study empirically whether sustained dynamical states now occur and what
they look like. Following the discussion on page 189, study numerically the
dynamics of rectangular cells in the presence of a mean flow. Is a sustained
dynamics observed? If so, what are its qualitative properties?

5.7 Long-lived complex transients in pattern-forming systems: Read the three
papers

(a) Order, disorder, and phase turbulence, B. Shraiman, Phys. Rev. Lett. 57,
325 (1986)

(b) Are attractors relevant to turbulence?, J. Crutchfield and K. Kaneko, Phys.
Rev. Lett. 60(26), 2715 (1988)

(c) Size-dependent transition to high-dimensional chaotic dynamics in a two-
dimensional excitable medium, M. Strain and H. Greenside, Phys. Rev.
Lett. 80, 2307 (1998)

and summarize what they say about the possible role of “supertransients’’
in sustained nonequilibrium systems. A supertransient is a transient complex
spatiotemporal state whose average decay time to an asymptotic stationary or
periodic state increases rapidly, typically exponentially, with the system size L.
It is an open research question whether long-lived seemingly chaotic spatiotem-
poral states observed in experiments and in simulations of large domains are
truly chaotic or just supertransients. The question is more than academic since
strategies for controlling chaos (that use small perturbations to convert a chaotic
behavior to a periodic behavior) may not work for a supertransient.
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An advanced challenge for the reader would be to derive analytically (rather
than deduce indirectly by simulation) the dependence of the average tran-
sient time on the system size L, say for some one-dimensional pattern-forming
model.

Note that in all three papers, it was essential that the authors used model
equations to investigate supertransients since simulation of quantitatively
accurate evolution equations like the Boussinesq equations would have not
been possible for such long times and for such big domains.

5.8 Heuristic derivation of the one-dimensional Schrödinger equation: The
trick of interpreting a growth-rate equation Eq. (5.1) as an evolution equation
Eq. (5.3) for a plane wave has a long history in mathematics and science.
A particularly important scientific example was a heuristic derivation of
the Schrödinger equation, the fundamental evolution equation of quantum
mechanics that in principle can describe all properties of atoms, molecules,
and materials. The flavor of the derivation is the following. From classical
mechanics, we know that a point particle of mass m and speed v has kinetic
energy

E = 1

2
mv2 = p2

2m
, (E5.7)

where we have rewritten the kinetic energy in terms of the momentum p = mv
of the particle. Through guesses and experiments which showed that parti-
cles could act like waves and vice versa, scientists came to believe that the
energy E and momentum p of a quantum particle of mass m were respectively
proportional to the angular frequency ω and wave number k of its wave-like
properties as follows:

E = �ω, and p = �k, (E5.8)

where � is the key physical constant of quantum mechanics known as Planck’s
constant. (Although the relations in Eq. (E5.8) appear mathematically trivial,
they represent profoundly deep and nonobvious physical insights since they
relate particle properties like E and p to wave-like properties.) Finally, exper-
iments like the 1927 Davison–Germer experiment (scattering of an electron
beam from the surface of a crystal) suggested that free particles acted like plane
waves of the form exp(i(kx − ωt)).

(a) Substitute Eq. (E5.8) into Eq. (E5.7) to obtain a “growth rate’’ equation
(actually, a dispersion relation) ω = ω(k).

(b) By multiplying both sides of your growth rate equation with the plane
wave u(x, t) = exp(i(kx − ωt) and by following the steps that led to
Eq. (5.3), deduce a partial differential equation for the evolution of the
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field u. This is the free-particle Schrödinger equation. Since experiments
show that the principle of superposition holds for particle waves, there is
no need to explore what nonlinear terms to add to this linear evolution
equation.

(c) Explain why this derivation does not work for a real-valued plane wave
of the form sin(kx − ωt), so that you need to use the complex form of a
plane wave. Your analysis helps to explain why the Schrödinger equation
naturally involves complex numbers, even though it is an equation that
describes nature (and very accurately at that).



6

One-dimensional amplitude equation

Chapter 4 discussed the evolution of infinitesimal perturbations of a uniform state
into saturated, stationary, spatially periodic solutions. By restricting attention to
such solutions, we were able to study the effects of the nonlinearities, using ana-
lytical methods near threshold and numerical methods further from threshold.
However, most realistic geometries do not permit spatially periodic solutions since
these solutions are usually not compatible with the boundary conditions at the lat-
eral walls. Even if periodic solutions are consistent with some finite domain, they
do not exhaust all the possible patterns. As we have seen in Section 4.4, typi-
cally patterns have the ideal form (stripes, hexagons, etc.) only over small regions
and these ideal forms are distorted over long length scales or disrupted in local-
ized regions by defects. In addition, the distortions and defects are often time-
dependent.

In this chapter, we introduce the amplitude equation formalism which provides
a powerful and broadly useful method to study spatial and temporal distortions
of ideal patterns. The formalism represents a substantial conceptual and technical
simplification in that, near onset and for slowly varying distortions of periodic
patterns, the evolution of the many fields u(x, t) that describe some physical system
(e.g. temperature, velocity, and concentration fields) can be described quantitatively
in terms of the evolution of a single scalar complex-valued field A(x, t) called
the amplitude.1 The evolution equation for the amplitude is called the amplitude
equation and is typically a partial differential equation (pde). Amplitude equations
capture three basic ingredients of pattern formation: the growth of a perturbation
about the spatially uniform state, the saturation of the growth by nonlinearity, and

1 More precisely, each locally stripe-like region of a pattern will be described by a single amplitude. You will see
in Chapters 7 and 8 examples of patterns that consist of superpositions of stripes or of two regions of stripes
that have a common boundary. For such patterns, two or more amplitudes are needed to describe the dynamics,
with each amplitude evolving according to its own equation. Carrying out the expansion to higher order can
also lead to more than one amplitude field per stripe region.

208
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what we will loosely call dispersion, namely the effect of spatial distortions. The
interplay of these three effects lies at the heart of pattern formation and so amplitude
equations have yielded many useful quantitative insights.

Amplitude equations also naturally extend into the weakly nonlinear regime the
classification of pattern-forming systems based on the type of linear instability that
was discussed in Section 2.5. Rather remarkably, it turns out that the form of the
amplitude equation is dictated by the linear classification (type I-s, type III-o, etc.)
together with the symmetries of the system and some simple assumptions about
the effects of nonlinearity. The amplitude equations corresponding to the different
linear transition types therefore contain certain behaviors that are characteristic
of all such systems. Behaviors that are common to a class of diverse systems are
often called universal.2 The remarkably similar pattern formation that is observed
in diverse systems can partially be understood as a consequence of the universal
forms of the amplitude equations.

The increased generality of the states that can be investigated within the ampli-
tude equation formalism comes with the penalty that amplitude equations have
a restricted range of validity. First, amplitude equations are quantitatively accu-
rate only sufficiently close to threshold since they are derived as expansions about
threshold in the small reduced parameter

ε = p − pc

pc
, (6.1)

where p is the control parameter and pc is its critical value above which the uniform
state becomes unstable in the ideal infinite system. Second, the distortions that can
be studied are only those modulations of ideal patterns (stripes, squares, hexagons,
etc.) that vary slowly in space and time compared to the basic length and time
scales of the dynamical equations. Third, only lateral boundary conditions that
vary sufficiently slowly in time and in space can be treated.

To keep the discussion manageable, in this chapter we discuss only amplitude
equations for the type-I-s instability and postpone until Chapter 10 the discus-
sion of amplitude equations for oscillatory instabilities (type I-o and III-o). We
will also restrict our attention to the one-dimensional case of a single extended
coordinate x⊥ = x. This assumption includes stripe states that vary in a direction

2 The word universal is not meant to imply that the behavior applies to every system, but rather to a whole class of
systems characterized by broad similarities, such as symmetries and instability type. The behavior for systems
in different “universality classes’’ may be totally different. The idea of universal behavior is borrowed from the
study of second-order equilibrium phase transitions, for which certain features such as critical exponents were
found to be the same for all systems that had the same symmetry and spatial dimensionality, independently of
the details of their atomic composition.
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along the stripe normal when there are two extended directions. The next chapter
will discuss stripes that can vary in transverse as well as longitudinal extended
directions.

The rest of this chapter is organized as follows. Section 6.1 introduces the com-
plex amplitude A that describes slow modulations of a stripe state near threshold.
(This section generalizes the discussion of Section 4.1.1 by allowing the amplitude
to vary spatially.) The form of the corresponding evolution equation is derived
in Section 6.2 using symmetry arguments, and we explain how the coefficients
in the resulting amplitude equation can be deduced from some simple calcula-
tions. (A systematic but more technical derivation of the amplitude equation that
uses the method of multiple-scale perturbation theory is given in Appendix 2
and can be skipped upon a first reading.) Since the amplitude equation is a pde,
boundary conditions must be prescribed for a unique solution to be obtained.
These conditions can be derived from the boundary conditions on the physical
fields, either heuristically or again by the more systematic method described in
Appendix 2.

We then discuss in Section 6.3 several general properties of the amplitude
equation. With an appropriate scaling of time, space, and magnitude, we dis-
play the universality of the amplitude equation and then discuss some physical
implications of universality. We next show that, for certain boundary conditions,
the one-dimensional type-I-s amplitude equation has potential dynamics, just like
the Swift–Hohenberg equation that we discussed in the previous chapter (see
Section 5.1.2). The potential associated with the lowest-order amplitude equation
can provide a more intuitive understanding of the dynamics and can greatly simplify
calculations such as deducing the velocity of a climbing dislocation (Fig. 4.11). On
the other hand, potential dynamics can be misleading since the existence of the
potential relies on ignoring higher-order terms in the perturbation expansion that
yields the amplitude equation. Because all potential dynamics eventually relax to
a time-independent pattern and since experiments and simulations show that a sus-
tained time dependence is sometimes observed just above the onset of type-I-s
instabilities, the lowest-order amplitude equation is not able to encompass the full
richness of possible behaviors.

We conclude this chapter on the one-dimensional amplitude equation with three
applications that illustrate the power of the method: how boundaries affect a non-
linear pattern, the structure of the stability balloon near threshold, and the dynamics
of slowly varying compressions and dilations of a stripe pattern. The latter can be
analyzed in terms of how the phase of the complex amplitude evolves in time and so
illustrates the value of studying phase dynamics. More sophisticated applications
of the amplitude equation will be described in Chapter 8 while phase dynamics is
studied more generally in Section 9.1.1 and Section 9.1.2.
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6.1 Origin and meaning of the amplitude

The idea of a slowly varying amplitude function that modulates some stationary
periodic pattern of interest is a generalization to a continuum of modes of the beating
that occurs between two sinusoidal modes that have almost the same periods. If
you have ever tried to tune (or listened to someone tune) a stringed instrument
like a guitar using a tuning fork, you will have heard a beating effect in which
the combined sound of the tuning fork and of a vibrating string that is almost in
tune increases and decreases slowly in intensity. A similar beating occurs for the
sum of two spatially varying modes cos(q1x) and cos(q2x) with nearly identical
amplitudes and nearly identical wave numbers q1 ≈ q2. If we denote the mean
wave number by qc = (q1 + q2)/2, we can write

cos(q1x) + cos(q2x) =
[

2 cos

(
q1 − q2

2

)
x

]
cos(qcx). (6.2)

The quantity in brackets can be identified as an amplitude A(x) that varies slowly
in space in that, for |q1 − q2| � qc, the spatial position x has to change by a large
amount �x � q−1

c for A to change by a substantial amount.
A similar beating effect, with a slowly varying multiplicative modulation A(x, t)

of a more rapidly varying basic pattern, occurs for time-dependent patterns near
onset that are close to one of the stationary periodic patterns described in Fig. 4.6.
The key insight comes from Fig. 2.7. Just above the onset of instability, correspond-
ing to the curve labeled p > pc in the figure, only modes whose wave numbers q
lie in a narrow band q−

N < q < q+
N are available to construct some nonlinear

state. There will then be a slow spatial beating because the nonlinear state will be
a superposition of modes with almost identical wave numbers, centered about the
critical wave number qc. We also expect the amplitude A(x, t) to vary slowly in
time because, sufficiently close to onset, all growth rates are small by continuity
(since the growth rate vanishes at onset).

On the basis of these observations, we introduce an amplitude A(x, t) intention-
ally as a strategy to investigate pattern formation near onset, and then explore its
properties and confirm its value through explicit calculations and by comparisons
of the calculations with experiments and simulations. Assuming the simple case
of a single extended direction x⊥ = x, we define a spatially dependent complex
amplitude A(x, t) in terms of a perturbation up = u(x, x‖, t)−ub(x‖) of the uniform
base state ub by the equation3

up(x, x‖, t) = A(x, t)uc(x‖)eiqcx + c.c. + h.o.t. (6.3)

3 For a type-III-o instability, the same ansatz is used except that the “fast’’ stripe structure eiqcx is replaced by a
fast temporal variation e−iωct , see Eq. (10.10). Similarly, for a type-I-o instability, a traveling wave ei(qcx−ωct)

is used instead, see Eq. (10.62).
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The notation “h.o.t.’’ denotes higher-order terms that are smaller in magnitude than
the displayed terms in the limit that the reduced bifurcation parameter Eq. (6.1)
becomes sufficiently small. For a technical reason that simplifies the multiple-scale
perturbation calculation described in Appendix 2, we choose to base our expansion
around the critical onset mode uc(x‖)eiqcx, where qc is the critical wave number that
maximizes the growth rate σ(q, pc) at onset p = pc when σ first becomes zero.4

(The growth rate σ is real since we assume a type-I-s instability.) The function
uc(x‖), which corresponds to uqc(x‖) in Eq. (2.22), is the shape of the critical
unstable mode in the confined directions, and can be determined explicitly from a
prior linear stability calculation of the uniform state.

It is not obvious that time-dependent solutions of the full evolution equations can
be expressed in the form Eq. (6.3). The multiple-scales method of Appendix 2 con-
firms that this is possible as well as shows how to calculate the higher-order terms
in Eq. (6.3) explicitly. For example, to lowest order in the expansion about a stripe
solution, the amplitude A is found to depend on space x and time t as A(

√
εx, εt). Suf-

ficiently close to onset, positive powers of ε are small quantities and the amplitude
then indeed changes slowly as x or t are varied by amounts of order one. Because
the multiple-scales perturbation method requires a lengthy amount of algebra for
even the simplest pattern-forming systems, for most of this book we will avoid the
technical details of the systematic calculations and proceed more phenomenologi-
cally, with an emphasis on understanding the implications of the amplitude-equation
formalism.

Figure 6.1 gives some intuition about the effects of a slowly varying ampli-
tude modulation A(x) on a rapidly varying critical stripe state eiqcx. We write a
representative field u(x) in the form

u(x) = A(x)eiqcx + c.c., (6.4)

with base wave number qc = 1 and with a modulation function

A(x) = [0.5 + 0.1 cos(0.1x)]ei cos(0.2x), (6.5)

that is constructed ad hoc to produce a slow modulation in space. (We ignore the time
dependence of A for this example.) The expression |(1/A)dA/dx| is the effective
local wave number in the Fourier expansion of A and you can verify graphically
that its maximum is about 0.2. Since this is small compared to the critical wave
number qc = 1, the amplitude A indeed slowly modulates the periodic state eiqcx.An
obvious feature of Fig. 6.1 is the modulation of the magnitude of the sinusoid. But
if you look carefully, you will also see that the local periodicity of u (for example

4 Alternatively, qc is the critical wave number that minimizes the neutral stability curve Re[σ(q)] = 0, compare
Fig. 2.2 with Fig. 2.3.
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Fig. 6.1 Illustration of how a slowly varying amplitude A(x, t) modulates a sinu-
soidal stripe-like behavior. The thick curve is the function u = A(x)eiqcx + c.c.
(with qc = 1 and amplitude A(x) = (0.5+0.1 cos(0.1x))ei cos(0.2x)) that represents
a stripe-like physical field close to onset. The magnitude modulation is shown by
the two light curves ±|A(x)| that smoothly pass respectively through the local
maxima and the local minima. The phase modulation causes the local periodicity
to also vary slowly.

measured by the distance between two adjacent zero crossings) is no longer uniform
so that the wave number also has a slow spatial modulation.

As was the case in Section 4.1.1, it is again useful to express the amplitude A(x, t)
in magnitude–phase form

A = aei�, (6.6)

where a(x, t) is its real-valued magnitude and �(x, t) is its real-valued phase. The
magnitude a gives the size of the perturbation up near onset and typically evolves
quickly, often decaying exponentially rapidly to a steady value. The phase � sets the
position of the growing stripes, e.g. a change �� in the phase translates the field up

rigidly by a distance −q−1
c �� in the x-direction (see Section 4.1.1). Because of its

link to translational and rotational symmetries of the system, the phase generally
evolves more slowly than the magnitude and its dynamics can often be isolated and
studied separately as we discuss in Section 6.4.3 and more generally in Section 9.1.2.

A slow variation in the amplitude’s phase corresponds to a stretching of the
wave number of the critical state (see Fig. 6.1). We can see this by examining
the effect of the lowest-order non-constant terms of a Taylor-expansion of the
phase � = �(x0) + kx(x − x0) + · · · in the vicinity of some point x0. The phase
will vary slowly near x0, provided that |kx| � qc, which we assume to be the case.
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Then, on combining Eq. (6.3) with Eq. (6.6) and neglecting the higher-order terms,
we see that

up(x, x‖, t) ≈ |a|ei(�0+kx(x−x0))uceiqcx + c.c. (6.7a)

= |a|ei(�0−kxx0)ucei(qc+kx)x + c.c., (6.7b)

so that the wave number q of the perturbation Eq. (6.3) is given by a value

q ≈ qc + kx, (6.8)

that is slightly shifted from the critical wave number.
We conclude our discussion of the ansatz Eq. (6.3) with a few comments about

where the higher-order terms “h.o.t.’’ come from. If the expansion in ε of Eq. (6.1)
is formally carried out as discussed in Appendix 2, corrections indeed arise that are
proportional to higher and higher powers of ε. Some of the corrections come from
spatial harmonics that are generated by the nonlinearities, for example cubing cos qx
creates a harmonic cos(3qx). But there are also corrections that arise at the linear
level since, for a spatially varying amplitude, the structure uc(x‖) will not give the
precise solution to the evolution equations. For example, a variation correspond-
ing to a shift of wave number will change uc to uq in the exponentially growing
solution. In addition, the mode structure is perturbed if the control parameter is
not exactly equal to its threshold value, which also leads to higher-order terms in
Eq. (6.3).

6.2 Derivation of the amplitude equation

6.2.1 Phenomenological derivation

The amplitude equation for the amplitude A can be derived in a systematic way by
substituting Eq. (6.3) into the evolution equations for the physical field u(x, t) and
then by using a formal expansion technique of the sort discussed in Appendix 2.
Instead, we will proceed phenomenologically to deduce directly the form of the
amplitude equation. This involves writing down terms that are low order in the
various small quantities and then considering how various symmetries restrict the
possible form. While this phenomenological approach suffices for the simple case of
the lowest-order one-dimensional amplitude equation, ultimately a formal expan-
sion is needed to understand the regime of validity of the amplitude equation, to
obtain higher-order corrections that may be needed to understand particular exper-
iments, to deduce appropriate boundary conditions, and to extend the method to
more complicated situations such as degenerate bifurcations.
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We argue that the one-dimensional amplitude equation for a modulated stripe
state near a type-I-s instability takes the form

τ0 ∂tA(x, t) = εA + ξ2
0 ∂2

x A − g0|A|2A. (6.9)

(The forms for type-III-o and type-I-o amplitude equations are discussed in
Chapter 10, see Eq. (10.11) and Eq. (10.63).) Here ε is the reduced bifurcation
parameter Eq. (6.1) while the parameters τ0, ξ0, and g0 are constants that depend
on details of the physical system and can be calculated from the known evolution
equations. However, the mathematical form of Eq. (6.9) does not depend on details
of the physical system undergoing a type-I-s transition. Its form is dictated com-
pletely by symmetry arguments, by a smoothness assumption that constrains which
derivatives can appear, and by the fact that we are expanding about a base solution
that minimizes the neutral stability curve.

The symmetry requirements that constrain the possible form of an amplitude
equation arise from the need for Eq. (6.9) to be consistent with the symmetries
that leave invariant the evolution equations for the physical field u, with the
correspondence given by Eq. (6.3). Thus we require that Eq. (6.9) be invariant
under:

(i) translation symmetry, which means that the amplitude equation is unchanged after the
substitution A → Aei� with � a constant. This corresponds to a translation of the
pattern up through a distance −�/qc in the x-direction;

(ii) parity symmetry, which means that the amplitude equation is unchanged after the double
substitution A → A∗ followed by x → −x. This corresponds to an inversion of the
horizontal coordinates in the original system, x⊥ → −x⊥.

When we extend the discussion to two extended coordinates in the next chapter,
we will add a third symmetry, namely invariance under rotations.

The correspondence of these operations to a symmetry of the physical system
can be seen from Eq. (6.3). As an example, under the substitution A → Aei� for
some constant �, the solution up becomes (ignoring higher-order terms)

up(x⊥, x‖, t) = Aei�uc(x‖)eiqcx + c.c. = Auc(x‖)eiqc(x+�/qc) + c.c., (6.10)

which corresponds to a translation of the field up by the amount −(�/qc).
The required invariance of the amplitude equation under the symmetries of

translation and parity restricts the possible terms in the amplitude equation in the
following ways.5 First, we observe that algebraic products of A and of its complex
conjugate A∗ that lead to odd powers such as A, |A|2A (= A∗A2), |A|4A, and so on
are invariant under all the symmetries and so can appear in the amplitude equation.

5 The argument for the possible nonlinear terms parallels the one on page 132 in Section 4.1.1.
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Invariance under the substitution A → Aei� rules out even powers such as A2,
(A∗)2, |A|2, and |A|2A2 as well as some odd powers such as A3, (A∗)3, and |A|2A3.
The terms A and |A|2A are the simplest ones that lead to growth and saturation.
Although |A|2A is of higher order than the linear term, the coefficient of the linear
term is small near onset. (A subcritical transition would require an even higher-
order term such as |A|4A to saturate the exponential growth.) We will discuss in a
moment why we do not include nonlinear terms such as |A|2 ∂2

x A that are allowed
by symmetry but that contain partial derivatives.

Let us next consider what kinds of derivatives of A can appear in the amplitude
equation. There must be some kind of time derivative since this is an evolu-
tion equation and the simplest guess would be that a first-order derivative ∂tA
is sufficient. This is allowed by the above symmetries but is also the simplest
choice consistent with a symmetry not mentioned above but implicit in all driven-
dissipative pattern-forming systems, namely that the dynamics is not invariant
under the time-reversal symmetry t → −t.6

We next observe that a first-order spatial derivative of the form i ∂xA is allowed by
the above symmetries, for example it is consistent with the parity symmetry A(x) →
A∗(−x). However, such a term can be eliminated by a redefinition A → Āei�x for
a suitable constant � and so would play no essential role in the dynamics.7 In fact,
our choice of the critical wave number qc as the reference in Eq. (6.3), i.e. the
wave number that minimizes the neutral stability curve pc(q), already implies the
absence of the i ∂xA term. We therefore assume that no such term appears in the
amplitude equation.

Asecond-order derivative term ∂2
x A is consistent with all the symmetries, and will

occur in the amplitude equation. For an amplitude A(x, t) that describes slow spa-
tial modulations, higher-order spatial derivatives will be correspondingly smaller
(roughly by the ratio of the basic wavelength of the pattern to the length scale of
the modulation). We will therefore truncate the expansion at second order in the
derivatives. For the same reason, we ignore nonlinear terms with spatial derivatives
such as |A|2 ∂xA since such a term is smaller than the existing cubic term |A|2A.8

6 Given the correspondence Eq. (6.3), we need the amplitude equation to be dissipative if the evolution equation
for u is also dissipative. For a single scalar field A, this is most easily achieved by having the amplitude
equation resemble a diffusion equation, with a first-order time derivative and second-order spatial derivatives.
Equation (6.9) has this property.

7 Note that the second-order derivative term which we will include, when acting on this product produces terms
including 2i� ∂xĀ. The value of � can then be chosen to cancel any first-order derivative term.

8 Note that we are assuming that the amplitude equation is smooth so that we may expand in successive integral
order derivatives ∂n

x A. Rather surprisingly, there are some pattern-forming systems for which the assumption of
smoothness does not hold near onset. An example is Rayleigh–Bénard convection of a fluid between so-called
free-slip plates (an example would be a convecting fluid layer like water between denser and less dense liquid
layers like mercury and oil) although the difficulties only appear in the two-dimensional amplitude equation.
Something called a mean flow appears (see Section 9.1.3) that depends nonlocally on the physical fields. The
lowest-order amplitude equation then turns out to involve two coupled fields whose dynamics can not be reduced
to a single amplitude equation with simple derivative terms.
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6.2.2 Deduction of the amplitude-equation parameters

Once we have deduced the form of the amplitude equation Eq. (6.9), the unknown
parameters τ0, ξ0, and g0 can be deduced from calculations already described in
Chapters 2 and 3. Thus if we consider a small-amplitude disturbance

A = δA(t)eikx, (6.11)

and linearize the amplitude equation about the zero solution A = 0 (which corre-
sponds to the uniform base state), we see that the time dependence is exponential
with a growth rate τ−1

0 (ε − ξ2
0 k2). But by the correspondence Eq. (6.3), this is the

growth rate of a small physical perturbation up at wave vector q = qc + k and
so must correspond to the growth rate σ(q) of the linear stability analysis for the
uniform base state ub. Thus we have

σ(q) = τ−1
0

[
ε − ξ2

0 (q − qc)
2
]

+ · · ·, (6.12)

for small ε and for small q − qc. The parameters τ0 and ξ0 are then identified as
the ones introduced in the expansion of the linear growth rate about threshold,
see Eq. (2.27) in Section 2.5.1. Alternatively, we can split the calculation into two
pieces in which we first compare the amplitude growth rate with the dependence
on ε of the growth rate σq at the critical wave number

σ(qc) = τ−1
0 ε + · · ·, (6.13)

and then compare with the dependence of the critical control parameter value on
wave numbers near qc

εc(q) = ξ2
0 (q − qc)

2 + · · ·. (6.14)

The coefficient g0 determines the saturation amplitude of the critical mode

|A| → (ε/g0)
1/2, (6.15)

and so g0 can be found from a Galerkin expansion calculation for the nonlinear
saturation of the critical mode, as described in the example in Section 4.1.3.

Although the constants τ0, ξ0, and g0 are needed to compare predictions of the
amplitude equation with experiments, the qualitative dynamical behavior of the
solutions to Eq. (6.9) does not depend on their values. We can see this by rescaling
the variables in Eq. (6.9) as follows:

Ã = g1/2
0 A, x̃ = x/ξ0, t̃ = t/τ0, (6.16)
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to obtain an equation in which only the parameter ε remains,

∂ t̃ Ã = εÃ + ∂2
x̃ Ã − |Ã|2Ã. (6.17)

Solutions of Eq. (6.17) can be compared with experiment by transforming back
to the more physical variables A, x, and t via Eq. (6.16). From the scaling, we see
that the parameters τ0, ξ0, and g0 serve to set the time, length, and magnitude scales
for the problem.

6.2.3 Method of multiple scales

The method of multiple scales described in Appendix 2 formalizes the expansion
procedure about threshold by tying together the various small effects: the small
distance from threshold ε, the slow time dependence, the weak nonlinearity repre-
sented through saturation at a small magnitude |A|, and the slow spatial modulation.
The details are technical and are not needed at the level of this chapter since, in
the end, they only justify the phenomenological derivation in Section 6.2.1 of the
lowest-order amplitude equation Eq. (6.9). However, in more complicated situa-
tions, the method of multiple scales becomes necessary since it may not be possible
to derive the amplitude equation by symmetry arguments and by matching coeffi-
cients to simpler calculations. Even if you choose to skip the discussion of multiple
scales in Appendix 2, you should appreciate that this method is widely used in the
theory of pattern formation and in many other fields such as applied mathematics,
engineering, plasma physics, and oceanography.

The phenomenological approach also is usually inadequate if we need to extend
the calculation to higher order in the expansion in ε, because there are then too
many terms to be pinned down by simple arguments. The extension to higher
order may be necessary not just for quantitative accuracy, but because the results
from the lowest-order calculation can be qualitatively misleading. An example of
this is a finite one-dimensional system with realistic boundaries. Here the lowest-
order amplitude equation suggests that a continuum of nonlinear stationary states
exist, corresponding to an arbitrary translation of the stripes relative to the ends (see
Section 6.4.1). Only by extending the expansion to the next order is the correct result
recovered, that there is a discrete set of states such that the stripes have a preferred
position relative to the ends. Another example where a higher-order calculation is
required is to find the dependence of the zigzag instability boundary on the control
parameter near threshold for a system with two extended dimensions. As we will
discuss in Section 7.1.4, the zigzag instability boundary does not depend on ε

according to the lowest-order amplitude equation, and so a higher-order calculation
is needed to find the coefficient of the correct linear dependence qZ − qc ∝ ε.
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6.2.4 Boundary conditions for the amplitude equation

Since the one-dimensional amplitude equation Eq. (6.9) is a pde with second-
order spatial derivatives, to obtain a unique solution a boundary condition must
be specified at each point on the boundary. An easy case, often used in simple
theoretical analyses, would be a periodic domain with the boundary condition A(x+
l, t) = A(x, t) for all x, where l is the domain size. But to make contact with
experiment, we want to use more realistic boundary conditions on a finite domain,
which we will assume in the following discussion to be the interval −l/2 ≤ x ≤ l/2
with boundaries at x = ±l/2.

Physical boundaries can be divided into three types: those that tend to suppress
the pattern formation, those that enhance pattern formation, and those that are
neutral with respect to pattern formation (with all three cases being compared to
patterns that occur in an ideal infinite system). The neutral case only occurs in
rather special cases such as periodic conditions and no-flux boundary conditions
for a reaction–diffusion system (see Exercise 3.11 for this latter case).

The case of suppressing boundaries is straightforward. Since these boundaries
inhibit the onset of the pattern, the lowest-order boundary conditions for A(x, t)
take the form9

A(±l/2, t) = 0. (6.18)

Note that these boundary conditions are independent of much of the underlying
physics leading to the pattern formation and so are universal in a sense discussed
in the next section, Section 6.3.1. Using Eq. (6.18) with the amplitude equation
Eq. (6.9), one can show generally that pattern formation is suppressed in the sense
that a larger value of the reduced bifurcation parameter, shifted upwards by an
amount O(1/l2) above ε = 0, is needed to initiate pattern formation from the
uniform state. This shift decreases rapidly with increasing system size so is a small
but still observable effect for experiments that are many stripes wide. (Exercise 2.9
in Chapter 2 demonstrated this result in the specific case of the Swift–Hohenberg
model on a finite domain.)

On the other hand, for enhancing boundaries the local driving by the bound-
aries is usually not small compared with the driving associated with the expansion
parameter ε. As a result, a partial pattern typically forms near the boundaries even
well below the threshold p = pc for an infinite system, and just above threshold the
amplitude of the pattern near the boundary will be much larger than in the bulk. It

9 Remember that the magnitude of the amplitude is expected to scale as ε1/2 near threshold. Equation (6.18)
should be interpreted in terms of the amplitude going to zero on this scale. There may be O(ε) corrections to
the zero on the right-hand side.
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can then be argued that the boundary conditions take the form10

A(x → ±l/2) =
√

2ξ0ei�±

|x ∓ l/2| . (6.19)

Here the phase constants �± will depend on the details of the boundaries, and
the values must be calculated by matching to a complete solution of the strongly
driven region near the ends. The divergence of |A| approaching the boundary
on the large length scales of the amplitude equation corresponds to the physi-
cal statement that the disturbance becomes large near the boundary. Of course
the amplitude equation description breaks down very close to the end (on length
scales of order the pattern wavelength), so there is no actual divergence of physical
quantities.

An experimental example of an enhancing boundary condition would be a heated
wire that is wrapped around the sidewalls of a Rayleigh–Bénard convection system,
which then causes a small horizontal temperature gradient to appear.11 This hori-
zontal gradient drives a convection flow at all Rayleigh numbers, even well below
the threshold Rc of the instability in the ideal infinite system. What is observed
with such a heated wire is that, well below threshold (R < Rc), a few convection
rolls form adjacent to the sidewalls, and parallel to the sidewalls. (So a heated wire
wrapped along a cylindrical convection cell will induce cylindrical rolls to form
near the sidewall.) As the bifurcation parameter R is increased in small increments,
the convecting region near the walls expands (more convection rolls appear) until,
just above threshold, convection rolls fill the entire system. Another example of
an enhancing boundary condition would be a rigid non-rotating end wall in the
Taylor–Couette system of Fig. 1.11. Such an end wall is observed to drive a local-
ized circulating vortex (called an Ekman vortex) for rotation rates below the onset
of Taylor vortices, which is the stripe state for this system.

Since there is no sharp onset of pattern formation in most systems with an enhanc-
ing boundary, the onset of pattern formation is described as an imperfect bifurcation
(see Appendix 1). However, imperfect bifurcations can also arise even for periodic
or infinite systems so it is not necessarily the case that an imperfect bifurcation
implies that the boundary conditions enhance pattern formation, although visual
observation of the pattern below onset can directly settle this issue.

10 This is the solution to the equation ξ2
0 d2A/dx2 = |A|2 A, which are the terms that dominate in the amplitude

equation Eq. (6.9) near the boundary.
11 This enhancing boundary condition can be roughly modeled via the Swift–Hohenberg equation, Eq. (5.9),

by imposing a nonzero boundary condition u = c with c a constant of order one, together with the usual
second boundary condition ∂xu = 0. Since Eq. (4.24) tells us that a Swift–Hohenberg stripe pattern has a small
amplitude of order

√
r near onset, there has to be a rapid variation near the boundaries for the stripes to have

a value c = O(1) on the boundaries.
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6.3 Properties of the amplitude equation

6.3.1 Universality and scales

In our discussion of Eq. (6.17) above, we found that we could eliminate the scale
factors τ0, ξ0, and g0 from the amplitude equation by transforming time, space, and
magnitude variables. If instead we scale the variables as follows:

Ā =
∣∣∣g0

ε

∣∣∣1/2
A, X = |ε|1/2

ξ0
x, T = ε

τ0
t, (6.20)

we obtain a fully scaled amplitude equation from which all the parameters have
been removed,

∂T Ā = ±Ā + ∂2
X Ā − |Ā|2Ā. (6.21)

(The positive sign for the first term on the right-hand side corresponds to above
threshold ε > 0, and the negative sign to below threshold ε < 0.) The absence
of parameters in Eq. (6.21) dramatically demonstrates the universality of pattern
forming phenomena near onset, when the amplitude equation is a good description,
since we can analyze the behavior of Eq. (6.21) without referring back to the
physical nature of the system. Actually, there is one parameter that characterizes
different physical systems, namely the scaled system size

L = |ε|1/2

ξ0
l, (6.22)

since the boundary conditions on the scaled amplitude Ā must be applied at the
scaled boundary positions X = ±L/2. We deduce that, sufficiently close to onset,
all one-dimensional stripe states in systems that have the same size after the scaling
Eq. (6.22) will have the same properties.12

The absence of any explicit dependence on the small parameter ε in the scaled
amplitude equation (6.21) immediately tells us the scaling behavior with small ε

of the physical length, time, and pattern intensity, namely13

x = O
(
ε−1/2

)
, t = O

(
ε−1

)
, |A|2 = O

(
ε1

)
, (6.23)

in the limit ε → 0+. For example, since all the coefficients in Eq. (6.21) have
magnitude one, any change in the value of the solution Ā of O(1) will require an

12 A caveat is that no other bifurcations occur for the same parameter value (a so-called degenerate bifurcation).
Such a degeneracy would imply the existence of other amplitudes that vary slowly in space and time that could
couple to A and so change its dynamics. Such degeneracies are unlikely in most experiments and simulations
since they occur only when two separate system parameters are carefully tuned.

13 These power-law dependencies are analogous to the divergences associated with the so-called “critical slowing
down’’ that occurs at an equilibrium second-order phase transition, and indeed time, space, and intensity have
the same scaling exponents when a so-called mean-field approximation is used to describe such a transition.
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amount of time of O(1) to pass for the scaled time variable T , which by Eq. (6.20)
corresponds to the passage of an amount of laboratory time t = (τ0/ε)T that
diverges as ε−1 near threshold. Similarly, the length scale in the physical variable x
over which the intensity of the stripe pattern grows from a small value near a
suppressing boundary (or near a topological defect) to its O(1) value in the bulk
will diverge as ε−1/2 near threshold. (For the case that we discuss in the next chapter
of two extended coordinates, there turn out to be two different scalings of lengths
for stripe systems, namely an O(ε−1/2) scaling in the direction perpendicular to the
stripes, and a slower O(ε−1/4) scaling in the direction parallel to the stripes.) Finally,
the amplitude of the pattern will have the characteristic square root dependence
proportional to

√
ε, so that the intensity of the pattern, which is proportional to |A|2,

will increase linearly with ε.
Numerous experiments have confirmed the scalings Eq. (6.23). For exam-

ple, Figures 6.2 and 6.3 show measurements from a so-called electroconvection
experiment that consists of a thin freely suspended two-dimensional rectangular
film of a smectic-A liquid crystal14 that is driven to convect by a static electric field
that is created by the two horizontal support wires (see Fig. 6.2(a)). The electric
field causes charged impurities in the liquid crystal to move, and this motion cou-
ples to the smectic molecules and causes a net fluid motion. A one-dimensional
amplitude equation can accurately describe the dynamics near onset since, to high
accuracy, the suspended film has just one confined direction and one extended direc-
tion (which are respectively the vertical and horizontal directions in Fig. 6.2(a)).
The film is so thin in the third direction, less than a micron, that this coordinate
can be ignored. The lateral supports for the film, which lie to the left and right of
the image shown in Fig. 6.2(a), turn out to act as suppressing boundaries so that
the fluid velocity continuously decreases to a zero value at these boundaries. The
corresponding boundary condition to use with the amplitude equation is therefore
Eq. (6.18).

The velocity of the convective flow was measured optically from the motion of
dust particles that adhere to the surface of the film without perturbing its behav-
ior. To a reasonable approximation, the local maxima of the speeds in Fig. 6.2(b)
can be used to estimate the magnitude of the amplitude function at those points
so that we can interpret the velocity magnitudes plotted in panels (a) and (b) of
Fig. 6.3 as the magnitude of the amplitude function. The spatial variation of the
amplitude near the side boundary, where the flow velocity is suppressed, is shown in
Figure 6.3(a). The variation of the length scale over which the amplitude recovers is

14 A liquid crystal is a substance consisting of long rod-like molecules that can flow freely like a liquid but for
which the orientation of its molecules are highly correlated like a crystal. A smectic A is a liquid crystal whose
molecules align perpendicular to the planar layers. A smectic-A liquid crystal acts like an isotropic fluid for
motion within a planar layer, which is the case in Fig. 6.2.
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Fig. 6.2 Experimental verification of the amplitude equation scalings Eq. (6.23)
just above the onset of electroconvection in a two-dimensional film consisting of a
smectic-A liquid crystal. (a) The experiment consists of a rectangular vertical film
of dimensions 20 mm by 2 mm supported between two long horizontal wires (they
appear white in this photograph). The wires exert a static electric field vertically
across the film which drives the liquid crystal out of equilibrium. Seven convection
rolls out of the many are shown; the approximately circular velocity fields were
made visible by the motion of dust particles that adhered to the film. (b) Spatial
variation of the velocity field for values 0.11 and 0.47 of the reduced bifurcation
parameter ε. The velocity goes to zero beyond the left and right sides of the plot.
(From Morris et al. [76] and Mao et al. [67])

consistent with the expected scaling of ε−1/2. Figure 6.3(b) shows the time depen-
dence of the maximum flow velocity (which corresponds to the amplitude away
from the boundaries) from a small initial magnitude until saturation. The increase
near threshold of the time for this process is consistent with the scaling of ε−1. In
both panels of Fig. 6.3, the value of the saturated amplitude for a given value of ε

can be read off from the large distance or large time value. The experimentalists
also verified quantitatively that the saturated value increases as ε1/2 near onset,
consistent with Eq. (6.23).
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Fig. 6.3 Solutions Eq. (6.29) of the one-dimensional amplitude equation Eq. (6.21)
give a quantitatively accurate fit to the experimental electroconvection data of
Fig. 6.2. (a) Envelopes of the spatially varying velocity data of Fig. 6.2(b) for
parameter values ε = 0.06 and 0.56. The “healing distance’’ (see Eq. (6.32)), over
which the fluid recovers its bulk value from its zero value at the left boundary,
increases closer to onset. An analysis (not shown) gives quantitative agreement
with the expected scaling of ε−1/2. The smooth curves are the analytical solution
Eq. (6.31). (b) Temporal variation of the maximum velocity component |vx|max(t)
for values ε = 0.36 and ε = 0.78. The longer time scale occurs for the smaller ε
value, and a fit of the data for different ε values (not shown) confirms the expected
ε−1 scaling for time. (Sources as in Fig. 6.2.)

6.3.2 Potential dynamics

In Section 5.1.2, we discussed how the Swift–Hohenberg equation has potential
dynamics such that, for appropriate boundary conditions, there is a potential V that
decreases monotonically for all initial conditions. This potential V greatly simplifies
the analysis and understanding of solutions. For example, the existence of V implies
that all nontransient states must be time-independent (so periodic, quasiperiodic,
or chaotic behavior is not possible), and the final asymptotic state corresponds to a
local minimum of V . The potential also provides a straightforward way to study the
competition between two spatially extended patterns that are separated by a domain
wall (see Fig. 5.1) and to analyze the wave number selected by some dynamical
mechanism such as the climbing motion of a dislocation.

It turns out that the lowest-order amplitude equation Eq. (6.9) also has poten-
tial dynamics for periodic boundaries and for the suppressing boundary condition
Eq. (6.18), and again explicit knowledge of the potential greatly helps to understand
the properties of the amplitude equation. The existence of a potential at lowest order
is surprising because it is not a property that we would generally expect for a system
far from equilibrium. Indeed, a more careful analysis shows that the existence of a
potential relies on the neglect of higher-order terms in the expansions leading to the
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amplitude equation and that retaining these terms leads to evolution equations that
are no longer potential. However, some properties of the lowest-order amplitude
equation are expected to be qualitatively correct on slow time scales of order ε−1,
with corrections to the lowest-order equation showing up on even slower time scales
of order ε−2.

We briefly discuss here the potential for the lowest-order one-dimensional fully
scaled amplitude equation Eq. (6.21) and refer you to our earlier discussion in
Section 5.1.2 for more details. See also Section 7.1.3, where the potential is given
for the two-dimensional amplitude equation.

Consider a one-dimensional system defined on the domain [a, b] in the (scaled)
extended coordinate X . Then for appropriate boundary conditions on the ampli-
tude Ā and assuming that Ā evolves according to Eq. (6.21), we claim that the
expression

V
[
Ā
] =

∫ b

a
dX

[
−|Ā|2 + 1

2
|Ā|4 + ∣∣∂X Ā

∣∣2
]

, (6.24)

is a potential since it evolves according to the equation

dV

dt
= −2

∫ b

a
dX

∣∣∂T Ā
∣∣2

, (6.25)

which implies that V decreases whenever ∂T Ā �= 0. We can verify this claim with
the same steps that we used for the Swift–Hohenberg equation: we take the time
derivative of both sides of Eq. (6.24) (with respect to the scaled time variable T )
to obtain

dV

dT
=

∫ b

a
dX

{ (
−Ā + ∣∣Ā∣∣2

Ā
)
∂T Ā∗ + ∂X Ā ∂X

(
∂T Ā∗) + c.c.

}
, (6.26)

and then integrate by parts once to transfer the spatial derivative acting on the
term ∂T Ā∗ to another term. The integration by parts leads to “surface’’ terms that
are evaluated at the boundaries

∂X Ā ∂T Ā∗∣∣
b − ∂X Ā ∂T Ā∗∣∣

a , (6.27)

and these vanish for periodic boundaries or for the suppressing boundary condition
Eq. (6.18). Assuming that the surface terms vanish, the remaining integral is easily
seen to reduce to Eq. (6.25) provided that Ā evolves according to the fully scaled
amplitude equation, Eq. (6.21).
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6.4 Applications of the amplitude equation

6.4.1 Lateral boundaries

An early vexing question in understanding pattern formation was to determine the
degree to which the ideal states of theory, based on laterally infinite systems or
systems with periodic boundary conditions, had anything to do with the states seen
in experiments on necessarily finite systems. Further, there was the question of how
the properties of a laterally large system approached those of the infinite system.
For systems that are large compared with the pattern periodicity, and for control
parameter values close to onset, the amplitude equation formalism can readily
address these issues. The approach is particularly well suited to systems with one
extended coordinate x, or to systems with two extended directions with a pattern of
stripes parallel to the boundary, since, in these situations, the formalism simplifies
to a one-dimensional amplitude equation. An interesting experimental application
is to the Taylor–Couette system, Fig. 1.11, where in the roll state the azimuthal
symmetry renders the problem one-dimensional.15 The general situation in a two-
dimensional system is harder since the boundaries often tend to reorient the stripes,
which leads to a pattern with large reorientations of stripes that cannot be treated
within the amplitude equation description.

We study here the case of boundaries that tend to inhibit the pattern formation. For
steady states with a one-dimensional spatial variation and suppressing boundaries,
we want to solve the (fully scaled) amplitude equation Eq. (6.21) with no time
variation

0 = Ā + ∂2
X Ā − |Ā|2Ā, (6.28)

with the condition Eq. (6.18)

Ā = 0, (6.29)

at the boundaries. The amplitude equation then allows us to determine how the
intensity of the pattern grows with distance away from the boundary, to approach
the bulk saturated value far from the boundaries. There are also dramatic effects
on the range of possible wave numbers of the pattern far away from the boundary,
expressed through restrictions on the phase variation of the complex amplitude.
We will see that the stationary solutions to Eqs. (6.28) and (6.29) in fact have a
constant phase so that, within the accuracy of the lowest-order amplitude equations,
the wave number of the stripes is unique and equal to the critical wave number.
In contrast, for an infinite or periodic system, there is a band of stable stationary
solutions of different wave numbers as represented by the stability balloon.

15 Most physical end conditions for the Taylor–Couette apparatus correspond to the more difficult case of
enhancing boundaries which we will not address in this section.
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We illustrate how the amplitude equation can be used to understand the effect of
lateral boundaries by considering first the case of a semi-infinite one-dimensional
system X ≥ 0, with a suppressing boundary at X = 0. You can verify by direct
substitution that a solution to the amplitude equation Eq. (6.28) with boundary
condition Eq. (6.29) is

Ā = ei� tanh

(
X√

2

)
, (6.30)

where the phase � is an arbitrary real constant. In the unscaled variables, this
expression becomes

A = ei�
√

ε

g0
tanh!

(
x

ξ

)
, (6.31)

with

ξ = √
2ξ0ε

−1/2. (6.32)

The form of the magnitude |A| of the solution is shown in Fig. 6.4. This simple
solution demonstrates two important features of how a boundary or defect sup-
presses the amplitude of a stripe solution: the suppression of the bulk value extends
over a characteristic length ξ called the healing length or coherence length, and this
length diverges as ε−1/2 toward threshold. The hyperbolic tangent form of |A| and
the scaling of the healing length Eq. (6.32) near threshold are predictions that have
been amply confirmed by experiments, e.g. in the electroconvection liquid-crystal
experiment of Figs. 6.2 and 6.3.

The solution Eq. (6.31) contains an arbitrary constant phase factor ei� which
means that stripes can have an arbitrary position relative to the boundary. On the
other hand, there are no solutions with a spatially varying phase, which would

x

|A|
j

Fig. 6.4 Plot of the stationary amplitude magnitude |A| from Eq. (6.31) as a func-
tion of position x near a suppressing boundary at x = 0 where A = 0. The arrow
shows the length of the healing length ξ = √

2ξ0ε
−1/2, which sets the length scale

for the variation of the magnitude.
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correspond to a deviation of the wave number of the stripes from the critical wave
number. Thus, far from the boundary where the magnitude has saturated, the wave
number of the stripe state is uniquely determined up to order ε1/2 and has the value
of the critical wave number:

q = qc + 0 × ε1/2 + O(ε). (6.33)

(The notation 0 × ε1/2 means that the lowest-order expected correction has a zero
coefficient.) In contrast, for a laterally infinite or periodic system, the stripe wave
number is not necessarily unique and has values that lie within a band that grows
as ε1/2 above threshold.

These conclusions are modified when the calculation is extended to higher order
in ε. The phase � is then found to vary in space but slowly, in a manner consistent
with Eq. (6.33). The solution far from the side wall again attains a constant magni-
tude |A| that corresponds to saturated stripes but the wave number of the saturated
stripes is not the unique value qc of Eq. (6.33) but can take on values that lie within
a band whose width increases linearly as ε near threshold. The band of observed
wave numbers is therefore narrower than the width ε1/2 for a periodic or infinite
system. In addition, the stripe positions relative to the boundary become restricted
to a discrete set of values.

The net result of this amplitude equation analysis is rather surprising: in a semi-
infinite domain, a suppressing boundary strongly influences the possible wave
numbers of the stripe state far from the boundary, causing the possible stripe wave
numbers to lie in a narrow band (narrow compared with the band observed in a
periodic or infinite domain) and the stripe positions to be discretized with respect
to the boundary. These conclusions would be difficult to deduce directly from
the basic evolution equations and indicate the power of the amplitude-equation
formalism, which simplifies the analysis by separating dynamics that is slow
in space and time from the faster more complicated dynamics of the evolution
equations.

Now consider a finite geometry 0 ≤ X ≤ L with two suppressing boundary
conditions Ā(0) = Ā(L) = 0. For large L, the regions of suppressed magnitude near
the boundaries are far apart, and can be treated independently, so that |Ā| has a “top
hat’’-type X -dependence, saturating at Ā = 1 in the bulk away from the boundaries,
as shown by the solid curve in Fig. 6.5. As L is reduced, the suppression regions
begin to overlap, and the maximum amplitude is reduced below the bulk saturation,
as for the dashed curve in Fig. 6.5. For smaller L, the maximum amplitude decreases,
and we can eventually use a linear approximation to the amplitude equation, which
yields the following linear onset solution in the finite geometry:

Ā = āei� sin X , (6.34)
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1

1

0 X/L

A

Fig. 6.5 Solution of the fully scaled amplitude equation Eq. (6.28) in a finite
geometry of size L with boundary conditions Ā = 0 at X = 0, L, plotted as a
function of X /L. The full curve is for L = 15 (physical size l = 15ε−1/2ξ0), and
the dashed curve is for L = 3.5 (physical size l = 3.5ε−1/2ξ0). Note that for system
sizes large compared to the healing length, the amplitude away from the boundaries
saturates at the bulk saturated value, whereas for sizes comparable to the healing
length, the amplitude does not reach this value. For L < π (corresponding to
ε < π2ξ2

0 /l2 in unscaled units) there is no nonzero solution. For L slightly larger
than π , the solution is proportional to sin(πX /L), which is the solution to the
linearized amplitude equation.

where � is an arbitrary real phase. The magnitude prefactor ā is not determined
by the linear equation,16 but the solution only satisfies the boundary conditions if
L = nπ with n = 1, 2, . . . Translating to the unscaled units in which the system size
is l with L = ε1/2l/ξ0, we see that the n = 1 mode (the first mode that begins to
grow as ε is increased) occurs not at the onset value ε = 0 for a periodic or infinite
domain, but for a shifted larger value

εc = π2
(

ξ0

l

)
2. (6.35)

This is an explicit general calculation of the suppression of the onset by finite
size effects in the case of suppressing boundaries. The solution Eq. (6.34) again
contains an arbitrary constant phase factor which corresponds to a continuum of
onset solutions with different stripe positions. If the amplitude equation analysis
is extended to higher order, this degeneracy is removed and a discrete set of onset
solutions are obtained with onset values εc that are given by Eq. (6.35) with small
corrections of order (ξ0/l)4. It is interesting to compare these general results with
Exercise 2.9 of Chapter 2, which calculates the effects of suppressing boundaries on

16 The magnitude ā can be determined by substituting Eq. (6.34) into the nonlinear amplitude equation Eq. (6.21),
followed by collecting terms in sin X while ignoring the higher harmonic terms like sin(3X ) that are generated
by the nonlinearity, see Exercise 6.7.
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one-dimensional stripe solutions of the Swift–Hohenberg model, but using methods
that are arguably less insightful and that are specific to that model.

6.4.2 Eckhaus instability

The amplitude equation provides a direct way to investigate the instability of stripe
states with respect to spatially dependent perturbations, and so to construct the sta-
bility balloon near onset. The universal form of the equation implies that the stability
balloon too will have universal features near onset. In addition, we can learn much
more about the instabilities, for example how the wave vector of the fastest growing
perturbation varies as the wave vector of the stationary nonlinear base state moves
into the unstable region. Further, numerical simulations of the amplitude equation
can be used to follow the growth of the perturbation to large amplitudes, so that
dynamics that cause the wave number to change, for example by the elimination
or creation of stripes, can be followed to completion.

The strategy for the linear stability analysis is the standard one: first construct
an unperturbed base state (here the nonlinear saturated steady solution with a wave
vector deviating from critical), and then investigate the dynamics of small pertur-
bations by linearizing about the base state. With the one-dimensional amplitude
equation, we can study the stability of stripe states to longitudinal perturbations.
The stability of stripes to transverse perturbations is studied in Section 7.1.4 of the
next chapter. The calculations for the lattice states are more involved, but follow
the same ideas.

The stability balloon is obtained by testing the stability of the base states as a
function of their wave number. The stripe state with wave vector differing slightly
from the critical value qc is given by the amplitude (in the scaled representation)

ĀK (X ) = aK eiKX , (6.36)

where the phase factor gives the wave number shift of the stripes

q = qc + ξ−1
0 ε1/2K , (6.37)

and the magnitude prefactor is obtained as a simple result of substitution into the
amplitude equation Eq. (6.21)

a2
K = 1 − K2. (6.38)

The existence band

−1 ≤ K ≤ 1 or qc − ξ−1
0 ε1/2 ≤ q ≤ qc + ξ−1

0 ε1/2, (6.39)

is the width of the band of wave numbers between the neutrally stable wave
numbers.
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The stability of these states is tested by adding to ĀK a small perturbation δĀ

Ā(X , T ) = ĀK (X ) + δĀ(X , T ). (6.40)

By linearizing the amplitude equation in δĀ, we see that the perturbation evolves
according to the following linear evolution equation:

∂T δĀ = δĀ + ∂X
2δĀ − 2|ĀK |2 δĀ − Ā2

K δĀ∗. (6.41)

The solution to Eq. (6.41) for δĀ turns out to be messy because of the spatial
dependence of the coefficient Ā2

K of the last term. Fortunately, since we are looking
at the perturbation of a spatially periodic state AK , a version of Bloch’s theorem
applies so that the stability eigenvalues and eigenvectors can be labeled by a Bloch
wave number Q. (We will see that the perturbation δĀ actually has components
with wave numbers K ± Q.) The task is then to calculate the exponential growth
rate σK (Q), which will depend on the wave number K of the base state, and on
the Bloch wave number Q that characterizes the perturbation. This result of this
procedure is the growth rate

σK (Q) = −(1 − K2) − Q2 +
√

(1 − K2)2 + 4K2Q2. (6.42)

as shown in the following Etude.

Etude 6.1 Linear stability analysis of a stripe state using the amplitude equation
The usual form of Bloch’s theorem introduced in Section 4.2.1 addresses the prop-
erties of a perturbation to a real solution. To study Eq. (6.41), we need to generalize
Bloch’s theorem for a complex base state. The form of the generalization can be
discovered by trying an ansatz for the perturbation in the form δĀ ∼ eiKX eiQX .
Substitution into Eq. (6.41) gives several terms with the same spatial dependence,
but also generates a term eiKX e−iQX . Thus we try the more general ansatz

δĀ = eiKX [δa+(T )eiQX + δa∗−(T )e−iQX ], (6.43)

where we use the complex conjugate on δa∗− for later convenience. Substituting this
expression into Eq. (6.41), linearizing in δa±, and collecting the coefficients of the
two linearly independent functions ei(KX ±QX ) gives the pair of equations

dT δa+ = −(P2 + U+)δa+ − P2 δa−, (6.44a)

dT δa− = −P2 δa+ − (P2 + U−)δa−, (6.44b)

with
P2 = 1 − K2 and U± = [K ± Q]2 − K2. (6.45)
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The growth rate σK (Q), defined by δa± ∼ exp[σK (Q)T ], can be obtained by a
standard eigenvalue calculation for a 2×2 matrix. One finds that the most positive
growth rate about the state at wave number K is

σK (Q) = −P2 − 1

2
(U+ + U−) +

[
P4 + 1

4
(U+ − U−)2

]1/2

. (6.46)

which simplifies to Eq. (6.42).

Given any expression for a growth rate like Eq. (6.42), it is usually interesting and
easiest to explore the behavior at long wavelengths since this involves calculating
the first few terms in a Taylor series about the small-wave-number limit Q = 0.
Expanding Eq. (6.42) in the small quantity Q2 and retaining the two lowest-order
terms gives

σK (Q) = −
(

1 − 3K2

1 − K2

)
Q2 −

(
2K4

(1 − K2)3

)
Q4 + O

(
Q6

)
, (6.47)

which also shows that the instability is of type II since the growth rate is always zero
for Q = 0. The coefficient of the Q4 term is always negative within the existence
band |K | < 1 (recall Eq. (6.39)) and so the parabola Eq. (6.47) (in Q2) can give a
positive growth rate only when the coefficient of the Q2 term just becomes positive,
which corresponds to the following inequality for the base-state wave number K :

|K | >
1√
3

. (6.48)

Further, when instability first occurs (K lies just outside this band), it occurs with Q
arbitrarily close to zero so the most unstable mode is the mode with the longest
wavelength that fits into the domain.

Of course, Eq. (6.47) gives us information only about the long-wavelength lon-
gitudinal perturbations. We need to return to the general growth rate Eq. (6.42) and
determine whether other instabilities might occur, say a finite-wavelength insta-
bility with Q = O(1), in which case the band of stable wave numbers might be
even smaller. This is found not to be the case. The two-dimensional amplitude
equation discussed in the next chapter will in addition allow us to investigate fur-
ther whether the stripe state is stable near onset with respect to wave vectors of
arbitrary orientation relative to the stripe direction.

Since from Eq. (6.39) we know that the band of wave numbers for the exis-
tence of nonlinear stationary states satisfies |K | < 1, Eq. (6.48) tells us that, near
threshold, the band of wave numbers that are stable with respect to a longitudinal
long-wavelength instability has a universal form in that its width is 1/

√
3 times the
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width of the existence band, independent of any details of the system. Returning to
physical units, the longitudinal instability occurs at the boundaries

qc ± 1√
3
ξ−1

0 ε1/2. (6.49)

The width of this band, (2/
√

3)ξ−1
0 ε1/2, grows as the square root of the distance

p − pc above onset.
The instability we have just investigated is called the Eckhaus instability in

honor of Wiktor Eckhaus, who first studied the instability in 1965. The form of the
perturbation is a sinusoidal spatial modulation of the wave number of the pattern,
with regions of compression and stretching as shown in Fig. 6.6. We will see in the
next section (Section 6.4.3) that the result Eq. (6.48) for the boundary of the stability
balloon can be obtained by a simpler calculation using the phase equation. However,
the present calculation gives us additional insights into the instability. For example,
you use Eq. (6.42) in Exercise 6.9 to show that, for wave numbers K unstable to
the Eckhaus instability, the maximum growth rate occurs for a perturbation whose
wave number Qmax is given by

Q2
max(K) = 3

(K2 + 1)(3K2 − 1)

4K2
, (6.50)

with growth rate

σmax(K) = (3K2 − 1)2

4K2
. (6.51)

These results for the instabilities teach us several general lessons.We have learned
that the stationary nonlinear stripe states near onset for any type-I-s system are

Fig. 6.6 Sketch of a stripe system undergoing an Eckhaus instability which is a
longitudinal long-wavelength type-II modulation of the wavelength of the stripes.
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unstable to a longitudinal long-wavelength Eckhaus instability whose boundaries
in the stability balloon have a universal quantitative form near threshold. This is an
important insight since the stability balloon gives us our basic understanding of the
periodicities available for pattern formation. Ideas similar to those used in the pri-
mary instability calculation of the uniform state are often useful at these secondary
instabilities too. For example, we found via Eq. (6.47) that the Eckhaus instability is
itself a type-II-s instability. As in the analysis about the uniform state, the linear sta-
bility analysis of a stripe state leaves us with an exponentially growing perturbation
in the unstable regions. We need to study effects nonlinear in the perturbation of the
stripe state to understand the subsequent fate of the stripes, such as the important
question of whether the perturbation saturates at small amplitude, or grows so large
that it may catastrophically change the pattern, for example by eliminating a stripe
pair. Such an analysis cannot be done analytically, but it is usually straightforward
to simulate the amplitude equations numerically, and such calculations are often
much easier than direct simulations near onset of fluids, liquid crystals, chemical
systems, and plasmas based on their fundamental evolution equations.

6.4.3 Phase dynamics

The magnitude a and phase � of the complex amplitude A = aei� play different
dynamical roles in the description of pattern formation. In particular, a perturba-
tion of a will tend to relax to the value determined by the nonlinear terms in the
amplitude equation on the time scale ε−1τ0. On the other hand, a phase perturbation
that is independent of position is simply a spatial translation of the whole pattern,
and does not relax at all. Consequently, the relaxation of a phase perturbation on
a length scale l will relax on a time scale that diverges with l (as l2 or longer as
we will see). We can therefore imagine situations where the phase relaxes much
more slowly than the magnitude so that the magnitude can be evaluated as the value
consistent with the instantaneous local phase field, as if the phase were time inde-
pendent. (Mathematically, we neglect expressions involving time derivatives of the
magnitude like ∂a/∂t since these are assumed small compared with other terms in
the dynamical equation for the magnitude, such as εa.) This approximation method
is known as adiabatic elimination and with this approximation the magnitude is
said to adiabatically follow the phase variation. Adiabatic elimination allows us to
derive a simple dynamical equation for the slow phase variation which is called the
phase diffusion equation. Since a change in the phase at some position corresponds
to a translation of the pattern at that point, the phase diffusion equation captures
some of the essential features of pattern dynamics.

For simplicity of notation, we consider the amplitude equation in its fully scaled
form Eq. (6.21). Our goal is to find a dynamical equation for the slow variation of �
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that arises from a long-wavelength perturbation of a stripe solution. Although the
calculation can be done more generally, we choose to look at small perturbations of
a uniform stripe state with a wave number q shifted from critical q = qc +ξ−1

0 ε1/2K
that is described by the time-independent amplitude as in Eq. (6.36)

Ā = aK eiKX , (6.52)

with the value of the constant aK = √
1 − K2 as in Eq. (6.38). We now write for

the perturbed amplitude
Ā(X , T ) = aei�eiKX , (6.53)

with a = aK + δa(X , T ), then linearize in the small-amplitude perturba-
tion δa(X , T ) and linearize in low-order spatial derivatives of the phase �(X , T ).
Since the length scale of the perturbation is supposed long, we neglect higher-
order spatial derivatives of the same quantity, i.e. we assume for example that
∂2

X a � ∂X a � a. We also only keep those expressions that lead to terms in the
final phase evolution equation that have up to second-order spatial derivatives of �.

The formal scheme is to insert Eq. (6.53) into the amplitude equation Eq. (6.21),
to use the expression

∂T Ā = (∂T a + ia ∂T �)ei�eiKX , (6.54)

and a corresponding expression for the spatial derivative ∂2
X A, to multiply through

by e−i�e−iKX and finally to collect real and imaginary parts. When the dust clears,
the real and imaginary parts of the amplitude equation are found to be

∂T a = (1 − K2)a − a3 + ∂2
X a − 2Ka ∂X � − a (∂X �)2, (6.55a)

a ∂T � = 2 (K + ∂X �)∂X a + a ∂2
X �, (6.55b)

which are evolution equations for a and �. Let us first consider Eq. (6.55a) and
substitute a = aK + δa(X , T ), retain only terms that are linear in δa, neglect the
term (∂X �)2 as smaller than the term K ∂X �, and use the fact that a2

K = 1 − K2.
This yields the following linearized evolution equation for δa (see Exercise 6.10)

∂T δa = −2a2
K δa − 2KaK ∂X � + ∂2

X δa. (6.56)

Note that, for a spatially uniform perturbation, Eq. (6.56) shows that the magnitude
perturbation δa relaxes exponentially as exp(−2a2

K T ). Since a2
K is of order unity,

this is a rapid decay of magnitude perturbation as was mentioned in the introduction
to this section.

The phase variation ∂X � in Eq. (6.56) drives a nonzero value of δa. In comparing
the size of the terms in Eq. (6.56) that involve δa, we see that the dominant term is the
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first one on the right-hand side since all the other terms involve spatial derivatives
or time derivatives of δa that are small for slow variations. Thus

aK δa � −K ∂X �, (6.57)

and δa adiabatically follows the perturbations of the phase gradient. (Note that this
expression is just the equation for the change δa in magnitude given by Eq. (6.38)
arising from a change in the wave number K by δK = ∂X �.)

We now continue with the �-evolution equation Eq. (6.55b). We substitute a =
aK + δa, keep only terms linear in δa, and neglect ∂x� as small compared with K
to get

aK ∂T � � 2K ∂X δa + aK ∂2
X �. (6.58)

Eliminating δa with the adiabatic approximation Eq. (6.57) and using Eq. (6.38)
leads to the following evolution equation for slowly varying phase perturbations

∂T � = 1 − 3K2

1 − K2
∂2

X �. (6.59)

This is a diffusion equation for the phase, with a diffusion constant D‖ for variations
along the stripe normal. Transforming back to the unscaled space and time variables,
the equation becomes

∂t� = D‖ ∂2
x �, (6.60)

with diffusion constant

D‖ = (ξ2
0 τ−1

0 )
ε − 3ξ2

0 k2

ε − ξ2
0 k2

. (6.61)

for phase perturbations about the stripe state with wave number q = qc + k,
where k = ξ−1

0 ε1/2K .
The phase equation Eq. (6.60) is a powerful tool, and many important results

can be derived from it. For example, we know that diffusion equations lead to
exponentially growing solutions if the diffusion constant is negative which here
would signal the onset of an instability. Equation (6.61) therefore implies that a
stripe state with number qc + k is unstable to long-wavelength longitudinal phase
perturbations when D‖ < 0 or |ξ0k| > ε1/2/

√
3. This is just the Eckhaus instability

described previously in Section 6.4.2. (But, again, we cannot deduce detailed facts
about the growth rate σK (Q) of the stripe solution from the phase diffusion equation,
which not surprisingly does not provide as much information as a full perturbation
analysis.)

The topic of phase dynamics is one that will recur later in the book. Although the
phase dynamics is easily derived from the amplitude equation formalism as we have
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just done, we will see in Chapter 9 that phase dynamics has a wider validity. We
will argue that even away from threshold, the symmetry aspects of the pattern are
captured by an appropriately defined phase variable.Again slow spatial variations of
the phase necessarily evolve slowly in time, and this slow variation can be isolated
mathematically from the faster dynamics of other degrees of freedom in the form of
a phase diffusion equation, which is now nonlinear and so more difficult to analyze.
The phase dynamics provides a simple way to investigate some important questions
such as what are some of the instabilities that bound the stability balloon of the
finite-amplitude nonlinear stripe states or parameter regimes or situations where
the amplitude equation is not valid.

6.5 Limitations of the amplitude-equation formalism

Although many interesting questions can be addressed within the amplitude
equation, it is important to bear in mind the limitations of the formalism. One
limitation is that the amplitude equation is derived by perturbation expansion
and truncation, and so is only a good approximation over a restricted range of
parameters, in particular near onset and for long wavelength and temporally slow
modulations of the ideal pattern.

There are limitations on the nature of the patterns that can be treated. For exam-
ple, as we will see in the next chapter where we generalize the approach to two
dimensions, because it is not possible to derive a rotationally invariant amplitude
equation that respects the rotational invariance of the physical system, the only pat-
terns that can be calculated quantitatively are those that are close to a single set of
parallel stripes, or close to a superposition of stripes such as squares and hexagons.
Patterns in which the orientation of stripes or lattices vary through large angles over
large distances cannot be treated even though the rate of variation can be slow.

The way in which the amplitude equation approximation is physically relevant
can be subtle. Indeed the answers to qualitative questions may be quite wrong!
For example if we ask the question “Can system ABC show chaos near onset?’’
the lowest-order amplitude equation may immediately lead us to the answer “No,’’
because of the existence of the potential. However, since the equation is derived as
an approximation, we should not be so definite in any physical statement. Indeed,
the correct answer might be, “The relaxational dynamics predicted by the amplitude
equation should be a good coarse description of what happens.’’ However, at long
times, there may be slow persistent dynamics at a time scale beyond the O(ε−1)

time scale of the dynamics controlled by the amplitude equation, or there may be
small-magnitude persistent dynamics, perhaps on a fast scale, that is again beyond
what the amplitude equation can approximate.Alternatively, the amplitude equation
may predict dynamics that is quenched by residual effects not captured by the
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perturbation formalism. An example of this is the propagation of fronts (mentioned
briefly in Section 6.3.2 and to be discussed in Section 8.3) where the motion pre-
dicted by the amplitude equation may be quenched by the pinning of the fronts to
the stripes themselves.

We have said that the amplitude equation is good “near onset.’’ We might also
question this phrase more carefully: does this mean asymptotically near onset, or just
at some small but finite distance from onset? Finally, as a worst case, if the solutions
predicted by the amplitude equation are actually sensitive to slight changes in the
equations (such solutions are called structurally unstable), the predicted behavior
might be misleading and bear no resemblance to the actual physical behavior.
While these concerns are all important and some continue to be research issues,
the fortunate fact remains that the amplitude equation formalism does succeed in
explaining many experimental phenomena, and provides insights that are difficult
to obtain when working with the full evolution equations.

6.6 Conclusions

In this chapter, we have introduced a powerful tool known as the amplitude equation
that allows us to understand many aspects of pattern formation. This equation
describes the slow space and time modulation of the critical onset mode, for states
that are “close’’ to a stripe state, and provides a natural extension of the linear sta-
bility analysis into the weakly nonlinear regime for control parameter values near
threshold. The amplitude equation captures three basic ingredients of pattern forma-
tion: the growth of the perturbation about the spatially uniform state, the saturation
of the growth by nonlinearity, and the effect of spatial distortions of the pattern.
As a consequence, it provides a useful starting point for thinking about conceptual
issues even though the quantitative applicability is valid only near threshold.

It is worthwhile to note that the amplitude equation Eq. (6.9) is actually well
known in other contexts. For example, it is the Ginzburg–Landau equation that
describes the evolution of the complex-valued order parameter used to describe a
superconductor or superfluid in a mean field theory of these thermodynamic phases.
In those contexts, the phase of the order parameter is related to the supercurrents
that flow in these systems. Thus stripe patterns with wave numbers away from the
critical value qc (i.e. having a phase gradient of the amplitude) correspond in this
mathematical description to a supercurrent in a superconductor. Applying intuition
gained from the study of one of these physical systems to the other can be quite
productive. Given this analogy with an equilibrium system, it is not surprising that
the amplitude equation has potential dynamics Eq. (6.25), although this results
from the truncated perturbation expansion and will not be true if the expansion is
continued to higher order.
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We have shown that the amplitude equation can be reduced by a rescaling of
variables to a universal parameter-free form, and that the only parameter of the
description is the scaled system size where boundary conditions are applied. This
explains why diverse physical systems that yield patterns through a type-I-s insta-
bility – be they fluid, chemical or biological systems – can show the same behavior
in the regime of validity of the amplitude equation. Again, what we learn from the
study of one system, may be transferred to the others.

We have so far discussed the amplitude equation in the simplest context of a type-
I-s instability with spatial variations along a single extended direction, leading to the
one-dimensional amplitude equation, Eq. (6.9). In the next chapter, we will study the
generalization to two extended directions, particularly the case where the physical
system has a rotational symmetry with respect to the extended directions. This
will especially allow us to study the dynamics and competitions of lattice states,
and further understand the stability balloon and the effect of lateral boundaries.
We will discuss the amplitude equation formalism further in Chapter 8, which
concerns localized structures that are observed in many experiments, and complete
our discussion in Chapter 10, where the ideas are extended to oscillatory media
whose uniform state undergoes a type-o instability.

6.7 Further reading

(i) The amplitude equation description of one-dimensional pattern formation was intro-
duced by Newell and Whitehead [80] and Segel [93].

(ii) A general introduction to the technique of multiple scales perturbation theory can be
found in Advanced Mathematical Methods for Scientists and Engineers by Bender and
Orszag [11].

(iii) Statistical Physics, Part 2 by Lifshitz and Pitaevskii [65]. Chapter V provides an
introduction to the Ginzburg–Landau equation in the context of superconductivity.

Exercises

6.1 Elimination of the linear derivative term in the amplitude equation:
Assuming that a term ξ1i ∂xA appears on the right-hand, side of Eq. (6.9),
where ξ1 is a real constant, find the value of the real constant � such that
the transformation A → Āei�x yields an amplitude equation for the new
amplitude Ā that lacks this term.

6.2 Coefficients in the amplitude equation for the Swift–Hohenberg
equation: Following the phenomenological approach discussed in
Section 6.2.2, deduce the values of the amplitude equation constants τ0,
ξ0, and g0 for the one-dimensional Swift–Hohenberg model Eq. (2.4). For
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the purpose of this exercise, define the small parameter ε to be the Swift–
Hohenberg parameter r, rather than using the experimentally appropriate
relation Eq. (5.21).

6.3 One-dimensional amplitude equation for system without u → −u
symmetry: Show that for the one-dimensional Swift–Hohenberg equation
without u → −u symmetry

∂tu(x, t) = ru − (∂2
x + 1)2u − g2u2 − u3, (E6.1)

the form of the amplitude equation is unchanged but the value of the nonlinear
coefficient g0 is different.

6.4 Amplitude equation for the Brusselator: Use the phenomenological
method of Section 6.2.2 to derive the coefficients τ0 and ξ0 in the one-
dimensional amplitude equation for the stripe state of the Brusselator reaction
diffusion system, Eqs. (3.23). You should treat b as the control parameter
so ε = (b − bc)/bc.

6.5 Method of multiple scales: Use the method of multiple scales discussed in
Appendix 2 to derive the lowest-order amplitude equation for the generalized
Swift–Hohenberg equation in one dimension

∂tu(x, t) = ru − (∂2
x + 1)2u + (∂xu)2 ∂2

x u. (E6.2)

6.6 Numerical solutions of the amplitude equation in a finite geometry: Use
a computational environment like Mathematica, Maple, or Matlab to cal-
culate the positive nonlinear steady solution Ā(X ) to the amplitude equation
Eq. (6.21) with boundary conditions Ā(0) = Ā(L) = 0 for various scaled sys-
tem sizes L. (Note that varying L is equivalent to varying ε for fixed physical
system size.)

(a) Show graphically how the shape of Ā evolves from sinusoidal for L just
greater than π to a top-hat-like profile for larger L.

(b) Plot how the maximum amplitude, and (more work) the integrated inten-
sity (both in unscaled units) vary with ε for some fixed (unscaled)
length.

Although one can directly solve for steady state solutions of Eq. (6.21) with
boundary conditions Ā(0) = Ā(L) = 0 as a time-independent boundary-
value problem, it is easier to use the fact that the dynamics is potential to find
a stationary state as the asymptotic behavior of some time-dependent state.
So first find a high-level integrator for one-dimensional partial differential
equations (e.g. the function NDSolve in Mathematica). Then specify the
boundary conditions Ā(0) = Ā(L) = 0 and the amplitude equation Eq. (6.21),
specify some positive initial condition that has a small overall magnitude
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(e.g. Ā(X , 0) = 0.1 sin(πX /L) , then integrate the equations forward in time
until a stationary state is attained, say F = 30 time units. You will have
to explore a bit how accurately you can approach a stationary solution for
a given integration time T , but 10% accuracy is plenty for the purpose of
this problem. Since you are interested only in the asymptotic state, you also
can take large time steps (or specify a large integration error) since it is
only the asymptotic time-independent state you are interested in, and this is
determined by the spatial resolution.

As an example, the following Mathematica code will integrate the scaled
one-dimensionl amplitude equation with the specified boundary conditions
for an integration time of F = 30 units, then plot the asymptotic amplitude
form A(X , F), and also plot the entire space-time evolution over the region
[0, L] × [0, F] so that you can examine the convergence to the asymptotic
stationary state.

L = 4; (* length of domain, should be bigger than Pi *)
F = 30; (* integration time of 30 time units *)
solution = A /. First[

NDSolve[ (* solve 1d pde with ics and bcs *)
{

D[A[X,T],T] == A[X,T] + D[A[X,T],{X,2}] - A[X,T]ˆ3 ,
A[X,0] == 0.1*Sin[Pi X/L] , (* the initial condition *)
A[0,T] == 0, (* boundary condition A(0,t)=0 *)
A[L,T] == 0 (* boundary condition A(L,t)=0 *)

},
A, (* variable to solve for *)
{X, 0, L}, (* range of X, namely [0,L] *)
{T, 0, F} (* range of T, namely [0,F] *)

]
] ;
Plot[ solution[X,F], {X, 0, L} ]
Plot3D[ solution[X,T], {X, 0, L}, {T, 0, F}, PlotRange -> All ]

6.7 Magnitude of the solution near onset in a finite geometry: Sufficiently
close to onset, a sinusoidal function as in the linear expression for the ampli-
tude Eq. (6.34) remains a good approximation to the shape of the solution,
with the amplitude a1(ε) now fixed by the nonlinearity. More specifically we
have

Ā = a1 sin(πX /L) + a3 sin(3πX /L) + · · · (E6.3)

with a3 � a1 for ε close enough to εc. The spatial period of the sine function
is chosen so that the amplitude satisfies the boundary conditions Eq. (6.29).
Remember L = ε1/2l/ξ0 with L > Lc = π for ε > εc. By substituting this
expression into the amplitude equation Eq. (6.21) and collecting coefficients
of the orthogonal functions sin(nπX /L), show that a2

1 grows linearly with ε
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according to

a2
1 � 4

3

ε − εc

εc
(E6.4)

for small enough ε − εc. Find the ratio of the slope of the mean squared
(unscaled) amplitude of the pattern against ε to the value for an infinite system
(cf. the discussion of the effects of boundaries in Chapter 2). Discuss over
what range of ε this expression might be expected to be valid, and how the
sinusoidal shape of the amplitude changes to the top-hat shape as in Fig. 6.5
for larger ε.

6.8 Growth rate curve for the Eckhaus instability:

(a) Derive Eq. (6.46), which is the final result for the calculation of the growth
rate for a long-wavelength perturbation to a stripe state.

(b) Plot the dependence of the growth rate σK (Q) on the wave number Q of
small perturbations for the Eckhaus instability for different values of the
background wave number K and so verify the statement that the instability
occurs first at long wavelengths (Q → 0).

6.9 Wave number for maximum growth rate beyond the Eckhaus instability:
For stripes with wave numbers K that are unstable to the Eckhaus instability,
show that the maximum growth rate occurs for a perturbation of wave number

Q2
X max(K) = (K2 + 1)(3K2 − 1)

4K2
, (E6.5)

and that the corresponding growth rate is

σmax(K) = (3K2 − 1)2

4K2
. (E6.6)

6.10 Derivation of the phase equation: Derive with full attention to details the
perturbation equations Eqs. (6.56) and (6.58), keeping only terms linear in δa
and � and up to second order in spatial gradients.

6.11 Invariants in the time-independent amplitude equation: Show that the
quantities Q and E defined by

Q = a2 ∂X � and E = 1

2
(∂X a)2 + Q2

2a2
+ 1

2
a2 − 1

4
a4 (E6.7)

are invariants in that they are independent of X for Ā = aei� satisfying the
time-independent one-dimensional amplitude equation, Eq. (6.21).

Use this fact to show that if the amplitude magnitude a is zero at any point,
then the phase must be a constant throughout the system, in which case the
wave number of the pattern cannot deviate from the critical value qc.
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6.12 Wave-number band with spatially dependent magnitude of the ampli-
tude: Assume that in some one-dimensional system the magnitude a of the
amplitude varies spatially and has a maximum value denoted by aM =
O(1) and a smallest value denoted by am. Using the spatial invariants
Eq. (E6.7) introduced in Exercise 6.11, show that the local wave-number
perturbation qM = ∂X � at the maximum of a, a = aM, is given by the
expression

q2
M ≤ a2

m(1 − a2
M/2), (E6.8)

and so is limited by the smallest value am that a takes anywhere in the system
(e.g. at the boundary where the amplitude is suppressed).

Use this result to compute the band of possible wave numbers in regions
where the amplitude saturates at the bulk value far away from the region
of suppressed amplitude, and compare with the ideal system where the
magnitude is saturated everywhere.

6.13 Nonlinear phase diffusion equation: When the longitudinal diffusion coef-
ficient D‖ passes through zero in the phase diffusion equation, Eq. (6.59),
phase perturbations can grow exponentially so that a linearized evolution
equation is no longer a good approximation. Also the shorter the wavelength
of the perturbation, the more rapid the growth within the phase equation. We
need to keep nonlinear terms, and higher-order derivative terms to control
these effects.

(a) By considering only spatial variation in the X -direction but keeping
nonlinear and higher-order derivative terms, show from the amplitude
equation that the equation for X -dependent phase variations about the
state aK eiKX may be extended to

∂T � = D‖ ∂2
X � − γ ∂4

X � + β(∂X �)∂2
X � + · · · . (E6.9)

(b) Derive expressions for β(K) and γ (K).
(c) This phase equation has fourth-order spatial derivatives, but in the orig-

inal amplitude equation terms in ∂4
x were ignored. Is this a consistent

approximation?
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Amplitude equations for two-dimensional patterns

In the previous chapter, we introduced and used a one-dimensional amplitude
equation to study slow spatiotemporal modulations of a stripe pattern but with
the restriction that the spatial variation could only be longitudinal (in the direction
normal to the stripes). In the present chapter, we extend the previous chapter in two
ways to study patterns that depend on two extended coordinates. The first gener-
alization is the obvious one, which is to write down a two-dimensional amplitude
equation that can treat a stripe pattern with modulations that vary along, as well
as normal to, the stripes. The second generalization is to study superpositions of
stripe states with different orientations, which will allow us to study quantitatively
the periodic lattice states that we discussed in Section 4.3. It turns out that many
useful insights about the stability of, and competition between, lattice states can
be obtained by using just the zero-dimensional (no spatial dependence) amplitude
equation similar to Eq. (4.6) to describe each stripe participating in the superpo-
sition. At the end of the chapter, we will discuss briefly the more general but also
more difficult case of using a two-dimensional amplitude equation to describe gen-
eral slow distortions of each stripe associated with lattice states and other stripe
superpositions.

The two-dimensional amplitude equation that describes modulations along as
well as normal to stripes turns out to have two different forms depending on
whether the system is rotationally invariant (for example, Rayleigh–Bénard con-
vection) or anisotropic (for example, a liquid crystal or a conducting fluid in
the presence of a magnetic field). We first discuss the two-dimensional ampli-
tude equation for rotationally invariant systems. This amplitude equation turns out
to have a rather complex form, with spatial derivatives in the coordinate along
the stripes occurring up to fourth order. The higher-order spatial derivatives in
turn require additional boundary conditions to be determined which is a signifi-
cant and subtle complication beyond what we discussed in Section 6.2.4 for the

244
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one-dimensional amplitude equation. The two-dimensional amplitude equation
for the rotationally invariant case allows us to study analytically the transverse
long-wavelength zigzag instability that we discussed briefly in Section 4.2.1 and
calculated via a one-mode Galerkin approximation for the two-dimensional Swift–
Hohenberg equation (see Etude 4.1). Our discussion in Section 7.1.4 will show
that the zigzag instability is a universal instability of stripes near onset in rota-
tionally invariant systems and is important since it bounds part of the stability
balloon.

For systems without full rotational symmetry in the plane of the extended coordi-
nates, the two-dimensional amplitude equation turns out to be simpler than for the
rotationally symmetric case. In appropriately chosen scaled coordinates, the two-
dimensional equation is obtained from the one-dimensional amplitude equation
by simply replacing the second-order derivative ∂2

X with the symmetric combina-
tion ∂2

X +∂2
Y . A consequence of this simplicity is that results for the stability balloon

near onset are easily obtained by generalizing our one-dimensional calculations.
We next discuss lattice states that can be formed from a collection of stripes

with different orientations that go unstable at the same threshold (see Figures 2.11
and 2.13(b), and the discussion in Section 4.3). The existence of lattice states near
threshold, and the competition between them and the stripe state, can be described
in terms of coupled amplitude equations with one amplitude for each component
stripe. (For example, two coupled amplitude equations are required to describe
the perpendicular stripes that form a square state.) To illustrate the issues in the
simplest context, we set up these amplitude equations without spatial derivatives,
which corresponds to using uniform stripe states at the critical wave number qc.
Our discussion will identify a new quantity, a stripe coupling coefficient G(θ), that
characterizes the nonlinear interaction between two sets of stripes at an angle θ to
one another and whose values determine the relative stability of one lattice state
compared to another. Hexagonal lattices, formed from three sets of stripes at an
angle of π/3 to one another, are particularly important for systems which do not
have the field inversion symmetry u → −u, since there are then additional terms
in the amplitude equation that favor hexagons near threshold.

Toward the end of this chapter, we include the spatial derivatives for the coupled
amplitude equations. This allows us to investigate the cross-stripe instability intro-
duced in Section 4.2.1. This instability is important in systems that are rotationally
invariant in the plane, since, depending on the values of G(θ), the cross-stripe insta-
bility may bound part of the stability balloon close to threshold and preempt the
Eckhaus instability as the wave number of the pattern is increased away from the
critical value. Further applications of the coupled amplitude equations with spatial
derivatives are postponed to Chapter 8, for example Section 8.2 where we discuss
the dynamics of grain boundaries.
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7.1 Stripes in rotationally invariant systems

We first consider the amplitude equation for stripe-forming systems that have two
extended directions and that have rotational symmetry in this plane. (Rayleigh–
Bénard convection and the Turing instability in a large aspect ratio planar geometry
are examples of such a system.) The derivation of the amplitude equation follows
along the same lines as for one-dimensional systems in Section 6.1 and Section 6.2
but now incorporates the two dimensions and the new rotational symmetry. Bound-
ary conditions must again be specified to solve the equation in a specific geometry.
We end this section by discussing the new features of the stability balloon near
threshold for stripes in rotationally invariant two-dimensional systems.

The amplitude function is introduced in the same way as for the one-dimensional
situation Eq. (6.3), but we now allow the amplitude to be a slowly varying function
of the two coordinates in the extended directions, as well as of time

up(x⊥, x‖, t) = A(x⊥, t)uc(x‖)eiqcx + c.c. + h.o.t., (7.1)

with x⊥ = (x, y). Although the physical system is rotationally invariant, we are
forced by the amplitude equation formalism to introduce a reference set of parallel
stripes at the critical wave number qc, and to specify a particular reference direction
normal to these stripes, which is the x-direction in Eq. (7.1). This stipulation of a
reference direction in a rotationally invariant system is an undesirable but unfor-
tunately unavoidable aspect of the formulation and limits the use of the amplitude
equation. In particular, patterns in which the stripe orientation varies over large
angles across the system, even if the rate of variation is slow, cannot be treated
using the amplitude equation approach.

7.1.1 Amplitude equation

In Section 6.1, we used the correspondence of a slow variation in the amplitude’s
phase in the x-direction to a stretching of the wave vector of the critical state
to understand the form of the gradient terms appearing in the one-dimensional
amplitude equation. The first step in constructing the two-dimensional amplitude
equation is to ask what is the significance of a slow variation of the phase in the
y-direction along the stripes. This turns out to correspond to a small change in the
orientation of the stripes. We can see this by examining a complex amplitude A =
aei� with a non-constant phase of the form � = kxx + kyy with |kx|, |ky| � qc so
that the phase is slowly varying. Substituting this variation into Eq. (7.1) leads to
the spatial dependence

up(x⊥, x‖, t) = 2auc(x‖)cos(q •x⊥) + h.o.t., (7.2)
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with wave vector
q = (qc + kx)x̂ + kyŷ. (7.3)

This wave vector corresponds to a rotation of the stripes through the small
angle ky/qc to leading order in the small quantity |k|/qc. Equation (7.3) also cor-
responds to a small stretching of the wave number by an amount that is first order
in kx and second order in ky:

q � qc + kx + k2
y

2qc
+ · · ·. (7.4)

Now we establish the form of the two-dimensional amplitude equation for a
rotationally invariant system by imposing the restriction that the form must be
invariant under a small rotation. This is imposed by demanding that the amplitude
equation be invariant under the substitution

A → A exp

[
i

(
�y − �2

2qc
x

)]
, (7.5)

with � a small real constant, which corresponds to a small rotation through
angle �/qc.1 It is only the derivative terms in the amplitude equation that will have
a different form in the generalization to two dimensions, and these are determined as
the lowest-order derivative terms that have the invariance under the transformation
of Eq. (7.5). This leads to the result for the two-dimensional amplitude equation
for a system that is rotationally invariant

τ0 ∂tA(x, y, t) = εA + ξ2
0

(
∂x − i

2qc
∂2

y

)2

A − g0|A|2A. (7.6)

The asymmetric way that the x- and y-derivatives appear in the equation results
from the choice of a particular reference state, with stripes perpendicular to the
x-direction. We can confirm that Eq. (7.6) has the correct form by looking at the
growth of a small amplitude solution in the linear approximation

A = aei(kxx+kyy)eiσk t . (7.7)

Substituting into Eq. (7.6) gives for the growth rate

σk = τ−1
0 ξ2

0

(
kx + k2

y

2qc

)2

� τ−1
0 ξ2

0 (q − qc)
2, (7.8)

where Eq. (7.4) has been used in the last approximate equality.

1 The linear dependence of the phase on the y-coordinate causes a small rotation of the wave vector, and a second-
order change Eq. (7.4) in the magnitude of the wave vector. This magnitude change is removed by the O(�2)

linear dependence of the phase on the x-coordinate, yielding in the end a pure rotation up to O(�4).
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As before, we can eliminate the constants τ0, ξ0, g0, and now also qc to obtain
a scaled form of the amplitude equation that does not depend explicitly on physi-
cal parameters. We accomplish this by substituting the following scaled variables
(which assumes g0 is positive)

Ã = g1/2
0 A, x̃ = x/ξ0, ỹ = y(qc/ξ0)

1/2, t̃ = t/τ0, (7.9)

to obtain an equation in which only the parameter ε remains

∂ t̃ Ã = εÃ +
(

∂x̃ − i

2
∂2

ỹ

)2

Ã −
∣∣∣Ã∣∣∣2 Ã. (7.10)

This generalizes Eq. (6.17) to the rotationally invariant two-dimensional case.
Alternatively, we can incorporate appropriate ε scales into the variables to

eliminate this parameter from the equation:

Ā =
∣∣∣g0

ε

∣∣∣1/2
A, X = |ε|1/2

ξ0
x, Y = |ε|1/4

(
qc

ξ0

)1/2

y, T = |ε|
τ0

t, (7.11)

which yields the fully scaled equation

∂T Ā = ±Ā +
(

∂X − i

2
∂2

Y

)2

Ā − ∣∣Ā∣∣2 Ā, (7.12)

which generalizes Eq. (6.21). The positive sign for the first term on the right-hand
side again corresponds to ε > 0, and the negative sign to ε < 0. This scaled version
of the equation shows us the universality and scaling properties of the solutions. It
also shows us that the spatial variation in directions parallel and perpendicular to the
stripes will typically occur over lengths that scale in different ways with ε namely
proportional to ε−1/2 for the direction perpendicular to the stripes, but proportional
to ε−1/4 along the stripes. For example, the core of a dislocation defect (the region
where the amplitude is suppressed from the bulk value by the rapid phase variation)
will show this anisotropic structure.

7.1.2 Boundary conditions

The amplitude equations (7.6), (7.10) or (7.12) must be supplemented with bound-
ary conditions. As in the one-dimensional case, periodic boundary conditions over
a rectangular domain are often used in theoretical discussions as a convenient
mathematical simplification. The question of the boundary conditions for realistic
physical boundaries is more difficult. Part of the difficulty is that stripes tend to align
along the normal to a boundary, which necessarily leads to large reorientations of
the stripes over a simply connected region such as a rectangular or circular system.
This situation cannot be treated within the amplitude-equation formalism, which
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requires stripes to be nearly parallel everywhere. On the other hand, the tendency
toward a normal alignment does not seem to be a boundary condition and, partic-
ularly near threshold, patterns are often seen where the orientation of the stripes
appears unaffected by the proximity of boundaries.

The simplest cases to analyze are boundaries parallel or perpendicular to the
reference wave-vector direction used to construct the amplitude equation. For a
boundary perpendicular to this direction, with normal along the x-direction in our
conventional choice of axes, the problem reduces to the one-dimensional situation
considered before, and the same conditions as before are sufficient. For a boundary
that inhibits the instability, we have the same condition as Eq. (6.18)

A = 0 as x → boundary. (7.13)

On the other hand, for a boundary normal to the y-direction, the variation of the
amplitude induced by the boundary is in the y-direction. Since ∂y appears up to
fourth order ∂4

y in the amplitude equation, we might expect an additional condition
to be required at each such boundary (for a total of two conditions specified at each
boundary point). By matching to complete solutions of the basic equations near the
boundary, it has been shown in specific cases that the “natural’’ conditions

A = ∂yA = 0 as y → boundary (7.14)

apply for boundaries that suppress the pattern formation. For stripes approaching a
boundary at an arbitrary angle, a more complicated analysis of the region near the
boundary seems to be necessary.

7.1.3 Potential

Using the same methods as in Section 6.3.2, you can show that, with appropriate
boundary conditions (those of Eqs. (7.13) and (7.14) or periodic boundary condi-
tions for example), the two-dimensional amplitude equation has potential dynamics
just like the one-dimensional amplitude equation. Quoting the result for the scaled
form of the equation (7.12), the potential is

V̄
[
Ā
] =

∫ ∫
dX dY

[
−∣∣Ā∣∣2 + 1

2

∣∣Ā∣∣4 +
∣∣∣∣
(

∂X − i

2
∂2

Y

)
Ā

∣∣∣∣
2
]

, (7.15)

where the double integral goes over the interior of the domain. The potential evolves
according to the equation

dT V̄ = −2
∫ ∫

dX dY
∣∣∂T Ā

∣∣2, (7.16)

and decreases if there is any dynamics of the amplitude.
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7.1.4 Stability balloon

The extra flexibility of perturbations that have a spatial dependence transverse to
the stripe wave vector allows new instabilities of the stripe state in addition to
the Eckhaus instability discussed in Section 6.4.2. A transverse long-wavelength
instability known as the zigzag instability is especially important since it limits the
band of stable wave numbers of stripes in a rotationally invariant system. The two-
dimensional amplitude equation allows us to calculate the boundary to the zigzag
instability near threshold.

The procedure follows precisely the same path as in Section 6.4.2, but now we
use the two-dimensional amplitude equation in its fully scaled form, Eq. (7.12). For
the base state, we choose the amplitude AK (X ) in Eq. (6.36), which corresponds
to a stripe state whose wave vector differs slightly from qc. We test the stability of
the state by adding to ĀK a small perturbation δĀ that now depends on X and Y :

Ā(X , Y , T ) = ĀK (X ) + δĀ(X , Y , T ). (7.17)

Linearizing the amplitude equation in δĀ gives the following evolution equation
for the perturbation:

∂T δĀ = δĀ +
(

∂X − i

2
∂2

Y

)2

δĀ − 2
∣∣ĀK

∣∣2 δĀ − Ā2
K δĀ∗. (7.18)

The analysis proceeds as in the Etude in Section 6.4.2 except that the Bloch ansatz
Eq. (6.43) must be generalized to allow for a perturbation with an arbitrary wave
vector Q:

δĀ = eiKX
[
δa+(T )eiQ • X + δa∗−(T )e−iQ • X

]
. (7.19)

The result is that the growth rate σK (Q) has the same form as in Eq. (6.46),

σK (Q) = −
(

1 − K2
)

− 1

2
(U + + U−) +

[(
1 − K2

)2 + 1

4
(U+ − U−)2

]1/2

,

(7.20)
but with the quantities U± now defined as

U± =
[
K ± QX + Q2

Y /2
]2 − K2. (7.21)

The stability boundaries are given by changing K from zero, which corresponds to
moving the stripe wave number q away from qc, and by asking when the maximum
of σK (Q) over all possible Q first becomes positive.

A number of useful results can be proved from the general expression Eq. (7.20).
It can be shown that, as |K | is increased from zero, the instability always occurs first
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Fig. 7.1 Schematic plot of the stripe distortion that arises from a zigzag instabil-
ity, which suggests the origin of its name. This is a transverse instability whose
perturbation wave vector Q = QY Ŷ (with |QY | � 1) is perpendicular to the
orientation X̂ of the stripe base state.

for either a purely longitudinal (Q = QX X̂) or purely transverse (Q = QY Ŷ) per-
turbation. Furthermore, the instability always occurs in the limit Q → 0 which
corresponds to long wavelengths. We have already discussed the longitudinal
instability in Section 6.4.2, and so here we will give results for the transverse one.

Figure 7.1 illustrates why a transverse long-wavelength instability of stripes
is described as “zigzag.’’2 If we set QX = 0 in Eq. (7.20), expand in the small
quantity QY , and retain the two lowest-order terms, we find that

σK (QY ) = −KQ2
Y − 1

4
Q4

Y . (7.22)

Equation (7.22) shows that the zigzag instability is of type II, with a zero growth rate
at QY = 0. This occurrence of a type-II instability is a consequence of the rotational
symmetry of the physical system, since a QY = 0 perturbation corresponds to a
small rotation of the stripes, which is a perturbation that neither grows nor decays.
The instability develops as the deviation of the stripe wave number from critical K
passes to negative values, and for a long-wavelength perturbation, QY → 0. In the
unstable region K < 0, the maximum growth rate is at the wave vector

QY = √
2(−K). (7.23)

2 This pattern is generated from the full amplitude A + δA with the form of δA dictated by the linear stability
analysis, with some choice of the wave vector of the perturbation QY and size of perturbation. The figure is not
intended to be quantitatively accurate. Indeed, as the perturbation increases in magnitude from a small value,
nonlinear effects can cause a substantial change to such a pattern.
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Returning to the physical variables, we see that the spatially periodic stripe solutions
are unstable to the zigzag instability for q < qZ with

qZ = qc + 0 × ε1/2 + O(ε), (7.24)

where the O(ε) term is beyond the reach of the lowest-order amplitude equation.
The zigzag instability has a universal form near threshold for a rotationally invari-
ant type-I-s system (the zero at O(ε1/2) in Eq. (7.24)). This behavior is sketched in
Fig. 4.2(b). The O(ε) term in Eq. (7.24), which determines the slope of the bound-
ary in the εq plane as ε → 0, is nonuniversal and depends on the system under
consideration.

7.1.5 Phase dynamics

As we did for the one-dimensional amplitude equation in Section 6.4.3, we can
derive a single equation for the dynamics of phase variations that are so slow that the
magnitude adiabatically follows the local phase gradient (see Eq. (6.57)). We again
choose to look at small perturbations from a uniform stripe state at a wave number
q shifted from critical q = qc + ε1/2Kξ−1

0 , and keep only terms that are linear in
the phase deviation �(X , Y , T ) from this state (as defined in Eq. (6.53)), and that
are up to second order in spatial derivatives of �. The derivation goes through as
there except that there is an additional term involving Y -derivatives of the phase.
For the fully scaled amplitude equation, Eq. (7.12), the linear equation for the phase
dynamics is

∂T � = 1 − 3K2

1 − K2
∂2

X � + K ∂2
Y �. (7.25)

This is again a diffusion equation for the phase, now with different diffusion con-
stants for variations parallel and perpendicular to the stripe wave vector. Returning
to the unscaled units, Eq. (7.25) becomes

∂t� = D‖ ∂2
x � + D⊥ ∂2

y �, (7.26)

with diffusion constants D‖ and D⊥ given by

D‖ = (ξ2
0 τ−1

0 )
ε − 3ξ2

0 k2

ε − ξ2
0 k2

and D⊥ = (ξ2
0 τ−1

0 )
k

qc
, (7.27)

for phase perturbations about the stripe state with wave number q = qc + k (where
k = ξ−1

0 ε1/2K). Note that the transverse diffusion constant D⊥ is zero for k = 0
corresponding to q = qc. This signals the onset of instability for q < qc, the zigzag
instability discussed in the previous section.
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7.2 Stripes in anisotropic systems

The extension of the amplitude equation into two dimensions is easier for a stripe-
forming system that does not have full rotational symmetry, and the resulting
equation is simpler (in appropriately chosen and scaled coordinates). We will con-
sider the amplitude equation for the two different possibilities for uniaxial systems,
where the linear instability may be as in panels (a) and (b) of Fig. 2.13. In the case
of Fig. 2.13(b), stripes result from the growth of modes in just one pair of ellipses
at ±q. The amplitude equation for the completely anisotropic case, with a single
pair of ellipses of unstable modes as in Fig. 2.14, will have the same form as this
latter case. The equations can be derived phenomenologically as in Section 6.2.1
or, for a given physical system, using the method of multiple scales perturbation
theory.

7.2.1 Amplitude equation

The easiest case is for uniaxial symmetry with the critical wave vector along the
preferred direction as in Fig. 2.13(a). We define the x-direction to be along the
preferred axis, and the critical wave vector is then qcx̂. The amplitude equation is

τ0 ∂tA = εA + ξ2
x ∂2

x A + ξ2
y ∂2

y A − g0|A|2A. (7.28)

There are no cross derivative terms ∂x∂y in Eq. (7.28) since the equations must be
invariant separately under x → −x and y → −y, but there are no other constraints
arising from rotational invariance arguments, and so the lowest-order derivative
terms consistent with these invariances appear. Note that the coefficients for vari-
ations along and perpendicular to the preferred direction are different in general.
The constants ξx and ξy can be related to the expansion of the growth rate about
q = qcx̂

σ(q) � τ−1
0 [ε − ξ2

x (qx − qc)
2 − ξ2

y q2
y]. (7.29)

The quadratic terms in x and y wave vector changes with different coefficients
correspond to the elliptical contours of Fig. 2.13(a) with principal axes that are
aligned along the x and y coordinate axes.

For a uniaxial system in which the critical wave vector of the instability is not
aligned with the preferred axis of the system as in Fig. 2.13(b), or for a system with
no rotational symmetry as in Fig. 2.14, the amplitude equation (for a single set of
stripes for Fig. 2.13(b)) takes the form

τ0 ∂tA = εA + ξ2
x ∂2

x A + 2ξxy ∂x∂yA + ξ2
y ∂2

y A − g0|A|2A, (7.30)

where again the quadratic derivatives correspond to elliptical contours of con-
stant σ(q) near threshold, but the principal axes of these ellipses do not have any
particular relationship with the critical wave vector or the x and y axes.
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By rescaling coordinates in Eq. (7.28), or by introducing scaled coordinates that
are rotated to be along the principal axes of the constant-growth-rate elliptical
contours for Eq. (7.30), both equations can be written in the parameter-free form

∂T Ā = ±Ā + ∂2
X Ā + ∂2

Y Ā − |Ā|2Ā. (7.31)

Thus the anisotropic system leads to an amplitude equation that is isotropic in
appropriately chosen scaled coordinates, whereas the amplitude equation for the
rotationally invariant system (but with stripes chosen with normals in the x-
direction) has the x- and y-derivatives appearing in different ways. The simplicity
of the derivative terms in Eq. (7.31) compared with Eq. (7.12), makes the analysis
of the physical consequences considerably easier. An example is the structure of a
dislocation defect, discussed in Section 8.1 in the next chapter.

For appropriate boundary conditions, the amplitude equation Eq. (7.31) has
potential dynamics with potential

V̄
[
Ā
] =

∫ ∫
dX dY

[
−∣∣Ā∣∣2 + 1

2

∣∣Ā∣∣4 + ∣∣∂X Ā
∣∣2 + ∣∣∂Y Ā

∣∣2], (7.32)

which evolves according to Eq. (7.16).

7.2.2 Stability balloon

The isotropy of the scaled amplitude equation (7.31) means that the calculation
of the stability balloon is a straightforward extension of the one-dimensional
calculation, Section 6.4.2. We start with the base solution

ĀK(X , Y ) = (1 − K2)1/2eiK • X, (7.33)

with K in any direction. As before, the stability of the state is tested by adding to
ĀK a small perturbation δĀ

Ā(X , Y , T ) = ĀK (X , Y ) + δĀ(X , Y , T ). (7.34)

The equation of the perturbation given by linearizing the amplitude equation in
δĀ is

∂T δĀ = δĀ +
(
∂2

X + ∂2
Y

)
δĀ − 2

∣∣ĀK
∣∣2 δĀ − Ā2

K δĀ∗ (7.35)

and the Bloch ansatz is

δĀ = eiK • X[δa+(t)eiQ • X + δa∗−(t)e−iQ • X], (7.36)

with Q the Bloch wave vector of the perturbation. Proceeding as in Section 6.4.2,
you can show that the growth rate given by δa±(t) ∝ eσK(Q)T is

σK(Q) = (1 − K2) − Q2‖ +
√

(1 − K2)2 + 4K2Q2‖ − Q2⊥, (7.37)
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with Q‖ the component of Q parallel to K, and Q⊥ the component perpendicular
to this direction.

A nonzero Q⊥ reduces the growth rate, and so the instability always occurs first
for Q parallel to K. This observation reduces the calculation to the same one as
in Section 6.4.2, so that the instability occurs first for Q → 0 and at a value of
K = 1/

√
3, the same result as in Eq. (6.48).

7.2.3 Phase dynamics

The equation for small phase perturbations about a uniform stripe state is readily
derived by following the methods of Section 6.4.3. Let us start with the rotated
coordinates (if necessary) and the scaled variables leading to the simple form of
the amplitude equation, Eq. (7.31). For a base state given by the amplitude

ĀK (X , Y ) = (1 − K2)1/2eiKX , (7.38)

the linear equation for the phase dynamics is

∂T � = 1 − 3K2

1 − K2
∂2

X � + ∂2
Y �. (7.39)

In agreement with the calculations of the previous section, we see that the long-
wavelength instability, which is signaled by a negative diffusion constant, occurs
for longitudinal perturbations (variation along the same direction as the phase of
the base state amplitude) and for K = 1/

√
3. This result must be translated back to

the original coordinates to get a physical description of the unstable mode.

7.3 Superimposed stripes

A question of fundamental importance in pattern formation is why some systems
show stripe patterns, some hexagonal ones, and others squares or more exotic
patterns. The qualitative aspects of this question were introduced in Section 4.3.
The amplitude equation approach provides a systematic and quantitative way to
answer this question near threshold where the weakly nonlinear theory applies.

A general and reliable way to investigate the nonlinear competition between
different patterns is a linear stability analysis: first construct various nonlinear
solutions, and then test the stability of each solution. If out of two states being
compared, one state is stable, whereas the second is unstable, we can focus our
attention on the stable state, and for most purposes ignore the unstable one.

On the other hand, both states may turn out to be stable, and then the stability test
does not discriminate between the two solutions. For this case of bistability (or more
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generally, multistability), the potential associated with the amplitude dynamics
can be used to assess the competition between the two states, see Fig. 5.1 and
the related discussion in Section 5.1.2. Using a potential to compare two states
is less general than the stability test. Firstly, it cannot be extended further away
from threshold, where the dynamics is no longer potential, or even to situations
described by amplitude equations that do not lead to a potential. Furthermore,
although it is quite generally true that potential dynamics cannot evolve from the
lower potential state to the higher one, it is not always true that a dynamical pathway
exists to connect a higher potential state to a lower one. It is therefore not necessarily
true that all experimental protocols will lead to the state with lower potential. For
example, some initial conditions might favor the growth of a state that is a local
minimum of the potential, but that minimum may have a higher potential than some
other state. If a uniform configuration of the higher potential state develops, the
competition between spatial domains of the higher and lower potential states via
the motion of domain walls never arises, and there may be no other dynamical
pathway that connects the two states. In this case, the higher potential state will
persist.

The competition between the lattice and stripe states is straightforward to analyze
within the amplitude equation approach. We first outline the general method, and
then discuss two specific examples. For the first example, the competition between
stripes and a general lattice state, the stability test leads to a sharp criterion for the
competition, with either the stripe state or the lattice state being stable, depending
on parameters, but not both together. For the second example, the competition
between stripes and a hexagonal state for a system without field inversion symmetry
u → −u, there are parameter regions where bistability occurs. For these parameter
values, an investigation of the potential provides further insights.

7.3.1 Amplitude equations

To study states that are the superposition of stripes that are oriented in different
directions, we need to use a more general zeroth-order ansatz than Eq. (7.1). For
example, for a lattice state based on stripes at wave vectors q1 and q2, both with
magnitude qc but with different directions, the ansatz takes the form

up = A1eiq1 • x⊥ ūc(x‖) + A2eiq2 • x⊥ ūc(x‖) + c.c. + h.o.t. (7.40)

Note that the critical wave numbers of the two sets of stripes must be the same, so
that both sets are weakly nonlinear together. For a rotationally invariant system this
is no restriction since q1 and q2 may lie in any direction around the critical circle.
However, for a uniaxial system, the wave vectors q1 and q2 must be the degenerate
zig and zag directions of Fig. 2.13(b).
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Equation (7.40) introduces two amplitudes, A1 and A2. While these will generally
vary slowly as functions of space and time, to simplify the discussion of the lattice
states we will first assume there is no spatial dependence. This assumption corre-
sponds to restricting the component stripe states to be uniform and at the critical
wave number. The more general case is discussed in Section 7.3.4.

The rotational symmetry of the physical system implies that the evolution of
the amplitudes A1 and A2 may depend on the angle θ between the wave vectors
q1 and q2, but not on the individual directions. Also rotational symmetry tells us
that the two sets of stripes must have the same z-dependence ūc(x‖),3 and that
only the nonlinear terms involving both A1 and A2 may lead to differences from
the single amplitude case. Then using the same type of symmetry arguments to
restrict the possible terms as in Section 6.2.1, we argue phenomenologically that
the lowest-order amplitude equations should take the form

τ0 dtA1 = εA1 − g0

(
|A1|2 + G(θ)|A2|2

)
A1, (7.41a)

τ0 dtA2 = εA2 − g0

(
|A2|2 + G(θ)|A1|2

)
A2. (7.41b)

(Etude 7.2 gives a more detailed justification for the more general case of many
superimposed stripes.) The new parameter G(θ) gives the coupling between stripes
at relative orientation θ . The function G(θ) must satisfy

G(θ) = G(π − θ), (7.41c)

since these two angles define the same relative orientation. We have also assumed
that the physical system is unchanged under reversing the sense of rotation, θ → −θ

(which we call chiral symmetry), so that the same interaction coefficient appears
in the two equations.

We shall see in Section 7.3.2 that the coefficient G(θ) determines the relative
stability of stripe and lattice states, and in Section 7.3.5 that it is important in the
cross-stripe instability. It can be shown quite generally to have the property

lim
θ→0

G(θ) = 2, (7.42)

even though we might expect unity for this limit, since that would reproduce the
coefficient of the one-amplitude nonlinearity. This difference arises because of the
interference effects that occur if θ is identically zero. These disappear for any
nonzero θ (actually for θ � ε1/4).

3 For a choice of the variables making up u that are themselves vectors in coordinate space, the onset solution uc
may in fact depend on the direction of the wave vector, and we would have to modify the argument slightly. For
example, if we use fluid velocity as basic variables in Rayleigh–Bénard convection, the horizontal component
will be along the direction normal to the rolls, i.e. along the wave vector. Components along fixed coordinate
axes will then depend on q1x , q1y etc. Formulating the basic equations in terms of stream functions would
eliminate this extra complication.
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The value of G(θ) for a given physical system can be calculated from the calcula-
tion of the nonlinear saturation of the unmodulated lattice state that consists of two
sets of stripes of equal amplitude AL (the “lattice amplitude’’) at the critical wave
number qc and at a relative angle θ . From the amplitude equations Eqs. (7.41), we
find that the lattice amplitude AL has the following value

AL = |A1| = |A2| =
√

ε

g0
(1 + G(θ))−1/2. (7.43)

We can compare this value with the amplitude AS of a saturated stripe state, which
is a solution of Eq. (7.40) with one of the stripes eliminated, say by setting A2 = 0.
We find that

AS = |A1| =
√

ε

g0
, |A2| = 0. (7.44)

Thus G(θ) can be deduced from the ratio of stripe to lattice intensities

G(θ) = A2
S

A2
L

− 1. (7.45)

These intensities in turn can be calculated separately from a lowest-order Galerkin
calculation as was discussed in Section 4.1.3 and as we discuss now in the following
Etude. Alternatively, Eqs. (7.41) can be derived using the multiple-scales method
of Appendix 2, which yields an explicit expression for G(θ).

Etude 7.1 Stripe coupling coefficient G(θ) for the Swift–Hohenberg equation
Our discussion here is brief since the calculation uses the same approach
as Section 4.1.3, where most of the details have already been given. We are inter-
ested in stationary states u(x, y) of the two-dimensional Swift–Hohenberg equation
(see Eq. (5.9) in Section 5.1)

∂tu = ru −
(
∂2

x + ∂2
y + 1

)2
u − u3, (7.46)

that are a superposition of two stripes with critical wave number qc = 1. For such
stationary states, Eq. (7.46) reduces to

0 = ru − u3. (7.47)

Now consider a lattice state made from equal amplitudes of stripes with wave
vectors q1 and q2 (with q1 = q2 = qc = 1)

u = aL[cos(q1 •x) + cos(q2 •x)] + · · ·. (7.48)

For simplicity, we again use a cosine notation for the calculation rather than
complex exponentials; to compare with Eq. (7.45), we would use AL = aL/2. The
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terms denoted by · · · include spatial harmonics at wave vectors 3q1, 3q2, 5q1, and
so on (see Section 4.1.3) as well as sinusoids whose wave vectors are sums and
differences of q1 and q2, for example 2q1 ±q2. Sufficiently close to onset (0 < r �
1), the coefficients of these modes are all negligibly small compared with aL.

The amplitude aL can be obtained by substituting Eq. (7.48) into Eq. (7.47) and
by collecting the coefficients of each sinusoidal mode separately and setting those
coefficients to zero. The result we need is given by looking at (for example) the
cos(q1 •x) mode. The term u3 generates

u3 = a3
L[cos3(q1 •x) + 3 cos2(q1 •x)cos(q2 •x)

+3 cos(q1 •x)cos2(q2 •x) + cos3(q2 •x)]. (7.49)

Combining the products of cosines into cosines of sums and differences gives

u3 = a3
L

[
9

4
cos(q1 •x) + · · ·

]
, (7.50)

where the · · · in the last expression contains sum and difference modes with wave
vectors other than q1. Thus Eq. (7.47) for the cos(q1 •x) mode gives

aL = 2

3

√
r. (7.51)

Since we know from Eq. (4.24) that the amplitude of a stripe state is aS = √
4r/3,

Eq. (7.45) tells us that
G(θ) = 2. (7.52)

Thus for the Swift–Hohenberg equation, G(θ) is independent of θ . This will not be
the case for most evolution equations that describe pattern formation. For exam-
ple, in Exercise 7.10 you can derive the more complicated expression, Eq. (E7.7),
for the stripe coupling coefficient of the generalized Swift–Hohenberg model for
rotating convection discussed in Section 5.2.4. Note that the result Eq. (E7.7) is
consistent with the general statement Eq. (7.42).

Equations (7.41) can be generalized to states of any number of superimposed
stripes4

τ0 dtAi = εAi − g0


|Ai|2 +

∑
j 	=i

G
(
θij
)∣∣Aj

∣∣2

Ai, (7.53)

in which each amplitude Ai is coupled to all the other amplitudes Aj, and the
coupling coefficients G(θij) depend on the relative orientation ϑij of the stripes

4 Equations (7.53) break down if the angular separation between two sets of stripes becomes too close, namely
when θij � ε1/4 for some pair of stripes. Those stripes are then correctly described by a single spatially
dependent amplitude.
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(with G(θ) = G(−θ) if there is chiral symmetry). A special case is three sets of
stripes at equal relative angles of π/3. The nonlinear interaction of the disturbance
given by two sets of stripes can then generate a disturbance along the third set of
stripes. This corresponds to additional quadratic terms in the amplitude equations,
for example

τ0 ∂T A1 = · · · + γ A2A3, (7.54)

where the · · · represents the same terms as in Eq. (7.53), and the parameter γ is
real-valued. There are corresponding equations for the amplitudes A2 and A3 which
can be obtained by cyclic permutations of the indices.

As we show in the following Etude, the forms (7.53) and (7.54) of the ampli-
tude equations follow from the translational invariance and parity symmetry, Note
that if the system also has the field inversion symmetry u → −u, so that the
amplitude equations must be invariant under Ai → −Ai, the coefficient γ of the
quadratic nonlinear terms must be zero and there are only cubic nonlinear terms as
in Eqs. (7.41).

Etude 7.2 Form of amplitude equation for coupled stripes
We require that the amplitude equations reflect the invariance of the physical system
under an arbitrary translation x → x+�x. Under such a translation, each ampli-
tude Ai appearing in the equation becomes multiplied by a different phase factor
exp(iqi •�x). The amplitude equations must be invariant under this substitution,
as discussed in Section 6.2.1. This immediately shows that the cubic terms must be
of the form in Eqs. (7.41) or Eq. (7.53).

Now consider possible quadratic terms in the equation for amplitude Ai

τ0 ∂T Ai = · · · + c1AjAk + c2A∗
j Ak + c3AjA

∗
k + c4A∗

j A∗
k , (7.55)

where the four coefficients ci are complex numbers. Upon translation through �x,
the left-hand side of Eq. (7.55) is multiplied by the phase factor exp(iqi •�x), and
the first term c1A(j)A(k) on the right-hand side is multiplied by exp[i �x •(qj +
qk)]. The amplitude equation must be invariant under this symmetry operation.
Therefore, for the coefficient c1 to be nonzero these two phase factors must be
equal for any �x, which requires that

qi = qj + qk . (7.56)

For the terms involving complex-conjugate amplitudes, the corresponding qi

appears with a minus sign. This leads to the general condition

qi ± qj ± qk = 0, (7.57)

for a term to have nonzero coefficient, with the + sign for amplitudes appearing
as the complex conjugate, the − sign otherwise. Since we also know that qi = qc
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for all i, this equation can only be satisfied for wave vectors (or their negatives)
equally spaced at angles of π/3. For three sets of stripes with wave vectors at π/3
so that q(1) + q(2) + q(3) = 0, the coefficient c4 is the only nonzero one. The
invariance under spatial inversion, corresponding to all Ai → A∗

i , then shows that
the coefficient c4 must be real.

An important question is the existence of a potential for superimposed stripes,
as in the discussion in Section 6.3.2. You can verify that the coupled amplitude
equations Eq. (7.53) have a potential dynamics for the potential density5

v =
∑

i

(
−ε|Ai|2 + g0

2
|Ai|4

)
+ g0

2

∑
i,j

i 	=j

G(θij)|Ai|2
∣∣Aj
∣∣2, (7.58)

which decreases for any dynamics of the amplitudes Ai since

dtv = −2
∑

i

|dtAi|2. (7.59)

The quadratic terms in the amplitude equations for three stripes at angles of π/3
are also consistent with a potential, see Eq. (7.76) below.

If you differentiate both sides of Eq. (7.58) with respect to time and work
through the algebra to derive Eq. (7.59), you will see that, at one crucial step,
you will need to combine terms that are identical except that one set of terms has
the coefficients G(θij) while the other set has the coefficients G(θji) = G(−θij)

(since θij = −θji). So Eq. (7.58) is a potential only if the system has chiral sym-
metry for which G(θ) = G(−θ). Although many physical systems have chiral
symmetry, this is not always the case. For example, if a Rayleigh–Bénard system is
rotated about a vertical axis, the amplitude equations still have the form Eq. (7.53)
but now G(θ) 	= G(−θ) due to the asymmetry induced by the rotation. This is
sufficient to render the dynamics nonpotential, and indeed a chaotic state called
domain chaos is observed in this system immediately at onset, as we mentioned
in Chapter 1, Fig. 1.15. This system is discussed further in Exercise 7.20 and in
Section 5.2.4 and Section 9.2.4.

7.3.2 Competition between stripes and lattices

In this section, we investigate the competition between stripe and lattice states for
systems with field inversion symmetry so that there are no quadratic nonlinear

5 For the general case in which the amplitudes Ai vary spatially, the potential V would be given by a double
integral of a potential density over the domain, V = ∫∫

v dx dy. Since the amplitudes do not depend on space
here, we work directly with the potential density, which is also the appropriate quantity to compare for competing
patterns that span different areas of some domain.
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terms in the amplitude equations. The competition between states of superimposed
stripes at different orientations is captured through the pairwise stripe interaction
parameter G(θ). Introducing the scaled amplitudes Āi = √

g0/εAi and the scaled
time T = t/τ0, Eq. (7.53) gives the evolution equation for each set of stripes with
an amplitude Āi

dT Āi = Āi −

∣∣Āi

∣∣2 +
∑
j 	=i

G(θij)
∣∣Āj
∣∣2

Āi. (7.60)

The task now is to construct lattice state solutions of the sort discussed in Fig. 4.6
of Section 4.3, with N amplitudes Āi at orientations θi dictated by the choice of
symmetry and by other assumptions. We then test the stability of the solutions with
respect to small perturbations. Using Eq. (7.60), we can test stability within the
space of the N chosen Ai, as well as to the growth of additional new modes at
arbitrary new orientations. Although only spatially uniform perturbations can be
studied using Eq. (7.60), this is often sufficient since the fastest growing mode is
usually at the critical wave number, and can be described by a spatially uniform
amplitude.

In the following Etude, we study the competition between a stripe state and a
lattice state comprised of two superimposed sets of stripes. Note that Eq. (7.60)
implies that the phases �i of the different amplitudes are uncoupled, and each one
can take an arbitrary constant value in the stationary solutions. For simplicity, we
can choose the solutions of the amplitude equations to be real, and test stability
with perturbations that are also real.

Etude 7.3 Competition between stripes and lattices
We consider the competition between the stripe state and a lattice state formed from
the superposition of two sets of stripes at an angle θ . The case θ = π/2 gives the
square lattice, otherwise the lattice is orthorhombic (see Section 4.3). We study the
competition by calculating the amplitudes in each stationary nonlinear state, and
then the stability of these states.

First consider the stripe state. The solution to Eq. (7.60) for a single set of stripes
is Ā1 = ĀS with

ĀS
2 = 1. (7.61)

This simple statement contains the physical result that the amplitude of the stripes
grows as the square root of the distance above onset, described by the unscaled
amplitude

AS ∝ √
ε. (7.62)

The linear stability to the growth of a second set of stripes of amplitude Ā2 at
angle θ is tested by linearizing Eqs. (7.60) about the solution Eq. (7.61) for the
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perturbation to Ā1 and the small amplitude Ā2

Ā1 = ĀS + δĀ1, (7.63a)

Ā2 = δĀ2, (7.63b)

to give the equations

dT δĀ1 = −2 δĀ1, (7.64a)

dT δĀ2 = [1 − G(θ)]δĀ2. (7.64b)

From the second equation, we see that stripes are linearly stable for G(θ) > 1,
but for G(θ) < 1, the stripes are unstable toward the superposition of a second set
of stripes at the angle θ . In the latter case, we might expect that the perturbation
would grow to a saturated lattice state consisting of superimposed stripes but the
asymptotic nonlinear state cannot be determined by the linear analysis. The first
equation shows that perturbation to Ā1 always decays at linear order. Notice that
the calculations separate for linear instability toward a new stripe (the second
equation), and for instability within the space of the already present stripe (the first
equation). Also, the instability toward the addition of any number of new stripes
separates into instability toward the individual stripes in the linear analysis.

Now consider the lattice state of two sets of superimposed stripes at the angle θ .
The nonlinear saturated solution to Eq. (7.60) is Ā1 = Ā2 = ĀL with

Ā2
L = [1 + G(θ)]−1 , (7.65)

The (unscaled) amplitude of the lattice pattern AL grows as
√

ε, but with a different
proportionality constant than for stripes.

The linear stability within the space of Ā1 and Ā2 is determined by writing
Āi = ĀL + δĀi and by linearizing

dT δĀ1 = −2Ā2
L

[
δĀ1 + G(θ)δĀ2

]
, (7.66)

dT δĀ2 = −2Ā2
L

[
δĀ2 + G(θ)δĀ1

]
. (7.67)

The growth rates σ of the instability are then obtained by substituting δĀi(t) =
δāieσ t and by carrying out an elementary eigenvalue calculation. The result is that

σ = −2Ā2
L[1 ± G(θ)] = −2

1 ± G(θ)

1 + G(θ)
. (7.68)

The corresponding eigenvectors tell us the nature of the modes that grow or decay
exponentially. We see that for G(θ) > −1 the lattice state is stable to the symmetric
mode (δĀ1 = δĀ2, σ = −2), and is stable with respect to one stripe growing and
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the other decaying (δĀ1 = −δĀ2, σ = 2 [G(θ) − 1] / [G(θ) + 1]) for |G(θ)| < 1,
and unstable for G(θ) > 1. For G(θ) < −1 the bifurcation to the lattice state
is subcritical, and there are no stable small amplitude solutions. In the unstable
case, we might expect the perturbation to grow until the amplitude of one set of
stripes disappears, leading to the stripe state, but this can only be confirmed by a
calculation that is nonlinear in the perturbation.

Comparing the lattice and the stripe results in this Etude, we see that for G(θ) > 1
stripes are stable with respect to the growth toward the lattice state (i.e. to the
growth of an additional set of stripes at angle θ ) and the corresponding lattice state
is unstable with respect to the collapse toward stripes. For |G(θ)| < 1 the reverse
occurs and the stripes are unstable while the lattice state is stable. Thus the stability
analysis gives a sharp criterion for the preferred state.

The case of squares is given by θ = π/2, and is included in these general results.
However, we expect the square lattice to be a particularly common occurrence
since the simplest shape of G(θ) consistent with the stability of a lattice state gives
a minimum at θ = π/2. This is because the symmetry of G(θ) about π/2 means
that the function has a minimum or maximum at θ = π/2. In addition, the stability
of a lattice state requires G(θ) to decrease from its value at θ = 0. The simplest
form of G(θ) consistent with these two facts is a monotonic decrease to a minimum
at θ = π/2.

The case θ = π/3 is special since we can further ask the question of the stability
of the two-stripe lattice to the addition of a third set of stripes at θ = 2π/3 (equiv-
alent to θ = −π/3) which would lead to the hexagonal lattice. It can be shown
that if stripes are unstable toward the lattice state of two superimposed stripes,
i.e. |G(π/3)| < 1, then the two-stripe lattice state is itself unstable toward the
addition of the third set of stripes.

7.3.3 Hexagons in the absence of field-inversion symmetry

As we saw at the end of the last section, the case of superimposed stripes at an
angle θ = π/3 is special, even for systems with u → −u symmetry, since a lattice
made from this superposition is unstable to the addition of the third set of stripes
forming the hexagonal lattice. The hexagonal lattice becomes even more important
for systems without the u → −u symmetry, because there are then the additional
quadratic terms Eq. (7.54) in the amplitude equations that enhance the growth of
three sets of stripes at relative angles of ±π/3.6 This enhanced growth arises from
the resonance in the nonlinear interaction between three modes with wave vectors

6 Usually we think of the hexagonal lattice in this context. However, the same resonance terms may also favor
more complicated states, such as quasicrystal states with 12-fold symmetry.
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on the critical circle qi = qcq̂i that sum to zero

q1 + q2 + q3 = 0. (7.69)

The analysis of this case leads to a general conclusion with wide applicability:

For a system where the u → −u symmetry is absent, the stripe solution that bifurcates
continuously from the uniform state is unstable. Furthermore, there is a transcritical
bifurcation7 to a hexagonal state. If the breaking of the symmetry is small (given by
the parameter γ in Eq. (7.54)), in which case the amplitude equation remains valid in
the saturated nonlinear state, there is a stable finite amplitude hexagon solution near the
critical value of the control parameter. A second hexagon solution, given by changing the
sign of the amplitudes, bifurcates continuously from the uniform state, but is unstable
near threshold.

We derive these results in the following Etude.

Etude 7.4 Competition between stripes and hexagons in systems with no
u → −u symmetry
The starting point is the coupled amplitude equations in the absence of the u → −u
symmetry, Eqs. (7.53) and (7.54). In the absence of any spatial dependence of the
amplitudes, these equations take the form

τ0 dtA1 = εA1 + γ A∗
2A∗

3 − g0

[
|A1|2 + G1

(
|A2|2 + |A3|2

)]
A1, (7.70)

with similar equations for A2 and A3 obtained by cyclic permutation of the indices.
We have written G1 for G(π/3). We stipulate that γ is positive. (This can always be
arranged by a suitable definition of the amplitudes, since the redefinition u → −u
will change the sign of γ .)

We can combine the parameters ε, γ , and g0 in Eq. (7.70) into a single effective
control parameter ε̃,

ε̃ = g0

γ 2
ε, (7.71)

by rescaling the amplitude and time

A = γ

g0
Ã, t = g0τ0

γ 2
t̃ (7.72)

to give

dt̃Ã1 = ε̃Ã1 + Ã∗
2Ã∗

3 −
[
|Ã1|2 + G1

(
|Ã2|2 + |Ã3|2

)]
Ã1, (7.73)

together with similar equations for Ã2 and Ã3.
The stationary stripe solution to Eq. (7.73) is given by Ã1 = ãSei�, Ã2 = Ã3 = 0

(for example) with ã2
S = ε̃. The phase � is arbitrary, and we will take it to be zero,

7 See Appendix 1 for the nature of a transcritical bifurcation.
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� = 0. The stability of the solutions can then be tested by linearizing Eqs. (7.73)
about this solution.

The hexagonal solution is found by setting the three magnitudes equal, |Ã1| =
|Ã2| = |Ã3| = ãH, with ãH to be determined. A consequence of the evolution
equations for Ã1, Ã2, and Ã3 is that the relative phases of the amplitudes are no
longer independent. Writing Ãi = ãHei�i , two of the three phases �i may be chosen
arbitrarily by an appropriate translation of the coordinate origin, but there is an
evolution equation that determines the sum of the phases

dt̃(�1 + �2 + �3) = −3ãH sin(�1 + �2 + �3). (7.74)

This equation has two time-independent state solutions. Considering small devia-
tions from the steady solutions shows that the stationary solution �1+�2+�3 = 0
is stable. The other stationary solution �1 + �2 + �3 = π is unstable.

For the stable solution with �1 + �2 + �3 = 0, a suitable choice of the two
free phases allows us to take all three Ãi to be real, so that Ãi = ãH, and then the
stationary solutions to Eq. (7.73) are

ε̃ + ãH − (1 + 2G1)ã
2
H = 0. (7.75)

The solutions to this quadratic equation are easily found. The stability of the solu-
tions can then be tested by linearizing Eqs. (7.73) about Ã1 = Ã2 = Ã3 = ãH. The
negative solutions for ãH to this equation actually correspond to the second choice
of the sum of the phases �1 + �2 + �3 = π , and are always unstable.

Figure 7.2 shows the full picture of the time-independent hexagon and stripe
solutions to Eq. (7.73) and their stability properties. Note that the amplitude of the
hexagon states increases linearly as ε̃ passes through zero so that this is a transcritical
bifurcation from the uniform solution (see Appendix 1), although here the small-
amplitude solution is unstable for both positive and negative ε̃. In addition to the
small-amplitude solution near ε̃ = 0, Eq. (7.73) predicts a finite-amplitude solution,
which at ε̃ = 0 has the magnitude ãH = (1 + 2G1)

−1. Returning to the unscaled
variables, we see that this corresponds to the magnitude aH = (γ /g0)(1 + 2G1)

−1,
which is proportional to the u → −u symmetry-breaking parameter γ . For the
amplitude equation to retain its validity at this solution, the amplitude aH must be
small, which in turn requires the symmetry-breaking parameter γ to be small.

Equation (7.73) can be used to show that the finite-amplitude solution near ε̃ = 0
is stable within the space of the three amplitudes Ãi.As ε̃ is decreased from here, the
stability of the solution switches at the saddle-node point ε̃ = ε̃A < 0 in Fig. 7.2.The
stripe solution develops from the uniform state via a standard pitchfork bifurcation
at ε̃ = 0, but is unstable near onset toward the addition of stripes at angles ±π/3.As
ε̃ increases from zero, first the stripe solution becomes stable at ε̃S = 1/(G1 − 1)2,
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Fig. 7.2 Pattern intensity, as defined by the root-mean-square amplitude√∑
i |Ãi|2, as a function of the scaled control parameter ε̃ = εg0/γ

2 for the
hexagonal and stripe solutions to the amplitude equations Eq. (7.73) for a system
with no u → −u symmetry. The stable solutions are depicted by full lines, and
the unstable ones by dashed lines. The control parameter labels indicate a saddle-
node bifurcation (εA) when stable hexagons first appear, where the stripes become
stable (εS), where the hexagons become unstable (εB), and where the stripes and
hexagons have equal potentials (εP). There is bistability of stripes and hexagons
over the range [εS, εB]: hexagons have a lower potential density and so are favored
when ε < εP, and stripes have a lower potential density when ε > εP. The plot
corresponds to a value of G1 = 4.

and then at a larger value ε̃B = (G1 + 2)/(G1 − 1)2 the hexagon solution becomes
unstable. Note that there is a range of control parameters for which both the stripe
and hexagon solutions are stable. In addition to the stripe and hexagon solutions
there are also “mixed solutions’’with two magnitudes equal, but the third one taking
on a different value (e.g. |Ã2| = |Ã3| 	= |Ã1|). These solutions bifurcate from the
stripe and hexagon solutions at ε̃S and ε̃B respectively. They are always unstable
so we do not show them in Fig. 7.2.

Over a range of control parameters ε̃S < ε̃ < ε̃B the amplitude equation cal-
culation shows that stripe and hexagon states are both stable so that the stability
analysis does not lead to a result for the competition between the two states here. In
such cases of bistability, we can use the potential nature of the amplitude equation
dynamics to gain further insights into the competition. The comparison of the poten-
tials of the hexagon and stripe states is straightforward but messy. If we continue to
assume that the wave vectors are at critical so that there are no derivative terms in the
amplitude equations, you can verify that the scaled amplitude equation Eq. (7.73)
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has potential dynamics for the potential density ṽ given by

ṽ =
3∑

i=1


−ε̃

∣∣∣Ãi

∣∣∣2 + 1

2

∣∣∣Ãi

∣∣∣4 + 1

2
G1

3∑
j=1
j 	=i

∣∣∣Ãi

∣∣∣2∣∣∣Ãj

∣∣∣2

−

(
Ã1Ã2Ã3 + c.c.

)
. (7.76)

For the stripe state Ã1 = √
ε̃, Ã2 = Ã3 = 0 the potential density ṽS evaluates to

ṽS = −1

2
ε̃2. (7.77)

For the hexagon state, substituting Ã1 = Ã2 = Ã3 = ãH into Eq. (7.76) gives the
potential density ṽH

ṽH = −3ε̃ã2
H + 3

2
(1 + 2G1)ã

4
H − 2ã3

H, (7.78)

which we can evaluate further by using the fact that aH is a root of Eq. (7.75). Some
lengthy but straightforward algebra shows the value ε̃P for equal potentials ṽS = ṽH

to be

ε̃P = 1

[2(1 + G1)]3/2 − 2(1 + 3G1)
, (7.79)

with ṽS < ṽH for ε̃ > ε̃P, and vice versa.
Figure 7.3 shows an experiment for which bistability of hexagon and stripe

states occurs in a chemical reaction–diffusion system. The experiment is per-
formed on the chlorite–iodide–malonic acid system in a gel disk reactor as described

Fig. 7.3 Multistability of hexagon and stripe states in the chlorite–iodide–malonic
acid (CIMA) chemical reaction–diffusion system in a gel disk reaction region (see
Fig. 3.3). Panels (a) and (b) show hexagonal and stripe patterns at the same value
of the control parameter (the malonic acid concentration) depending on whether
the control parameter is swept up or down. Panel (c) shows hexagons and stripes
separated by a grain boundary. The hexagonal domain is slowly invading the stripes
at a speed of about two lattice sites per day. The concentration of malonic acid was
21 mM in (a) and (b) and 14 mM in (c). (From Ouyang et al. [85].)
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in Section 3.2. The concentration of malonic acid in one of the reservoirs is used
as the control parameter. Hexagons are found to be stable toward smaller values of
the control parameter, and stripes toward larger values. There is a region of con-
trol parameter values where both states are seen, as shown in panels (a) and (b).
Panel (c) shows a weakly dynamical state where stripes and hexagons are seen in
different parts of the system. The hexagonal state is slowly invading the stripe state,
so that eventually the system would fill with hexagons. However the dynamics is
slow at the control parameter value shown, with the domain wall moving at a speed
of about two lattice sites per day. A stationary domain wall would correspond to
the equal potential point ε = εP in the amplitude equation description. The pat-
terns in these chemistry experiments do not show the regular, ordered states of the
theoretical analysis: local regions show stripes or a lattice state, but the pattern is
disordered on larger scales. Nevertheless, we expect the conclusions from the the-
oretical analysis to remain applicable, since they can be deduced by comparing the
average potential densities which are not much affected by the disorder. Only with
extraordinary care can perfectly regular states be formed, such as the hexagonal
state in panel (b) of Fig. 1.14.

7.3.4 Spatial variations

So far we have insisted that the component stripes in a superposition state be
spatially uniform and have wave vectors on the critical circle q = qc. We can remove
these assumptions by allowing the complex amplitudes Ai to vary spatially. It is
straightforward to write down the corresponding amplitude equations by combining
the ideas of Section 7.1 and Section 7.3. (In the following, we only consider the
case of a system that is rotationally invariant in the plane.) In fact, at the lowest
order of the amplitude equations, the spatial derivative terms and nonlinear terms
are independent. Thus for coupled sets of stripes, the amplitude equations that
generalize Eqs. (7.41) to include spatial variations are

τ0 ∂tAi = εAi + ξ2
0

(
∂xi − i

2qc
∂2

yi

)2

Ai − g0


|Ai|2 +

∑
j 	=i

G
(
θij
)∣∣Aj

∣∣2

Ai. (7.80)

Note that the coordinates (xi, yi), which appear with different orders of spatial
derivatives, are defined relative to the direction of the wave vector of each set of
stripes, so that x1 = q̂1 •x, and y1 is perpendicular to q̂1, etc.

Introducing scaled variables as

Āi =
∣∣∣g0

ε

∣∣∣1/2
Ai, Xi = |ε|1/2

ξ0
xi, Yi = |ε|1/4

(
qc

ξ0

)1/2

yi, T = ε

τ0
t, (7.81)
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yields the scaled form of the coupled equations

∂T Āi = ±Āi +
(

∂Xi − i

2
∂2

Yi

)2

Āi −

|Ai|2 +

∑
j 	=i

G(θij)
∣∣Āj
∣∣2

Āi. (7.82)

Of course the variables (X1, Y1) and (X2, Y2), etc., are not independent, and the
correct way to treat the derivative terms requires some care. This is because we
cannot introduce the different ε1/2 and ε1/4 scalings of the physical space variables
along a single pair of orthogonal directions to eliminate the ε dependence from the
derivative terms appearing in all the equations. Actually, we would expect the set
of stripes with the slowest spatial variation along some direction (given by nonzero
second-order derivatives with respect to displacements in this direction) to limit the
rate of spatial variation. For a general situation then, the correct procedure will be to
introduce a single scaling of the space variable X = ε−1/2x/ξ0 which eliminates all
the derivative terms beyond second order. The resulting scaled amplitude equations
for superimposed stripes are

∂T Āi = ±Āi + ∂2
Xi

Āi −

∣∣Āi

∣∣2 +
∑
j 	=i

G
(
θij
)∣∣Āj

∣∣2

Āi. (7.83)

with Xi the scaled coordinate along the roll normal. Section 8.2 discusses an inter-
esting example where this reduction is not sufficient, namely the boundary between
two perpendicular sets of stripes.

7.3.5 Cross-stripe instability

The amplitude equations for superimposed stripes in a rotationally invariant system,
Eqs. (7.82), allow us to test a general stripe state for a cross-stripe instability,
in which a second set of stripes begins to grow at some other orientation. (As
mentioned earlier, this analysis does not allow us to deduce what the saturated
nonlinear state will be, for example whether it will be a superposition of both
stripes or whether the original stripe pattern will die out and be replaced by the
new stripe pattern.) The cross-stripe instability generalizes the stability calculation
of stripe states in Section 7.3.2, where we just looked at stripes at the critical wave
number and asked if they were stable. Here we are moving the wave number away
from critical and asking when the state first becomes unstable toward a second set of
stripes. The resulting stability boundary often bounds part of the stability balloon.

Thus we start with a saturated set of stripes with wave vector arbitrarily chosen
to lie in the x-direction and with a reduced wave number K given by the scaled
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�

(a) (b)

Fig. 7.4 Linear instability of a stripe state to growth of a second set of stripes
with a different orientation. (a) Heavy lines denote the saturated stripe state with
amplitude Ā1 = ĀS. To test the stability, we add a small amplitude δA2 of a
second set of stripes, denoted by the dashed lines, oriented at an angle θ to the
first set, as well as a perturbation δĀ1 to Ā1. (b) Gray-scale plot of stripe state with
superimposed stripes at angle 30◦ of relative intensity 0.16.

amplitude Ā1(X ) as in Eq. (6.36)

Ā1K = (1 − K2)1/2eiKX . (7.84)

Next, we test the stability of this solution to the growth of a second set of stripes at
an angle θ as in Fig. 7.4. This set of stripes is described by the amplitude Ā2, and the
coupled equations for Ā1 and Ā2 are Eqs. (7.82). We can also consider the second
set of stripes with wave number away from critical, so that they are described by
the amplitude

δĀ2 = δā2(T )eiK2 • X = δā2(T )eiK2X2 , (7.85)

with δā2 small and K2 parallel to the wave vector of the second set of stripes with the
magnitude K2 giving the shift of the wave number. Substituting into Eq. (7.82) and
linearizing in δā2 gives the evolution equation for the size a2 of the perturbation δA2:

dT ā2 =
[
1 − K2

2 − G(θ)
(

1 − K2
)]

ā2. (7.86)

This expression differs from Eq. (7.64b) by the terms 1 − K2 and 1 − K2
2 . The

equation for δĀ1 is not needed in the calculation since, as you can verify, this
perturbation always decays for the range of K for which stripes exist, |K | < 1.

Equation (7.86) shows that the most rapidly growing mode is always at K2 = 0,
which corresponds to the critical wave number. Instability occurs when the wave
number of the first set of stripes reaches K = ±KCR with

KCR =
√

1 − 1

G(θ)
. (7.87)
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In unscaled units, this becomes instability outside the cross-stripe stability
boundaries q = qc ± kCR with

kCR =
√

1 − 1

G(θ)
ξ−1

0 ε1/2. (7.88)

The proportionality of |q − qc| on ξ−1
0 ε1/2 is the same as found for the Eckhaus

instability in Section 6.4.2, except there the proportionality constant is 1/
√

3. The
cross-roll instability will occur at a smaller value of |q − qc| than the Eckhaus
instability, kCR < kE, if for any θ

G(θ) <
3

2
. (7.89)

If this relationship is satisfied, the cross-roll instability, rather than the Eckhaus
instability, bounds the stability balloon near threshold on the large wave number
side. For stripes in a rotationally invariant system, the zigzag instability, with a
boundary qZ(ε)−qc growing proportionately with ε as in Eq. (7.24), always forms
the instability boundary near threshold on the small wave number side. The full
stability balloon near threshold is shown in Fig. 4.2 in Chapter 4.

7.4 Conclusions

In this chapter, we have discussed with examples how the one-dimensional ampli-
tude equation formalism of the previous chapter can be extended to describe patterns
near onset that depend on two extended directions. The generalization allows us
to treat two important aspects of pattern formation. The first is stripe states with
spatial modulations along the stripe direction. One type of modulation (a linear
variation of the phase of the complex amplitude) gives a rotation of the stripes.
This means we can understand phenomena in which there is a spatial variation of
the stripe orientation, for example the zigzag instability of stripes which bounds the
stability balloon near threshold for systems that have rotational symmetry in the
plane of two extended directions. Unfortunately, the formalism is limited to small
reorientations from a parallel stripe reference state, and so cannot treat patterns
in which the stripes are oriented in quite different directions in different parts of
the system. Such patterns are commonly observed in experiment, for example see
Fig. 4.8. We return to the discussion of this type of pattern in Section 9.1.2.

The second aspect we can now understand quantitatively near onset is the exis-
tence of various lattice states, and the nonlinear competition between stripes and
these lattices. We discussed the simple lattice states formed from the superposition
of stripes at two different orientations and, for the case of a hexagonal lattice, three
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sets of stripes. The discussion can be extended to the superlattice or quasiperiodic
states, such as those shown in Fig. 4.7.

The amplitude equations derive from the lowest-order terms in a perturbation
expansion in the small parameter ε = (p − pc)/pc. Physically, this corresponds to
assuming that the effects of nonlinearity are weak, and that the modulations of a
basic reference state vary slowly in space and time. This means that out of the vast
range of phenomena seen in pattern-forming systems, some of which are described
in Chapter 1, the amplitude equation description is accurate only for a small frac-
tion. Nevertheless, the approach does give us a qualitative understanding of many
questions, including ones we have discussed in this chapter such as stability bal-
loons and the competition between different basic patterns. In the next chapter, we
use amplitude equations to discuss localized structures, such as topological defects
and boundaries between different patterns. Again, the range of quantitative accu-
racy is small but the qualitative insights gained are invaluable. These insights are
even more precious because scientists and mathematicians have not yet developed
any formalism of comparable power and wide applicability that can explain pattern
formation for strong nonlinearity, e.g. when the reduced parameter ε is of order
one in magnitude. How to analyze strongly nonlinear patterns remains an exciting
research frontier as of the time that this book is being written. We touch briefly on
this topic in Chapter 9.

7.5 Further reading

(i) Symmetry considerations become useful in classifying solutions to coupled ampli-
tude equations for more complicated lattice states, such as the superlattices shown in
Fig. 4.7(a) and (b), as well as quasiperiodic states as in Fig. 4.7(c). For an introduc-
tory account of these methods see Pattern Formation: An Introduction to Methods by
Hoyle [47] and The Symmetry Perspective: from Equilibrium to Chaos in Phase Space
and Physical Space by Golubitsky and Stewart [39]. A more technical reference is
Singularities and Groups in Bifurcation Theory: Volume 2 by Golubitsky, Stewart, and
Schaeffer [40].

(ii) An interesting paper connecting the ideas of Section 7.3.2 and Chapter 3 is “Simple
and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability,
and parameter collapse’’ by Judd and Silber [51].

Exercises

7.1 Long-wavelength instability growth rate: Derive with careful discussion
of details and of assumptions Eq. (7.20) for the growth rate σK (Q) of a stripe
state in a rotationally symmetric system that is described by the perturbation
equation (7.18).
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7.2 Growth-rate curve for the zigzag instability: From the expression
Eq. (7.20), plot the dependence of the growth rate σK (QY Ŷ) on the wave
number QY of small perturbations for the zigzag instability for different val-
ues of the background wave number K and so verify the statement that the
instability occurs first at long wavelengths (QY → 0).

7.3 Instability of a stripe state for arbitrary directions of the perturbation
wave vector: Plot the growth rate σK (QX , QY ) for perturbations about a stripe
state in a rotationally invariant system given in Eq. (7.20) as a function of
the perturbation wave vector QX , QY (e.g. make a contour plot using Math-
ematica or another program): (a) for an initial wave number that is Eckhaus
unstable but zigzag stable; (b) for an initial wave number that is zigzag unsta-
ble but Eckhaus stable; and (c) for an initial wave number that is unstable to
both Eckhaus and zigzag instabilities. Verify that the maximum growth rate
always occurs for the perturbation wave vector along or perpendicular to the
stripes (QX = 0 or QY = 0), but that there may be positive growth rate for
general QX , QY .

7.4 Amplitude for stripes normal to a boundary: Stationary stripes at the crit-
ical wave number approaching a side wall perpendicularly are described by
the fully scaled amplitude equation, cf. Eq. (7.12),

0 = Ā − 1

4
∂4

Y Ā − Ā3, (E7.1)

and the boundary conditions at Y = ±L/2,

Ā = ∂Y Ā = 0, (E7.2)

taking Y as the coordinate normal to the wall and Ā to be real. Here L is the
appropriately scaled width of the system.

(a) Show that the linear onset in the finite system occurs at L = Lc � 3.34 and
interpret this in terms of the dependence of εc, the value of the reduced
control parameter ε at onset on the system width l in unscaled units.
Compare this with the expression Eq. (6.35) for stripes parallel to the
side wall.

(b) Solve Eqs. (E7.1) and (E7.2) numerically for several values of the system
size L with L > Lc, and interpret the solution in the physical unscaled
variables. This is fairly straightforward to do with the NDSolve func-
tion of Mathematica, which requires only specification of equations and
variables.
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7.5 Derivation of phase diffusion equations: Derive the linear phase equations,
Eq. (7.25) and Eq. (7.39), for small deviations from a state of parallel stripes
for the isotropic and anisotropic systems.

7.6 Amplitude equation for the Swift–Hohenberg equation in two dimen-
sions: Including spatial variations, derive the amplitude equation for stripes
in two dimensions using the method of multiple scales of Appendix 2 for the
two-dimensional Swift–Hohenberg equation

∂tu = ru − (∇2 + 1)2u − u3, (E7.3)

that is discussed in Section 5.1. You should generalize the method of Section
A2.3.2 using the scalings introduced in Eq. (A2.6).

7.7 A different rescaling of space variables: For the Swift–Hohenberg equation
in Exercise 7.6, derive the amplitude equation for stripes normal to the x
direction using the following different choice of scalings

T = rt, X = r1/2x, Y = r1/2y. (E7.4)

This differs from the usual scalings for a rotationally invariant equation sug-
gested in Appendix 2 in that the y variable now has the same scaling as the x
variable. Compare the form of the amplitude equation to the one derived
in Section 7.1.1 or Exercise 7.6. Is there anything to argue against the choice
of scaling in Eq. (E7.4)?

7.8 Scaled amplitude equation in anisotropic systems: Show how to derive
Eq. (7.31) from both of Eqs. (7.28) and (7.30) by an appropriate rotation (if
necessary) and scaling of the variables.

7.9 Stripe interaction coefficient G(θ) for a generalized Swift–Hohenberg
equation: By calculating the stripe interaction coefficient G(θ) for the two-
dimensional generalized Swift–Hohenberg equation (see Section 5.2)

∂tu = ru − (∇2 + 1)2u + ∇ •
[
(∇u)2 ∇u

]
, (E7.5)

show that squares, but not stripes, are stable near threshold for this equation
and so should be observed.

(More advanced) Test your prediction by a numerical time integration of
this evolution equation in a periodic domain of aspect ratio  ≥ 10. One way
is to start with random noise of small magnitude as an initial condition and
verify that the noise grows into a square lattice state. Alternatively, you can
start near onset with an analytical stripe solution and examine numerically
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how small-amplitude perturbations of different kinds evolve: noise, or a low-
amplitude stripe oriented with angle θ with respect to the initial stripe, and
so on.

7.10 Stripe interaction coefficient G(θ) for a Swift–Hohenberg model of
rotating convection: As discussed in Section 5.2.4, the generalized Swift–
Hohenberg equation

∂tu(x, y, t) = ru −
(
∇2 + 1

)2
u − g1u3

+g2ẑ •∇ × [(∇u)2 ∇u] + g3∇ • [(∇u)2 ∇u], (E7.6)

can be used to model a convection system that is rotated with a constant
angular frequency about the vertical axis. Here ẑ is a unit vector perpendicular
to the x- and y-axes, and g1, g2, and g3 are real-valued parameters. Using
Eq. (7.45), show that the stripe interaction coefficient G(θ) for this evolution
equation is given by the expression

G(θ) = 6g1 + 2g2 sin(2θ) + 2g3(2 + cos(2θ))

3(g1 + g3)
. (E7.7)

Why is the relationship G(−θ) = G(θ) no longer satisfied? Does this
expression for G(θ) satisfy the condition Eq. (7.42)?

7.11 Patterns in the Brusselator model: For the Brusselator model introduced in
Etude 3.1, what pattern (stripes, squares, hexagons . . .) would you expect
to see just above the Turing instability based on the symmetries of the
equations? Verify your prediction by numerical simulations of the model
for the parameters a = 1.5, D1 = 2.8, D2 = 22.4, and b just above bc.

7.12 Superlattice state: Suppose that the amplitudes of the eight component
modes for the square superlattice state shown in Fig. 4.7(a) can be described
near threshold by the amplitudes in terms of four amplitudes (the amplitudes
of the component modes with positive qx) and their complex conjugates.
Derive the condition on the interaction parameter G(θ) for the superlattice
state described by four equal real amplitudes to be stable toward perturbations
within the space of the four amplitudes.

7.13 Stability of hexagonal state: For Eqs. (7.60) and for a stripe interaction
coefficient satisfying G(π/3) < 1, the hexagon state Ā1 = Ā2 = Ā3 = ĀH

is stable with respect to decay toward a stripe solution (e.g. Ā1 = ĀS, Ā2 =
Ā3 = 0) and that stripes are unstable toward hexagons. Show that the opposite
is true for the complementary inequality G(π/3) > 1.

7.14 Potential for stripes and hexagons: Write down the potential density v
for Eq. (7.60). Using your expression, show that the values of the potential
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densities for the stripe and hexagon states are equal for G(π/3) = 1 so
that using the potential density to study the competition between stripes and
hexagons gives the same result as the stability analysis of Exercise 7.13.

7.15 Instability of hexagons to stripes at new orientation: Show that instability
of the hexagon state toward growth of a fourth stripe, which makes an angle θ

with respect to one of the three sets of hexagon stripes, occurs when

1 + 2G (π/3) > G(θ) + G(π/3 − θ) + G(π/3 + θ), (E7.8)

where G(θ) is the stripe interaction coefficient defined in Eqs. (7.41).
7.16 Potential and pattern intensity: Consider the total intensity of the pattern

I =
∑

i

|Ai|2, (E7.9)

in a stripe and square state. (In convection, for example, the heat convected
by the flow is proportional to this quantity.) Within the amplitude equation
approximation, does the more stable state correspond to the larger value of I?
Do you expect this result to be true in general?

7.17 Potential for stripes and hexagons in a system without field inversion
symmetry: For the potential Eq. (7.76), verify the expression Eq. (7.79)
for ε̃P, the value of ε̃ for which the potential densities of the stripe and
hexagon states are equal. Show (for example graphically) that

ε̃S ≤ ε̃P ≤ ε̃B, (E7.10)

i.e. the value ε̃P lies between the values for the saddle-node bifurcation and
the instability of hexagons defined in Section 7.3.3.

7.18 Stability balloon and the cross-stripe instability: Sketch the stability bal-
loons in the εq plane for small ε calculated within the amplitude equation
for two hypothetical systems, one system with G(θ) > 3/2 for all θ , and the
other with G(θ) taking on a least value of 5/4 at θ = π/2. Discuss what
would happen for a third system with G(π/2) = 3/4.

7.19 Cross-stripe instability for a stripe state in a uniaxial system: Can a
stripe phase in a uniaxial system show the cross-stripe instability within the
amplitude equation description?

7.20 Rotating Rayleigh–Bénard convection: If a Rayleigh–Bénard system is
rotated sufficiently rapidly about the vertical axis, a set of convection rolls
becomes unstable by the so-called Kuppers–Lortz instability to the growth
of another set of rolls at an angle of about π/3 in the direction of the rotation.
When these rolls saturate, they in turn become unstable to a third set of



278 Amplitude equations for two-dimensional patterns

rolls at π/3 . . . and so on; there turn out to be no stable steady states. As a
first approach to explore this situation, we can use the amplitude equation
formalism for sets of stripes with the spatial dependence ignored (so all
stripes are uniform and have wave vectors on the critical circle q = qc). This
situation can then be modeled near onset by the following set of three scaled
amplitude equations:

dT Ā1 = Ā1 − (Ā2
1 + g+Ā2

2 + g−Ā2
3)Ā1,

dT Ā2 = Ā2 − (Ā2
2 + g+Ā2

3 + g−Ā2
1)Ā2,

dT Ā3 = Ā3 − (Ā2
3 + g+Ā2

1 + g−Ā2
2)Ā3,

where we have chosen amplitudes to be real, and the nonlinear coupling
coefficients g+ and g− for stripes at ±π/3 are no longer equal.

(a) Give brief phenomenological arguments justifying the form of the ampli-
tude equations. How would you expect g+ and g− to depend on the
angular rotation rate � for small rotation rates?

(b) What are the conditions on the parameters g+ and g− for stripe and
hexagon states to be unstable?

(c) In the three-dimensional dynamical phase space Ā1, Ā2, Ā3, show the
three fixed points corresponding to the stationary single stripe states, and
the directions of the stable and unstable eigenvectors at these fixed points.

(d) Describe qualitatively what happens in this model if the dynamics is
started with an initial condition that is slightly perturbed from the Ā1 =
1, Ā2 = Ā3 = 0 fixed point in the case where all the fixed points are
unstable. Do you think that this predicted dynamics would be seen in an
actual experiment?

The mathematics of this convection problem has appeared in numerous places
outside the context of pattern formation. For example, a related problem
was independently discussed earlier by May and Leonard [71], who were
interested in asymmetric cyclic arrangements of predators and prey such that
species A ate species B, species B ate species C, and species C ate species A.
Related models have also been used to study voting patterns.
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Defects and fronts

In this chapter, we will use the amplitude equations introduced in the previous two
chapters to gain an understanding of defects and fronts in stripe patterns near onset.
Our discussion also serves to illustrate more advanced applications of the amplitude
equations, in particular the ability to treat patterns that vary spatially.

The importance of defects in patterns was introduced in Section 4.4. A defect can
be thought of as a local imperfection in an otherwise perfect pattern, and experi-
mental and natural patterns often contain many defects, either due to the effect of
boundaries1 or due to a spatially inhomogeneous initial condition. To approach the
complicated realistic case of many defects, it is useful first to study single isolated
defects and then attempt to build an understanding of natural patterns from these
elementary ingredients. In Section 4.4.2, we introduced the notion of a topological
defect, namely one that can be identified from properties of the pattern far from
the location of the defect (such as the winding number of the phase, Eq. (4.58)),
where the pattern approaches the ideal state. These defects are particularly impor-
tant because they can persist for long times and so are robust. We will focus on two
types of topological defects in stripe states, dislocations, and grain boundaries.

We first discuss the structure of stationary defects. Since defects represent devi-
ations from the ideal pattern, the intensity of the pattern is reduced in their vicinity.
The region over which the intensity is reduced, and where the pattern strongly
deviates from the ideal one, is called the core of the defect. For stripe states in
an isotropic system near threshold, the suppression of the pattern intensity occurs
anisotropically, over distances proportional to ε−1/2 along the normal to the stripes,
and proportional to ε−1/4 parallel to the stripes (see Section 7.1).

We then discuss how a defect can constrain the pattern far from the defect’s posi-
tion. For example, as mentioned in Section 4.4.2, a stationary dislocation solution

1 Near onset, convection rolls, for example, are observed to be approximately perpendicular to the boundaries, as
shown in Fig. 4.8. In a cylindrical domain, this causes defects to form since it is not possible for nearly equally
spaced stripes of wavelength approximately 2π/qc to also be locally perpendicular to a circular boundary.

279



280 Defects and fronts

only occurs for a particular value qd of the wave number of the stripe pattern far
from the dislocation.Arelated question that we discuss is to determine the dynamics
of a defect when the distant pattern deviates from the constraints consistent with a
stationary defect. For example, a dislocation in a pattern with a background wave
number that is different from the value qd is found to move along the stripes. This
motion, called climb, will eventually add or subtract a stripe pair and so provides
a way to change the average wave number of the pattern. We discuss the dynamics
of dislocations and grain boundaries in Section 8.1 and Section 8.2 respectively.

We next turn to a discussion of fronts. Their importance in pattern formation can
be appreciated by considering the evolution of a pattern from the perturbed uniform
state. The linear instability analysis of the uniform state in Chapter 2 looked at the
growth of a single Fourier mode perturbation that is delocalized over the whole
system. In experiment or the natural world, a physical perturbation that initiates the
growth from the uniform state is more likely to be limited to some localized region
of the system, for example at or near a boundary. The perturbation may then saturate
with a finite amplitude in the vicinity of its initial position before the perturbation has
had a chance to spread through the remainder of the system. As time advances, the
saturated region can grow in extent by invading the remaining region that contains
the unstable uniform state. The invasion occurs through the propagation of an
interface which, to a good approximation, has a constant profile and propagates at
a constant speed. Such an interface is called a front. A constant profile propagating
with a constant speed is perhaps surprising in a driven dissipative system since
diffusion alone typically causes a localized structure to smear out over time but the
instability from the uniform state is capable of countering the effects of diffusion.

More generally, a front is a boundary or domain wall between two regions or
domains of different states of the system.2 Mathematically, a front is a solution con-
necting two simpler solutions that hold far away from the front, and so is analogous
to a heteroclinic orbit connecting two fixed points in dynamical systems theory.
(The analogy of a homoclinic orbit in pattern formation would be a pulse, in which
a local region of one kind of pattern connects two regions consisting of some other
kind of pattern.) The analogy of a front to a heteroclinic orbit will be useful when
we investigate the properties of front solutions.

Our discussion of fronts divides into two issues: existence and selection. In
many cases (the criterion will be introduced later), it is found mathematically that a
family of steadily propagating front solutions exist for each fixed set of the equation
parameters, with a continuous range of propagation speeds. However, numerical
simulations and experiments show that fronts approach a speed that, once initial

2 A grain boundary can also be considered a type of front. In this section, we will be concerned with the situation
where one of the domains is the uniform state, rather than a different orientation of the same pattern as for a
grain boundary.
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transients have died out, is uniquely fixed by the system parameters. This leads to the
second question of selection, namely what is the physical mechanism (or possibly
mechanisms) that selects a particular speed out of the continuum of possibilities? A
related question is whether selection of some type occurs for the pattern that is laid
down behind the moving front, for example whether a unique stripe wave vector
is observed in the region where the unstable uniform state previously existed. We
discuss what is known at a fairly qualitative level since the mathematical analysis
is rather subtle and, in some cases, still not fully understood.

8.1 Dislocations

Dislocations in stripe states were introduced in Section 4.4.2. The presence of a
dislocation is prescribed by the winding number condition, Eq. (4.58). In terms
of the phase � of the complex amplitude introduced in Section 4.1.1, the phase
winding condition is

1

2π

∮
∇� •d l = ±1, (8.1)

since there is no phase winding due to the eiqcx dependence. We will make our usual
choice of coordinate system so that the stripes far from the dislocation are parallel
to the y-axis, and the stripe wave vector is in the x̂- direction. Referring to Fig. 8.1,
the plus sign in Eq. (8.1) corresponds to the stripe pair extending to negative y, and
the minus sign to the extra stripe pair extending to positive y. (Remember that the

(a) (b)

Fig. 8.1 The two signs of a dislocation in a stripe pattern. Once the sign of the
background wave vector is arbitrarily chosen (indicated by the white arrow in the
upper right part of each panel), accumulating the phase winding around the dashed
contours in the direction shown indicates that the dislocations in panels (a) and (b)
have respectively winding numbers of −1 and +1.



282 Defects and fronts

integration contour in Eq. (8.1) is traversed in the anticlockwise direction.3) The
straight stripe pattern far away gives a boundary condition on the phase dependence
of the amplitude, given in terms of k = ∇� by

k → (kb, 0) + O(r−2), r → ∞, (8.2)

with r the distance from the dislocation. This corresponds to a stripe wave number
far from the dislocation that we call the background wave number, qb = qc + kb.

Since the length of the contour in Eq. (8.1) grows in proportion to the distance
from the dislocation, the perturbation to the straight stripe pattern from the phase
winding becomes small at large distances. (The O(r−2) correction in Eq. (8.2) is the
perturbation to the wave vector from the phase winding.) On the other hand, as the
contour surrounding the dislocation shrinks to a small radius, the phase variation
becomes more rapid, This causes the magnitude of the complex amplitude to be
suppressed, which defines the core region of the defect. In fact, as the contour
shrinks to zero radius, the phase variation becomes increasingly rapid. Thus the
position of the dislocation is a singularity in the phase variable (the phase variable
becomes undefined at this point). However, since the magnitude goes smoothly to
zero here, the singularity in the phase variable becomes a smooth variation in the
amplitude function, and therefore in the basic fields u as well.

An important result that we can derive from the amplitude equation, and that
is also true more generally even away from onset, is that a stationary dislocation
solution only exists for a particular value of the background wave number qb. This
wave number is called the dislocation selected wave number and is labeled qd. The
wave number qd constrains stationary patterns in experiment and in nature, where
dislocations commonly occur. If the background wave number deviates from qd,
the dislocation moves along the stripe direction.4 This climb motion has the effect
of increasing or decreasing the length of the stripe pair that terminates at the dislo-
cation, depending on the sign of the phase winding and the direction of the motion.
This motion will eventually add or eliminate a complete stripe pair and so change
the wave number over the whole system.

The motion of dislocations can also be investigated within the amplitude
equation. For climb motion along the stripes, the dislocation passes through states
that are related by the continuous translational symmetry of the stripes in this
direction. This motion will be driven by arbitrarily small deviations from the con-
ditions that lead to a stationary solution. The requisite perturbation is a stretching

3 There is actually no unambiguous way of assigning signs to the dislocations in a stripe pattern, since the sign of
the wave vector q is itself not a-priori defined. Once we choose a convention for the sense of the wave vector,
the sign of the dislocation can be determined by accumulating the phase winding from ∇φ = q.

4 We focus this qualitative discussion on the case of stripe states in isotropic systems or for uniaxial systems with
the stripes along or perpendicular to the anisotropy axis, so that the (x, y) coordinates of the amplitude equation
coincide with the stripe normal and direction respectively.
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or compression of the wave number qb of the stripes away from the selected value
qd. Motion perpendicular to the stripes, called glide, involves successive breaking
and reconnection of stripes, and will not occur for infinitesimal perturbations from
the stationary solution. However, these pinning effects are not captured in the per-
turbation theory leading to the amplitude equation, even if the theory is extended
to higher orders, since they depend on terms of the form exp(−α/εp), with α and p
constants. Such effects are known as nonadiabatic effects.5 Thus the amplitude
equation does in fact predict glide motion for arbitrarily small perturbations from
the stationary situation, even though a finite perturbation would actually be needed
to overcome the pinning effect. Dislocation glide is often seen in experiment and
in numerical simulations, presumably because the deviation from the stationary
situation is large enough to overcome the pinning effects.

8.1.1 Stationary dislocation

Because of the asymmetric way in which the x- and y-derivatives appear in the
amplitude equation Eq. (7.12) for stripes in an isotropic system, it is difficult to
derive a dislocation solution. The full behavior of the amplitude in the core region
requires numerical solution of the pde for the x- and y-spatial variation and even the
phase variation far from the core must be obtained numerically (as the solution of an
ode in the similarity variable y/

√
x). Some features of the solution are apparent from

more general arguments. For example, the anisotropic scaling of x and y coordinates
leads to an anisotropic core, with extent of order ε−1/2 in the x-direction, and ε−1/4

in the y-direction. The calculation of the core structure is simpler for the amplitude
equation for the anisotropic system Eq. (7.31), and we describe this in the following
Etude.

Etude 8.1 Dislocation solution in the amplitude equation for an anisotropic
system
In scaled coordinates, the amplitude equation Eq. (7.31) is

∂T Ā = Ā + ∂2
X Ā + ∂2

Y Ā − |Ā|2Ā. (8.3)

We look for a stationary solution of the form Ā = āei�, with ∇� → 0 at large
distances, which corresponds to a background wave number at critical. Since
the equation and boundary conditions at infinity are then isotropic in (X , Y ), the
phase variation will be uniform in the polar angle �. The solution consistent with
the 2π phase winding condition is, up to an arbitrary additive constant that just

5 Nonadiabatic effects are studied quantitatively in Etude 9.1.
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corresponds to a shift of the whole pattern,

� = � = tan−1(Y /X ). (8.4)

The magnitude ā = |Ā| will depend only on the radial coordinate r = √
X 2 + Y 2.

Expressing the Laplacian ∇2 in polar coordinates

∇2(ā(r)ei�) =
[
r−1 ∂r(r ∂rā) − r−2ā

]
ei�, (8.5)

yields the following ode for the magnitude ā

dr(r drā) − r−1ā + rā(1 − ā2) = 0. (8.6)

The boundary conditions are that ā → 0 linearly as r → 0 (so that the complex
amplitude is smooth here) and that ā → 1 at large r (saturation). Since there are
no parameters in the equation, we expect the amplitude to grow to saturation over
a distance r of order unity which defines the core radius rc. Equation (8.6) may
be solved numerically to give the magnitude ā and the core radius rc, as shown in
Fig. 8.2.

The stationary solution for the dislocation was calculated by assuming that the
wave number far away from the dislocation was the critical value. In the next
section, we verify using the potential for the amplitude equation that a wave number
different from critical does indeed produce dynamics. Thus, within the amplitude
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Fig. 8.2 Numerical solution of the ode Eq. (8.6) for the radial profile of the ampli-
tude ā(r) near a dislocation in an anisotropic stripe system. The amplitude is zero
at r = 0 where the phase singularity occurs, and recovers toward saturation over a
distance of about 2 in the scaled units which define the radius of the dislocation’s
core region. At large distances, ā � 1 − r−2, and is slightly depressed from unity
by the phase winding.
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equation description, the dislocation selected wave number qd is

qd = qc + 0 × ε1/2 + O(ε), (8.7)

where the O(ε) corrections may be found by methods that go beyond the lowest-
order amplitude equation.

8.1.2 Dislocation dynamics

A powerful way to understand defect dynamics in the amplitude equation is to
use the decrease in the potential governing the amplitude equation dynamics. To
illustrate the method, we will look at the case of dislocation climb in a stripe state
in an anisotropic system or in a uniaxial system with the stripes perpendicular to
the special direction. The motion is driven by a deviation of the wave number of the
stripes from the critical value. We will use the scaled space and time coordinates
and amplitude, and so we look for steady climb in the ±Y direction along the stripes
at (scaled) speed v̄. The key to the method is the identity Eq. (7.16)

dT V̄ = −2
∫ ∫

dX dY
∣∣∂T Ā

∣∣2
. (8.8)

Each side of this equation is evaluated assuming the steady motion of the
dislocation. For climb, this gives the replacement

∂T → −v̄ ∂Y , (8.9)

with v̄ the scaled velocity. The left-hand side of Eq. (8.8) is evaluated from the
change in the potential for a small displacement of the defect

dT V̄ = −v̄ ∂Y V̄ . (8.10)

This is analogous to the work done by a force on a defect in an equilibrium system.6

The right-hand side becomes

−2v̄2
∫ ∫

dX dY
∣∣∂Y Ā

∣∣2
, (8.11)

and is proportional to the square of the defect climb speed. This is analogous to a
dissipation or drag term in an equilibrium system. Equating the two expressions
gives the climb speed

v̄ = ∂Y V̄

2
∫∫

dX dY
∣∣∂Y Ā

∣∣2
. (8.12)

6 In the context of dislocation motion in a crystal, this is known as the Peach–Koehler force.
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The details of evaluating this expression for stripes in a uniaxial or isotropic
system are described in the following two Etudes.

Etude 8.2 Dislocation motion for stripes in a uniaxial system
We first look at the case of dislocation climb in a stripe state in a uniaxial system
with the stripes perpendicular to the special direction (the case of Fig. 2.13(a))
driven by a change in the wave number of the stripes from the critical value. The
potential for this system is given by Eq. (7.32).

We look for steady climb in the ±Y direction along the stripes at (scaled) speed
v̄. The solution far away from the dislocation is taken to be uniform stripes at a
changed wave number given by the scaled amplitude wave vector (Kb, 0)

ĀKb → ā2
Kb

eiKbX with ā2
Kb

= 1 − K2
b . (8.13)

The integral in the denominator of Eq. (8.12) is dominated by the region far away
from the dislocation, where the important variation of the complex amplitude is
from the phase, so that ∣∣∂Y Ā

∣∣2 � ā2
Kb

(∂Y �)2, (8.14)

and ∫ ∫
dX dY

∣∣∂Y Ā
∣∣2 � ā2

Kb

∫ ∫
dX dY(∂Y �)2. (8.15)

The numerator of Eq. (8.12) is evaluated from the change in potential due to a
shift δY of the dislocation. For a background wave-number deviation given by Kb,
the wave-numbers for large positive and large negative Y are slightly changed to
Kb ±δK by the winding of the phase around the dislocation. A translation δY of the
dislocation has the effect of increasing the range of Y values below the dislocation
with the wave number Kb − δK by δY , and decreasing the range of Y values above
the defect at wave number Kb +δK by the same amount. The complicated, distorted
region near the dislocation is just translated, so that the potential contribution from
this region is unchanged. The potential per area V̄ (K)/S of the stripe state with
wave number K is given by Eq. (7.32) with

∣∣Ā∣∣ = āK eiKX and is

V̄ (K)/S = −1
2 ā4

K = −1
2(1 − K2)2. (8.16)

The change in potential due to the dislocation climb through δY (an area Lx δY
changes wave number from Kb −δK to Kb +δK, where Lx is the extent of the system
in the X -direction) is then

δV̄ = −4ā2
Kb

Kb δK Lx δY . (8.17)

But the phase winding around the dislocation evaluates to −2Lx δK, and this is 2π

for a +1 dislocation. Thus, simplifying and taking the Y-derivative, we have

∂Y V̄ = 4π ā2
Kb

Kb. (8.18)



8.1 Dislocations 287

Combining numerator and denominator gives the result for the climb velocity:

v̄ = −2π

(∫ ∫
dX dY(∂Y �)2

)
−1 × Kb. (8.19)

Equation (8.19) gives us the result that the dislocation is stationary only if the
background wave number is critical, Kb = 0. If Kb is positive so that the stripes
are compressed and the background wave number is greater than critical qb > qc,
the climb motion is in the −Y direction, which eventually will eliminate a stripe
pair and slightly reduce the wave number (remember we are looking at the +1
dislocation, Fig. 8.1(b)). Similarly, if Kb is negative, qb < qc, the climb motion
will tend to increase the wave number. The equation also appears to show that the
climb velocity is proportional to Kb, i.e. to the deviation of the background wave
number from critical. This is actually not the case, since the integral appearing
in Eq. (8.19) diverges for Kb = v̄ = 0, and so we need to keep these quantities
nonzero in the evaluation.

To evaluate Eq. (8.19) to leading order in Kb, we need to solve the phase equation
for a uniformly climbing dislocation. The equation for small phase variations was
derived in Chapter 7, see Eq. (7.39). Putting ∂T → −v̄ ∂Y and ignoring the O(K2

b )

terms in the parallel diffusion constant gives the equation

−v̄ ∂Y � = ∂2
X � + ∂2

Y �. (8.20)

We might first try the v̄ = 0 solution of Section 8.1.1, where the solution � is just
the polar angle � as in Eq. (8.4). Then writing r = √

X 2 + Y 2 we have∫ ∫
(∂Y �)2 dX dY =

∫ ∫
r−1 cos2� dr d� = π

∫
r−1 dr. (8.21)

The integral diverges logarithmically,∫ ∫
(∂Y �)2 dX dY = π ln(rm/rc), (8.22)

where rm is a large-distance cutoff and rc a constant of order unity coming from the
core region, where the magnitude begins to change, so that the phase variation is

not sufficient to evaluate
∣∣∂Y Ā

∣∣2
as done in Eq. (8.14). In a realistic physical system

rm might be defined by boundaries or by the presence of other defects in the stripe
structure. But in the ideal mathematical situation of a dislocation in an infinite
array of otherwise undistorted stripes, the divergence is eliminated by returning
to Eq. (8.20) and including the velocity term. The phase variation solving the full
equation can be shown to yield∫ ∫

(∂Y �)2 dX dY = π ln(v̄0/v̄), (8.23)
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where v̄0 is a velocity of order unity that reflects the core cutoff. Thus finally, for
dislocation climb in a uniaxial system the speed v̄ is given by

v̄ ln(v̄0/v̄) = −2Kb, (8.24)

showing the logarithmic corrections to the simple result v̄ ∝ Kb.
In setting up the discussion, we took the background wave vector deviation Kb to

be in the X̂-direction. However, since for the uniaxial system, the scaled amplitude
equation is isotropic, the calculation is independent of the direction of Kb, and
the dislocation will move at the speed Eq. (8.24) and perpendicular to Kb for any
direction of Kb. A small Kby corresponds to a rotation of the stripes and produces
glide motion along X̂ in this calculation. It should be remembered, however, that
glide motion does not take the dislocation through equivalent positions, so that
there will be nonadiabatic pinning effects to the stripes that may resist the motion
not captured by the amplitude equation.

The same scaled amplitude equation applies to the anisotropic system, and so
our calculation also gives results for the dislocation dynamics in this case. We leave
the reader to uncover the direction of the motion for various types of distortions to
the stripes for this example.

Etude 8.3 Dislocation climb for stripes in an isotropic system
The main difference in the calculation for the isotropic system is that the phase
diffusion constant for the Y derivatives is itself proportional to Kb, so that Eq. (8.20)
is modified to (see Eq. (7.25))7

−v̄ ∂Y � = ∂2
X � + Kb ∂2

Y �. (8.25)

Again ignoring the term proportional to v̄ on the left-hand side, a rescaling of the
Y variable, Y → Ỹ = Y /

√
Kb can be used to show that the integral appearing in

Eq. (8.19) becomes

∫ ∫
(∂Y �)2 dX dY = π√

Kb
ln

(
rm

rc

)
. (8.26)

So for the isotropic system, the climb velocity v̄ is

v̄ ln(v0/v̄) = −2K3/2
b , (8.27)

and scales as (q − qd)
3/2 (together with slowly varying logarithmic corrections).

Notice that the difference between this result and Eq. (8.24) derives from the zero

7 Actually, we should also include the fourth-order derivative terms, and also nonlinear terms in the phase equation,
to be completely consistent. However, the basic idea of the result is given by this simpler equation.
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transverse diffusion constant at the wave number qd for which a dislocation is
stationary (here qd = qc).

Results analogous to Eqs. (8.24) and (8.27) actually continue to hold away
from threshold, with the climb velocity being proportional to (qb − qd) (with
logarithmic corrections) in the general case for both uniaxial and isotropic sys-
tems, but as (qb − qd)

3/2 (with logarithmic corrections) for any special cases
where the dislocation-selected wave number coincides with the wave number at
which the transverse diffusion constant is zero. This latter case turns out to occur
when the equations governing the system are themselves potential, such as the
Swift–Hohenberg equation.

8.1.3 Interaction of dislocations

If more than one dislocation is present in the system, the long-range phase distortion
from one dislocation at the location of a second dislocation leads to an interaction
between the defects. The dynamics induced by the interaction are given by com-
bining the results from the previous two sections. For two dislocations separated
along the stripe direction for example, the local wave-number change at the second
defect, given by the gradient of the phase distortion from the first defect, will induce
climb motion. You can check that defects of the same sign climb away from one
another (repulsion), whereas defects of the opposite sign move toward one another
(attraction).

Fig. 8.3 Dislocations in sand ripples on a sand dune in Death Valley. According
to the theory developed in these sections, two dislocations aligned on the same
stripe, such as in the picture, attract and tend to move together. These predictions
are based on the amplitude theory valid near threshold, but are expected to hold
qualitatively far from threshold, although it is not known whether the predictions
apply to sand ripples.
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8.2 Grain boundaries

Grain boundaries were introduced in Section 4.4.2, see Fig. 4.12. They are extended
line defects that separate two half-spaces of differently oriented patterns, for exam-
ple stripes with different wave vectors, which is the case that we will consider.
Within the amplitude equation description, the boundary between two stripe regions
can be constructed from two amplitudes, and the core of the grain boundary is
defined by the region where the two amplitudes overlap. Such grain boundaries are
called amplitude grain boundaries. The calculations for the two cases in Fig. 4.12
are a little different, as shown later in this section. If the angle between the stripes
on opposite sides of the grain boundary is sufficiently small, the structure of the
grain boundary changes in that the stripes may bend from one orientation to the
other without terminating. Near threshold, such a small angle grain boundary can
be described by an amplitude equation for a single set of stripes. Since most of the
action is in the phase component of the complex amplitude, with relatively small
changes in the magnitude passing through the boundary, these are also known as
phase grain boundaries. In the core region, the stripe orientation bends continuously
and there are no stripe terminations. This case is the subject of Exercise 8.3.

We first look at the structure of a grain boundary with general orientations of the
two stripe states as in Fig. 8.5, using the coupled equations for the amplitudes of the
two sets of stripes Eqs. (7.80). Let us define the coordinate system so that the grain
boundary is along the infinite line x = 0, with a pattern of stripes at wave vector q1

for x → ∞, and q2 for x → −∞. Let us also denote by θ1 the angle between q1

Fig. 8.4 A phase grain boundary reconstructed from the amplitude equation.
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Fig. 8.5 Geometry of a grain boundary. The stripes on either side make an angle
θ1 and θ2 with the grain boundary.

and the x-axis (equal to the angle between the stripes and the line of the boundary),
and by θ2 the angle between q2 and the x-axis. For the amplitude equation to be
valid, the magnitudes of the two wave vectors must lie close to qc and the control
parameter must be near the threshold value. The amplitudes A1 and A2 of the stripes
on either side of the boundary are coupled in the overlap region of the boundary
through the interaction parameter G(θ1 + θ2), which we will write from now on
as G12.

It is useful to simplify the full complexity of the coupled amplitude equations
using some simple physical arguments. Since the wave number of each set of
stripes can relax by translation of the stripes into the boundary, the wave numbers
will evolve to approach the critical value far from the grain boundary to reduce
the potential. Thus we have the wave number selection principle that the grain
boundary structure is time independent only if the wave numbers of both sets of
stripes are at critical, |q1| = |q2| = qc. This condition corresponds to the boundary
conditions

A1(x → −∞) = 0, A1(x → ∞) = √
ε/g0,

A2(x → −∞) = √
ε/g0, A2(x → ∞) = 0.

(8.28)

(The asymptotic values can be chosen real by an appropriate choice of the coordinate
origin8). For the general case of θ1 and θ2 not close to π/2, i.e. either set of stripes

8 Since the system with the grain boundary along x = 0 remains translationally invariant in the y-direction, we
might allow a y-dependent phase Ai(x, y) ∝ eikiy . However, this can be absorbed into a redefinition of the
orientation of the stripes, and so we may set ki = 0.
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nearly perpendicular to the line of the grain boundary, Eqs. (7.80) reduce at leading
order in the small parameter ε to

τ0 ∂tA1 = εA1 + ξ2
0 cos2θ1 ∂2

x A1 − g0[|A1|2 + G12|A2|2]A1, (8.29a)

τ0 ∂tA2 = εA2 + ξ2
0 cos2θ2 ∂2

x A2 − g0[|A2|2 + G12|A1|2]A2. (8.29b)

We have only retained the second-order derivative terms in these equation, since we
expect the solutions to vary on the length scale of order ε−1/2 and the higher-order
derivatives will then yield higher powers of ε1/2. Remember that the second-order
derivatives appearing in the amplitude equations, Eqs. (7.80), are with respect to
the coordinate along the normal to the stripes, which is not the x-direction in the
coordinate system we are using here. This leads to the angle-dependent prefactors
in the derivative terms in Eqs. (8.29).

We now seek the stationary solutions of Eqs. (8.29). Since the equations have
real coefficients and boundary conditions, we can seek real solutions in which case
Eqs. (8.29) reduce to the two equations

0 = εA1 + ξ2
0 cos2θ1 ∂2

x A1 − g0[A2
1 + G12A2

2]A1, (8.30a)

0 = εA2 + ξ2
0 cos2θ2 ∂2

x A2 − g0[A2
2 + G12A2

1]A2, (8.30b)

with A1(x) and A2(x) real functions that tell us how the magnitudes of the two sets
of stripes vary with position. A full solution of these equations can be obtained
numerically.9 However, we can guess the nature of the solutions from the form
of the equations. Let us put the position of the grain boundary at x = 0. Then,
since for G12 > 1 the nonlinear coupling suppresses A1 where A2 is large, and
suppresses A2 where A1 is large, we expect that A1 will grow from zero to its
saturated value

√
ε/g0 over some healing region around x = 0, where also A2

decreases from
√

ε/g0 to zero. The width of the healing region can be estimated as
about ε−1/2ξ0, provided that θ1 and θ2 are not too close to π/2. This is verified by
the numerical solution of these equations shown in Fig. 8.6.

The grain boundary formed with one set of stripes perpendicular to the line of the
boundary Fig. 4.12(b) is a special case. (Let us take this to be the second set of
stripes, so that θ1 = 0 and θ2 = π/2.) This case is special since the coefficient of
the ∂2

x in the amplitude equation for the perpendicular stripes disappears, and the
higher-order fourth derivative terms must be introduced to get a smooth solution.
We can also no longer use the phase unwinding argument to show that A2 must be
real. However, we can arrive at the same result by the following argument. The phase

9 This is easy to do in a symbolic package such as Mathematica. A useful hint if you try this is to solve the
time-dependent amplitude equation and look at the x-dependence after a sufficient time for the dynamics to
effectively cease. Of course, the evolution must be done in a finite domain, large enough that the amplitudes
saturate on either side of the grain boundary.
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Fig. 8.6 Plot of the magnitudes of the amplitudes |A1| and |A2| in a grain boundary.
We have chosen to plot the symmetric case for which the stripes make angles ±θ
with respect to the boundary. When the axes are scaled as in the figure, the plot
only depends on the interaction parameter G12. We have used the value G12 = 1.5
to plot the figure.

winding argument on the amplitude equation for A1 still shows that q1 = qc. We use
the potential to argue that the grain boundary will only be stationary for q2 = q1

so that, again, both wave numbers must be at the critical value for a stationary
solution. The solution for the amplitudes in this case encounters some delicacies
which we describe in the following Etude.10

Etude 8.4 Perpendicular grain boundary
We take the setup as in Fig. 8.5 but with θ1 = 0 and θ2 = π/2. We have argued that
the grain boundary is stationary when the wave numbers of the states on either side
are at critical. This means that the grain boundary may be described in terms of real
amplitudes A1 and A2 of the stripes parallel and perpendicular to the boundary,
respectively. The stationary grain boundary is then described by the two coupled
amplitude equations

εA1 + ξ2
0 ∂2

x A1 − g0(A
2
1 + GA2

2)A1 = 0, (8.31a)

εA2 − ξ2
0

4q2
0

∂4
x A2 − g0(A

2
2 + GA2

1)A2 = 0, (8.31b)

10 We learned this illustrative application of the amplitude equation from Boris Shraiman.
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with G = G(π/2).We introduce the usual scalings, X = ε1/2x/ξ0 and Āi =
(ε/g0)

−1/2Ai, which reduce Eqs. (8.31) to the form

Ā1 + ∂2
X Ā1 − (Ā2

1 + GĀ2
2)Ā1 = 0, (8.32a)

Ā2 − α ∂4
X Ā2 − (Ā2

2 + GĀ2
1)Ā2 = 0, (8.32b)

where α = ε/(4q2
0). Since α is a small number for ε small and all the other

coefficients in the scaled amplitude equations (8.32) are of order unity, it might
appear at first sight that we should be able to ignore the ∂4

X Ā2-term in Eq. (8.32b).
Then Ā2 may be calculated algebraically in terms of Ā1(this is an example in which
one field Ā2 adiabatically follows another field Ā1) to give

Ā2
2 =

{
1 − GĀ2

1, for Ā2
1 ≤ 1/G,

= 0, for Ā2
1 > 1/G.

(8.33a)

Let us set the point where Ā2 first goes to zero and Ā2
1 = 1/G as the origin X = 0.

The equation for Ā1 is given by substituting these expressions into Eq. (8.32a) to
yield

∂2
X Ā1 + (1 − G)Ā1 − (1 − G2)Ā3

1 = 0 for X ≤ 0, (8.34)

∂2
X Ā1 + Ā1 − Ā3

1 = 0 for X ≥ 0. (8.35)

The solutions for Ā1 in the two regions must satisfy the matching conditions that
Ā1 and ∂X Ā1 are continuous at X = 0 since otherwise the second derivative is
infinite and Eq. (8.32a) will not be satisfied at this point. The solutions can be
found analytically

Ā1 =



√
2

1 + G sech
[√

G − 1(X − X1)
]

, X ≤ 0,

tanh
[
(X − X2)/

√
2
]

, X ≥ 0.
(8.36)

The integration constants X1 and X2 are fixed by the two continuity conditions at
X = 0

Ā1(X = 0−) = Ā1(X = 0+), (8.37)

∂X Ā1(X = 0−) = ∂X Ā1(X = 0+). (8.38)

This gives the solution for Ā1 and then Eqs. (8.33) give Ā2.
The solution for Ā1 and Ā2 are sketched in Fig. 8.7 with Ā2 going to zero at

X = 0 as shown by the dashed line. This solution is not entirely satisfactory since
the derivative of Ā2 is discontinuous at the origin, and Eq. (8.32b) is not satisfied
here. In the language of boundary layer theory, such a solution is called the outer
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Fig. 8.7 Amplitudes A1 (parallel stripes) and A2 (perpendicular stripes) in the
perpendicular grain boundary as a function of the coordinate x perpendicular to
the grain boundary. The dashed line shows the singular behavior of A2 on the
“outer’’ scale of ε−1/2. The full curve for A2 shows the smooth behavior on the
shorter “inner’’ scale ε−3/10.

solution. The discontinuity must be resolved on an inner scale that is shorter than
the ε−1/2ξ0 length scale of the X scaling. This is done by including the ∂4

X term that,
so far, has been neglected from Eq. (8.32b) but which is clearly large near X = 0
where Ā2 is varyingly rapidly. On the other hand, the terms nonlinear in Ā2 are
small here and can be neglected. Also, in the vicinity of the origin we can expand
the coefficient of Ā1 in the last term of Eq. (8.32b) as

1 − GĀ2
1 = −βX + · · ·, (8.39)

with β a coefficient of order unity that we can obtain from the Ā1 solution. Then for
small X , Eq. (8.32b) becomes

α ∂4
X Ā2 + βX Ā2 = 0. (8.40)

Solution of this equation now shows that the kink in Ā2 is smoothed out on an
X -length scale (α/β)1/5, as can be seen by a simple rescaling of the variables in
the equation. Translating back to the original, unscaled coordinates, this means
that the initial growth of A2 away from zero occurs on a length scale that varies
as ε−3/10 near threshold. It is surprising to see the power law of 3/10 appearing
when the obvious scalings give ε−1/4 or ε−1/2. This provides us with a useful lesson,
that the actual variation of the solution might not follow our naive expectations!

We could now go on to look at the dynamics of grain boundaries when the criteria
on the two wave vectors for time independence are not satisfied. For example, if
the wave numbers differ across the grain boundary we could use the potential
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argument analogous to Section 8.1.2 to study motion of the front. We will leave
this calculation for you to explore in Exercise 8.5.

8.3 Fronts

We now turn our attention to fronts. We take the simplest case of a stripe state,
with stripes parallel to the y-axis propagating in the x-direction into the unstable
uniform state, which we suppose exists toward positive x. We suppose a (diffuse)
boundary between stripe and uniform states that is a straight line also parallel to
the y-axis – this is the front. Near threshold, the behavior can be analyzed using
the amplitude equation and the amplitude A(x, t) corresponding to this situation
is shown in Fig. 8.8. In the amplitude equation description, there are solutions in
which the front propagates without change of shape and at constant speed.11 For
steady propagation at fixed shape, we look for solutions that depend on x and t only
through a comoving coordinate

ξ = x − ct, (8.41)

with c the propagation speed, which is an unknown quantity to be determined from
the equations. Introducing the comoving coordinate reduces a pde in x and t (with
no dependence on y assumed) to an ode in ξ .

8.3.1 Existence of front solutions

Much of our understanding of front propagation derives from rigorous mathematical
work in the 1970s on a class of nonlinear diffusion equations. Since the amplitude

x

A
m

pl
itu

de
 A

c

Fig. 8.8 A propagating front in the amplitude equation. For large positive x, the
system is in the unstable A = 0 state. If an initial disturbance is localized at some
large negative x, it will lead after some transient to a front as shown that propagates
at a speed c. The dashed line shows the front at an earlier time.

11 More generally, the front is moving in the periodic field of the stripes it establishes and so the motion will be
jerky. This is another nonadiabatic effect that is not captured by the perturbation expansion in ε that leads to
the amplitude equation.
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equation restricted to real values of the amplitude falls within the class of equations
considered in that work, it is useful first to understand this restricted class of real
solutions. Note that if the A = 0 state, unstable for ε > 0, is perturbed by a real
perturbation, the solution will remain real for all times. Thus this initial discus-
sion tells us about the propagation of the A 	= 0 state from real localized initial
conditions. This initial condition seems simple to engineer within the amplitude
equation but physically corresponds to a small region of stripes precisely at the
critical wave number, which would be hard to arrange experimentally. Thus later
we will also want to investigate the front behavior when the initial data for A are
complex-valued.

Fronts in the nonlinear diffusion equation

We start by considering the mathematical properties of front propagation in the
one-dimensional amplitude equation restricted to real values, which we write in the
form

∂tu = ∂2
x u + F(u). (8.42)

For convenience, we have included the linear growth and nonlinear saturation terms
in the real function F(u), and we have chosen length and time scales to eliminate
unnecessary constants, as in Eq. (7.10).We write u rather than the scaled amplitude Ã
to remind ourselves that we are dealing with a real variable. Equation (8.42) arises in
many other contexts as well, and so our discussion of fronts here will also be useful
in other situations, for example in Chapter 11 when we discuss signal propagation
in excitable media.

To illustrate the general properties of fronts, we take the function F(u) to be

F(u) = εu − gu3 − hu5, (8.43)

with g = ±1. The uniform u = 0 state is stable for ε < 0 and is unstable for ε > 0.
For g = 1, the equation corresponds to the scaled amplitude equation for a super-
critical bifurcation, the term in u5 plays an inessential role, and we may put the
coefficient of this term to zero, h = 0. On the other hand, for g = −1, the u3 non-
linearity enhances the growth, the equation corresponds to a subcritical bifurcation
at ε = 0, and we include a quintic term −hu5 with h > 0 to saturate the growth at
a finite value. The nonlinear states and their stability are shown in Fig. 8.9.

We seek the solution u(x, t) for a front connecting the saturated nonlinear
state u = us (where us satisfies F(us) = 0) to the u = 0 state. For a steadily
moving front solution, u is a function of the single comoving coordinate given by
Eq. (8.41)

u(x, t) = u(ξ), ξ = x − ct. (8.44)
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Fig. 8.9 Steady state solutions of the real amplitude equation, Eqs. (8.42)
and (8.43), for (a) a supercritical bifurcation (g = 1), and for (b) a subcritical
bifurcation (g = −1). Solid and dashed lines denote respectively stable and unsta-
ble solutions. The dotted vertical lines indicate values of ε for which the fronts are
constructed in Fig. 8.10. Also shown is the value of ε = εNL for which the front
selection changes from “pulled’’ to “pushed,’’ see Section 8.3.2.

Equation (8.42) then reduces to the ode

d2
ξ u + c dξ u + F(u) = 0. (8.45)

Front solutions with the saturated nonlinear state toward large negative x and with
the uniform state toward large positive x correspond to the boundary conditions

u(ξ → −∞) = us and u(ξ → +∞) = 0. (8.46)

For positive c, the domain containing the nonlinear state u = us grows at the
expense of the u = 0 state.

Although Eq. (8.45) is a complicated nonlinear differential equation, it turns out
we can get an almost complete qualitative understanding in terms of a simple “ball
with friction in a potential’’ analogy. Consider the substitutions ξ → T , u → X ,
and F(u) → d�/du. Equation (8.45) then maps into the dynamical equation for
the “position’’ X of a unit mass fictitious particle as a function of “time’’ T moving
in a “potential’’ �(X ) and acted on by a “frictional damping’’ with strength c. The
form of � is sketched in Fig. 8.10 for the values of ε labeled a–d in Fig. 8.9(b).
Please remember that this mapping of the front structure as a function of ξ into
particle dynamics as a function of T is a mathematical analogy that helps us to
solve for u(ξ). The “dynamics’’ X (T ) does not describe the actual dynamics of the
front u(x, t) with physical time t.

Consider first the case g = 1 of the supercritical bifurcation, for which the
nonlinear state exists only for ε > 0 (see Fig. 8.9(a)). Then the front is constructed
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Fig. 8.10 Ball-in-potential analog for constructing front solutions. Panels (a)–(d)
correspond to values of ε indicated in Fig. 8.9. In (a) and (b), the starting point is
the stable stationary nonlinear state us, corresponding to a front propagating into
the unstable u = 0 state. In (c) and (d) the ball trajectory is from u = 0 to us, and
corresponds to a front propagating in the reverse direction.

as the dynamics of the fictitious particle starting (T → −∞) at the potential
maximum at u = us, and ending (T → +∞) at the potential minimum at u = 0, as
in Fig. 8.10(a). Our knowledge of particle motion tells us that we can construct a
solution for any positive damping constant c. (We could construct a mathematical
proof by using an energy argument on our fictitious particle.) This translates into
the statement that a front solution can be constructed for any positive translational
velocity. We can also learn about the approach of the front solution to u = 0 from
the damped harmonic dynamics of the fictitious particle in the parabolic minimum.
It is easily checked by linearizing for small u that the fictitious particle dynamics is
over damped for c > 2

√
ε, giving a monotonic approach of the front to u = 0, but

is under damped for c < 2
√

ε, translating into an oscillatory approach to u = 0.
The borderline value c = 2

√
ε turns out to play a special role in the subsequent

theory.
The conclusions for the subcritical bifurcation g = −1 are the same for ε > 0.

However for εSN < ε < 0, with εSN the value of ε at the saddle-node (see Fig. 8.9),
the front is propagating into the stable u = 0 state, which corresponds to a maximum
of the particle potential function �(u) (see Fig. 8.10(b)). It is now apparent that there
is a unique value of the damping c (which can be found by a numerical integration)
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for which the fictitious particle starting at the maximum of � at u = us will just
climb the potential to end up precisely at the second maximum of � at u = 0.
It is also clear that the fictitious particle must travel from the higher to the lower
potential if c is positive. As we reduce ε from zero, we reach a point at which the
relative heights of the maxima reverse. Now we get a trajectory with c > 0 starting
from the u = 0 maximum and ending at the u = us maximum, corresponding to a
front propagating in the reverse direction, from the uniform state into the saturated
state, Fig. 8.10(c). A special case occurs at the saddle-node point ε = εSN, where
the stable and unstable nonlinear solutions collide and disappear. This leaves an
inflection point in the function �(u), as in Fig. 8.10(d). With a little more effort,
it can be shown that the trajectory from the maximum of � to this inflection point
exists for sufficiently large damping c > cSN, where cSN is the limit of the unique
front speed as ε approaches the saddle-node point from above ε → εSN.

As a final remark, notice that for the front between two stable states, as in the
case of the subcritical bifurcation for ε < 0, the direction of the propagation can
be used as a way to label which state is selected or “preferred.’’ This preference
is only relevant in the context of the particular dynamics of front propagation, and
other dynamics (e.g. the growth from small initial conditions spread over all space
or survival in the face of random noise) may lead in general to a different selection.

Fronts in more general equations

If you review the preceding results, you will find that they are consistent with
the following general statement. For a front propagating into an unstable state,
uniformly propagating solutions may be constructed for a continuum of possible
speeds (in the case we worked out, the possible speeds range over all positive
values). On the other hand, for a front propagating into a stable state, there is
a discrete set of propagation speeds fixed by the parameters (in our case a single
value). The results stated in this way are found to extend to a wide range of equations
far beyond our simple demonstration, for example to the amplitude equation with a
complex amplitude, to generalized Swift–Hohenberg models that allow a subcritical
bifurcation, and to many other examples.

To investigate the results for more general equations, we use the same technique
of introducing the comoving coordinate ξ = x − ct. For equations such as the
Swift–Hohenberg equation, in which the front lays down a spatially periodic state,
the ansatz for the front solution must be generalized to be periodic in time in the
moving frame, and the front motion itself will have a periodic component leading to
a “jerky’’ motion. Mapping the equation for the ξ dependence of u onto a fictitious
dynamical system remains useful, although the resulting dynamical system is, in
general, more complicated than the ball-in-potential model since it will involve



8.3 Fronts 301

higher derivatives or more dynamical variables,12 and the behavior for ξ → ±∞
may correspond to a limit cycle of the dynamical system rather than to a fixed point.

Nevertheless, tools from dynamical systems theory that focus on the qualitative
structure of the dynamical trajectories allow the same type of results to be derived.
The fronts as a function of ξ correspond to heteroclinic dynamical trajectories that
join the fixed points or limit cycles, and the task is then to understand when such
heteroclinic orbits exist, for example for what ranges or values of the speed c.
The key part of the argument that derives restrictions on values of c is to count
the degrees of freedom of the front trajectory u(ξ) as this trajectory leaves or
approaches the fixed points or limit cycles in the limit ξ → ±∞. The behavior near
the asymptotic values is given by linearizing about these values, which provides a
tractable calculation.We illustrate the idea of this type of calculation in the following
Etude, where we look for fronts in an amplitude equation with complex-valued
solutions, although the analysis is too complicated for us to take it to completion
(see also Exercise 8.6).

Etude 8.5 Complex fronts in the amplitude equation
We use the fully scaled form of the amplitude equation, Eq. (6.21). For the case of
complex solutions, the ansatz for the steadily moving front requires some careful
consideration. Although we expect the boundary between zero and the saturated
magnitude to propagate steadily with speed c, the stripes far behind the front should
be stationary and so the phase � of the complex amplitude should be constant there.
Thus it is not correct to look for solutions in which the phase is just a function of
the comoving coordinate ξ . Instead, we look for solutions for the scale amplitude
in the form

Ā = eiK0cT a(ξ)ei�(ξ), (8.47)

with K0 the (scaled) deviation of the wave vector of the stripes from critical for
ξ → −∞ and c > 0. Notice that the solution ansatz is now periodic in the moving
frame. The time dependence of the phase will be eliminated for ξ → −∞ by the
boundary condition d�/dξ |ξ→−∞ = K0. The evolution equation for Ā is reduced
to a dynamical system of three first-order equations by introducing the fictitious
time ξ ,13 and by defining variables

a = ∣∣Ā∣∣ , κ = ∣∣Ā∣∣−1
d

∣∣Ā∣∣ /dξ , and K = d�/dξ , (8.48)

12 You may remember from a course on dynamical systems that an equation of motion involving derivatives with
respect to t up to order n can be replaced by a set of n equations that involve only first-order derivatives, by
introducing supplementary variables such as v1 = du/dt, v2 = dv1/dt, etc.

13 We do not introduce the notation T for the fictitious time, since this symbol is already used for the scaled time
of the amplitude equation.
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with � the phase of Ā. After some algebra, this gives the three odes

ȧ = κa, (8.49)

κ̇ = −cκ − 1 − κ2 + K2 + a2, (8.50)

K̇ = −c(K − K0) − 2κK , (8.51)

where the dot denotes the derivative d/dξ with respect to the fictitious time. Note
that the phase does not appear in these equations. Setting the time derivatives to
zero gives several fixed point solutions. The fixed point

κ = 0, a2 = 1 − K2, K = K0, (8.52)

corresponds to the nonlinear saturated solution of the amplitude equation, while
the two fixed points

a = 0, K = K±(c, K0), κ = κ±(c, K0), (8.53)

correspond to the unstable uniform state, which we call the linear fixed points.
Here K± and κ± are complicated functions of c and K0 that can be written down
analytically, but are too long to include here. To apply to a front that decays as
ξ → ∞, we require that the solutions for a, K, and κ be real, and that κ be negative.

The possibility of a heteroclinic connection between the two fixed points is ana-
lyzed by studying how the trajectory leaves the fixed point Eq. (8.52) as ξ increases
from −∞, and approaches one of the two fixed points Eq. (8.53) for ξ → ∞.
A linear stability analysis of the fictitious dynamical equations Eqs. (8.49) about
the fixed point Eq. (8.52) shows that there is one unstable direction with positive
eigenvalue, and two stable directions with negative eigenvalues. The heteroclinic
trajectory departs from the fixed point along the unique unstable direction. Given
this initial condition, a unique trajectory is defined by integrating forwards in time.
Now we must address whether this trajectory will eventually arrive at one of the
fixed points given by Eq. (8.53).

Suppose a linear stability analysis about the linear fixed point were to give one
unstable direction, and two stable ones. If the trajectory from the nonlinear fixed
point arrives in the vicinity of the linear fixed point, there will generally be some
component of the deviation from the fixed point along the unstable direction, and
this will grow as time increases. This means the trajectory will not approach the
fixed point at long times, unless the component along the unstable direction can be
eliminated by tuning some available parameter. Since there is a single trajectory
leaving the nonlinear fixed point, we would have to tune c or K0 to construct a
heteroclinic orbit. This would lead to a single parameter family of front solutions,
where we could vary say K0 but then c(K0) is fixed by the tuning requirement.
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In fact, the linear stability analysis about the fixed points Eq. (8.53) shows that
all the eigenvalues at one of the two linear fixed points are stable.14 This means
that if the trajectory leaving the nonlinear fixed point arrives in the vicinity of this
linear fixed point, subsequent evolution will be an approach to the fixed point. In
particular, if we know of a heteroclinic connection for some value of c and K0, then
in general we can change these values gently without eliminating the connection.
The argument cannot be used to predict whether a front solution exists at all – we
cannot guarantee that the trajectory leaving the nonlinear state in fact ever gets
near the linear fixed point. However, if a front solution exists then it is necessarily
a member of a two parameter family of fronts, in the sense that fronts should
exist over continuous ranges of two parameters, namely c and K0. The “ball-in-
potential’’ argument for the special case of Eq. (8.42) provides more complete,
global information.

8.3.2 Front selection

For propagation into an unstable state, seeking a uniformly moving front solution
does not specify the front velocity c since we are left with a continuous range
of possible values, with no obvious reason to prefer one value over the other.
Over the past few decades, the front selection problem has aroused much interest
and the analysis has turned out to be unexpectedly subtle. Rigorous results are
known mainly for the real, nonlinear diffusion equation, Eq. (8.42), for which it
has been shown that, for sufficiently localized positive initial conditions and with
some restrictions on the form of F(u) in Eq. (8.43), the front velocity approaches
the value c0 = 2

√
ε in the long-time limit. Thus although it is possible to set up

by hand a family of uniformly propagating fronts, only a single one is accessible
from localized initial conditions. The rigorous argument answers the question of
velocity selection for fronts in the amplitude equation for the supercritical case, and
for initial perturbations that are real and positive everywhere, but says nothing about
the subcritical case, where F(u) does not satisfy the constraints of the theorem, nor
about the propagation from more general initial conditions. The methods used in
the rigorous approach, which involves bounding one solution by another, do not
generalize to these more general situations or to many other equations encountered
in the study of patterns. This motivates the search for a more phenomenological
approach that can be generalized to these cases.

There is now a consensus that two types of front-velocity-selection mechanisms
operate. In the first case, which we will call pulled fronts,15 the speed of the front

14 At least, this is the result for small K0, where the behavior of the fixed points can be analyzed completely.
15 We are following the terminology of van Saarloos [109]
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is completely determined by the behavior of the leading edge where the amplitudes
are small. In this case, the properties of the front are given by a linear analysis and
the selection mechanism is also called linear selection or linear marginal selection.
We think of the complete nonlinear front as being “pulled’’ by the small-amplitude
leading edge. For the second case that we will call pushed fronts, the full behavior of
the nonlinear equations is needed to understand the front, i.e. the front is “pushed’’
by the large-amplitude region at and behind the front.

Pulled fronts

There have been many alternative rationalizations to justify the expressions for the
speed of pulled fronts.16 The simplest is a stationary phase analysis that goes back
to Kolmogorov, Petrovsky, and Piskunov in 1937, and a related method known as
the pinch-point analysis due to Lifshitz and Pittaevskii, that was developed in the
context of plasma physics.

In the stationary phase approach, we assume – without very good justification –
a completely linear analysis. In this case, the growth from any small initial con-
dition u0(x) is given by a superposition of the linear Fourier modes with wave
numbers q growing at the complex rates σ(q), and with initial amplitudes given by
the Fourier transform of the initial condition. This argument gives

u(x, t) = 1

2π

∫ ∞

−∞
dq eiqx+σ(q)t

∫ ∞

−∞
dx′ u0(x

′)e−iqx′
. (8.54)

Here, the second integral gives the strength ũ0(q) of the component at wave num-
ber q in the original state, and then this strength is evolved with time and resummed
in the first integral to give the field at a later time. This expression is certainly not
correct over the whole space-time domain since we know that the nonlinear satu-
rated solution occupies a growing region. However, the expression may be adequate
if the solution far in the leading edge is dominated by the linear behavior.

We now evaluate u(x, t) in Eq. (8.54) at a moving point x = vt, where v is a
velocity as yet unspecified:

u(x = vt, t) = 1

2π

∫ ∞

−∞
dq e[iqv+σ(q)]t

∫ ∞

−∞
dx′ u0(x

′)e−iqx′
. (8.55)

The integration over q can be evaluated asymptotically by considering the integral
along the real q-axis to be a contour integral in the complex-q plane and then by
moving the integration contour into the upper complex-q plane. For large time, the
integral can be estimated from the contribution at the stationary phase point of the

16 This section requires a knowledge of contour integration of complex functions and may be skipped if you are
not familiar with that idea.
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integrand, which is at the complex wave number q = qs given by the solution of

d

dq
[iqv + σ(q)] = 0, (8.56)

or

v = i
dσ

dq

∣∣∣∣
q=qs

. (8.57)

This complex equation (two real equations) fixes the stationary value qs (which is
also complex in general) in terms of the real parameter v. Estimating the integral
from the value of the integrand at the stationary phase point gives

u(x = vt, t) ∼ exp[(iqsv + σ(qs)) t]. (8.58)

The propagation speed of the front is then given by finding the value v of the moving
frame in which the magnitude is constant, i.e. by setting the real part of the exponent
to zero. Hence the front speed c is given by the value of v satisfying

v = Re σ(qs)

Im qs
. (8.59)

Equations (8.57) and (8.59) together fix the front speed and the asymptotic spatial
dependence given by qs and Eq. (8.58).

Let us look at the application of these expressions to the amplitude equation
Eq. (7.10). The growth rate is

σ(q) = ε − q2. (8.60)

The two conditions to be solved together for the propagation speed c, Eqs. (8.57)
and (8.59), become

c = −2iqs and c = i
ε − q2

s

qs
. (8.61)

Solving these yields qs = i
√

ε and then c = 2
√

ε. The speed agrees with the
rigorous result for the real nonlinear diffusion equation.

Historically, other arguments have been made that lead to the same results in
many cases. For example, the idea of “marginal stability’’ posits that the selected
speed is the one that leads to the front that is on the edge of becoming unstable in the
comoving frame, while the idea of “structural stability’’ demands that the selected
front be insensitive to delicate changes to the equation that give a tiny jump as the
final approach to u = 0. We refer the interested reader to the research literature to
learn more.

The selected front speed is reached only for sufficiently localized initial con-
ditions. We can see this from the derivation by noting that the second integral in
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Eq. (8.55), the transform of the initial condition, will only converge if the fall off in
the initial condition u0(x′ → ∞) overcomes the exponential growth eIm(qsx′) of the
last term. Thus the initial condition must fall off at least as fast as the exponential
decay of the leading edge of the selected front. It is easy to see that the exponen-
tial growth of an initial condition with a shallower decay will appear as a faster
propagating front.

An interesting extension of the analysis is to study the approach of the front
speed v(t) to its asymptotic value c for a localized initial condition. It is found
that v approaches c from below with a slow 1/t decay

v(t) = c − 3

2 Im qs

1

t
+ O

(
1

t3/2

)
. (8.62)

This result helps to explain some early experimental results on front propagation in
Taylor–Couette rolls where velocities less than the expected value c were measured.

Pushed fronts

The linear selection principle is not valid for all equations and there is a second
selection principle which sometimes takes over. Since the full nonlinear structure
is needed to understand the selected front, we can think of these fronts as being
“pushed’’ from behind. The mechanism is also known as nonlinear selection.

We can motivate the idea that the linear selection mechanism might break
down from what we have so far learned by studying the subcritical real ampli-
tude equation, Eqs. (8.42) and (8.43), with g = +1 as shown in Fig. 8.9(b). For
ε > 0, a front propagates into the unstable u = 0 state and the linear selection
principle suggests the speed c = 2

√
ε, which tends to zero as ε → 0. On the other

hand, for ε < 0, there is a unique front speed that remains nonzero as ε → 0
(consult the particle-in-potential analogy). A discontinuity of behavior at ε = 0,
where the stability properties of the u = 0 solution are changing smoothly, would
be rather surprising. Numerical experiments in fact show a continuous behavior,
with the front velocity deviating from the linearly selected value for values of ε

below some particular value εNL, as in Fig. 8.11.
The nonlinear selection works as follows. Since the amplitude equation in the

comoving coordinates involves second derivatives in ξ , the front solution will
approach u = 0 as the sum of two exponentially decaying pieces. For large ξ ,
the exponential with the slowest decay rate will dominate. This agrees with the
prediction of the asymptotic dependence of the selected front given by the stationary
phase argument. However, by tuning the speed c it may be possible to find a front
solution that matches onto the small amplitude solution that is comprised of only
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Pushed fronts

c

�

�SN

�NL

Linear
Selection

Nonlinear
SelectionUnique Speed

Fig. 8.11 Selected front speed c for the subcritical real amplitude equation (solid
line). For ε > 0, linear selection gives a speed that goes to zero as ε1/2 for small ε
(dashed line). For ε < 0, there is a unique speed that remains nonzero as ε → 0. A
nonlinear selection mechanism gives a curve that interpolates between these two
results for 0 < ε < εNL.

the rapidly decaying exponential.17 This will occur at a discrete value c = cNL, if
at all. Now we compare the speed of this front with the speed given by the linear
selection cL. It seems likely that if cNL > cL, then this is the front that will propagate
from localized initial conditions, and numerical simulations confirm this. Thus the
criterion for a pushed front is that both the decay rate of the special front is faster
than that of the front given by linear selection and that its speed is faster. For the
subcritical real amplitude equation the pushed front takes over as ε is decreased
below a value of εNL > 0, and the pushed front speed cNL is continuous at ε = 0
with the unique front speed that holds for ε < 0, Fig. 8.11. Pushed fronts are
explored further in Exercises 8.6 and 8.8.

8.3.3 Wave-number selection

For the amplitude equation restricted to real values or for the nonlinear diffusion
equation, the front velocity and shape are the only features to be determined. More
general systems, such as the amplitude equation with complex solutions or the

17 In terms of the type of analysis for heteroclinic connections in the fictitious dynamical system used in the
Etude 8.5, this corresponds to the orbit approaching the alternative linear fixed point. Hints for a more complete
analysis in this language are given in Exercise 8.6.



308 Defects and fronts

Swift–Hohenberg model, have a multiplicity of nonlinear states with different pat-
tern wave numbers and the question of the selection between these states arises.
In particular, we can ask what is the wave number of the patterned state laid down
behind an advancing front from the propagation of the pattern solution into the
unstable uniform state? Note that, for a front laying down a patterned state, the
steady propagation ansatz is not adequate, and instead we must seek temporally
periodic solutions in the moving frame, which leads to a more complicated anal-
ysis of the possible front solutions. The calculation for the fronts in the amplitude
equation with complex solutions has already been given in Eq. (8.47). The station-
ary phase analysis can still be used to give the selected pulled-front speed, and
pushed fronts can again be found in some cases.

A simple argument can be used to find the wave number of the pattern state laid
down behind a pulled front. If the front moves with the velocity c, we see a time
dependence Eq. (8.58). The exponential decay rate has been set to zero in deriving
the front velocity, so this leaves only an oscillating phase

u ∝ Re exp[i(Re(qsc) + Im σ(qs)) t]. (8.63)

These oscillations establish a phase winding per unit length as the front advances,
given by the temporal oscillation frequency divided by the front speed. If the phase
winding is preserved through the growth to the saturated nonlinear solution, i.e.
there are no additional nodes formed in u, this leads to the result for the wave
number selected by front propagation qfp in the nonlinear state behind the front

qfp = Re qs + c−1 Im σ(qs). (8.64)

For the amplitude equation with complex solutions, Eq. (8.64) leads to the rather
uninteresting result of qfp = 0. For other equations of pattern formation, such as the
Swift–Hohenberg equation (see Exercises 8.9 and 8.10) or the complex Ginzburg–
Landau equation introduced in Section 5.4 and discussed further in Section 10.2.2,
the result Eq. (8.64) is nontrivial.

The validity of the node-conservation assumption is not a priori clear, but numeri-
cal experiments on many equations show that a well-defined wave number is indeed
selected by front propagation, independently of the details of the initial conditions
for example. The formation of patterns via front propagation is one of the few
mechanisms of pattern formation that leads to a defect-free pattern with a precisely
determined wave number. It is intriguing to wonder whether this mechanism is
important in biological examples such as morphogenesis, where the pattern may
have some functional significance.
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8.4 Conclusions

A completely perfect pattern is a rigid object with little possibility of dynamics.
Localized structures provide dynamical objects that can connect different patterns
(e.g. ones of different wavelength) or that can create new patterns. In the present
chapter, we have concentrated on some specific examples to illustrate the types of
questions that arise, and have shown some of the answers to these questions that
may be derived for systems near threshold using the amplitude equation approach
developed in the previous two chapters. Another type of localized structure called
a pulse – a small region of a pattern surrounded by the uniform state – is briefly
described in the following chapter.

Localized structures are important far beyond the parameter regimes where the
amplitude equation is valid. The existence of topological defects derives from the
basic symmetry properties of the patterns and so these defects survive away from
threshold. Pattern selection by defect dynamics is also to be expected away from
threshold, although it is much harder to predict the selected state without the crutch
of the amplitude equation. More general localized structures exist too. We have
introduced fronts as boundaries between patterned and uniform states or between
two patterned states. Fronts are important more generally as boundaries between
any two nonequilibrium steady states that occupy different regions of space. In
fact, patterns themselves can sometimes be built up from collections of fronts. For
example, a stripe pattern can be constructed from a periodic array of fronts between
a “black’’and “white’’state. We return to this idea in Chapter 11, where we construct
periodic wave trains in reaction–diffusion systems as arrays of moving fronts, but
the same method has also been used to develop theories of stationary stripe patterns
in systems that are not near the linear instability of a uniform state.

8.5 Further reading

(i) A paper showing the anisotropic shape of a dislocation in a stripe state in an isotropic
system is “The shape of stationary dislocations’’ by Meiron and Newell [72].

(ii) The full calculation of how dislocations move is complicated and you might want
to refer to the original literature for the details. Bodenschatz et al. describe the uni-
axial case in “Structure and dynamics of dislocations in anisotropic pattern-forming
systems’’ [13], the potential method for climb in an isotropic system is discussed in
“Dynamics of defects in Rayleigh–Bénard convection’’ by Siggia and Zippelius [96],
and the paper “Climbing of dislocations in nonequilibrium patterns’’ by Tesauro and
Cross [103] looks at the nonpotential situation away from threshold.

(iii) The study of front selection has a long history that is full of controversy. A recent
review article “Front propagation into unstable states’’ by van Saarloos [109] provides
an up-to-date account of the subject with references to the earlier work.
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Exercises

8.1 Structure of a dislocation: Using a simple model for the dependence of the
amplitude’s magnitude a(r) such as

a(r) = tanh(r/ξ), (E8.1)

plot in Mathematica, Maple or some other graphing program the reconstruc-
tion of the full pattern

U = Re[A(x, y)eix], (E8.2)

for a dislocation in a uniaxial stripe system. (Note: since we have chosen the
wave number of the base pattern to be 1, the healing length ξ should be chosen
large compared to the wavelength 2π . Also, in using the tan−1 expression
for φ, care must be used so that φ increases between 0 and 2π . The function
ArcTan[x,y], which evaluates tan−1(y/x), does this in Mathematica.)

8.2 Motion of a dislocation: By changing the amplitude dependence in Exer-
cise 8.1 to A(x −x0, y −y0) and by replotting for various choices of x0 and y0,
study how the dislocation configuration changes as the center moves relative
to the underlying stripes. Contrast the behavior for climb (keep x0 = 0) with
the behavior for glide (keep y0 = 0).

8.3 Phase grain boundary: An example of a phase grain boundary is given by
the exact solution of the amplitude equation Eq. (7.12)

Ā(X , Y ) = a(KX , KY )ei�(X ,Y ), (E8.3)

where K = ∇X� with

�(X , Y ) = −(Q2/2)X + ln[2 cosh(QY )], (E8.4)

and

a(KX , KY ) =
√

1 − (KX + K2
Y /2)2. (E8.5)

(a) Find the wave vectors of the stripes as X → ±∞ given by these equations,
and hence argue that these equations do indeed describe a grain boundary.

(b) Show that the complex amplitude given by Eqs. (E8.3) and( E8.5) is a
solution to the scaled amplitude equation Eq. (7.12).

(c) Use Mathematica or some other program to plot examples of phase grain
boundaries given by Eqs. (E8.4) and (E8.5). You should reconstruct the
full stripe solution by plotting Re[A(X , Y )eiqcx] using various values of
the parameter Q and some chosen value of ε to go between scaled and
unscaled variables.
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8.4 Amplitude grain boundary: For a symmetric amplitude grain boundary such
as shown in Fig. 8.5 with θ1 = θ2 = θ , determine how the width of the region
of suppressed amplitude varies with θ . What do you predict for θ → 0
and θ → π/2? Do these results make sense physically for a grain boundary?
If not, what do you expect the correct result to be?

8.5 Motion of perpendicular grain boundary: For the perpendicular grain
boundary discussed in Section 8.2, set up the formalism analogous to the
discussion of dislocation motion in Section 8.1.2. You should use the evo-
lution of the potential to calculate the motion of the grain boundary if the
stripes parallel to the boundary are at the critical wave number, but assume
the perpendicular stripes have a wave number q = qc +k that deviate slightly
from this value. Write down an expression for the drift velocity valid for small
wave-number deviations, in terms of the solutions for the two amplitudes. For
a small wave-number difference, the amplitudes can be approximated by the
stationary solutions. How will the drift speed depend on k � qc and ε?

8.6 Qualitative analysis of fronts in a nonlinear diffusion equation: In this
exercise you will investigate front propagation in the real nonlinear diffusion
equation Eq. (8.42) with

F(u) = εu + u3 − u5, (E8.6)

using the qualitative methods discussed in Section 8.3.1. Note that this
equation corresponds to an amplitude equation for a subcritical bifurcation
at ε = 0 restricted to real solutions.

(a) Show that, for ε > −1/4, there is a fixed point u = u0 	= 0 and v = 0 that
corresponds to the stable, saturated stationary nonlinear state of Eqs. (8.42)
and (E8.6).

(b) Consider front solutions u(ξ) with ξ = x − ct. Show that the equation for
the front can be written as

u′ = v, (E8.7a)

v′ = −F(u) − cv, (E8.7b)

where primes denote d/dξ . We will study Eqs. (E8.7) as a dynamical
system with ξ acting as the fictitious time.

(c) Analyze the stability of the fixed point found in part (a) within the fictitious
dynamical system Eqs. (E8.7), and show that it has one stable direction
and one unstable direction for any positive value of c.

(d) For all values of c and ε, establish the stability of the u = 0 and v = 0
fixed point of the dynamical system Eqs. (E8.7) and the number of stable
and unstable directions.
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(e) For ε > 0 and c > 2
√

ε, sketch a trajectory in the uv plane corresponding
to a “pulled’’ front of the nonlinear solution advancing into the u = 0
solution toward positive x, being careful to show the trajectory relative
to the various eigenvectors near each fixed point. Use this to argue that if
such a front exists, then it is a member of a continuous family.

(f) Sketch the trajectory corresponding to a “pushed front.’’
(g) By considering the trajectories linking the two fixed points for −1/4 <

ε < 0, argue that the value of c must be tuned to find a possible front, i.e.
there is a unique front propagation speed in this case.

(h) Can you show for ε < 0 that the speed of the pushed front for ε > 0 is
continuous with the unique front speed?

8.7 Complex fronts in the amplitude equation: In this exercise, you will fill in
some of the details for the Etude 8.5. To simplify the discussion, we will only
consider the case of c > 2.

(a) Find the fixed point solutions of the dynamical system Eqs. (8.49) for the
special case k0 = 0.

(b) Show that the structure of the fixed points is as described in the Etude,
namely that there is one unstable direction at the nonlinear fixed point,
that there are two linear fixed points, and that all the directions are stable
at one of these fixed points.

(c) Sketch the trajectory that corresponds to a front solution in the a, κ , k
space.

We can now argue that the qualitative behavior is not going to change for
small k0 and hence that there is a two-parameter family of front solutions.
(For c < 2, it turns out that some of the fixed points are marginal (real part of
stability eigenvalue zero) for k0 = 0 and so the stability of these fixed points
at k0 	= 0 cannot be predicted from the k0 = 0 results.)

8.8 Analytic expression fora pushed front in the nonlineardiffusion equation:
It turns out that in some cases the pushed-front solutions can be obtained
analytically. This exercise uses the analytic results for the real pushed fronts
in the subcritical amplitude equation to illustrate the nature of pushed fronts.
We will analyze the equation

∂tu = ∂2
x u + u + du3 − u5, (E8.8)

which is convenient for studying the behavior for both supercritical and
subcritical regimes. The pulled-front solution takes the form

up(ξ) =
(

exp
(

2ξu2
s /

√
3
)

+ u−2
s

)−1/2, (E8.9)
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where ξ = x − ct and us is the nonlinear saturated value satisfying

1 + du2
s − u4

s = 0. (E8.10)

(a) Verify that up(ξ) is a solution of Eq. (E8.8) with the propagation speed

c = 2
√

d2 + 4 − d√
3

. (E8.11)

Note that c has a minimum value 2 at d = 2
3

√
3.

(b) Show that the asymptotic decay of up for ξ → ∞ is e−κx with

κ = d + √
d2 + 4

2
√

3
. (E8.12)

(c) Show that a pulled front has a speed c∗ = 2 and asymptotic decay rate
given by κ∗ = 1.

(d) Hence argue that the selected front will be a pushed front for d > dc =
2
3

√
3 because (a) the asymptotic fall off is faster than for the pulled front,

and (b) the speed c > c∗.
(e) Plot the selected front speed as a function of d .
(f) For d > 0, show that Eq. (E8.8) can be mapped onto Eqs. (8.42) and (8.43)

with rescaled space and time coordinates and ε = d−2, g = −1, and h =
1. Hence construct the plot of the selected front speed as a function of ε

for this system and compare with Fig. 8.11 for ε > 0.

(This problem was analyzed by van Saarloos [108].)
8.9 Pulled fronts in the Swift–Hohenberg equation: For the Swift–Hohenberg

equation Eq. (2.4)

∂tu(x, t) = ru − (∂2
x + 1)2u − u3, (E8.13)

the expressions

c = 4

3
√

3
(
√

1 + 6r + 2)(
√

1 + 6r − 1)1/2, (E8.14a)

q∗
r = 1

2
(
√

1 + 6r + 3)1/2, (E8.14b)

q∗
i = 1

2
√

3
(
√

1 + 6r − 1)1/2, (E8.14c)

give the velocity c of a pulled front and the complex wave number q∗ =
q∗

r + iq∗
i that gives the stationary phase point.
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(a) For small r, verify that these results agree with the results expected from
the amplitude-equation approach.

(b) Show that the wave number qfp of the pattern laid down by the front, using
the conserved-nodes assumption is given by

qfp = 3(
√

1 + 6r + 3)3/2

8(
√

1 + 6r + 2)
. (E8.15)

(c) Expand qfp in small r up to terms linear in r. Note that qfp is not equal to
the wave number that minimizes the potential for the Swift–Hohenberg
equation (see Exercise 5.3).

8.10 Derivation of the selection expressions for pulled fronts in the Swift–
Hohenberg equation: Derive equations Eqs. (E8.14) in the previous exercise.
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Patterns far from threshold

We have approached the formation of patterns in nonequilibrium systems through
the notion of states that develop via a supercritical linear instability and so saturate
at small amplitudes near the threshold of the instability. The resulting patterns
retain to some degree the features of the linearly growing mode and this allows
many aspects of the pattern formation to be analyzed in a tractable way via the
amplitude equation formalism. In nature, however, most nonequilibrium systems
are not close to any threshold, and the amplitudes of their corresponding states
cannot be considered small. Even near the threshold of a linear instability, structure
can emerge via a subcritical bifurcation such that the exponential growth saturates
with a large amplitude. What can be said about these strongly nonlinear patterns
that are far from the linearly growing mode?

Experiments and simulations indicate that patterns far from threshold can
be divided into two classes. One class qualitatively resembles patterns that, at
least locally, take the form of stripes or lattices. The other class of patterns far
from threshold involves novel states that do not correspond locally to lattice
structures.

Far from threshold less can be said about stripe and lattice states with any gen-
erality. One question that can be addressed generally is the slow variation of the
properties of the stripes or lattices over large distances in a sufficiently big domain.
As we explain in Section 9.1.1 these slow dynamics are connected with symmetries
of the system. Formally, the slow variation allows one to introduce a small parame-
ter (the ratio of a lattice spacing to the length over which the structure varies slowly)
which in turn allows one to carry out a perturbative analysis that leads to a “nonlin-
ear phase diffusion equation’’ for the slowly varying phase of the lattice structure.
The resulting formalism is not as universal as amplitude equations but still provides
a valuable way to understand slowly varying spatial and temporal features of some
states far from threshold. We discuss this formalism with some applications at a
mainly qualitative level in Section 9.1.2, while Appendix A2.4 gives some of the
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mathematical details. In Section 9.1.3 we describe some extensions when the slow
phase mode is coupled to other slowly varying dynamical variables.

The band of stable wave numbers of stripe and lattice states (the stability balloon,
Section 4.2.1) can become large away from threshold, unlike near threshold where
the band scales as ε1/2. Experimentally, on the other hand, it is often found that the
range of wave numbers in a pattern is significantly less than set by these stability
considerations – the phenomenon of wave number selection. For applications to
explain natural phenomena where the size of the structure plays a crucial role, such
as morphogenesis in biology, the existence of wave number selection, the value
of the wave number selected, and its robustness to changes in the system such as
the size of the domain, are key issues in assessing the relevance of pattern-forming
models. We have discussed wave number selection mechanisms at various places
in previous chapters: in the present chapter, in Section 9.1.4, we collect these and
other ideas together.

The other class of patterns far from threshold do not correspond locally to lattice
structures and are less well understood. One possibility is localized structures rather
than extended planforms, an example of which are the oscillons in Fig. 9.11, which
are found over some parameter ranges when a thin layer of brass balls (a granular
medium) is shaken vertically (see also the related Fig. 1.17). Another possibility
is patterns whose spatial disorder is so strong that no local lattice structure can
be usefully identified. (Fig. 9.9(b) later in this chapter is a numerical example.)
Sufficiently far from the threshold of almost any linear instability, disordered struc-
tures are usually found to evolve chaotically, in which case the dynamics is called
“spatiotemporal chaos.’’1 Chaotic disordered states are perhaps the most challeng-
ing of nonequilibrium states to understand and represent an important frontier of
nonequilibrium pattern formation.

As we discussed in Chapter 1 (see Fig. 1.20 and related text), most nonequi-
librium systems cannot be driven arbitrarily far from threshold without something
catastrophic happening to its physical properties so there are often natural limits
to “far from threshold.’’ One exception is fluids, which can be driven so strongly
that the ratio of the size of the system to the finest spatial structure can be many
orders of magnitude. This is the realm of fluid turbulence and is a hard problem
indeed because of the strongly nonlinear and irregular dynamics. However, one
simplification does occur in the limit of sufficiently large driving (sufficiently large
Reynolds number) known as “Kolmogorov turbulence.’’ In this regime, various
quantities such as the energy have a scale-free power-law dependence on the wave

1 There are a few rare examples in which spatiotemporal chaos bifurcates supercritically from a uniform state
and so occurs arbitrarily close to a simple state. An experimental example is domain chaos, which is observed
at the onset of convection in a convection chamber that is rotating sufficiently rapidly. But most spatiotemporal
chaotic states are found far from threshold.



9.1 Stripe and lattice states 317

number k. We do not have space to describe fluid turbulence in this book but the
topic is discussed in many fluid dynamics texts and is important for many branches
of science and engineering.

9.1 Stripe and lattice states

The structure of ideal stripe and lattice structures far from onset can be under-
stood following the principles of Chapter 4. Symmetry arguments can be used
to guess what types of spatially periodic structures might exist, and a numerical
Galerkin method can be devised to calculate nonlinear stationary structures of a
particular symmetry and then test their linear stability. (Section 4.1, Section 4.3,
and Chapter 12 explain some of the details of how a nonlinear stationary spatially
periodic state can be found numerically, and Section 4.2.1 how its linear stability
can be determined.) Far from threshold, there is no longer a restriction that the wave
numbers associated with stable structures be close to the critical wave number qc

at threshold so that a wider class of lattices must be tested than in Section 4.3.
Similarly, in a Galerkin analysis far from threshold, there is no particular advan-
tage to use the linear onset modes as a basis. Instead, any convenient numerical
basis can be used such as Fourier modes, Chebyshev polynomials, or modes that
are suggested by experimental details.

To understand non-ideal and dynamic stripe and lattice patterns far from threshold
where the amplitude expansion is no longer valid, new theoretical tools must be
developed. The cost of the extension in the range of applicability is that the behavior
will be less universal, since the unifying influence of the linear instability is less
strong. In fact, there will be fast dynamics (on the characteristic time scale of
the basic evolution equations) that are likely to be system specific, and are best
understood using intuition developed for the phenomenology of each system, such
as the wealth of understanding of fluid dynamics or of excitable media. On the other
hand, there are also slow dynamics, that reflect the symmetries of the system and
patterns. These dynamics will show a greater degree of universality, although the
difference between systems is no longer simply accounted for by length and time
scales (ξ0 and τ0) as in the amplitude equation.

We will concentrate the discussion on stripe states, and first introduce, based
on rather general assumptions, an evolution equation for the phase variable that
captures the symmetry-related dynamics. Examples of interesting results that can
be derived from this equation are some, but not all, of the instabilities that limit
the band of wave numbers for stable stripe states, and a rather sharp restriction on
the wave number of stripes in disordered states with significant curvature of the
stripes. We then briefly describe situations where the assumptions leading to the
phase equation break down, and extended equations are needed. This usually occurs
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where there are additional slow degrees of freedom, to which the dynamics of the
phase variable is coupled. One example, known as mean flow, is peculiar to fluid
systems, and is connected with the incompressibility of the fluid on the dynamical
scales of the pattern formation. In addition slow dynamics may occur near the onset
of secondary instabilities, due to the slow growth or decay of the mode that goes
unstable here.

The discussion of the dynamics of patterns far from onset eliminates one of the
misleading lessons learned from the amplitude equation for stripes and lattices,
namely the potential nature of the dynamics. Deductions that can be traced back to
the potential nature of the amplitude equation may be quite misleading for systems
far from threshold. Removing the constraint of a potential allows richer dynamics
that include, for example, competition between wave number selection mechanisms
operating at different spatial locations, and various types of persistent dynamics,
including chaos.

9.1.1 Goldstone modes and phase dynamics

The breaking of the continuous symmetries of translation and rotation at the tran-
sition to a spatially periodic state has profound dynamical consequences for the
ordered state. Based on the broken symmetry, we can predict that perturbations
that are slow spatial modulations of the periodic pattern will have arbitrarily slow
relaxation or growth rates. Positive growth rates correspond to instability of the
spatially periodic state, and long-length-scale perturbations are often important in
limiting the stability of stripe and lattice states. For stripe states, the instabilities
are known as the Eckhaus and zigzag instabilities. We have already discussed these
near threshold using the amplitude equation in Section 6.4.2 and Section 7.1.4, but
these instabilities have a more general relevance because they have a degree of
universality, applying to all stripe patterns in isotropic systems.

The qualitative argument for the slow dynamics of these long-length-scale per-
turbations goes as follows. If we take a particular spatially periodic state, any
translation of this solution along the directions in which the equations have transla-
tional invariance will lead to a state that is also a stationary solution. A perturbation
of the original state corresponding to such a translation will not relax. Now consider
a perturbation that locally has the character of this translation, but with the size of
the translation varying sinusoidally with a wavelength that is large compared with
the wavelength of the pattern itself. Since locally the perturbation is just a trans-
lation that has no tendency to relax, the evolution depends on distant regions and
the relaxation rate goes to zero as the wavelength increases. As we have seen in
Section 4.1.1 and Section 4.4.1, a translation of a spatially periodic pattern can be
represented as a change in the phase of the sinusoidal functions defining the periodic
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stripe or lattice states. Consequently, this low-frequency long-wavelength dynam-
ics is known as phase dynamics, and its study provides one of the few theoretical
tools available far from onset (see Section 9.1.2).

The argument for low-frequency long-wavelength modes invokes just symmetry
ideas and so can be applied at other transitions that break continuous symmetries. In
particle physics, the ideas were developed by Jeffrey Goldstone, and low-frequency
dynamics associated with broken symmetries are often called Goldstone modes. The
ideas are also important in the study of equilibrium phase transitions. An example is
the existence of low-frequency transverse sound waves in crystalline solids. (Such
transverse waves do not occur in liquids or gases since these support only the
propagation of longitudinal waves.)

Near threshold, the phase was introduced as the phase of the complex amplitude.
Away from threshold, the phase is conveniently introduced in terms of a local wave
vector q as in Eq. (4.56)

∇φ(x⊥, t) = q(x⊥, t), (9.1)

or

φ(x⊥) =
∫ x⊥

0
q(x′⊥) •dx′⊥, (9.2)

where the line integral is started at some convenient origin as reference point, here
denoted by the vector 0. To investigate the slow dynamics implied by the Goldstone
argument, we study the dynamics of this phase variable. This dynamics turns out to
be diffusive as we will see in the following section, and so the equation is known
as the phase diffusion equation, although the equation is now nonlinear since the
diffusion constants depend on the wave number.2

The phase diffusion equation can describe much interesting pattern formation
associated with stripe patterns far from threshold but cannot describe rapidly vary-
ing spatial structure associated with defects or near lateral boundaries. For example,
a defect such as a dislocation involves perturbations to the stripe or lattice state that
vary rapidly in space, and so are not completely described by the phase equation. In
fact, a dislocation is a point where the phase variable is not defined and so is a sin-
gularity of the phase description. However, as we have seen in Section 8.1.2, there
is a connection between topological defects and the phase variable: gradients of the
phase in the vicinity of the defect drive the dynamics of the defect. For example, a
phase gradient corresponding to a wave-number change drives dislocation climb.

We might hope to get a complete description of pattern dynamics, even far from
threshold, in terms of two coupled descriptions, a phase dynamics that describes
a slow spatial variation in the vicinity of a defect, and a fast local dynamics that

2 Some readers may note that formulating the problem in terms of the phase integral Eq. (9.2) is analogous to
the WKB formulation in linear wave problems such as quantum mechanics. The phase formulation for stripe
dynamics is in fact sometimes called the nonlinear WKB method.
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describes the response of a topological defect to the phase dynamics. Such a com-
plete description has turned out to be difficult to derive and has not yet been
convincingly carried out, even for the case of two interacting defects. Difficul-
ties that arise are the need for rules defining how topological defects are created in
regions of large pattern deformation, and how defects with opposite winding num-
ber may annihilate when they get close enough. In addition, the lateral boundary
conditions to apply to the phase equation are not clear. Finally, in real systems,
disordered regions are often encountered that cannot be described either as slowly
modulated stripes or as stripes with topological defects, and it is not known how to
incorporate such regions into the description.

9.1.2 Phase diffusion equation

In our discussion of the amplitude equation (Section 6.4.3), we saw that the dynam-
ics of the complex amplitude’s phase becomes increasingly slow as the length scale
of the variation increases. The magnitude, on the other hand, evolves on the time
scale τ0ε

−1set by the distance to threshold, and relaxes to the value consistent
with the instantaneous and local wave number given by the spatial variation of the
phase. Thus, for the evolution of large-length-scale phase variations, the magnitude
need not be studied as an independent dynamical equation; we say that the mag-
nitude adiabatically follows the phase variation. Further away from threshold, the
phase dynamics continues to define the slow dynamics corresponding to large-scale
spatial translations and reorientations of the pattern. The internal structure of the
pattern will relax on a faster time scale, namely the intrinsic time scale of the basic
evolution equations, so that it remains consistent with the local phase variation.

Derivation

Just as we did for the derivation of the amplitude equation, we can write down the
expected form of the dynamical equations for the phase variable of a stripe phase
phenomenologically, based on ideas of symmetry and of a smooth expansion in a
small quantity. Alternatively, we can approach the problem more formally, using
a method analogous to the multiple scales perturbation theory used to develop
the amplitude equation. For simplicity, we will focus on the phenomenological
approach and direct the more theoretically inclined readers toAppendixA2.4, which
discusses the formal method.

A spatially uniform wave vector field q is a time-independent solution for a
system that supports stationary stripe states. We therefore expect the time variation
of the phase variable to depend on spatial derivatives of q. For sufficiently slow
spatial variations, we can ignore spatial derivatives that are higher than first order.
A rotational transformation of the system rotates both the pattern wave vector,
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and the spatial gradient vector, and the phase equation must be invariant under
these combined transformations in a rotationally invariant system. There are two
possible first-order derivative terms of q that are consistent with this symmetry and
so a lowest-order phase dynamics equation takes the general form

∂tφ = f1(q)∇ •q + f2(q)q •∇q, (9.3)

with q related to φ by Eq. (9.1). Note that the wave number q = √
q •q and the

quantities ∇ •q and q •∇q are all rotationally invariant since they involve the scalar
product of two vectors. The functions f1(q) and f2(q) will depend on the specifics
of the system, and on system parameters. In contrast to the amplitude equation for
stripes near threshold, for which the nature of the system appears only through
three constants, the phase equation Eq. (9.3) requires two unknown functions to be
determined. This reflects the lesser degree of universality away from threshold.

The phase equation is often written in a more condensed form that is obtained
by using an integration factor B(q) to make the right-hand side of Eq. (9.3) a total
derivative. The phase equation then becomes

τ(q)∂tφ = ∇ • [qB(q)], (9.4)

with

τ(q) = B(q)

f1(q)
and

d

dq
ln B(q) = f2(q)

f1(q)
. (9.5)

Instead of the two functions f1 and f2, the phase equation now depends on a q-
dependent time-scale factor τ(q), and on the integration factor B(q). We will use
Eq. (9.4) as the phase equation of stripes far from threshold.

Since q = ∇φ, the phase equation Eq. (9.4) involves second-order spatial deriva-
tives of the phase, and the equation has the form of a nonlinear diffusion equation.
The relation to a diffusion equation becomes clear if we linearize the equation to
describe small perturbations about a state of undistorted stripes. For a base stripe
state with wave vector qb = qbx̂, we have φ = qbx + δφ and q = qbx̂ + ∇δφ with
δφ the small phase perturbation. The phase diffusion equation linear in δφ is then

∂tδφ = D‖(qb)∂
2
x δφ + D⊥(qb)∂

2
y δφ, (9.6)

with diffusion constants D⊥ and D‖ respectively for spatial variations perpendicular
and parallel to the stripes. Their mathematical forms are

D⊥(q) = B(q)

τ (q)
and D‖(q) = 1

τ(q)

d(qB)

dq
. (9.7)

Even though the physical system is rotationally invariant, we get an anisotropic
diffusion equation Eq. (9.6) with two diffusion constants since the stripe state
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about which we are perturbing defines a direction along qb. The diffusion of small
displacements of the stripes will in general occur at different rates parallel and
perpendicular to this direction.

Note that Eq. (9.6) is a diffusion equation only when the constants D⊥ and D‖
are both positive. This in turn is the case only for certain system parameters and for
some values of the wave number q. In fact, as we show later in this section, the onset
of the universal zigzag and Eckhaus instabilities can be determined mathematically
by when these constants change sign, by taking on zero values.

The above phenomenological derivation of the phase equation suffices to tell us
the structure of the phase equation, but to justify the result formally, and to evaluate
the unknown functions B(q) and τ(q) for any specific physical system, we must
turn to a more systematic derivation. The details involve a lot of algebra so we
direct the interested reader to Section A2.4.2 of the Appendix, where we outline
the general method and then apply the method to the Swift–Hohenberg equation,
for which the calculation is not too involved. Fig. 9.1 illustrates the type of result
obtained by plotting the quantity qB(q) versus the wave number q for the Swift–
Hohenberg equation with the parameter value r = 0.25. (Plotting qB(q) is useful
for the discussion of instabilities, see Section 9.1.2.)

1.1 1.20.90.8 q

qB(q)

1.0

0.05

–0.05

0

Fig. 9.1 Illustration of a nonlinear phase diffusion equation calculation for the
Swift–Hohenberg model of pattern formation, Eq. (2.30), with parameter value r =
0.25. According to Eq. (9.7), the linearized phase diffusion equation Eq. (9.6) for a
stripe state is diffusive when the quantities B and (qB)′ are both positive (the prime ′
denotes differentiation with respect to q). Since q is non-negative, it suffices to
plot qB versus q and identify where the curve qB and its slope are both positive. In
this plot, the solid line denotes the only part of the curve where B and (qB)′ are both
positive. The range of q corresponding to the solid curve turns out to be the wave
number band for which stripes are linearly stable with respect to long-length-scale
perturbations. The quantity B(q) is calculated approximately in Section A2.4.2 of
the Appendix, see Eq. (A2.75).
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Application: diffusive dynamics

The phase equation tells us a remarkable fact about the stripe state: if we displace
the stripes at some point, this local perturbation has long range and long-time-scale
consequences, since the perturbation spreads diffusively. On the one hand, this
is a phenomenon that is not immediately obvious just inspecting the microscopic
equations, such as the Navier–Stokes equation for convection for example, and on
the other hand the phenomenon is quite general, independent of the physics that
produces the stripe state. It is a phenomenon that directly comes from the broken
translational symmetry.

A direct experimental verification of the phase diffusion of the roll state in
Rayleigh–Bénard convection was performed using the apparatus sketched in
Fig. 9.2. The experiment was performed in a rectangular horizontal cell of width 5d
and length 30d , with d = 0.6 cm the depth of the cell. The fluid used was a silicon
oil with Prandtl number 492, for which the basic time scale of the convection, the
thermal diffusion time across the depth of the cell, was τd = 320 seconds. The
Rayleigh number was adjusted to have the value R = 1.16Rc, where Rc is the crit-
ical Rayleigh number for the onset of convection, so this experiment was not “far
from threshold.’’

(a)

Inlet

Outlet

q(t )

To

To+ ∆T

t = T

(b)

t = 0

Fig. 9.2 Apparatus for experimental verification of phase diffusion in Rayleigh–
Bénard convection. Panel (a) sketches the apparatus and the scheme for introducing
a time-periodic perturbation to the rolls by injecting and withdrawing fluid periodi-
cally from the inlet and outlet respectively. Panel (b) shows the displacement of the
rolls at some distance away over one period of the perturbation. (From Wesfried
and Croquette [111].)
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For this geometry and fluid parameters, the convection rolls align parallel to the
short side to give a uniform stripe state. Midway along the long length, a localized
perturbation was induced along a line parallel to the rolls by injecting periodically,
with a frequency ω, fluid between slots in the top and bottom plates. (These slots
are labeled Inlet and Outlet on the left side of Fig. 9.2.) This added flow perturbs
the adjacent rolls in a complicated way, that includes a sideways displacement.
Remember that a spatial displacement δ is equivalent to a phase perturbation qδ

with q the wave number, so that for small perturbations the displacement and phase
perturbation can be taken as proportional. For small frequencies ωτd � 1, the
propagation of the phase perturbation can be understood from the phase equation,
which predicts the space-time variation along the cell

φ(x, t) = φ0e−m1|x| cos(m2 |x| − ωt), (9.8)

where x is measured from the point of disturbance. Note the exponential decay of the
size of the phase perturbation, and also the oscillatory dependence on the distance x.
The rate of decay m1, and also the wave number of the oscillations of the disturbance
m2, are related to the parallel diffusion constant through m1 = m2 = √

ω/2D‖ (see
Exercise 9.3). The spatial dependence of Eq. (9.8), and the equality of m1 and m2,
were quantitatively verified. The demonstration of the scaling of m1, m2 with ω1/2

is shown in Fig. 9.3.

theoretical prediction

10–3

0.5

1

v

(s–1)

m
(cm–1)

10–2

m2 m1

Fig. 9.3 Log-log plot of the decay rate m1 and oscillation wave vector m2 for the
displacement perturbations in the Rayleigh–Bénard experiment shown in Fig. 9.2.
The dashed line is the theoretical prediction, with a slope 1/2, and a value of the
diffusion constant predicted from theory. (Source as in Fig. 9.2.)
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Application: instabilities

The diffusion equation (9.6) yields exponentially growing perturbations if either of
the diffusion constants is negative. Equations (9.7) then show that the points where
B and (qB)′ change sign identify the onset of instabilities. Since the phase equations
describe slow spatial variations, these are long-wavelength instabilities. As was the
case near threshold, we find the longitudinal or Eckhaus instability, which occurs for
values of q such that D‖(q) < 0 which implies (qB)′ < 0. Similarly, the transverse
or zigzag instability occurs when D⊥(q) < 0 which implies B(q) < 0. Thus the sta-
ble wave numbers (the stability balloon) correspond to positive B and positive (qB)′.
(This is the solid portion of the curve qB(q) in Fig. 9.1, which was calculated in
Appendix A2.4.2 for the Swift–Hohenberg equation.) The phase equation shows us
that the Eckhaus and zigzag instabilities persist far from threshold, and are generic
to stripe states in rotationally invariant systems. The locations of the instabilities are
more system dependent than near threshold since they depend on a function B(q)

rather than on the two constants ξ0 and τ0 of the amplitude equation. Also system
dependent is the issue of whether these instabilities will bound the region of stable
wave numbers, or instead some other instability will occur at wave numbers inside
the range stable to the two long-wavelength instabilities.

Application: wave number selection

The time-independent phase equation derived from Eq. (9.4),

∇ • [qB(q)] = 0, (9.9)

is reminiscent of Maxwell’s equation ∇ •B = 0 for a static magnetic field B, or for a
static electric field in the absence of charges. In an introductory electromagnetism
course, we learn about this equation in terms of field lines that do not end. If
the geometry of the field is known, following a field line and inspecting how the
separation of neighboring field lines changes allows us to relate the field strength
at distant points. In the same way, Eq. (9.9) relates the wave number at distant
points along curves drawn normal to the stripes, and this provides strong, nonlocal
constraints on a stationary stripe pattern. In particular, if one of the points is chosen at
the center of a focus or target singularity that exists in the pattern (see Section 4.4.2)
we arrive at a powerful wave number selection principle, known as focus selection.

To illustrate the idea, first consider the case of axisymmetric stripes, Fig. 9.4(a).
In polar coordinates (r, θ), the divergence-free equation ∇ •V = 0 becomes:

1

r
∂r(rVr) + 1

r
∂θVθ = 0, (9.10)

where the general vector field V = Vrer + Vθeθ is resolved along the radial
and azimuthal unit vectors er = (cos θ , sin θ)) and eθ = (−sin θ , cos θ). An
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B

du
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Fig. 9.4 Wave-number selection by centers of stripe curvature: (a) axisymmetric
stripes; (b) generally curved stripes. The heavy lines are along the stripes and the
dashed lines orthogonal to the stripes.

axisymmetric field does not depend on θ so the θ derivative in Eq. (9.10) van-
ishes. For the vector field V = qB(q), the radial component is the magnitude of the
field so Vr = qB(q) and Eq. (9.10) reduces to

1

r
∂r (rqB(q)) = 0, (9.11)

which has the solution

qB(q) = C

r
, (9.12)

with r the distance from the center and C an integration constant. Even for r of
order unity (i.e. approaching the core of the defect), we expect the wave number
to remain of order the characteristic stripe wave number (which we take to set the
unit of inverse length scale, and so by definition the typical wave number is of
order unity), the integration constant C will also be of order unity. Thus for large
distances r, we get the result qB(q) → 0. Since we expect a patterned state with
nonzero q, this implies

q → qf where B(qf ) = 0, (9.13)

so that axisymmetric stripes approach a focus selected wave number qf far from
the core of the defect. Furthermore, for systems described by the phase equation
(9.4), this selected wave number is right on the zigzag instability boundary q = qZ

where the transverse diffusion constant D⊥ = B(q)/τ(q) is zero. The transverse
diffusion constant D⊥ plays the role of an elastic constant resisting the bending of
the stripes. As a consequence, patterns in which the focus selection is operating to
select the wave number, and which are described by the phase diffusion equation,
are susceptible to the formation of sharp corners, rather than smoothly curved arcs.
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The origin of the wave number selection is easily understood. Unless the per-
pendicular diffusion constant is zero, curved rolls tend to generate a stripe motion
toward or away from the center of curvature, with the center providing a sink or
source of the stripes. This argument for wave-number selection is not restricted
to axisymmetric stripes. In general we can define an orthogonal pair of curvilinear
coordinates along the stripes and along the normals, as shown in Fig. 9.4(b). (These
coordinates are θ and r in the case of circular arcs.) We can think of Eq. (9.12) as
telling us that the product qB(q) is inversely proportional to the arc length r δθ

between nearby radii as r varies along a constant θ trajectory. Stated in this form,
the result is readily extended to general curvilinear coordinates, with the appropri-
ate arc length AB replacing r δθ .3 Thus in patterns where the arc length between
the nearby normal trajectories grows, the wave number at large distances will again
approach qf .

9.1.3 Beyond the phase equation

Mean flow

The assumptions motivating the general form of the phase equation Eq. (9.4),
namely rotational symmetry and a smooth expansion in the phase gradients, seem
mild. However the assumptions break down and the equation is incorrect for
Rayleigh–Bénard convection at finite Prandtl numbers and for many other fluid
systems because the smoothness assumption for the expansion in slow gradients
in the phase breaks down. In the formal derivation of the phase equation (see
Appendix A2.4), the breakdown can be traced to the existence of a slow mode. This
second mode is associated with a horizontal flow with nonzero mean across the
depth and so is called a mean flow V. This flow carries the stripes along giving an
extra advective term V •∇φ in the phase equation which now becomes

τ(q) (∂tφ + V •∇φ) = ∇ • [qB(q)]. (9.14)

The mean flow velocity V(x, y, t) is in turn driven by distortions of the pattern
described mathematically by gradients of the phase. Since a mean horizontal flow
must necessarily be divergence free for an incompressible fluid, an attempt to
eliminate the flow velocity V in favor of phase gradients can only be done at
the expense of introducing a non-smooth dependence on the phase gradient. A
divergence-free mean horizontal flow can also be accounted for in terms of a vertical
vorticity 	 that quantifies the “stirring’’ of the fluid about the vertical axis. The
vertical vorticity is defined in terms of the stream function ζ for the divergence-free

3 This can be seen, for example, by applying Gauss’s theorem to Eq. (9.9) integrated over an area between two
nearby curves that are normal to the stripes.
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two-dimensional horizontal velocity by

	 = −
(
∂2

x + ∂2
y

)
ζ , where V = (

Vx, Vy
) = (

∂yζ , −∂xζ
)
. (9.15)

The equation describing the driving of the mean flow by phase gradients is in general
quite complicated since it involves many functions of the wave number that must
be calculated from the fluid equations. To give you an idea of the structure of the
equation, we quote the result valid near threshold, where the driving term can be
written in terms of the amplitude function

∇2ζ = γ ẑ •∇ ×
[
q∇ •(q|A|2)

]
. (9.16)

Here ∇ = (∂x, ∂y) is the horizontal gradient, ∇2 = ∂2
x + ∂2

y is the horizontal
Laplacian, and γ is some constant that depends on the fluid Prandtl number. The
magnitude |A| depends on the local wave number q. The point to extract from this
equation is that derivatives of the wave vector q drive the mean flow V, which
through the advective term in Eq. (9.14) gives an additional term in the phase
dynamics. This is second order in phase derivatives, as are the regular terms in the
phase equation, but cannot be expressed as a smooth expansion in derivatives of
the phase.4 A generalized Swift–Hohenberg model with mean flow was introduced
in Section 5.2.3.

The mean flow introduces long-range effects in the pattern formation and singu-
lar terms in the phase diffusion equation. Some of the consequences are illustrated
in Fig. 9.5. For example, the dynamics no longer just depends on the local curvature
of the stripes but on the full geometry of the curved structures (compare panels (a)
and (b) of Fig. 9.5). The curvature tends to drive a mean flow. This cannot occur
in the axisymmetric geometry since a radial flow is not consistent with the incom-
pressibility of the fluid. On the other hand, for portions of circular arcs in a corner
of a cell this is not the case and mean flows can develop, as shown by the arrows in
Fig. 9.5(b). This means that the wave number selection operating in (a), giving the
focus selected wave number qf , will not apply to (b). For the zigzag perturbed stripes
in Fig. 9.5(c), again there is curvature driving a mean flow. However unlike panel
(a), the flow is not suppressed by incompressibility conditions and may enhance or
suppress the zigzag instability depending on the direction of the flow, which in turn
is determined by the signs of various coefficients. For Rayleigh–Bénard convec-
tion, the sense is such that the mean flow tends to suppress the zigzag instability.
Note that the effect of curvature in (a) and (c) is no longer the same and so the
wave number for the zigzag instability qZ will no longer coincide with the focus

4 Asimple example of a non-smooth quantity would be a ratio f (x)/g(x) for which the numerator f is differentiable
everywhere while the function g(x) vanishes at one or more points, for example x2/ cos(x).
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(a) (b)

(c) (d)

Fig. 9.5 Mean flow for a convecting fluid in various geometries. (a) A stripe
curvature tends to induce a mean flow, but in an axisymmetric geometry this
radial mean flow cannot develop because of the fluid incompressibility. (b) For
incomplete circular arcs, the mean flow can now occur, in this case because of
the suppression of the convection near the boundaries. (c) For a zigzag distortion,
the roll curvature drives a mean flow that suppresses the instability. (d) A more
complicated distortion leads to a mean flow that enhances the instability; this is
what the so-called skew-varicose instability of straight parallel rolls looks like
in the early linear stage. (Signs of the curvature-driven mean flow in the figure
correspond to the case found in Rayleigh–Bénard convection.)

selected wave number qf . In contrast to (c), a more complicated distortion of stripes
in convection that mixes transverse and longitudinal distortions shown in (d) leads
to a mean flow that enhances the distortion. This leads to a new long-wavelength
instability called the skew-varicose instability that bounds the stability balloon of
straight spatially periodic convection rolls at small Prandtl numbers.

Secondary bifurcations

The coupling of the phase dynamics to other slow degrees of freedom such as the
mean flow V introduced in the previous section may occur in many other situations.
The new slow mode may arise in various ways: conserved quantities, such as the
total momentum in a fluid system with boundaries that do not damp this momentum;
symmetries, such as the translation of a planar interface; or the slowly growing
mode at secondary bifurcations. In many cases, because higher-order dynamical
equations result, qualitatively new and unexpected behavior are found in these
situations. We illustrate this phenomena in the context of an interesting secondary
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bifurcation that occurs in some experimental stripe systems, the parity-breaking
secondary bifurcation of a stripe state.

The parity-breaking instability is an instability of a stripe state to a distorted
state where the x and −x directions are no longer equivalent, for example due to
the growth of a second harmonic of the spatial periodicity. This parity-breaking
instability is quite common and has been seen in solidification fronts, convection
in binary fluid mixtures, and other systems. If the stripes are no longer symmetric
in the forward–backward directions, they will tend to drift along their normals with
a speed that depends on the magnitude of the asymmetry, which goes to zero at the
secondary bifurcation.

The slow degrees of freedom at the bifurcation are the amplitude of the parity-
breaking distortion, and the translational degree of freedom of the stripes described
by the phaseφ. The basic approach for constructing appropriate amplitude equations
for parameter values near the instability follows the approach near the original
threshold of the uniform state. An amplitude of the perturbation B is defined so that
the parity-breaking deviation from the parity-symmetric nonlinear stripe state is

δu = B(x⊥, t)u1(x⊥, x‖) + h.o.t. (9.17)

Here u1 is the Bloch eigenvector of the parity breaking instability. (See Section 4.2.1
for the terminology used in the stability analysis of a stripe state.) This eigenvector
has the same period as the stripe state, and the parity-breaking instability is spatially
uniform corresponding to a Bloch wave vector zero. The amplitude B is a real
variable, which corresponds to the physics that the perturbation has the same spatial
periodicity as the stripes. The coupled equations for B and φ must be invariant under
the combined operations x → −x, φ → −φ, B → −B, which corresponds to the
parity symmetry of the original equations. This restricts the amplitude equation to
the following form if we keep up to second-order derivatives in either variable and
restrict our focus to spatial variations along the stripe normal:

∂T B = µB ± B3 + ξ2
1 ∂2

X B + ξ2B ∂X B + ξ3B ∂X φ + ξ2
4 ∂2

X φ, (9.18a)

∂T φ = B + ∂2
X φ + ξ2

5 ∂2
X B. (9.18b)

Here the scaled coordinate X and the scaled time T have been chosen to make the
coefficients of the first two terms on the right-hand side of Eq. (9.18b) equal to
unity, and the ξi are constants. The parameter µ measures the distance from the
onset of the parity-breaking instability.

Equation (9.18b) is particularly interesting since it directly shows that any
nonzero amplitude B of the parity-breaking mode will cause a drift of the underlying
pattern, in a direction determined by the sign of B.Anumber of other interesting pre-
dictions can be made from Eqs. (9.18). For example, the drifting wave pattern that
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forms immediately beyond the instability is actually unstable to a long-wavelength
modulational instability. This in turn can lead to localized regions of drifting waves
that propagate through a stationary background at a wave number that is not unstable
to the parity-breaking instability. Such disturbances have been seen in the periodic
cellular pattern formed in solidification patterns.

9.1.4 Wave-number selection

The linear stability analysis of the uniform state tells us the rough magnitude of the
length scale to expect in the patterned state. However, above onset, spatially periodic
nonlinear solutions exist within the stability balloon (see Section 4.2.1), which
typically covers a rather broad range of possible periodicities around the length
scale given by the linear analysis. On the other hand, experiments and simulations
in realistic physical geometries often produce a rather narrow distribution of wave
numbers in the pattern, corresponding to a quite well defined spatial periodicity.
This raises the question of what physics might lead to a tighter restriction on the
spatial periodicity and what is the precise wave number selected.

Wave number selection turns out to be a surprisingly difficult question to answer
in systems far from equilibrium. It is worth contrasting this with the same question
in an equilibrium system, for example the question of the precise periodicity of
a crystal lattice. For the crystal, there is a simply stated principle: minimize the
appropriate thermodynamic potential as a function of the lattice spacing a. In the
absence of external stresses and at a given temperature, we minimize the free
energy F(a), where F = E − TS, with E the internal energy, S the entropy, and T
the temperature. If equal normal stresses P are applied on all surfaces, we minimize
the quantity G(a) with G = E − TS − PV , with V the volume. Thus we only have
to evaluate static properties at each lattice spacing, and then compare the different
states through the thermodynamic potential. On the other hand, in a system far
from equilibrium we have no general notion of a state function like F or G that can
be minimized. We cannot compare two states with different wave numbers simply
through the value of some function evaluated in these states. The only way in general
we can “compare’’ the two states is to set up a dynamical situation that somehow
connects the two states. The crux of the wave number selection problem is that,
where they have been tested experimentally, theoretically or numerically, different
dynamical processes that can change the wave number typically lead to different
wave numbers, so that there is no consistency between the comparison between
states produced by different connections, and there seems to be no particular choice
of connection that is intrinsically more natural than other ones.

Let us focus on this issue a little more. It is again useful to think about the theo-
retical construction of an ideal straight stripe state parallel to one pair of edges of
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a rectangular cell with periodic boundary conditions. These are exactly the condi-
tions assumed for the stability balloon analysis and we know from those calculations
that, at each value of the control parameter, the stripe state is linearly stable for a
nonzero range (a band) of wave numbers. Effectively, the number of spatial peri-
ods, and hence the wave number, is conserved for small perturbations about a state
within the stability band. To allow for the wave number to evolve, we need to apply
a finite disturbance or reorganization to the ideal straight stripe state. Although
infinitesimal perturbations in a linear analysis can be classified and understood in
terms of the Bloch modes, many different finite amplitude disturbances that might
relax the constraint of a fixed number of periods can be imagined. In a system far
from equilibrium, different finite perturbations often lead to different selected wave
numbers.

Various dynamical mechanisms for defining a “preferred’’ wave number might
be envisioned.

One choice that is natural from a theoretical perspective is the center of the
wave number distribution found for the dynamical equations supplemented with
noise, in the limit of small noise strength. For nonequilibrium systems that are near
local equilibrium, thermal noise dictated by the principles of statistical mechanics
(in particular the fluctuation–dissipation theorem) is appropriate. Even for small
amplitude noise, occasionally a large enough fluctuation will initiate some sort of
event that leads to a change in the number of stripes. Averaging over a long enough
time, we expect to find a narrow distribution of wave numbers about some “noise
selected’’ value. However, this idea is unlikely to be relevant to most experimental
systems since the microscopic noise averages out to tiny values for patterns on a
macroscopic scale.5

An alternative choice is the center of the distribution in the state developing at
long times from a random initial condition (assuming that the final distribution is
insensitive to the size and distribution of initial conditions under some constraints,
and that the dynamics tends to relax the state to one with an adequately well defined
wave number). In this protocol for forming the pattern, the growth from the random
initial conditions produces a state at early times that is strongly disordered. As the
dynamics proceeds, regions of ordered stripes develop, with different regions or
domains showing different orientations. The ordered domains grow through com-
petition between neighboring regions – a process known as coarsening. As the

5 Carefully designed experiments on Rayleigh–Bénard convection using a fluid (SF6) near its critical point to
enhance the size of thermal fluctuations have measured the effect of thermal fluctuations on the convection
pattern near threshold. The Swift–Hohenberg equation, was originally written down (supplemented by noise
terms) to investigate exactly this question. Swift and Hohenberg predicted that the transition would actually be
discontinuous, with a jump in properties such as the heat flow, rather than the continuous transition predicted
by bifurcation theory for the noise-free situation. The expected size of the jump is tiny, but was verified by the
experiments.
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size of these ordered regions grows, the width of the wave number distribution
decreases, and if the process continues to long times,6 a well-defined wave number
may result. Such quench protocols have been investigated numerically for model
equations yielding stripe states such as the Swift–Hohenberg equation (an example
is shown in Fig. 5.3), and also for the fluid equations describing Rayleigh–Bénard
convection, although for shorter times and in smaller system sizes. In these simu-
lations, the long time state is indeed found to be one with rather well defined wave
number. Starting from small enough random initial conditions, at early times the
fastest growing linear modes will dominate the wave number distribution. At later
times, nonlinear effects take over and a different dominant wave number is found.
The quench protocol has not been investigated in experiment, and it is by no means
clear that it is relevant to most experiments or to natural patterns.

A different growth mechanism of the patterned state from the unstable uniform
state is for the pattern to grow locally, perhaps at a boundary or an inhomogeneity,
and then to spread into the rest of the system by a propagating front of the type
discussed in Section 8.3. Such a propagating front tends to lay down a well-ordered
state, with a wave number that can be predicted as in Section 8.3.3.

Rather than considering the growth of the pattern from the unstable uniform state,
we can also consider specific dynamical mechanisms in the established pattern
state and ask at which wave number the dynamics ceases. An important dynamical
mechanism for wave-number relaxation is the dynamics of defects. This role of
defects in selecting a wave number was introduced in Section 4.4.2. One example
comes from dislocations: injecting a dislocation defect allows the wave number to
increase or decrease by its climb motion. The direction and speed of climb depends
on the wave number of the surrounding stripes, as discussed in Section 8.1.2.
Successive injection of dislocations will eventually lead to the dislocation climb
selected wave number qd at which the climb velocity is zero. On the other hand
the presence of focus defects allows the wave number to relax through the creation
or destruction of the tiny stripes near the center, relaxing the system to a wave
number qf , the focus-selected wave number as discussed in Section 9.1.2. There is
no reason to expect these two wave numbers to be equal in general, and experiment
or calculation in a number of systems confirms this, for example experiments in
Rayleigh–Bénard convection shown in Fig. 9.6. Grain boundaries also allow the
wave number to relax, and again will in general lead to a stationary pattern at a
different wave number qg. (This was discussed near threshold in Section 8.2.) Thus
the wave number selected may well depend in a complicated way on which defects
happen to be present. In experiment, this often depends on the nature and geometry
of the side walls and also on initial conditions. The lateral boundaries themselves

6 Alternatively, the pattern may freeze into a disordered state, as in glass formation from a rapidly cooled liquid.
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Fig. 9.6 Wave-number selection by targets and spirals (qt , called qf in the text)
and by dislocations (qd) in Rayleigh–Bénard convection. The plot shows various
wave numbers q multiplied by the depth of the fluid d as the abscissa and the
reduced control parameter ε as the ordinate. The wave numbers qt and qd would
be equal for a system that has potential dynamics. For qt , the open circles are
experimental values for targets, the solid line is theory for targets, and the squares
with a 1 inside are experimental wave numbers selected by 1-arm spirals. For qd, the
squares are experimental values while the triangles and dashed line are theoretical
calculations. Also shown is the stability balloon. The experiments were performed
in a cylindrical geometry of aspect ratio � = 38.8 using a fluid with Prandtl
number σ = 1.4. (From the work of Plapp reported in the review by Bodenschatz
et al. [12].)

may also provide regions where the stripe pattern is less well developed so that
the wave number may relax (see Section 6.4.1). Rather than an abrupt termination
of the pattern at a physical side wall, it is also possible to set up conditions so
that the pattern gradually fades away over some long distance before the boundary
is reached. This may be done by arranging for some control parameter to change
slowly over space, with a supercritical value in one part of the cell and a subcritical
value in some other part of the cell. Such a slow modulation of a parameter is called
a control parameter ramp.

For example, in a Rayleigh–Bénard convection experiment with fixed plate tem-
peratures, the Rayleigh number Eq. (1.2) varies as R ∝ d3 so that an R interpolating
between values above and below Rc can be established by varying the depth slowly
over space. (This in turn is accomplished in practice by machining the top or bottom
plate to have a slowly varying thickness.) If the convection rolls orient parallel to
the ramp (roll normal and direction of control parameter variation aligned) then the
wave number in the bulk where the control parameter reaches its supercritical value
may relax through the slow disappearance or appearance of new low amplitude rolls
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in the region of the ramp where R passes through Rc. It is rather straightforward
to analyze this situation for exceedingly slowly varying ramps. The prediction,
verified in a number of careful experiments, is that for a given ramped quantity
(such as the depth in the Rayleigh–Bénard convection example) and for a given
control parameter value in the bulk, the wave number in the stripe pattern takes on a
unique value (rather than a band), so that the ramp acts as a wave number selection
mechanism. However, if different quantities making up the dimensionless control
parameter can be varied (for example the depth and the temperature difference in
a convection system), these different spatial ramps will lead to different selected
wave numbers. Again there seems to be no way to discover a unique “preferred’’
wave number independent of the detailed configuration.

An experimental example of wave number selection by ramps is shown in
Fig. 9.7 for a Taylor–Couette experiment (see Fig. 1.11). The Taylor–Couette
system is particularly convenient for studying wave number selection since the
azimuthal symmetry of the rolls around the cylinders is maintained for some con-
trol parameter range above the threshold of the pattern so that the pattern-formation
problem remains one dimensional. In contrast, for a convection cell with a ramp,
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Fig. 9.7 (a) Wave numbers as a function of the reduced control parameter ε in
Taylor–Couette systems with linear ramps in the cylinder radii. Bars: range of
wave numbers observed in experiment; dashed lines: theoretical predictions of
wave number selection. The solid lines show the Eckhaus instability for the infinite
cylinder. The ramp angles for the inner and outer cylinders were (A) −0.0075 and
0 and (B) 0.0074 and 0.0151 (where a positive angle corresponds to cylinder radii
decreasing away from the uniform region). (From Ning et al. [82].) (b) Sketch of
the apparatus for the case of outer cylinder ramp with negative ramp angle, and
no ramp on the inner cylinder.
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the orientation of the rolls may also be affected by the ramps. The control parameter
ramps in Fig. 9.7 were created by machining the radii of the inner or outer cylinder
to vary slowly and linearly toward one end of the cylinders as shown in cross section
in panel (b). The ramp is characterized by the geometrical angles of the walls of
the cylinder. For small values of the angles, a narrow band of wave numbers is
selected in the bulk of the system where the radii are uniform, as predicted by the
general theory. Furthermore, the selected wave number is found to depend on the
ratio of the ramp angles of the two walls in agreement with the general theoretical
expectation, and the values measured are in good agreement with the theoretical
predictions based on the fluid-dynamical equations.

Various extrema principles have been proposed to explain the observed narrow
distribution of wave numbers such as maximizing some global property of the sys-
tem, for example the total heat flow in convection or the rate of entropy production.
However none of these seems to have any wide generality or any satisfying deriva-
tion from more basic principles. We can use the empirical fact that there appears
to be no unique wave number selection, at least in the various systems far from
equilibrium where this issue has been investigated, to argue against the existence
of a useful minimization principle in these systems, and perhaps in general. (By
the word “useful’’ we mean, for example, that the quantities to be minimized are
integrals of local functions of the fields and their spatial derivatives over the sys-
tem.) Opinions of pattern formation researchers continue to differ on whether such
a minimization principle might ultimately be found.

If different dynamical processes can select different wave numbers, an interesting
question arises of what happens where two or more such processes are operating
in different regions of the same system. In these situations, a state with persistent
dynamics may develop, with the region favoring a larger wave number tending to
create stripes that propagate to, and are destroyed in, the region favoring a smaller
wave number. Such dynamics has been constructed theoretically and observed
experimentally in a number of different geometries. In some cases, the dynamics is
periodic, in other cases chaotic. A simple example is shown in Fig. 9.8. Here stripes
may be produced by the center, radiated outward, and annihilated by the climb of
the dislocation around the azimuthal direction, leading to a continuous rotation of
the spiral structure. The driving force for the motion is the disparity between the
wave number selected by the central core, which is essentially the same as the focus
selected wave number, and the dislocation selected wave number. (This mechanism
is quite different than the one that produces rotating spirals in an excitable medium
such as those discussed in Fig. 1.18(a) and Section 11.6. There the spiral core
directly generates the dynamics, and there is no competition between two different
selection mechanisms.) Two different control parameter ramps provide another



9.2 Novel patterns 337

Fig. 9.8 Spiral pattern terminating in a dislocation defect. The left panel shows
a shadowgraph from a Rayleigh–Bénard convection experiment in a cylinder of
aspect ratio � = 28.4 for a fluid with Prandtl number σ = 1.38. The Rayleigh
number is 1.72Rc. (Source as in Fig. 9.6.) The right panel shows a schematic of the
dynamics: the dashed line shows the phase front at later time and the arrow shows
the motion of the dislocation as the spiral rotates in a counter-clockwise direction.

simple example where a dynamic state resulting from incompatible wave-number-
selection mechanisms can be established and studied.

9.2 Novel patterns

For the second class of patterns far from onset – those which bear little or no resem-
blance to modes growing at a linear instability – much less can be said in general.
Since strongly nonlinear systems are hard to understand in general, much of the
understanding of the structure of these new types of patterns relies on experimental
and numerical investigations, or on perturbative approaches based on other small
parameters specific to particular systems. As yet, the understanding of patterns far
from threshold is far from complete. Here too the question arises of “What is a pat-
tern?’’ This is straightforward to answer for the regular or quasiregular states seen
near threshold, but what should be included in patterns far from onset – or excluded
so that some general truths can be stated – is by no means clear. In this section, we
present a few of the new features encountered in patterns far from onset. Extending
the methods and models we have discussed in previous chapters into more highly
nonlinear regimes can give insights into patterns far from onset. In many cases,
we are pushing the models beyond their range of validity and the results cannot be
considered to be quantitatively reliable. However, the qualitative insights remain
useful.
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9.2.1 Pinning and disorder

Spatially disordered patterns are common far from onset. We can gain some insight
into this by considering a stripe state taken far from onset. Near threshold, the
patterns are constructed from slow modulations of a state that is locally stripes. The
length scale of the modulation is much longer than the wavelength of the stripes.
For example defects, such as dislocations or grain boundaries, involve a strongly
distorted core that varies on length scales of order ε−1/2 or ε−1/4. Because of
this separation of scales, the pattern variations evolve rather independently of the
underlying stripe structure. Compare this with the situation far from threshold. Now
there is no a priori separation of length scales. Pattern variations and defect cores
occur at the scale of the stripes, and are easily pinned to the underlying structure.
A simple illustration is given in Fig. 9.9, which shows numerical simulations of
the Swift–Hohenberg equation from random initial conditions. Near threshold, the
pattern steadily evolves from the short scale structure of the initial conditions,
toward a final state that is close to one of straight parallel rolls, with perturbations
from the effects of the boundaries. Far from threshold, on the other hand, evolution
only continues a short time, before the pattern freezes into a highly disordered state
that seems rather independent of the boundaries.

Some quantitative understanding of this pinning phenomenon, and why it is more
important away from threshold, are established in the following Etude.

Etude 9.1 Nonadiabatic effects for fronts in the Swift–Hohenberg equation
Consider the Swift–Hohenberg equation in one spatial dimension

∂tu = ru − (∂2
x + 1)2u − u3. (9.19)

(a) (b)

Fig. 9.9 State at long times in numerical integrations of the Swift–Hohenberg
equation (5.9) in a rectangular box of dimensions 29.2×19.5, starting from small-
amplitude random initial conditions: (a) For the control value r = 0.1, the random
initial structure evolves into one of a few states consisting of slowly varying
parallel rolls with defects occurring only along the shorter sides. (b) For r = 2.0,
the random initial state evolves into a frozen highly disordered state whose details
are sensitive to the initial state. (From Greenside and Coughran [43].)
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For r > 0, we can form fronts that propagate from the nonlinear stripe state into
the uniform u = 0 state. In an amplitude equation description, the front is given
by a real amplitude Ā(X ) with X = ε1/2x and ε = r. The scaled amplitude Ā
varies between 0 in the uniform state and 1 in the saturated nonlinear state at wave
number q = 1. The full field is then

u = 2ε1/2Ā(ε1/2x)cos(x + φ), (9.20)

where φ gives a shift of the position of the rolls. Remember the dynamics of the
Swift–Hohenberg equation is potential, see Section 5.1.2. For the front solution,
the potential Eq. (5.11) is

V = ε2
∫

dx
{
−2Ā2 cos2(x + φ) + 4Ā4 cos4(x + φ) + 8

(
Ā′)2

sin2(x + φ)
}

,

(9.21)

where Ā′ denotes dĀ/dX . For small ε, we would usually evaluate this expression
by first ignoring the slow variation of A and then replacing the rapidly oscillating
functions by their averages (cos2 → 1

2 , sin2 → 1
2 , cos4 → 3

8 ). This gives an
integral over the slow variable

V = ε2
∫

dX

{
−Ā2 + 4[Ā′]2 + 3

2
Ā4

}
, (9.22)

which is clearly independent of the front’s position relative to the rolls since the
dependence on φ has dropped out. However we have ignored terms such as

�V = ε2
∫

dx
{
−Ā2(ε1/2x) cos [2(x + φ)]

}
, (9.23)

which comes from the −2Ā2 cos2(x +φ) term. We can estimate how this correction
scales with ε by noticing that the integral is the Fourier transform at wave number
2 of a function smoothly varying over a scale ε−1/2. From the general properties
of Fourier transforms, we know that the integral is exponentially small for small ε.
In fact, the full correction to Eq. (9.22) varies as

�V ∼ exp(−a/
√

ε), (9.24)

where the constant a and the prefactors depend on the details of Ā(X ). However,
most importantly, �V will depend periodically on φ, which determines the posi-
tion of the front relative to the stripes. For small ε, the correction �V is negligible
compared to the potential difference of the stripe and uniform state that drives the
front forward. However, for large enough ε, the correction becomes sufficiently
strong that the front position may become pinned in one of the preferred locations
that minimize �V and the front motion will cease. These extra effects are known as
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nonadiabatic effects since they cannot be obtained through a perturbation expan-
sion in a small parameter ε. Indeed, functions of the form exp(−a/εb) for b > 0
have the unusual property of being infinitely differentiable at ε = 0 yet not having a
Taylor series about this value since, as you can verify, all derivatives of this function
vanish at ε = 0.

We could also consider the weakly subcritical version

∂tu = ru − (∂2
x + 1)2u + gu3 − u5, (9.25)

where g is a small and positive constant. The amplitude equation predicts a station-
ary front at an isolated value of r < 0, when the potentials of the stripe and uniform
states are equal. Including the nonadiabatic corrections spreads this balance point
into a range of r for which the front is stationary.

9.2.2 Localized structures

Asecond feature of patterns far from threshold is that they may be based on localized
structures rather than on extended planforms of stripes and lattices. This can be
partially motivated from the previous example. Since the fronts in the subcritical
Swift–Hohenberg equation (9.25) can become pinned to the underlying stripes, we
can construct one-dimensional localized pulse solutions, consisting of two fronts
confining a small region of the nonlinear saturated state. In the absence of the
nonadiabatic pinning effects, the saturated region would be expected to either grow
or shrink, depending on the value of the control parameter. However because of
the pinning to the underlying periodic stripe pattern, the fronts can be stationary
over a range of control parameters, leading to a pulse solution in one dimension.
This can also be described in terms of an interaction between the two fronts, which
for the Swift–Hohenberg equation is a repulsive interaction at some distances and
attractive at others. For this equation, for which a potential exists, the interaction can
be understood in terms of an effective potential that varies non-monotonically with
separation, although the same result is also expected for nonpotential modifications
of the equation. Pulses are also found in numerical solutions of the subcritical Swift–
Hohenberg equation in two and three dimensions. In general, it is not possible to
calculate analytically the structure of localized solutions in the strongly nonlinear
regime. The counting arguments used in the discussion of fronts in Section 8.3 may
be useful in deciding whether pulses are likely to exist in one dimension. Such
general methods do not exist for localized solutions in two and three dimensions.

Another mechanism for the formation of localized structures appears in the
subcritical complex Ginzburg–Landau equation

∂t Ā = εĀ + (1 + ic1)∇2Ā + (1 − ic3)
∣∣Ā∣∣2

Ā − (1 − ic4)
∣∣Ā∣∣4

Ā. (9.26)
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(We discuss the importance of this equation for pattern formation in Chapter 5.)
If the coefficients in the equation are real, c1 = c3 = c4 = 0, Eq. (9.26) reduces
to the one we used in Section 8.3 to analyze the properties of fronts. There we
found that there is a particular (negative) value of ε at which a front between the
stable finite magnitude solution and the Ā = 0 solution is stationary. This value can
again be identified as the one at which the two states have equal potentials since
Eq. (9.26) is potential for ci = 0. There are no stable pulse solutions, corresponding
to a localized region of one state in a background of the other state, because of the
interaction between the two fronts bounding the localized region, and the monotonic
dependence of the interaction on position. However for the complex equation,
ci 	= 0, pulse solutions of localized regions of the finite amplitude state are found
over a range of ε below the bifurcation, for both one and two space dimensions,
as in Fig. 9.10. These pulses can be qualitatively understood as arising from the
amplitude dependence of the frequency. This in turn affects the wave number k of
the complex amplitude, which gives an effective parameter ε − k2 that controls
the dynamics of the fronts bounding the pulse solution. The result is that a self-
consistent solution is found with stable pulses over a range of ε. The wave number
changes as ε changes so that the combination ε − k2 remains nearly constant.

A dramatic experimental example of a localized structure is an oscillon, which
appears in shaken horizontal trays of granular material such as sand (see Fig. 9.11).
Here the tray of granular material is shaken with a large enough amplitude so that
the acceleration of the plate exceeds gravity and the grains become airborne over
part of each cycle. For a given granular material, the parameters of the experiment
are the shaking amplitude and frequency. For some ranges of these parameters, and
in a layer much wider than the depth of the material, patterns familiar from previous

W (x,y)

y

x

Fig. 9.10 Localized pulse solution in the subcritical complex Ginzburg–Landau
equation (9.26), showing the magnitude of the complex amplitude (called W in
the plot) as a function of two space dimensions. Parameters correspond to ε =
−0.192, c1 = 4, c3 = −0.30, c4 = 0.40. (From Thual and Fauve [104].)
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(a) (b)

Fig. 9.11 Localized structures called oscillons are found in a thin layer of a sand-
like granular medium consisting of small bronze balls (0.17 mm diameter) when the
layer is shaken vertically with a suitable acceleration and frequency. The structure
is a subharmonic response to the driving and the trough one period in (a) becomes
a peak at the next period in (b) and vice versa. (From Umbanhowar et al. [107].)

chapters form such as stripes, squares, hexagons, and even spirals. But over other
parameter ranges, the localized structure shown in the figure forms instead. These
structures oscillate at half the drive frequency, so that at successive cycles of the
drive the oscillon will manifest as a peak or a trough. There are therefore two
different phases of oscillons, and both may be present in the same experiment.
Multiple oscillon solutions are also seen. If the oscillons are separated by more
than a few diameters they appear to be independent, and slowly diffuse around the
system. When oscillons come closer together, they can form bound clusters of a
pair of oscillons of opposite phase, and also more complicated structures as shown
in Fig. 9.12. Similar localized structures are also seen in experiments on shaken
fluid layers.

9.2.3 Patterns based on front properties

A common situation leading to nonequilibrium patterns arises where two states of
a system coexist. A pattern can then form by switching spatially from one state to
another via fronts or domain boundaries. The two states may be two equilibrium
thermodynamics states, such as the solid and liquid in crystallization, may be two
states of a dynamical description such as an amplitude equation, or an approximate
notion such as the “products’’ and “reactants’’ in a chemical system. The patterns
may form by the invasion of one state into the other and can take many forms,
both static and dynamic. Thinking in terms of the switching between the two states
focuses attention on the properties of the walls or interfaces, for example the direc-
tion of motion of a single front (which state grows at the expense of the other), the
interaction between two fronts (do the fronts repel at short distances, or attract and
annihilate), and possible instabilities of the fronts.
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(a) (b) (c)

(d)

(e) (f) (g)

Fig. 9.12 Molecule-like localized structures formed from bound clusters of
oscillons. (Source as in Fig. 9.11.)

Transitions in the properties of the walls may lead to changes in the morphol-
ogy of the patterns. One such transition is called the Ising–Bloch transition. (The
nomenclature comes from analogies with walls between magnetic domains in solid
state physics.) This is a transition from a situation where there is a single type of
wall between the two states that moves at a single parameter-dependent speed c
(known as an Ising-like wall) to a situation where there are walls with two different
speeds (Bloch-like walls) that, near the Ising–Bloch transition, will have values
c ± δc, with δc small. In the particular case for which the evolution equations are
unchanged by interchanging the two states, the Ising wall will be stationary and the
Bloch walls will move with nonzero speeds ±v. The Ising–Bloch transition tends
to produce more dynamic patterns.

The fronts themselves may be pattern-forming systems that may be analyzed
using the methods introduced in previous chapters. For example, the stability of the
fronts to transverse undulations at some wave number q can be investigated. This
type of instability of a planar solid–liquid interface, known as the Mullin–Sekerka
instability, is the starting point for understanding the rich pattern formation that
occurs in solidification.

In numerical simulations, the combination of the Ising–Bloch transition and
the transverse instability of a front does indeed appear to be associated with a
change in the morphology of the pattern, from a stationary labyrinthine state to a
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Fig. 9.13 Two kinds of pattern formation associated with an Ising–Bloch transition
of the front between two stable uniform states that are denoted by black and white.
The panels (a)–(d) on the left show the evolution from an initial condition of a
single stripe of the black state in a background of the white state, for parameters
such that the domain wall is of the Ising-like type and is unstable to transverse
undulations. The pattern evolves into the stationary labyrinthine pattern of (d). For
different parameter values, the wall is Bloch-like and the same initial condition
evolves into a dynamic state consisting of disordered propagating waves with
spiral sources, as in the panels (a)–(d) on the right. These results were obtained
by numerical simulation of Eqs. (9.27) with parameters a0 = −0.1, a1 = 2, and
ε = 0.05, δ = 4 and ε = 0.014, δ = 2.8 for the two cases. (From Hagberg and
Meron [45].)

spatiotemporal state of dynamic spirals. For example, Fig. 9.13 shows the evolution
of the chemical reaction–diffusion equations

∂tu = u − u3 − v + ∇2u, (9.27a)

∂tv = η(u − a0 − a1v) + D∇2v. (9.27b)

Similar equations were introduced in Chapter3 in the study of the Turing instability,
and closely related ones will be studied in Chapter 11 in the context of propagating
waves in excitable media. The results shown in the figure are obtained for parameter
values for which Eqs. (9.27) have two stable stationary states (denoted by black
and white in the figures). Starting from an initial condition of a single stripe of
one state in the other leads to quite different final states depending on whether
the walls are Ising-like or Bloch-like. (In both cases the walls are unstable to
transverse undulations.) For the Ising-like, quasistationary, domain walls shown in
panels (a)–(d) on the left, the transverse instability of the fronts leads eventually to
a labyrinthine state, where the black state has invaded the white background as a
tortuous stripe. The width of the stripe can be understood in terms of a repulsion
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between the two fronts at short distances, that prevents the invading white state
from complete invasion. On the other hand, as shown in panels (a)–(d) on the right,
the transverse instability of the Block-like dynamic fronts leads eventually to a
dynamic state where the walls propagate, and form spiral structures. Both types of
patterns – labyrinthine and dynamic spiral states – are often seen in highly nonlinear
patterns. The labyrinthine state is also a feature of some equilibrium systems such
as the magnetic domains in a ferrofluid. The dynamic spiral state is reminiscent of
the pattern found in the complex Ginzburg–Landau equation that is the amplitude
equation for oscillatory instabilities (see Fig. 10.4). We will discuss this further in
Chapter 11.

The idea of a pattern in terms of two states separated by domain walls may be
developed into a quantitative calculational scheme if the width of the boundary is
small compared to the width of the domains. In this case, the ratio of widths provides
a small parameter that can be exploited in the analysis. This approach is illustrated
in Chapter 11 in the context of dynamical patterns in chemical reaction–diffusion
equations, but has also been used to study static patterns.

9.2.4 Spatiotemporal chaos

Many pattern-forming systems driven far from onset show disorder in space and
chaotic dynamics in time, together known as spatiotemporal chaos. The term
“chaos’’ denotes persistent irregular behavior of a deterministic system. Much of
the work on chaos of the last thirty years has dealt with systems that could be
represented by a small number of degrees of freedom (see Section 1.4 for a quali-
tative discussion of low- and high-dimensional dynamical systems). Methods have
been developed for analyzing chaotic behavior in such low-dimensional systems,
for example measuring Lyapunov exponents and fractal dimensions of strange
attractors by embedding time series into spaces of various dimensions and then
measuring statistical properties of the resulting clouds of points. Pattern-forming
systems cannot be described by a small number of degrees of freedom and so the
disordered dynamics found in these systems represents a new type of chaos since
the description appears to require a large number of chaotic elements distributed
in space. Many of the tools developed for characterizing and understanding low-
dimensional chaos have not been successfully generalized to spatiotemporal chaos,
and it remains a challenge to develop appropriate methods and tools.

There are several qualitative ways to see why spatiotemporal chaos should occur.
One is that, as any nonequilibrium system is driven further from onset, states with a
particular symmetry like stripes or lattices eventually become unstable to states with
a reduced symmetry so eventually there is spatial disorder. For example, a stripe
state may become linearly unstable to zigzags as some parameters is varied. But
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as the infinitesimal zigzag perturbations grow in magnitude, they may eventually
saturate because of nonlinearities, with a magnitude comparable to that of the stripes
themselves and so can alter the structure of the stripes, perhaps causing neighboring
stripes to connect and form defects (see Fig. 4.3). If the disordered state remains
time dependent, there is then the possibility for nonperiodic behavior that arises
from the spatial disorder.

Another way that spatiotemporal chaos can arise is through an uncontrolled ini-
tial condition in a large cell for which the influence of the lateral boundaries is
weak. For example, as a control parameter is changed so that a stable uniform
state becomes unstable, tiny random perturbations due to thermal noise or small
geometric irregularities in the physical properties of the cell can grow into local
regions of stripes or of lattices but these regions can have different orientations
and different wave numbers in different parts of the experiment. These regions can
then interact in such a way as to produce a time-dependent state, which can then be
chaotic because of the spatial disorder. More precisely, random initial conditions
can lead to a state with many defects such as focus singularities at boundaries and in
the bulk grain boundaries, dislocations, disclinations, and perhaps clusters of these
defects. The different wave number selection principles discussed in Section 9.1.4
can then be active simultaneously and the competition between the different selec-
tion mechanism will cause the system to be time dependent. In the absence of a
potential, there is no reason for the system to settle into a stationary state so periodic
and chaotic behaviors are possible.

A third reason why spatiotemporal chaos can be expected as a system is driven
ever further from threshold is that strong driving tends to produce spatial structure
at ever smaller length scales (a consequence of spatial harmonics arising from
nonlinear terms, e.g. cubing a stripe solution of the form cos(qx) creates a term
proportional to cos(3qx) on a smaller length scale than 2π/q). Thus even in a
system that is so small that just one or a few stripes or lattice units can fit in the
cell, the dynamics can become high-dimensional and chaotic by the appearance
of many modes over smaller and smaller length scales. For strongly driven large
cells, different selection principles and fine spatial structure can occur at the same
time and the dynamics is indeed complicated. The weather systems of planetary
atmospheres would be examples of large systems with strong driving.

Rayleigh–Bénard convection provides some specific examples that illustrate
these general ideas. Calculations based on the quantitatively accurate fluid dynam-
ics equations (the Boussinesq equations) show that the stability balloon for straight
parallel convection rolls ceases to exist above some maximum Rayleigh number.
(This maximum value depends on the fluid’s Prandtl number.) This is illustrated in
Fig. 4.4 on page 150; the shaded regions indicate where stripe states are stable and
these regions cease to exist above some maximum Rayleigh number. Thus even in
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the idealized case of a periodic geometry for which there is no forcing by lateral
boundaries and starting with straight parallel rolls of constant wave number that is
stable near onset, this stripe state must eventually become unstable to some new
state for large enough Rayleigh numbers.Although the initial instability of the stripe
state might evolve to a stationary pattern of some other geometry (say wavy rolls,
a state whose stability is not described by the stability balloon) or to an oscillatory
time dependence, a complex and dynamic spatial structure is usually found as the
Rayleigh number is further increased. Similarly, convection experiments in small
boxes (say of aspect ratio 2) show that a chaotic behavior with fine spatial structure
is observed for sufficiently large Rayleigh numbers.

A convection example of how spatiotemporal chaos can arise through an uncon-
trolled initial condition is the spiral defect chaos state shown in Fig. 9.14. (We
discussed this state briefly in Section 1.3.2, see Fig. 1.15.) The picture is a snap-
shot of a complex sustained dynamic pattern. In movies of this state, the eye picks
out spiral structures which form and rotate a few times before being destroyed by
the general disorder, and there are also dislocations that migrate around the spiral
structures, sometimes annihilating, sometimes being created. It turns out that, for
this particular Rayleigh number and Prandtl number, the stability balloon shows

Fig. 9.14 Spiral defect chaos in Rayleigh–Bénard convection. The convecting
fluid is pressurized gaseous carbon dioxide at 33 bar with Prandtl number 0.96, the
aspect ratio (ratio of radius to depth) is 44, and the Rayleigh number is R = 1.4Rc
where Rc is the critical number for onset. This state shows a sustained nonperiodic
dynamics for as long as experimentalists had the patience to observe it (many
horizontal diffusion times). (From Morris et al. [77].)
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that stable stripe states exist. Indeed, numerical simulations of three-dimensional
convection in a large rectangular geometry with periodic lateral boundary condi-
tions for the same Rayleigh and Prandtl numbers show that either stable stationary
stripes or spiral defect chaos can be found, depending on what initial condition
was used to start the simulation. A further intriguing point is that the distribution
of wave numbers found in the spiral defect chaos state (as obtained from a Fourier
transform of the pattern) all lie within the stability balloon. The bistability of spiral
defect chaos and stationary stripe states in a periodic domain demonstrates that
the stability balloon, while valuable for understanding when stationary stripes may
exist and how they become unstable, is not sufficient to predict the occurrence of
spatiotemporal chaos.

Another interesting example of spatiotemporal chaos is given by rotating
Rayleigh–Bénard convection in which the whole experimental system is placed
on a platform rotating about the vertical axis. It turns out that if the angular fre-
quency 	 of the rotation exceeds a critical rotation rate 	c, then a chaotic state is
found arbitrarily close to the threshold of instability of the uniform structureless
state. Unlike the spiral defect chaos of Fig. 9.14, this spatiotemporal state takes
the appearance of a system of interacting domains with finite lifetimes and with a
characteristic size that increases the closer the domain chaos state is to onset (see
Figure 9.15). The domains are regions of stripe solutions whose orientations differ

(b)(a)

Fig. 9.15 Chaotic domain state: (a) in experiments on rotating convection in carbon
dioxide at 20 atmospheres in a cylindrical cell with hot and cold fluid visualized
using a digitally enhanced shadowgraph; and (b) from numerical simulation of a
generalized Swift–Hohenberg model with positive values of the field shown black
and negative values white. Both patterns continue to evolve in an irregular way.
The similarity between the numerical results and the portion of the experimental
cell away from the boundaries suggests a boundary-independent spatiotemporal
chaotic state. (From Ning et al. [83] and Cross et al. [27].)
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by approximately 60◦. Each domain grows into some other domain simultaneously
so domain chaos is an example of a spatiotemporal chaos where each region is
changing in time but one region of structure cannot grow at the expense of all the
other regions to dominate the pattern.

The rotating convection system is particularly interesting for the study of spa-
tiotemporal chaos because it is one of the very few experimental examples of
complex dynamics that grows continuously from a uniform state. We can then hope
that weakly nonlinear theories such as the amplitude equation and models related
to the Swift–Hohenberg model might give good accounts of the behavior. Also,
the chaotic dynamics can be directly associated with the rotation. In the absence
of rotation, the system should be described by the amplitude equations for super-
imposed stripes introduced in Section 7.3. These equations are potential (ignoring
any effects of the boundaries) and so cannot lead to chaotic dynamics. On the other
hand, in the presence of rotation, the terms in the amplitude equations describing
the nonlinear interaction of two sets of stripes at an angle of θ lose the θ → −θ

symmetry which renders the dynamics nonpotential as discussed in Section 7.3 (see
also Exercise 7.20). Similarly, the Swift–Hohenberg equation, which is a model of
non-rotating convection, is potential and cannot show spatiotemporal chaos. A gen-
eralization of the model to include the effects of rotation, Eq. (5.32) in Chapter 5, is
nonpotential and shows dynamic patterns remarkably similar to the experimental
ones as shown in Fig. 9.15(b).

These examples of spatiotemporal chaos and many others raise a number of
theoretical issues that are still poorly understood.

Abasic question is what are appropriate ways to characterize the complex dynam-
ical state, both qualitatively to formulate a compact way to define spatiotemporal
chaos, and quantitatively, for example to compare theory, numerics, and experiment.
In our present weak stage of understanding, it is natural to attempt to characterize
spatiotemporal chaos in terms of representative times and lengths. For example, we
might use the typical domain size in Fig. 9.15 to define a characteristic length of the
system. Or we could measure the two-point correlation function of an elementary
field 〈u1(x, y, t + τ)u1(x′, y′, t)〉t (with 〈 〉t denoting the average over time). Then
the decay of the correlations with spatial separation of the two points and with
time defines a correlation length and time in the way often used in systems near
equilibrium. The relationship between times or lengths defined through different
properties is unknown and could be quite complicated.

The conventional characterization techniques for chaos with a few degrees of
freedom, such as Lyapunov exponents and fractal attractor dimensions, involve
the geometry of the motion in the full phase space of the system. For a spatially
distributed system, the dimension of phase space is enormous and it is not clear
whether these traditional diagnostics can be suitably modified. One possible way
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to approach spatiotemporal chaos through dynamics is to adopt a thermodynamic
style of thinking, which is to try to average over the fine dynamical structure (say
defects and their complex interactions) and extract quantities that characterize bulk
properties of the spatiotemporal chaos. It is not obvious this can be done because,
when you look at how thermodynamics is justified, many key concepts like energy,
entropy, and the chemical potential turn out to be associated with fundamental
conservation laws and these laws do not apply to the open driven dissipative systems
of this book. For example, the total energy of a convecting fluid between two plates
is not conserved since the fluid can sometimes lose more energy to the cold plate
than it gains from the hot plate, and similarly the total mass of chemical reagents
in a gel like that of Fig. 3.3 need not be conserved since matter from reservoirs can
flow into and out of the gel region with a possibly complicated time dependence.

An important observation in thermodynamics is that, for homogeneous states of
matter such as a volume filled throughout with steam or ice, there are so-called
extensive variables like the energy E, entropy S, and mass M that characterize
the bulk property of the matter and whose values simply increase in proportion
to the system volume V . This implies that numerical values of the quantities E,
S, and M are not interesting since they just reflect the size of the system, and
so it is better to work with intensive variables that involve ratios of extensive
variables such as the mass density M/V or derivatives of extensive variables such as
dS/dE which leads to the definition of a temperature. For sufficiently large volumes,
intensive quantities are independent of the volume or surface area of the matter. For
thermodynamic systems, intensive quantities are also often easier to measure than
extensive quantities. For example, one readily measures the temperature of some
sample with a thermometer, which is easier than measuring its extensive entropy
(by measuring specific heats over some range of temperatures) and its extensive
energy (say by burning the sample in a calorimeter).

Motivated by a suggestion of David Ruelle in the context of fluid turbulence,
simulations on parallel computers of various pattern-formation models (and in
a few cases of fundamental evolution equations like the Boussinesq equations)
have shown that the fractal dimension D of a homogeneous spatiotemporal state
acts like an extensive thermodynamic quantity in that, for a sufficiently large vol-
ume V of medium, D increases linearly with V .7 Given this empirical observation,
researchers have explored characterizing spatiotemporal chaos through an intensive
dimension density defined by δ = limV→∞ D/V (if this limit exists), or perhaps in

7 A technical aside: there is an infinity of fractal dimensions Dq associated with any attractor and the range of
these dimensions can be greater than one so it is not obvious which of the many dimensions should be used
to characterize a spatiotemporal chaotic state. For high-dimensional spatially extended systems, it turns out
that only one fractal dimension, the so-called Lyapunov fractal dimension DL can be readily computed and
all dimension studies of spatiotemporal chaos have been based on computations of DL. However, each of the
different fractal dimensions should themselves scale extensively.
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a more practical way by a local derivative dD/dV for locally linear regions of a plot
of D versus V . However, no one has yet succeeded in finding the equivalent of a
nonequilibrium thermometer, that can determine the value of a dimension density
or similar intensive dynamical quantity by studying small subsystems of the spa-
tially extended system. For this reason, and because fractal dimensions greater than
about 5 cannot be accurately estimated from experimental time series, a comparison
of the fractal dimension for experimental examples of spatiotemporal chaos and
for corresponding numerical calculations has not yet been possible.

This thermodynamic approach does lead to some interesting insights and ques-
tions. It is already not obvious why the fractal dimension of a spatially extended
chaotic system should increases linearly with system volume. One might guess
that this is a natural consequence of the spatial and temporal disorder of the spa-
tiotemporal chaos; two regions that are far apart are presumably uncorrelated and
so contribute their own internal properties in an additive way. But no one has yet
succeeded in turning this into a rigorous argument, nor has anyone yet had a good
scientific insight as to what features (if any) of the spatiotemporal chaos are local
and so decorrelate from other features. Calculations and some theory also suggest
that, unlike the fractal dimension, the largest Lyapunov exponent λ1 is an intensive
quantity that is independent of system volume or system shape for sufficiently large
systems. Since the quantity 1/λ1 is the magnitude of the time with which accurate
details of a dynamical system can be forecast into the future, this thermodynamic
reasoning leads to the interesting conclusion that, for homogeneous spatiotemporal
chaotic states, the ability to forecast details is independent of the system size or
fractal dimension (for sufficiently large systems).

Another approach to characterize spatiotemporal chaos is to determine whether
reduced descriptions of the complex dynamics can be found mathematically. One
approach might be to look for collective coordinates, such as the coordinates of the
spirals and dislocations in Fig. 9.14, or of the domain walls in Fig. 9.15. Rather than
trying to model specific experiments, we might first seek simpler systems that show
related phenomena. Just as the study of maps (discrete-time dynamical systems)
were useful in advancing the understanding of low-dimensional chaos, a lattice of
maps coupled between the lattice sites can be used to study spatiotemporal chaos
numerically and, in some simple limits, analytically.

Once we have learned how to define and characterize spatiotemporal chaos, we
might ask what broad classes of behavior exist in these systems. In analogy with
equilibrium systems, which of course at the microscopic scale show strong dynam-
ical fluctuations that we call thermal fluctuations, can different phases, separated
by sharp transition points, be identified within the chaotic state? Are there any
universal features at transitions to the chaotic states or at the transitions between
the different chaotic states such as are found at second-order phase transitions in
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equilibrium systems? Do practical properties like the transport of energy or mass
change in a systematic way upon the transition to spatiotemporal chaos, or as the
properties of the chaos itself changes with parameters?

These are all difficult questions on which there is much ongoing work. A strong
motivation for understanding these questions is the existence of far-from-threshold
spatiotemporal chaotic states of great relevance to the human race such as predicting
or controlling the weather, and predicting or controlling cardiac arrhythmias that
often lead to death.

9.3 Conclusions

Pattern formation far from threshold is a difficult topic since there are far fewer
general tools available compared to the tools available near a supercritical linear
instability of a uniform state. We have divided our discussion into two parts: patterns
that are qualitatively the same as ones near threshold and novel patterns.

In the former case, we can imagine steadily increasing the control parameter from
the threshold value to a value of interest, even if the threshold value is not physically
accessible. If there are no qualitative changes of behavior, represented mathemat-
ically as bifurcations, then the properties of the pattern will change continuously
as the control parameter is increased. This means that much of the physical insight
gained from the amplitude equation approach should continue to apply far from
threshold. In particular, for a stripe state we are led to expect a range of possible
wave numbers bounded by instabilities which perhaps have universal character-
istics (Eckhaus and zigzag); long range and temporally slow effects represented
by phase dynamics that ultimately derive from the translational symmetry of the
physical system; and the importance of topological defects in the dynamics. Thus
many of the same questions should be posed as near threshold, while answering the
questions may be much harder and quite specific to each system. One feature of the
behavior near threshold that does not extend further away is the potential nature of
the dynamics found in the amplitude equation description. Eliminating the poten-
tial removes strong constraints, such as the consistency of different wave number
selection mechanisms and the absence of chaos, which suggests that patterns in
experiment and nature are likely to be more dynamic away from threshold. On the
other hand, we have learned that pinning effects that tend to lock the modulations
of the patterns to the underlying structure of the pattern tend to become stronger as
the nonlinearity increases so that some types of motion such as dislocation glide
might be quenched away from threshold.

The second type of patterns far from threshold we considered is ones that do
not resemble those near threshold. These might occur through bifurcations from
threshold-like patterns, such as occurs at the boundaries of the stability balloon, or as
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novel patterns that develop directly from the uniform state. Examples mentioned in
the chapter are localized structures, that may then group to form regular structures,
and patterns that are disordered in space and perhaps time as well. Disorder in both
space and time is called spatiotemporal chaos.

As systems are driven ever further from equilibrium, the wealth of behavior
becomes larger and the particular characteristics of each system, suppressed near
threshold by the dominance of the few unstable linear modes, become more evi-
dent. Thus fluid systems become more dynamic since the dissipative viscous effects
effectively compete with the strong driving only at small length scales; a large
number of degrees of freedom then participate in the dynamics. For strong enough
driving, this takes us into the realm of turbulence where statistical descriptions,
rather than ones inspired by visual observation, seem more appropriate. In con-
trast, chemical reaction and diffusion systems, rather than becoming more dynamic
when driven further from onset, seem to develop more complex spatial structures
that might be thought of as interspersed regions of various product combinations
with sharp interfaces between them. Far from threshold, we must therefore rec-
ognize the importance of both the issues of pattern formation, and the particular
phenomenology of each physical, chemical, or biological system.

9.4 Further reading

(i) For a general discussion of Goldstone modes in equilibrium phases see Principles of
Condensed Matter Physics by Chaikin and Lubensky [17], Chapter 8.

This chapter has briefly covered a number of more advanced topics. For further dis-
cussion, as well as the specific references already given in the figure captions consider
the following:

(ii) The phase diffusion equation far from threshold has largely been worked on in the
context of Rayleigh–Bénard convection. The comprehensive but difficult paper “The
phase diffusion and mean drift equations for convection at finite Rayleigh numbers
in large containers’’ by Newell et al. [81] describes this work and gives references to
earlier papers.

(iii) For more on the analysis of the parity-breaking secondary instability mentioned in
Section 9.1.3 see “Instabilities of one-dimensional cellular patterns’’ by Coullet and
Iooss [49], and for the observation in experiments on cellular patterns on solidification
fronts see “Dynamics of one-dimensional interfaces – an experimentalist’s view’’ by
Flesselles et al. [36].

(iv) You can find a wealth of information on wave number selection in Rayleigh–Bénard
convection in the book Rayleigh-Bénard Convection: Structures and Dynamics by
Getling [37]. We do not, however, endorse his conclusion that the evolution from
random initial conditions is preferred over other mechanisms.



354 Patterns far from threshold

(v) A discussion of the stationary patterns based on front properties is given in “General
theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems’’
by Muratov and Osipov [78].

(vi) Our discussion of spatiotemporal chaos is based partly on the brief review “Spatiotem-
poral chaos’’ by Cross and Hohenberg [26].

Exercises

9.1 Goldstone modes: List four different Goldstone modes in equilibrium phases
of matter. What are the corresponding symmetries that the phase transition to
the state breaks?

9.2 Phase diffusion functions from amplitude equation: By comparing Eq. (9.6)
with the phase equation derived from the amplitude equation in Section 7.1.5,
show that near threshold we can use expressions for the parameters of the
phase diffusion equation Eq. (9.4) of the form

B(q) = ξ2
0 (q − qc)[ε − ξ2

0 (q − qc)
2], (E9.1)

τ(q) = τ0[ε − ξ2
0 (q − qc)

2]. (E9.2)

Plot qB(q) as a function of q and use this plot to discuss the stable range of q
and the instabilities bounding this range.

9.3 Derivation of solution Eq. (9.8) to the linear phase diffusion equation: This
exercise is related to the experimental confirmation of phase diffusion shown
in Fig. 9.2.

(a) In applying the linear phase diffusion equation Eq. (9.6) to a convection
cell that is long in the x coordinate but short in the y coordinate (where the
vertical direction is the z coordinate), explain why it is fine to treat Eq. (9.6)
as a one-dimensional diffusion equation ∂tφ(x, t) = D‖∂2

x φ.
(b) Derive Eq. (9.8) by solving the linearized phase diffusion equation Eq. (9.6)

in an infinite one-dimensional domain with coordinate x and with boundary
condition φ(x = 0, t) = φ0 cos(ωt). This boundary condition approxi-
mates the local periodic injection of fluid into a convection experiment, as
described in Fig. 9.2.

(c) The solution Eq. (9.8) is correct for an infinitely long cell. Discuss
qualitatively how the structure of this solution changes for a finite domain.

9.4 Eckhaus and zigzag instabilities for the Swift–Hohenberg model: Using
the expression for B(q) for the Swift–Hohenberg model derived in Appendix 2
Eq. (A2.75), find expressions for the wave numbers of the Eckhaus and zigzag
instabilities as a function of the control parameter r for the two-dimensional

Swift–Hohenberg equation Eq. (5.9), calculating q − 1 to O(r
1
2 ).
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9.5 Mean flow: A simple form for the mean flow velocity driven by perturbations
of the roll pattern in convection near threshold is given by Eqs. (9.15)–(9.16).
In this exercise you will investigate the mean flow for small, long-wavelength
perturbations to a stripe state at wave number q defined by the phase

φ = qx + a cos Q •x, (E9.3)

with a and Q very small, and taking the simple ansatz for the wave number
dependence of the amplitude (actually corresponding to the Swift–Hohenberg
model)

|A(q)|2 = 1

3

[
ε − (q2 − 1)2

]
. (E9.4)

(a) Show that the phase Eq. (E9.3) corresponds to a displacement of the rolls
in the normal direction by a distance � with

q� � −a cos Q •x. (E9.5)

(b) The zigzag instability is described by a perturbation with Q = (0, Q). Show
that for a → 0 the x component of the mean flow for this perturbation is

Vx = γ |A(q)|2qQ2a cos(Qy). (E9.6)

Use this to argue that if γ > 0 the mean flow is stabilizing for the zigzag
instability (cf. Fig. 9.5(c)).

(c) The skew-varicose instability is defined by a perturbation Eq. (E9.3) with
a general orientation of the wave vector Q = Q(cos θ , sin θ). For a → 0,
show that Vx has the same spatial dependence as the stripe displacement
Vx = V (0)

x cos Q •x and calculate the strength V (0)
x .

(d) Verify the form of the stripe perturbation and the mean flow as sketched in
Fig. 9.5(d) for a skew-varicose perturbed stripe pattern. For the plot use the
parameters ε = 1, q0 = 5/4, Q = (1/4, 1/8), and a = 0.1.

(e) For the skew-varicose perturbation in part (c) and ε = 1/4, plot the region
in the qθ plane for which V (0)

x < 0, so that the component of the mean
flow normal to the rolls is in the same direction as the roll displacement and
is therefore destabilizing. This destabilization leads to the skew-varicose
instability in convection.

9.6 Mean flow and phase diffusion: Show that the growth rate σ of an infinites-
imal phase perturbation defined by Eq. (E9.3) with the phase dynamics
including mean flow given by Eqs. (9.14–9.16) is

σ = −(Deff‖ Q2
X + Deff⊥ Q2

Y ), (E9.7)
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with effective diffusion constants

Deff‖ = D‖ + γ q2 d

dq
(qA2)sin2φ, (E9.8a)

Deff⊥ = D⊥ + γ q2A2 sin2φ, (E9.8b)

with sin φ = QY /QX and D‖, D⊥ the values in the absence of mean flow as in
Eqs. (9.7).

9.7 Dynamics from control parameter ramps: This exercise is based on Fig. 9.7.
Describe qualitatively what you expect to happen in a long Taylor–Couette
cylinder with ramp A at one end and ramp B at the other for reduced control
parameter values (a) ε = 0.1 and (b) ε = 0.25. How would you make the
answer to part (a) quantitative?

9.8 Spiral rotation: Derive the rotation frequency of the spiral in Fig. 9.8 if the
dislocation is at radius rd and supposing that the wave number dependence
of the perpendicular diffusion constant D⊥ and the climb velocity vd of the
dislocation can be taken to be linear

D⊥ = α(q − qf ), (E9.9)

vd = β(q − qd), (E9.10)

with qf the focus selected wave number and qd the wave number at which
dislocations are stationary. You may assume that qf − qd is small compared
with their mean to simplify the calculation. (You might want to look at the paper
Dynamics and Selection of Giant Spirals in Rayleigh-Bénard Convection by
Plapp et al. [87].)

9.9 Spatiotemporal chaos in a coupled map lattice: Exercise 2.8 of Chapter 2
introduced the concept of a coupled map lattice (CML), which is a dynamical
system with continuous variables that evolves on a discrete space-time lattice.
You should review that exercise in preparation for this one.

Consider a N × N two-dimensional periodic CML given by the evolution
equation

ut+1
i,j = f (ut

i, j) + D

[
1

4

(
f (ut

i+1, j) + f (ut
i−1, j)

+ f (ut
i, j+1) + f (ut

i, j−1)
)

− f (ut
i j)

]
. (E9.11)

The real number D is a nearest-neighbor coupling constant, the variables i
and j are lattice indices which run from 1 to N , the integer variable t ≥ 0
indicates successive moments in time, and the function f (x) is the quadratic
function Eq. (E2.7) with parameter a that is associated with the logistic map.
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The periodicity of the lattice is imposed by letting the lattice “wrap around’’
when the indices i, j in Eq. (E9.11) have the value N + 1 or 0:

ut
N+1, j = ut

1, j and ut
0, j = ut

N , j, 1 ≤ j ≤ N , (E9.12)

ut
i,N+1 = ut

i,1 and ut
i,0 = ut

i,N , 1 ≤ i ≤ N . (E9.13)

Using a computer mathematics environment like Mathematica or Matlab, write
a program to evolve this system and display the results graphically. Investigate
the behavior for choices of a in the range 3.57 ≤ a ≤ 4 and D in the range
0 ≤ D ≤ 1, using initial values u0

i,j that lie in the interval [0, 1]. (The range
for a is motivated by the fact that the logistic map shows chaos for ranges
of a with a > 3.57.) For some values you should find spatiotemporal chaos.
What measures might you use to characterize the complex dynamics? Can you
determine whether the chaotic dynamics changes quantitatively as you vary
the logistic map parameter a and the lattice coupling constant D?
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Oscillatory patterns

One of the fundamental ways that a stationary dynamical system can become time
dependent as some parameter is varied is via a Hopf bifurcation (see Appendix 1).
In the supercritical case, a fixed point becomes unstable at the same time that a
stable periodic orbit grows smoothly out of the fixed point. In this chapter, we use
amplitude equations and comparisons of calculations with experiments to discuss
the universal dynamics that arise near the onset of a Hopf bifurcation in a spatially
extended homogeneous nonequilibrium medium. Although many of the concepts
and issues are similar to those already discussed in Chapters 6–8 for the type I-s
instability (e.g. amplitude equations, stability balloons, defects, phase equations),
a new feature of oscillatory media is the appearance of propagating waves. For
media with one extended direction, there are typically right- and left-propagating
waves that interact in a nonlinear way with each other, and these waves can also
interact nonlinearly with waves generated by reflection from a lateral boundary.
An intriguing one-dimensional example that we discuss later in this chapter is the
blinking state, which can be observed when a binary fluid (e.g. a mixture of water
and alcohol) convects in a narrow rectangular domain, see Fig. 10.11. In a two-
dimensional oscillatory medium, the propagating waves most often take the form
of rotating spirals (see Figures 1.9, 1.18(a), 10.3, and 10.4).

Propagating waves and spiral structures also are observed in so-called excitable
media. Unlike an oscillatory medium, interesting dynamics arise from the uniform
state only when the magnitude of a perturbation exceeds a finite threshold, in
which case the medium responds locally with large-amplitude growth followed
by decay back to the local stationary state. Because the spatiotemporal dynamics
arises from finite-amplitude events, the dynamics can be strongly nonlinear and
different mathematical tools are needed. We discuss the dynamics of excitable
media separately in Chapter 11.

Historically, nonlinear oscillatory media were studied for a long time in the con-
text of biological signaling and were also investigated experimentally in the context

358
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of oscillatory chemical reactions starting with the pioneering work of Belousov in
the 1950s. (Indeed, the research by chemists provided a parallel line of develop-
ment that, for a decade or so, was largely independent of the work on stationary
structures.) The theoretical approach was largely based on approximation schemes
that were tailored to the particular dynamical equations of the chemical systems,
for which there are typically small parameters derived from the ratio of reaction
rates. Perturbation techniques based on these small parameters yielded tractable
methods even though the chemical states of interest were strongly nonlinear (not
near a linear instability of a spatially uniform state). Fortunately, many of the key
concepts and questions can be introduced by first considering the simpler limit
of “close to onset.’’ In this regime, the amplitude equation formalism provides a
unifying explanation of many experimental details and predicts new ones.

This chapter is organized as follows. In Section 10.1, we introduce the concepts
of absolute instability and convective instability, which are not encountered in the
study of type-s stationary instabilities and that are important for understanding
type-o (I-o and III-o) oscillatory instabilities. (Recall the classification scheme that
we introduced in Section 2.5.) Convectively unstable states play an important role
in solidification, the growth of a crystal in a supercooled melt, for example. The fact
that macroscopic details of convectively unstable states can depend on molecular
noise (an example from solidification would be the thermal noise at the tip of a
growing dendrite) largely solves a question raised by Johannes Kepler 400 years
ago, which was to explain the infinite variety of snowflake shapes (Fig. 1.8).

We discuss the type III-o instability first, in Section 10.2; this is the case when the
uniform state becomes unstable to a spatially uniform oscillation. The lowest-order
amplitude equation is none other than the complex Ginzburg–Landau equation
which we discussed in Chapter 5 as a classic and much studied theoretical model of
pattern formation. This equation, together with the associated phase equation that
describes the slow evolution of long-wavelength phase variations, will allow us to
determine the general structure of the stability balloon near onset and to analyze
some of the defects that arise in oscillatory media with one and two extended direc-
tions. The theory has been tested in chemical reaction–diffusion experiments and
in fluid experiments, although much remains to be understood, e.g. how spatiotem-
poral chaos emerges continuously from the uniform state and whether the resulting
chaos agrees with the dynamics of the complex Ginzburg–Landau equation.

In the succeeding sections, we discuss the type-I-o oscillatory instability, which
produces structure at a nonzero wave number. The nonlinear propagating states
have different properties, depending on whether the system does or does not have
a parity symmetry. For systems that lack this symmetry (Section 10.3), there is
an asymmetry between the forward and backward directions so that the instabil-
ity occurs first to waves propagating in a particular direction. This case has been
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studied experimentally in fluid systems such as Rayleigh–Bénard convection and
the Taylor–Couette system, by imposing a flow along one extended direction. The
nonlinear propagating wave with a characteristic wavelength then corresponds to
circulating fluid rolls that drift along the extended direction.

For type I-o systems that have a parity symmetry, the instabilities to waves in the
forward and backward direction coincide and we must consider the interaction of
such waves, for example whether nonlinear traveling or standing waves are to be
expected in ideal geometries.An experimental example is convection in a mixture of
two fluids known as binary fluid convection. Near the onset of these instabilities, the
growth rate is of course small but the propagation speed of the waves has some finite
value. The dominant propagation effects near threshold make the treatment harder,
and different approximations are appropriate depending on ratios of time scales
such as the ratio of the doubling time of the growth to the propagation time over the
system. Most experimental and theoretical work for parity-symmetric systems has
been for the case of a single extended coordinate along which the waves propagate
to and fro. We describe this case in Section 10.4. Even in this simple system, states
with complex spatial structure and rich dynamics are observed near the onset of the
instability, where an amplitude equation description provides at least a partial under-
standing. Our understanding of waves propagating in two-dimensional rotationally
invariant systems on the other hand rests largely on experiment. As an example, we
discuss briefly experiments on binary fluid convection in a two-dimensional cylin-
drical geometry in Section 10.5. This system has a rich spatiotemporal dynamics
for which spirals do not play a role.

This chapter completes the discussion that we began in Chapter 6, of the funda-
mental supercritical transitions of a homogeneous nonequilibrium medium (type-s
and type-o) and how details of these transitions and the resulting saturated nonlinear
states can be understood near onset via the amplitude equation formalism.

10.1 Convective and absolute instability

Two new concepts associated with oscillatory instabilities are convective instability
and absolute instability. These concepts are motivated by the need to understand
how propagation of a perturbation affects the instability of the uniform state. We
note that the effect of propagation is important for any oscillatory instability at
nonzero wave number, whether for the primary instability of the uniform state
or for a secondary instability of an existing pattern. For example, this effect is
important for the oscillatory instability of stable straight convection rolls shown
in Fig. 4.5. (We saw in an earlier chapter that, for Prandtl numbers of order one
or smaller, the oscillatory instability bounds the stability balloon as the Rayleigh
number is increased, see Fig. 4.4(a).) In the following, we will phrase our discussion
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in terms of the uniform state. The case for instability about a nonlinear pattern is the
same except that the simple Fourier modes would be replaced with Bloch waves of
the form Eq. (4.31).

The conventional linear stability analysis of a spatially uniform state is carried out
with respect to a single sinusoidal mode perturbation that extends over all space
or over the whole of the physical domain. We can also ask about stability with
respect to an infinitesimal disturbance that is localized over some region of space.
(Such a disturbance might correspond better to practical situations.) For a stationary
instability, the same results are recovered as for a delocalized perturbation since a
localized initial condition will spread by diffusion and so will eventually cover a
sufficient domain that the growth can be understood in terms of the single mode
analysis.

However, for an instability at wave number q with nonzero frequency ωq, we
know from elementary courses on waves that wave packets travel at the group
speed sq = dωq/dq. A localized initial disturbance may grow in amplitude but also
propagate away at the group speed sufficiently rapidly that the magnitude of the
disturbance at a fixed point decays, as in Fig. 10.1(b). In this case, the system is
said to be convectively unstable. A system where a localized perturbation yields
a growing disturbance at a fixed point, as in Fig. 10.1(a), is said to be absolutely
unstable.

For stationary instabilities, the two criteria coincide since propagation is not an
issue. However, for wave instabilities (type I-o with qc �= 0 andωc �= 0), the growth
rate of the most unstable Fourier mode is zero at onset whereas the group speed is
usually nonzero, and so propagation effects dominate. In these cases, the system
remains absolutely stable at the onset of convective instability and it is necessary
to drive the system a finite amount above this onset, so that the growth rate is
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Fig. 10.1 Schematic illustration of absolute and convective instabilities. (a) For an
absolute instability, a localized disturbance at a fixed point grows in time. (b) For
a convective instability, a localized disturbance grows in time but also propagates
away at the group speed s.As a result the disturbance at some fixed point of interest
(e.g. at the solid arrow) decays at long times.
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finite, for the absolute instability to develop. Absolute instability is not a necessary
requirement for the observation of nonlinear wave states since, in the convectively
unstable region, different mechanisms can sustain the state. Examples would be
defects which act as persistent wave sources, boundaries or inhomogeneities that
drive the system, and thermal noise.

The condition for convective instability is the same as the condition for instability
to a Fourier mode perturbation. (If you imagine carrying out the linear stability
analysis in a frame of reference moving with the pulse, the same arguments apply
as for a stationary instability.) The condition for absolute instability is stricter, and
is derived by balancing the growth rate against the propagation. Since the time
dependence has exponential growth as well as oscillations, the criterion involves
a generalization of the group speed to a complex-valued number. We arrive at the
criterion for absolute instability using an argument that follows the growth of a
localized initial condition by expressing the spatial profile as a superposition of
Fourier modes and by using a stationary phase argument to evaluate the long-time
asymptotic behavior. This is similar to the argument that we used in Section 8.3.2
that gave us the speed of pulled fronts, although here we are doing a linear instability
analysis so the principle of superposition used in the method is better justified. As
explained briefly in the following Etude, the result is that the system is absolutely
unstable if

Re σqs = 0, (10.1)

where σq is the growth rate and where qs is a complex wave vector given by the
solution of the stationary phase condition

dσq

dq
= 0. (10.2)

Etude 10.1 Criterion for absolute instability
In the linear regime, the disturbance growing from any given initial condi-
tion up(x, t = 0) can be expressed as the sum of Fourier modes growing at the
complex rates σq, with initial amplitudes given by the Fourier transform of the
initial condition. Restricting attention to one spatial dimension for simplicity, this
argument gives

up(x, t) =
∫ ∞

−∞
dq eiqx+σqt

∫ ∞

−∞
dx′ up(x

′, 0)e−iqx′
. (10.3)

If we rewrite the integral as

up(x, t) =
∫ ∞

−∞
dx′up(x

′, 0)
∫ ∞

−∞
dq eiq(x−x′)+σqt , (10.4)
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the integration over q can be evaluated by moving the integration contour into
the complex q plane. For large time and at fixed distance from the support of the
localized initial condition, the integral over q can be estimated from the contribution
at the stationary phase point, i.e. the complex wave number q = qs given by the
solution of the equation

dσq

dq
= 0. (10.5)

Estimating the integral from the value of the integrand at the stationary phase point
gives

up(x = 0, t) ∼ exp
(
σqs t

)
. (10.6)

Thus the system will be absolutely unstable for Re σqs > 0.

In the convectively unstable regime, the growing disturbance propagates away
(unless there is some persistent source to maintain a local disturbance) and so the
system returns to the unstable uniform state. Since the system remains unstable, the
system is susceptible to the influence of remnant noise, either due to imperfections
in the prepared state or ultimately due to the thermal noise arising from molecular
fluctuations.

Solidification – the growth of a crystal into a supercooled liquid melt – is an
interesting and important example where thermal fluctuations are believed to sus-
tain a convective instability. The growth of a planar interface is unstable to sharp
needles that shoot out into the melt (dendritic growth). A smooth needle shape with
a parabolic shape at the tip that grows steadily into the melt is a solution of the
equations but is itself unstable to undulations that develop into side branches. It
turns out that this instability is convective rather than absolute, and experiments
and theory suggest that the pattern of side branches is sustained by the amplification
of molecular thermal noise in the tip region. The exquisite sensitivity of the needle
growth of the ice crystals to noise and to tiny changes in the growth conditions asso-
ciated with the convective nature of the side branching instability largely explains
the seemingly infinite diversity of snowflake shapes.

10.2 States arising from a type-III-o instability

10.2.1 Phenomenology

Instability toward a uniform oscillation (qc = 0, ωc �= 0, type-III-o) can be
understood by considering the growth or decay of the perturbation

up(x, t) = u0(x‖)e−iωcteRe σ0t + c.c., (10.7)

where
ωc = − Im σ0, (10.8)
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is the frequency at the onset of the instability (the zero subscript refers to the zero
wave number of the perturbation) and Re σ0 gives the growth rate. This perturbation
is uniform in the extended directions x⊥, but may depend on the confined direc-
tions x‖, as determined by the equations of motion and the boundary conditions.
We can think of this perturbation as a coherent or synchronized state of spatially
distributed oscillators.

Above the threshold to such an instability, the time-independent uniform state is
also unstable to nearby wave states

uq(x, t) = uq(x‖)ei(q • x⊥−ωqt)eRe σqt + c.c., (10.9)

for a narrow band of wave numbers q with a width that grows with the distance
from the onset, as in Fig. 2.9.1 These are propagating dephasing disturbances of the
oscillators. For a forward bifurcation, weakly nonlinear spatially uniform oscilla-
tions or wave states may be found above onset, although we will see that all such
states may in fact be unstable for some parameter values. From the linear stabil-
ity analysis alone, either traveling or standing waves might seem possible but the
weakly nonlinear analysis we will study below shows that only traveling waves
have the possibility of being stable in the weakly nonlinear regime.

Nonlinear waves behave strangely to those familiar with linear waves. Counter-
propagating waves do not pass through each other as for linear waves, but annihilate
each other at defects called sinks or shocks.At a physical boundary, although reflec-
tion may occur, the reflected wave is usually suppressed by the nonlinear interaction
with the stronger approaching waves, so that the net effect is absorption of the inci-
dent wave. Because of these two effects, the initial field will tend to die out since
an initial field of waves will tend to propagate away or dissipate at other waves
or boundaries. Defects may provide a persistent source of waves, and are there-
fore particularly important in maintaining nonlinear wave patterns. In one spatial
dimension, the defects are known as sources. These may also form as line defects in
a two-dimensional system but here nonaxisymmetric point defects known as spirals
and axisymmetric point defects known as targets are particularly important.

For some parameter values, the homogeneous oscillation may be unstable imme-
diately above threshold via an instability known as the Benjamin–Feir instability.
This instability was first discovered (in 1967) in the analysis of nonlinear waves,
in which the energy of a wave with wave number q is transferred by the instability
into new waves with almost equal wave numbers.2 The new wave states are even

1 For simplicity we will confine our remarks to a one-dimensional system such that q • x⊥ reduces to qx, or to a
system that is rotationally invariant in two or three extended directions. In these cases, the growth rate depends
only on the magnitude q of the wave vector q.

2 The Benjamin–Feir instability is often called a “sideband instability.’’ The concept is borrowed from radio
communication theory, in which a sideband of some carrier wave is a band of frequencies slightly higher or
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more unstable in this situation so that there are then no stable weakly nonlinear
states simply related to the linear instability modes. In some cases, this means that
the system is chaotic immediately above threshold, a feature that has led to much
theoretical and numerical study since supercritical transitions from a uniform state
to spatiotemporal chaos are rare and are especially amenable to a theoretical analy-
sis. (The domain chaos state – see Fig. 9.15 and the related discussion – is another
example of a supercritical transition to spatiotemporal chaos but arises via a type-I-s
instability.) However, the instability of the wave states may be convective (rather
than absolute) so that even the “unstable’’wave states may have physical relevance.

A useful way to begin to understand these properties of nonlinear waves is to
investigate the weakly nonlinear states near a type-III-o instability using the same
type of amplitude equation approach as in Chapter 6 for the stationary instability.
Since the following discussion follows the one used there quite closely, we will
focus on the new results and give only brief derivations.Although the results we will
find apply quantitatively only in the weakly nonlinear regime near the threshold of
instability, many of the insights are found to remain valid even in strongly nonlinear
systems such as is typical of chemical reaction–diffusion systems. Many of the same
phenomena will be discussed in this context in Chapter 11.

10.2.2 Amplitude equation

The weakly nonlinear states near threshold may be understood in terms of an evolu-
tion equation for the amplitude A(x⊥, t). As was the case for the type-I-s instability
(cf. Eq. (6.3) and also Eq. (10.7)), we define the amplitude in terms of the following
perturbation of the uniform time-independent state

up(x, t) = A(x⊥, t)u0(x‖)e−iωct + c.c. + h.o.t. (10.10)

The amplitude is again complex although its phase has a rather different significance
than for the type-I-s system. Here the phase is the local phase of the temporal
oscillation, and a change in phase corresponds to a shift of the time coordinate.
The magnitude and phase of the amplitude A describe slowly varying spatial and
temporal modulations of the spatially uniform “fast’’ oscillation e−iωct . However,
in the absence of a finite critical wave number qc that sets an obvious length scale,
the reference scale for defining the “slow’’ spatial variation must be deduced from
the underlying physical equations.

The amplitude equation for A can be derived by symmetry arguments analogous
to those used in Chapter 6, or by multiple scales perturbation methods for specific

lower than the frequency of the carrier wave. Radio sidebands are generated by modulation of the carrier wave,
while here sidebands arise via an instability.
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systems. The result is the following evolution equation:

τ0 ∂tA = ε(1 + ic0)A + (1 + ic1)ξ
2
0 ∇2A − (1 − ic3)g0|A|2A. (10.11)

The derivative terms are simpler than for the type-I-s amplitude equation, Eq. (7.10),
since we are describing slow modulations of a spatially uniform state in a rotation-
ally invariant system. This implies that the lowest-order derivative terms have the
symmetric form ∇2A = (∂2

x + ∂2
y )A for two extended directions.

The coefficients on the right-hand side of Eq. (10.11) are in general complex.
These coefficients have been written in terms of real quantities with dimensions (ξ0

a length, τ0 a time, etc.), multiplied by complex numbers of the form (1±ici), where
the real constants ci give the imaginary parts of the coefficients. The numbers c0,
c1, and c3 are the main way that the amplitude equation Eq. (10.11) differs from
the type-I-s equation. The choice of labeling – for example, that there is no c2 and
the various signs in front of the ci – is a widely used convention. You will need to
be alert for different choices of labels and signs in the research literature, however.

The presence of complex coefficients implies that the type-III-o amplitude
equation Eq. (10.11) is not invariant under the transformation A → A∗, which
was the case for the type-I-s equation Eq. (7.10). This difference can be understood
by reconsidering the symmetry argument used in Section 6.2.1 to derive the real
amplitude equation for the stripe state. There we noted that the conjugate amplitude
A∗ describes the amplitude of the space-reversed component e−iqcx, whose prop-
erties were related to those of the eiqcx component by space-inversion symmetry.
In the present case, A∗ gives the amplitude of the time-reversed component eiωct ,
and dissipative systems do not have time-reversal symmetry that would relate the
behavior of the e±iωct components. Thus the amplitude equation for a type-III-o
instability is not required to be invariant under A → A∗. Invariance under a phase
change, A → ei�A, is still required, although this now corresponds to the symmetry
of the system under a time translation instead of under a spatial translation.

Some physical implications of the complex coefficients can be understood by
considering a simple saturated nonlinear wave state

A = akeik • xe−i�k t . (10.12)

Here k gives the wave vector of the wave state, and�k the change in the frequency
from ωc. Substituting into Eq. (10.11) shows that the frequency difference �k is
given by

τ0�k = −εc0 + c1ξ
2
0 k2 − c3g0|ak |2 . (10.13)
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Thus the coefficients c0, c1, and c3 capture the dependence of the oscillation fre-
quency on the control parameter ε, on the wave number k, and on the magnitude
of the disturbance |ak | (i.e. c3 gives the nonlinear frequency shift).

As usual, it is desirable for theoretical and numerical analysis to eliminate as
many constants as possible in Eq. (10.11) by redefinitions and rescalings. The
coefficient c0 can be eliminated using a redefined amplitude

A → Ae−ic0εt/τ0 . (10.14)

This corresponds to using the amplitude that describes modulations of the
oscillations at frequency ωε for the given value of the control parameter ε:

ωε = ωc − c0ετ
−1
0 . (10.15)

The dimensional quantities τ0, ξ0, and g0 can be eliminated as in Chapter 6 by
introducing scaled space, time, and amplitude coordinates. Thus we write

Ã = g1/2
0 Ae−ic0εt/τ0 , x̃ = x/ξ0, t̃ = t/τ0, (10.16)

to obtain an equation in which only the parameters ε, c1, and c3 remain,

∂t̃ Ã = εÃ + (1 + ic1)∇2
x̃Ã − (1 − ic3)|Ã|2Ã. (10.17)

Finally, the control parameter ε can be eliminated to give a fully scaled amplitude
equation by introducing the slow scales X = ε1/2x/ξ0, T = εt/τ0, and Ā =
(ε/g0)

−1/2Ae−ic0εt/τ0 . This leads to the canonical form

∂T Ā = Ā + (1 + ic1)∇2
X Ā − (1 − ic3)

∣∣Ā∣∣2
Ā. (10.18)

Note that the parameters c1 and c3 cannot be eliminated in general, and the physical
behavior of the system depends crucially on their values. There are again different
conventions used for the symbols c1 and c3 and for the signs in front of these
numbers.

Equation (10.18) is known as the complex Ginzburg–Landau equation, which
we will abbreviate as the CGLE in the rest of this chapter. It is a complex equation
for a complex field Ā, in contrast to the amplitude equation Eq. (6.21) derived in
Chapter 6, which is a real equation (all the coefficients are real) for a complex field.
Unlike the amplitude equation for type-I-s systems, which mimics equations that
had appeared before in the context of equilibrium phase transitions, the CGLE had
not appeared previously in the description of other physical systems. The equation
provides a canonical model for the properties of spatially extended nonlinear oscil-
latory systems. For these reasons, the equation has been extensively studied as a
new paradigm of dynamical systems, as was briefly mentioned in Chapter 5.
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The properties of uniform oscillations of wave states in infinite or periodic
geometries are easily calculated from the amplitude equation, Eq. (10.18). Spatially
uniform nonlinear oscillations are given by

Ā(X , T ) = a0e−i�0T , (10.19)

with
a2

0 = 1 and �0 = −c3. (10.20)

Returning to physical units, this corresponds to an amplitude of oscillation growing
as

√
ε ∝ √

p − pc, and a frequency shift that is linear in ε ∝ p − pc. These results
are the standard ones for a forward Hopf bifurcation (Appendix 1), which is not
a surprise since the spatial aspects of the problem are not involved for uniform
oscillations.

Equation (10.18) also admits traveling wave solutions

ĀK (X , T ) = aK ei(K • X−�K T ), (10.21a)

a2
K = 1 − K2, (10.21b)

�K = −c3 + (c1 + c3)K
2. (10.21c)

The group speed of the waves in scaled units is

S = d�K/dK = 2(c1 + c3)K . (10.22)

This corresponds in unscaled units to the group speed

s = 2ξ0

τ0
(c1 + c3)k. (10.23)

Standing waves can be constructed based on the addition of waves with wave
vectors K and −K but they are unstable with respect to traveling waves for the
positive sign of the cubic term that is needed in Eq. (10.18) for a forward bifurca-
tion that saturates growth at small amplitudes near onset. You get to show this in
Exercise 10.1.

10.2.3 Phase equation

The equation for the slow evolution of long-wavelength phase variations can be
derived from the amplitude equation as in Section 6.4.3. Again, the idea is that,
for variations over spatial scales long compared with ε−1/2ξ0, the phase relaxes
slowly whereas the magnitude relaxes to a value consistent with the local wave
number given by the gradient of the phase, on a time scale that does not increase
with the length scale. The type-III-o amplitude equation is sufficiently simple that
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it is possible and informative to keep nonlinear terms in the phase equation. Using
the fully scaled form Eq. (10.18) and keeping all terms up to second order in the
spatial derivatives of the phase gives the nonlinear phase equation

∂T	 = −�+ α∇2
X	− β(∇X	)

2, (10.24)

with
α = 1 − c1c3, β = c1 + c3, and � = −c3. (10.25)

These equations are derived in the following Etude.

Etude 10.2 Derivation of the nonlinear type-III-o phase equation
Writing Ā = aei	, we can calculate the following derivatives of A:

∂T Ā = (∂T a + ia ∂T	)e
i	, (10.26)

∇2
X Ā =

{[
∇2

X a − a(∇X	)
2
]

+ i
[
2(∇X	) •(∇X a)+ a(∇2

X	)
]}

ei	. (10.27)

We now substitute these expressions into Eq. (10.18), multiply through by e−i	,
and collect real and imaginary parts. The imaginary part gives

a ∂T	 =
[
2(∇X	) •(∇X a)+ a(∇2

X	)
]
+c1

[
∇2

X a − a(∇X	)
2
]
+c3a3, (10.28)

and the real part gives

∂T a = a+
[
∇2

X a − a(∇X	)
2
]
−c1

[
2(∇X	) •(∇X a)+ a(∇2

X	)
]
−a3. (10.29)

These equations are exact deductions from the CGLE. We now assume slow spatial
variation so that each partial derivative ∇X introduces a power of the expansion
parameter. We will keep all terms that are of up to second order in this expansion.
Even on setting ∇X = 0 in Eq. (10.29), we would find that the magnitude a relaxes
on a time scale of order unity to its steady state value. For the slow time variation
induced by long-distance phase variations, this means that we can set a equal to its
steady-state value and ignore ∂T a in Eq. (10.29). Furthermore, all terms involving
∇x acting on a can be neglected since, as we will see self-consistently from Eq.
(10.30) below, these lead to terms that are of third order or higher in ∇x acting on
the phase. These arguments lead to the simplified magnitude equation

a2 = 1 − (∇X	)
2 − c1(∇2

X	). (10.30)

The second term on the right-hand side is the same K2 correction to the magnitude
as in Eq. (10.21b). The third term is a new one that depends on the derivative of
the wave number K. Substituting Eq. (10.30) into Eq. (10.28) and ignoring terms
involving more than two factors of ∂X leads to Eq. (10.24).
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The constant α in the phase equation, Eq. (10.24), plays the role of the diffusion
constant. A negative diffusion constant indicates instability. This occurs when the
Newell criterion is satisfied:

1 − c1c3 < 0. (10.31)

This important criterion signals the instability of the homogeneous oscillations to
the long wavelength Benjamin–Feir sideband instability. The nonlinear wave states
described by Eq. (10.21) are also unstable if Eq. (10.31) is satisfied (see Eq. (10.36a)
below) so that the Newell criterion indicates the instability of all the simple weakly
nonlinear oscillation or wave states that exist near threshold. Numerical simulations
of the CGLE in large domains with periodic boundaries show that the resulting
dynamics is then often chaotic.

10.2.4 Stability balloon

We can use the amplitude equation to look at the full stability band of the non-
linear wave states near threshold. Although the complete analysis is involved
algebraically, fortunately in most situations the stability boundaries occur for long-
wavelength perturbations of the wave state that can be captured by a simpler phase
equation approach, and so we will present this method. Deriving the stability of
wave states from a phase equation analogous to Eq. (10.24) requires going to higher
order in derivative terms. Instead, we directly derive the linear equation for small
perturbations about a nonlinear wave state.

For a small perturbation about the nonlinear wave state Eqs. (10.21), we have
Ā = aei	 with the phase variable taking the form

	 = KX −�kT + δ	, (10.32)

and the magnitude

a = aK + δa. (10.33)

with a2
K = 1−K2. We will do a similar expansion to the one in the previous section

but will now restrict our attention to terms linear in δa and δ	 as well as keeping
only terms up to second order in derivatives. The result is

∂T δ	+ S ∂X δ	 = D‖(K)∂2
X δ	+ D⊥(K)∂2

Y δ	, (10.34)

with a new advection term on the left-hand side that arises from the wave
propagation. The group speed S is given by

S = 2(c1 + c3)K . (10.35)
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The constants D‖(K) and D⊥(K) are respectively the longitudinal and transverse
diffusion constants and are given explicitly by

D‖ = (1 − c1c3)
1 − νK2

1 − K2
, (10.36a)

D⊥ = (1 − c1c3), (10.36b)

with

ν = 3 − c1c3 + 2c2
3

1 − c1c3
. (10.37)

The following Etude outlines how to derive Eq. (10.34).

Etude 10.3 (Linear Phase Equation for Perturbations about a Wave State)
The derivatives ∂T Ā and ∇2

X Ā are generalizations of Eqs. (10.26) and (10.27):

∂T Ā =
{
∂T δa + i [(−�K + ∂T δφ) (aK + δa)]

}
ei	, (10.38)

�
{
∂T δa + i [−�K (aK + δa)+ aK∂T δ	]

}
ei	, (10.39)

∇2
X Ā =

{[
∇2

X δa − (aK + δa) (K + ∂X δ	)
2 + (∂Y	)

2
]

+ i
[
2(K + ∂X δ	)(∂X δa)+ 2(∂Y δa)(∂Y δφ)+ aK (∇2

X δ	)
]}

ei	,

(10.40)

�
{[

∇2
X δa − K2δa − aK (K

2+ 2K∂X δ	)
]
+i

[
2K∂X δa + aK (∇2

X δ	)
]}

ei	.

(10.41)

In the approximate evaluations, we ignore all nonlinear terms in δφ, δa and their
derivatives. It is now not too hard to substitute into the CGLE, Eq. (10.18), multiply
through by e−i	, collect real and imaginary terms, and proceed as before neglecting
all terms leading to more than two spatial derivatives acting on δ	.

Equation (10.36a) is analogous to Eq. (6.59) for the longitudinal diffusion con-
stant in type-I-s systems although the width of the stability band now depends
on parameters through Eq. (10.37) and so is not universal near onset. The con-
dition D‖ = 0 signals the onset of the longitudinal Benjamin–Feir instability,
which takes the form of the growth of sidebands, i.e. wave components at wave
numbers K ± Q with Q → 0 at the onset of instability. The instability occurs for

|K | ≥ �B = ν−1, (10.42)

which, for 1−c1c3 > 0, leaves a stable band of wave numbers with a width that is a
fraction ν−1 of the existence band |K | < 1. The analogy to the Eckhaus instability
of Section 6.4.2 is evident and the longitudinal instability of the wave states is often
called an Eckhaus instability rather than the Benjamin–Feir instability. Note that
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Fig. 10.2 Stability balloon of type-III-o system near threshold. The width of the
stable region relative to the existence band depends on parameters c1 and c3, and
for some values the instability does not occur first at long wavelengths. At the
Benjamin–Feir instability boundary (BF: solid line) the instability is convective in
nature – the absolute instability boundary is shown by the dotted line. The dashed
line (N) is the linear instability of the uniform state.

the perpendicular diffusion constant Eq. (10.36b) is negative only if the Newell
criterion Eq. (10.31) is satisfied so that the transverse instability does not limit the
band of stable waves further.

An important consequence of the propagation term in Eq. (10.34) is that the
criterion Eq. (10.42) is the one for convective instability. The wave states become
absolutely unstable only for larger wave numbers

|K | ≥ �A > ν−1. (10.43)

Exercise 10.3 gives you a chance to calculate the value of �A.
More generally we could look at the instability of the wave states Eqs. (10.21)

within the full amplitude equation using methods analogous to Section 6.4.2. For
most values of c1 and c3, the stability limits Eq. (10.42) and Eq. (10.37) set by the
long-wavelength phase calculation are sufficient. However, for some small regions
of the c1c3 parameter plane, a short-wavelength instability that lies beyond a phase
equation description sets a smaller limit for �B.

10.2.5 Defects: sources, sinks, shocks, and spirals

Defects may provide a persistent source of the propagating waves and so may have a
profound influence on the pattern even far from the defect. In one spatial dimension,
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the important defects are sources, which produce outgoing wave disturbances, and
sinks or shocks for incoming waves. Incoming waves do not simply pass through
each another as in a linear system, but annihilate one another so that the shock acts
as an absorber or sink of the two sets of waves. This is dramatically evident in
pictures from chemical experiments as in Fig. 1.18(a), and is also apparent from
simulations of the CGLE, as in Fig. 10.4.

One-dimensional defects

For wave numbers that are small enough, one-dimensional defects are nicely treated
within the nonlinear phase equation (10.24). (Small enough means small compared
with the typical wave number that induces magnitude variations, i.e. q � ξ−1

0 ε1/2

in physical units.) In one dimension, this is an equation known as the Burgers
equation.3 Miraculously, this nonlinear equation can be transformed into a lin-
ear equation by a clever transformation known as the Cole–Hopf transformation.
Interesting solutions such as sinks and shocks can then be formed by superimpos-
ing solutions within this linear equation. This transformation is described in the
following Etude.

Etude 10.4 Cole–Hopf transformation of the Burgers equation
Let us first make the replacement

	 → 	−�T , (10.44)

to reduce the phase equation to

∂T	 = α∇2
X	− β(∇X	)

2. (10.45)

The Cole–Hopf transformation for Eq. (10.24) is

χ(X , Y , T ) = exp[−β	(X , Y , T )/α]. (10.46)

This transforms the nonlinear phase equation into a linear equation for χ

∂Tχ = α∇2
Xχ . (10.47)

Remember that α must be positive for stability, and that the phase is a real variable.
Simple solutions to Eq. (10.47) that are consistent with these restrictions are

χ = exp
[(

∓βKX + β2K2T
)/

α
]

. (10.48)

3 In one space dimension, differentiating the nonlinear phase equation Eq. (10.24) with respect to the spatial
coordinate x gives a commonly written form of the Burgers equation, ut + uux = cuxx with u = ∂x	. This
looks like the Navier–Stokes equation for a single velocity field u(x, t) in one space dimension, which helps to
explain why the Burgers equation has been studied intensely in applied mathematics and fluid dynamics.
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These correspond to the phase variations

	 = ±KX −�K T , (10.49)

with
�K = βK2. (10.50)

These solutions are traveling waves of wave number K in the +X or −X direction,
and correspond to the results Eqs. (10.21).

Since the χ evolution equation is linear, we can superimpose a pair of solutions,
for example ones with wave number K+ for the right-moving wave and K− for the
left-moving wave (choosing K± to be positive)

χ = exp
[(

−βK+X + β2K2+T
)/

α
]

+ exp
[(

+βK−X + β2K2−T
)/

α
]

.

(10.51)
For large positive X , the second term is exponentially larger than the first term
(we present results for β positive), and so the solution reduces to a nonlinear wave
with left-moving waves. Similarly, for large negative X , the solution reduces to
right-moving waves. Thus Eq. (10.51) is the solution for a sink or shock, where
a pair of incoming waves collide. For K+ �= K−, a more detailed analysis (see
Exercise 10.6) shows that the shock moves. We will look explicitly at the simpler
stationary shock solution with K+ = K− = K. In this case, the expression for the
phase is

	 = −α
β

ln
{

exp
[(

−βKX + β2K2T
)/

α
]

+ exp
[(
βKX + β2K2T

)/
α
]}

(10.52a)

= −βK2T − α

β
ln[2 cosh(βKX /α)]. (10.52b)

Since the	 evolution equation is not linear, the superposition Eq. (10.51) in the χ
variable does not, of course, mean that the 	 solution is the superposition of the
individual wave solutions, as is clear from Eqs. (10.52). For large |X |, the phase
is given by (again for βK positive)

	 → 	− = −KX − βK2T , for X → +∞,
	 → 	+ = KX − βK2T , for X → −∞.

(10.53)

Furthermore, to look at the size of the right-moving waves on the “wrong’’ side of
the shock X > 0, we can expand the right side of Eqs. (10.52) to one higher order
in the exponentially small terms to find

	(X > 0) ≈ 	− − α

β
exp(−2βKX /α). (10.54)
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We see that the effect of the right-moving wave decays exponentially to the right of
the shock with the decay length α/(2βK).

A more complete amplitude equation treatment gives a complicated picture of
sources and sinks. In general, there continues to be sink solutions of any velocity
with incoming waves of equal but arbitrary group speed relative to the sink velocity.
This is a two-parameter family of solutions since solutions exist over a continuous
range of two parameters, for example the two wave numbers of the incoming
waves. In addition, there exists a one-parameter family of exactly known Nozaki–
Bekki holes which are sources of outgoing waves. These hole solutions exist over a
continuous range of propagation velocities. However, these holes are a nongeneric
feature of the CGLE in the sense that adding additional higher-order terms such as a
fourth-order nonlinearity |A|4A to the equation eliminates the continuous family of
solutions, even if the coefficients of the new terms are small.Also, the Nozaki–Bekki
holes are not found by the counting arguments of Section 8.3.1.

Two-dimensional defects

In two spatial dimensions, the most important defects are spiral defects, which are
point defects that act as persistent sources of waves. The robustness of spiral defects
is suggested by their nontrivial topological nature since they can be characterized
by a nonzero winding number of the phase around any contour surrounding the
core (cf. the discussion in Section 4.4.2)

1

2π

∮
∇	 •d l = m, (10.55)

with m a positive or negative integer. The defect with winding number m has
the appearance of an m-armed spiral. In oscillatory systems one-armed spirals are
typically seen, as shown in Fig. 10.3 and Fig. 10.4; a three-arm spiral appears
in Fig. 1.14, although this one is not related to an oscillatory medium. At large
distances from the core, an m-armed spiral takes the form

Ā = a exp[i(Kr + mθ −�T ], (10.56)

in polar coordinates (r, θ), where r = √
X 2 + Y 2 is the distance from the core and

where θ is the polar angle around the core. The frequency � = �(K) is given
by the dispersion relation Eq. (10.21c) and a = aK = √

1 − K2. Approaching the
core, the magnitude a will go to zero4 so that the complex amplitude is continuous
here. The wave number K may also depend on radius.

4 The vanishing of the amplitude at the core provides a practical way to locate spiral cores numerically, by looking
for crossings of the zero contour of the amplitude’s real part with the zero contour of the amplitude’s imaginary
part, see Fig. 10.4.
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Fig. 10.3 Schematic drawing of a one-armed spiral with winding number m = 1,
see Eq. (10.55). This is a time-dependent state that appears to rotate (here counter-
clockwise) as the waves propagate outward from the central core.

Spiral sources have long been studied in chemical oscillations, where they are
a dominant feature of experiments on oscillatory chemical reactions such as the
Belousov–Zhabotinsky reaction in unstirred reactors, see Fig. 1.18. There are also
experiments on heart muscle that suggest the importance of spiral sources in some
pathological heart conditions, see Fig. 1.10 and Section 11.6.5.

A key question in the chemical experiments and in the CGLE is whether there
is a family of spirals giving a continuous range of possible frequencies � (which
then determines the wave number of the outgoing waves at large distances through
the dispersion relation), or whether there is a unique frequency with a prescribed
frequency that selects a particular wave number, or perhaps a discrete set of possible
frequencies and spiral structures. From chemical experiments, difficult analytic
calculations on models of chemical reaction systems in various tractable limits,
perturbative treatments of the CGLE, and numerical simulation of various models,
the evidence consistently points to a unique frequency rather than to a continuous
family. In this case, the wave number Ks of the waves far from the core will be
fixed by the unique spiral frequency �s and by the dispersion relation

�(Ks) = �s. (10.57)

One argument for the unique spiral frequency follows from an analysis of the
amplitude equation, Eq. (10.18). It can be shown that periodic solutions of the CGLE
corresponding to different values of c1 and c3 but with the same value of |c1 + c3|
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Fig. 10.4 Numerical simulation of the CGLE, Eq. (10.18), showing wavefronts
arising from m = 1 spiral sources. The black and gray lines are respectively the zero
contours of the real and imaginary parts of the complex amplitude field Ā(X , Y , T ).
These contours cross where Re(Ā) = Im(Ā) = 0 which defines a defect core
where Ā = 0. The wave fronts propagate out from the spirals, as shown by the
arrows on the plot, and collide at shocks forming the boundaries between neigh-
boring spirals. The calculation was performed in a periodic square domain of
size L = 256 for the parameter values c1 = 2 and c3 = 0.2, for which plane waves
are linearly stable (no Benjamin–Feir instability). (From Chaté and Manneville
[19].)

can be transformed into one another. This means that solutions with c1 + c3 = 0
can be constructed from solutions to the real amplitude equation c1 = c3 = 0,
which is the type-I-s amplitude equation, Eq. (7.31), for a uniaxial system. The
phase-winding topological defects of this equation are the dislocations calculated
in Section 8.1. It is then possible to perturb away from this solution in the small
quantity |c1 + c3| to construct the spiral solution for the complex equation. This
calculation predicts a unique stable spiral structure, with a wave number Ks that
varies as

Ks → 1. 018

|c1 + c3| exp

[
− π

2 |c1 + c3|
]

. (10.58)

The m = 0 version of Eq. (10.56) takes the form of an axisymmetric structure
known as a target. Since there is no phase winding, there is no topological argument
which suggests that such defects should be stable, and their existence and stability
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must be determined for each system individually. Target solutions are not believed
to be stable within the amplitude description. Since targets are a prominent feature
of many chemical experiments, it is generally believed that targets result from
imperfections such as dust particles that anchor the core.

If spirals are the source of the waves in a system, then the wave numbers that will
be observed in the bulk of the system are not determined by the stability balloon
but are restricted to the unique wave number produced by the spiral sources. The
stability limit of the wave state is then determined by the limit of stability of the
particular waves at wave number Ks rather than by the Newell criterion, or perhaps
by stability limits of the core regions of the spirals. Since waves with nonzero K are
more unstable than the homogeneous oscillations, the waves produced by the spirals
may be unstable, and complex dynamics may occur even when the Newell criterion
is not satisfied. On the other hand, it is probably the absolute instability point of
these waves that is the important criterion, rather than the convective instability
of Eq. (10.42). The complicated interplay between these various instability criteria
for the CGLE is shown in Fig. 10.5.

If there are several spirals present in the system, the waves from the different
sources will eventually collide. This leads to a shock between the two spirals, as
shown in Fig. 10.4. Since the waves decay exponentially as they pass through
the shock, the shock effectively isolates one spiral from the influence of another.
Calculations show that, because of the shocks, the interaction of one spiral with
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Fig. 10.5 Stability lines of the CGLE, Eq. (10.18), as a function of the param-
eters c1 and c3. Solid line: Newell criterion c1c3 = 1; dotted line: (convective)
Benjamin–Feir instability of spiral-selected wave number; dashed: absolute insta-
bility of spiral-selected wave number; dashed-dotted: absolute instability of whole
wave number band. Unstable sides are toward larger positive c1c3. (After Aranson
et al. [5].)
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another spiral decreases exponentially rapidly and becomes tiny when the cores are
separated by more than a few wavelengths.

10.3 Unidirectional waves in a type-I-o system

A type-I-o instability leads to a wave state of growing amplitude given by

up(x, t) = uq(x‖)ei(q • x⊥−ωqt)eRe(σqt) + c.c. + h.o.t., (10.59)

where the maximum growth rate occurs at a nonzero wave number and where
ωq = − Im σq is the oscillation frequency. The threshold of instability occurs
when the maximum of the real part of the growth rate, max Re σq, passes through
zero, and this determines the critical wave vector qc and the critical frequency at
threshold

ωc = ωqc . (10.60)

The conditions ωc �= 0 and qc �= 0 define the type-I-o instability.
Unlike the stationary type-I-s case, it is not true in general that the −q mode goes

unstable at the same control parameter value as the +q mode; this is a consequence
of the fact that the complex conjugate term in Eq. (10.59) is not equivalent to
changing the sign of q and so does not give a wave traveling in the reverse direction.
An additional symmetry such as parity symmetry (equations invariant under x⊥ →
−x⊥) in one dimension or rotational symmetry in more than one dimension is
needed to guarantee that the wave propagating in the reverse direction

ūp = u−q(x‖)ei(−q • x⊥−ω−qt)eRe σ−qt + c.c. + h.o.t., (10.61)

will go unstable at the same control parameter value and with the same growth rate.
In the present section we look at the non-symmetric case, where there is only a

wave propagating in one direction. Since there is a single propagation direction, we
focus on one-dimensional systems. In the next section we discuss parity symmetric
one-dimensional systems with counter-propagating waves. As in the discussion of
stationary patterns, we will base much of the discussion in these two sections on
the appropriate amplitude equations. Finally, in Section 10.5 we briefly describe
some experiments on rotationally invariant two-dimensional systems where waves
may propagate in any direction in the plane.

Equation (10.59) defines waves that propagate at the phase speed ωc/qc. A small
amplitude wave packet made up of a superposition of modes near qc will propagate
at the group speed s = ∂ωq/∂q

∣∣
q=qc

. In general, the group speed will be nonzero
at the onset of the instability whereas the growth rate goes to zero here. This means
that propagation effects dominate near threshold.
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In an infinite system, or one with periodic boundary conditions (experimentally
this would be implemented as a narrow annulus) we can simply transform to a
frame moving with the group speed, the amplitude equation reduces to the same
form as for a type-III-o instability, and we can take over many of the results from
the previous section. If the bifurcation is supercritical, nonlinearity saturates the
growth of the linear mode Eq. (10.59) to give a small amplitude traveling wave
near threshold. As in the type-III-o waves, the Benjamin–Feir instability, which
can be understood again in terms of a sideband instability of the nonlinear wave
state, is important in limiting the band of wave numbers for stable wave states.

Because of the nonzero group speed, the initial instability to the wave state is
convective so that near onset a small local disturbance will propagate away before it
has a chance to grow locally. The instability only becomes absolute when the growth
rate can overcome the propagation effect, as discussed in Section 10.3.2. End walls
in a physical system absorb approaching waves, since there is no possibility of
reflection in a system that does not support propagation in the reverse direction.
As a result, we show in Section 10.3.3, a wave state only develops in such a finite
system for control parameter values above the point of absolute instability. This
means that the spatially uniform state for parameter values above the convective
instability but below the absolute instability is very sensitive to small disturbances,
and we discuss how noise or spatial inhomogeneity can lead to sustained wave
states even when the ideal system does not support these.

10.3.1 Amplitude equation

Using the expression

up = A(x, t)u0(x‖)ei(qcx−ωct) + c.c. + h.o.t., (10.62)

for the perturbation up about the uniform state leads to the one-dimensional
amplitude equation

τ0(∂tA + s ∂xA) = ε(1 + ic0)A + (1 + ic1)ξ
2
0 ∂

2
x A − (1 − ic3)g0|A|2 A. (10.63)

The coefficients s, ξ0, τ0, c0, and c1 can be obtained by matching to the growth rate
of the linear instability calculation (see Section 6.2.2). For the parameters g0 and c3,
a nonlinear calculation is needed in which case g0 gives the saturation amplitude
and then the parameter c3 determines the nonlinear frequency shift.

The term s ∂xA on the left-hand side of Eq. (10.63) is a new term that does
not appear in the type-III-o amplitude equation, Eq. (10.18). According to our
standard procedure of neglecting “higher-order’’ terms, once this first-derivative
term is present it might seem appropriate to ignore the second-order derivative
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terms. However, the physical roles of these two terms is quite different since one
leads to propagation and the other to spreading and dispersion and so it is often
necessary to include both terms to get a sensible description. For example, if we
ignored the supposedly higher-order second-derivative term, an initial disturbance
would propagate without change of shape in the linear description. However, if we
include this term, there is now no single scaling of space, time, and magnitude with
powers of ε that reduces Eq. (10.63) to a scaled form in which the small parameter ε
disappears. This shows us that the equation does not then give a formally consistent
approach.

In a formal multiple-scales derivation of the amplitude equation, two time scales
are introduced. First, the reduced amplitude Ā = ε−1/2A and the slow length
scale X = ε1/2x are introduced in the usual way, guided by the expected magnitude
of the nonlinear saturated solution and by the width of the wave-number band
above threshold. In addition to the usual time scale T = εt on which spreading and
dispersion occur, we introduce a new slow time scale Tp = ε1/2t that corresponds
to the propagation time over the slow length scale. The scaled amplitude is written
as a function of X and of the two time scales Ā(X , Tp, T ). The equation derived at
lowest order in the expansion in ε is a propagation effect

∂TpĀ + s∂X Ā = 0, (10.64)

which describes propagation of the envelope at the group speed. The solution to
this equation is that Ā is a function of the reduced coordinate ξ = X − sTp rather
than of the variables X and Tp separately

Ā(X , Tp, T ) = Ā(ξ , T ). (10.65)

Physically, this simply corresponds to transforming to a frame moving at the group
speed s. At the next order in the expansion, the dispersion, diffusion, and nonlinear
saturation are found in this moving frame

τ0 ∂T Ā = (1 + ic0)Ā + (1 + ic1)ξ
2
0 ∂

2
ξ Ā − (1 − ic3)g0

∣∣Ā∣∣2
Ā. (10.66)

Then by using
ξ = ε1/2(x − st) and T = εt, (10.67)

or the inverse expressions

x = ε−1/2ξ + ε−1sT and t = ε−1T , (10.68)

so that
∂ξ → ε−1/2 ∂x and ∂T → ε−1(∂t + s ∂x), (10.69)

we obtain Eq. (10.63).
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In an annulus or other periodic geometry, Eq. (10.66) can be used to study growth,
spreading, and saturation in the usual way. In the moving frame, the amplitude
equation is the same as for the type-III-o instability and we take over the results
calculated there. This approach is not valid if the system is inhomogeneous in
space since, in the moving frame, the inhomogeneities lead to a fast time variation.
An example where this occurs is in the lasing instability, where the population
inversion leading to the instability may be inhomogeneous because of the pumping
mechanism or because of the feedback of the wave itself. For one-dimensional
geometries with fixed boundary conditions, such as a narrow rectangular box with
rigid end walls, a transformation to the group speed frame is not useful since then
the end walls are moving with this speed. Thus the interaction with the end walls
is not completely given by the amplitude equation.

Although Eq. (10.63) may not be a consistent approximation in general, in the
next sections we will use it to understand some of the behavior near a type-I-o
instability. A formal justification for this is to restrict our attention to systems where
the group speed is also small. In this case, for values of s of order ε1/2, the terms
in Eq. (10.63) are of consistent magnitude.

10.3.2 Criterion for absolute instability

Since the group speed is nonzero at the threshold of instability to a plane wave
perturbation while the growth rate is zero, the instability is convective. Absolute
instability (local growth) develops only at some finite distance above threshold.
We can use the amplitude equation to find an approximate condition for absolute
instability by using the method discussed in Section 10.1.

The linear dispersion relation from the amplitude equation

σ(q) = −isq + τ−1
0 ε(1 + ic0)− τ−1

0 ξ2
0 (1 + ic1)q

2, (10.70)

leads to the stationary phase point σ ′(qs) = 0 at the complex wave number

qs = − isτ0

2ξ2
0 (1 + ic1)

. (10.71)

The criterion for absolute instability Re σqs = 0 is then ε = εa with

εa =
(

sτ0

2ξ0

)
2 1

1 + c2
1

. (10.72)

If the group speed s is small then the parameter εa is also small and the calculation is
within the range of validity of the amplitude equation. Since this approach involves
just the linear dispersion relation, which is often easy to calculate for a system of
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interest without proceeding through the amplitude equation, it is often straightfor-
ward to calculate the absolute instability point from the original equations, without
making use of the amplitude equation.

10.3.3 Absorbing boundaries

For a convectively unstable system, any disturbance in the system will eventually
die out if there are no driving forces at the frequency of the waves. This is because the
disturbance will propagate to one end, and waves moving in the opposite direction
are not supported in the unidirectional case so that their amplitude will decrease
exponentially away from the ends. This leads to the remarkable consequence that,
although the conventional linear stability analysis predicts that the uniform state is
unstable, in the absence of driving forces this unstable state survives in the finite
geometry.

We can analyze this effect with the amplitude equation Eq. (10.63) for boundary
conditions A(x = 0) = A(x = l) = 0 that correspond to the absence of driving
from the left boundary and to an absorbing right boundary. The linear onset solution
of Eq. (10.63) with these boundary conditions is of the form5

A = a sin(πx/l)eκxe−i�t , (10.73)

where the frequency � is real but the spatial growth rate κ may be complex.
Substituting this into the linearized version of Eq. (10.63) leads to the conditions

κξ0 =
(

sτ0

2ξ0

)
1 − ic1

1 + c2
1

, (10.74a)

� = −
(

sτ0

2ξ0

)2 c0 + c1

1 + c2
1

− (c0 − c1)

(
πξ0

l

)2

, (10.74b)

and fixes the threshold value of the control parameter ε = εc to be

εc =
(

sτ0

2ξ0

)2 1

1 + c2
1

+
(
πξ0

l

)2

. (10.75)

The magnitude a of the amplitude in Eq. (10.73) is of course undetermined by the
linear equation.

The form of the amplitude A at εc is shown in Fig. 10.6. For any ε < εc, all
solutions decay in time. The value of εc is close to the onset of absolute instability
Eq. (10.72)

εc(l) = εa + O(l−2), (10.76)

5 The sin(πx/l) factor may be replaced by sin(nπx/l) with n any integer but this will give a higher value of the
onset ε.



384 Oscillatory patterns

A
m

pl
itu

de
Position

Fig. 10.6 Onset amplitude solution A(x) of Eq. (10.73), for a unidirectional travel-
ing wave in a finite geometry with boundary conditions A(x = 0) = A(x = l) = 0.

with O(l−2) corrections to that result. The solution we have found explicitly demon-
strates the difficulty of treating an O(1) group speed s since the length scale of the
exponential dependence (Re κ−1) is then of order unity and is not a slow length
scale as required for the validity of the amplitude equation.

10.3.4 Noise-sustained structures

A prediction of the last section is that a finite system will remain in the convectively
unstable uniform state for a range of ε above the instability to plane waves. Such
a system is highly sensitive to experimental noise. For fluid experiments in which
there is a net inflow of fluid, for example pipe flow, the noise might be due to
experimental imperfections in the control of the nominally steady fluid flow at the
inflow.6 In other cases, such as growth of a solid dendrite into a supercooled melt
during solidification, the noise might be thermal noise arising from the molecular
nature of the system.

The convectively unstable state amplifies the noise to give a disturbance that
grows and propagates downstream. If the initial disturbance is sufficiently strong or
if the system size is sufficiently large to produce a big amplification, the magnitude
of the disturbance may become large enough that nonlinearity eventually saturates
the growth, leading to a noise sustained state. Taking the propagation direction to
be to the right, the noise perturbations at the far left end of the system undergo the
largest amplification and are the most important. The amplification factor over a
distance l will be of order eσml/s with σm the maximum growth rate of the waves
and with s the group speed. For a noise disturbance of magnitude η, saturation will
occur if ηeσml/s becomes of order ε1/2. This will lead to the situation sketched in
Fig. 10.7. The downstream magnitude saturates to a constant value but the position
of the growth front (indicated by the double-headed arrow in the figure) and the
phase of the waves depend on the driving force, and fluctuate with the noise.

6 A common way to generate a steady inflow is to use a pump, whose mechanical vibrations can couple to the
fluid and therefore act as a noise source.
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Fig. 10.7 Schematic drawing of the amplitude magnitude |A(x, t)| for a noise-
sustained state with nonlinear saturation. The double-headed arrow indicates the
noise-induced fluctuations of the position of the growth front.
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Fig. 10.8 Experimental example of noise-sustained dynamical states in Taylor–
Couette flow between two concentric cylinders with an imposed axial flow (from
left to right in each panel) and a fixed outer cylinder. The reduced inner Reynolds
number ε has the values 0.1020, 0.0822, 0.0632, and 0.0347 for the top through
bottom panels respectively. The uniform state for the conditions of the top panel
is absolutely unstable and the nonlinear state is not sustained by the noise nor is
it sensitive to noise. The fluid in the lower three panels is convectively unstable
and the patterns observed are noise-sustained states. For each of the three lower
panels, the growth-front position and the wave phases at successive times fluctuate
because of the noise. (From Babcock et al. [8].)

An experimental example of a noise sustained state is shown in Fig. 10.8. The
experiments used a long (98 cm) Taylor–Couette apparatus (see Fig. 1.11) with
a rotating inner cylinder and fixed outer cylinder. The apparatus was modified to
produce a steady azimuthally symmetric flow along the axis of the apparatus by
injecting fluid at one end of the cylinders and by withdrawing fluid from the other
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end. Since the outer cylinder did not rotate, the experiment was characterized by
two dimensionless parameters, the inner Reynolds number Ri ∝ ωi of Eq. (1.4),
which determines how rapidly the inner cylinder rotates, and an axial Reynolds
number R = 〈w〉d/ν, which characterizes the average speed 〈w〉 of the axial
flow, where d = 0.68 cm is the radial width of the fluid between the cylinders,
and ν is the fluid’s kinematic viscosity. In Fig. 10.8, the axial Reynolds number
was R = 3.0 and the four panels are labeled by the reduced inner Reynolds number
ε = (Ri − Ric)/Ric, where Ric is the critical inner Reynolds number for the onset
of Couette rolls.

The axial flow converts the type-I-s instability of the uniform state to stationary
Couette rolls into a type-I-o wave instability, in which a wave consists of Couette
rolls that propagate down the length of the cylinders in the direction of the axial flow.
The experimentalists quantified the behavior of the system by measuring how the
pattern intensity7 I(z, t) varied spatially along the axis of the cylinder at successive
moments in time. Here distance along the axis is denoted by a z-coordinate in units
of the radial fluid depth d , and z = 0 corresponds to the end of the cylinder where
fluid is injected to create the axial flow; the time t is measured in units of the viscous
diffusion time d2/ν. In each panel of Fig. 10.8, successive snapshots of the axial
variation of I(z, t) are displaced slightly upwards so time runs vertically in this
figure. Each local spatial oscillation of I for a fixed t corresponds to a Couette
roll, and the diagonals caused by the small shift of local features to the right at
successive times indicate propagation with constant speed of the rolls along the
axis. The figure shows about one quarter of the length of the apparatus.

As the control parameter ε is increased from the convectively unstable regime
into the absolutely unstable regime (bottom to top in Fig. 10.8), the measurements
show a transition from a fluctuating noise-sustained state in the lower three panels
to a steady state where the noise is not significant in the top panel. The value
of ε at which this transition occurs agrees well with the predictions Eq. (10.72)
of the amplitude equation for the absolute instability. Note also that, as expected,
the amplification length for the magnitude to reach saturation in the convectively
unstable regime is larger for smaller ε.

10.3.5 Local modes

Another way that persistent waves can be sustained in a convectively unstable
region of the system is if there is some local source of waves that feeds into this
region. One way this can occur is if the control parameter varies spatially so that the

7 The intensity I(z, t) was determined by measuring with a charge-coupled-device camera, located outside the
transparent glass outer cylinder, how much light was reflected (from small shiny particles suspended in the
fluid) from a fluid region of coordinate z at time t.



10.3 Unidirectional waves in a type-I-o system 387

system is absolutely unstable over some region. An instability to a local oscillating
mode can then be a source of waves that travel into the convectively unstable region
over the rest of the system. This type of situation occurs in many of the classic fluid
flow instabilities such as the von Kárman vortex street produced behind a circular
cylinder in a low Reynolds number flow.

The amplitude equation Eq. (10.63) can be used to illustrate the existence of
local modes. A situation that can be worked out analytically is where the control
parameter varies linearly in a one-dimensional space 0 ≤ x < ∞

ε(x) = ε0 + ε1x, ε1 < 0, (10.77)

and the amplitude satisfies the boundary condition A(x = 0) = 0. The solution is
discussed in the following Etude.

Etude 10.5 Local modes in the amplitude equation
The linearized version of Eq. (10.63) that gives the growth or decay of small ampli-
tude disturbances can be solved analytically. For the analysis, it is convenient to
introduce the frequency shift and scalings as in Eq. (10.15) and Eq. (6.16) and use
the linearized equation in the form

(∂ t̃ + s̃ ∂x̃)Ã = εÃ + (1 + ic1)∇2
x̃Ã, (10.78)

with s̃ = sτ0/ξ0.
The solution can be written in the form Ã = χn(x̃)eσnt̃ with

χn(x̃) = es̃x̃/2 Ai
(

[−ε1/(1 + ic1)]
1/3 x̃ + ζn

)
, (10.79a)

σn = ε0 − s̃2/[4(1 + ic1)] +
{
(1 + ic1)ε

2
1

}1/3
ζn. (10.79b)

Here Ai is the Airy function and its zeros (which are all negative numbers) are
denoted by ζn so that Ai(ζn) = 0. The largest growth rate Re σn occurs for the first
zero ζ1 � −2.3381 and we will concentrate on this mode. The growth rate becomes
positive for ε0 > εL with

εL = εa + (−ζ1)|ε1|2/3(1 + c2
1)

1/6 cos
(

1
3 tan−1 c1

)
, (10.80)

where εa is the constant value Eq. (10.72) for absolute instability in an infinite
system. For ε > εL and for c1 of order unity, you can see from Eq. (10.79a) that
the amplitude is localized in the region 0 � x̃ � (−ζ 3

1 /ε1)
1/3. 8 A finite amplitude

oscillating solution will be established near x = 0 that sends waves out into the

8 Perhaps surprisingly, this expression does not depend on ε0 and therefore does not vary with the region of
positive ε as ε0 changes. In fact, as ε0 changes, the growth rate increases but the linear modes are unchanged.



388 Oscillatory patterns

10 20

0.5

–0.5

0.25

–0.25

Ae

Absolutely
Unstable

Convectively
Unstable

Stable

x

Fig. 10.9 Local mode for the linear amplitude equation Eq. (10.78) with c1 = 0
for a linear variation of ε(x̃) given by Eq. (10.77). Solid line: amplitude Ã(x̃);
dashed line: ε(x̃). Parameters used are ε0 = 0.6, ε1 = −0.05, and s̃ = 1.

convectively unstable region 0 < ε(x) < εa. The waves ultimately decay in the
region ε(x) < 0. An example of such a solution is shown in Fig. 10.9. Parameters
used in constructing the plot were c1 = 0, ε0 = 0.6, ε1 = −0.05, s̃ = 1. For
these values, εa = 0.25 and εL � 0.567. For further details and discussion, see
the paper by Chomaz et al. [21].

10.4 Bidirectional waves in a type-I-o system

We now turn to the case of a one-dimensional system with parity symmetry so that
the waves with wave number q and −q go unstable together. At the linear level,
any superposition of the waves propagating in the two directions may be formed.
However the nonlinear competition will favor a particular combination, either a
single wave traveling in either direction, or a standing wave made up of equal con-
tributions of the two waves. In an infinite geometry, or one with periodic boundary
conditions, this competition is easily analyzed using amplitude equations, as we do
in Section 10.4.1. However in finite geometries, or systems with inhomogeneities,
the analysis becomes much harder.

The difficulties of analyzing counter-propagating wave states even near onset can
be illustrated with a simple example of counter-propagating waves in an annulus.
Although calculating the properties of the simple weakly nonlinear plane wave
states is easy enough by transforming the description into a frame moving with
the group speed, more general situations are much less easy. For example, if the
annulus contains a spatially inhomogeneous distribution of clockwise and counter-
clockwise waves, then in the time scale ε−1 typical of the growth of intensity of
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a wave, any point on the clockwise-moving wave will feel the nonlinear influence
of the counter-clockwise-moving wave averaged over a distance of order sε−1.
This length scales in a different way than the ε−1/2 length typical of diffusion and
dispersion effects. In addition, the interaction between the waves is highly nonlocal
and cannot be described by local pdes.The situation simplifies if the circumference L
of the annulus satisfies sε−1 � L � ε−1/2 since then the clockwise wave travels
many times around the annulus in the time scale ε−1 for its amplitude to respond. In
this case, the influence of the counter-clockwise wave is experienced just through
a spatial average.

A systematic and comprehensive amplitude equation is not available for spatially
varying counter-propagating wave states. However, some important yet simple
questions can be addressed using various approximations. In this section, we will
first look at the competition between standing and traveling waves in the nonlinear
state in a one-dimensional periodic geometry, which can be approximated in the
laboratory by waves propagating around a narrow annulus. We will then discuss the
nature of the onset state in a one-dimensional geometry with physical boundaries
that act to reflect the waves. Without going into the technical details, we will then
present some results of experimental and theoretical investigations that extend these
results. In particular, we will describe some of the interesting oscillatory and chaotic
states that can occur.

10.4.1 Traveling and standing waves

The question of the stability of a spatially uniform traveling wave versus the stability
of a standing wave can be readily discussed near onset in a periodic geometry such
as an annulus. The question is similar to our earlier discussion of the competition
between stripes and lattice states in Chapter 7 since we want to compare the stability
of nonlinear states that are constructed by adding growing modes that are known
from a linear stability analysis. We follow the same methods but now use the
amplitude equations for counter-propagating waves. The amplitudes are introduced
through the equation

up =
[
AR(x, t)ei(qcx−ωct) + AL(x, t)ei(−qcx−ωct)

]
u0(x‖)+ c.c. + h.o.t. (10.81)

For the easier case of spatially uniform amplitudes, the generalization of Eq. (10.11)
to the counter-propagating case is

τ0 ∂tAR = ε(1 + ic0)AR − g0[(1 − ic3)|AR|2 + G(1 − ic2)|AL|2]AR, (10.82)

for the right-moving wave amplitude, and

τ0 ∂tAL = ε(1 + ic0)AL − g0[(1 − ic3)|AL|2 + G(1 − ic2)|AR|2]AL, (10.83)
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for the left-moving wave amplitude. The new real parameter G quantifies the
nonlinear interaction between right- and left-moving waves.

The competition between traveling and standing waves is now analyzed by con-
structing the various nonlinear solutions and then testing their stability using the
amplitude equations Eqs. (10.82) and (10.83). The results of the analysis are that
for G < −1 traveling waves are unstable and there is no saturation of standing
waves; for −1 < G < 1 standing waves are stable and traveling waves unstable;
and for G > 1 traveling waves are stable and standing waves are unstable. You
may derive these results in Exercise 10.10.

10.4.2 Onset in finite geometries

For unidirectional waves in a finite geometry, we saw in Section 10.3.3 that the
onset of instability is delayed until near the onset of absolute instability. The reason
is that, in the convectively unstable regime, a perturbation from the uniform state is
whisked away into the absorbing boundary. With counter-propagating waves, end
walls can reflect one component into the other. This leads to the sustained growth
of a perturbation as it propagates to and fro, and to a saturated nonlinear state even
in the convectively unstable parameter regime. A simple estimate illustrates this.

In a system of size l, the propagation time for a wave with group speed s is l/s.
Over this time, a disturbance, say a right-moving wave, will grow by a factor
exp(εl/sτ0). The disturbance is now reflected into a left-moving wave by the bound-
ary at x = l, as in Fig. 10.10. Let us define the reflection coefficient r to be the
complex-valued ratio of the amplitude of the right-moving wave to the amplitude
of the reflected left-moving wave at the boundary, so that there is a reduction in
the magnitude of the disturbance by a factor |r|. The threshold for instability in a
finite geometry is given by the condition that the net growth be zero, which in turn
requires that the amplification and reflection factors just balance. This occurs at
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Fig. 10.10 Exponentially growing amplitudes of right- and left-moving waves in
a finite geometry of length l. The ratio of amplitudes upon reflection is defined to
be the complex-valued reflection coefficient r. Near the boundaries, the behavior
will deviate from exponential and is not shown.
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ε = εc(l), where εc(l), is given by

εc(l) ∼ sτ0l−1 ln(|r|−1). (10.84)

For large systems, this is close to the threshold for convective instability ε = 0,
rather than near the threshold for absolute instability εa as was found for the one
wave case, Eq. (10.75). Clearly, reflection at boundaries is important in the case of
counter-propagating waves.

These results can also be obtained by an analysis of the linearized ampli-
tude equations for counter-propagating waves. To derive a first approximation
for the threshold, we can look for exponentially growing solutions of the ampli-
tude equations that include growth and propagation but that ignore dispersion and
diffusion:

τ0(∂tAR + s ∂xAR) = ε(1 + ic0)AR, (10.85a)

τ0(∂tAL − s ∂xAL) = ε(1 + ic0)AL. (10.85b)

These equations are first order in spatial derivatives, and so require a single bound-
ary condition at the endpoints x = 0 and x = l. They will take the form of empirical
reflection conditions. If the two end walls are physically identical, the conditions
are

AR(x = 0) = rAL(x = 0), (10.86a)

AL(x = l) = re2iqclAR(x = l), (10.86b)

where the phase factor e2iqcl in the second equation takes into account the phase
variation of the underlying waves. If we seek oscillatory solutions with zero real
growth rate AR,L ∝ e−i�t , the spatial dependence will be exponential ∝ e± κx

AR = aReikxeκrx, (10.87a)

AL = aLe−ikxe−κrx, (10.87b)

with κr = Re κ , k = Im κ given by

κr = ε

τ0s
, k = s−1

(
ετ−1

0 c0 +�
)

. (10.88)

The boundary conditions Eqs. (10.86) then give

1 = r2e2i(qc+k)le2κr l , (10.89)

so that

κr = l−1 ln
(
|r|−1

)
and k = (nπ −	r − qcl)/l, (10.90)
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with n an integer and 	r the phase of r. The value of κr together with Eq. (10.88)
reproduces the estimate for the onset value of the control parameter εc given in
Eq. (10.84). The equation for k gives a discrete set of possible wave numbers that
are fixed by a phase matching condition. In the approximation used, these different
wave numbers all give the same threshold. Because of this degeneracy, a state with
a complex initial condition that corresponds to a superposition of these different
modes has a simple exponential growth rate in the approximation used, so that
there is no convergence onto a fastest growing mode. We would expect there to
be O(k2) corrections to εc coming from the second-order derivative terms left out
in Eq. (10.85) that would tend to smooth out complex spatial structure removing
this degeneracy. Alternatively, the nonlinearity may lead to mode competition and
a unique solution even in the absence of second derivative terms.

10.4.3 Nonlinear waves with reflecting boundaries

The effect of nonlinearity on the linear state shown in Fig. 10.10 is interesting. As
the amplitudes of the waves increase, the region of large amplitude right- or left-
moving waves tends to further suppress the reflected counter-propagating waves.
The interplay of the nonlinear suppression of one wave by the other over the bulk of
the system and of the reflection of one wave into the other at the boundaries leads to
the possibility of complex dynamics even close to threshold. The dynamics typically
appears as a periodic or chaotic motion of the interfaces where either set of waves
grows to large amplitudes. The excursions of the interface can be small, or may
become large enough so that there are complete oscillations between right-moving
waves that dominate, and then left-moving waves that dominate.

Figure 10.11 shows an experimental example of a state sustained by reflection
called a blinking state. Here a binary fluid (a 0.3 percent by weight solution of
ethanol in water) of mean temperature 21.4 ◦C convects in a rectangular cell of
relative dimensions 16.25 × 4.9 × 1. Near onset (ε = 3.2 × 10−4 for the data
in Fig. 10.11), a periodic state spontaneously evolves that consists of right- and
left-moving waves. Using a data analysis technique called demodulation (see the
brief description below in Section 10.5), the experimentalists were able to estimate
the slowly varying right and left amplitudes, AR(x, t) and AL(x, t), which they then
compared with calculations based on amplitude equations. In agreement with the-
ory, the experimentalists found that the right and left amplitudes alternately become
larger and then smaller on the right and left sides of the cell; these changes in ampli-
tude correspond to changes in brightness in the shadowgraph images in Fig. 10.11,
hence the moniker “blinking state.’’ The experimentally extracted amplitudes also
confirm a subtle prediction of the theory, that a pattern like this is not symmetric in
that the maximum of the peak amplitude of the right-moving wave is larger than the
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Fig. 10.11 Blinking state observed near onset in a binary fluid convection exper-
iment whose uniform state undergoes a type-I-o instability. The panels on the
left show shadowgraph images at equally spaced times of propagating convection
rolls. The panels on the right show the corresponding amplitudes of right (full)
and left (dashed) moving waves as extracted from the shadowgraph images by
a demodulation method. The vertical panels span one period of the competition
between the two sets of waves. (From Kolodner et al. [57].)

maximum of the peak amplitude of the left-going wave. The theoretical explanation
of this dynamics is rather involved so we do not include a full discussion here.

10.5 Waves in a two-dimensional type-I-o system

Our knowledge of type-I-o waves in two extended dimensions rests primarily on
experimental observations. Figure 10.12 shows a snapshot of a binary fluid con-
vection experiment for which traveling waves emerge from a subcritical type-I-o
bifurcation of the uniform state as the Rayleigh number is increased.9 The first

9 The fluid is an 8% by weight mixture of ethanol in water at an average temperature of 26 ◦C for which the
Prandtl number is σ = 12 and the Lewis number, a dimensionless measure of the rate of concentration diffusion
to the rate of heat diffusion, is L = 10−2. The vertical thermal diffusion time is τ = d2/κ = 124 s so the
dynamics are actually rather slow on a human scale. The experimental cell has an aspect ratio of � ≈ 26.
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Fig. 10.12 Snapshot of a two-dimensional wave pattern in a cylindrical binary fluid
convection experiment whose uniform state undergoes a subcritical type-I-o insta-
bility. The left frame shows a shadowgraph image while the right frame shows the
phase field φ(x, y, t) of the waves, as obtained by demodulating the shadowgraph
image. (From La Porta and Surko [88].)

panel is a shadowgraph of the convection rolls (see Fig. 1.13 and the related dis-
cussion in Chapter 1). The images as a function of time show that the convection
rolls are propagating – the predominant motion in the figure is in the clockwise
direction – so that the state is one of traveling convection rolls. The large-scale
structure is one of domains of straight or weakly curved stripes. The sources of the
waves are typically in corners of the domains, and the sinks are domain boundaries.
The domain boundaries may be so-called zipper boundaries, for which the waves
propagate largely parallel to the boundary but in opposite directions on opposite
sides of the boundary, or may be perpendicular grain boundaries, for which one
set of rolls approaches the boundary while the other set propagates parallel to the
boundary.

The behavior of the waves is depicted more clearly in the second panel, where
a demodulation technique was used to display the phase field of the waves φ(x, t).
The phase was extracted by assuming that shadowgraph intensity can be written in
the form

I(x, t) = a(x, t)exp[−i(ωt − φ(x, t))] + c.c., (10.91)

where ω is the average frequency of the waves and where the amplitude a and
phase φ are assumed to vary slowly in time. If we now multiply this expression
by the Fourier mode eiωt and integrate to filter out the high-frequency rapidly
oscillating component, we are left with the expression

If (x, t) = a(x, t)eiφ(x,t), (10.92)
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from which the phase φ is readily extracted. In Fig. 10.12, the phase is shown in
a grey scale such that the phase increases in the order white to gray to black. The
direction of propagation (which is evident from watching a movie of the dynamics)
is in the direction of increasing phase.

The domain morphology of the patterns seen in these and other binary fluid
convection experiments with two extended directions is quite different from the
wave states in the CGLE that describes the behavior near a type-III-o instability,
and differs from the patterns in chemical wave experiments, where spiral sources
are typical. Whether this reflects a general difference between systems near a type-
I-o instability and the propagating wave states in oscillatory or excitable media, or
is simply a feature of the particular systems so far studied, is not yet clear and is a
topic for future research.

10.6 Conclusions

In this chapter, we have studied the properties of collective nonlinear oscillator
and wave states that emerge via respectively a type-III-o and type-I-o instability of
a time-independent spatially uniform state. The methods we used generalized the
amplitude-equation and phase equation methods that we developed for stationary
patterns in Chapters 4 through 7.

As was the case for stationary patterns, theory currently can only address the
weakly nonlinear region near threshold so many of our quantitative results are
unlikely to apply to natural patterns nor to many experiments. Nevertheless, many
interesting and novel properties of nonlinear collective oscillations and waves can
be addressed near onset, and the qualitative insights gained should continue to
apply for pattern formation in the more strongly nonlinear regime. For example, the
feature that counter-propagating waves annihilate one another, which is surprising
to those of us educated by elementary physics classes to understand the behavior
of linear waves which can pass through one another, can be readily analyzed by
the methods discussed in this chapter. As another example, the important question
of whether spiral sources of waves have a unique frequency determined by the
parameters of the system, or may have a range of frequencies, can be addressed
within the amplitude-equation formalism (and this was done in 1982). The answer
found – that indeed the frequency is unique so that the waves sustained by spiral
sources have a well-determined frequency and wave number – was confirmed much
later to apply to strongly nonlinear waves in reaction–diffusion systems, even in
those that are excitable, for which a disturbance of finite magnitude is required in
order to initiate wave propagation.

Many of the ideas introduced for stationary pattern-forming instabilities – such
as the notion of a stability balloon, the use of a phase equation to capture the slow
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dynamics connected with the broken symmetries, and the importance of defects –
continue to be important in nonlinear oscillator and wave systems. The essential
difference of the latter systems is that propagation is a new ingredient. Not least,
this means that a growing perturbation may propagate away before destroying
the spatially uniform state, the idea of convective instability. This means that the
presence of boundaries plays a particularly important role in systems supporting
counter-propagating waves since the boundaries may reflect waves. The propaga-
tion introduces a new time scale l/s with l the length scale of pattern variation (e.g.
the system size) and s the group speed. The interplay of this time scale with the
growth time scale proportional to ε−1 means that for the wave instabilities (type-I-o
rather than type-III-o) the amplitude equation approach has a restricted validity and
more delicate theoretical methods may be needed. You can read about these from
the list of further reading.

In Chapter 11, we return to the topic of propagating disturbances in nonequilib-
rium systems but in the context of excitable systems. You will see that many of the
issues raised in the present chapter occur there as well.

10.7 Further reading

(i) An extensive review of the properties of the complex Ginzburg Landau equation is
“The world of the complex Ginzburg-Landau equation’’ by Aranson and Kramer [6].

(ii) The first discussion of the uniqueness of spiral rotation frequencies can be found in
the paper “Spiral waves in reaction diffusion equations’’ by Hagan and Cohen [44].

(iii) The book Chemical Oscillations, Waves, and Turbulence by Kuramoto [60] gives a
more advanced discussion of nonlinear oscillators and waves.

(iv) To follow up on the question of the theory of counter-propagating waves and blink-
ing states for wave states in finite geometries see: “Traveling and standing waves in
binary-fluid convection in finite geometries’’ by Cross [24]; “Amplitude equations for
travelling wave convection’’ by Knobloch and De Luca [56]; and “Finite size effects
near the onset of the oscillatory instability’’[69] and “Dynamics of a hyperbolic system
that applies at the onset of the oscillatory instability’’ [70] by Martel and Vega.

Exercises

10.1 Instability of standing waves near onset for a type-III-o transition: Using
the amplitude equation Eq. (10.17), show that standing waves are always
unstable near the onset of a spatially uniform oscillatory instability.

10.2 Stability balloon from the type-III-o amplitude equation: Use the scaled
type-III-o amplitude equation, Eq. (10.18) and the steps outlined below to
derive the full expression for the complex growth rate σ for longitudinal
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perturbations about the plane wave base state of wave number K described
by the amplitude ĀK of Eq. (10.21a).

(a) Writing the scaled amplitude as Ā = ĀK +δĀ, derive the linear evolution
equation satisfied by the perturbation δĀ(X , T ).

(b) Show that the linear evolution equation may be satisfied using a
perturbation at Bloch wave number Q of the form

δĀ(X , T ) = ei(KX −�K T )[δa+ eσT eiQX + δa∗− eσ
∗T e−iQX ], (E10.1)

with σ = σ(Q, K) the complex growth rate and with δa+ and δa∗−
constants.

(c) Find the quadratic equation satisfied by the complex growth rate σ .
(d) By expanding the growth rate σ given by this quadratic equation in the

small quantity Q up to O(Q2), verify the results for the stability balloon
derived using the phase equation in Section 10.2.4. Note: The expression
you have obtained can also be used to show that for some values of the
CGLE parameters c1 and c3, a short-wavelength instability becomes
important.

10.3 Convective nature of the Benjamin–Feir instability: Show that within the
phase equation approximation, Eq. (10.34), the Benjamin–Feir instability
that limits the wave number range of stable traveling waves near a type-III-o
instability is always convective. Note: To find the quantity�A in Eq. (10.43)
that determines where the instability becomes absolute, you will need to use
the full expression derived from the amplitude equation in Exercise 10.2.
Why is this so?

10.4 Phase and magnitude variation in a shock: Use the solution for a shock
in Etude 10.4 and the results of Section 10.2.3 to plot the phase variation
of a stationary shock for the amplitude equation Eq. (10.18) with parameter
values c1 = 0 and c3 = 1.25 for incoming waves with wave numbers K =
0.1. Also calculate from the amplitude equation how the magnitude of the
complex amplitude varies near the shock by keeping terms up to second
order in spatial derivatives of the phase. Based on a plot of the magnitude
variation for the same parameter values, does the magnitude increase or
decrease in the shock?

10.5 Sources and shocks: In the following, use the Cole–Hopf transformation
discussed in Section 10.2.5 to analyze stationary shock defects.

(a) Show that for β > 0, there is no solution of the nonlinear phase
equation (10.24) that corresponds to outgoing waves (a source).
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(b) What is the large-distance behavior of the phase for the stationary shock
solution for β < 0? Verify that the general rule is that the group veloc-
ity d�/dK is inwards, although the phase velocity�/K might be either
inwards or outwards.

10.6 Moving shocks: Using the Cole–Hopf transformation Eq. (10.46), derive
an expression for a shock solution to the nonlinear phase equation (10.24)
for β > 0 in which the asymptotic wave numbers of the incoming waves
are KL = K0 + K1 on the left and KR = K0 − K1 on the right. Show that the
shock moves with a velocity v = 2βK1 and that this velocity is consistent
with the wave front conservation condition

�L − KLv = �R − KRv, (E10.2)

where�L,R are the wave frequencies on the left and right sides of the shock.
10.7 Targets in the nonlinear phase equation: In two spatial dimensions, a

pattern of outgoing circular waves from a point source is called a target
pattern. Targets may be investigated using the enhanced nonlinear phase
equation

∂T	 = −g(R)+ α∇2
X	− β(∇X	)

2, (E10.3)

where R is a radial coordinate that starts from the center of the target,
and −g(R) is an additional radially dependent frequency term that mod-
els an imposed local inhomogeneity in the medium such as a speck of dust.
For g(R) > 0, the inhomogeneity raises the local frequency of oscillation.
(Remember that the frequency is −∂T	.)

(a) Apply this version of the Cole–Hopf transformation

	 = −�T T − α

β
ln χ(X) (E10.4)

to Eq. (E10.3) to obtain the following equation for χ

−�Tχ = −α
2

β
∇2χ − g(R)χ . (E10.5)

Notice that this equation has the same form as the time-independent
Schrödinger equation for a particle in a potential, where χ corresponds
to the particle wave functionψ , g(R) corresponds to a potential energy V ,
and �T corresponds to an “energy’’ eigenvalue E.

(b) Show that a solution for χ that is everywhere positive and that decreases
exponentially at large radii corresponds to a target solution for 	.

(c) Using the Schrödinger analogy or otherwise, show that there are no target
solutions for the homogeneous case g(R) = 0.
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(d) The Schrödinger equation in two dimensions with a localized attractive
potential always has a bound state (state with negative energy) with a
wave function that is positive and that decays exponentially for large R.
Use this result to show that a target solution always exists for an inhomo-
geneity that raises the local frequency.As a next step, relate the frequency
and wave number of the waves at large distances to the parameters of the
solution to the corresponding Schrödinger problem. If there is more than
one bound state in the Schrödinger problem, does this imply a family of
targets?

(e) Show that there are no target solutions if the inhomogeneity lowers the
local frequency.

10.8 Local modes in a convectively unstable system: Use Mathematica or a
similar program to construct the nonlinear local mode solution for the param-
eters of Fig. 10.9 using the evolution equation Eq. (10.78) supplemented by
the nonlinear term −|Ã|2Ã. (Assume that the solution is real.) Compare the
solution with the fastest growing linear onset mode, Eq. (10.79a) for n = 1.
Study how the solution to the nonlinear equation changes as you vary ε0, for
example verifying the critical value for the onset of the local mode.

10.9 Experimental study of a convectively unstable growth of a crystal: Read
the paper “Development of sidebranching in dendritic crystal growth,’’
A. Dougherty, P. D. Kaplan, and J. P. Gollub, Phys. Rev. Lett. 58, 1652
(1987). Then write a short summary of the paper in which you explain the
experimental technique used and the evidence put forward by the authors to
support their claim that molecular noise plays a role in the formation of side
branches of a growing dendrite.

10.10 Traveling and standing waves in a type-I-o system: In this exercise you use
the amplitude equations for a type-I-o instability with counter-propagating
waves, Eqs. (10.82) and (10.83), to investigate the stability of traveling and
standing waves near threshold.

(a) The solution for a right-moving traveling wave is given by AL = 0,
AR = aTe−i�Tt where aT may be chosen real. Find expressions for aT

and �T by substituting into Eqs. (10.82) and (10.83).
(b) A standing wave is given by AR = AL = aSe−i�St , where again aS may

be chosen real. Find aS and �S by substituting into Eqs. (10.82) and
(10.83). Argue that, for G < −1, the bifurcation to standing waves is
subcritical so that, within the equations used, there is no saturation of
the standing wave solution for ε > 0.

(c) To test the stability of the traveling waves write

AR = e−i�Tt(aT + δaR(t)), AL = e−i�Tt δaL(t). (E10.6)
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By substituting into Eqs. (10.82) and (10.83), keeping terms to linear
order in δaL and δaR, and looking for solutions δaL, δaR ∝ eσ t show
that traveling waves are stable (all Re σ < 0) for G > 1 but unstable for
G < 1.

(d) To test the stability of standing waves write

AR = e−i�St(aS + δaR(t)), AL = e−i�St(aS + δaL(t)). (E10.7)

We will guess that the most unstable eigenvector is for the perturbations
δaR and δaL real. (You can show this at the cost of more algebra.) With
this simplification and looking for solutions δaL, δaR ∝ eσ t again, show
that the growth rates σ are given by

σ = −2ε0τ
−1
0

1 + G
[(1 − ic3)± G(1 − ic2)], (E10.8)

and therefore argue that standing waves are stable (both Re σ < 0)
for −1 < G < 1.
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Excitable media

The waves that are most familiar in daily life are sound waves, light waves, electrical
waves, water waves, and mechanical waves (say a standing wave on a piano string).
These familiar waves have the property that their magnitude decreases as they
propagate away from their source or, for standing waves, once their source is turned
off. The decrease in magnitude is a result of dissipative effects in the medium such
as fluid viscosity, electrical resistance, or friction that drain energy from the wave
and that restore the medium to thermal equilibrium.

These familiar waves have the additional property of often being accurately
described by a linear evolution equation such as the wave equation. Because the
evolution equation is linear, one can superimpose sinusoidal waves to get localized
pulses of arbitrary shape, and these pulses can also propagate. (For example, clap-
ping your hands once loudly creates a localized sound pulse that propagates away.)
Because each Fourier component in the superposition is itself damped in typical
media, the propagating pulses also damp out and disappear over time. Even in the
absence of damping, dispersive effects can cause the different Fourier components
to travel at different speeds so, again, waves and pulses change their shape and
decrease in magnitude during propagation.

We have seen in earlier chapters that sustained nonequilibrium systems allow
many dynamical states that can propagate or exist in a local spatial region but are
such that these states do not damp out over time or they preserve their shape and
speed as they propagate away from a source. Examples include topological defects
such as dislocations that can climb arbitrarily far in a stripe state, and fronts, pulses
and waves, examples of which we discussed in the previous chapter in the context of
states that arise from a type-o instability of a time-independent uniform state. Here
the mechanisms that sustain a system out of equilibrium feed energy locally to a
wave or pulse and so counter the effects of dissipation and dispersion. For sustained
nonequilibrium systems, the evolution equations for waves and pulses are typically
nonlinear (and can often be accurately described by amplitude equations near onset).

401
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We have seen numerous times earlier in the book that nonlinearity has a profound
effect in limiting the possible structures in terms of their shape, wavelength, and
propagation speed.

In this chapter, we discuss the propagation of waves and localized objects in
so-called excitable media. While many of the phenomena such as fronts, pulses,
and spirals are similar to those discussed in Chapter 10, excitable media have the
novel property that the uniform state is linearly stable so that interesting dynamics
arise only when the medium is perturbed sufficiently strongly that the amplitude of
the perturbation locally exceeds some finite threshold, which is a property of the
excitable medium.

That a finite-amplitude perturbation of the uniform state is needed to initiate
dynamics means that we cannot use a perturbative approach about the uniform
state such as the amplitude equation formalism to study excitable media. But the
situation is not then hopeless, and advances in theory and in experiment over the last
few decades have shown that one can develop a broadly applicable and insightful
framework to understand the phenomenology of excitable systems.

The dynamics of excitable media are also worth discussing because they play a
central role in many fascinating and timely questions related to biology, physiology,
and medicine (also in chemistry and chemical engineering, such as the propaga-
tion of chemical waves on the surface of a metal catalyst). Thus even single cell
organisms such as a paramecium have evolved to create excitable electrical waves
along their membrane and they use these waves to control the mechanical rotation
of their cilia and hence their swimming motions. An excitable electrical wave plays
an important role in the merging of a sperm with an egg; the wave triggers a rapid
change in the egg’s membrane that prevents a second sperm from entering, which
would confound the development of the organism. Multicellular organisms have
developed nervous systems in which information is transmitted from one neuron
to another (or from neurons to muscles) in the form of brief pulses via specialized
one-dimensional excitable connections called axons. In the case of a large animal
like a blue whale, these pulses might propagate for tens of meters without a decrease
in amplitude or speed, a remarkable evolutionary achievement.

Because over fifteen million people die each year worldwide from cardiovascular
disease, there is immense interest in understanding and preventing such disease. The
most deadly form of heart disease is ventricular fibrillation, in which the heart is no
longer able to pump blood successfully and the body’s tissues, including the heart
itself, begin to die from lack of oxygen. From our point of view, the human heart is
a ball of sustained nonequilibrium excitable muscle tissue that contains four blood-
filled chambers (two small atria and two large ventricles). The excitable muscle
supports nonlinear electrical waves that cause contraction of muscle cells as the
waves sweep past the cells. But there are poorly understood dynamical transitions
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in which the usually coherent waves become disordered in space and time such
that small regions of the heart contract out of phase with nearby regions, which
reduces greatly the ability of the heart to pump blood. The study and prevention of
heart arrhythmias provides a strong motivation to understand pattern formation in
nonequilibrium excitable media.

To give you a physical sense of excitable dynamics and of its mathematical
description, we discuss in the first half of this chapter how excitable pulses called
action potentials arise in neurons and in hearts. Neurons and heart muscle are
classic excitable systems with the property that a small-amplitude perturbation –
corresponding say to injection of a small amount of current via a metal electrode –
decays away while a perturbation that causes the voltage across a cell’s membrane
to exceed a certain threshold causes a large rapid amplified response, which leads
to a pulse that can propagate long distances without decaying or changing shape.

As part of the discussion of neurons and hearts, we also introduce one of the
most famous mathematical models in biology, the Hodgkin–Huxley equations,
which describe quantitatively the propagation of electrical pulses along a one-
dimensional nerve fiber (axon). We then discuss how this equation can be extended
to describe the propagation of electrical waves inside heart muscle. Since heart
tissue behaves approximately like a three-dimensional continuous (but admittedly
inhomogeneous) excitable medium, the pattern-formation aspects of its dynamics
play a more central role than for neurons. We can only outline some of what is
known since neurons and hearts have been found experimentally to be extremely
complicated. Models based on the accumulating experimental data are now quite
complex and may have about 100 dynamical variables and numerous empirical
functions whose many parameters must be determined by fits to experimental data.

An early theoretical advance in the study of biological excitable media was
the discovery that the dynamics of the difficult four-variable Hodgkin–Huxley
equations could be described qualitatively and insightfully by a simple two-variable
model known as the FitzHugh–Nagumo model (see Section 11.1.3). This model,
like many of the models that we discussed in Chapter 5, provides a way to under-
stand general properties of excitable media without being burdened with too many
details. This and other reduced models of excitable dynamics1 have also provided a
valuable way to explore by simulations the dynamics of different states in large two-
and three-dimensional domains, including domains that accurately approximate the
geometry of an adult human heart.

1 We have seen in Chapter 3 that simple two-variable descriptions also provide a useful starting point for under-
standing reaction–diffusion chemical systems. For example, in that chapter we introduced the Brusselator and
the Oregonator models for oscillatory chemical reactions. The reduction to two equations (from the many
equations needed to represent a chemical system accurately) arises from the vastly different reaction rates that
often characterize the different reactions.
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In the second half of this chapter, we sketch a line of argument that leads from
the two-component equations to many fascinating phenomena that are observed in
diverse excitable systems. The thread connecting the ideas is the following. First,
we discuss how the nullclines of a two-variable dynamical model in the absence of
diffusion can be used to understand qualitatively whether the dynamics is excitable
or oscillatory. The nullclines also help to explain some of the time scales associated
with the dynamics, e.g. why there may be a rapid amplification of a perturbation
followed by a slow decay back to the uniform state. Restoring diffusion to the
two-variable models, we then show how to describe propagating disturbances in
the form of fronts, pulses (which can be constructed from two fronts), and wave
trains (which can be constructed from pulses).

Next, we discuss the properties of spiral structures since they are the most
widely observed self-sustaining sources of propagating disturbances in an excitable
medium with two or three extended coordinates. Analytical, numerical, and exper-
imental studies indicate that spirals in excitable media select a unique frequency,
a fact that helps to explain how multiple spirals interact with one another. Finally,
we discuss instabilities of spiral structures and how such instabilities can lead
to more exotic states with quasiperiodic and perhaps chaotic dynamics. Some of
these states are believed to correspond to specific heart arrhythmias such as tachy-
cardia (an elevated heart beat caused by the formation of an electrical spiral in
the heart muscle), and ventricular fibrillation (clinically observed as an irregular
weak heart beat) which may involve a chaotic state that has many small spirals
which become unstable to new spirals, which themselves become unstable in a
never-ending process.

11.1 Nerve fibers and heart muscle

11.1.1 Hodgkin–Huxley model of action potentials

Experimental studies in the 1950s of squid giant axons, which are about 1 mm in
diameter2 (see Fig. 11.1), led to the first quantitative understanding of how neurons
transmit signals to each other. The resulting theoretical description known as the
Hodgkin–Huxley equations continues to provide the most widely used way to model
neurons and other biological excitable tissue like heart tissue.

The dynamic phenomenon involved with the transmission of information along
an axon is the controlled transport of electrical charge across the axon’s membrane.

2 Theory shows that the speed of an action potential along an axon scales as a positive power of the axonal radius.
Thus animal reflexes that need to be rapid, e.g. the escape reflex of a squid that involves squirting a jet of water
to propel the animal away from danger, are typically mediated by axons with big diameters. In contrast, axons
in the mammalian central nervous system have diameters that are one hundred to one thousand times smaller
and are densely packed so are much more difficult to study.
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Fig. 11.1 Schematic of an axon, a one-dimensional excitable medium that carries
information from one neuron to another neuron or to a muscle in the form of
brief electrical pulses called action potentials. The axon can be thought of as a
long hollow cylindrical tube whose wall consists of an extremely thin (5–7 nm
thickness for the squid giant axon) impermeable lipid bilayer. The bilayer contains
numerous complicated proteins called channels that can change their shape in
response to voltage changes across the membrane. The change in channel shape
can open up a hole through the membrane that selectively allows only certain ions
to flow across the membrane, resulting in a current I across the membrane. The
current can cause neighboring channels to change their shape which initiates a
nearby current flow, and so on. As a result, an action potential of duration about
1 ms propagates along the axon with constant speed, amplitude, and shape. The
variable V (x, t) denotes the local transmembrane voltage.

This transport alters the voltage V across the axonal membrane, which in turn affects
in a strongly nonlinear way the flow of the ion currents across the membrane, which
leads to excitable behavior.

The membrane consists of a thin lipid bilayer that is impermeable. However,
complicated proteins embedded in the membrane serve two roles that lead to a
flow of charge across the membrane. First, proteins called ion pumps sustain the
axon in a nonequilibrium state by using chemical energy (ATP) to pump potassium
ions K+ into the neuron and sodium ions Na+ out of the neuron, resulting in two
opposing concentration gradients.3 Second, proteins called channels can change
their shape in response to a change in membrane voltage (some channels also
change their shape when certain chemicals bind to them) and open up holes through
the membrane that selectively allow only one kind of ion (K+ ions for potassium
channels, Na+ ions for sodium channels) to diffuse passively down its concentration
gradient.

In the unexcited rest state of the axon, some of the K+ channels are open and all of
the Na+ channels are closed so that only K+ ions can diffuse across the membrane.
This selective diffusion of K+ ions down their concentration gradient to the outside

3 There are other ions involved in ionic transport such as chloride Cl− and calcium Ca2+ but we will ignore these
to simplify the discussion. Currents caused by calcium ions are especially important in other functions of the
nervous system but not for signal transmission along axons.
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of the membrane creates a separation of charge (more positive ions outside than
inside). The resulting electric field across the membrane drives a K+ current in
the opposite direction, back into the axon. The corresponding voltage V across the
membrane (measured from the inside relative to the outside) changes until it reaches
a value of about −68 mV at which point a steady equilibrium state is reached such
that the outward current driven by the concentration gradient and inward current
driven by the electrical field balance and there is no net transport of charge. To the
extent that the membrane is permeable to only a single ion at a time (a reasonable
approximation for the resting state of an axon), the equilibrium voltage value VK

can be calculated from the so-called Nernst equation

VK = kBT

q
ln

[
K+]

outside

[K+]inside
, (11.1)

which is a statement of thermodynamic equilibrium. Here kB is the Boltzmann
constant, T is the absolute temperature in kelvins, and q is the magnitude of the
ion’s charge in coulombs (q = e for a K+ ion). For a squid giant axon at room
temperature (T = 293 K) and for the experimentally measured intracellular and
extracellular K+ concentrations (400 mM and 20 mM respectively), Eq. (11.1)
gives a value VK ≈ −77 mV, while the squid giant axon resting voltage has a value
of about −68 mV, so the experimental resting voltage is shifted somewhat from
the potassium equilibrium value Eq. (11.1) by the presence of the other ions.

When a propagating nerve pulse starts to arrive at a particular region of the
axon, the membrane voltage of that region starts to increase from its rest value
of −68 mV. (An increase of the membrane voltage from its resting value is called
depolarization.) When the local voltage exceeds a threshold value of about −50 mV,
an excitable response is generated such that the voltage rapidly increases by about
100 mV and then decays back close to the original rest value after about two
milliseconds. (See Fig. 11.2.) This short-lived large change in voltage is called the
action potential and constitutes the basic unit of information that neurons transmit
to one another. For example, many sensory neurons like the touch-sensitive neurons
(Meissner’s corpuscles) in your fingertips transmit action potentials toward the brain
at a rate that increases monotonically with the amount of pressure on the fingertip.
(And other neurons somehow read out the rate of arriving action potentials and send
out their own action potentials, and somewhere the brain eventually translates the
pattern of action potentials into the sensation of pressure on the fingertip.) Action
potentials propagate at constant speeds that vary from about 0.5 to 50 m/s depending
on the type of neuron.

Mechanistically, the action potential arises from the opening and closing of potas-
sium and sodium channels with different time scales (fast for sodium, slow for
potassium) and at different times. Thus as the leading edge of an action potential
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Fig. 11.2 (a)Action potential of the squid giant neuronal axon as calculated numer-
ically by Hodgkin and Huxley for an axon temperature of 18.5 ◦C. (The simulation
is sufficiently accurate that there is no practical difference between this figure and
the experimental action potential.) This excitable pulse occurs whenever the mem-
brane voltage V of any particular region of the axon rises above a threshold value
of about −50 mV (about 17 mV in this panel, for which the resting state voltage
has been set to zero). The calculation predicts a propagation speed of 18.8 m/s
which is close to the experimentally observed speed of 21.2 m/s. (b) Calculated
time course of ionic currents across the axon’s membrane. The sodium current INa
of Na+ ions into the axon increases rapidly and causes the the membrane voltage
to increase (depolarize). On a slower time scale, the potassium current of K+ ions
out of the axons (hence the negative sign of the IK current) returns the membrane
voltage to its original resting value. The dotted line labeled Ii is the sum of the
sodium and potassium currents. (After Hodgkin and Huxley [46].)

arrives at some point on the axon and depolarizes the local voltage until it just crosses
threshold, the previously closed sodium channels open rapidly and Na+ ions can
now diffuse down their large gradient into the axon. The resulting flow of Na+ ions
depolarizes the membrane voltage further which causes more Na+ channels to open
which further increases the Na+ current. This positive feedback mechanism is the
amplification mechanism that produces the excitable response of the axon. As the
membrane voltage increases, even more potassium channels open but after a delay
of about 1 ms and on a slower time scale. When the membrane voltage reaches
about +60 mV, about 1 ms after the Na+ channels first open, the sodium channels
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rapidly close and the outward potassium current restores the membrane voltage to
it original rest value of −68 mV.

The dynamics of the sodium channels are such that, after closing, they cannot
open again until more than a millisecond has passed. This period of inactivity is
called the refractory phase of the action potential and has several implications.
First, the refractory period of about 1 ms establishes an upper bound of about 1000
action potentials per second on the rate at which information can be transmitted
between neurons. One kilohertz is slow compared to the gigahertz speeds of current
computer chips, and brains compensate for this slow transmission rate by having
a massively parallel network.4 Another consequence of the refractory period is
that if two action potentials approach each other on the same axon, they annihilate
since neither one can cross the refractory region behind the leading edge of the
approaching pulse, where the Na+ channels recently closed and cannot yet open.5

We see that biological excitable pulses in neurons and in heart tissue differ greatly
from pulses of linear wave systems since the latter can pass through each other
without difficulty. Refractory phases are especially important in heart dynamics
since they can cause another wave to break into two pieces (see Fig. 11.13 later in
this chapter), which is one mechanism that can trigger a cardiac arrhythmia.

The basic equation that describes pulse propagation is a statement about net
charge conservation as various ions flow into, out of, and along the interior of a
small piece of axon. It can be written as an evolution equation for the membrane
voltage V (x, t)

cm ∂tV = iext + iions(V , u)+ a

2rL
∂2

xV , (11.2)

where the coordinate x indicates location along the axon and where we have assumed
the simplest case of a spatially uniform axon. The term on the left side of Eq. (11.2)
gives the charging of the lipid bilayer, which acts like a dielectric-filled capacitor
of specific capacitance cm (this is total capacitance divided by membrane area),
whose value is about 10 nF/mm2 for all neurons. The charging arises from the
currents that appear on the right side of Eq. (11.2). The specific current iext (current
per membrane area) is an external source that the experimentalist might apply via
an electrode. The specific current iions(V , u) is associated with ions that diffuse
through channels. Its value depends on the voltage V and also on a vector u(t) of

4 In the mammalian cortex, each neuron connects to about 5000 other neurons on average, while the Purkinje
cells in the cerebellum receive inputs from over 100 000 other neurons. This is three orders of magnitude or
more higher connectivity than what can be currently achieved in integrated circuits.

5 Action potentials usually travel in just one direction along an axon since only the neuron to which the axon
belongs can initiate an action potential along the axon. However, neurobiologists often use two stimulating
electrodes in different brain regions to intentionally create action potentials traveling in opposite directions on
the same axon. This technique, called antidromic stimulation, is widely used to determine whether two neurons
are directly connected in a living brain, by observing the failure of an action potential to reach the other electrode
because of a collision with an action potential moving in the opposite direction on the same axon.
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so-called gating variables ui(t), each with value between 0 and 1, that characterize
the probability6 for a channel of a certain type to be open at any give time t when
the voltage V has a particular value. Hodgkin and Huxley used three variables
u = (n, m, h) to describe the ionic currents. The gating variable n(t) describes the
dynamics of the K+ channel while two gating variables m and h are needed to
describe the more complex dynamics of the Na+ channel. Finally, the last term
in Eq. (11.2), (a/(2rL))∂

2
xV , represents the longitudinal flow of current along the

interior of the axon that is driven by spatial variations of the voltage along the axon.
The parameter a is the radius of the axon (here assumed constant) and rL is the
intracellular resistivity (so that the longitudinal resistance R of a small length l of
axon is given by R = rLl/(πa2)).

In the Hodgkin–Huxley model, the specific current for potassium ions is given by

iK = ḡKn4(V − VK), (11.3)

where ḡK is the maximum possible specific conductance (conductance per unit
area) for K+ ions and where VK ≈ −77 mV is the equilibrium K+ voltage (given
by Eq. (11.1)) such that there is no net flow of K+ ions across the membrane for
the experimentally observed interior and exterior K+ concentrations. The parame-
ters ḡK and VK are assumed to be independent of the membrane voltage although
they can vary with temperature. The proportionality of the potassium current to the
fourth power of n was deduced from fits to experimental data. Chemical kinetics
then suggest that the potassium channel might consist of four subunits, each of
which have to change their shape for the channel to open, and this turns out to be
the case.

The variable n in Eq. (11.3) evolves according to a simple relaxational dynamics

dtn(t) = n∞(V )− n

τn(V )
. (11.4)

where the function n∞(V ) (to which n relaxes at long times) and the relaxation time
constant τn(V ) depend on the voltage and have functional forms that are deduced
by fits to experimental data. The parameter n∞(V ) varies from zero at low voltages
to unity at high voltages, with a dependence given by fitting to experiment, but
roughly of the form of tanh(V − V1) with the “turn on’’ voltage V1 some empirical
constant. It turns out that ion currents large enough to change significantly the
membrane voltage V are too small to change the ion concentrations substantially. In
particular, the propagation of a single nerve pulse does not significantly change the
nonequilibrium ion concentrations so that the zero-current equilibrium voltages VNa

6 A picture that you should have in mind is that a channel is a flexible highly folded polymer that is constantly
knocked about by thermal collisions with nearby molecules. These molecular collisions make the opening and
closing of a channel stochastic and so a probabilistic description is needed.
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and VK given by Eq. (11.1) may be taken as constants in the dynamics. Over many
pulses, of course the ion concentrations would be depleted as the passive ion channel
currents move the system toward equilibrium but the ion pumps remain active and
maintain the nonequilibrium ion concentrations.

The specific current for Na+ ions is given by

iNa = ḡNam3h(V − VNa), (11.5)

where the constant ḡNa is the maximum specific conductance for Na+ ions. Here the
gating variable m describes an activating process similar to the gate variable n for the
potassium current. The gating variable h on the other hand describes an inactivating
process, so that it is perhaps clearer to write h = 1 − h̄. The variables m and h̄
then obey dynamical equations analogous to Eq. (11.4), with additional functions
(m∞(V ), h̄∞(V )) and (τm(V ), τh(V )) fit to experiment, and that turn out to have a
roughly similar form to the functions n∞(V ) and τn(V ). Experimentally, the sodium
channel responds much more rapidly7 than the potassium channel so that

max τm � max τn, max τh. (11.6)

There are other ion channels that move across the membrane but these ions play a
relatively minor role in axonic action potentials and their influence is fit to a simple
linear dependence

i1 = ḡ1(V − V1), (11.7)

where the specific conductance ḡ1 is a constant. Equation (11.7) is often called the
leakage current since it corresponds to a small steady leak of charge (mainly due to
Cl− ions) across the membrane whenever the membrane voltage is not equal V1,

which is the case for the unexcited rest state. The final expression for the total
transmembrane ionic current iions in Eq. (11.2) is therefore

iions = ḡKn4(V − VK)+ ḡNam3h(V − VNa)+ ḡ1(V − V1), (11.8)

with approximate values8: ḡK = 0.036 mS/mm2, VK = −77 mV; ḡNa =
1.2 mS/mm2, VNa = 50 mV; and ḡ1 = 0.003 mS/mm2, V1 = −54 mV.
Hodgkin and Huxley deduced the detailed description represented by Eq. (11.2)
and Eq. (11.8) by many experiments. In one kind of experiment, they would vary
the internal and external concentrations of various ions such as Na+ or K+ (only
possible with a big axon like the squid giant axon) and measure the change in

7 Two time constants may be associated with a particular ionic current: the time constant τ of the gating variable
and a resistor-capacitance RC time constant C/ḡ of the current to reach its maximum value. For the sodium
current, both time scales are short.

8 Conductance is measured in SI units of siemens S, which is the reciprocal of the ohm unit for resistance.
1 mS = (103 �)−1.
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membrane voltage. In other experiments, they used an electronic feedback control
method called voltage-clamp to measure the current flow whenever the membrane
voltage V was changed to a new constant value. We encourage you to read the
beautifully written classic papers of Hodgkin and Huxley for the full story in their
own words.

Axonal membranes are not the only parts of the nervous system that have chan-
nels that respond to changes in the membrane voltage, there are also the membranes
of dendrites (regions of neurons specialized to receive information from other neu-
rons via synapses), membranes of synapses (micrometer-size objects that connect
an axon to a receiving neuron and that amplify incoming action potentials by con-
verting the electrical pulse into a chemical signal which diffuses to the receiving
neuron and is then converted back into an electrical signal), and the membranes of
somas, which are the neuronal cell body that contains the nucleus. Studies by many
scientists after Hodgkin and Huxley, especially investigations of various genomes
for the genes that code for channels, have revealed a bewildering diversity of chan-
nels. For example, neurons in mouse brains use over 75 kinds of potassium channels,
over 9 kinds of sodium channels, 10 kinds of calcium channels, and other channels
that are not easily characterized. Each neuron seems to use its own particular brew
of channels. The number, kind, and spatial distribution of channels associated with
a given neuron can evolve over time, in response to the pattern of action potentials
received and to genetic instructions from the nucleus. While Hodgkin and Huxley
explained quantitatively the excitable property of the squid giant axons and gave us
the mathematical tools to analyze other biological excitable media, many mysteries
remain about why so many different kinds of channels exist and how the variations
in excitability play a role in brain function and brain disease.

11.1.2 Models of electrical signaling in the heart

Versions of the Hodgkin–Huxley model have been proposed to understand propa-
gating electrical waves in heart muscle.9 As in the squid axon, the excitability arises
from the large self-stimulating sodium ion current. The degrees of freedom are again
the voltage V across the membrane, and ionic currents through the membrane, with
sodium, potassium, and calcium ions constituting the most important currents. The
interconnected mesh of muscle cells that comprises heart muscle can be modeled

9 Mammalian hearts also contain a network of specialized muscle cells called Purkinje fibers that propagate
waves more rapidly than muscle cells and that are used by the heart to initiate a spatially coherent wave of
contraction. Because an isolated Purkinje fiber can be used to study one-dimensional dynamics much like an
axon, Hodgkin–Huxley models similar to those for heart muscle have been proposed and tested for Purkinje
fibers.
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on a macroscopic scale as an anisotropic three-dimensional continuous10 material.
Thus the electrical dynamics of heart muscle may be modeled by an equation of
the form

cm ∂tV (x, t) = iext + iions(V , u)+
∑

jk

∂

∂xj

(
gjk

∂V

∂xk

)
, (11.9)

where the total ionic specific current iions(V , u) and the voltage-dependent dynam-
ical equations for the internal gating variables u(t) contain the complexity of the
ionic transport processes. The summation indices j and k go over spatial coordi-
nates, from 1 to 2 for a two-dimensional sheet and from 1 to 3 for a volume. The
last term with the summation is similar to the diffusive ∂2

xV term in Eq. (11.2)
and represents the coarse grained description of the current through the anisotropic
electrically resistive muscle fiber network. The entity gjk is a symmetric tensor that
is proportional to the conductivity tensor. As a first approximation, this tensor has
different components along the predominant fiber direction (which we denote by
the unit vector n̂) and perpendicular to this direction

gjk = gLn̂jn̂k + gT(δjk − n̂jn̂k). (11.10)

Real heart muscle is inhomogeneous and so the constants gL and gT can vary
spatially which explains why the tensor gjk is acted upon by the derivative ∂/∂xj in
Eq. (11.9).

Equation (11.9) is an example of what is called a monodomain heart model,
which describes cardiac dynamics in terms of a single potential, namely the trans-
membrane voltage V . More general and accurate, but more complicated to work
with, are bidomain models that use two separate equations to describe potentials
and currents inside and outside the cardiac cells. Bidomain models are especially
needed when investigating the influence of extracellular currents such as those
generated by a defibrillator applied to the surface of a person’s chest. Monodomain
models cannot treat the effects of such currents on heart muscle quantitatively.

Cardiac action potentials differ greatly from neuronal action potentials in that
the high-amplitude excited phase lasts several hundred milliseconds instead of
about one millisecond. To model this feature, researchers have postulated additional
slow ionic transport mechanisms beyond those discovered by Hodgkin and Huxley
in the squid axon. One modification (introduced by Noble in 1962 in his study
of Purkinje fibers) is to suppose that the potassium current is composed of two
parts: a first part that rapidly decreases on depolarization, and that is treated as

10 The extent to which it is appropriate to treat the heart as a continuous medium is still being determined. One
concern is that the action potentials in hearts have narrow fronts (regions where the sodium currents initiate
the action potential) that span just a few cardiac cells so it is possible that details of how the muscle cells are
connected to one another or small inhomogeneities in muscle cells could influence the properties and stability
of the front.
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instantaneously following the membrane voltage; and a second part that slowly rises
with the depolarization. In the Noble model, the potassium and sodium currents are
then given by

Iions =
[
gK1(V )+ gK2n4

]
(V − VK)+

[
gNam3h + g̃Na

]
(V − VNa). (11.11)

The gating variables n, m, and h obey the same first-order kinetics, Eq. (11.4),
as in the Hodgkin–Huxley model although with different parameter values that
are obtained by fitting functional forms to cardiac data. A small constant sodium
conductance g̃Na is also included.

As the amount of experimental information has increased, the complexity of
the models has correspondingly grown. Although ionic currents are still described
using expressions of the form gmaxrmsn(V − Veq) – where gmax is the maximum
channel conductance, r and s are gating variables raised to suitable powers, and Veq

is the equilibrium voltage given by Eq. (11.1) – several new features must be added
to the basic Hodgkin–Huxley type description. For example, cardiac models now
include a slow inward calcium ion current. The rest concentrations are such that
this current is large enough to affect the Ca2+ ion concentration inside the muscle
fibers, so that the calcium equilibrium voltage VCa also changes dynamically and
one further has to include the influence of the cellular ion pumps, which we could
ignore for neurons. Another complication is that for some of the ion currents such
as the instantaneous potassium current gK1(V ) introduced by Noble, the current is
no longer linear in the membrane voltage but has nonlinear rectifying properties
that must be determined empirically.

Because of the spatiotemporal complexity of cardiac wave states, especially
transitions of waves to novel states, it remains difficult to determine which of the
many details of these many-variable empirically fit physiologically detailed cardiac
models are essential for understanding the onset of arrhythmias and the resulting
dynamics. For this reason, reduced models with two to four variables, such as those
discussed in the next section, continue to play an important role in understanding
cardiac dynamics.

11.1.3 FitzHugh–Nagumo model

A few years after the work of Hodgkin and Huxley, FitzHugh and independently
Nagumo introduced a reduced version of the Hodgkin–Huxley model that retains
the basic properties of fast excitability and slow recovery and that was simple
enough that most of the key dynamical properties could be understood conceptu-
ally. The FitzHugh–Nagumo model has become a canonical set of equations for
understanding the spatiotemporal dynamics of an excitable medium.
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The starting point for FitzHugh’s work was a famous nonlinear oscillator equation
known as the van der Pohl equation11

d2
t x + γ

(
x2 − 1

)
dtx + x = 0. (11.12)

where the real parameter γ is positive, γ > 0. For small values of x such
that x2 − 1 ≈ −1, Eq. (11.12) becomes the familiar harmonic oscillator equation
but with negative damping in which case the solution x = 0 is unstable to oscil-
lations. These oscillations grow in magnitude until the positive nonlinear damping
balances the negative linear damping on average. The van der Pohl equation yields
approximately sinusoidal oscillations for small γ but highly anharmonic relaxation
oscillations for large γ .

It is these relaxation oscillations that provide the basis for FitzHugh’s model of
nerve pulse propagation. To understand the relaxation oscillations mathematically,
it is useful to introduce a variable y

y = γ−1 dtx + x3/3 − x, (11.13)

to transform Eq. (11.12) into two first-order equations

dtx = γ
(

y + x − x3/3
)

, (11.14)

dty = −x/γ . (11.15)

FitzHugh studied a version of these equations that he called the BoenHoeffer–van
der Pohl (BVDP) model

dtx = γ
(

y + x − x3/3 + z
)

, (11.16a)

dty = −(x − a + by)/γ , (11.16b)

where the parameters a and b are constants, and the variable z represents the external
driving current Iext in the Hodgkin–Huxley equations Eq. (11.2).

FitzHugh noticed that the four variables (V , m, h, n) in the Hodgkin–Huxley
equations had different dynamical behaviors, with the variables V and m varying
quickly during an action potential and the variables h and n more slowly. He further
noticed that when he plotted two-dimensional phase portraits of a fast variable (V or
m) combined with a slower variable (h or n) – for example the path traced out by
the vector (m(t), h(t)) in the mh plane – he saw trajectories that were qualitatively
reminiscent of trajectories traced out by the variables x and y of the BVDP model of

11 It is interesting to note that, in 1928, van der Pohl and van der Mark built an electronic analog of a heart using
a nonlinear vacuum-tube-based circuit to mimic the van der Pohl equation. This makes Eq. (11.12) one of the
earliest published cardiac models.
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Eqs. (11.16). FitzHugh therefore proposed to model either of the two fast Hodgkin–
Huxley variables with the x variable of the BVDP, and to model either of the two
slow Hodgkin–Huxley variables with the y variable. For z = 0 in Eq. (11.16a), a
simple rescaling of variables and the addition of the diffusion term to the u equation
changes the BVDP model into the FitzHugh–Nagumo model

∂tu = f (u, v)+ ∇2u, (11.17a)

∂tv = g(u, v), (11.17b)

where what look like reaction rates are given in terms of two functions f (u, v)
and g(u, v)

f (u, v) = η−1
(

3u − u3 − v
)

, (11.18a)

g(u, v) = u − a − bv. (11.18b)

A small value of the parameter η in Eq. (11.18a) corresponds to fast dynamics of
the variable u compared to the variable v. The reader should be aware that many
different forms of the FitzHugh–Nagumo model have been published, although
they are mathematically equivalent (see Exercise 11.7).

We can understand qualitatively the dynamics of two-variable equations like
Eqs. (11.17) by looking at its nullclines. As we mentioned briefly in Section 3.1.2,
nullclines are curves in the uv phase space that indicate where one of the right
sides of Eqs. (11.17) vanishes in the absence of diffusion. Thus the nullcline for
the u-evolution equation, Eq. (11.17a), is obtained by dropping the diffusion term
(which corresponds to the assumption of a spatially uniform solution) and by setting
the right side to zero: f (u, v) = η−1(3u − u3 − v) = 0. The set of points (u, v)
that satisfy this equation is called the nullcline of Eq. (11.17a) or more simply the
nullcline for the variable u or the u-nullcline. Similarly, the set of points (u, v) for
which g(u, v) = 0 gives the v-nullcline.

A condition of the form f (u, v) = 0 allows the variable v to be defined as an
implicit function of the variable u and sometimes the mathematical form of f is
simple enough that one can solve for v explicitly in terms of u in which case it is
easy to determine analytically the shape of the nullcline. You can easily verify that
the u-nullcline is a cubic polynomial in u

v = 3u − u3, (11.19)

while the v-nullcline is a line:

v = u − a

b
. (11.20)
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Fig. 11.3 Nullclines Eq. (11.19) and Eq. (11.20) of the FitzHugh–Nagumo model
Eqs. (11.17). The intersection of these two nullclines at the black dot corresponds
to a spatially uniform fixed point of the model. The parameter values a = −1.3
and b = 0.2 were used to plot the v nullcline. For small values of the parameter η,
the fixed point is linearly stable, which is a necessary condition for excitable
behavior.

For dynamical systems such that the nullclines cannot be obtained explicitly, numer-
ical approximations can sometimes be found as described in Exercise 12.16 of
Chapter 12.

The nullclines Eq. (11.19) and Eq. (11.20) of the FitzHugh–Nagumo model are
shown in Fig. 11.3. The cubic u-nullcline is independent of all parameters and
the linear v-nullcline moves about and changes slope as the parameters a and b
are varied but is independent of the parameter η. We immediately see from the
geometry of these curves that the FitzHugh–Nagumo equations always have one
spatially uniform fixed point but not more than three. Although the nullclines and
their points of intersection do not vary with the parameter η, this parameter does
influence the stability of the uniform fixed points. For example, you should be able
to show that, for the parameter range 0 ≤ b < 1/3, there is exactly one uniform
fixed point; that, for the constraint −√

3 < a < −1 + 2b, the fixed point lies to the
left of the minimum of the u-nullcline; and that, for sufficiently small values of η,
the fixed point is linearly stable. This stability is a necessary although not sufficient
condition for the system to be excitable. To demonstrate excitability, we need to
show that a sufficiently large perturbation about the fixed point will grow rapidly
in magnitude and then decay back to the fixed point. We will do this using general
qualitative arguments in the next section.

11.2 Oscillatory or excitable

Motivated by our discussion of the FitzHugh–Nagumo model in the previous section
and by the simple two-variable chemical models like the Brusselator that were
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introduced in Chapter 3, we are led to investigate the following class of reaction–
diffusion systems

∂tu = η−1f (u, v)+ ∇2u, (11.21a)

∂tv = g(u, v)+ D ∇2v, (11.21b)

for two concentrations fields u(x, t) and v(x, t).12 Of the two different possible
diffusion constants for u and v that could appear, Du and Dv, we have used Du to set
the length scale for both equations in which case the remaining diffusion constant D
in the v equation gives the ratio Dv/Du. The parameter D may be taken to be O(1)
or set to zero as in the FitzHugh–Nagumo model. The parameter η gives the ratio
of reaction time scales, and is taken to be small since this will allow us to develop
approximation schemes using perturbation theory. The reaction rates are given by
the nonlinear functions f (u, v) and g(u, v) in Eqs. (11.21). The u- and v-nullclines
are obtained respectively from the equations f (u, v) = 0 and g(u, v) = 0.

Equations (11.21) provide a tractable approach to study propagation phenomena
and are directly motivated by the microscopic description of some chemical and
biological systems. Many analogous phenomena can also be found in the ampli-
tude equations developed around the instability to spatially uniform oscillations
(type III-o) discussed in Chapter 10. However, these two approaches involve quite
different approximations. As we will see, Eqs. (11.21) describe highly nonlinear
phenomena, and may give propagating structures even when the uniform state
is linearly stable. On the other hand, the amplitude equation approach describes
weakly nonlinear phenomena near a linear instability to an oscillatory state and
the phenomena are universal (not dependent on details of the particular system)
within the validity of the amplitude equations. Nevertheless, we will often find
similar qualitative results resulting from the two methods, and combining intu-
ition gained from both descriptions is often profitable. We need to keep in mind
that both descriptions are approximations and more elaborate equations are often
needed to develop a quantitative understanding of nature. But since the more elab-
orate equations are usually not analytically tractable, understanding gained from
the analytic approximations to the simpler equations remains valuable.

We investigate Eqs. (11.21) for the nullclines schematically sketched in Fig. 11.4,
which qualitatively resemble those of the FitzHugh–Nagumo model, Fig. 11.3, in
that there is a cubic-like nullcline and a linear-like nullcline. The reaction rates f
and g change sign across the nullclines, leading to the directions of evolution of u
and v as depicted by the arrows in the figure. For small values of the parameter η in
Eq. (11.21a), the dynamics can be constructed graphically from these nullcline plots.

12 These equation are of course the same general form as in Turing’s analysis discussed in Chapter 3. However,
here our focus is on dynamic phenomenon rather than on the linear stability of the uniform states.



418 Excitable media

v

u

u

v

v

u

fast

fast

fast

fast

fast

slow

slow
slow

slow

slow

(a)

(b)

(c)

S

S1

S2

X

f = 0

g = 0

v>

v<

u = h–(v ) u = h+(v )

X

Fig. 11.4 Nullclines f (u, v) = 0 and g(u, v) = 0 for typical reaction–diffusion sys-
tems: (a) oscillatory, (b) monostable excitable, and (c) bistable excitable. Dashed
lines show the trajectories of the dynamics. The arrows indicate the signs of the
functions f and g that give the dynamics of u and v respectively. Solid and empty
circles denote respectively stable and unstable steady states. For each v in the range
v< < v < v> indicated on the upper panel, there are three solutions for u that
satisfy f (u, v) = 0. The largest and smallest solutions (these are the stable ones)
are labeled u = h±(v).

The spatially homogeneous dynamics are given by the equations

dtu = η−1f (u, v), (11.22a)

dtv = g(u, v). (11.22b)
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For small η, the dynamics can be split into fast and slow portions by the following
argument. If f (u, v) is nonzero, then because of the large η−1 factor in Eq. (11.22a),
u will have a big time derivative and so vary rapidly in time. Thus if u is not located
on its nullcline, it will rapidly evolve toward its nullcline in the direction determined
by the sign of f , in a time of order η. (This direction is indicated by the horizontal
dashed lines in Fig. 11.4 labeled “fast.’’) During this short time, v is effectively
constant. This is the fast dynamics. Once u has reached the nullcline, evolution
of v will occur at the slower O(1) rate determined by Eq. (11.22b). (This is the
evolution along the u-nullcline labeled “slow’’ in Fig. 11.4.) Equation (11.22a) is
only consistent with slow dynamics if

f (u, v) � 0, (11.23)

and this relationship fixes u(v) as v evolves. Since Eq. (11.23) has multiple solutions
for the typical nullcline curve as shown in Fig. 11.4, it is useful to introduce an
explicit notation for the two relevant solutions, u = h+(v) corresponding to the
right branch of the nullcline, and u = h−(v) on the left. The middle portion of
the u-nullcline leads to unstable solutions and is not relevant to the dynamics. Thus
in the slow portion of the dynamics, the trajectory(u(t), v(t)) evolves along the
u-nullcline f = 0 with u = h±(v).

We can now consider the dynamics for various nullcline configurations, with the
important assumption that η is small.

11.2.1 Relaxation oscillations

Consider case (a) in Fig. 11.4. The single intersection point of the nullclines is
a stationary point, that is easily seen to be unstable for small η. For example, a
perturbation slightly increasing v from the fixed point will lead to dynamics that
rapidly snaps to the branch u = h−(v), with u decreasing at essentially constant v.
The dynamics will be attracted to a highly nonlinear “relaxation oscillation’’ cor-
responding to the dashed line trajectory in Fig. 11.4(a). We conclude that for these
parameters, Eqs. (11.21) have oscillatory dynamics.

For small η, the orbit can be quantitatively constructed by piecing together suc-
cessive slow and fast portions. For the slow portions, u � h±(v) and then the
dynamics of v is completely determined by Eq. (11.22b)

dtv = g(h±(v), v). (11.24)

For example, on the left branch of the u-nullcline, the concentrations (u, v) will
follow the u-nullcline downwards as v decreases according to

dtv = g(h−(v), v). (11.25)
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This continues until the minimum v = v< is reached, after which the slow motion
(dtv < 0) is no longer consistent with f = 0, and the dynamics must switch to the
fast time scale. The fast dynamics consists of the rapid change of u according to
Eq. (11.21a) over a time scale of order η as u evolves from the h− to the h+ branch.
On this time scale, v does not significantly change and so the fast portion of the
oscillation is given by the equation

dtu = η−1f (u, v<). (11.26)

This is followed by the slow evolution of v from v< to v> on the h+ branch of the
u-nullcline according to

dtv = g(h+(v), v), (11.27)

and then the fast evolution back to the h− branch at essentially fixed v = v>

dtu = η−1f (u, v>). (11.28)

The orbit has the characteristic form of a relaxation oscillation with rapid switch-
ing followed by slow evolution, which qualitatively resembles a cardiac action
potential. The period T is dominated by the slow portions so integrating Eqs. (11.25)
and (11.27) gives us an estimate of the period

T ≈
∫ v<

v>

dv

g(h−(v), v)
+

∫ v>

v<

dv

g(h+(v), v)
. (11.29)

11.2.2 Excitable dynamics

For other intersections of the two nullclines, the system Eqs. (11.21) may not have
persistent oscillations but instead may undergo a large but temporary fluctuation
driven by a relatively small perturbation. Panels (b) and (c) in Fig. 11.4 show two
representative situations.

In Fig. 11.4(b), there is a single stationary point S, which from the evolution
given by the signs of f and g can be seen to be stable to small perturbations. On the
other hand, a larger perturbation, say starting at the point X , will lead to the orbit
depicted by the dashed line that yields a large disturbance before the concentrations
relax back to the fixed point. Again the dynamics can be constructed from portions
of rapid motion of u at constant v and of slow motion along the f = 0 nullcline,
as traced out by the dashed curve in the figure. Since an infinitesimal perturbation
leads to a relaxation back to the steady state, whereas a small finite perturbation
leads to a large response, this type of system is called excitable. The steady state
is linearly stable, and so an excitable system is conceptually quite distant from one
showing a type-III-o instability.
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In Fig. 11.4(c), there are two fixed points S1 and S2 that are stable to small
perturbations, as well as one unstable fixed point in the middle. Again a finite
perturbation from one of the stable fixed points, e.g. from S1 to X , will lead to a
large disturbance, but now the disturbance relaxes to the second fixed point S2. This
situation corresponds to a bistable excitable medium.

11.3 Front propagation

We now return to Eqs. (11.21) and restore the diffusion terms. We will show that
the full equations support various types of propagating disturbances that include
fronts, pulses, and waves. These are all one-dimensional disturbances that propagate
at some speed c (to be determined) without change of shape. They are therefore
solutions of the form

u = u(ξ), v = v(ξ), with ξ = x − ct, (11.30)

where we assume propagation in the x-direction and that there is no dependence
of the structures on the transverse coordinates. These solutions satisfy coupled
ordinary differential equations given by substitution into Eqs. (11.21)

d2
ξ u + c dξu + η−1f (u, v) = 0, (11.31a)

D d2
ξ v + c dξv + g(u, v) = 0. (11.31b)

Again, solutions may be constructed from rapidly varying portions for which u
varies at essentially fixed v according to Eq. (11.31a), and from slowly varying
portions for which v evolves with u = h±(v) according to Eq. (11.31b). The solu-
tions will be developed from the plot Fig. 11.5 which is analogous to Fig. 11.4.
However, “fast’’ and “slow’’ are now with respect to the ξ variable.

We first look at the propagation of fronts of u which are interfaces between
regions where u takes on the values u = u+ = h+(vf ) and u = u− = h−(vf ) for
some fixed v = vf . The variation of u occurs on the fast scale so that it is consistent
to take v fixed. The concentrations u and v trace out a path such as ABC in Fig. 11.5.
The equation for the uniformly moving front (at speed c) is

d2
ξ u + c dξu + η−1F(u) = 0, (11.32)

where F(u) = f (u, vf ). It is useful to rescale variables to eliminate the small
parameter η. Thus we define Z = η−1/2ξ and C = η1/2c to obtain

d2
Zu + C dZ u + F(u) = 0. (11.33)

For Z → ±∞, we have u → h±(vf ), where F(u) = 0. The form of F(u) implied
by the nullcline graph and by the signs of f (u, v) is sketched in Fig. 11.6(a). This
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Fig. 11.5 Front, pulse, and wave train variations plotted on the nullcline graph
for an excitable medium. The variation ABC gives a front of state u = h+(vf )
propagating into the state at u = h−(vf ) at some fixed v = vf . The path DEFGHID
gives a pulse propagating through the state at the fixed point (u0, v0). The path
ABCGHIA gives a pulse of a wave train. Since the fixed point D is not visited
in this orbit, a similar construction gives a pulse in a wave train in an oscillatory
medium.

is exactly the same equation as studied in Section 8.3.1 where we were looking at
fronts in the real amplitude equation, only the form of F(u) is different. As there,
we can use a “rolling ball’’ analogy to understand the solutions.

We use the replacements Z → T , u → X and F(u) → d	/du to map Eq. (11.32)
into the equation for the “position’’ X of a unit mass fictional particle as a function
of “time’’ T moving in a “potential’’ 	 and acted on by a “frictional damping’’
with strength C, with the form of 	 sketched in Fig. 11.6(b). For the general case
v< < v < v>, the solution we are seeking starts at one of the maxima (e.g. u+) at
T = −∞ and must run “down’’ the potential hill and up to the second maxima (at
u = u−), which it must just approach at T = ∞. It is clear from our intuition of
frictional motion that there is a single value of the “damping’’ C for which this is
possible, and we could calculate this value by integrating the equation of “motion.’’
For 	(u+) > 	(u−), the “damping constant’’ C for this type of solution to exist
is positive.

On the other hand, if	(u+) < 	(u−), the value of C must be negative. Alterna-
tively, in this case we could construct a solution with positive C running from u−
to u+. Either description corresponds to the front moving in the reverse direction,
with u− invading u+ rather than u+ invading u−. Furthermore it is clear that the
“time’’ scale of the motion and the value of C will be O(1) in general. There is
an exception to this latter statement for the particular value v = v∗ known as the
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Fig. 11.7 Qualitative front solution of Eqs. (11.21) for small η.

stall speed at which 	(u+) = 	(u−) so that the potential maxima are at the same
height. In this case, C = 0 although the “time’’ scale of the motion remains O(1).

Translating back to the unscaled units, we find a narrow front of width O(η1/2)

propagating at speed c which is of magnitude O(η−1/2), a large value. The
variation u(ξ) for a front is sketched in Fig. 11.7. The speed is a function of the
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Fig. 11.8 Front speed c as a function of v concentration.

local concentration v of the slow species. The motion reverses as v passes through
a particular value v = v∗ known as the stall point, for which c = 0.

As v passes through v< or v>, one of the maxima of the “potential’’	(u) dis-
appears. Let us look at the case v = v<. The potential well analogy for this case
is sketched in Fig. 11.6(c) and (d). Our intuition for this situation tells us that any
sufficiently large value of the damping C is sufficient to give a solution connect-
ing u+ at T = −∞ to u− at T = ∞. In fact, with further analysis it can be shown
that there is a solution for any C greater than the limiting value of the unique C(v)
as v approaches v<, limv→v< C(v).

The form of C(v) resulting from the analysis is sketched in Fig. 11.8. For v = v>
or v = v<, where a range of speeds for each v is possible, the fronts are known as
phase fronts. For the case v< < v < v>, for which there is a unique front velocity
for each v, they are known as trigger fronts.

11.4 Pulses

Excitable media can have a localized region of excitation called a pulse that prop-
agates at constant speed without change of shape. A physical example is the action
potential that we discussed in Section 11.1.1. As we now describe, the structure of
a pulse can be constructed from two front solutions.

Consider an excitable medium at the stable fixed point (u0, v0) for the nullclines
shown in Fig. 11.5. A propagating pulse, Fig. 11.9(a), can be constructed from the
four portions of the orbit DF, FG, GI, and ID that are sketched in the figure. For
ξ → +∞ in front of the pulse, we have u = u0 and v = v0. The leading edge of the
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pulse is a front on the short scale η1/2 that connects u0 = h−(v0) and u = h+(v0)

at essentially fixed v = v0 (DF in Fig. 11.5). The front velocity c = η−1/2C(v0)

can be read off from Fig. 11.8. Behind the front, v evolves slowly, with u following
adiabatically u = h+(v), maintaining f (u, v) � 0 (FG in Fig. 11.5), as governed
by Eq. (11.31b). Note that since c � 1, diffusion plays no role and this equation
reduces to

c dξv + g = 0. (11.34)
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Equation (11.34) can be directly integrated far away from the front position ξf to
give an implicit expression for v(ξ)

ξf − ξ = c
∫ v

v0

dv

g(h+(v), v)
. (11.35)

The back of the pulse must be a connection between u = h+(v) and u = h−(v) that
moves at the same speed c(v0) as the front of the pulse. Since this is a front in the
reverse sense, we must find the value of v = vb for which the speed given by the
velocity curve Fig. 11.8 satisfies

c(vb) = −c(v0). (11.36)

This is the portion GI in Fig. 11.5. The back of the pulse may be either trigger
(vb < v>), as shown in the figure, or phase (vb = v>, c(vb) < c(v>)). Finally,
v will evolve slowly back to v0 along the nullcline f = 0 (portion ID in the figure).
The distance between the front and the back, which is the width of the pulse, is
given by


ξ = c
∫ vb

v0

dv

g(h+(v), v)
, (11.37)

and is O(η−1/2) and so is large. Similarly, the relaxation back to u0 and v0 behind
the pulse occurs on this long length scale. In contrast, the widths of the fronts that
form the leading and trailing edges of the excited region are O(η1/2) and so are
small.

11.5 Waves

Waves are made up of a sequence of pulses, and constructed in an analogous way,
Fig. 11.9(b), except that the values of vb and vf at the back and front of the pulse
are determined self consistently from the relation

c(vb) = −c(vf ) = c, (11.38)

with the wave speed c a free parameter. This gives a trajectory on the nullcline plot
Fig. 11.5 such as ABCGHIA. . . Thus u varies on the length scale η1/2 at constant
v = vb or v = vf at the leading or trailing edge of each pulse, and v relaxes
between these two values along the nullclines f = 0 over the long scales η−1/2.
The wavelength λ of the waves (the distance between two successive leading edges
for example) is dominated by the slow portions, and is given by an expression
analogous to Eq. (11.37). From this, we may immediately construct the temporal
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Fig. 11.10 Dispersion relation for wave propagation plotted in form of speed c as
a function of the period P = 2π/ω. For small speeds, the calculation ignoring the
diffusion of v, Eq. (11.39) gives the dashed line, whereas more complete calcula-
tions suggest the slow branch extending to large periods for small speeds given by
the solid line.

period P = 2πω−1 = λ/c

P = 1

c
(
ξ1 +
ξ2) =

∫ vb

vf

dv

g(h+(v), v)
+

∫ vf

vb

dv

g(h−(v), v)
, (11.39)

which, with Eq. (11.38), is an implicit relation for c(P), Fig. 11.10. The more usual
form for a dispersion relationω(k) can be derived from this plot. Note that for typical
values of vf , vb the propagation speed c and the wavelength λ are both O(η−1/2),
whereas the period P, and so the frequency ω are O(1).

We have focused on waves in an excitable medium. However, since the u, v
trajectory ACGIA in Fig. 11.5 does not approach the fixed point D, the existence of
this fixed point is irrelevant to the argument. This means that the same construction
yields propagating waves in both excitable and oscillatory media. In the former case,
there is a maximum wave velocity set by the pulse velocity, which gives the velocity
at long wavelengths (the wave in this limit is formed of well-separated pulses). In
the oscillatory case, the velocity is unlimited within the present approximations.

The small speed limit of wave propagation corresponds to the loop ACGIA in
Fig. 11.5, shrinking to a small height so that the concentration of v at the leading and
trailing edges vf , vb approach the stall value v∗ (the trailing and leading edges must
have opposite velocities and so the loop must straddle the zero velocity value). The
analysis leading to Eq. (11.39) would then give a period and speed both proportional
to the height of the loop, so that P(c) goes to zero linearly (the dashed line in
Fig. 11.10). However, the approximations we have used break down in this limit
because the wavelength becomes small and the diffusion of v cannot be ignored,
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as was done in Eq. (11.34). The true behavior in this region is complicated, and a
branch of slower moving waves is often seen in numerical simulations, as shown
by the solid line in the figure. For very small η, a new scaling with η of the speed,
period, and wavelength can be found, known as Fife scaling. This limit will turn
out to be important in our discussion of spiral wave sources in Section 11.6, and so
we briefly describe it in the following Etude. Numerical tests on various reaction–
diffusion models do show however that the range of η over which the approximation
is reliable is restricted to exceedingly small values that may not be appropriate for
experimental systems.

Etude 11.1 Fife scaling for the period of waves at small speeds
Fife scaling is derived as follows. If diffusion is important in the v equation, we
suppose that all terms in Eq. (11.31b) are of the same order of magnitude, which
leads to the estimate

D δv/λ2 ∼ c δv/λ ∼ 1, (11.40)

where δv is the size of the variation from the stall value v∗ for the concentration
v between the fronts forming the pulses in the wave, and the last term is g(u, v∗),
which is O(1). In the calculation of the front solutions, where we used the ball-
in-potential analogy that was developed from the scaled form of the u equation
Eq. (11.33), the difference in the "potentials" 	(u+) and 	(u−) will be zero for
v = v∗ and proportional to δv for small δv. The “damping’’ C, which leads to the
“dynamics’’that just connects the two maxima, will scale as C ∼ δv, giving a speed

c ∼ η−1/2δ v. (11.41)

However the “time’’ T for the “motion’’ does not depend sensitively on δv and
remains of order unity, so that the front widths remain small, O(η1/2). Putting
together Eqs. (11.40) and (11.41) leads to

c ∼ λ−1 ∼ η−1/6, (11.42a)

P = λc−1 ∼ c−2 ∼ η1/3, (11.42b)

ω ∼ η−1/3. (11.42c)

Notice that now P ∝ c−2, so that the period becomes large for small speeds,
consistent with the solid curve in Fig. 11.10.

We have now shown that wave solutions exist in an excitable medium. Does
this mean that we should expect to see sustained waves in these systems? The
first thing to remember is that the spatially uniform state is stable in an excitable
system. Furthermore, a wave or pulse excitation will tend to disappear from the
system since, unlike linear waves, they do not propagate through one another and on
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collision tend to annihilate each other. At boundaries, reflection effects are usually
small, and the reflected disturbance is typically not large enough to re-excite the
medium, or is quenched by nonlinear interaction with the incoming disturbance.
Sources of the propagating disturbances are therefore crucial to the dynamic state
in excitable media. Of course, this is familiar in the biological examples of nerve
fibers and heart tissue. The propagating action potential pulse in a nerve fiber is
produced by the firing of the neurons, and, in a properly functioning heart, the
pulse of electrical activity that stimulates the muscle contraction is produced by
a specialized pacemaker region known as the sinus node, where the dynamics is
oscillatory rather than excitatory. In these systems, the presence of self-sustained
waves from sources localized within the tissue itself correspond to pathology, for
example tachycardia arrhythmias in the heart.

In one-dimensional versions of the two-variable reaction–diffusion equations
that we are using to understand excitable systems, Eqs. (11.21), there do not appear
to be any stable intrinsic sources of waves. Waves must be produced by higher-order
systems of equations or extrinsically, for example through inhomogeneities in the
parameters. In two-dimensional systems, the evidence suggests that there are also
no intrinsic point sources of azimuthally symmetric waves. Experiments in dishes
of chemical reagents often show such target patterns of point sources radiating
azimuthally symmetric waves. However, these are thought to be due to inhomo-
geneities producing local oscillations, such as specks of dust, and numerical and
analytic investigation lead to the conclusion that there are no stable axisymmetric
sources within the spatially homogeneous two-component equations Eqs. (11.21).

On the other hand, a rotating nonaxisymmetric source, which takes the geometric
form of a spiral, may produce a train of waves at large distances, and have a per-
sistence that we can understand by topological arguments, as in Section 10.2.5.
Thus spiral defects play a vital role in wave propagation in two-dimensional
excitable reaction–diffusion systems. We have already seen examples in Chapter 1.
Figure 1.18(a) shows a spontaneous pattern of spirals in a thin layer of chemicals
while Fig. 1.10 shows what may be spiral waves of electrical activity in a fibrillating
heart.

The extension of the spiral source to three dimensions is known as a scroll
wave. One way to think of a scroll wave is to draw a continuous one-dimensional
curve in space, for example a straight line, a circle, a spiral or even a trefoil knot.
Then imagine that each plane that intersects this line roughly perpendicular to the
line contains a rotating spiral whose center lies on the line; you end up with a
continuous stack of spirals that twist about in space with the line. The line that
links the spiral cores is a line defect called a filament. Analytical, numerical, and
experimental studies of scroll waves show that the filament is often dynamic, e.g.
a circular filament might contract or expand depending on the model and choice of
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parameters, or a filament might give birth to multiple filaments via some instability
(this has been proposed as one mechanism for the onset of ventricular fibrillation
in a heart). Whether the waves seen on the surface of the heart such as Fig. 1.10
can be approximately understood in terms of two-dimensional structures that are
roughly uniform over the thickness of the muscle, or whether there is a complex
three-dimensional scroll wave inside the ventricular wall remains an open question
of some importance since the answer would lead to different clinical strategies.
These questions motivate further research regarding the properties of filaments and
the waves that they emit.

Thus, in two- and three-dimensional excitable systems, we can expect to see self-
sustained wave patterns, but only in the presence of spiral sources. An important
question then arises, as we discussed in Section 10.2.5: for a given set of control
parameters can spirals rotate at any frequency? Or is there a unique frequency or
perhaps a discrete spectrum of possible frequencies? If there is a unique frequency,
what is its value, and how does it depend on the parameters of the equations describ-
ing the system? In particular we might ask how the frequency scales with the small
parameter η in Eqs. (11.21)?

We will focus our investigation of these issues on the simpler case of a two-
dimensional excitable system. In the next section, we will learn how to construct
spiral solutions for the two-variable reaction–diffusion model Eqs. (11.21). In the
following section, we then discuss the stability of spirals.

11.6 Spirals

11.6.1 Structure

As was the case for other propagating solutions that we have discussed, spiral wave
solutions to Eqs. (11.21) for small η can be constructed from the motion of fronts,
as sketched in Fig. 11.11. The propagating region of the excited state (shaded in
the figure) lies between two fronts, a leading and trailing edge, that both have the
form of a spiral.

The new feature of the fronts forming a spiral from the ones considered so far is
that they are curved rather than straight. Using the fact that the widths of the fronts
are small compared to other lengths in the problem, the effect of the curvature on
the dynamics is given simply by the so-called eikonal approximation13

cn(v) = c(v)− K , (11.43)

13 Note that curvature away from the direction of propagation decreases the propagation speed. You may find
the eikonal equation written in the literature with either sign of the curvature correction term, depending on
different conventions for how the sign of the curvature is defined.
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Fig. 11.11 Sketch of a spiral. The full line denotes the narrow front connecting
the excited region (u = h+(v)) (shaded) with the unexcited (u = h−(v)) region
(i.e. the “front’’ and the “back’’ of the pulse of excitation). The spiral tip rotates
around a circular core indicated by the dashed line, leading to a propagating pulse
train at large distances from the core.

which we derive in the Etude below. This equation expresses the normal velocity
of a curved front cn in terms of the propagation speed c(v) of a plane front and in
terms of the curvature K of the front (here the inverse of the radius of the curved
front). The plane-front speed c(v) is evaluated at the value v of the slow variable
that coincides with the location of the front for the fast species u.

Etude 11.2 Derivation of the eikonal approximation
We are solving Eq. (11.21a) for a curved front in u(x, t) for a fixed v concentration
v = vf

∂tu = η−1f (u, vf )+ ∇2u. (11.44)

Consider a circular front at a radius R. Then the Laplacian acting on u becomes

∇2u = ∂2
r u + r−1 ∂ru � ∂2

r u + R−1 ∂ru, (11.45)

where the second approximate equality is valid if the radius is large compared to
the narrow width of the front so that we can neglect the variation of r over the
extent of the front. In this limit, we can also approximate the motion as steady, and
write in the vicinity of the front where u is changing

u(r, t) � u(ξ) with ξ = r − ct. (11.46)
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so that
∂t → −c dξ. (11.47)

Equation (11.44) becomes

d2
ξ u + (c + R−1)dξu + η−1f (u, vf ) = 0, (11.48)

which is the same equation as for the propagation of a straight front Eq. (11.32)
except for the replacement c → c+R−1. This then gives Eq. (11.43) with K = R−1

the front curvature. The coefficient of unity in front of the curvature derives from
the diffusion constant of unity in Eq. (11.21a).

To determine the value of v at the fronts we need to solve the slow evolution
equation in the region between them

∂tv = g(h±(v), v)+ D ∇2v, (11.49)

with h+ used in the shaded region in Fig. 11.11, and h− in the unshaded region.
At large distances from the central core, a spiral rotating at frequency ωs will

produce waves that are approximately planar, with the wave number qs fixed by
the dispersion relation ω(qs) = ωs. The values of v at the front and back of the
excited region are then the values vf and vb that are consistent with a wave of period
2π/ωs, using the dispersion relation produced by the calculation of Section 11.5.
For example, the concentration profiles along the arrow in Fig. 11.11 will be as in
Fig. 11.9.

If we now follow the line in Fig. 11.11 that corresponds to the front or back of
the excitation pulse, from the distant region where the straight front approximation
is good, inwards toward the core region, the value of v will begin to change away
from vf or vb as the two-dimensionality of the structure becomes important. Through
the core region, the value of v must vary continuously, interpolating between vf

and vb. This means that the concentration must pass through the stall value v∗ some-
where. If we could ignore the curvature correction in Eq. (11.43), there would be
no forward motion of the front at this point, and this would identify a point rotating
around the core circle in Fig. 11.11. In practice, the curvature correction is likely to
be significant and so a different value v = vc identifies this circumnavigating point.

What about the frequency ωs of the spiral, and the question of whether there
is a particular value determined by the construction of the solution, or whether
all frequencies or a continuous range of frequencies are possible? We can argue
phenomenologically that, if a particular value of the frequency is determined, then
for small enough η it is likely to be determined by the Fife scaling limit, in which
the frequency scales as ωs ∼ η1/3.

The argument goes something like this. In the core of the spiral, the curvature of
the wave fronts becomes important. The simplest assumption is that the curvature
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in the core, which has the dimensions of inverse length, is of the same order of
magnitude as the wave number qs of the waves far away, i.e. that a single length
scale defines both the core structure and the asymptotic wavelength. On the other
hand, analyzing the effect of wave front curvature K on the front propagation
velocity gave the correction Eq. (11.43). We expect the core radius to be set by the
length scale at which the curvature correction becomes comparable to the planar
velocity, K ∼ c. With the single length scale assumption this means that qs ∼ c.
For a general value of v away from the stall value, we found that c ∼ η−1/2 and
q ∼ η1/2 which is incompatible with this relation. With v near the stall value v∗
that gives Fife scaling, we have c ∼ q ∼ η−1/6, which is now consistent with this
relationship.

Unfortunately, in the Fife limit the diffusion of v cannot be ignored as it was in the
simple discussion of pulses and waves in Section 11.4 and Section 11.5; this makes
the analysis of the structure of the spiral quite hard in general. However, note that,
even in this limit, the width of the front is still small compared with the radius of
curvature, and so approximations based on the narrowness of the front are still good.
With significant effort, it has been shown that a unique spiral frequency exists in var-
ious simplifying limits, for example for small D in Eqs. (11.21). The case of a “singly
diffusive medium’’given by D = 0 is discussed in the following Etude.14 It is worth
remarking that the same conclusion was found for spiral structures in the CGLE
which applies to oscillatory media in the limit of weakly nonlinear behavior, as
described in Section 10.2.5. Thus it is likely that this is the general result.

Etude 11.3 Spirals in the singly diffusive limit
In the singly diffusive limit, given by Eqs. (11.31) with D = 0, a number of sim-
plifications make the full solution for the spiral more straightforward. Rather than
carefully justify the assumptions involved, we will simply state them, and let the
reader check their consistency with the final results.

An important simplification for D = 0 is that the concentration of the slow
species v is constant along the front (at some value vf ) and back (at some value vb)
of the propagating pulse that forms the spiral. Thus Eq. (11.43) is to be solved
with a constant speed c(vf ) or c(vb). Furthermore vf and vb are close to the stall
value v∗ (i.e. the orbit ABCGHI in Fig. 11.5 forming the propagating pulses is thin
straddling v = v∗) and the properties of f (u, v) and g(u, v) are needed only near
this value.

Equation (11.49) with D = 0 is used to connect the values vf and vb. The spiral
rotating at frequency ωs can be parameterized through the coordinates of the front

14 This Etude is derived from the paper “Scaling regime of spiral wave-propagation in single-diffusive media’’
by Karma [53]. You can find more details of the calculation there.



434 Excitable media

at distance r from an origin

x = r cos(θf (r)− ωst), y = r sin(θf (r)− ωst), (11.50)

where we have introduced the polar angles of the front and back as a function of
radius θf (r) and θb(r). Equation (11.49) now reduces to

ωs ∂θv = g(h±(v), v), (11.51)

independently of the radius (where we choose h+ or h− depending on the portion
of the u-nullcline that is relevant to the front or the back propagation). Integrating
between the front and the back, we get

ωs(vb − vf ) = g∗+(θb − θf ), (11.52)

where, since vf and vb are both near v∗ we can simply evaluate the right-hand side
of Eq. (11.51) using v = v∗ to give g(h+(v∗), v∗), which we write as g∗+. Similarly
integrating between back and front gives

ωs(vf − vb) = −g∗−[2π − (θb − θf )], (11.53)

where g∗− = −g(h−(v∗), v∗) (the minus sign is inserted so that g∗− is positive).
These equations are easily solved to give

vb − vf = πω−1
s

g∗+g∗−
g∗+ + g∗−

, (11.54a)

θb − θf = π
g∗−

g∗+ + g∗−
. (11.54b)

The angle between the front and the back is independent of radius, so that the spiral
has the form shown in Fig. 11.12. To leading order in |vb,f −v∗| we can approximate
the propagation speed as

c(vf ) = −c(vb) = c′δ, (11.55)

where

c′ = − dc

dv

∣∣∣∣
v=v∗

, (11.56)

and

vf = v∗ − δ, (11.57a)

vb = v∗ + δ. (11.57b)

Then according to Eq. (11.54a)

δ = πω−1
s

2

g∗+g∗−
g∗+ + g∗−

. (11.58)
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ub− uf

back

front

Fig. 11.12 Spiral in the singly diffusive limit. The heavy lines are the front and
back of the pulse of enhanced “fast’’concentration u. They are spaced by a constant
angle θb − θf in this case. Note that unlike the spiral in Fig. 11.11 the front and the
back meet at a sharp junction, rather than the smooth curve there. This singularity
is removed at smaller scales than analyzed here.

As yet, the frequency ωs is unknown. This is determined by constructing the full
shape θf (r) (which, since according to Eq. (11.54b) the angle between front and
back is independent of the radius, immediately gives θb(r) as well) using the eikonal
equation Eq. (11.43). It is convenient to introduce the variable

ψ = r∂r θf . (11.59)

In terms of this function, it can be shown after some algebra that the quantities
appearing in the eikonal equation are

cf n = ωr

(1 + ψ2)1/2
, (11.60)

K = ∂rψ

(1 + ψ2)3/2
+ ψ

r(1 + ψ2)1/2
. (11.61)

From Eq. (11.43), we can then write down a differential equation for ψ(r). The
variables can be rescaled

r̄ = cr, ω̄ = ωs/c
2, (11.62)

with c = c(vf ) the speed the front would have in the absence of curvature, to give

∂r̄ψ = ω̄r̄(1 + ψ2)− (1 + ψ2)3/2 − ψ(1 + ψ2)

r̄
. (11.63)

The boundary condition at large distances is defined by the approach to plane
waves

∂rθf = qs = ωs/c, r → ∞ (11.64)
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so that in terms of ψ and the scaled variables the boundary conditions are

ψ → ω̄r̄, r̄ → ∞, (11.65a)

ψ = 0, r̄ = 0. (11.65b)

Equation (11.63), with (11.65), leads to an eigenvalue condition for ω̄. This can be
evaluated numerically to give

ω̄ = 0.331. (11.66)

In unscaled units this gives

ωs = 0.331c2. (11.67)

Equations (11.55), (11.58), and (11.67) lead to the final result

ωs = 0.93

(
g∗+g∗−

g∗+ + g∗−

)
2/3(c′)2/3, (11.68)

which determines the spiral frequency in terms of parameters of the reaction–
diffusion equations. Thus this analysis predicts a unique frequency of the spiral,
determined by the reaction terms. Note that according to Eq. (11.41) c′ = O(η−1/2)

and so ωs = O(η−1/3) and |vf ,b − v∗| = O(η1/3). These values are as predicted
by the Fife scaling. They can also be used to justify the assumptions made at the
beginning of the analysis.

The form of the solution shown in Fig. 11.12 is disturbing since the front and
back form a sharp junction and v is discontinuous at the center, whereas we would
expect a smooth solution to the equations. However, it must be remembered that the
solution has been constructed on a length scale large compared with the O(η1/2)

width of the front and back. Further analysis shows that the apparent discontinuities
are indeed resolved on this finer length scale.

The existence of a unique spiral frequency has important ramifications for pre-
dicting the behavior of excitable or oscillatory media. In many situations, instead
of basing our understanding on the spatially uniform state and its instabilities, or
the whole range of propagating wave states, we can instead focus on the properties
of the waves at the single frequency ωs and corresponding wave number qs, and
their spiral sources, since these will dominate the persistent state. This approach has
already been described for waves and spiral sources in the CGLE in Section 10.2.5.

11.6.2 Formation

We have seen that spirals are persistent structures, but how do they form initially?
A common mechanism is from breaks in wave fronts, induced by inhomogeneities
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Fig. 11.13 (a) Single propagating pulse. Region shaded is the excited medium
between the front and back, with u = h+(v) and v varying between vf and vb. (b)
Broken pulse. The curved parts of the wave front may either retract, advance so
that the pulse rejoins, or curl up to form a spiral pair.

in the medium, external perturbation (e.g. a hot wire in a chemical reaction or a
damaged region in heart tissue), or by the collision of two wave fronts.

The simplest case to consider is a single straight pulse in an excitable medium.
Suppose the wave front is cut into two separated pieces by some mechanism, as
shown in Fig. 11.13. The tips may either retract, when the pulse will eventually
dissipate, or may tend to grow. Which happens will depend on parameters such as
the excitability of the resting medium. For the case of tip growth, we can argue
as before that one point on the tip interface will instantaneously have zero normal
velocity, so that the pulse will tend to pivot about this point. (A too large curvature
leads to the tip retraction.) As time advances this can lead to a pair of counter-
rotating spirals. If the break in the pulse is not large enough, an alternative outcome
is that the two halves of the pulse reconnect.

11.6.3 Instabilities

The existence of a unique spiral frequency has important ramifications for predicting
the behavior of excitable or oscillatory media. In many situations, instead of basing
our understanding on the spatially uniform state and its instabilities, or the whole
range of propagating wave states, we can instead focus on the properties of the
waves at the single frequency ωs and corresponding wave number qs, and their
spiral sources, since these will dominate the persistent state. Various instabilities
have been identified in spiral wave systems. These instabilities may be important in
biological applications, for example signaling the onset of fibrillation in the heart
muscle. There are two different classes: instabilities of the waves far away from
the core where the curvature has a small effect, and instabilities of the core itself.

The instabilities of the distant wave trains can be understood in terms of the sec-
ondary instabilities of the spatially periodic plane wave states. This is analogous
to the stability balloon for type I-s systems discussed in Section 4.2.1: instability
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occurs when the wave number qs produced by the spiral source passes outside
of the stability balloon of plane wave states. Thus the usual types of instabilities
must be considered, remembering that these are secondary instabilities about a
spatially periodic state so that a Bloch analysis is needed. We might expect long
wavelength longitudinal (Benjamin–Feir) and transverse instabilities as in the com-
plex Ginzburg–Landau amplitude equation for oscillatory instabilities discussed in
Chapter 10. In addition, there might be finite (Bloch) wave number instabilities, and
these are likely to depend on the details of the dynamics of the excitable medium.
One interesting case is when the wave vector of the instability is twice that of the
wave itself – a “zone boundary’’ instability. This leads to a period doubling of the
waves, known as alternans in the heart literature. As in the case of instabilities of
spirals in the CGLE, the instability may be benign if it is convective, and then we
must seek the point of absolute instability.

An example of a core instability is the meandering instability for which the spiral
tip begins to meander periodically at some new independent frequency in a flower-
like pattern, as in Fig. 11.14, rather than rotating uniformly around a circle. One can
find a rotating frame of reference for which the path of the tip forms a closed cycle
but in the laboratory frame, the path will typically not be closed. The meandering
instability is often encountered in FitzHugh–Nagumo type models as a continuous
Hopf bifurcation that introduces a new frequency ωm, the meander frequency. The

(d) (e)

(c)
(b)

(a)

Fig. 11.14 Paths traced out by the spiral tip after the meander instability for
various parameters in the FitzHugh–Nagumo reaction diffusion model. (From
Winfree [113].)
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pattern of the flower traced out by the tip is determined by the ratio ofωm to the spiral
frequency ωs. For the degenerate case, ωm = ωs, the tip advances progressively in
a cycloid motion in some particular direction. For ωm/ωs irrational, the motion is
quasiperiodic. The tip may even develop a chaotic motion away from the onset of
the instability, when the meander becomes large.

11.6.4 Three dimensions

In a three-dimensional reaction–diffusion system, the spiral core defines a line in
the medium. To define the spiral defect, we need to specify the location of this line,
and also a twist variable that defines how the phase of the spiral varies along the core
line. Clearly, complicated structures can be imagined where the core forms various
closed loops and knots. Often only the surface of the three-dimensional medium
is readily accessible to experimental probes. The experimenter is then left with the
difficult task of guessing the three-dimensional structure underlying observations
on the two-dimensional surface. For example, a counter-rotating spiral pair on
the surface may represent opposite ends of the same spiral core line intersecting
the surface, or instead may be ends of two different three-dimensional spirals.
The role of the three-dimensional structure on instabilities of the spirals on the
two-dimensional section is also an important question.

11.6.5 Application to heart arrhythmias

An issue of considerable interest to medical doctors and biomedical engineers is
whether the general behavior of spirals in excitable media is associated with heart
arrhythmias in the intact undamaged heart, including perhaps the fatal ventricu-
lar fibrillation. An appealing scenario that is proposed in the cardiology literature
assigns various medical symptoms diagnosed via electrocardiogram measurements
to particular dynamical states of the heart muscle excitable media, see Fig. 11.15.
Thus various types of tachycardia (an unusually rapid heart beat) may correspond
to the development of a self-sustaining spiral structure, or to a counter-rotating
pair of spirals. Fibrillation is then the breakdown of the simple spiral structure to a
spatially disordered state, with perhaps many spirals forming and annihilating, and
moving in a complex way.15

We would then like to know what are the conditions that render the heart suscep-
tible to spiral formation? And what are the conditions that lead to the breakdown of
this spiral to a disordered structure? From the general perspective of the dynamics
of excitable media, neither of these phenomena are unexpected and indeed they are

15 In small hearts such as the frog heart, there is evidence that an electrocardiogram showing fibrillation may
correspond to a single, rapidly moving spiral.
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Fig. 11.15 Possible relationship between dynamical states and arrhythmias in the
heart. (From Qu and Garfinkle [90].)

readily found in numerical simulations of reduced models and of ionic models in
simple or realistic geometries, as parameters and external stimuli are varied. For
example, one could easily imagine that the initial spiral might form by a wave
breaking at a gross inhomogeneity produced by muscle damage due to a lack of
oxygen in a heart attack. Or a spiral might form from an increased sensitivity to
some change in the dynamical properties of the excitable medium, at smaller but
always present inhomogeneities. Similarly, the well-documented sensitivity of the
heart to tachycardia if an electrical stimulus is applied in the “vulnerable period’’
after an action potential pulse has propagated through the heart can be understood in
terms of the resulting secondary wave front propagating into the refractory region
behind the primary wave front and consequently breaking as in Fig. 11.13. The
breakdown of the single spiral to a disordered state might result from any of the
various mechanisms of spiral instability discussed in Section 11.6.3, either at the
core or further out.

It is much more difficult to make definite statements regarding whether spiral for-
mation and breakdown actually do occur in apparently healthy hearts, and to predict
how the occurrence can be prevented through the effect of drugs on the properties
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of the heart tissue, or the consequences counteracted by judicially applied, small
electrical perturbations. There is some experimental evidence and related numeri-
cal simulations of reduced equations that the breakdown only occurs in sufficiently
thick heart muscle. This suggests that ventricular fibrillation is a three-dimensional
phenomenon. Another suggestion is that the strongly anisotropic electrical conduc-
tivity properties of the heart muscle due to the fibrous nature, and the rotation of the
anisotropy direction through the depth of the heart muscle wall, are also likely to be
important. It is currently a highly active field of theory, numerics, and experiment
to develop and test these ideas. Issues that immediately arise are the applicability
of ideas developed for a spatially uniform excitable medium to the heart, which
has a complicated topology and geometry, and is by no means homogeneous at the
scale of the wave fronts, which may be only a few cell lengths in width. Theory and
numerics to address these questions, and systematic experiments both on hearts in
situ in the body and portions of the muscle sustained in a living state outside of the
body, or cultured layers of muscle cells, show the promise of allowing researchers
to answer these questions in the near future.

11.7 Further reading

(i) The ground breaking Hodgkin–Huxley work is described in their paper “Aquantitative
description of membrane current and its application to conduction and excitation in
nerve’’ [46].

(ii) Chapters 5 and 6 of the book Theoretical Neuroscience: Computational and Mathemat-
ical Modeling of Neural Systems by Dayan and Abbott [29] give a modern discussion
of neuron excitability and of the Hodgkin–Huxley equations.

(iii) Classic papers on the mathematical treatment of propagating fronts, pulses and waves,
and spirals in excitable media from which our discussion is derived are “Waves in
excitable media’’ [50] and “A geometrical-theory for spiral waves in excitable media’’
[54] by Keener.

(iv) A discussion of the application of the ideas of excitable media to arrhythmias in the
heart is given in the article by Qu and Garfinkle [90].

Exercises

11.1 Thought questions about excitable media:

(a) Do all excitable media have the same property as neurons and heart
tissue, that two pulses that approach each other will annihilate and
disappear? If not, find a counter-example.

(b) Linear waves like light waves and sound waves can be refracted (their
direction of propagation altered) as they pass from a medium of one index
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of refraction to a medium with a different index of refraction. Is it pos-
sible for a nonlinear wave in an excitable medium to be refracted? Does
Snel’s law of refraction hold for waves in an inhomogeneous excitable
medium?

11.2 Absence of reflected action potentials: Explain why an action potential
cannot reflect from the end of an axon to produce an action potential traveling
in the reverse direction. Similarly, explain why a propagating pulse in an
experimentally isolated piece of heart tissue cannot produce a reflected pulse
when the pulse reaches a physical boundary of the muscle.

11.3 Nullclines for the Oregonator: Sketch the nullclines f (u, v) = 0 and
g(u, v) = 0 for the two-variable reduction of the Oregonator model of Exer-
cise 3.9 for representative values of the parameters b and q. (Remember that
we are interested only in positive u and v.) Find a set of values of b and q for
which you expect relaxation oscillations for small values of η. (Hint: look
at small q.)

11.4 Relaxation oscillations in the Oregonator: For η = 0.01 and for the values
of b and q that you chose in the previous exercise to lead to relaxation
oscillations, solve for the time evolution of the two-variable reduction of the
Oregonator model. Make a plot of u(t) and v(t) and describe the oscillations.
(If you do not see oscillations, reconsider your choice for the values of b
and q!) Also, plot the u(t)−v(t) trajectory on the nullcline plot and compare
what you see with the discussion in Section 11.2.1.

11.5 Van der Pohl model: Investigate the oscillatory dynamics of the van der
Pohl equation (11.12) for small and large values of γ . Plot x(t) and also
“phase space plots’’ of ẋ = dtx against x as t varies. The relaxational oscil-
lations for large γ as a function of time are reminiscent of the dynamics at a
fixed point in space during pulse-train propagation in the FitzHugh–Nagumo
model.

11.6 FitzHugh–Nagumo model: The FitzHugh–Nagumo model is described by
the equations

∂tu = η−1
(

3u − u3 − v
)

+ ∇2u, (E11.1)

∂tv = u − a − bv. (E11.2)

In the small η limit, for what positive values of a and b is the system (i)
oscillatory? (ii) excitable monostable? (iii) excitable bistable?

11.7 Different forms of the FitzHugh–Nagumo model: There are many
different forms, other than Eqs. (11.17), in which you will find the FitzHugh–
Nagumo equations written in the literature. Another common form (used, in
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the source of Fig. 11.14 for example) is

∂tu = ε−1(u − u3/3 − v)+ D∇2u, (E11.3a)

∂tv = ε(u + β − γv). (E11.3b)

By appropriately rescaling x, t, u, v variables, transform these equations to
the form of Eqs. (11.17) and relate the parameters ε,β, γ to the parameters
η, a, b there.

11.8 Relaxation oscillations in the FitzHugh–Nagumo model: Sketch u(t)
and v(t) for the relaxation oscillations described by Eqs. (11.22) for the
FitzHugh–Nagumo model with

f (u, v) = 3u − u3 − v, (E11.4a)

g(u, v) = u − a − bv, (E11.4b)

with a = 0 and b = 1/5.
11.9 Nullclines for the Barkley model: In 1991, Dwight Barkley proposed a

simplified version of the FitzHugh–Nagumo model that could be simulated
with great efficiency in large two- and three-dimensional domains. His model
has the form

∂tu = η−1u(1 − u)(u − uth(v))+ ∇2u, (E11.5a)

∂tv = u − v, (E11.5b)

with

uth(v) = v + b

a
. (E11.6)

For this model

(a) Produce a plot similar to Fig. 11.4 by plotting the nullclines and by
indicating with arrows the signs of ∂tu and ∂tv in the various areas
bordered by the nullclines.

(b) Assuming a small value of η, determine for what parameter values a
and b this model has excitable dynamics and oscillatory dynamics.

(c) Use the potential construction of Section 11.3 to determine when the
Barkley model supports the propagation of pulse trains (waves).

We encourage you to read the Barkley paper [10] as a nice example of how
one can use insights from nonlinear dynamics and numerical analysis to
invent a mathematical model for efficient simulation. From his website at the
University of Warwick in England, you can also download a computer code
called EZ-Scroll that integrates his equations in three-dimensional domains
and that visualizes the output.
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11.10 Piecewise linear model: A “piecewise linear’’ form of the reaction kinetics
Eqs. (11.21) allows many calculations to be done more easily. The kinetics
are defined by the functions

f (u, v) =
{ −u − v for u < a,

1 − u − v for u > a,
, (E11.7a)

g(u, v) = u − bv. (E11.7b)

Sketch the u- and v-nullclines for a = 0.25 and for (i) b = 0.2 and (ii)
b = 1. For what range of b is the reaction kinetics (i) monostable and (ii)
bistable for this value of a and for small η?

11.11 Effective potential for fronts in the piecewise linear model: For the reac-
tion kinetics of Exercise 11.10 with a = 0.3 and η small, consider the front
connecting the rest state u = 0, v = 0 with the excited state at this value of
v, i.e. u = 1, v = 0. Plot the effective potential 	(u) for the “rolling ball’’
analogy (cf. Fig. 11.6).

11.12 Stationary front in the piecewise linear model: For the reaction kinetics
of Exercise 11.10 with a = 0.25 and η small, what is the value of v for which
the front connecting the small-u and large-u portions of the u-nullcline is
stationary (i.e. v = v∗ giving the stall solution)?

11.13 Moving front in the piecewise linear model: Using the insight given by
Exercise 11.11 calculate as a function of the parameter a the speed of the
front connecting the rest state u = 0, v = 0 with the excited state at this
value of v, i.e. u = 1, v = 0 for the reaction kinetics of Exercise 11.10 for
η small. Verify that in the approximation of Section 11.3 this front speed is
zero for a = 0.5.

11.14 Pulse in the piecewise linear model: Find the propagation speed c and
calculate and plot the pulse shapes u(x − ct) and v(x − ct) as a function
of ξ = x − ct for the excitation pulse that propagates in the rest state of the
reaction–diffusion system with the kinetics of Exercise 11.10 with a = 0.25
and b = 0.2 in the small-η approximation.

11.15 Dispersion relation of waves in the piecewise linear model: Calculate and
plot expressions for the dispersion relationship C(P) for the scaled speed
C = η1/2c as a function of the temporal period P for waves propagating
in the reaction–diffusion system with the kinetics of Exercise 11.10 with
a = 0.25, b = 0.2, and η small. Use the scalings of Section 11.3 and do not
worry about the breakdown of this scaling that occurs for small C.
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Numerical methods

12.1 Introduction

Three kinds of mathematical problems have appeared frequently earlier in the book:
the time evolution of a pattern-forming system, the identification of stationary
states (e.g. a uniform state or a periodic hexagonal lattice), and the calculation
of growth rates σq (eigenvalues) for small-amplitude perturbations of a stationary
state. Except for simplified mathematical models that often cannot be compared
quantitatively with experiment, and except for rather narrow parameter regimes
such as just beyond the onset of a supercritical bifurcation, these three classes of
problems cannot be solved analytically. It can then be helpful to use numerical
methods on a digital computer.

In this chapter, we discuss some numerical ideas and algorithms to solve the first
two of these three kinds of problems.1 The discussion will be useful in several ways.
First, many difficult concepts associated with pattern formation such as spatiotem-
poral chaos can often first be conveniently studied using a numerical method since
the alternatives of experiments or analytics can be more time consuming, expen-
sive, or difficult. Second, the great power of current computers and of modern
numerical algorithms increasingly allow the investigation of evolution equations
that describe a nonequilibrium system quantitatively and sometimes provide the
only way to obtain information about a system. Simulations thus complement the-
ory and experiment as an important third way of exploring and understanding
nonequilibrium phenomena. Third, the following discussion should help you to
understand the assumptions that underlie some of the numerical methods used to
study pattern-forming systems and so give you a sense of when you can trust the
simulations.

1 For solving scientific problems, there is relatively little to learn about the numerical calculation of eigenvalues
of a N × N matrix since the software is mature and can be invoked knowing just the matrix elements and the
type of the matrix (e.g. whether it is banded or symmetric). Further information can be found in Refs. [89]
and [28].
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The diversity of pattern-forming systems and of their evolution equations is so
great that it might seem impossible to describe in one chapter ideas that could be
broadly useful. And it is the case that for the Boussinesq equations that describe a
three-dimensional convecting flow or for a detailed model of electrical wave prop-
agation in three-dimensional heart tissue, many years of computational experience
are needed to develop a suitable algorithm, to implement the algorithm as a com-
puter code, to debug and to validate the code, to optimize the code for a particular
computer architecture, and finally to obtain scientific insights from results pro-
duced by the code. If the need arises for you to carry out a simulation, you should
be prepared to talk to or to collaborate with experts in computational science and
in numerical analysis.

However, a strength and elegance of numerical methods is that a few simple
ideas provide a foundation to understand many algorithms, and these ideas can be
usefully explained within the space of a chapter. For example, two ideas used in
many numerical algorithms are iteration and Taylor series. Iteration refers to the idea
of generating a sequence of vectors that converge to some desired but unknown
answer, and the Taylor series provides a way to approximate a function with a
simpler form over small space-time regions. (In Section 12.4, we will combine
these two ideas to derive Newton’s method, an algorithm that can efficiently find
approximate solutions of nonlinear equations.)Afurther strength of many numerical
algorithms is that their mathematical structure depends only weakly on the details
of the equations of interest. For example, Newton’s method has the same form when
used to find a root of a polynomial or of some arbitrary transcendental equation
such as x − cos(x) = 0.

Numerical investigations are similar to laboratory experiments in that they pro-
vide only approximate answers to specific questions. For a particular choice of
parameter values, for a particular choice of boundary conditions, for a particular
initial state, and for some finite observation time, we can learn something about
the behavior of a specific solution to the equations of interest. To discover trends
in behavior – the more prized form of scientific insight – a numerical study has to
be repeated, often many times, for different values of parameters spanning some
range of interest and even then only an approximate form of the behavior can
be deduced. In contrast, an analytical method can often predict explicitly how
some phenomenon varies with a parameter. For example, the amplitude equation
technique discussed in Chapter 6 predicts that the intensity of a pattern-forming
field should increase according to the functional form

√
p − pc in the limit that

some bifurcation parameter p approaches its critical value pc. However, explicit
mathematical predictions do not make analytical methods automatically superior
to numerical or experimental approaches since analytical methods often depend on
mathematical assumptions (e.g. that some quantity like p − pc is sufficiently small)
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or on physical assumptions (e.g. that some poorly understood physical effect can be
ignored in the evolution equations) and the range of validity of these assumptions
may not be known beforehand. Necessarily, progress in understanding nonequilib-
rium pattern formation requires repeated comparisons of analytics, simulation, and
experiment.

The rest of this chapter is divided into the following sections. In Section 12.2,
we discuss the central issues of representation and discretization, how to reduce the
infinitely many degrees of freedom associated with a continuous field to the finitely
many numbers that a computer can work with. In this section, we also discuss finite-
difference approximations to derivatives, the convergence rates of finite-difference
approximations, and the implications of floating-point arithmetic on the conver-
gence of these approximations. In Section 12.3, we discuss explicit and implicit
time integration algorithms and how the largest discrete time step is determined
by a balance of numerical stability and numerical accuracy. We then show how a
technique called operator splitting combines the explicit and implicit methods into
a practical and broadly useful numerical method. We finish this section with some
comments about how to estimate the space-time resolution needed to simulate some
pattern-forming system. In Section 12.4, we discuss how the time-independent (sta-
tionary) states of known evolution equations can be found using iterative methods.
A particularly important and widely used iterative algorithm is Newton’s method,
which converges rapidly provided that a good initial approximation for the solution
is known.

12.2 Discretization of fields and equations

12.2.1 Finitely many operations on a finite amount of data

To solve any given problem, a digital computer can only carry out a finite number
of operations on a finite amount of data in a finite amount of time.2 This elemen-
tary observation has profound implications regarding how to represent and to solve
equations on a computer. Many concepts that you take for granted from your expe-
rience with real numbers, continuity, calculus, and linear algebra cannot be used
directly to solve a problem on a computer.

Let us mention a few examples.Anumber in a digital computer is stored as a fixed
group of bits (zeros and ones) called a computer word. The fixed size of a computer

2 All numerical calculations on a digital computer reduce to a finite (although possibly long) sequence of ele-
mentary operations that act on one or two computer words at a time to produce some new computer word. For
example, the binary operation of adding two 64-bit floating-point numbers corresponds to carrying out finitely
many manipulations of the 128 bits of the two numbers to produce a final 64-bit number that approximates
their sum. The details of carrying out the sequence of elementary operations are hidden from the user by the
compiler and by the computer’s hardware.
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word implies that a computer has only a finite set of numbers available – called its
floating point numbers – to represent all real numbers. For example, many personal
computers currently use 64-bit words and so can store only about 264 ≈ 1019 float-
ing point numbers. Since there are only finitely many numbers that a computer can
work with, a small error is typically incurred each time the value of a mathematical
expression is stored by the process of rounding, which replaces the value by the
closest floating point number. Rounding errors can perturb mathematical formulas
and computer algorithms in unexpected ways, and are one of the many details to
consider when trying to solve a mathematical problem with a digital computer. As
one example, we will see in the next section how rounding prevents finite-difference
approximations from converging toward the derivatives that they approximate (see
Fig. 12.1 and the related discussion).

As a second example, consider a set of N linear equations in N unknowns written
in the form Mx = b where M is an N × N matrix, b is a given N -dimensional
vector, and x is the N -dimensional solution that we would like to find. In your
linear algebra course, you learned that a unique solution x exists for each right
side b provided that the determinant of M is nonzero:3 det(M) �= 0. However, this
analytical criterion is unreliable when used in a computer program. The determinant
of a nonsingular matrix can easily turn out to be smaller in magnitude than half the
smallest positive floating point number (about 10−323 for a 64-bit computer number)
in which case the numerical value of the determinant rounds to zero (the nearest
floating point number), giving the wrong conclusion that the matrix is singular. For
example, the 400×400 diagonal matrix D = 0.1I (0.1 times the 400×400 identity
matrix I) analytically has a nonzero determinant of (0.1)400 = 10−400 which rounds
to zero. Yet D is obviously nonsingular since it has an explicit inverse matrix
given by D−1 = 10I. Computational scientists instead use a criterion based on the
condition number of a matrix to determine numerically whether the corresponding
set of linear equations has a solution. (See Exercises 12.7 and 12.8.) The condition
number is insensitive to the overall magnitude of matrix elements and predicts
correctly that the diagonal matrix 0.1I is nonsingular for any matrix size N .

As a final example, we note that the familiar Taylor series for the exponential
function

ex =
∞∑

n=0

xn

n! , (12.1)

3 Amatrix with a nonzero determinant has a matrix inverse M−1 in which case the solution can be written formally
as x = M−1b. However, this is not the recommended way to solve linear equations on a computer since there
are numerical algorithms (e.g. Gaussian elimination) that determine x more efficiently and more accurately by
avoiding the explicit construction of the matrix inverse [55].
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requires the summation of infinitely many terms and so cannot be evaluated with
finitely many operations. To evaluate this series for some argument x, a computer
program must give up the mathematical goal of obtaining an exact answer and
instead employ some strategy that yields an approximate answer after finitely many
operations. A similar approach is needed for many mathematical problems solved
on a computer.

12.2.2 The discretization of continuous fields

Because a computer can work with only a finite amount of data, a first step in
preparing a mathematical problem for computer solution is to discretize the problem
by reducing it to finitely many pieces. For pattern-forming systems, this involves
choosing some representation for each field u(x, t) and then truncating the repre-
sentation to some finite set of numbers. There are two widely used strategies for
discretizing continuous fields: the Galerkin method, in which a field is expanded
in terms of a specified set of basis functions and the finite-difference method, in
which the values of the function are assumed to be known at a finite set of space-
time points. We discuss these in turn and then compare them. For simplicity, we
restrict our discussion to the discretization of a scalar field u(x) of a single vari-
able x. The generalization to vector fields that depend on several coordinates is
straightforward.

In the Galerkin method, a basis4 of functions φn(x) is identified and the field u(x)
is expanded in that basis as follows:

u(x) =
∞∑

n=0

unφn(x). (12.2)

The coefficients un define a representation of the field u and this representation
has the nice property of varying linearly with u, since the representation of the
linear combination cu(x) + dv(x) consists of the coefficients cun + dvn. (But the
representation of the product of two fields is not the product of the correspond-
ing coefficients, an important point that we return to in a moment.) Two familiar
examples of such basis expansions (say for fields defined on an interval [0, l] of
length l) are Fourier analysis with basis functions φn = exp(2π inx/l) and Taylor
series with basis functions consisting of the monomials φn = (x − a)n centered on
some point a.

For a given basis φn(x), an arbitrary field u(x) will generally have infinitely
many nonzero coefficients un. A finite representation suitable for a computer algo-

4 Recall that a basis for some linear vector space is a set of vectors that are linearly independent and that are
complete in that every vector in the space can be written as a linear combination of the basis vectors.
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rithm can be obtained by retaining only the first N + 1 coefficients so we can
write

u(x) ≈
N∑

n=0

unφn(x). (12.3)

(An example was given in Section 4.1.3, in which we showed that, sufficiently
close to onset, only the first of an infinite number of Fourier terms was needed
to approximate the stationary solution u(x) of the Swift–Hohenberg equation.) If
the sum Eq. (12.2) converges, we can approximate the field u arbitrarily well with
Eq. (12.3) by taking the integer N sufficiently large.

For any vector space of functions, there are infinitely many different bases that
span the space, and in the literature you will see bases using Fourier modes, finite
elements, Chebyshev polynomials, wavelets, and combinations of such bases (e.g. a
code might use Fourier modes for the x-dependence of a field u(x, z) and Chebyshev
polynomials for the z-dependence). Which basis to use is a complex question that
involves mathematical, computational, and scientific considerations that lie beyond
what we can discuss in this book. The appropriate choice of basis can differ from
problem to problem and even from parameter value to parameter value for a given
problem. We can say briefly that an overall goal is to solve a problem to a specified
level of accuracy with the least amount of work. A first step in this direction is to
identify a basis that is “close to the physics’’ in the sense that Eq. (12.3) converges
rapidly, allowing the integer N and so the overall amount of computational work to
be small. Symmetries of the evolution equations, solutions, and boundary conditions
also often play a role in the choice of the basis.

A second way to discretize the field u(x) is the finite-difference method. Here
the discretization is achieved by truncating the spatial domain to a finite set of N
spatial points xn and by assuming that the values of the field are known only at
these finitely many points:

un = u(xn), n = 1, . . . , N . (12.4)

Just like the Galerkin method,5 each field u is represented by a finite-dimensional
vector of coefficients (u1, . . ., uN ) and this representation varies linearly with u.
However the physical meaning of the numbers Eq. (12.4) differs from the meaning
of the Galerkin coefficients.

Just as there is flexibility regarding how to choose the basis functions φn in
Eq. (12.3), there is flexibility regarding where to place the points xn. In the absence

5 A finite-difference method can be considered formally as a Galerkin method with basis functions φn(x) =
δ(x − xn) where δ(x) is a Dirac delta function. In practice, the two methods are treated as distinct since they
lead to different kinds of algorithms.
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of any prior knowledge of u, a convenient choice is to spread the points xn uniformly
through space so we can write

xn = x1 + (n − 1)�x, 1 ≤ n ≤ N . (12.5)

The mesh points xn are then characterized by their constant spatial separation �x =
xn−xn−1, which also defines the spatial resolution or mesh size. For some problems,
the field u might have a special structure, e.g. it may have many oscillations near a
wall and be almost constant away from the wall. In this case, it would make sense
to distribute the points xn nonuniformly, with a higher density near the wall and
a smaller density elsewhere. There are adaptive algorithms that can automatically
vary the number and positions of points to achieve a given accuracy with the least
amount of work, but these are too complicated to discuss in this chapter and also
are quite complicated to code.

12.2.3 The discretization of equations

Our discussion so far has concerned how to discretize a field by a finite truncation of
a Galerkin expansion or of the spatial domain. We next consider how to discretize
the equations that express how the field and its various derivatives are related at each
space-time point. Restricting our discussion now just to finite-difference methods,
we can discretize equations in the same way as the fields, by assuming that the
equations are valid only at some finite number of spatial points x′

n. The discretization
points x′

n for the equations do not have to coincide with the discretization points xn

for the fields that satisfy the equations (although this is often the case), but their
numbers must be about the same so that there are as many discretized equations
and discretized boundary conditions as there are unknown field values to solve for.

For example, we may be interested in solving the one-dimensional nonlinear
equation

u − u3 + d2u

dx2
= 0, (12.6)

on the interval [0, l] for the unknown solution u(x) with boundary conditions u(0) =
0 and u(l) = 0. We can discretize this equation by requiring that it hold at the
interior6 discrete points xn = n�x (with 0 < n < N ) at which the field u has been
previously discretized:(

u − u3 + d2u

dx2

)∣∣∣∣
x=xn

= un − u3
n + d2u

dx2

∣∣∣∣
x=xn

= 0. (12.7)

6 Eq. (12.6) does not have to be discretized at the points x = 0 and x = l since the boundary conditions u(0) = 0
and u(l) = 0 provide the field values at those points.
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The discrete formulation of Eq. (12.6) with its boundary conditions can be com-
pleted to yield N − 1 equations for the N − 1 unknown values un provided that we
can find a way to express the derivatives d2u/dx2|xn in terms of the field values un.

In this section, we show by a worked example how to derive finite-difference
approximations to derivatives of a field that has been discretized on some mesh
of points xn. A finite-difference approximation is a special linear combination
of finitely many field values un that converges to some mathematical expression
involving the field (not necessarily a derivative but this is the most common case) in
the limit that the spatial resolution �x becomes sufficiently small. The idea is sim-
ple although the algebra can be tedious: to estimate a kth-order derivative u(k)(x)
of a field u at a point x, we find a polynomial p(x) of order m ≥ k that inter-
polates (passes exactly through) the m + 1 pairs of points (xn, un) closest to the
point x, and then use the kth derivative of the polynomial at x, p(k)(x), to estimate
the value of u(k)(x).l The resulting estimate will yield a finite-difference approxi-
mation to u(k)(x) in the form of a linear combination of the m + 1 field values un

closest to the point x. Generally, the higher the order m of the polynomial, the more
accurate the corresponding finite-difference expression and the more rapidly the
numerical solution un converges to the unknown mathematical solution.

Etude 12.1 Derivation of some finite-difference approximations
Let us assume that we know the values un of a function u(x) only on the uniform mesh
Eq. (12.5) with spatial resolution �x. An estimate for the first derivative u′(xn) at
the point xn in terms of these grid values can be obtained by finding the linear poly-
nomial p(x) = a + bx that interpolates the pairs of points (xn, un) and (xn+1, un+1)

so that

p(xn) = un and p(xn+1) = un+1. (12.8)

These constitute two linear equations for the two unknown coefficients a and b and
you can verify that

p′(xn) = b = un+1 − un

xn+1 − xn
, (12.9)

provides an estimate for the first-order derivative u′(xn) at the point xn. (Alterna-
tively, we could have chosen as the interpolation points the values at xn−1 and xn or
at xn−1 and xn+1 to derive other finite-difference approximations.) It is traditional
to write this finite-difference approximation in the form

un+1 − un

�x
. (12.10)

7 The interpolating polynomial p(x) is useful for solving other numerical problems associated with the field u(x).
For example, p(x) can be integrated analytically to estimate the integral of u(x) over some small interval about x.
It can also be used to estimate the position and value of an extremum of u.
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Some finite-difference approximations provide better estimates than others. The
accuracy of the finite-difference approximation Eq. (12.10) can be obtained by
substituting the Taylor series for un+1 about the point of evaluation x = xn up to
second order,8

un+1 = u(xn + �x) = un + [
u′(xn)

]
�x +

[
u′′(xn)

2!
]
�x2 + · · ·, (12.11)

to find
un+1 − un

�x
= u′(xn) +

[
u′′(xn)

2

]
�x +· · ·, (12.12)

where the dots · · · denote terms of higher order in the mesh size �x. Equation
(12.12) says that the finite-difference expression on the left differs from the
derivative u′(xn) by an error term

[
u′′(xn)/2

]
�x + · · · that goes to zero in the

limit �x → 0. Because the lowest-order term in the error is first-order in �x, the
finite-difference expression (un+1 − un)/�x is said to be a “first-order-accurate
approximation’’to u′(xn). It is also called a “two-point’’finite-difference expression
since the linear combination spans at most two mesh points.

A more rapidly converging finite-difference approximation to u′(xn) can be
obtained by using a higher-order interpolation polynomial p(x) that passes through
more points close to xn. For example, we can solve three linear equations in three
unknowns to find the quadratic polynomial p(x) = a + bx + cx2 that interpo-
lates the three pairs of points (xn−1, un−1), (xn, un), and (xn+1, un+1) closest to the
point of interest xn. You can verify that the derivative p′(xn) leads to the following
“second-order-accurate three-point finite-difference approximation’’ for the first
derivative u′(xn):

un+1 − un−1

2�x
= u′(xn) +

[
u(3)(xn)

6

]
�x2 + · · ·. (12.13)

The leading part of the error term
[
u(3)/6

]
�x2 + · · · was found by substituting

Taylor series about xn up to third order for the expressions un±1 = u(xn ± �x) on
the left side. The second derivative p′′(xn) of the same quadratic interpolating poly-
nomial yields a second-order-accurate three-point finite-difference approximation
for the second derivative u′′(xn):

un+1 − 2un + un−1

�x2
= u′′(xn) +

[
u(4)(xn)

12

]
�x2 + · · ·. (12.14)

8 The notation �xk here means (�x)k , the kth power of the mesh spacing �x. Some computational science books
and articles use the symbol h instead of �x to simplify the notation.
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The left-hand side of this equation solves the problem of how to complete the
discretization of Eq. (12.7): at each point xn, we replace the second derivative u′′(xn)

with the three-point difference on the left side of this equation.
For use further below in this section, we list the following two five-point finite-

difference approximations:

un−2 − 8un−1 + 8un+1 − un+2

12 �x
= u′(xn) −

[
u(5)(xn)

30

]
�x4 + · · · ,

(12.15a)

un−2 − 4un−1 + 6un − 4un+1 + un+2

�x4
= u(4)(xn) +

[
u(6)(xn)

6

]
�x2 + · · ·,

(12.15b)

which you should try to derive for yourself. Note that the first expression is a
fourth-order-accurate approximation for the first-order derivative u′(x).

In the limit �x → 0, the left side of Eq. (12.13) asymptotically provides a
more accurate estimate of u′(xn) than the two-point difference Eq. (12.12) since
the leading term of its error is smaller by a factor �x. You might deduce from this
that it would be best to use the highest-order finite-difference expression possible
to approximate some derivative. However, because interpolation polynomials of
higher and higher order become more and more oscillatory, using finite-difference
expressions whose order of accuracy is substantially greater than the order of the
derivative can render a numerical algorithm unstable and is not recommended.
In practice, second-order- or fourth-order-accurate expressions are used in most
finite-difference codes. If needed, higher accuracy can be achieved by using more
mesh points (increasing the integer N) or by switching to a Galerkin method.

To give you a sense of the accuracy of these finite-difference expressions as a
function of the spatial resolution �x, we have plotted in Figure 12.1 the relative
errors of Eqs. (12.13), (12.15a), and (12.15b) for first- and fourth-order derivatives
of the field u(x) = sin(x) at the point x = π/4 (for which u(1)(π/4) = u(4)(π/4) =
1/

√
2 ≈ 0.707). The finite-difference expressions were evaluated by the computer

mathematics program Mathematica using 64-bit floating point numbers, for val-
ues �x = 10i/4 with i an integer satisfying −80 ≤ i ≤ 2. Since the precise way
that floating point expressions are evaluated depends on the computer language, on
the choice of compiler options, and on the CPU hardware, you will get similar but
not identical curves if you try to reproduce these curves yourself.

Before discussing this figure, it is helpful to introduce some notation.
Let δm,ku(xn) denote an mth-order-accurate finite-difference approximation of the
kth-order derivative of the field u at the point xn and let εm,k denote the magnitude
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of the corresponding dimensionless relative error so that

εm,k =
∣∣∣∣∣δm,ku(xn) − u(k)(xn)

u(k)(xn)

∣∣∣∣∣ . (12.16)

By definition, the numerator δm,ku − u(k) ∝ �xm as �x → 0 and so we expect
that:

log10 εm,k = c + m log10 �x, (12.17)

where c is some constant, i.e. a plot of log10 εm,k versus log10 �x for suffi-
ciently small �x should be a straight line with slope m. Further, the quantity
−log10 εm,k tells us directly the number of significant digits in the finite-difference
approximation δm,k .

Starting with values of �x of order one (the right-hand side of the graph) and then
following �x toward zero (the left-hand side of the graph), we see from Fig. 12.1
that all three relative errors ε2,1, ε4,1, and ε2,4 start to decrease toward zero as
expected and satisfy the linear behavior Eq. (12.17) with slope m (slope 2 for the
second-order-accurate differences δ2,k , slope 4 for the fourth-order difference δ4,1).
Over this initial range of decreasing linear behavior, ε2,1 > ε4,1, which implies that
the fourth-order-accurate approximation δ4,1 for the first-derivative is indeed more
accurate than δ2,1. However, a higher-order finite-difference expression for some
derivative is not automatically more accurate than a lower-order expression for all
spatial resolutions �x. It can be the case that εm,k > εn,k for m > n over some
range of �x although we expect the inequality to become reversed for sufficiently
small �x.

From Fig. 12.1, we can read off the spatial resolution needed for a finite-difference
approximation to attain at least three significant digits, corresponding to a relative
error smaller than 10−3. We would need to choose a spatial resolution �x < 0.08
for δ2,1, a five times coarser resolution of �x < 0.4 for δ4,1, and a resolution
�x < 0.1 for δ2,4. For the differences δ2,1 and δ4,1, these resolutions are equivalent
respectively to using about 80 and 16 uniformly spaced mesh points respectively
to span a period 2π of the sine curve u(x) = sin(x). The fact that fewer spatial
points are needed with a higher-order finite difference to achieve a given accuracy
implies generally (but not always) that higher-order differences can lead to more
efficient computer algorithms.

Figure 12.1 shows a surprising result as �x decreases to zero: the relative errors
start to decrease according to Eq. (12.17), but then the errors reach a minimum and
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Fig. 12.1 A log-log plot of the relative error εm,k , Eq. (12.16), for ε2,1 (cir-
cles), ε4,1 (triangles), and ε2,4 (squares) versus the spatial resolution �x for the
field u = sin(x) at the point x = π/4. The negative of the vertical coordinate gives
the number of significant digits attained by the corresponding finite-difference
δm,k . As �x → 0, all three finite-difference expressions converge toward and
then diverge away from their respective limit u(k)(x), in contrast to the expected
behavior Eq. (12.17). These curves suggest two tendencies that hold generally:
higher-order derivatives u(k) are more difficult to approximate to a given order of
accuracy (compare the circles, ε2,1 with the squares, ε2,4), and higher-order finite-
difference approximations for a given derivative start to diverge at larger spatial
resolutions (compare the circles, ε2,1 with the triangles, ε4,1).

increase in magnitude. We conclude that the mathematical limit

lim
�x→0

δm,ku(x) − u(k)(x), (12.18)

does not exist when evaluated using floating point arithmetic, despite the “obvious’’
fact that the difference δm,ku − u(k) mathematically vanishes as �xm in this limit.
In fact, the approximately linear increase of the relative errors on this log-log
plot suggests instead that δm,ku − u(k) diverges as �x−k in the limit �x → 0.
Because of the minima in Fig. 12.1, the differences δ2,1, δ4,1, and δ2,4 cannot achieve
better than 12, 14, and 5 significant digits respectively when evaluated with 64-bit
numbers, no matter how small the spatial resolution �x.

A brief explanation for the strange divergence of the finite-difference approxima-
tions as �x → 0 is the following. The floating point value of the function sin(x) can
differ from the true mathematical value by a round-off error that can be expressed
as a multiplicative factor 1 + εx, where εx is a tiny quantity that varies with x but
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that is never larger than the machine precision εmach of the floating point system.
Thus the floating point value of the numerator in δ2,1 (Eq. (12.13)) can be written
in the form

u(x + �x)(1 + ε1) − u(x − �x)(1 + ε2)

≈ [u(x + �x) − u(x − �x)] + (ε1 − ε2)u(x), (12.19)

provided that �x is so small that ε1u(x +�x)− ε2u(x −�x) ≈ (ε1 − ε2)u(x). The
term in brackets goes to zero as expected, but the second term involving the epsilons
is generally a nonzero term (of magnitude εmach|u(x)|) that causes a divergence in
the limit �x → 0, since the numerator Eq. (12.19) is divided by �x.

Although you might find the divergence of the finite-difference expressions δm,k

from their mathematical limits u(k) alarming, this divergence is not a problem for
most finite-difference codes. First, scientists rarely need so much accuracy that
they would choose a spatial resolution so small that it would approach minima
like those shown in Fig. 12.1. Second, for two and three space dimensions, most
researchers would not have adequate computer resources to solve a discretized
pattern-forming problem with such a fine spatial resolution since the associated
computational effort grows at least as rapidly as (l/�x)d , where l is the size of
the system and d is the number of spatial dimensions. Still, it is important for you
to appreciate that many mathematical expressions do not behave as expected on a
digital computer for subtle reasons associated with floating point arithmetic. You
may well face a situation in which you or a collaborator will have written a computer
code, verified painstakingly that the algorithm for the equations was programmed
correctly, found that the code compiles without error, and yet your code does not
produce correct results because of “invisible’’ floating-point errors.

12.3 Time integration methods for pattern-forming systems

12.3.1 Overview

Now that you have some familiarity with how the finite-difference method can be
used to discretize fields and equations, we turn to the first of the two mathemat-
ical problems that are central to this chapter, the numerical solution of evolution
equations for pattern-forming systems. Nearly all the evolution equations discussed
in this book are initial-boundary-value problems such that the future state of the
system – the values of all the fields within the domain of the continuous medium –
can be determined from the equations provided that we know the boundary con-
ditions for the fields and the initial values of the fields at some starting time t0.
Without loss of generality, we can assume that the initial time t0 = 0 since most
evolution equations that we consider are time-translation invariant (the coefficients
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in the equations are independent of time) and so the dynamics does not depend on
when the calculation is started.

The first step in solving an evolution equation numerically on a computer is to
discretize the fields u(x, t), the equations, and the boundary conditions so that the
mathematical problem is reduced to finitely many numbers. Considering for now
the simpler case of a scalar field u(x, t) of a single spatial variable x, we can use
the ideas discussed in Section 12.2.2, to discretize in time just as we did in space.
We therefore assume that the values of u are known only on a finite uniform set of
space-time points given by

(xn, ti) = (n �x, i �t), i ≥ 0, (12.20)

with constant temporal resolution �t (also called the time step of the algorithm)
and uniform spatial resolution �x. The space-time resolutions �x and �t must be
specified as input to the numerical algorithm and the dependence of the algorithm’s
output on these parameters should be explored in a manner similar to Fig. 12.1. We
will use the notation

un,i = u(xn, ti) = u(n �x, i �t), (12.21)

to denote the exact field values at these discrete points and a tilde notation ũn,i to
denote an approximate numerical solution for the field values at the same space-time
point.

A time integration algorithm uses the initial data un,0 at time t = 0 (we also say
“time level 0’’) together with the discretized evolution and boundary equations to
deduce approximate field values ũn,1 at time t = �t (time level 1) in the future.
The new values ũn,1 are then used as initial data for an “initial’’ time t = �t and the
same algorithm is used to deduce approximate field values ũn,2 at time t = 2 �t. In
this way, the discrete spatial structure of the field is calculated at successive time
steps from the initial data at time t = 0 to some future time T = Nt �t, where the
integer Nt is the total number of time steps.

Provided that the discretization and the algorithm are well chosen and pro-
grammed correctly, the approximate discrete values ũn,i at time level i will converge
to the unknown exact mathematical values un,i in the limits �t → 0 and �x → 0
(keeping n �x and i �t constant so that the mesh point corresponds to a fixed physi-
cal time and location). We will discuss in Section 12.3.5 how to identify an adequate
space-time resolution for an actual calculation. The rate of convergence is deter-
mined by the orders of the finite-difference expressions used to discretize the time
and space derivatives in the equations and boundary conditions. For simplicity of
the discussion, in this chapter we will discuss mainly discretizations that involved
second-order-accurate spatial derivatives and first- or second-order-accurate time
derivatives.
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As we discuss in the next two subsections, there are two basic kinds of numerical
algorithms for integrating evolution equations, explicit and implicit. Explicit time
integration methods are the simplest to program but have the property that their
output becomes unstable over time9 (tending to grow exponentially in magnitude)
unless the time step �t is smaller than some power of the spatial resolution,

�t < C �xα , (12.22)

where C is some positive constant and where the exponent α is usually equal to
the order of the highest-order spatial derivative present in the evolution equations.
Since dissipative pattern-forming problems typically involve a diffusive process
with α ≥ 2, explicit time integration methods have the drawback that they can
achieve higher accuracy in space (smaller �x) only by taking many more time
steps of smaller size to span a given observation time T . The bound Eq. (12.22)
on �t is especially severe for equations like the Swift–Hohenberg model Eq. (2.3)
for which α = 4.

The stability condition Eq. (12.22) is an unphysical constraint since a mathemat-
ical solution of the evolution equations has its own time scales (e.g. the period of
oscillation for a limit cycle or the decay time for a transient) that have nothing to do
with the choice of the spatial mesh used to discretize the equations. For example,
even if the dynamics is slowly varying or stationary so that the fields change only
a little over a long time, Eq. (12.22) still forces the time step to be small. Implicit
time integration methods avoid the restriction Eq. (12.22) so that the time step is
not constrained by the fineness of the spatial mesh. The largest possible time step
can be comparable with the physical time scales and is determined mainly by the
desired accuracy of the solution since the larger the time step �t, the larger the
error.

For nonlinear evolution equations, implicit integration methods have the draw-
back that a set of N nonlinear equations has to be solved each time step, where N
is the total number of mesh points. As we will see in Section 12.4, finding the
numerical solution to a set of nonlinear equations can be difficult to code and
computationally expensive. Because explicit codes are much easier to write and to
debug, and because analytical considerations rarely suffice to determine whether
an implicit algorithm (which takes relatively few but expensive time steps) will be
more efficient and accurate than an explicit code (which takes relatively more but
inexpensive time steps), most researchers first try an explicit algorithm.

9 An adequate discussion of what is meant by a “stable’’ numerical algorithm for an evolution equation would
exceed the space that we want to spend on this topic. An accessible reference for further information is the
book by John Strikwerda [98]. We will use an informal sense of stability, that if all analytical solutions decay
asymptotically to zero, then so should any numerical solution. This weaker definition is sufficient to illustrate
the main ideas.
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Fortunately, for many pattern-forming evolution equations, the highest-order spa-
tial derivatives occur as linear operators, e.g. as a Laplacian ∇2 or biharmonic ∇4.
We can then use the technique of operator splitting (discussed in Section 12.3.4)
to integrate the nonlinear terms by an explicit method and the linear terms by an
implicit method and then combine the output of the two methods to advance the
fields in time by one time step. The overall algorithm acts like an explicit time
integration method but with an exponent α in Eq. (12.22) that is smaller than the
order of the highest-order spatial derivative.

12.3.2 Explicit methods

Explicit time integration algorithms can be derived by requiring that the evolution
equations hold at the present time level i (time ti = i �t) and then by using finite-
difference approximations for the time derivatives that couple the unknown future
field values at time level i + 1 to known values at level i and possibly to several
previous levels10 to predict the field values at time i+1. Because the time derivatives
enter linearly in most evolution equations, simple algebra suffices to calculate the
new field values in terms of the “explicitly’’ known current and recent field values.
We illustrate the main idea through two worked examples.

Etude 12.2 Forward-Euler method for a set of linear constant-coefficient ordi-
nary differential equations
As a first example, let us consider an evolution equation for which there are no spa-
tial derivatives and no boundary conditions, a set of K constant-coefficient linear
odes in the form

du
dt

= Mu, (12.23)

where M is a K × K matrix of real numbers. We want to find a K-dimensional
vector solution u(t) for t ≥ 0 that passes through a specified K-dimensional initial
vector u0 at t = 0 so that

u(0) = u0. (12.24)

We obtain an explicit algorithm in two steps. First, we assume that Eq. (12.23)
holds at time level i. Second, we use an equation analogous to Eq. (12.10) to
approximate the time derivative at time ti in terms of the current numerical values ũi

and future unknown values ũi+1 at time ti+1 = ti + �t. We have(
du
dt

)
i
≈ ũi+1 − ũi

�t
= (Mu)i = Mũi, (12.25)

10 So-called multistep explicit algorithms use field values at time levels i, i − 1, . . ., i − k over k steps into the
past to obtain an even more accurate estimate of the future field at time level i + 1. Multistep algorithms use
extra memory (the storage of the field values at past times) to reduce the amount of work per time step.
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or equivalently

ũi+1 = ũi + �t Mũi, (12.26)

= (I + �t M)ũi, (12.27)

where I is the K × K identity matrix. This is an “explicit’’ algorithm since the
future numerical vector ũi+1 can be calculated simply in terms of the explicitly
known present vector ũi. An explicit algorithm that is derived by using Eq. (12.10)
to approximate the time derivative at time level i is known as a forward-Euler
method, named after the Swiss mathematician Leonhard Euler who first proposed
its use in the eighteenth century.

There is a useful insight that we can obtain with modest effort regarding when
the forward-Euler method will be stable (not diverge from the unknown exact math-
ematical solution). Let us assume that the matrix M can be diagonalized and that
it has K real eigenvalues λn that are all negative. Then any solution of Eq. (12.23)
will decay to zero since it can be written as a linear superposition of decaying
exponentials exp(λnt).

Does the numerical solution ũi generated by Eq. (12.26) have this same prop-
erty of decaying asymptotically for all initial conditions? By iterating Eq. (12.27)
successively starting with i = 0 then with i = 1 and so on, we see that

ũi = (I + �t M)iu0, (12.28)

A theorem of linear algebra says that the ith power of a matrix I + �t M will
converge to zero as i → ∞ if and only if all the eigenvalues of that matrix (here 1+
�tλn) have magnitude less than one. (You have perhaps seen this theorem used to
derive the linear stability condition for the fixed point of a vector map, leading
to the condition that all eigenvalues of the Jacobian matrix have magnitude less
than one.) A necessary condition for all numerical solutions ũi to decay to zero is
therefore that

|1 + �t λn| < 1. (12.29)

Since we have assumed that the eigenvalues λn are real and negative while the time
step �t is real and positive, the K inequalities Eq. (12.29) lead to the condition

�t <
2

|λmax| , (12.30)

for all solutions to decay asymptotically, where λmax is the eigenvalue of largest
magnitude, corresponding to the eigenmode that decays most rapidly. Equation
(12.30) makes sense since the algorithm should take time steps that are smaller
than the fastest time scale in the mathematical problem, which is of order 1/|λmax|
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for this constant-coefficient linear ode problem. If �t exceeds this bound, some
initial conditions will grow exponentially in magnitude, contrary to the correct
mathematical behavior.

For the more general case of K nonlinear odes,

du
dt

= f(u), (12.31)

the forward-Euler algorithm takes the form

ũi+1 = ũi + �t f(ũi). (12.32)

This can be programmed using just two arrays, say u_old to store the current field
values and u_new for the future field values. Fig. 12.2 shows a schematic example
of C++ code. The first for loop over n uses Eq. (12.32) to calculate the new field
values. These can then be processed in various ways, e.g. analyzed statistically,
written to some external file, or plotted on the screen. Afterwards, the second for
loop over n copies the future values to the old values, creating the initial condition
for the next time step.

The largest time step that the forward-Euler algorithm can take before the numer-
ical solution Eq. (12.32) diverges from the mathematical solution to Eq. (12.31)
(usually by growing exponentially in magnitude) is typically of order 1/|λmax|,
where λmax is the eigenvalue of largest magnitude belonging to the Jacobian
matrix ∂f/∂u evaluated at u(t). Since u(t) changes with time, so do the eigen-
values of the Jacobian and hence so does the largest possible time step allowed by
stability. So-called time-adaptive algorithms can take advantage of the variation of
λmax with time to adjust automatically each time step to the largest possible value
consistent with stability and accuracy. The evolution equations can then be inte-
grated over some specified interval of time to a desired accuracy with a decreased
amount of work.

Fig. 12.2 Schematic C++ code for integrating the evolution equation du/dt =
f(u) using the forward-Euler explicit method. The quantity f(n,u) is a function
of two arguments that evaluates the nth-component fn(ũ) of the vector field f(ũ).



12.3 Time integration methods for pattern-forming systems 463

Etude 12.3 Forward-Euler method for a reaction–diffusion equation
Let us consider now the numerical integration of a representative evolution equation
for a pattern-forming system, a reaction–diffusion evolution equation

∂tu(x, t) = r(u) + D ∂2
x u, (12.33)

for a scalar concentration field u(x, t), where r(u) is some nonlinear reaction rate
and D is a positive diffusion constant. (You may wish to review Chapter 3, where
reaction–diffusion equations were first discussed.) On a spatial interval [0, l] of
length l, we want to find a solution u(x, t) for times t ≥ 0 that satisfies the boundary
conditions

u(0, t) = c0, and ∂xu(l, t) = f0, (12.34)

and that passes through a given initial condition u0(x) at time t = 0 so that

u(x, 0) = u0(x). (12.35)

The boundary condition Eq. (12.34) at x = 0 corresponds to an imposed constant
concentration with value c0, while the boundary condition at x = l corresponds to
an imposed constant flux with value Df0. The initial state u0(x) is some specified
function that satisfies the boundary conditions Eq. (12.34).

We discretize Eqs. (12.33) and (12.34) by assuming that the field values u(x, t)
are known only on the discrete uniform space-time mesh Eq. (12.20) with time
step �t and spatial resolution �x and with indices i ≥ 0 and 0 ≤ n ≤ N. To
obtain a forward-Euler algorithm, we first require that Eq. (12.33) hold at time ti
at each spatial mesh point xn. Second, we approximate the time derivative with the
first-order finite difference expression analogous to Eq. (12.10) in the form

∂tu|n,i ≈ un,i+1 − un,i

�t
, (12.36)

and approximate the second-order spatial derivative in Eq. (12.33) with Eq. (12.14)
in the form

∂2
x u

∣∣∣
n,i

≈ un+1,i − 2un,i + un−1,i

�x2
. (12.37)

On substituting these finite-difference approximations into Eq. (12.33) and rear-
ranging, we obtain the following forward-Euler algorithm for the future field ũi+1,n:

ũn,i+1 = ũn,i + �t r(ũn,i) + �tD

�x2

(
ũn+1,i − 2ũn,i + ũn−1,i

)
. (12.38)

This can be expressed in C++ in a way similar to Fig. 12.2:
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c1 = Delta_t * D / (Delta_x * Delta_x) ;
for ( n = 2 ; n < N ; n++ )

u_new[n] = u_old[n] + Delta_t * r(u_old[n])
+ c1 * ( u_old[n+1] - 2. * u_old[n] + u_old[n-1] ) ;

The loop goes over all spatial points except the boundary points at n = 0, 1, and N
since these need to be treated specially as explained in the next two paragraphs.
The expression r(u) is a function of a variable u that evaluates the reaction rate.
After analyzing, storing, or plotting the array u_new, its contents are copied to
u_old to prepare for the next time step (see Fig. 12.2).

The boundary conditions Eq. (12.34) are taken into account as follows. The
field value u(0, t) = c0 at x = 0 is known for all time so there is no need to
impose Eq. (12.38) at x = 0. Instead, we simply include the boundary value when
evaluating Eq. (12.38) at n = 1 (x = �x) as a special case:

ũ1,i+1 = ũ1,i + �t r(ũ1,i) + �t D

�x2

(
ũ2,i − 2ũ1,i + c0

)
. (12.39)

If we impose Eq. (12.38) at n = N (x = l), we run into the difficulty that we
need to know the value uN+1,i at a coordinate xN+1 = l + �x that lies outside
the interval [0, l] over which the field u is defined. Rather than reject this situation,
it is actually advantageous to extend the spatial mesh by one point beyond the
boundary because the resulting discretization and numerical solution ũn,i will be
more accurate.11 These extra spatial points are called ghost points, and boundary
conditions can be used to eliminate the field values at these ghost points in terms
of boundary data and interior field values. Thus if we discretize the flux boundary
condition Eq. (12.34) at x = l using the second-order-accurate approximation
Eq. (12.13), we have

f0 = ∂xu(x, t)|N ,i ≈ uN+1,i − uN−1,i

2 �x
. (12.40)

Eliminating uN+1,i in terms of uN−1,i and f0, we obtain the following special case
of Eq. (12.38) for n = N:

ũN ,i+1 = ũN ,i + �t r(ũN ,i) + �t D

�x2

(
2 �x f0 − 2ũN ,i + 2ũN−1,i

)
. (12.41)

It is important that the initial condition Eq. (12.35) satisfy the boundary condi-
tion ∂xu0 = f0 for the forward-Euler algorithm (and other explicit algorithms) to

11 For the implicit algorithms discussed in the next section, using field values just outside the domain is also
helpful, e.g. it can yield symmetric positive-definite matrices that lead to more rapidly convergent numerical
algorithms.
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work. If this condition is not satisfied at t = 0, the algorithm will not force this con-
dition at later times and the field will satisfy the wrong boundary condition at x = l
arbitrarily far into the future. In contrast, the implicit methods we discuss in the
next section will force an initial field to satisfy the boundary condition ∂xu = f0.

If we assume that the reaction rate r(u) has the linear form r0u for r0 a negative
constant, that the diffusion constants D are positive, and that we solve the equation
on an infinite domain, then all solutions of Eq. (12.33) will decay asymptotically to
zero. Using a Fourier method as explained in Exercise 12.9, you can show that the
numerical solution ũn,i generated by the forward-Euler algorithm Eq. (12.38) on
an infinite interval will also decay for all initial conditions if and only if the time
step is bounded by an expression that depends on the strength of diffusion and on
the rate of decay r0:

�t <
2

4D/�x2 + |r0| . (12.42)

If the concentration u decays rapidly (|r0| � 1), the term 4D/�x2 in the denom-
inator can be ignored over a substantial range of �x and so the largest possible
time step is not influenced by the spatial mesh size. In this case, a forward-Euler
algorithm is practical and, indeed, some sophisticated models of cardiac dynamics
are integrated satisfactorily with the unsophisticated forward-Euler method since
the reaction dynamics is fast compared to diffusion.

In the limit �x → 0, the |r0| term can be neglected in the denominator and the
time step is restricted purely by diffusion:

�t ≤ 1

2D
�x2, (12.43)

which is indeed of the form Eq. (12.22) with a constant C = (2D)−1. Numerical
experiments with many nonlinear evolution equations show that a criterion similar
to Eq. (12.43) holds generally, even on finite domains and for different kinds of
boundary conditions, so that our analysis of the linear problem illustrates the
essential mechanism of how stability limits the largest possible time step.

12.3.3 Implicit methods

For a small spatial resolution �x, explicit evolution algorithms for pattern-forming
systems are unstable unless the time step �t satisfies an inequality of the form
Eq. (12.22) and is therefore tiny. For many evolution problems, this restriction can
be avoided by an ingenious insight, which is to require that the evolution equations
hold not at the present time level i but at some time a little bit into the future.
This eliminates a bound on the time step associated with diffusion so that the
largest possible time step is now restricted only by accuracy considerations. Such
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integration algorithms are called implicit because the future field values ũn,i+1 now
satisfy some set of nonlinear equations and so cannot be determined directly by
simple algebra.

The most widely used implicit algorithms for pattern-forming systems are
the backward-Euler or Crank–Nicolson methods. The backward-Euler method is
derived by imposing the evolution equation at time ti+1 in the future and by using
the same two-point finite-difference expression as in Eq. (12.25) to discretize the
time derivative. If the evolution equation has the form:

∂tu(x, t) = f(u) (12.44)

(where f is now some nonlinear vector operator that can include derivatives acting
on u), then the backward-Euler method gives the following relation:

ũi+1 − ũi

�t
= f

(
ũi+1

)
. (12.45)

Here we have discretized only with respect to time so that ũi(x) = ũ(x, ti).
Equation (12.45) is consistent with the mathematical problem Eq. (12.44) since
it converges to that equation in the limit �t → 0. After discretization in space,
Eq. (12.45) becomes a set of MN nonlinear equations for the N mesh values of
each of the M components of ũi+1. In practice, a solution can be found only by
numerical means as discussed in Section 12.4.

The Crank–Nicolson algorithm is derived by imposing the evolution equation at
the future time ti+1/2 = ti + �t/2 that is midway between time levels i and i + 1:

(∂tu)i+1/2 = f(u)|i+1/2 or
ũi+1 − ũi

�t
= 1

2

(
f(ũi+1) + f(ũi)

)
. (12.46)

Here we have used a finite-difference scheme in time analogous to Eq. (12.13)
centered on ti+1/2 with mesh size �t/2 to approximate (∂tu)i+1/2 to second-order
accuracy, and we have approximated the quantity f(u)|i+1/2 to second-order accu-
racy in �t by averaging the corresponding quantities at times ti and ti+1. The
equation on the right in Eq. (12.46) again constitutes a set of nonlinear equations
to solve for the field values ũi+1 at time ti+1.

The backward-Euler and Crank–Nicolson algorithms are first-order- and second-
order-accurate respectively in time. Although the Crank–Nicolson method is more
accurate in the limit �t → 0, for some evolution equations it can cause unphysical
small-amplitude temporal oscillations since Crank–Nicolson does not damp dis-
sipative modes as strongly as backward-Euler. The less accurate backward-Euler
method would then be the better choice since it usually damps out these small
oscillations. Further information about the stability properties of these algorithms
can be found in the book by Strikwerda [98].
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We present two worked examples to illustrate some of the implications and
technical details of working with implicit algorithms.

Etude 12.4 Backward-Euler algorithm for a set of linear constant-coefficient
odes
The backward-Euler algorithm Eq. (12.45) applied to the evolution equation
Eq. (12.23) gives

ũi+1 − ũi

�t
= Mũi+1, (12.47)

which we can rewrite as
(I − �t M)ũi+1 = ũi. (12.48)

This is a set of K linear equations for the K components of the vector ũi+1 in terms
of the known vector ũi.

Let us again assume that the matrix M is diagonalizable and has negative real
eigenvalues, λn < 0. Then the matrix I − �t M is nonsingular since all of its
eigenvalues 1 − �t λn > 0 are nonzero for �t > 0. Eq. (12.48) can therefore be
written in the form

ũi+1 = (I − �t M)−1ũi, (12.49)

which has the same general form as Eq. (12.27). We conclude that the numerical
solution ũi will decay to zero in the limit i → ∞ if and only if each eigenvalue
of the matrix (I − �t M)−1 has magnitude less than one. Since the eigenvalues of
an inverse nonsingular matrix are the inverses of the eigenvalues of the original
matrix, we conclude that the numerical solution will decay as expected, provided
that

1

1 − �t λn
< 1, for 1 ≤ n ≤ K . (12.50)

But these inequalities are always satisfied since λn < 0 and �t > 0. Thus
the backward-Euler algorithm eliminates the constraint Eq. (12.30) and the only
restriction on the time step arises from accuracy.

Etude 12.5 Backward-Euler algorithm for a linear one-dimensional reac-
tion–diffusion equation
Let us now apply the backward-Euler method to the linear reaction–diffusion system

∂tu = r0u + D ∂2
x u, (12.51)

with the boundary conditions Eq. (12.34), where r0 and D are constants. For many
evolution problems, the operator splitting method described in the next section
allows us to avoid applying implicit algorithms to nonlinear evolution equations
so Eq. (12.51) is representative of the kind of linear problem that is solved implic-
itly when working with mathematical descriptions of pattern-forming systems. The
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results discussed here will also be useful in Section 12.4, when we discuss how to
use Newton’s method to calculate stationary states of Eq. (12.33).

The backward-Euler algorithm Eq. (12.45) applied to Eq. (12.51) becomes

ũi+1 − ũi

�t
= r0ũi+1 + D ∂2

x ũi+1. (12.52)

Gathering the unknown future field ũi+1(x) on the left-hand side gives(
1 − r0 �t − D �t ∂2

x

)
ũi+1 = ũi. (12.53)

Equation (12.53) together with Eq. (12.34) define a boundary-value differen-
tial problem for the future field ũi+1(x). This is a constant-coefficient Helmholtz
equation of the form (c1 + c2 ∂2

x )u = r.
We discretize Eq. (12.53) in space by asking that it hold at spatial points xn =

n �x in the interval [0, l] (with 1 ≤ n ≤ N) and by using Eq. (12.37) to approximate
the derivative ∂2

x ũi+1. Since we know the field value at x0 = 0 by the first boundary
condition in Eq. (12.34), the first discrete equation is obtained for n = 1 at x1 = �x
and takes the form

(1 − r0 �t)ũ1,i+1 − D �t

�x2

(
ũ2,i+1 − 2ũ1,i+1 + c0

) = ũ1,i. (12.54)

If we define the dimensionless parameter β by

β = D �t

�x2
, (12.55)

Eq. (12.54) can be written in the form

m1,1ũ1,i+1 + m1,2ũ2,i+1 = b1, (12.56)

with

m1,1 = 1 − r0 �t + 2β, m1,2 = −β, b1 = ũi,1 + βc0. (12.57)

For 2 ≤ n ≤ N − 1, you can show that imposing Eq. (12.53) at point xn leads to
the linear equations

mn,n−1ũn−1,i+1 + mn,nũn,i+1 + mn,n+1ũn+1,i+1 = bn, (12.58)

with

mn,n−1 = −β, mn,n = 1 − r0 �t + 2β, mn,n+1 = −β, bn = ũn,i. (12.59)

Finally, we get a discrete equation for n = N by imposing Eq. (12.51) at xN = l
and by using the discretization Eq. (12.40) to eliminate the value ũN+1,i+1 at the
ghost point xN+1 = l + �x. This leads to the linear equation

mN ,N−1ũN−1,i+1 + mN ,N ũN ,i+1 = bN , (12.60)
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with

mN ,N−1 = −2β, mN ,N = 1 − r0 �t + 2β, bN = ũn,i + 2βf0 �x. (12.61)

If we group the N unknown field values un,i+1 into a column vector ũi+1 and if we
group the N numbers bn into a column vector b,

ũi+1 =


ũ1,i+1

ũ2,i+1
...

ũN−1,i+1

ũN ,i+1

 , b =


b1

b2
...

bN−1

bN

, (12.62)

then the linear equations Eqs. (12.56), (12.58), and (12.60) can be written in matrix
form

Mũi+1 = b, (12.63)

where the N × N matrix M is given by

M =



m1,1 m1,2 0 0 0 · · · 0
m2,1 m2,2 m2,3 0 0 · · · 0

0 m3,2 m3,3 m3,4 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
· · · 0 mn,n−1 mn,n mn,n+1 0 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 mN−2,N−3 mN−2,N−2 mN−2,N−1 0
0 · · · 0 0 mN−1,N−2 mN−1,N−1 mN−1,N

0 · · · 0 0 0 mN ,N−1 mN ,N


.

(12.64)

with matrix elements given by Eqs. (12.57), (12.59), and (12.61). Only the val-
ues b1, bN , and the matrix element mN ,N−1 are affected by the boundary conditions
Eq. (12.34). Unlike an explicit algorithm such as forward-Euler, the solution ũi+1

in Eq. (12.62) from an implicit algorithm will satisfy the boundary condition
∂xu(l, t) = f0 to second-order accuracy, even if the initial state Eq. (12.35) does not.

The matrix M in Eq. (12.64) is called a tridiagonal matrix since all elements
are zero except for those lying on three diagonals. The fact that there are at most
three nonzero matrix elements on each row reflects our choice of a three-point
finite-difference expression δ2,2 to approximate the derivative ∂2

x u in Eq. (12.33).
If instead we had used a 5-point fourth-order-accurate finite difference δ4,2, the
matrix M would be a pentadiagonal matrix with at most five nonzero elements per
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row. Pentadiagonal matrices also occur for one-dimensional models of pattern-
forming systems that have fourth-order derivatives such as the Swift–Hohenberg
and Kuramoto–Sivashinsky equations (see Chapter 5).

Tridiagonal and pentadiagonal matrices are examples of banded matrices, for
which the nonzero matrix elements occur only in some finite band of diagonals
containing the main diagonal. Finding the solution to a set of N linear equations
Eq. (12.63) described by an N × N banded matrix Eq. (12.64) is a classic solved
problem in numerical linear algebra [55]. A solution ũi+1 can be computed with
a relative error of order the machine precision εmach after O(NB2) operations
where B is the matrix bandwidth (the number of diagonals spanning the right-most
nonzero diagonal to the leftmost nonzero diagonal). For a fixed choice of finite-
difference approximations (which fixes the bandwidth B), the amount of work to
take one implicit time step for this one-dimensional problem grows linearly with N .
A computational effort proportional to the number of unknowns is about as good
as it gets for a numerical algorithm since a code has to touch each mesh value at
least once in constructing an answer.

With a computer mathematics program like Maple, Mathematica, or Matlab, you
can simply input the matrix elements of M and the components of the right side
vector b into an intrinsic function to obtain the numerical solution ũ. If instead a
compiled language like C++ is used, you would write a code to define the nonzero
matrix elements Mm,n and components bn, and then pass these data to some previ-
ously written library function for solving banded linear equations. A high-quality
public-domain library for linear algebra is the LAPACK library [4] and its source
code is available from the web site www.netlib.org.

12.3.4 Operator splitting

In this section, we combine the ideas of explicit and implicit time integration
methods and discuss a widely used technique called operator splitting to integrate
evolution equations. For many problems, operator splitting achieves a practical bal-
ance between competing goals of efficiency, accuracy, reduced memory storage,
and the time and effort needed to develop a working code.

Operator splitting is useful when an evolution equation can be written in the
additive form

∂tu(x, t) = L [u] + N [u] , (12.65)

where L is a linear operator containing the highest-order spatial derivatives and N
is a nonlinear operator containing the remaining terms. For example, for the non-
linear reaction–diffusion equation Eq. (12.33), we can identify L [u] = D ∂2

x u
and N [u] = r(u) since most reaction rates are purely algebraic functions of the
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field and so have no spatial derivatives. Similarly, for the Swift–Hohenberg equation
Eq. (2.3), we could choose L [u] = (r −1)u−2 ∂2

x u−∂4
x u and N [u] = −u3.12 The

idea is then to integrate the nonlinear term with any convenient explicit algorithm,
as if this were the only term in the evolution equation:

∂tu = N [u]. (12.66)

Taking one time step of size �t will produce some intermediate field that we will
denote as ũ∗. We then use this intermediate value as the initial data for a second
evolution problem in which only the linear operator appears:

∂tu = L [u], with initial data u∗. (12.67)

The output from this second step is then taken as the numerical approximation ũi+1

of the unknown analytical field ui+1 that evolved from the same initial condition ũi.
The explicit step is usually done first since the implicit step that follows will enforce
the boundary conditions on the solution ũi+1, up to the order of accuracy of the
discretization for the boundary conditions.

Most evolution equations involve several coupled fields. In these cases, there
is usually a separate evolution equation for each field and the evolution equations
take the form:

∂tu1(x, t) = L1[u] + N1[u], (12.68a)

· · ·
∂tuK (x, t) = LK [u] + NK [u]. (12.68b)

Here K is the number of fields, the vector u = (u1(x, t), . . ., uK (x, t)), the opera-
tors Lk are the linear operators containing the highest-order spatial derivatives of
the kth equation, and the Nk are the corresponding nonlinear operators containing
the remaining terms of the kth equation.

The K fields uk(x, t) can be advanced one time step �t by applying operator
splitting to each equation in turn. Starting with the first equation Eq. (12.68a), we
integrate the nonlinear term N1 explicitly and then the linear term L1 implicitly
to obtain the field values of ũ1(ti+1, x) at the next time step. Then we turn to
the second equation, advance N2 explicitly and then L2 implicitly which gives
the field ũ2(ti+1, x) at the next time step, and so on until all the fields have been
updated by one time step. Depending on the nature of the linear and nonlinear

12 This Swift–Hohenberg example points out an ambiguity in the choice of linear and nonlinear operators, e.g.
we could have chosen instead L = −2 ∂2

x − ∂4
x and N = (r − 1)u − u3. It is crucial that the highest-order

spatial derivatives appear in the linear operator but not so for the lower-order linear operators. Adding a lower-
order linear term to the nonlinear operator can sometimes improve the overall stability of an operator splitting
method.
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terms in each evolution equation, it may be appropriate to use different explicit and
implicit algorithms for the different operators Nk and Lk .

When advancing the evolution equations for each field in Eqs. (12.68), there is
the option to always use the same initial data for each successive equation or to use
the latest data from one equation as the initial data for a next equation. In the first
case, the order of updating the equations does not matter. However, in the second
case, the order of updating the equations can matter a lot and different orders can
lead to different maximum time steps (before instability occurs), or even instability
for any choice of time steps. For many nonlinear problems, the appropriate order
cannot be determined analytically, and so numerical experiments are needed.

The operator-splitting method can require much less memory (RAM) than a fully
implicit algorithm, although it often requires more memory than a fully explicit
algorithm. Since each equation in Eqs. (12.68) is updated in turn, the implicit step
for the kth equation requires solving a set of N linear equations where N is the
total number of mesh points, i.e. an N × N matrix needs to be constructed and
the nonzero elements stored at each time step. In contrast, a fully implicit time-
stepping method would require gathering all the future field values, KN in all, into a
single vector and constructing and storing the nonzero elements of a possibly huge
KN × KN matrix. For three-dimensional pattern-forming problems, only a large
parallel computer is capable of storing the many matrix elements needed to carry
out a fully implicit time step.

We illustrate operator splitting with a worked example.

Etude 12.6 Operator-splitting method for the Brusselator
On page 105, we discussed the Brusselator reaction–diffusion evolution equations

∂tu1 = a − (b + 1)u1 + u2
1u2 + D1 ∂2

x u1, (12.69a)

∂tu2 = bu1 − u2
1u2 + D2 ∂2

x u2, (12.69b)

where the parameters a, b, D1, and D2 are positive constants. Here we look at
the numerical solution on the interval [0, l] of length l. Typical boundary condi-
tions at x = 0 and x = l for the concentration fields ui(x, t) could be constant
concentrations or constant fluxes.

Each of these evolution equations have the additive form Eq. (12.65) with the
highest-order derivatives appearing as linear operators. One choice of operators
for an operator-splitting algorithm could be

N1[u] = a − (b + 1)u1 + u2
1u2, L1[u] = D1 ∂2

x u1,
N2[u] = bu1 − u2

1u2, L2[u] = D2 ∂2
x u2.
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The nonlinear operator N1 in Eq. (12.69a) could be integrated with a second-
order-accurate explicit algorithm such as an Adams–Bashforth or Runge–Kutta
scheme to obtain an intermediate field ũ∗

1. This field is then used as initial data to
integrate the linear operator L1 with, say, an implicit Crank–Nicolson scheme to
produce the field ũi+1 at the future time step t + �t. These explicit and implicit
steps are then repeated for the operators N2 and L2 in Eq. (12.69b) at which point
one full time step has been advanced.

For each equation, the implicit Crank–Nicolson step requires the solution of a set
of linear equations corresponding to a tridiagonal matrix similar to Eq. (12.64).
This solution constitutes the most time-consuming part of the operator-splitting
algorithm.13 For a one-dimensional reaction–diffusion problem in a large spatial
domain, modern personal computers can easily handle hundreds of thousands of
time steps with of order, say, 10 000 mesh points, and so the long-time behavior
of the dynamics in rather large systems can be readily explored. Time integration
becomes much more challenging for two- and three-dimensional pattern-forming
systems since the corresponding linear equations of the implicit step may number
in the tens of millions. Such large problems require sophisticated linear alge-
bra techniques and often distributed data structures and algorithms on a parallel
computer.

If the constants in Eqs. (12.69) are such that the time scales for the reaction rates
are fast compared to diffusion (as can be quantitatively understood by generalizing
the argument that led to Eq. (12.42)), then there is no advantage to using operator
splitting, since a small time step is needed anyhow to resolve the fast dynamics. In
this case, a forward-Euler or similar simple explicit algorithm will work well.

12.3.5 How to choose the spatial and temporal resolutions

We conclude this section on time integration methods by discussing how to choose
the time step �t and spatial resolution �x when solving the evolution equations
that describe a pattern-forming system. A well-designed and correctly implemented
algorithm generates a numerical solution that converges to the unknown solution in
the limits �t → 0 and �x → 0 (at least until �t and �x are so small that floating
point errors become significant, as shown in Fig. 12.1). However, the smaller the
values of �t and of �x, the more computational work needed to compute the
solution and the more memory (RAM) and disk space needed to store data related
to the simulation. A computational scientist’s goal lies in the opposite direction of

13 A technical note: since the linear operators are the same at each time step, a more efficient algorithm can be
obtained by using the PLU factorization theorem [55] to factor the corresponding band matrices into lower-
and upper-triangular matrices L and U as a preprocessing step, before any time steps are taken. This expensive
factorization step is done only once over the entire time integration instead of at each time step.
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these limits, namely to identify the largest (crudest) values of �t and �x that will
lead to an acceptable answer.

There is no simple way to determine an adequate space-time resolution. You
should use available knowledge from experiment and theory, use some common
sense based on past experience, compare results of calculations based on several
choices of space-time resolutions, and be skeptical that a code and its results are
correct until a thorough effort has been made to validate them. The coarsest accept-
able resolution also depends on the question being asked. If the question is “What
basins of attraction exist?’’then a lower resolution is likely acceptable compared to a
question of the sort “For what specific parameter value does a bifurcation occur?’’
or “What is the exponent that governs how heat transport scales with Rayleigh
number for large R?’’.

A first step toward identifying a suitable space-time resolution is to take advan-
tage of existing experimental data. If time series are available for different fields of
a pattern-forming system and all peaks are resolved, then the time step �t should be
smaller (say by a factor of 5) than the peak-to-peak distance in any of the time series.
Equivalently, the power spectrum P(ω) can be calculated for a given time series
and the high-frequency regime examined to determine if the spectrum is decreasing
monotonically toward the base set by instrumental noise. A time step �t could then
be chosen such that the corresponding frequency 1/�t is well into the regime of
asymptotic decay in P(ω), say such that the magnitude of the power spectrum has
dropped by 1000 compared to the magnitude of the largest peak. Similar considera-
tions based on the spatial variation of the fields and on the asymptotic decay of their
wave number spectra P(k) can suggest a starting spatial resolution. If a simulation
is not too expensive to carry out, all results should be repeated with finer resolutions
(say by successive factors of 1/2) to verify that the qualitative and statistical prop-
erties have become invariant with respect to the space-time resolution. For chaotic
solutions, changing the resolution will lead to a completely different solution in a
time of order 1/λ1, where λ1 is the largest Lyapunov exponent. You should then
compare statistical properties of the solutions such as averages, standard devia-
tions, probability distribution functions, and Lyapunov exponents to determine if
the space-time resolution is adequate.

If analytical theory is available, particularly in the form of a stability analysis, then
that theory can sometimes suggest starting choices for the space-time resolution.
Thus the fastest growing (most unstable) linear mode about a stationary state is
often the fastest dynamics even of the saturated nonlinear state (at least near onset).
The reciprocal of the largest growth rate 1/maxq Re σq is then a good bound for the
time step. Similarly, the reciprocal 1/qmax of the wave number qmax that bounds the
upper range of stable wave numbers in a Busse balloon can provide a useful first
estimate of the magnitude of the spatial resolution �x.



12.4 Stationary states of a pattern-forming system 475

12.4 Stationary states of a pattern-forming system

We now turn to the second of the two central problems of this chapter, namely
finding a solution to a set of nonlinear equations of the form

f(u) = 0, (12.70)

where f is a known N -dimensional vector function of an N -dimensional vector u.
Such a problem arises when calculating a stationary pattern u(x) in preparation
for a linear stability analysis of that pattern. Upon setting the time derivatives
of the evolution equations to zero and then discretizing the resulting equations
in space by either a Galerkin or finite-difference method, a finite number N of
nonlinear equations is obtained for the N values un that represent the field (see
Eqs. (12.3) and (12.4)). Nonlinear equations of the form Eq. (12.70) also arise
when implementing an implicit time integration method such as was discussed in
Section 12.3.3. The variable u would then have the meaning of the future discretized
field values ui+1.

Solving a set of nonlinear equations is among the most difficult mathematical
and computational problems associated with pattern-forming systems. There are
rarely theorems to indicate whether a solution of Eq. (12.70) exists and there are
no systematic methods to find even a single solution. To complicate matters fur-
ther, nonlinear equations that have a solution typically have many solutions (think
of sin(u) = 0) and finding a physically relevant solution can be challenging. The
successful numerical solution of nonlinear equations often requires supplementary
scientific knowledge, insight, and experience.

If a solution of Eq. (12.70) corresponds to a linearly stable fixed point of an evo-
lution equation, the time integration methods of the previous section can be used to
find an approximate answer by choosing an initial state within the basin of attrac-
tion of the fixed point (not always easily done), and then by integrating for a long
time until the transient toward the stable fixed point has decayed sufficiently. How-
ever, only stable or fully unstable stationary states can be found by this approach
and unstable states with some expanding and some contracting eigenmodes must
be found by other methods such as Newton’s method discussed in Section 12.4.2.
Another difficulty of finding a stationary state by time integration is that many
pattern-forming systems relax diffusively toward their fixed points. The time scale
for a transient to decay scales as l2, where l is the size of the system, which can
lead to long relaxation times for large systems. A possibility might be to use a
hybrid method, a time integration to obtain a rough approximation of a stationary
state that is then used as the initial state of a more rapidly convergent Newton’s
method.
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12.4.1 Iterative methods

Most numerical algorithms for finding solutions to Eq. (12.70) use iteration to
generate a sequence of vectors uk that converge to a solution in the limit k → ∞. A
strategy for discovering an iterative method is to rewrite Eq. (12.70) algebraically
in the form

uk+1 = g(uk), k ≥ 1, (12.71)

such that a fixed point u∗ of this map is a solution of Eq. (12.70). (Here g(u) is
an N -dimensional vector function.) As a simple example, if we didn’t know the
formula for the roots of the quadratic equation

f (u) = u2 + bu + c = 0, (12.72)

we could try to find a root numerically by one of the following three iterative
methods whose fixed points you can easily verify to be roots of Eq. (12.72):

uk+1 = −c + u2
k

b
, uk+1 = −c + buk

uk
, uk+1 = u2

k − c

2uk + b
. (12.73)

Since Eq. (12.71) is a nonlinear map of the sort discussed in introductory nonlinear
dynamics texts, a sufficient criterion that the sequence generated by Eq. (12.71)
converges is that the fixed point u∗ be linearly stable and that the initial vector u1

lie sufficiently close to u∗. Linear stability of the fixed point in turn requires that
the eigenvalues of the N ×N Jacobian matrix ∂g/∂u|u∗ evaluated at the fixed point
all have magnitudes less than one. This criterion can be difficult to apply since an
approximate initial guess for a fixed point may not be known and the components
of g may be difficult to work with analytically.

An advantage of iterative algorithms of the form Eq. (12.71) is that they are
often easy to program since each iteration requires only that each component of an
explicitly known function be evaluated in turn. (Of course, for some problems the
function g may be complicated and expensive to evaluate, e.g. some components
may themselves be determined by running an iterative algorithm.)Apotential draw-
back of the algorithm Eq. (12.71) is that the rate of convergence can be slow. The
magnitude of the error vector uk −u∗ decreases each iteration (asymptotically) by a
constant factor corresponding to the largest eigenvalue magnitude of the Jacobian
matrix ∂g/∂u. In some cases, the constant factor can be close to one and many
iterations are needed to obtain an accurate answer (see Etude 12.7 below).
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12.4.2 Newton’s method

Newton’s method14 is a clever way to choose the function g in the iterative method
Eq. (12.71) such that:

(i) Convergence to a solution of Eq. (12.70) is guaranteed if an initial guess is sufficiently
close to a fixed point. The problem of figuring out how to manipulate Eq. (12.70) into a
convergent algorithm Eq. (12.71) is therefore avoided.

(ii) Convergence is rapid, with the number of significant digits roughly doubling per iteration.

The cost for achieving these capabilities is that a set of N linear equations must
be solved at each step where N is the number of unknowns. For two- and three-
dimensional pattern-forming problems, N can be a large number and then parallel
computing and sophisticated numerical linear algebra algorithms may be needed
to carry out each iteration. Still, because local convergence is guaranteed for all
fixed points and because the convergence rate is rapid, Newton’s method is often
worthwhile to implement and it remains a method of choice for solving nonlinear
equations.

The derivation of Newton’s method is worth discussing since it is brief and
illustrates how a powerful numerical algorithm can be invented with little more
than the idea of iteration and the use of a Taylor series expansion. Let us assume
that we somehow know a vector uk that is close to an unknown solution u∗ of
Eq. (12.70). By close, we mean that there is a small vector δuk that we can add
to uk such that uk + δuk is an exact solution:

f(uk + δuk) = 0. (12.74)

If the vector δuk is sufficient small, we can Taylor expand the left side of Eq. (12.74)
about uk to linear order in δuk to obtain

f(uk) + Jk δ̃uk = 0, (12.75)

where Jk = ∂f/∂u|uk
is the N × N Jacobian matrix of f evaluated at the known

point uk . We have also made a small change in notation, replacing the exact vec-
tor δuk in Eq. (12.74) with an approximate vector δ̃uk since we have dropped the
higher-order terms in Eq. (12.75) that are needed for δuk to satisfy Eq. (12.74)
exactly. Rewriting Eq. (12.75) in the form

Jk δ̃uk = −f(uk), (12.76)

we can write down Newton’s method as the following steps for generating a
sequence of vectors uk that converges toward a zero u∗ of Eq. (12.70):

14 The algorithm is named after Isaac Newton, who proposed it as a way to find the root of a certain polynomial.
The algorithm goes by other names, such as Newton–Raphson in the context of finding a zero of a function of
a single variable and Newton–Kantorovich in the context of solving systems of equations.
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(i) First, the right side of Eq. (12.76), −f(uk), is evaluated and stored. This vector is called
the residual of the Newton method, and vanishes when convergence is achieved.

(ii) Second, the N linear equations of Eq. (12.76) are solved for the vector δ̃uk . (This
vector is called the correction of a Newton method and is another quantity that vanishes
when the algorithm has fully converged.) The success of this step presumes that the
matrix Jk is nonsingular and so the condition number of the matrix Jk should be
monitored during successive iterations. (See Exercise 12.8 for a brief introduction to
the condition number of a matrix.)

(iii) A new and presumably better approximation uk+1 is obtained by adding the correction
to the present vector:15

uk+1 = uk + δ̃uk . (12.77)

(iv) Steps (i) through (iii) are repeated until adequate convergence is attained. In practice,
this means that the magnitudes of the residual and correction are acceptably small.

With rather general assumptions about the properties of the Jacobian matrix J∗
evaluated at the fixed point, a theorem can be proved that Newton’s method always
converges (ignoring floating point effects) provided that the initial guess is suffi-
ciently close to a solution [97]. Further, the convergence is quadratic, which has
the consequence that the number of significant digits in each component of uk

approximately doubles after each iteration.
Newton’s method is challenging to implement. During each iteration, the N com-

ponents of the residual −f(uk) and the N 2 nonzero matrix elements Jij = ∂fi/∂uj
∣∣
uk

of the Jacobian matrix Jk need to be evaluated and then the N linear equations
Eq. (12.76) must be solved for the correction δ̃uk . There is a large and sophisti-
cated literature regarding how to implement Newton’s method efficiently and how
to stabilize the algorithm so that it doesn’t diverge if a poor initial vector u1 is
chosen. For most scientists, a good starting point would be a software library writ-
ten by a computational expert, e.g. one of the nonlinear equation solvers available
through www.netlib.org. Given such software, the most important first step is to
find an initial vector u1 such that Newton’s method converges and converges to
a scientifically relevant answer. Finding an initial vector can be hard, but a pos-
sibly useful strategy is continuation, in which one solves a sequence of nonlinear
problems by varying a parameter p in small increments from some initial value p1

to some final value pf such that the numerical problem for p1 has a simple solu-
tion and pf is the parameter value of interest. The converged nonlinear solution
for parameter value pi−1 is used as the starting state for parameter value pi. For
example, a nonlinear stationary convecting state at large Rayleigh number might be

15 Formally, Newton’s algorithm can be written in a single line in the form uk+1 = g(uk ) = uk − J−1
k f(uk ) in

terms of the matrix inverse of Jk . But this is a poor way to think of the algorithm numerically since it is more
efficient and accurate to solve the linear equations Eq. (12.76) for δ̃uk without ever constructing the matrix
inverse.
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found by solving the time-independent Boussinesq equations just above the onset
of convection for which a solution is known analytically by some perturbation the-
ory. One then solves a succession of nonlinear problems by increasing R in small
increments until the desired Rayleigh number is attained.

Note that if Newton’s method converges, so that uk → u∗, where f(u∗) =
0, then the residual −f(uk) converges to 0 and consequently the correction
δ̃uk = −J−1

k f(uk) also converges to 0. Most implementations of Newton’s method
test for convergence of the algorithm by requiring that the magnitudes of the
residual −f(uk) and of the correction δ̃uk are simultaneously small:

‖f (uk)‖ ≤ ε1 and
∥∥δ̃uk

∥∥ ≤ ε2, (12.78)

and you need to figure out how to choose the convergence parameters ε1 and ε2. It
is common for the magnitudes of the vectors f(uk) and δ̃uk to differ by orders of
magnitude as both converge to zero, and so some experience is needed in choosing
the values of the εi. In particular, testing just the residual or the correction for
smallness can lead to wrong conclusions about convergence being attained.

We illustrate Newton’s method by two worked examples.

Etude 12.7 Finding a zero of the function f (u) = u − cos(u)

Let us compare the convergence of a simple iteration scheme Eq. (12.71) with
Newton’s method Eq. (12.76) for the transcendental equation f (u) = u − cos(u)

which has a unique zero u∗ ≈ 0.739085 (see Fig. 12.3). Easiest to try is the iterative
method

uk+1 = g(uk) = cos(uk), (12.79)

which we expect to converge with a rate |g′(u∗)| = | sin(u∗)| ≈ 0.67 at each
iteration, corresponding to about one new decimal digit every 6 iterations (since
0.676 ≈ 0.1). This algorithm can be executed on a calculator by typing some
number (the initial value u1) and hitting the cosine button over and over again,
with the argument of the cosine function evaluated in radians. Alternatively, we
can apply Newton’s method, which you can verify takes the following form for a
function of one variable:

uk+1 = uk − f (uk)

f ′(uk)
(12.80a)

= uk − uk − cos(uk)

1 + sin(uk)
. (12.80b)

(The third iteration formula in Eq. (12.73) can now be understood as Newton’s
method Eq. (12.80a) applied to the quadratic equation and is the most rapidly
convergent of the three formulas.) Eq. (12.80a) has a simple geometric interpreta-
tion in that the new value uk+1 is the zero of the line tangent to f (u) at uk; this is
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Fig. 12.3 Plot of the transcendental function f (u) = u − cos(u) with the line
tangent to f at u1 = 2.5, y = f (u1) + f ′(u1)(u − u1). Newton’s method uses
the easily calculated zero of the tangent line u2 = u1 − f (u1)/f ′(u1) to obtain an
improved estimate of a zero u∗ of f .

illustrated in Fig. 12.3. Also from this figure, you can see that if an initial guess is
chosen close to an extremum of f (e.g. u1 = 0.99(3π/2) ≈ 4.7), the tangent line
is nearly horizontal and will intersect the u axis at a value u2 that is far from u1.
For our function f = u − cos(u), this poor initial condition leads to a long-lived
transient that eventually converges to u∗, but for most functions Newton’s method
will diverge to ±∞ when started near an extremum. Newton’s method requires a
good initial guess!

Table 12.1 shows how these two methods converge for the same starting
value u1 = 2.5 shown in Fig. 12.3.After ten iterations, Eq. (12.79) has achieved only
two significant digits while after five iterations, Newton’s method has attained seven
significant digits, plenty for most scientific applications. The data also demonstrate
how Newton’s method approximately doubles the number of significant digits each
iteration.

Etude 12.8 Newton’s method for a stationary one-dimensional reaction–
diffusion pattern
For our second example, we use Newton’s method and finite differences to calcu-
late a numerical stationary solution u(x) to the time-independent reaction–diffusion
equation

0 = r(u) + D ∂2
x u, (12.81)

with reaction rate r(u) and diffusion constant D given by

r(u) = u − u3 and D = 1/2. (12.82)
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Table 12.1. Comparison of a simple iteration method Eq. (12.79) with
Newton’s method Eq. (12.80b) for the same starting value u1 = 2.5. The
quadratic convergence of Newton’s method is much more rapid than the
linear convergence of the simple iterative scheme.

k uk from Eq. (12.79) uk from Eq. (12.80b)

1 2.5 2.5
2 −0.80114361554693371483 0.43481317286424721536
3 0.69588587435159201329 0.76701270536720584199
4 0.76748609945623035296 0.73925235862152956077
5 0.71965841403522752424 0.73908513938875372649
6 0.75203092182513546386 0.73908513321516065007
7 0.73030300581355770658 0.73908513321516064166
8 0.74497230276350045050 0.73908513321516064166
9 0.73510668004495655457 0.73908513321516064166
10 0.74175921091330173906 0.73908513321516064166

We solve this on the interval [0, l] with boundary conditions16

u(0) = 0 and ∂xu|l = sech2(l), (12.83)

for which there is an analytical solution

u(x) = tanh(x) (12.84)

that we can compare with the numerical solution. As you learned in Chapter 6,
Eqs. (12.81) and (12.82) are also the equations satisfied by a slowly varying
envelope u(x) that modulates a cellular state near the onset of a type-I-s instability.

Conceptually, it is somewhat cleaner to apply Newton’s method directly to
Eqs. (12.81) and (12.83) and then discretize rather than discretize and then use
Newton’s method. Let us assume that we somehow know a pattern uk(x) that is
close to an unknown solution u∗(x) of Eq. (12.81), and we wish to find a better
solution. We then require that uk + δuk be an exact solution where the correc-
tion δuk(x) is a small perturbation of uk . Substituting uk + δuk into Eq. (12.81) and
linearizing to first order in the correction (in exact analogy to Eq. (12.75)), you
can show that a slightly different correction δ̃uk satisfies the linear boundary-value
differential equation:(

1 − 3u2
k + D ∂2

x

)
δ̃uk = −

[
r(uk) + D ∂2

x uk

]
, (12.85)

16 The function sech(l) decays to zero rapidly for l ≥ 6 so we could also use the boundary condition ∂xu = 0
with good accuracy in large domains.
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with boundary conditions

δ̃uk(0) = 0 and ∂xδ̃uk
∣∣
l = 0. (12.86)

Equations (12.85) and (12.86) define an operator form of Newton’s equation. Given
the known residual on the right-hand side of Eq. (12.85), we can solve for the
correction δ̃uk on the left-hand side and then obtain a more accurate solution by
adding the correction to the currently known pattern uk:

uk+1(x) = uk(x) + δ̃uk(x). (12.87)

In some rare cases, we might be able to solve the Newton step Eq. (12.85)
analytically for the correction δ̃uk but here we will solve this equation numerically.

Equations (12.85) and (12.86) are nearly exactly the same as Eqs. (12.53)
and (12.34) that we derived previously when we applied the backward-Euler method
to the time-dependent reaction–diffusion equation Eq. (12.33). We can therefore
use nearly all of Etude 12.5 to solve the Newton equation Eq. (12.85) numerically
using finite differences. Upon discretization on a spatially uniform mesh, Eq. (12.85)
becomes a tridiagonal set of linear equations Eq. (12.63) with the vectors ui+1 and b
replaced respectively with the discretized versions of the correction δ̃uk and resid-
ual −(

r(uk) + D ∂2
x uk

)
. The tridiagonal matrix Eq. (12.64) has the same matrix

elements Eqs. (12.57), (12.59), and (12.61), provided we everywhere replace �t
with the value −1 and in the diagonal matrix elements mn,n we replace the expres-
sion 1− r0 �t with the expression 1−3u2

k(xn). Thus we can carry out one iteration
of Newton’s method for Eq. (12.85) by solving a tridiagonal set of linear equations.
This requires a computational effort that increases linearly with the number of mesh
points N .

12.5 Conclusion

In this chapter, we have discussed the numerical solution of two of the more
important mathematical problems associated with pattern-forming systems: how
to integrate the evolution equations that describe how a system changes over time,
and how to find stationary states of the evolution equations. Our discussion is too
brief and incomplete to transform you into a practicing computational scientist, but
you should now have a sense of how a computational scientist prepares a mathe-
matical problem for solution on a computer and how the themes of floating point
arithmetic, iteration, Taylor series, and linear algebra can be combined in different
ways to derive algorithms that solve the resulting discretized problems.

The enormous improvements in computer hardware combined with the discovery
and implementation of many efficient numerical algorithms helps to explain why
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pattern formation has blossomed as a branch of science over the last twenty years.
With current techniques and computers, it is fair to say that almost any evolution
equation that can be written down can be solved numerically, at least under restricted
conditions of reduced dimensionality or high symmetry. Increasingly, the issue is
not whether some pattern-forming system can be simulated but how to understand
the flood of spatiotemporal data that is produced by a successful simulation.

As we discussed in Section 12.2, an essential first step in preparing a problem for
computer solution is to discretize the fields, equations, and boundary conditions so
that a finite number of relations involving a finite number of unknowns is obtained.
As you should now appreciate, there are two kinds of errors that arise during this
process. The smaller errors are the floating-point errors that arise when a mathemat-
ical expression is approximated by one of the finitely many floating-point numbers
of a digital computer. This causes a relative error of order the machine precision
or larger (about 10−16 for computers with 64-bit words). Floating-point errors can
be reduced by using computer words with more bits (e.g. some computers support
128-bit words) and sometimes by reorganizing expressions algebraically, e.g. to
avoid subtractions between expressions of comparable magnitude. The larger errors
are usually the truncation error associated with approximating various derivatives
by finite-difference approximations involving finite linear combinations of mesh
values. Truncation errors can be reduced by using higher-order polynomial approx-
imations, by using more mesh points within the region of interest, or perhaps by
using a Galerkin-based method that converges more rapidly.

In discussing the numerical integration of evolution equations in Section 12.3,
we discussed explicit and implicit time-stepping methods and how they can be
combined by operator splitting to obtain an algorithm that can take time steps that
are only weakly dependent on the spatial resolution. For calculating stationary
states of evolution equations, we discussed in Section 12.4 the general strategy of
iteration methods of the form Eq. (12.71) and a more specialized iteration algo-
rithm known as Newton’s method. The latter always converges if an initial state
is known that is sufficiently close to an unknown stationary solution, and further
convergence can be quite rapid. However, finding such an initial guess can be dif-
ficult for many scientific problems. Many initial guesses may lead to a sequence
of vectors that diverge or that converge to some stationary state that is not of
interest.

Newton’s method reduces the solution of a set of nonlinear equations to the
repeated solution of a set of linear equations (see Eqs. (12.76) and (12.77)). As a
consequence, improving the simulation of pattern-forming systems largely reduces
to advancing the frontiers of numerical linear algebra, especially on parallel comput-
ers. Two of the more important techniques for solving large sets of linear equations
are called preconditioned conjugate gradient methods and multigrid. The latter is



484 Numerical methods

especially impressive since, for certain problems, it attains an optimal efficiency in
that the amount of work needed to solve N equations is proportional to N .

We finish this chapter by making a few general observations regarding when and
how numerical methods should be used for studying pattern-forming systems.

(i) If possible, use numerical methods last, not first. It is best to have a clear mathematical
and experimental understanding of a given pattern-forming problem before using a
computer to simulate the system. What are the mathematical theorems that identify the
necessary and sufficient conditions to have a well-posed problem? What are the basic
physical length and time scales? What kinds of instabilities and broken symmetries
occur as parameters are varied? What qualitative trends of behavior can be expected
as some parameter is varied?

Some prior knowledge of these kinds of questions can be invaluable since, inevitably,
computer codes do not work correctly the first time they are written. It can be exceed-
ingly difficult to determine why a code is producing incorrect results, especially since
modern programs may be hundreds of thousands of lines long and they may call exter-
nal libraries whose source code is not available or is incomprehensible. Possible errors
might include the following: the evolution equations might be programmed incor-
rectly (e.g. a minus sign lost when typing in the equations), the equations might be
programmed correctly but the algorithm used to solve them might be programmed
incorrectly, the equations and algorithm might be programmed correctly but the algo-
rithm is unstable or nonconvergent (e.g. a correct iterative method may not have been
iterated sufficiently many times to attain a meaningful answer), and the code and
algorithm might be correct and convergent but the visualization software is incorrect.

(ii) Avoid writing your own software. Many years of experience are needed to write, to
debug, and to validate software. Further, writing and debugging software can be costly
in terms of your own time. (Ten lines of correct code per day is considered an impres-
sive achievement for professional programmers!) For these reasons, you should take
advantage of previously written code as much as possible, e.g. functions available
in computer mathematics environments like Mathematica, Matlab, or Maple, or code
available in www.netlib.org. A corollary of not writing your own software is to use the
ability of programs like Mathematica and Maple to translate complicated mathemat-
ical expressions directly into a computer language like C so that you do not have to
type lengthy algebraic expressions in by hand.

(iii) Gain experience with simple examples. The algorithms for pattern-forming systems
can be as difficult to understand as the evolution equations themselves. You should
gain experience and insight by first solving the smallest or simplest versions of prob-
lems, especially ones for which analytical or perturbative solutions are available for
comparison. Especially valuable is to print out raw data and to visualize intermediate
results and fields.

(iv) Be numerically defensive. Because many scientists use previously written code, it
is extremely important the data provided as input to those codes should be correct
or valid. Functions that you write should actively test all known properties of input
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data and report an error (and possibly terminate) if a test fails. For example, the
fluid temperature and density fields must be positive quantities everywhere but could
become negative because of numerical errors. Similarly, the number of mesh points,
space-time resolutions, and some parameters like the Prandtl number should always
be positive parameters and these facts should be tested occasionally for confirmation.

(v) Get several numerical answers for a given pattern-forming problem.Asingle numerical
answer is rarely useful since there is no way to judge its correctness. Any important
numerical problem should be studied in several different ways and the answers from
these different ways compared. For example, any result obtained from a time evolution
code should be repeated with finer and coarser space-time resolutions so the results
can be verified to have converged. A strong test of correctness is to compare the
output of codes that solve the same problem but that use different algorithms (e.g.
finite difference versus Galerkin representations) and that were written by different
researchers. If possible, numerical output should be compared with available analytical
results and experimental data.

(vi) Talk to experts. Computational science is a large active field of its own and it can
be difficult to penetrate the literature and to identify the current best techniques for
studying a given problem. Especially when solving some problem close to a frontier
of science (e.g. the simulation of granular flows, cardiac dynamics, or neural tissue),
it will be helpful to talk to people who have previously thought about the problem or
who have experience from solving other problems.

12.6 Further reading

(i) The book Numerical Recipes, Third Edition by Press et al. [89] is a popular and readable
survey of numerical methods that are widely used by scientists. The book Numerical
Analysis: Mathematics of Scientific Computing by Kincaid and Cheney [55] gives a
more mathematical and rigorous discussion of many of the same algorithms.

(ii) The Journal of Computational Physics is a good place to look for discussions, analyses,
and applications of various algorithms that are used in pattern-forming systems

Exercises

12.1 Convergence of a finite-difference expression for the average of a field:

(a) Show that the two-point finite-difference expression

A2[u(x)] = u(x + �x) + u(x − �x)

2
, (E12.1)

gives a second-order-accurate estimate of the function value u(x) for a
sufficiently small mesh size �x.
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(b) In analogy to our discussion of Fig. 12.1, predict whether the limit

lim
�x→0

A2 − u(x) (E12.2)

exists and has the value zero when evaluated in floating point arithmetic.
Verify your prediction with a suitable numerical calculation.

12.2 Accuracy of a three-point approximation for a second derivative:
Show that the three-point finite-difference approximation on the left of
Eq. (12.14) also provides an estimate of the second derivatives u′′(xn±1)

at coordinates xn±1. Is the error still second order in �x at these points?
12.3 Finite-difference approximation for a mixed partial derivative. Find a

second-order-accurate finite-difference approximation for the second-order
partial derivative

∂2u

∂x ∂y

∣∣∣∣
(xm,yn)

(E12.3)

of the field u(x, y) at the mesh point (xm, yn). Your finite-difference expres-
sion will be some linear combination of field values um′,n′ = u(xm′ , yn′)
close to the point (xm, yn) where the two-dimensional uniform mesh is
defined by (xm, yn) = (m �x, n �y) for arbitrary integers m and n and spatial
resolutions �x and �y.

(a) Derive and write down the leading term in the error.
(b) For some nontrivial function u(x, y) whose partial derivatives are easily

calculated, verify the correctness of your finite-difference expression by
creating a plot analogous to Fig. 12.1, in which you show the relative
error converges to zero in the limit that the spatial resolution h = �x =
�y of a square mesh goes to zero. Note: A “nontrivial function’’ means
that you want to avoid the functions 1, x, y, and xy since the error will
be zero for these choices. Can you explain why?

12.4 The discretization error for the two-dimensional Laplacian on a square
mesh is not rotationally invariant: Continuing the previous example, con-
sider a two-dimensional field u(x, y) that is discretized on a square mesh
with values um,n = u(mh, nh), where h = �x = �y is the mesh spacing.
Using Taylor series, derive the lowest-order error of the following five-term
finite-difference approximation

1

h2

(
um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n

)
, (E12.4)

for the two-dimensional Laplacian (∇2u)m,n at point (xm, yn).
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The Laplacian operator ∇2 = ∇ •∇ is rotationally invariant as the dot-
product of two vectors, and indeed ∇2 retains the same form when the
coordinate system is rotated by an arbitrary angle θ around the origin.
Explain why the lowest-order error of the finite-difference approximation
Eq. (E12.4) is not rotationally invariant. Thus if this five-term discretization
is used to simulate an isotropic spatiotemporal problem with propagating
waves (e.g. the wave equation ∂2

t u = c2 ∇2u or some model of an isotropic
excitable medium), the waves will propagate with slightly different speeds
in different directions because of the lattice discretization.

Can you find a nine-term finite-difference approximation of ∇2 whose
discretization error is rotationally invariant to lowest order?

12.5 Why finite-difference approximations to derivatives converge toward
and then diverge from their limits: Assume that the floating point value
of a field u(x) can be written in the form u(x)(1 + εx), where, εx is a
small quantity that varies with x and that is bounded in magnitude by
the machine precision εmach (which is of order 10−16 for 64-bit computer
words). With this assumption, explain in detail why the finite-difference
approximations δm,k in Fig. 12.1 converge toward and then diverge from
their limits:

(a) Explain why δm,ku diverges as �x−k as �x → 0.
(b) Explain why the minimum in the relative error for δm,k occurs approxi-

mately for

�xmin ≈
(

εmach
|u(x)|

|u(m+k)(x)|
)1/(m+k)

≈ ε
1/(m+k)

mach , (E12.5)

if we can assume that the function u and its first few derivatives are of
order one in magnitude. Is Eq. (E12.5) consistent with Fig. 12.1?

(c) For sufficiently small �x, explain why the relative error can become
constant with magnitude 1. This is the case for the ε2,1 and ε4,1 curves
in Fig. 12.1.

12.6 Time-step stability condition for the Crank–Nicolson algorithm: For
the Crank–Nicolson method applied to Eq. (12.23) with M diagonalizable
and having negative real eigenvalues λn < 0, show that the inequalities
corresponding to Eq. (12.50) for the backward-Euler algorithm now take
the form: ∣∣∣∣∣∣

1 + �t
2 λn

1 − �t
2 λn

∣∣∣∣∣∣ < 1. (E12.6)

Verify that this inequality is true for all �t so that the time step is constrained
only by accuracy.
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12.7 Condition number of a mathematical problem: Consider a function y =
f (x) that produces an output number y for some input number x. If x is
perturbed by a small amount δx, this will lead to a perturbation δy =
f (x + δx) − f (x) ≈ f ′(x)δx in the output. The condition number C of
the function f (x) at the value x is defined to be the magnitude of the ratio of
the relative error of the output δy/y to the relative error of the input δx/x:

C =
∣∣∣∣δy/y

δx/x

∣∣∣∣ ≈
∣∣∣∣xf ′(x)

f (x)

∣∣∣∣. (E12.7)

Amathematical problem is said to be ill-conditioned if the condition number
becomes large. In particular, if the condition number C becomes so large
that |δx/x|C = |δy/y| ≈ 1, then δy/y ≈ 1 and there are effectively no
significant digits in y, which therefore should not be used in further cal-
culations. Since round-off errors produce relative errors of magnitude at
least εmach ≈ 10−16 for 64-bits words, a mathematical calculation on a
digital computer is in serious trouble if the magnitude of C becomes com-
parable to 1/εmach ≈ 1016, no matter which algorithm is used to evaluate
the function f .

As a matter of course, the order of magnitude of the condition number
of any calculation carried out on a computer should be estimated – at least
empirically – to determine whether the calculation is well-conditioned. This
can be done by making two calculations, one with the original data and one
with each value of the original data perturbed by a multiplicative factor 1+ε

where ε � 1 is a specified relative error of order the known error of the
input (e.g. this could be the relative error associated with experimental
measurements or with truncation errors Eq. (12.12) and are typically orders
of magnitude larger than round-off errors). The relative error of the output
can then be obtained and the magnitude of the condition number estimated. If
a calculation is ill-conditioned for all input values over the range of interest,
then that algorithm should be replaced by an alternative one if possible.

(a) Using the formula Eq. (E12.7), determine for what values of x the
following functions f are ill-conditioned: xα , log(x), sin(x), and
sin−1(x).

(b) Consider the problem of finding a zero x∗ of a mathematical func-
tion f (x) so that f (x∗) = 0. The perturbations caused by evaluating f (x)
in floating point arithmetic can often be interpreted as adding some small
new function εg(x) to the unperturbed function f where ε is a small num-
ber and g(x) is a known function of order 1 in magnitude. Thus finding
numerically a root r of f is equivalent to finding an exact mathematical
root of the related equation f (x) + εg(x) = 0.
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1. By differentiating the expression f (r) + εg(r) = 0 implicitly with
respect to the parameter ε, show that the condition number of the
root r = r(ε) is

C ≈
∣∣∣∣ εg(r)

rf ′(r)

∣∣∣∣, (E12.8)

to lowest order in the small quantity ε.
2. Consider the 20th-order polynomial f (x) = ∏20

i=1(x− i) whose roots
are the integers 1, 2, . . ., 20 and consider making a small perturbation
of size ε in the coefficient of xp, i.e. choose g(x) = xp. Show that
the condition number for a root r has magnitude C ≈ εrp−1/((r −
1)!(20 − r)!).
Note: This expression attains a largest value of C ≈ 1010ε for r = 16
and p = 20. Thus if there is an error in the 10th significant digit of the
coefficient of x20 in the evaluation of f (x), no significant digits can
be expected in the root r = 16! In fact, such a tiny perturbation will
cause many of the roots of this polynomial to become complex, with
imaginary parts of order one! So this innocent-looking polynomial is
a highly ill-conditioned function of its coefficients.

12.8 Condition number of a symmetric matrix: In Section 12.2.1, we saw
that a nonzero determinant of a matrix M could round to zero, incorrectly
suggesting that the matrix is singular. Numerical analysts have discovered
that a superior numerical criterion to determine if a matrix is singular is
whether its condition number cond(M) is large. Roughly speaking, cond(M)

is the ratio of the order of magnitude of a relative error produced in a solu-
tion x = x[M, b] (for a set of linear equations Mx = b) to the order
of magnitude of a relative error in the matrix elements of M or in the
components of the vector b. In the following, we simply introduce a plau-
sible definition for the condition number of a symmetric matrix and let you
explore its implications. Further information can be found in most books
on numerical analysis.

Atheorem of linear algebra says that an N ×N symmetric real matrix S can
be diagonalized to give an N ×N diagonal matrix E of N real eigenvalues ei

of S. Let us relabel the eigenvalues to be in decreasing order of magnitude:
|e1| ≥ |e2| ≥ · · · ≥ |eN |. The condition number cond(S) of the symmetric
matrix S is then defined to be the ratio of the largest eigenvalue magnitude
to the smallest eigenvalue magnitude17

cond(S) = |e1|
|eN | . (E12.9)

17 There are numerical algorithms that can estimate the condition number of a matrix quickly without having to
calculate any eigenvalues. The condition number is therefore a practical as well as useful concept.
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This definition implies that 1 ≤ cond(S) ≤ ∞.

(a) Explain why cond(S) = ∞ for a singular matrix.
(b) Show that cond(cS) = cond(S), i.e. the condition number is scale

invariant since multiplying a matrix by a constant c does not change
its condition number.
In contrast, det(cS) = cN det(S) so that the determinant is greatly
changed after scaling a matrix by a constant. This scaling behavior
explains why the determinant of a matrix can easily underflow (round
to zero) or overflow (round to infinity) and so is a poor way to test for
whether a matrix is singular.

(c) Using Mathematica or some similar program that allows the easy
computation of the eigenvalues of a matrix, compute numerically the
condition number cond(T) of the symmetric tridiagonal matrix T that
arises from solving the one-dimensional Poisson equation ∂2

x u = r
numerically on the interval [0, 1] with boundary conditions u(0) =
u(1) = 0, using a uniform spatial mesh and the three-point second-
order-accurate finite-difference approximation Eq. (12.14). (Etude 12.5
explains how to derive the matrix elements of T.) By plotting the
condition number versus N 2 where N is the number of mesh points,
verify that cond(T) ∝ N 2 for large enough N . This implies that
the matrix becomes more ill-conditioned (more singular) as the mesh
size �x = 1/N decreases.

12.9 Fourier method for analyzing the stability of explicit and implicit time
integrators (von Neumann stability method): A Fourier analysis shows
that all solutions u(x, t) of the one-dimensional diffusion equation on the
real line:

∂tu = D ∂2
x u, D > 0, (E12.10)

decay asymptotically to zero as t → ∞. This is true since each Fourier
mode uk(x, t) = ck(t)exp(ikx) of wave number k and coefficient ck(t) =
c0

kexp(−Dk2t) (where c0
k is some complex constant related to the initial

state u(x, 0)) decays separately to zero.
Fourier analysis18 can also be used to deduce conditions on the space-

time resolutions �x and �t so that the same property of asymptotic decay
(stability) holds for numerical solutions ũn,i ≈ u(xn, ti) generated by some

18 The following technique is known in the numerical pde literature as a von Neumann stability analysis.
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numerical integration scheme for Eq. (E12.10). Thus consider the forward-
Euler algorithm for Eq. (E12.10)

un,i+1 = un,i + �t D

�x2

(
un−1,i − 2un,i + un+1,i

)
, (E12.11)

which we obtain by setting the reaction rate r(u) to zero in Eq. (12.38).
Because Eq. (E12.11) is linear in the mesh values un,i and the coefficients
are constants, any solution of Eq. (E12.11) is a superposition of discrete
Fourier modes of the form

un,i = gi
keIkn�x, (E12.12)

where I is a square root of −1,19 k is a real wave number, and the quan-
tity gk is called the growth factor since its magnitude determines whether
the Fourier mode will grow (|gk | > 1) or decay (|gk | < 1) over time i. The
asymptotic stability of Eq. (E12.11) can therefore be determined mode by
mode.20

(a) By substituting Eq. (E12.12) into Eq. (E12.11), show that the growth
factor gk is given by

gk = 1 − 4 �t D

�x2
sin2

(
k �x

2

)
. (E12.13)

(b) Show that |gk | < 1 for all wave vectors k (stability) if and only if

�t <
1

2D
�x2. (E12.14)

This is a relation of the form Eq. (12.22) with C = 1/(2D) and α = 2.
(c) Using a similar stability analysis, show that a time integration method

of Eq. (E12.10) based on the Crank–Nicolson method Eq. (12.46) is
always stable.

(d) Using a similar stability analysis, show that the time integration
algorithm

un,i+1 = un,i−1 + 2 �t D

�x2

(
un−1,i − 2un,i + un+1,i

)
, (E12.15)

19 This is the only place in the book where we do not use i to represent the square root of −1, we want to continue
to use the index i to label spatial mesh points.

20 Eq. (E12.11) is a coupled map lattice of the sort discussed in Exercise 2.8 on page 91. Deriving a condition
for asymptotic decay of an arbitrary solution is therefore the same as studying the linear stability of the fixed
point un,i = 0.
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for Eq. (E12.10), which is obtained by using the second-order-accurate
discretization Eq. (12.13) to approximate ∂tu, is unstable for any choice
of time step �t.
Thus one should not be too greedy for higher accuracy (second- instead
of first-order) since the resulting algorithm is useless. A time integration
method based on Eq. (12.13) is called a leap-frog method since the
discretized time derivative “leaps’’ from time level i−1 over the present
time level i to time level i + 1. Explicit leap-frog methods tend to be
unstable for pattern-forming evolution equations with a diffusion term.
However, leap-frog is often useful for conservative dynamical systems
such as the Newtonian evolution equations associated with a plasma of
classical charged point particles, planets in the Solar System, or stars in
a galaxy.

12.10 Discretization and solution of a constant-coefficient one-dimensional
biharmonic problem for the Swift–Hohenberg and Kuramoto–
Sivashinsky models: Several mathematical models of pattern-formation
and spatiotemporal chaos involve biharmonic operators, e.g. the Swift–
Hohenberg equation and the Kuramoto–Sivashinsky equation discussed in
Chapter 5. When operator splitting is used to integrate the corresponding
evolution equations in one-space dimension, an implicit algorithm (back-
ward Euler or Crank–Nicolson) leads to a constant-coefficient generalized
biharmonic equation of the form:(

∂4
x + b1 ∂2

x + b2

)
ũ(x) = r(x), (E12.16)

for the field ũ(x) at time ti+1. Here b1 and b2 are constant coefficients
and r(x) is a known function. If Eq. (E12.16) is solved on an interval [0, l]
of length l, then typical boundary conditions on ũ would be

for x = 0: ũ = c1 and ∂xũ = d1,
for x = l: ũ = c2 and ∂xũ = d2,

(E12.17)

where the constants ci and di are assumed known.

(a) By using the finite differences Eq. (12.15b) (δ2,4), Eq. (12.14) (δ2,2),
and Eq. (12.13) (δ2,1) to approximate the derivatives ∂4

x , ∂2
x , and ∂x (the

latter appears in the boundary conditions) on a uniform spatial mesh xn

of N + 1 points spanning [0, l], and by using appropriate ghost points
as discussed in Etude 12.5, derive in full detail the matrix elements of
an N − 1 × N − 1 pentadiagonal matrix M and (N − 1)-dimensional
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right-hand-side vector b such that the linear equations

Mũ = b, (E12.18)

describe the resulting discretized mathematical problem for the N − 1
unknown interior mesh values ũn with 1 ≤ n ≤ N − 1.

(b) Using a computer mathematics program like Mathematica, Maple, or
Matlab, write a computer code to solve Eq. (E12.18). Use your code to
study the correctness and convergence properties of your discretization.
Is your algorithm second-order-accurate in space, i.e. does the relative
error of your numerical solution ũ go to zero as �x2?

(c) Write a code that uses operator splitting and the constant-coefficient
biharmonic solver that you wrote to integrate the one-dimensional
Swift–Hohenberg equation on an interval [0, l] with boundary condi-
tions ci = di = 0 in Eq. (E12.17). Use Adams–Bashforth on the cubic
nonlinear term and your biharmonic solver on the linear terms. Choose
an initial condition of small amplitude positive and negative random
numbers and study its evolution for r = −0.1 and for r = 0.1. Read-
ing Section 12.3.5 will give you some ideas regarding how to identify
space-time resolutions �t and �x.

12.11 Thinking about iteration algorithms:

(a) If xk+1 = g(xk) is a one-dimensional iteration formula such that the
inverse function g−1(x) of g exists, explain why either xk+1 = g(xk)

or xk+1 = g−1(xk) will converge to a fixed point x∗ for some initial
condition x1 sufficiently close to x∗. Is this also true for the vector case
Eq. (12.71)?

(b) Determine analytically the conditions for the formulas in Eq. (12.73) to
converge to a root of the quadratic equation Eq. (12.72) and test your
conclusions numerically. Can both roots of Eq. (12.72) be found with
one of these iteration formulas?

12.12 Solving an implicit time integration step by simple iteration:
The backward-Euler method Eq. (12.45) and Crank–Nicolson method
Eq. (12.46) can be written schematically in the form

u = a + �t g(u), (E12.19)

were u is the unknown vector at the next time step, a is some known constant
vector, g(u) is some known nonlinear function of u, and �t is the time step.
Show that if we write Eq. (E12.19) in the form Eq. (12.71),

uk+1 = a + �t g(uk), (E12.20)
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and if the Jacobian matrix ∂g/∂u has bounded derivatives in the vicinity
of the fixed point, then this iterative scheme will always converge provided
that �t is sufficiently small.

Thus one can always solve the nonlinear equations associated with an
implicit time-stepping method by simple iteration on the unknown future
field values, provided that the time step is sufficiently small and that a good
starting value u1 can be identified. In practice, the time step needed for
convergence may be too small and Newton’s method will be preferred.

12.13 Thinking about Newton’s method:

(a) Explain geometrically why Newton’s method for the function f (u) =
u2 + 1 generates a diverging sequence uk for any initial value u1.

(b) With an appropriate numerical experiment, determine whether Newton’s
method converges rapidly (the number of significant digits roughly dou-
bles per iteration) for a multiple root u∗ of some function f (u) of a single
variable u. Recall that a multiple root has the property that f ′(u∗) = 0
when f (u∗) = 0.

12.14 Can one do better than Newton’s method? Newton’s method is based on
the geometric idea of using the line tangent to a function f at a point uk

to obtain an improved estimate uk+1 of a zero of f . An even better local
approximation of the function f at uk can be obtained by using more terms in
a Taylor series of f about uk , e.g. the quadratic polynomial that osculates f
at uk .

Derive an iterative algorithm Eq. (12.71) to solve the equation f (u) =
0 by using a local quadratic approximation of f . For some suitable test
problem, investigate by numerical experiments how rapidly your algorithm
converges compared to Newton’s method Eq. (12.80a). Discuss whether
your method is or is not more useful than Newton’s method for finding
roots of nonlinear equations.

12.15 Basin of attraction for Newton’s method:Amathematical theorem assures
us that Newton’s method will converge for any initial condition u1 that is
sufficiently close to a root u∗ of the equation f (u) = 0. But what about initial
conditions that are not close to a root? Explore this situation by determining
the set of all initial conditions u1 that will converge via Newton’s method
Eq. (12.80a) to the root u = 0 of the function f (u) = sin(u).

12.16 Calculating implicit functions and nullclines by Newton’s method: In
many scientific problems, two variables u and v may be related implicitly
to one another through some algebraic relation of the form f (u, v) = 0. It is
often the case that one variable, say v, cannot be solved for explicitly in terms
of the other variable u although one knows by the implicit function theorem
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that the function v = v(u) exists over some appropriate domain. If the
function f (u, v) appears as the right side of some evolution equation ∂tu =
f (u, v), then the relation v = v(u) is called the nullcline for that equation.
You saw in Section 11.2 how nullclines play an important conceptual role
in the analysis of two-variable models of an excitable medium.

Newton’s method can be used to generate a numerical approximation to
the implicit relation v(u) provided that at least one starting point (u1, v1)

can be found such that f (u1, v1) = 0.

(a) Assume that a point (um, vm) is known such that f (um, vm) = 0 with
m ≥ 1. Derive a Newton method that will converge to a solution vm+1

such that f (um+1, vm+1) = f (um + �u, vm+1) = 0, where �u is some
sufficiently small increment in u.

(b) Use your algorithm to calculate and then plot a numerical table of the
function v = v(u) over the interval 0 ≤ u ≤ 10 for the relation

f (u, v) = 3u7 + 2v5 − u3 + v3 − 3 = 0, (E12.21)

starting with the point (u1, v1) = (0, 1) and using an increment �u =
0.1. Each value vm should be calculated to at least five significant digits.



Appendix 1

Elementary bifurcation theory

This appendix provides some of the background for Chapter 4, especially for
Eq. (4.14), by reviewing some of the elementary bifurcation theory that is often
discussed in an introductory undergraduate course on nonlinear dynamics. Bifur-
cation theory is concerned with the change in the nature of solutions as parameters
are varied. The changes can involve changes in the numbers or types of attractors,
in the structure of the basins of attraction, or in even more subtle details of the
phase space that are not easily detected by experiment. Sufficiently close to the
onset of a bifurcation of a fixed point, a combination of a perturbation expansion
and of nonlinear changes of variables can reduce the evolution equations to a much
simpler dynamical system (usually a few odes) called a normal form. The normal
form captures the essential behavior of the evolution equations sufficiently close
to the bifurcation point and can be used to classify the possible bifurcations. For
our purposes, the classification and associated language (e.g. pitchfork, Hopf, and
other kinds) are the more important topics so we do not show how to reduce a set of
equations describing a physical system to normal form, which can involve lengthy
calculations, even with a computer mathematics program.

We begin our discussion by analyzing the bifurcations of some simple one-
variable dynamical systems and then discuss how these systems are related to the
normal forms of more complicated evolution equations. The simplest continuous-
time dynamical system is a first-order ode in a single variable u(t),

dtu = f (u), (A1.1)

for some given function f (u). The value of u describes the position of the system
along some one-dimensional line. Because of the uniqueness theorem for initial
value problems, the only possible attractors (bounded nontransient behaviors) in
the one-dimensional phase space of Eq. (A1.1) are constants (fixed points) us that
satisfy f (us) = 0.

Bifurcation theory classifies the changes in the nature of the solutions to
Eq. (A1.1): fixed points may appear or disappear, new fixed points may grow out of
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(c) (d)

Fig. A1.1 Simple bifurcations of Eq. (A1.1) as the parameter r is varied: (a)
transcritical; (b) forward pitchfork; (c) inverted pitchfork; (d) saddle node. The
heavy full lines denote stable stationary solutions u, and the dashed lines denote
unstable solutions. The arrows show directions of the flow du/dt at some particular
values of r.

the old ones, fixed points may collide leading to a reduced number, or the stability
of fixed points may change. In the vicinity of the bifurcations, the stability of the
fixed points can be related to the type of bifurcation. The types of behavior are
simply depicted in the bifurcation diagrams in Fig. A1.1, and by the corresponding
normal forms that we list below. In these, we suppose that the bifurcation occurs
near u = 0, which can always be arranged by a suitable change of variables. There
then turn out to be four normal forms which are a Taylor expansion in small u
together with rescaling t and u to eliminate unnecessary constants.1

The normal forms for bifurcations of fixed points in a one-dimensional phase
space are then the following:

Transcritical bifurcation: A stable and unstable fixed point collide, with an exchange
of stability (Fig. A1.1(a)). The corresponding normal form is

dtu = ru − u2. (A1.2)

1 In more complicated situations than our one-dimensional example, nonlinear changes of variables may also be
needed to reduce the form to one of a few canonical ones, see for example the review article by Crawford [23].
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Here r is the bifurcation parameter, and the bifurcation occurs at r = 0. The nature
of the solutions is most easily seen from the graphical representation Fig. A1.1(a).
For r < 0, there is a stable fixed point at u = 0 and an unstable one at u = r. At r = 0,
the two fixed points collide and “exchange stability’’ so that the u = 0 fixed point
becomes unstable and the u = r fixed point is now stable. Note that the sign of the
quadratic term in Eq. (A1.2) is unimportant since changing the sign does not change
the qualitative behavior.

Forward pitchfork bifurcation: For a system that is unchanged under the substitu-
tion u → −u (inversion symmetry with respect to u), the quadratic nonlinearity in
Eq. (A1.2) must be absent (the symmetry of the physical system translates into the
invariance of the dynamical equation under this transformation) and the bifurcating
solutions must be symmetric about u = 0 as shown in Fig. A1.1(b). The normal
form is

dtu = ru − u3. (A1.3)

For r < 0 there is a single stable fixed point at u = 0. For r positive the u = 0 fixed
point remains, but is unstable, and two new, stable fixed points u = ±√

r develop.
As well as “forward,’’ the adjectives normal, continuous, or second-order are used to
describe this type of pitchfork bifurcation (the latter in analogy with phase transitions
in equilibrium physics).

Backward pitchfork bifurcation: This is the same as the previous example, except that
the cubic nonlinearity has the opposite sign

dtu = ru + u3. (A1.4)

The u = 0 fixed point is again stable for r < 0 and unstable for r > 0, but now the
additional fixed points exist for r < 0 and are unstable (Fig. A1.1(c)). The connection
between the form of the bifurcation (new fixed points for r > 0 or r < 0) and the
stability of these fixed points, shown in this and the previous example, demonstrates
the power of bifurcation theory. This type of pitchfork bifurcation is also described
as inverted. Other names are first-order, or discontinuous, coming from the jump in
the physical solution that occurs at r = 0 from u = 0 to some finite value where
nonlinearity eventually saturates the growth.

Saddle-node bifurcation: In the bifurcations considered so far, we have always had at
least one fixed point present for all r. In the saddle-node bifurcation (Fig. A1.1(d)),
two new fixed point solutions are created out of none. A saddle-node bifurcation can
occur at any value of u, but again we shift the point of appearance to u = 0 by a
change of variables. The normal form is

dtu = r − u2. (A1.5)

There is no solution for r < 0, and two solutions u = ±√
r develop for r > 0, one of

which is stable and one unstable. Changing the sign of the u2 term gives an analogous
bifurcation such that two fixed points collide and annihilate with increasing r.
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Notice that both the transcritical and backward pitchfork bifurcation normal
forms lead to values of r for which the value of u diverges to large values with-
out saturation. This unphysical behavior can be corrected by extending the Taylor
expansion to higher order. For example, for the transcritical bifurcation we might
then find

dtu = ru + u2 − gu3 (A1.6)

with g a positive constant. In this case the unstable solution u = r for negative r
“bends around’’at a saddle-node bifurcation and becomes stable, as in Fig. A1.2(a).
Now for r > 0, the growth of a negative perturbation in u saturates at a finite value,
and there is no divergence to infinity. Note however that the saturation value of u is
not in general small so that the truncation of f (u) at a third-order Taylor expansion
will not in general be reliable, and this procedure must be considered ad hoc rather
than controlled. The saturation value is small for small r if the parameter g is also
small, and in this case the expansion scheme is reliable.

Similarly for the backward pitchfork bifurcation, continuing the expansion to
higher order (remembering only odd powers are allowed by the u → −u symmetry)
might lead to

dtu = ru + u3 − gu5. (A1.7)

Again if g is positive, saddle-node bifurcations lead to stable branches of solutions
away from u = 0 and no divergence to infinity as shown in Fig. A1.2(b). This
saturation of the growth is an uncontrolled approximation unless g happens to
be small. In either case, if the parameter g turns out to be negative, the additional
nonlinear term further amplifies the growth, and no saturation to a fixed point occurs
in the equation. To eliminate the unphysical divergence to infinity, we would have
to rely on higher-order terms in the Taylor expansion, or to use the full functional
form of f (u).

u

r

u

r

(a) (b)

Fig. A1.2 Bifurcations with higher-order stabilizing terms added to the Taylor
expansion: (a) transcritical; (b) inverted pitchfork.
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For higher-dimensional dynamical systems, if the instability of a fixed point
solution occurs through a single eigenvalue of the linear stability analysis that
passes from negative to positive values, then the possible bifurcation types are
again restricted to the same four: transcritical, forward and backward pitchfork,
and saddle-node. This restriction occurs because, for control parameters near the
bifurcation value and for values of the dynamical variables near the fixed point
value, the dynamics can be reduced to the one-dimensional dynamics along the
direction of slow dynamics corresponding to the eigenvector of the single eigen-
value that passes through zero. The dynamics in the other dimensions evolve rapidly
enough to “adiabatically follow’’ the slow dynamics of the weakly stable or unsta-
ble direction, a result known as the center manifold theorem. Such a bifurcation
is known as simple. The dynamics near the bifurcation point is the same as in the
one-dimensional case, but in the higher-dimensional case, much richer dynamics
is generally possible. As a consequence, if bifurcation theory does not predict the
saturation onto a new stable fixed point near the original fixed point but instead
predicts growth to values far away (e.g. the transcritical or backward pitchfork
cases), then the dynamical state after the bifurcation may be stationary, periodic,
quasiperiodic, or chaotic.

One additional type of bifurcation from a fixed point is typical in higher-
dimensional dynamical systems. Instead of a single eigenvalue passing from (real)
negative to positive values, a complex conjugate pair of eigenvalues may evolve
from having negative real parts (exponential decay) to positive real parts (exponen-
tial growth). (For a real dynamical system, eigenvalues that are not real must come
in complex conjugate pairs since the eigenvalues satisfy a characteristic polyno-
mial with real coefficients.) This is the case of the oscillatory instability discussed in
Chapter 2, and in the context of dynamical systems is known as a Hopf bifurcation.
The normal form is now

dtu = ru ∓ |u|2u (A1.8)

with u(t) a complex variable that represents the magnitude and the phase of the
oscillating solution that grows from the bifurcation point. The bifurcation is for-
ward for the negative sign in Eq. (A1.8) leading to a stable oscillating solution of
amplitude |u| = √

r for positive r, and is backward for the positive sign, with an
unstable oscillating solution of amplitude |u| = √−r for negative r.

The five simple bifurcation types listed above are the only bifurcations from
a fixed point that will typically occur when a single control parameter is varied.
Typical here means “in nearly all cases’’ and “in the absence of symmetry.’’ A
degenerate bifurcation occurs when more than one real eigenvalue or complex pair
crosses the real axis together. Without symmetry, such a situation is a coincidence,
and usually varying a second control parameter will eliminate this coincidence.
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r

u

Fig. A1.3 Imperfect forward pitchfork bifurcation described by the normal form
Eq. (A1.9) for a small value of h. The heavy curves show the stable (solid) and
unstable (dashed) solutions for the imperfect bifurcation h > 0. The light curve is
a reminder of the behavior of Fig. A1.1(b) for the perfect bifurcation h = 0.

Such bifurcations are called codimension-n bifurcations if we need to vary n control
parameters to arrange the coincidence.

For pattern forming instabilities, the system almost always has symmetries from
the very nature of the problem, so that we must nearly always look at the case
of a degenerate bifurcation and go beyond the simplest classification described
above. In simple examples, the additional complications are not too great and
can be studied in an ad hoc way, as we discuss for example in Section 4.3. In
more complicated examples, it is advantageous to use the combined mathematical
methods of bifurcation theory and group theory know as equivariant bifurcation
theory. This goes beyond the scope of the present book.

Bifurcations show a sharp transition between solutions, at a particular parameter
value (the critical value). In practice, small experimental imperfections that violate
the conditions of the theory may smooth out the sharpness. If there is still the
appearance of a transition between different solutions at a coarse view, but on more
delicate inspection smooth behavior is apparent, we call the bifurcation imperfect.

For example, in a Rayleigh–Bénard convection experiment, a small imperfection
in the junction between the top or bottom plate and a side wall (for example, the glue
holding the two together may have a different thermal conductivity than either wall)
may lead to horizontal temperature gradients that tend to drive a small circulating
fluid motion near the sidewall for any temperature difference across the layer of
fluid, even far below the critical Rayleigh number for the onset of convection in an
infinite geometry. The result is that a careful measurement of some order parameter
such as the total heat transport (Nusselt number) shows that the transition from
the motionless conducting fluid to convection does not occur abruptly for a single
value of the temperature difference across the plates. Instead the order parameter
has a small but nonzero value for parameter values below the theoretical critical
value, and then smoothly increases across the critical value until, well above the
critical value, it merges with the values expected in the idealized perfect case.
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An imperfect bifurcation can often be modeled by adding a small constant term
to the normal form. For example, an imperfect forward pitchfork bifurcation is
described by the expression

dtu = ru − u3 + h, (A1.9)

where the constant h is small. The solutions to this equation and their stability are
shown in Fig. A1.3 for h > 0. The u ≈ 0 solution for large negative r now connects
continuously with the positive solution for r > 0. The negative u solution for r > 0
forms a separate branch with a change of stability at a saddle-node bifurcation. The
crucial feature of an imperfect bifurcation is that small imperfections can have a
relatively large effect near the critical parameter value, even though the effects may
be negligible far away from this point.

Similar analyses can be done for imperfect transcritical and Hopf bifurcations.
In bifurcations such as the pitchfork bifurcation where a symmetry is broken, the
imperfection term h must correspond to an external physical effect that violates the
symmetry. This makes it easier to predict whether a suspected non-ideal feature of
an experiment will lead to a perfect or imperfect bifurcation.

A1.1 Further reading

(i) For an introduction to bifurcations in low-dimensional dynamical systems see
Nonlinear Dynamics and Chaos by Strogatz [99].

(ii) A more advanced discussion of bifurcation theory is “Introduction to bifurcation
theory’’ by Crawford [23].

(iii) A recent book emphasizing the unifying role that symmetry plays in bifurcation the-
ory and dynamics and pattern formation in general is The Symmetry Perspective:
from Equilibrium to Chaos in Phase Space and Physical Space by Golubitsky and
Stewart [39].

(iv) A nice experimental study that illustrates many of the points in this appendix including
subcritical and imperfect bifurcations is the paper “Tricritical phenomena in Rotating
Couette-Taylor Flow’’ by Aitta et al. [2].



Appendix 2

Multiple scales perturbation theory

This appendix describes and gives some examples of multiple scales perturbation
theory. This is a widely used technique in applied mathematics, physics, engineer-
ing, and other fields that systematically yields approximate solutions to ordinary
and partial differential equations for which there is a small parameter ε such that
the mathematical problem can be solved without too much effort when the small
parameter is set to zero. In the context of pattern formation, the formalism provides
a systematic way to analyze the spatiotemporal behavior of fields near the super-
critical instability of a spatially uniform state. Near such a bifurcation, for reasons
clarified by the multiple scales theory, the physical system can be accurately ana-
lyzed as a slowly varying spatiotemporal modulation of a fast oscillatory behavior
in space or in time.

The perturbation theory is based on two key features. First is the idea of multiple
scales, which is to introduce scaled space and time coordinates that capture the slow
modulation of the pattern. These new scaled variables will be treated as mathemati-
cally independent of the original variables that are used to describe the pattern state
itself. The second key feature is the use of what are known as solvability conditions.
In the formalism, these conditions arise as mathematical statements that prevent a
resonant driving of a higher-order term by a lower-order term that would cause the
perturbation method to fail after a short time.1 The lowest-order nontrivial solv-
ability condition often ends up being an evolution equation for a slowly varying
multiplicative factor of the unperturbed solution, what we have called an amplitude
equation.

In the next section, we first discuss the theory in some generality and then we
will demonstrate the theory for two concrete examples: for a set of three ordinary

1 Roughly speaking, the lowest-order multiple scales equation has a form analogous to a harmonic oscillator
being driven by a resonant force, d2

t A1 +ω2A1 = f (A0)cos(ωt), where A1 is a higher-order modulatory factor,
A0 is the zeroth-order modulatory factor that depends only on the slowly varying scaled variables, and f (A0)

is some expression involving A0 and its derivatives. To avoid a resonant response, we would set f (A0) = 0,
which then gives the lowest-order solvability condition.
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nonlinear differential equations (the Lorenz equations), and for a representative one-
dimensional partial differential equation whose uniform state undergoes a type I-s
instability (the Swift–Hohenberg equation, see Section 5.1). In the final sections of
this appendix, we also apply the method to the derivation of phase equations, and
more briefly to other situations. In all these cases, we will only work out the lowest-
order nontrivial approximation. The multiple scales method can be carried out to
higher order but the mathematics becomes cumbersome and it is often difficult to
extract scientifically useful insights from the higher-order equations because of the
many terms that appear.

The multiple scales method differs in one important way from perhaps more
familiar forms of perturbation theory such as the perturbation theory that is used
in quantum mechanics to approximate the effect of making a small change to the
energy potential in the Schrödinger equation (which we assume can be solved
exactly for zero perturbation). The difference arises because, in the present case,
the expansion is about a solution to the linear approximation which has arbitrary
size since the equation is linear. Thus we are expanding about a solution with free
parameters (the magnitude of the linear solution) which must somehow be fixed
within the perturbation scheme.

A2.1 Multiple scales

To give an overall sense of what is involved with a multiple scale perturbation
analysis for a spatiotemporal pattern-forming system, we consider a rotationally
invariant system for which the extended directions x⊥ are infinite and that has
a base state ub(x‖) that becomes unstable to a type-I-s instability. An arbitrary
perturbation up(x, t) = u(x, t) − ub(x‖) about the solution ub(x‖) will satisfy a set
of nonlinear pdes2 of the form

∂tup = L̂up + N̂
[
up

]
. (A2.1)

Here L̂ is a linear differential-matrix operator that depends on the control parame-
ter p, and N̂ is an operator that collects all the terms that are nonlinear in up. Since
a type-I-s instability has a purely real eigenvalue near onset, the linear instability
of the uniform state is signaled by a zero eigenvalue of the operator L̂ for a pertur-
bation at the critical wave vector qc. The rotational invariance of the system allows
us to choose our coordinate system with x aligned along qc and then the onset of

2 Note that we are using N̂ here to denote just the nonlinear terms, rather than the whole of the right side as in
Chapter 2.
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instability is defined by

L̂0

[
eiqcxū0(x‖)

]
= 0, L̂0 = L̂

∣∣∣
pc

, (A2.2)

with L̂0 equal to L̂ evaluated at p = pc, and we choose some convenient
normalization convention for ū0(x‖).3

Near threshold, we expect that the solution might saturate at small magnitude.
Furthermore, we expect the solution to resemble the linear solution, i.e. to have
largely the same combination of fields uj and the same spatial structure. Thus we
look for solutions

up = εs1u0 + εs2u1 + · · ·, (A2.3)

with si some increasing set of powers and u0 given by a slow space and time
modulation of the critical solution4

u0 = A0(X , Y , T )eiqcxū0(x‖) + c.c. (A2.4)

It is here that we introduce the multiple scales. Our intuition that A0 describes slow
modulations of the pattern is introduced at the outset through slow space and time
variables, which are traditionally written as upper case letters X , Y , and T . These
are scaled versions of x, y, and t so that an O(1) change of X , Y , T corresponds to
a large change in the physical variables

X = εsx x, Y = εsy y, T = εst t, (A2.5)

with the positive powers sx, sy, and st to be chosen appropriately.
The powers of ε introduced in Eqs. (A2.3)–(A2.5) can be found in one of two

ways. The first is to leave them as unknowns, proceed with the expansion, and find
what values are needed to get the various terms to balance. The second is to use
phenomenological arguments to fix the powers at the outset, with of course the
consistency of the formal procedure that follows as a check. We will follow the
second approach since it leads to a more transparent development.

Phenomenological arguments suggest the scaling

X = ε1/2x, (A2.6a)

Y = ε1/4y, (A2.6b)

T = εt. (A2.6c)

3 We are using the notation ū0 for the linear onset solution ūc of early chapters to emphasize its role as the
zeroth-order term in the perturbation expansion.

4 We use the symbol A0 here, rather than Ā, because the higher-order terms in Eq. (A2.3) contain terms analogous
to Eq. (A2.4) but with amplitudes Ai that are determined by their own amplitude equations. These amplitudes
give additional terms in the amplitude that are higher order in ε1/2.
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The scaling of the space variables is motivated by the O(ε1/2) width of the wave
number band near threshold. As described in Section 6.2.1, the different scalings in
the x and y directions are motivated by the different dependence of the growth rate
on wave vector perturbations in the x and y directions for stripes in a rotationally
invariant system. For q = qcx̂ + (kx, ky), the change in growth rate is quadratic
in kx (hence the ε1/2 scaling of X ) but fourth order in ky (hence the ε1/4 scaling
of Y ). Furthermore, the amplitude of saturation is expected to be O(ε1/2), and so
we write up as an expansion in powers of ε1/2

up = ε1/2u0 + ε1u1 + · · ·, (A2.7)

with u0 as in Eq. (A2.4) introducing the amplitude A0.
The strategy is now to substitute Eq. (A2.7) into Eq. (A2.1) and to collect terms

at each order in ε1/2. To do this, we need to evaluate the derivatives in L̂ that act
on up, which is expressed in terms of the multiple scales Eq. (A2.6). To evaluate
the derivatives, we use a general rule of differentiation, which is that if we have
a dependent variable y(x) and a function f (x, y) that depends on x and y, then the
derivative of f with respect to x is

df

dx
= ∂f

∂x
+ dy

dx

∂f

∂y
. (A2.8)

This is the situation we have in Eq. (A2.4), with the dependent variable X (x) =
ε1/2x. It follows that a spatial derivative acting on up can be written

(
∂up

∂x

)
y

=
(

∂up

∂x

)
X ,y

+ ε1/2
(

∂up

∂X

)
x,y

, (A2.9)

or in short

∂x → ∂x + ε1/2 ∂X , (A2.10)

where on the right side the ∂x will operate on the e±iqcx dependence and the ∂X will
act on the X dependence of the Ai. Extending this scheme we have

∂y → ∂y + ε1/4 ∂Y . (A2.11)

Higher-order derivatives are readily evaluated, e.g.

∇2 = ∂2
x + ∂2

y + ∂2
z → ∂2

x + ∂2
z + ε1/2(2 ∂x∂X + ∂2

Y ) + ε ∂2
X . (A2.12)

The component at order ε1/2 of Eq. (A2.12), which gives 2iqc ∂X + ∂2
Y when acting

on a term in eiqcx, will become familiar as the representation at a particular order
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in ε of the rotationally invariant Laplacian. Similarly the time derivative becomes

∂t → ε ∂T , (A2.13)

since there is no fast time dependence in the base state eiqcx.5

A2.2 Solvability conditions

The equations of motion are now formally expanded in the small parameter ε, and
the terms at each order collected and equated to zero. We first rewrite the general
equations of motion as

L̂up = ∂tup − N̂
[
up

]
. (A2.14)

The linear part of the evolution equation is then expanded in ε using Eqs. (A2.9)–
(A2.13), and in the proximity of the control parameter to onset p = pc(1 + ε) to
give

L̂ = L̂0 + ε1/2L̂1 + · · ·. (A2.15)

In particular, L̂0 is the linearization of the equations of motion about the uniform
solution u = u0 evaluated at p = pc, as in Eq. (A2.2). Note that the L̂i for i > 0
will typically contain both fast and slow derivatives (e.g. ∂x and ∂X ).

Equations (A2.3), (A2.4), (A2.9), and (A2.13) are substituted into Eq. (A2.14 )
and terms at each order in ε are collected. At order ε(n+1)/2, this will generate an
equation for the higher-order unknown un

L̂0un = rhs. (A2.16)

The symbol rhs (right-hand side) denotes terms evaluated from lower-order calcu-
lations that depend on um, and therefore depend on the amplitudes Am, for m < n.
Note that since there are only slow time derivatives ∂t → ε ∂T , the time derivative
only appears in rhs as slow time derivatives of the lower-order amplitudes.

As well as leading to the solution for un, Eq. (A2.16) actually generates con-
straints on the rhs that are the solvability conditions, and it is such a solvability
condition that leads to the important equation for the as yet unspecified ampli-
tude A0, and that leads to equations for its higher-order companions Ai when the
expansion is continued further. The solvability conditions arise because L̂0 has
a non-empty null space, with at least one eigenvector with zero eigenvalue. We
know this is true because the unstable mode has zero growth rate precisely at onset,
and the growth rate is the eigenvalue of L̂0; this is the content of Eq. (A2.2). The

5 If we were to construct the amplitude equation for an oscillatory instability, this would not be true. In that case,
we need to include the fast dependence ∂t in the linear operator L since this is an essential part of constructing
the linear solution.
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constraints arise from the fact that Eq. (A2.16) only has finite solutions for un if
the expression rhs has no components in this null space. Technically, this can be
expressed by the condition that “the rhs is orthogonal to the zero-eigenvalue eigen-
vector of the adjoint operator L̂†

0.’’ This is certainly a mouthful, and you may need
to remind yourself from a linear algebra text about the mathematics of resolving a
vector along basis vectors, the formal definition of the adjoint operator, and why this
statement tells us that rhs then has no components along the zero eigenvector of L̂0.
Even after understanding the formal content of the expression, since L̂0 is in gen-
eral a matrix differential operator, finding the adjoint and its zero modes is often
a difficult calculation in practice. The explicit implementation of the solvability
condition in the examples below should help to clarify the concepts.6

With the solvability condition satisfied, we can formally invert Eq. (A2.16) to
give

un = L̂−1
0 (rhs) +

[
An(X , Y , T )eiqcxū0(x‖) + c.c.

]
, (A2.17)

where the second term is the complementary function for the operator L̂0 (the
solution to the homogeneous equation given by setting rhs to zero) and introduces an
unknown higher-order amplitude function An. The solvability conditions at higher
orders eventually lead to equations for these new amplitudes.

This is actually a familiar scheme to those who know secular perturbation theory.
We are perturbing about the zeroth-order solution u0, which however contains a
free complex amplitude that corresponds to the arbitrary magnitude of the solution
to the linear problem and to the arbitrary position of the stripes.Anaive perturbation
expansion will lead to corrections to this zeroth-order solution that grow without
bound as time increases. Secular perturbation theory eliminates these problem terms
by placing constraints on the zeroth-order solution via the solvability condition.
We need to choose the “right’’ zeroth-order solution u0 in Eq. (A2.7) so that the
“correction terms’’ expressed by the higher-order terms are indeed small.

The actual implementation of the scheme for realistic systems is quite involved,
even when the zeroth-order solution is known analytically. We will demonstrate
different aspects of the procedure in two examples. First we present an elementary

6 As a simpler matrix case, consider a symmetric real N × N matrix A which has eigenvalue and eigenvector
pairs (λi , ei) where we think of the eigenvectors ei as N × 1 column vectors. Because A is a symmetric matrix,
the eigenvectors can be chosen to be orthonormal, eT

i ej = δij , where eT
i is the 1 × N row vector obtained by the

transpose operator T. Then you should be able to verify that the N × N matrix defined by
∑

i λieieT
i applied to

an arbitrary vector v = ∑
j vjej (expressed in terms of the eigenvectors) produces exactly the same result as A

itself and indeed must equal A if all the eigenvalues are nonzero. Further, if the eigenvalues are all nonzero, then
you can verify that A−1 = ∑

i λ−1
i eieT

i . If A is singular with some zero eigenvalues, we can still define a kind

of matrix inverse B = ∑′
i λ−1

i eieT
i by excluding the zero eigenvalues from the sum. We can solve the matrix

problem Ax = y formally by writing x = By provided that the vector x lies inside the span of the eigenvectors
with nonzero eigenvalues. But then y = Ax must also lie in the span of such eigenvectors and this is equivalent
to requiring that y be orthogonal to all the zero eigenvectors. This is the equivalent of the solvability conditions
in this context.
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introduction using the Lorenz equations. These are three coupled nonlinear odes
that played an important role in the development of chaos theory. This first example
illustrates the approach in a simple context, the technique of introducing the slow
time scale T , and also promotes an understanding of solvability conditions in the
context of matrix equations. However since these equations are ordinary differential
equations, they do not illustrate the introduction of the slow spatial dependence. The
second example on the Swift–Hohenberg equation illustrates the spatial aspects.

A2.3 Amplitude equations

A2.3.1 Lorenz model

As a simple illustration of how to derive amplitude equations by the method of
multiple scales, we implement the approach for the Lorenz model. (These are
discussed in most nonlinear dynamics texts, e.g. Strogatz [99].) These ordinary
differential equations are the starting point for the subsequent analysis – you do not
need to understand their derivation to benefit from the following discussion.

The Lorenz equations are three coupled evolution equations for the components
of the vector u(t) = (X (t), Y (t), Z(t))

dtX = −σ(X − Y ), (A2.18a)

dtY = rX − Y − XZ , (A2.18b)

dtZ = −bZ + XY , (A2.18c)

where dt = d/dt denotes a time derivative. Briefly, the physical content of the
equations is the following. In a severely truncated Galerkin approximation for two-
dimensional Rayleigh–Bénard convection, X represents the circulation velocity in
the convection, Y the spatially periodic temperature perturbation, and Z the heat
transport due to the convection. The control parameter r is the reduced Rayleigh
number r = R/Rc, σ is the Prandtl number, and b = 8/3 is a numerical constant.

A linear stability analysis of Eqs. (A2.18) shows that the simple solution X =
Y = Z = 0 (which corresponds to the spatially uniform motionless non-convecting
state) undergoes a bifurcation at the critical value rc = 1, where two nonzero
fixed points (X , Y , Z) = (±√

b(r − 1), ±√
b(r − 1), r − 1) develop. (These two

states correspond to time-independent convecting rolls that circulate clockwise or
counterclockwise.) This is the topic of Exercise 2.4. We wish to derive an amplitude
equation that describes the time evolution to the nonlinear state that develops for r
slightly larger than rc = 0. To develop the perturbation expansion, we write the
bifurcation parameter r = rc(1 + ε) = 1 + ε, and then ε is the small parameter.

We write Eqs. (A2.18) in the form of Eq. (A2.14)

L̂up = dup

dt
− N̂

[
up

]
. (A2.19)
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Here up is the perturbation from the base state u = 0 and L̂ is the evolution operator
acting on up and linearized about X = Y = Z = 0

L̂ =

 −σ σ 0

1 + ε −1 0
0 0 −b


. (A2.20)

The nonlinear term N̂ is given by

N̂ [u] =

 0

−XZ
XY


. (A2.21)

If we expand the linear operator L̂ in powers of ε1/2,

L̂ = L̂0 + ε1/2L̂1 + εL̂2 + · · ·, (A2.22)

we find that

L̂0 =

 −σ σ 0

1 −1 0
0 0 −b


, L̂1 =


 0 0 0

0 0 0
0 0 0


, L̂2 =


 0 0 0

1 0 0
0 0 0


.

(A2.23)
The eigenvalues of the matrix L̂0 are 0, −(σ + 1), and −b, and corresponding
eigenvectors are e0 = (1, 1, 0), e1 = (−σ , 1, 0), and e2 = (0, 0, 1). The zero
eigenvalue corresponds to the onset of the linear instability. Also we expand up =
(X , Y , Z) in powers of ε1/2

up = ε1/2u0(T ) + εu1(T ) + · · ·, (A2.24)

where we introduce the slow time variable T = εt since we are looking for solu-
tions corresponding to the growth of the weakly unstable mode to saturation. The
term dup/dt first contributes at O(ε3/2)

dup

dt
= ε3/2 du0

dT
+ ε2 du1

dT
+ · · ·. (A2.25)

These expressions are to be substituted into Eq. (A2.19) and then we require that
the equation is true at each order in ε1/2.

At O(ε1/2), Eq. (A2.19) reduces to

L̂0u0 = 0.
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This shows us that u0 is simply some amplitude of the zero-eigenvalue mode

u0 = A0(T )


 1

1
0


 , (A2.26)

which introduces the amplitude function A0. In this case, A0 is the amplitude of a
real vector, and can be taken as a real function.

At O(ε), we get (since L̂u → L̂0u1 + L̂1u0 and L̂1 is zero)

L̂0u1 =

 0

0
A2

0


, (A2.27)

where the term in A2
0 is the O(ε) nonlinear term, namely bXY evaluated at the

solution u0. The solution of this type of algebraic equation may cause problems
because the matrix L̂0 is singular, i.e. it has an eigenvalue that is zero so that
the inverse L̂−1

0 may not be formed. In the particular case of Eq. (A2.27), we
see by inspection that the right side has no component along the zero-eigenvalue
eigenvector e0 = (1, 1, 0) of L̂0. In this case, Eq. (A2.27) can be solved. We find

u1 =

 0

0
−b−1A2

0


 + A1


 1

1
0


, (A2.28)

where the second term introduces the next order correction A1(T ) to the amplitude
that may be determined at a higher order of the expansion. You can check that
Eq. (A2.27) is satisfied by Eq. (A2.28) for any value of A1.

At O(ε3/2), we find

L̂0u2 =

 ∂T A0

−εA0 + b−1A3
0 + ∂T A0

A0A1


, (A2.29)

where the right side gets contributions from −L̂2u0, −N̂ , and dup/dt. Now to solve
for u2, we must explicitly require that the right side of Eq. (A2.29) has vanishing
component along the zero-eigenvalue eigenvector (1, 1, 0). This is equivalent to the
statement that the right side must be orthogonal to the zero-eigenvalue eigenvector
of the adjoint operator L̂†

0. For a real matrix, the adjoint is just the transpose, so that

L̂†
0 =


 −σ 1 0

σ −1 0
0 0 −b


. (A2.30)
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You can check that L̂†
0 does indeed have a zero eigenvalue, for which the corre-

sponding eigenvector is (1, σ , 0). The condition that the right side of Eq. (A2.29)
is orthogonal to this vector yields the amplitude equation for A0

1 + σ

σ
∂T A0 = εA0 − b−1A3

0. (A2.31)

In this way, the solvability condition for the existence of the solution u2 at O(ε3/2)

imposes constraints (in the form of a dynamical equation in the slow time depen-
dence) for the amplitude A0 introduced in the solution u0. Similarly, extending the
procedure to O(ε2) would yield a dynamical equation for the next order correction
to the amplitude A1, as well as introducing a further correction A2, and so on.

Equation (A2.31) describes the slow growth and nonlinear saturation of the
amplitude of the unstable mode near threshold. Note that sufficiently close to
onset, when r − 1 is tiny and positive, the two nonzero fixed points of the Lorenz
equations, (±√

b(r − 1), ±√
b(r − 1), r − 1), become approximately proportional

to the unstable eigenvector (1, 1, 0) in Eq. (A2.26). So close enough to onset, the
amplitude equation Eq. (A2.31) with Eq. (A2.26) indeed describes the nonlin-
ear motion of an orbit that starts near the unstable fixed point (0, 0, 0) and that
approaches one of the nonzero fixed points.

This example of the derivation of an amplitude equation introduces many of the
features of the full calculation although there are some simplifications that may not
occur in general. For example, in the present case L̂0 is real and, for a real matrix,
the adjoint is the transpose. In more general examples, the operator L̂0 will be a
complex matrix-differential operator and we must expand our notions of vector
spaces, adjoint operators, etc., in the usual way to function spaces.

A2.3.2 One-dimensional Swift–Hohenberg equation

The one-dimensional Swift–Hohenberg equation

∂tu(x, t) = ru − (∂2
x + 1)2u − u3. (A2.32)

was introduced in Section 2.2.2 as a simple mathematical model displaying the
phenomenon of pattern formation. In that section, the linear stability analysis was
used to show that there is a type-I-s instability from the uniform state u = 0 at
the critical value of the control parameter r = rc = 0. The critical wave vector
is qc = 1, so that the onset mode is e±ix. We now show how to derive the lowest-
order amplitude equation for this model. The new feature that goes beyond the
previous example is the spatial dependence in the evolution equation and in the
resulting amplitude equation.
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The evolution equation (A2.32) can be written in the general form, Eq. (A2.14),
with the linear operator L̂ given by

L̂up = (r − 1)up − 2 ∂2
x up − ∂4

x up, (A2.33)

and the nonlinear operator N̂ by

N̂
[
up

] = −u3
p. (A2.34)

Following the general procedure, we introduce the small parameter ε as the
distance of the control parameter r from its critical value (here rc = 0), r = ε,
and then expand the field u(x, t) and the evolution equation in powers of ε1/2. We
expand u(x, t) as

u = ε1/2u0 + εu1 + h.o.t., (A2.35)

with u0 given as some slowly varying amplitude A0(X , T ) of the critical mode

u0 = A0(X , T )eix + c.c. (A2.36)

Here X and T are the slow space and time scales, X = ε1/2x and T = εt. In the
present case, unlike the previous example, the onset mode is complex and so the
amplitude is a complex function.

In the expansion of the linear operator L̂ in powers of ε, we introduce the multiple
scales by the substitution ∂x → ∂x + ε1/2 ∂X . This leads to the replacements

∂2
x → ∂2

x + 2ε1/2 ∂x∂X + ε∂2
X , (A2.37a)

∂4
x → ∂4

x + 4ε1/2 ∂3
x ∂X + 6ε ∂2

x ∂2
X + · · ·. (A2.37b)

Thus we find at successive orders in ε1/2

L̂0 = −1 − 2 ∂2
x − ∂4

x , (A2.38a)

L̂1 = −4(∂2
x + 1)∂X , (A2.38b)

L̂2 = −2 ∂2
X − 6 ∂2

x ∂2
X . (A2.38c)

The nonlinear term, and the time derivative ∂tu → ε ∂T u, contribute at O(ε3/2) and
higher.

Now collect terms at each order in ε1/2 in the expansion of Eq. (A2.32).
At O(ε1/2), we find

L̂0u0 = 0, (A2.39)

which is automatically satisfied by the expression Eq. (A2.36). At O(ε), we have

L̂0u1 = −L̂1u0 = 0, (A2.40)
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since the operator (∂2
x + 1) in L̂1 gives zero when acting on e±ix. Thus we simply

have
u1 = A1(X , T )eix + c.c., (A2.41)

which introduces the next-order correction A1 to the amplitude. At O(ε3/2) and
after some effort, we find the equation

L̂0u2 =
[
−(1 + 4 ∂2

X )A0 + ∂T A0 + 3
∣∣∣A2

0

∣∣∣ A0

]
eix + A3

0e3ix + c.c. (A2.42)

The amplitude equation for A0 arises as the solvability condition for this equation.
The solvability condition arises because the functions e±ix satisfy the homogeneous
equation

L̂0e±ix = 0, (A2.43)

(i.e. they are zero-eigenvalue eigenvectors for L̂0). Thus the coefficient of the e±ix

dependence on the right-hand side of Eq. (A2.42) must be set to zero. This yields
the amplitude equation

∂T A0 = 1 + 4 ∂2
X A0 − 3

∣∣∣A2
0

∣∣∣ A0. (A2.44)

Returning to the unscaled variables, and writing at lowest order A = ε1/2A0, yields

∂tA0 = εA0 + 4∂2
x A0 − 3

∣∣∣A2
0

∣∣∣ A0, (A2.45)

which has the form of the general type-I-s amplitude equation Eq. (6.9), reduced
to one spatial dimension, with values of the parameters

τ0 = 1, ξ0 = 2, g0 = 3. (A2.46a)

We can easily verify that after the solvability constraint is satisfied since
Eq. (A2.42) can indeed be solved. The terms remaining in Eq. (A2.42) are

L̂0u2 = A3
0e3ix + c.c., (A2.47)

which can be solved by inspection to give

u2 = − 1

64
A3

0e3ix + A1eix + c.c., (A2.48)

with A1 not determined at this order. Equation (A2.48) tells us the magnitude of
the third spatial harmonic (proportional to ε3/2) and can be used to extend the
expansion to higher order.

A2.4 Phase equations

A2.4.1 General method

The method of multiple scales is not restricted to expansions in weak nonlinearity
near threshold. Another application is to phase equations, which describe the slow
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modulation of stripe patterns away from threshold. Here we use the Goldstone-type
argument of Chapter 9 to argue that a modulation of a regular pattern on length
scales large compared to the basic periodicity should evolve slowly. This slow
space-time variation can be extracted from the basic equations using the method of
multiple scales.

This application differs somewhat from the derivation of amplitude equations in
that the slow scale is not determined by an independent parameter such as ε, but
itself defines the small parameter. The small parameter is essentially the reciprocal
of the length scale of the spatial variation in units of the periodicity of the pattern.

The starting point for the derivation of the phase equation is the definition of the
phase variable φ, Eq. (9.1), in terms of the wave vector field q

∇φ(x⊥, t) = q(X, t), (A2.49)

or

φ =
∫

q(X) •dx⊥. (A2.50)

In these equations, a slow space variable X is introduced by defining

X = ηx⊥, (A2.51)

where η is the small parameter such that the slow spatial variations of interest
in the pattern occur over a length scale of order unity in the X variable. Since the
wave vector defines the orientation and local periodicity of the pattern, this variable
varies on the long length scale and is a function of X. Note that Eq. (A2.49) applies
in regions of smooth variation of the pattern, away from defects and disordered
regions.

The expressions Eqs. (A2.49) and (A2.50) are not easy to work with because they
mix the fast and slow coordinates x⊥ and X in an inconvenient way. To develop the
systematic perturbation expansion, it is useful to introduce a scaled phase variable
�(X, T ) by defining

� = ηφ, (A2.52)

so that the derivatives of � with respect to X are O(1) (the first derivative is just
the wave vector). In terms of the scaled phase, we have

q(X) = ∇X�(X ), �(X) =
∫

q(X) •dX. (A2.53)

This clever trick allows the inclusion in the same formal expansion scheme of both
the first derivative of φ, which is O(1) and gives the local wave vector, and of
higher derivatives of φ, which are O(η) and give the slow spatial variation.
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With the definitions Eq. (A2.53), the derivation of the phase dynamics follows
quite closely the multiple scales derivation of the amplitude equation. In the present
case, we expand the evolution equations for the fields u(x, t) in powers of η,
corresponding to the slow spatial variation of q.

The zeroth-order solution for u (i.e. no effect of the spatial variation of q) is the
fully nonlinear, spatially periodic solution uq(x⊥, z), that corresponds to the ideal
stripe state with wave vector q. Since uq is periodic in x⊥ with period 2πq−1 in
the q̂ direction, we redefine the spatially periodic function in terms of the phase

uq(x⊥, z) = ūq(φ, z), φ = q •x⊥. (A2.54)

The expansion in powers of η is then

u(x⊥, z, t) = u(0)(φ, z; X, T ) + ηu(1) + · · ·, (A2.55)

where the dependence of u(i) on the slow variables X, T arises through the implicit
dependence on q(X, T ). In particular we have for the zeroth-order term

u(0)(φ, z; X, T ) = ūq(X,T )(φ, z). (A2.56)

Equation (A2.55) is substituted into the evolution equations for the system, and
terms at each order in η are collected. For the phase equation, Eq. (9.4), we need
only go up to terms that are first order in η. These terms arise from slow spatial
derivatives, slow time dependence, and also the term ηu(1) in Eq. (A2.55). For
example, a spatial derivative acting on u(i) gives

∇u(i) → q ∂φu(i) + η ∇Xu(i). (A2.57)

Higher-order derivatives may also be needed, for example

∇2u(i) → q2 ∂2
φu(i) + ηD ∂φu(i) + O(η2), (A2.58)

with the operator D defined by

D = 2q •∇X + (∇X •q). (A2.59)

Also, the time derivative gives

∂tu(i)(φ, z; X, T ) = η2 ∂T φ ∂φu(i) + η2 ∂T u(i) = η ∂T � ∂φu(i) + O(η2). (A2.60)

At O(η), there are also terms ηL̂u(1), with L̂ the linear operator given by linearizing
the equations of motion about u(0). We know from physical arguments that L̂ has
an eigenvector with zero eigenvalue, and so the phase equation appears as the
solvability condition that the equation for u(1) has a finite solution. Here we see the
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close similarity with the derivation of the amplitude equation. The zero mode in
the present case corresponds to a translation of the solution, and so takes the form
∇u(0).

This procedure is illustrated for the simple example of the Swift–Hohenberg
equation in the following section.

A2.4.2 Phase equation for the Swift–Hohenberg model

Here we will use the Swift–Hohenberg equation in two space dimensions, when it
can be written in the form

∂tu(x, t) = ru − (∇2 + 1)2u − u3, (A2.61)

with x = (x, y), and ∇2 = ∂2
x +∂2

y . As in Eq. (A2.55), we expand u as an expansion
in powers of η, to give

u(x, t) = u(0)(φ, z; X, T ) + ηu(1) + h.o.t., (A2.62)

with X and T the slow space and time variables and u(0) the zeroth-order solution

u(0)(φ, z; X, T ) = ūq(X,T )(φ), (A2.63)

where ūq(φ = q •x) is the nonlinear, spatially periodic, time-independent solution
for straight stripes which satisfies7

rūq(φ) − (q2 ∂2
φ + 1)2ūq(φ) − ū3

q(φ) = 0. (A2.64)

The h.o.t. in Eq. (A2.62) denotes terms that are of second and higher order in η.
We now substitute Eq. (A2.62) into the evolution equation, Eq. (A2.61). We will

need the rather complicated operator involving up to fourth-order derivatives

(∇2 + 1)2 →
[
(q2 ∂2

φ + 1) + ηD ∂φ

] [
(q2 ∂2

φ − 1) + ηD ∂φ

]
+ h.o.t. (A2.65)

= (q2 ∂2
φ + 1)2 + η

{
2∂φ(q2∂2

φ + 1)D +
[
2q •∇X (q2)

]
∂3
φ

}
+ h.o.t. (A2.66)

The other terms in Eq. (A2.61) are easy to evaluate up to first order in η

∂tu(x, t) → η(∂T �)∂φ ūq(φ) + h.o.t., (A2.67)

ru − u3 → rūq − ū3
q + η

[
r − 3ū2

q

]
u(1) + h.o.t. (A2.68)

7 For the scalar field u the function ūq cannot depend on the direction of q, as so we write it as ūq.



518 Multiple scales perturbation theory

Now collecting terms at O(η), we find the equation[
r − (q2 ∂2

φ + 1)2 − 3ū2
q

]
u(1) = (∂T �)∂φ ūq(φ)

+
{

2∂φ(q2 ∂2
φ + 1)D +

[
2q •∇X (q2)

]
∂3
φ

}
ūq(φ).

(A2.69)

It is straightforward to check that ∂φ ūq is a zero-eigenvalue eigenvector of the
operator on the left-hand side[

r − (q2∂2
φ − 1)2 − 3ū2

q

]
∂φ ūq = 0, (A2.70)

as is expected from the translational symmetry. The operator acting on u(1) in
Eq. (A2.69) is self-adjoint, and so the solvability condition, that the right-hand side
have no component along the zero-eigenvalue eigenvector of the adjoint operator,
reduces to the orthogonality condition for the right-hand side with ∂φ ūq

(∂T �)

∫ 2π

0
dφ(∂φ ūq)

2 +
∫ 2π

0
dφ(∂φ ūq)

{
2∂φ(q2∂2

φ + 1)D

+
[
2q •∇X (q2)

]
∂3
φ

}
ūq = 0.

(A2.71)

After integrating by parts with respect to φ some terms in the second integral and
rearranging, this reduces to

(∂T �)

∫ 2π

0
dφ(∂φ ūq)

2 = ∇X •

{
q

∫ 2π

0
dφ

[
q2(∂2

φ ūq)
2 − (∂φ ūq)

2
]}

. (A2.72)

Equation (A2.72) is in the form of Eq. (9.4) with

τ(q) = 1

π

∫ 2π

0
dφ(∂φ ūq)

2, (A2.73a)

B(q) = 1

π

∫ 2π

0
dφ

[
q2(∂2

φ ūq)
2 − (∂φ ūq)

2
]
. (A2.73b)

(Since we can multiply τ and B by the same arbitrary constant without changing
the physics, we have included a normalization constant 1/π in these expressions
for later convenience.)

These integral expressions depend on knowing the full nonlinear, but spa-
tially periodic, stripe solutions to some satisfactory level of approximation. We
have obtained expressions for the saturated nonlinear stripe solution to the Swift–
Hohenberg model in Section 4.1.3 using the lowest-order Galerkin method. The
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calculation there was done for the critical wave number q = 1, but the calculation
is easily generalized to any q. Truncating at lowest order in the Galerkin expansion
gives ūq � aq cos φ, φ = qx, with

a2
q = 4

3

[
r − (q2 − 1)2

]
. (A2.74)

Then we find
τ(q) = a2

q and B(q) = (q2 − 1)a2
q. (A2.75)

The function a2
q is positive everywhere between the neutral stability curve of the

uniform state, and goes to zero on the neutral stability curve. The function B(q)

changes sign at q = 1. It is useful to plot qB(q), since the slope of this curve is
needed to calculate the parallel diffusion constant via Eq. (9.7). As discussed in
Chapter 9, the signs of B and (qB)′ with the prime denoting the derivative with
respect to q, are important in determining the stability of the stripe state against
long-wavelength perturbations. The dependence of qB on the wave number q for
the Swift–Hohenberg model at r = 0.25 is shown in Fig. 9.1 of Chapter 9.

A2.5 Other applications of the solvability condition

The solvability condition also arises in other situations not arising from a multiple
scales expansion. The key ingredient that leads to solvability conditions is the need
to invert a linear operator with a zero eigenvalue. In a perturbation context, a zero
eigenvalue often arises from a symmetry. For example in a translationally invariant
system, the spatial derivative of a stationary localized solution u0(x) to

∂tu = Ôu(x, t) (A2.76)

satisfies
L̂ ∇u0= 0, (A2.77)

where L̂ is the linear operator given by expanding the operator Ô about u0. This
approach can be used to calculate the climb of dislocations for example, where we
are seeking the dynamics through symmetry related translations along the stripes.

A2.6 Further reading

(i) Advanced Mathematical Methods for Scientists and Engineers by Bender and Orszag
[11].
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Absolute instability: A spatially dependent instability that grows exponentially in
magnitude at all points within a system. See also the entry for “convective instability.’’

Ansatz: A mathematical expression that represents a plausible solution for some
problem.

Aspect ratio �: The dimensionless ratio of the largest lateral width of a pattern-forming
medium to its smallest transverse direction. For a cylindrical Rayleigh–Bénard con-
vection cell, the aspect ratio is defined to be the ratio of the cell radius R to the fluid
depth d , � = R/d . The larger the aspect ratio, the weaker the influence of the lateral
boundary conditions on the pattern.

Base state: A nonlinear state about which a linear stability analysis is carried out.
Bifurcation: A discrete qualitative change in some property of a dynamical system as

some parameter is varied. The value at which the discrete change occurs is called
the bifurcation point. Many scientists use a casual meaning of bifurcation, often
motivated by experimentally obvious changes in some system such as the appearance
of convection rolls from a featureless conducting state, or some change in symmetry.
Mathematically and more rigorously, a bifurcation corresponds to a change, as some
system parameter is varied, in the topological structure of the vector field in phase
space guiding the dynamics and so can be difficult to define or quantify.

Boussinesq equations: The five coupled nonlinear partial differential equations that
determine how the state of an incompressible convecting fluid – given by the
three components vx, vy, and vz of the velocity field v(x, y, z, t), the temperature
field T (x, y, z, t), and the pressure field p(x, y, z, t) – evolves in time. The Boussi-
nesq equations are fundamental in the sense that they correspond to laws of mass
conservation, momentum conservation, and energy conservation, and are believed
to describe convection quantitatively over a large range of fluid parameters. These
equations are difficult to study mathematically and the properties of their solutions
are known mainly from laboratory experiments and from numerical simulations.

Broken symmetry: Situation where a state (equilibrium or nonequilibrium) has a differ-
ent symmetry than the equations that govern the evolution of the state. For example,
a periodic stationary stripe state of convection rolls of wave vector q in an infinite
domain represents a broken symmetry solution of the Boussinesq equations. These
equations are invariant under the continuous symmetry of a horizontal translation

520



Glossary 521

x⊥ → x⊥ + d0 in an arbitrary direction by an arbitrary amount, while the stripe
state is invariant only under a discrete symmetry of horizontal translations x⊥ →
x⊥+mλ(q/q)by integer multiples m of the wavelengthλ = 2π/q. Broken symmetries
often arise from bifurcations.

Chaos: Deterministic dynamics that is nontransient, bounded, and nonperiodic in time
(neither periodic nor quasiperiodic). Scientists often use the criteria of a broad-band
power spectrum P(ω) and of a positive largest Lyapunov exponent λ1 > 0 to argue
the existence of chaos in experimental or computational data.

Characteristic length scale: The most significant length of some spatially vary-
ing field f (x). If the field f can be represented as a superposition of Fourier
modes exp(iq •x) such that the wave numbers q = √

q •q are closely clustered
around their mean 〈q〉, then the characteristic length is defined to be 2π/〈q〉. The
characteristic length scale of a cellular pattern near the onset of a type-I supercritical
bifurcation of a uniform state is usually determined by the critical wave number qc.

Characteristic time scale: The most significant time in some time-varying observ-
able u(t). If the observable u can be written as a superposition of Fourier modes
exp(iωt) such that the frequencies ω are closely clustered around their mean 〈ω〉,
then the characteristic time is defined to be 2π/〈ω〉 (and the characteristic frequency
is 〈ω〉).

Convective instability: A spatially dependent instability that propagates as it grows in
such a way that, at any fixed point in space, only asymptotic decay is observed. See
also the entry for “absolute instability.’’

Correlation function: A real-valued function C(x1, t1; x2, t2, . . .) that measures the
extent to which the fields at position x1 at time t1, position x2 at time t2, etc., are
correlated. Often the two-point correlation function with just two space-time points
is used. If the notation 〈A〉 denotes an ensemble average of an observable A (the aver-
age over all possible realizations of the field u consistent with imposed constraints),
then the two-point function C of the signal u at spatial points x1 and x2 at times t1
and t2 is defined to be

C(x1, t1; x2, t2) = 〈
(u(x1, t1) − 〈u〉) (u(x2, t2) − 〈u〉)〉.

Different observables can lead to different conclusions about the amount of correla-
tion. For a system that is homogeneous in space and time, the correlation function
becomes a function of only the distances and times between the observation points,
e.g. C(x1, t1; x2, t2) = C(‖x2 − x1‖, |t2 − t1|).

Critical exponent: The exponent of a power law that determines how some particular
quantity varies near a continuous transition. More specifically, if a quantity A varies
as (p − pc)

α as some parameter p approaches a critical value pc of a continuous
transition, then the exponent α is defined to be the critical exponent of the quantity A.
The concept is useful for equilibrium and nonequilibrium systems.

Defect: A place in a pattern where the local pattern cannot be defined; a disruption in
the periodicity of some periodic pattern. Defects can be localized to a finite region
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(a point defect such as a dislocation) or continuously extend along some line (e.g. a
grain boundary).

Degree of freedom: For dissipative systems, one of the variables used in a mathemati-
cal model that describes the system. For energy-conserving Hamiltonian systems, a
degree of freedom has a slightly different historical meaning, namely a pair of conju-
gate variables (e.g. position and momentum) that appear in the Hamiltonian equations
of the system.

Disclination: A point defect in a locally periodic pattern such that the wave vector
rotates by an integer multiple of π on any closed loop containing the disclination. A
focus singularity is an example of a disclination. Disclinations are associated with
the rotational symmetry of a pattern.

Dislocation: A point defect in a locally periodic pattern such that one or more wave
vectors of the periodic field integrate to a nonzero multiple of 2π on any closed loop
containing the dislocation. A convection roll that terminates abruptly in the middle
of a cell is an example of a dislocation. Dislocations are associated with the discrete
translational symmetry of a pattern.

Excitable dynamics: A dynamical system for which there is a stable fixed point with
the property that a small perturbation of the fixed point decays but a sufficiently large
perturbation of the fixed point grows in magnitude and then decays back to the fixed
point. Neurons and heart muscle are examples of excitable dynamics.

Extensive chaos: A chaotic state of a homogeneous spatially extended nonequilibrium
system which has the property that the fractal dimension D grows linearly with the
system’s volume V . Such systems have to reach some minimum size L before an
extensive behavior of D can be observed.

First-order phase transition: A thermodynamic equilibrium transition between phases
in which some thermodynamic quantity changes discontinuously across the transi-
tion. An example is the melting of ice to form water, for which the density changes
discontinuously between the two phases. A subcritical nonequilibrium bifurcation is
also sometimes called a first-order transition.

Front: A line in a two-dimensional pattern separating a region of one pattern from a
region of another kind of pattern or no pattern at all. One example is the propagating
boundary separating a stripe state and an unstable spatially uniform state. Another
example is a grain boundary, where a region of stripes of one orientation meets a
region of stripes with a different orientation.

Galerkin method: A numerical method for solving differential and partial differential
equations, in which the unknown variables are written as a finite linear superposition
of known basis functions. The coefficients of the superposition are then determined
as a function of time. For certain basis functions such as Fourier modes or Chebyshev
polynomials and for appropriate boundary conditions, Galerkin methods can require
many fewer numerical degrees of freedom than finite difference methods.

Grain boundary: Aone-dimensional or two-dimensional extended defect that separates
patterns of two different orientations.

Odes: An abbreviation for “ordinary differential equations,’’ pronounced “oh-dee-ees.’’
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Onset: A nonequilibrium system is said to be “just above onset’’ if a control parameter p
has been increased just beyond some critical value pc at which a bifurcation occurs.
More precisely, a system is just above onset if the reduced parameter ε = (p−pc)/pc

is small, so that 0 < ε � 1.
Operator: A “function of functions,’’ i.e. some mapping of input functions to output

functions. A simple operator is N̂ [f ] = d2f /dx2 + 2f , which associates with each
input function f (x) the output function f ′′(x) + 2f (x).

Order parameter: A quantity that distinguishes one phase from another in an equi-
librium phase transition, or one state from another for two states related by a
bifurcation.

Pattern: Afield f (x, t) is said to be a pattern if it varies periodically or nearly periodically
in space, or has spatial structure that repeats in some other way, or consists of patches
that themselves can be regarded as patterns. The concept includes time-varying fields.

Pattern formation: The formation of a pattern by some change in the parameters of a
sustained nonequilibrium system.

Pdes: An abbreviation for “partial differential equations’’, pronounced “pee-dee-ees.’’
Phase space: The space of dynamical variables whose values define the state of a

dynamical system. (See the glossary entry for “State of a dynamical system.’’) Also
sometimes called the “state space’’ of a dynamical system.

Phase transition: A distinct change in the character of a system that is always in ther-
modynamic equilibrium, as some thermodynamic variable such as the temperature or
pressure is slowly varied. For a second-order (also called continuous) phase transition,
the features that distinguish one phase from another change continuously through the
transition. An example is the continuous decrease to zero of the magnetization of a
ferromagnet as the temperature is increased near the magnet’s critical point. A dis-
continuous (also called first-order) phase transition involves a finite jump in the value
of some quantity characterizing the phase. An example would be the discontinuous
change in density as ice melts to form liquid water.

Power spectrum: The power spectrum P(ω) of some time-varying observable u(t) is
defined to be the magnitude-squared of the Fourier coefficient with frequency ω:

P(ω) =
∣∣∣∣ 1

2π

∫ ∞

−∞
u(t)eiωt dt

∣∣∣∣
2

.

Similarly, the power spectrum P(q) of some spatially varying field u(x) is defined to be
the magnitude-squared of the Fourier coefficient with wave vector q. Power spectra
are often one of the first quantities computed to analyze complicated temporal or
spatial structure. For a statistically stationary signal u, the power spectrum can be
shown to be the Fourier transform of the two-point correlation function of u, i.e. the
information in a power spectrum and the information in the two-point correlation
function are equivalent.

Primary bifurcation: The first instability of a spatially uniform time-independent
nonequilibrium state. For example, the onset of convection is the primary bifurcation
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of the fluid from its featureless conducting state. See also the entry for “secondary
bifurcation.’’

Quasicrystalline: An infinitely extended two- or three-dimensional pattern that is not
periodic and yet is highly ordered in that the pattern’s power spectrum P(q) consists of
sharp peaks (δ functions). Such patterns were first discovered in equilibrium crystals
and later discovered in nonequilibrium fluid experiments.

Quasiperiodic: A function f (t) that can be written in the form

f (t) =
∞∑

m=−∞

∞∑
n=−∞

fmnei(mω1+nω2)t ,

for frequencies ω1 and ω2 such that their ratio ω1/ω2 is irrational, or the generaliza-
tion to three and more frequencies; a superposition of sinusoids and their harmonics
involving two (or more) incommensurate frequencies.

Secondary bifurcation: Any bifurcation of a nonlinear state that itself arose directly
from the bifurcation of a spatially uniform time-independent state; any instability
that occurs after a primary bifurcation. See the entry for “primary bifurcation.’’

Second-order phase transition: A thermodynamic equilibrium transition between two
phases such that physical quantities vary continuously through the transition. Some
quantity (the order parameter) that is zero in one of the phases continuously through
the transition is often used to distinguish the two phases. Two examples are the
continuous loss of magnetism as an iron ferromagnet is heated through its Curie
point, and the continuous decrease of resistivity to zero of a metal like lead as it
is cooled below its superconducting transition point. Sometimes used to describe a
supercritical bifurcation of a nonequilibrium system.

Spatial disorder: A field f (x, t) defined over some spatial region of size L is said to be
“spatially disordered’’ at time t if one or more correlation functions of that field decay
significantly over a length scale that is small compared to L. A commonly used easily-
computed measure of spatial disorder is the two-point correlation function C(x),
which sometimes decays asymptotically for large |x| as an exponential exp(−|x|/ξ2)

with a length scale ξ2 (the two-point correlation length). In this case, the field is
spatially disordered if ξ2 � L.

Spatially extended system: A nonequilibrium system that is large compared to some
characteristic wavelength such as the size of a cellular structure (say a convection
roll) or the wavelength of a propagating wave (say the arm of a rotating spiral). It is
not always easy to identify an appropriate length scale with respect to which the size
of a system can be measured, e.g. strongly driven turbulent flows for which there may
be no cellular structure.

Spatiotemporal chaos: Informally, a spatially extended dynamical system that is
chaotic and such that at least one field associated with the system is spatially dis-
ordered. Experts have not yet reached agreement about how to define spatiotemporal
chaos since there are many ways to quantify spatial disorder and these definitions
are not all consistent. A commonly used empirical criterion for the presence of
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spatiotemporal chaos is that the dynamics is chaotic (see the glossary entry for
“chaos’’) and that the two-point correlation length ξ2 for some field is substantially
smaller than the lateral extent of the system.

State of a dynamical system: A set of numbers (possibly infinitely many) that are suf-
ficient and necessary to determine a unique solution of the evolution equations that
describe the system. The evolution equations must be known for a state to be defined.
For Newton’s law of motion mẍ = f for a single point particle of mass m moving in
three spatial dimensions according to a specified force f , the state of the system would
be the vector of six numbers defined by the three components of the position x and the
three components of the velocity dx/dt = x′ at a given time. For a pattern-forming
system like Rayleigh–Bénard convection, the state of the system is, at a given time,
the infinitely many values of the fields (T , p, vx, vy, vz) everywhere in the domain of
interest.

Subcritical bifurcation: A bifurcation such that the lowest nonlinear terms near onset
enhance, rather than saturate, instability. An important example in pattern-forming
systems is the formation of a hexagonal lattice from a uniform state in reaction–
diffusion systems. An important implication of a subcritical bifurcation is hysteresis:
for a given set of parameter values, at least two distinct states can be observed, and
which particular state is found depends on the history of how parameters are varied
to reach a particular point in parameter space.

Truncation error: The difference between some mathematical expression and a dis-
crete approximation of that mathematical expression, e.g. the difference between the
derivative f ′(x) of some function and some finite-difference approximation of that
derivative. The truncation error typically goes to zero in the limit that the spatial and
temporal resolutions, 	x and 	t, go to zero. For most problems, the truncation error
is large compared to the errors associated with round-off errors so the latter can be
ignored.

Turbulence: Usually understood as meaning a temporally nonperiodic spatially disor-
dered state of a fluid that has a large range of time and length scales. Some fluid
dynamicists define turbulence as a complex fluid motion in which there is substantial
generation of vorticity. The concept is often informally applied to non-fluid systems
that are disordered in space and time, and is sometimes used interchangeably with
spatiotemporal chaos, which is sometimes called “weak turbulence.’’

Two-point correlation function: A correlation function (see glossary entry) with two
space-time points. Static correlations in a statistically time independent situation are
given by setting the two times equal to give a function of just the two space points.

Uniform state: Asystem whose fields are translationally invariant with respect to at least
one coordinate. One can have translational invariance along an infinite line or plane,
and also translational invariance in a finite domain like a cylinder that is periodic with
respect to one or more variables.

Wave number spectrum: The normalized wave number spectrum P(q) of some spatial
field f (x) is the fraction of Fourier modes f (q) with wave number q in the interval
[q, q + dq] out of all possible observed wave numbers.
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