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Preface

Regular patterns are found in abundance in nature, from the spots on a leopard's
back to the ripples on a sandy beach or desert dune. There has a been a flurry of
recent research activity seeking to explain their appearance and evolution, and the
selection of one pattern over another has turned out to be an inherently nonlinear
phenomenon. My aim in writing this book has been to provide an introduction to
the range of methods used to analyse natural patterns, at a level suitable for final
year undergraduates and beginning graduate students in UK universities.

The book brings together several different approaches used in describing pattern
formation, from group theoretic methods to envelope equations and the theory of
patterns in large-aspect-ratio systems. The emphasis is on using symmetries to
describe universal classes of pattern rather than restricting attention to physical
systems with well-known governing equations, though connections with particular
systems are also explored. I have taken a wholeheartedly nonpartisan approach,
unifying for perhaps the first time in a textbook a multiplicity of methods used by
active researchers in the field.

It was David Crighton who originally suggested I should write this book. I had
been lecturing a Cambridge Part III course on pattern formation, and David men-
tioned in passing that it might be a nice idea to turn my lecture notes into a book Of
course I had no idea what I was letting myself in for, but David was always persua-
sive and inspirational so naturally I said yes. Several years of sweat and toil later
I have finally produced the book, though it bears little resemblance to my Part III
course, which is probably just as well. I am only sad that David is no longer here
to see the result: he inspired and encouraged so many people, particularly those at
the beginning of their careers, and he is sorely missed Like so many others, I owe
him a great debt.

Mike Proctor, my Ph.D supervisor, first introduced me to pattern formation
Later, it was Mike who gave me the opportunity to lecture the course that led to
this book I am very grateful to him for all his support and encouragement over
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the years I particularly enjoy and admire the great enthusiasm with which he ap-
proaches any problem, whether it be a tricky calculation or just a matter of finding
the right pub.

My heartfelt thanks go to Jon Dawes, Paul Matthews, Mike Proctor, James
Robinson and Alastair Rucklidge, who between them read and commented on the
manuscript. Their help has made writing this book a much less lonely task, and
greatly improved the final draft.

Much of the book was completed while I was on sabbatical in Cambridge, where
Mike Proctor and Nigel Weiss were my hosts. I would like to express my thanks
to Nigel for his regular reminders to stop working and go home at night.

I would also like to thank the following people who contributed pictures, en-
couragement or useful comments along the way: Tom Berger, Eberhard Boden-
schatz, Steve Cox, Benoit Dionne, Blas Echebarria, Gerhard Ertl, Stephan Fauve,
Jay Fineberg, Oliver Harlen (who showed me how to cook hexagons), Dana
Mackey, Paul Matthews, Angus McCarter, Ian Melbourne, Tom Mullin, Sarah
Pollicott, Hermann Ricke, Alastair Rucklidge, Björn Sandstede, Mary Silber,
Annette Taylor, Steve Tobias, Dawn Ise, Laurette Tuckerman, Ed Webb and the
editorial team at CUP.

Finally, I am grateful to Nick for cheering me up when it all seemed over whelm-
ing, for his endless patience while his spare room and kitchen table were buried in
bits of paper, and for cooking the hexagons with turmeric and then frying them up
with potatoes afterwards - delicious!

Guildford, July 2005



1

What are natural patterns?

This book is about patterns: stripes on tigers, whorls in your fingerprints, ripples
in sandy deserts, and hexagons you can cook in your own kitchen More precisely
it will be concerned with fairly regular spatial or spatiotemporal pat tens that are
seen in natural systems - deserts, fingertips, animal coats, stars - and in labora-
tory or kitchen experiments These are structures you can pick out by eye as being
special in some way, typically periodic in space (Figure 1 1), at least locally. The
most common are stripes, squares and hexagons - periodic patterns that tesselate
the plane - and rotating spirals or pulsating targets. Quasipatterns with twelvefold
rotational symmetry (Figure 12) never repeat in any direction, but they look regu-
lar at a casual glance, while spiral defect chaos (Figure 1 3) is disordered on a large
scale, but locally its constituent moving spirals and patches of stripes are spatially
periodic

Similar patterns are seen in wildly different natural contexts: for example, zebia
stripes, desert sand ripples, granular segregation patterns and convection rolls all
look stripy, and they even share the same dislocation defects, where two stripes
merge into one (Figure 1 4. Rotating spirals appear in a dish of reacting chemicals
and in an arrhythmic human heart. Squares crop up in convection and in a layer of
vibrated sand. It turns out to be common for a given pattern to show up in seveial
different systems, and for many aspects of its behaviour to be independent of the
small details of its environment. This has led to a symmetry-based approach to the
description of pattern formation: from this point of view, pattens are universal,
and we can find out nearly everything we need to know about them using only
their symmetries and those of their surroundings.

This book is intended as an introduction to these symmetry-based techniques
and their relationship with more traditional modelling approaches. Before starting
on the universal, however, I am going to talk a bit about the specific, describ-
ing the archetypal pattern-forming systems: convection, reaction-diffusion and the
Faraday wave experiment.
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Fig 1 1. A periodic super triangle pattern that tesselates the plane Super triangles
can be seen in Faraday wave experiments - see Sections 1.3 and 6.1 and also
Silber and Proctor (1998) and Kudrolli, Pier and Gollub (1998) Image courtesy
of and ©Mary Silber, Northwestern University, 2003

Fig 12. Quasipatterns in a Faraday wave experiment. The experimenters chose
a container in the shape of France to show that the quasipattern was not caused by
boundary effects Reprinted with permission from W § Edwards and S. Fauve,
Physical Review E, 47, R788, 1993 © American Physical Society, 1993
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Fig 1.3 Spiral defect chaos in a Rayleigh- Bénard convection experiment Image
courtesy of and @Nonlinear Phenomena Group, LASSP, Cornell University,
August 2004.

Many of the mathematical techniques and ideas I shall touch upon here are
revisited in greater detail in subsequent chapters, so don't worry if you don't fol-
low every step on a first reading. It is enough to get a flavour of the applications
to which the theory of pattern formation is relevant. If you are not familiar with
simple bifurcation theory it may help to read through the basic ideas in Chapter 2
before attempting to follow the details of the calculations. Simple vector calcu-
lus is also needed here, and occasionally in the rest of the book. The descrip-
tons of the phenomena themselves, however, require no particular background
knowledge.

Throughout the book I shall use bold italic font for vectors, v, but standard italic
font for vector-valued functions, f(1) = v, and for matrices, scalars and scalar-
valued functions..

1.1 C o n v e c t i o n

A huge proportion of the early work on pattern formation was motivated by
the study of convection, which is the overturning of a fluid that is heated from
below Heat at the bottom of a container causes the fluid there to expand, become
less dense and more buoyant and so to rise through the colder fluid above. As the
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Fig 14 Stripe patterns showing dislocations, where two stripes merge into one:
(a) segregation in a layer of horizontally shaken sugar and hundreds and thousands
(otherwise known as spr inkles or cake decorations); (b) sand ripples in the Saha ra
desert: (c) on zebras (courtesy of and E d Webb, 2004), and (d) i n a numerical
simulation of the Swift-Hohenberg convection model Image (a) reprinted with
permission from Mullin, T., Science 295, 1851 (2002). @AAAS (2002)
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cold, falling

mid 0 0 0 0 0 0 0 0
h o t r i s i n g D i a t e s

Fig. 1.5 The rise and fall of fluid in convection creates patterns, such as the rolls
or stripes shown here. Arrows show the direction of fluid movement. The pattern
looks like stripes when observed from the top

Fig, 1 6. Convection cells in the photosphere of the Sun (solar granulation). The
dark region is a sunspot Image courtesy of and @Dr Tom Berger, Lockheed
Martin Solar and Astrophysics Lab, Palo Alto, California, 2003.

fluid rises away from the heat source, it cools, becoming denser than the fluid
below, and so falls back down to the bottom of the container under the influence
of gravity (Figure 1.5) The cycle then repeats, so the fluid is constantly overturn-
ing. The rising and falling fluid forms spatial patterns, most commonly stripes or
convection rolls (Figure I 5), though more complicated patterns such as hexagons
and squares are also possible, depending on the details of the physical system and
the fluid properties Convection is often investigated through carefully designed
laboratory experiments, but the reason it is so important and has been studied so
extensively is that convection occurs naturally in the environment: in the Earth's
mantle, convection leads to the movement of tectonic plates or 'continental drift';
in the oceans it drives circulations such as the Gulf Stream that keeps northwest-
ein Europe so much warmer than its northern latitudes would suggest; in the atmo-
sphere, convection creates thunderclouds and in stars, such as the Sun (Figure 1.6),
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convection transports energy efficiently from the core where it is produced to the
su r f ace whe re it is released.

In the laboratory, the pattern or planform is typically visualised using the shad-
owgraph technique In this method, a light is shone down onto the convection cell.
which must have a transparent top plate and a reflective bottom plate. The warm
rising fluid has a lower index of refraction than the cold falling fluid, and so the
light is focused towards the cold regions, which appear bright, while the warmer
regions remain dark The pattern can be seen reflected off the bottom plate. Other
methods of visualisation are possible, as we shall see in the following kitchen
experiment

1.1.1 How to cook hexagons i n your own kitchen
I used to think that apart from stripes, which you can clearly see in fingerprints
and on zebras and so on, natural patterns were actually quite exotic - only to be
found on the surface of the Sun, and in labs where long hours had been spent in
perfecting the experimental set-up Then I learned how to cook hexagons using
only a frying pan, some cooking oil and a sprinkling of pepper.

C o o k e d hexagons
Warning: This recipe involves hot oil, which is potentially quite dangerous.
Only competent adult cooks should attempt to cook hexagons. Do not let any
water get into the oil. If the oil starts to smoke, remove the pan from the heat
immediately.

(i) Put a little cooking oil into a flat-bottomed cooking pan A depth of 0.5-1.00 mm is
adequate. You will be able to see the hexagons more easily if the inside of the bottom
of the pan is a pale colour Copper-bottomed pans make the best hexagons because
they conduct heat well.

(ii) Mix some very finely ground black pepper or other coloured spice into the oil for visu-
alisation purposes. There should be enough pepper or spice to finely coat the bottom
of the pan.

(iii) Put the pan on a flat even heat source - an old-fashioned oil- or coal-fired stove with
solid flat plates is best. Gas or electric rings will also work, but the hexagons will be
less regular because the heat will be more localised and because the pan is likely to be
tilted a bit

(iv) Heat very gently. Do not let the oil get very hot A few seconds' heating should be
adequate (Let the hot plate or electric ring heat up first before you put the pan of oil
on it.)

(v) Look sideways at the surface of the oil: you should see hexagon-shaped dimples as
the oil heats up and starts to convect. You should also see pepper or spice swept along
the bottom of the pan into little heaps arranged approximately hexagonally Once the
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Fig 1.7 Irregular hexagonal patterns in (a) heated cooking oil, and (b) a giraffe's
coat markings. Cooked hexagon image courtesy of and ©Nick Safford, 2004

hexagons have formed, the heaps of spice should remain visible if you remove the pan
carefully from the heat. In any case, you should not continue to heat the oil for more
than a few seconds

(vi) If your hexagons go wrong, take the pan off the heat, cool it down and start again. The
hexagons come out best if the oil is cool to start with, and should be seen within a few
seconds of heating

Figure 1.7a shows some hexagons cooked using turmeric for visualisation. You
can just about see the cell boundaries around each central blob of turmeric. The
hexagons are pretty irregular, since this is not a highly controlled experiment. In
fact you are likely to see as many pentagons and heptagons as hexagons; giraffe
markings also show irregular hexagonal patterns like these (Figure 1 7b) It is also
typical to see stripes in the heated oil if the pan is not quite horizontal and the oil
is flowing downhill under gravity in places.

1. 1.2 Governing equations for Rayleigh-Bénard convection
in the Oberbeck-Boussinesq approximation

In 1916, Lord Rayleigh published a paper analysing convection experiments
carried out by Henri Bénard and published in 1900. In fact Rayleigh's theory
described convection in a fluid that completely fills the gap between the top and
bottom plates of a closed cell, whereas Bénard's experiments had used a container
that was open at the top so tha t the fluid had a free surface. These two situations are
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2 = 0

I = To + AI
Fig. 1.8 Diagram of the convection system described by equations (1.2) and
(1.3). The fluid fills the gap between two horizontal plates at z = 0 and & The
top plate is maintained at a temperature T = To, while the temperature at the
bottom is heated to a temperature T = To + AT, where AT > 0.

actually quite different, because in a filled closed cell buoyancy changes alone are
responsible for convection, whereas if the top is open, temperature-induced vari-
ations in the surface tension can also drive the motion. Convection between two
horizontal plates is known as Rayleigh-Benard or simply Bénard convection,
while the free surface case is called Bénard-Marangoni convection. In his 1958
paper on surface-tension-driven convection Pearson introduced a dimensionless
number that measures the relative effects of surface tension and viscous forces;
this was later named the Marangoni number after a nineteenth-century Italian
scientist, Carlo Marangoni, who noted that fluid flow is coupled to surface
tens ion

This section will set out the equations used to describe Rayleigh-Bénard con-
vection and show that rolls or stripes are an approximate solution close to onset.

Consider a layer of fluid between two plates at z = 0 and d, heated uniformly
from below, with the top plate held at a temperature I = To and the bottom
plate at the higher temperature I = lo + AT, where AI is positive, as shown in
Figure 1.8. We assume that the fluid density, p, varies linearly with the tempera-
ture, T, so that

p = poll - a ( I - I o ] , (1 1)

where Do is the fluid density at I = To and o is the (constant) coefficient of ther-
mai expansion, and we further assume that the density variation is only significant
in the buoyancy force: this is the Oberbeck-Boussinesq approximation. These
assumptions are incorporated into the Navier-Stokes equation for fluid flow, the
heat equation and the continuity equation, to give

P o (1 .2)

aT
Ji + (u. V)I = * V7T,

V . 4 = 0.

(1.3)

(1.4)
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where u(x, y, z, t) € R° is the three-dimensional fluid velocity, I (x, y, 2, t) is the
temperature, p(x, y, 2, t) is the fluid pressure, g is the (constant) acceleration due
to gravity, £ is a unit vector in the upward vertical direction, v is the kinematic vis-
cosity, a measure of the fluid's internal resistance to flow, and k is the thermal dif-
fusivity that measures the rate of heat conduction through the fluid (see the discus-
sion of diffusion in the following section) Under the Boussinesq approximation,
both y and k are assumed constant Details of the derivation of the Navier-Stokes,
continuity and heat advection-diffusion equations can be found in any good text-
book on fluid dynamics - you might like to try Acheson (1990) if you're interested
in finding out more; we will simply accept them as our starting point.

If the heating is not strong enough, the fluid does not convect, but simply con-
ducts heat across the layer. The conduction solution is given by

u = 0,

7 = 7 ( 2 )   = T + A 7   ( 1 -   j )
(1.5)

(1.6)

(17)

= PO - 8POR [1-aAI (1-2)] (1 8)

where po is the pressure at the bottom of the layer, z = 0, and the pressure, Pc(z), is
the hydrostatic pressure of fluid in the conducting layer. (The hydrostatic pressure
at a height z is the pressure due to the weight of fluid above z.)

When the fluid starts to convect, there will be departures from this conduction
solution: to study these, we write p = Pc(z) + p and I = Ic(z) + 0. We also cast
the equations into dimensionless form using the substitutions

(x, y, 2) = d(F, §, 2), (1 9)

t = (1 10)

1 = ( 1 . 11 )

0 = sads₴,
Р о ї к

§ = 2 2 8

(1.12)

(1.13)

The combination of these two sets of substitutions gives

( д и
(1 14)

(1.15)
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where the tildes ( ) have been dropped immediately to simplify the notation, where
Us is the z-component of u and where o = v/k is the Prandtl number that mea-
sures the relative effects of viscous and thermal diffusion, and

agdAr
R = (1 .16)

KU

is the Rayleigh number - the nondimensionalised version of the temperature dif-
ference between the top and bottom plates.

We now eliminate the pressure by taking the curl of equation (1.14) to get the
vorticity equation

(OW + In TIw-w.Vu) = VOx=+ F7w, (1.17)
O

where w = V x u is the fluid vorticity
To examine the stability of the conduction solution to convection we linearise

equations (1.15) and (1.17) around u = w = 0, 0 = 0 giving
1 Aw = VA x = + Vw.

~ At
(1 .18)

(1 19)
д 8

a t

Now acting on equation (1.18) with 2. Vx gives

1=74 = 740 + Time. (1.20)
o At

where Vh = (O/dx, d/Ay, 0) is the horizontal gradient operator.
We now need to solve equations (1.19) and (1 20) subject to suitable bound-

ary conditions The top and bottom plates are held at fixed temperatures, so the
temperature perturbation 6 must be zero there:

9 = 0, at z = 0, 1. (1 21)

Mathematically, the simplest velocity boundary conditions to use are the so-called
stress-free boundary conditions,

U2 = 34: = 0, 212 =0,1, (1 22)

that Rayleigh (1916) used in his calculation We also assume that the convection
cell is infinite in horizontal extent so that we do not have to consider any lateral
boundary conditions The solution can now be written as a superposition of Fourier
eigenmodes

u(n) (x, y, z. t) = un sinnez eikn Khtst + c c.,
gl) (x, y, z, 1) = On sin not z eikn xhtst + c.c,

(1 .23)

(1.24)
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where c.c. stands for complex conjugate, and where k is a horizontal wavevector,
*h = (x, y, 0) is a horizontal position vector, s is the growth rate of the eigenmode.

and un and On are constants Substituting one such eigenmode (W"), 0() into
equations (1.19) and (1.20) gives

s e n   -   R u I n   ニ ー ( R 2   + n ' 7 2   ) 8   m o (1.25)
1

(1 .26)
O

where k = [kl. Eliminating the constants On and un gives a dispersion relation

3 2 ( 1 2 + パ ッ ク ） + S （ 1 + 0 ） （ 1 2 + 1 ア 3 3 2 + o （ 1 2 + 1 2 ヶ 2 3 3 - 0 R k 2   =   0 ,   ( 1 2 7 )
which shows that the growth rate, s, is zero at

(42 + 1=7233
R. (k) = . (1 28)

k2

In other words, there is a stationary bifurcation at R = Rn(k), (see Chapter 2 for
more on bifurcations) The growth late becomes positive for R > Rn(k) and the
nth eigenmode starts to grow This means that the conduction solution will be
unstable to the nth eigenmode (u), e(n)) if R > Rn(k) This happens first for
n = 1, as Rn(k) is smallest for n = 1 The value of k that gives the minimum of

(42 +77233
R i ( k ) = (1.29)

k2

is k = kc = r /v2, and this gives the convection instability threshold
2 7

R. = RI (kc) = (1 30)

We expect convection to set in for Rayleigh numbers above this threshold - in
other words for a large enough temperature difference between the top and bottom
plates

No-slip velocity boundary conditions, u = 0, are more realistic than stress-free;
they simply say that the fluid must be motionless at the boundaries. The analysis
is more complicated in this case, but it is possible to work out a new threshold
for convection at R. ~ 1708 (see Manneville (1990) for further details) Lateral
boundary conditions can also be accommodated.

Above threshold, any modes that satisfy Re < R,(k) < R can grow It is
straightforward to check that

RA (k) - RI(k) ≥ Rg = 37* (15 + 2163), (1.31)

for n ≥ 2. So, close to threshold, where the wavenumber deviation, Sk = k - ke,
and reduced Rayleigh number, r = (R - Re) / Re, are small and R < Re + Rg,
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only the n = 1 mode can grow. The growth rate is given by

§ = =71 (7) -882) (1.32)

Only wavenumbers in the band Sk? < 32, /2 have positive growth rates and the
critical wavenumber mode, k = kc (8k = 0), grows fastest Close to the onset of
convection we therefore expect to see patterns made up of a superposition of n = 1
modes with wavenumbers close to kc. The wavevectors of the contributing modes
can point in any direction, and the linear analysis doesn't tell us anything about
which combinations are preferred: the nonlinear terms in the governing equations
pick out a small number of modes, as we shall discuss in Chapter 7

The common convection roll or stripe solution corresponds to the selection of
a single pair of wavevectors ‡ k . Wavevectors must occur in equal and opposite
pairs, since the velocity and temperature eigenmodes u and 0(n) defined in equa-
tions (1.23) and (1.24) must be real If we choose the x axis to be aligned with Kh,
then right at onset we have Kn = (7 /v2, 0) and

0 = 0 sin rzeiTx /12 + c c.,
(1.33)

(1.34)

where one of u and O is arbitrary at linear order, and the other is then fixed by
equation (1.25) Contours of the vertical velocity, u2, and the temperature peertur-
bation, O, in the (x, y) plane look like stripes. A regular stripe pattern is shown in
Figure 5 1 of Chapter 5. This is what you would see looking down on the convec-
tion cell using the shadow graph technique. Looking from the side, the fluid motion
carves out rolls as shown in Figure 15

1.2 Reaction-diffusion systems

Spatial patterns can be seen in systems of reacting and diffusing chemicals The
standard example is the Belousov-Zhabotinsky reaction, where malonic acid is
oxidised by bromate ions in the presence of a ferroin catalyst. The reduced state of
the catalyst appears red and the oxidised state is blue. Oscillating spiral and target
patterns are seen with alternating red and blue arms or rings (Figure 1.9). In fact
Belousov (1958) originally used citric acid and a cerium catalyst, where the colour
oscillates between yellow and colourless, and Zhabotinsky and his coworkers (see,
for example, Zaikin & Zhabotinsky, 1970) extended the work using a variety of
other acids and catalysts

Diffusion is the mechanism by which particles in a fluid are transported from an
area of higher concentration to an area of lower concentration through the jostling
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Fig 1.9 Spirals in the Belousov-Zhabotinsky reaction Image courtesy of and
©Annette Taylor, University of Leeds, August 2004

and bumping of the liquid or gas molecules around them, each of which is in
constant random thermal motion Thermal motion takes place on very tiny length-
scales and is not apparent to the naked eye, nor are the random movements of any
two molecules correlated, so thermal motion does not lead to bulk movement of
the fluid Diffusion can therefore take place in either still or moving fluids An indi-
vidual particle is said to be in Brownian motion; diffusion refers to the behaviour
of an ensemble of particles. For example, a small amount of smoke released in the
corner of a still room will disperse by diffusion. By analogy, heat is said to diffuse
through a conductor: if you pick up an ice cube, it is (mostly) diffusion of heat into
the ice from your hand that makes your fingers cold.

It might seem paradoxical that diffusion, which tends to smear out high con-
centrations of a substance and make the distribution of particles more uniform,
could possibly lead to pattern formation, where by definition particles of the same
type must clump together so that coherent spatial structures can be seen. In the
Belousov-Zhabotinsky reaction, and others like it, such as the oxidation of car-
bon monoxide on the surface of a platinum catalyst (see, for example, Nettesheim
et a l , 1993), the oscillations are caused by the excitability of the system, and
diffusion simply serves to introduce some local spatial coherence so that neigh-
bouring molecules or parts of the surface oscillate nearly in phase We will discuss
excitable systems in Section 1.2. 1. Diffusion can also create patterns more directly:
in a famous 1952 paper Turing predicted that two reacting and diffusing chemicals,
an activator and an inhibitor, can produce a pattern if the inhibitor diffuses much
taster than the activator An activator causes growth in the concentration of reac-
tants, whereas an inhibitor causes depletion. It was a very compelling theory, but
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it proved very difficult to demonstrate in the laboratory, and it was not until nearly
forty years later in 1990 that Castets et al. produced the first convincing evidence
of an experimental Turing pattern. Turing invoked his reaction-diffusion mecha-
nism to explain morphogenesis, the development of shape or form in plants and
animals, and it has since been suggested that animal coat markings are created
this way, though many biologists strongly dispute it. Classical Turing patterns are
steady in time, but oscillatory analogues are possible (see Yang et al., 2002).

Model systems of two reacting and diffusing chemicals, with concentrations
u(x, r) and u(x, t), are commonly studied, and are typically written in the form

ди = / (U, v) + D„V?u, (1.35)
At

dU == 8(4, u) + D, V7, (1 36)

The position vector x can be two- or three-dimensional depending on whether the
pattern formation is going on in a thin layer or a large volume. The terms / (u, v)
and g(u, v) describe the chemical reactions, while diffusion of u and v is modelled
by the terms D„V~u and D, V2, respectively, with Du and D, being (positive)
diffusion coefficients. We are assuming here that the system is isotropic (invariant
under rotations) so that the derivatives in the Laplacian all have the same scaling.
We have further assumed homogeneity (invariance under translations) and that Du
and Dy are constants. These equations can describe excitable behaviour or the
growth of Turing patteins depending on the form of the reaction terms f (u, v) and
g (u, w), and on the values o f the diffusion coefficients.

The next two sections will use this basic framework to describe excitability
in the FitzHugh-Nagumo equations and the development of Turing patterns
Iespectively.

1.2.1 The F i tzHugh-Nagumo model: excitable systems

The FitzHugh-Nagumo equations (FitzHugh, 1961; Nagumo, Arimoto &
Yoshizawa, 1962) were originally developed as a model of nerve impulse prop-
agation and are now usually written in the form

д и
= u (1 - u) (u + a) - v + 1, (1 37)

At
dU 

= € (u - bu), (1 38)
At

where I is an external forcing and a, b and 0 < € « 1 are constants. These are a
slight modification of FitzHugh's original equations for a spatially uniform excita-
tion of a nerve axon. Nagumo, Arimoto and Yoshizawa introduced diffusion into
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the first equation to describe the movement of the excitation wave along the axon.
Variants that include diffusion are now often used as models of general excitable
reaction-diffusion systems. We shall consider the modification

д и
= TZu + f (u, v), (1 39)

â t

= 8 (u, v), 4 0 )
at

w h e r e

1
f ( u , v ) = - u ( 1 - 4 ) '+b)

a
(1.41)

g u . v ) = u -• U . (1.42)

which Barkley has used extensively to describe spiral waves in excitable media
(see, for example, Barkley, 1995, whom we follow in this section) Since € is small,
the reaction dynamics of the excitation variable, u, are much faster than those of
the recovery variable, v.

The excitable dynamics comes from the reaction terms: an individual oscillator
governed by the same equations without the V~u would also behave excitably, so
we will ignore the diffusion term for the time being The origin u = v = 0 is a
fixed point, du/dt = dw/dt = 0, of equations (1 39) and (1.40) If 0 < a < 1 and
b > O it is the only stable fixed point, and has excitable dynamics. To see why, we
consider the nullclines f ( u , ) = 0 o r g (u, v) = 0, plotted in Figure 1 10, which
divide the (u, w) phase space into regions according to the signs of du /d and
du/dt. We are interested in the region 0 < u < 1 A tajectory starting to the left
of the line v = au - b decays rapidly towards the origin, since du /dt is large and
negative there; v may initially increase, but will decay as soon as the trajectory has
crossed the line v = u. On the other hand if the initial conditions lie to the right of
v = au - b then u will at first grow rapidly away from the origin. However du /dt
is also positive, so v will grow, bringing the trajectory back into the region where
du/dr is negative and eventually to the origin This threshold effect is the defining
characteristic of an excitable system: small perturbations near to an excitable sta-
ble fixed point decay quickly to zero, but disturbances greater than some threshold
value lead to large excursions in the dynamics before the stable state is reached. An
excitable system is said to be quiescent close to the fixed point, excited close to
the righthand nullcline, here u = 1, and recovering close to the lefthand nulleline,
but far from the fixed point - in this case where u ~ 0, but v is large. It is impor-
tant that recovering states are much further from the threshold, v = au - b, than
quiescent states, since this means that an excited state must pass through recov-
ery to quiescence before it can be excited again; this is a good model for many
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= a u - b

0

Fig. 1 10. Excitable dynamics in the FitzHugh-Nagumo-type equations (1 39)
and (1 40), with a < 1 and b > 0, in the absence of spatial variation. The u null-
clines are given by dashed lines, while the v nullcline is solid. In the light grey
region both du/dr and do/dr are negative; in the medium grey region du/dr is
negative and do/dr is positive, while in the dark grey region both time derivatives
are positive. A trajectory starting to the left of the threshold line, v = au - b,
decays quickly to the stable fixed point at the origin, while a tajectory starting
to the right first grows away from the origin, making a large excursion before
returning to the fixed point

biological processes that require the slow build-up and rapid discharge of some
quantity, such as the action potential in a neuron that FitzHugh and Nagumo,
Arimoto and Yoslizawa were originally concerned with

Diffusion couples together the dynamics of neighbouring points in space. In an
excitable system this can lead to the propagation of excitation waves. If an excited
region, where u ~ 1, is next to a quiescent region where u and u are small, the
diffusive coupling increases the value of u in the quiescent region (and decreases
it in the excited region) Since quiescent points are close in phase space to the
excitation threshold, v = au - b, this can be sufficient to bring them across the
threshold, whereupon the local dynamics take them into excitation The newly
excited region can now excite neighbouring quiescent areas in its turn and a wave
of excitation spreads outwards from the initial excited patch. An excited area does
not remain excited forever, but goes into the recovery phase, eventually becoming
quiescent and ready to be excited again: thus the excitation waves can be periodic
like the spiral and target patterns we will discuss in Chapter 10.

The form (1.41) of the reaction term f(u, w) is actually somewhat patholog-
ical in that the u nullclines, being three nonparallel straight lines, cross each
other Outside the region 0 ≤ u < 1 the dynamics are not those of a simple
excitable system The advantage of the piecewise linear form (1.41) of / (u, u)
is that it allows the implementation of a fast numerical scheme for simulating the



1.2 Reaction-diffusion systems

u

Fig. 1.11 Excitable dynamics in the FitzHugh-Nagumo equations (1 37) and
(1.38), for a, b and I all positive and for the case where there is only one stable
fixed point at the intersection of the u and v nullclines. The u nullcline is shown
as a dashed curve, while the v nullcline is a solid straight line Two trajectories
are shown, one starting in the quiescent region to the left of the middle blanch of
the u nullcline, and quickly decaying to the fixed point, and one starting to the
right of the threshold, and becoming excited before reaching the fixed point

reaction-diffusion equations (Barkley, 1995) It is also a nice instructive example
because it is easy to draw the mullclines, work out where the stable fixed point
is, and where the the time derivatives of u and v change sign. The u nullcline of
the original FitzHugh-Nagumo equations (1.37) and (1 38) is cubic, and behaves
well over the whole range of u, but the fixed points can't be found analytically. In
Figure 1.11 the excitable behaviour is sketched in the case where there is only one
stable fixed point (at the crossing of the u and v nullclines).

1.2.2 Turing patterns

We now move away from excitability to analyse steady (non-oscillatory) patterns
that can arise in reaction-diffusion systems, as predicted by Turing (1952). We start
with equations (1.35) and (1.36), and assume that there is a spatially homogeneous
solution, u = uo, v = vo, with uo and vo constants. We now set u = up + §, v =
vo + i, where I§l, I§| « 1 and linearise in § and › to get

а й
a p   =   a i -   b i +   D , 0 2 , (1.43)

at •   =   0 -   d i +   D ,   V 2 5 , (1.44)
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a f
a = 

du (40,up)
d g(= Au l (no. vo)

b = (1 .45)
dU (wo.vp)
d g

a = -

dU («0.v)
(1 46)

The signs in front of the coefficients are chosen so that for positive a, b, c and
d, the chemical corresponding to u is an activator, while that corresponding to
v is an inhibitor In this context an activator is a chemical that stimulates the
growth in concentration of both chemicals, while an inhibitor leads to a decrease
in the concentrations. With the signs we have chosen here, positive † (an increase
in the concentration, u, of the activator over the steady-state value wo) gives a
positive contribution to the growth of both activator and inhibitor, while positive
~, an increase in the concentration of inhibitor, leads to a negative contribution to
both growth rates.

Turing patterns appear in a diffusion-driven instability where the inhibitor dif-
fuses much faster than the activator, often referred to as local activation with
lateral inhibition. An initial random perturbation from the steady homogeneous
solution is necessary to seed the instability Any locally high concentration of
activator in the perturbation causes both activator and inhibitor concentrations to
increase. The inhibitor diffuses away from the area more quickly than the activa-
tor, and so the relative concentration of inhibitor becomes high in a region outside
the original patch. Neither the activator nor the inhibitor are being produced in
this border region, so the activator becomes depleted there The inhibitor is con-
stantly replenished by diffusion from the central activator-rich patch, but beyond
the border region levels start to drop off because there is no local supply This
allows activator to build up again if there is another localised patch of activator
in the initial random perturbation, so the pattern can repeat periodically in space
(Figure 1.12).

The conditions for a Turing instability to occur can be derived from equations
(1.43) and (1.44) We want the instability to be diffusion-driven, so the system
should be stable in the absence of diffusion If we set ü = We ' and V = v e t .

where † and © are constants, the growth rate eigenvalues are given by

0 =

1

(la - d) I=V (a + d3 - 4bc. (1.47)

The solution u = wo, v = vo, is stable if both eigenvalues are negative, which
requires a < d and a d < bc.

PETROS 
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Fig. 1.12. Inhibitor diffuses out of patches of high activator concentration where
it is produced, and creates an inhibitory border, resulting in a Turing pattern
Regions o f higher activator concentration are shown in black while areas of higher
inhibitor concentration are coloured white The arrows indicate the diffusion of
inhibitor. The area pictured can be considered as part of an array of patches placed
approximately at the vertices of an infinite hexagonal lattice in this example.

Any spatially varying solution (_(* , t), §(x, t)) can be expressed as a Fourier
series in space, so we need to know which Fourier modes

V = Deikxtol + c.c.
(1.48)

(1 4 9 )

will grow, where k is a constant wavevector and † and © are complex constants. We
shall assume for the moment that the system is unbounded in space so that we don't
have to worry about spatial boundary conditions. The necessary modifications to
take account of them can be made quite easily later on if required.

Substituting (1.48) and (1 49) into the linearised equations (1.43) and (1.44)
leads to the d i spe r s ion r e l a t i o n f o r o :

02 + 0 (Duk? + Duk? - a + d) + (Duk? - a) (D,k? + d) + bc = 0, (1.50)

where k = |k|. For instability, at least one of the roots of this equation must have
positive real part. The sum of the roots is

- (Duk? + Duk? - a + d), (1 .51)

which is negative since a < d and both diffusion coefficients are positive. The only
possibility for an instability is therefore to have one negative and one positive real
foot, which will be the case as long as the product of the roots is negative:

h (K2) = (DuK? - a) (Duk? + d) + be <0 (1 52)

If the minimum, hmin, of the function h (k2) is negative then a range of modes k? <
4? < k3 will grow (Figure 1.13). The values of the coefficients in the inequality
(152) are fixed by the chemistry, and as a result so are hmin, ki and k2
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h(k2) A
b a n d of
growing
m o d e s

0 
k?

Fig. 1.13. Modes with wavenumbers lying between the zeros, kf and K7, of h (k3)
grow in the Turing instability.

It is easy to check that the minimum of h(2) is

hmin = -
1 (AD, - aD,)? - ad + beÀD, D, (1.53)

a n d o c c u r s at

#=; (8 -4) (1.54)

So the Turing instability occurs as long as a/ Du > d/D, (so that k2 is positive)
and hmin < 0 The lengthscales lu = D u / a and ly = D u / d give a measure of
the distance over which u and , respectively, will decay to low values from peak
concentrations. The requirement that k2 be positive can be rewritten as ly > lus
which says that the inhibitor must penetrate further than the activator. This is the
local activation with lateral inhibi t ion that was d i s cus sed earlier

1.3 Faraday waves

In 1831, Faraday published observations of 'crispations' in vertically vibrated
layers of fluid, in other words standing-wave deformations of the fluid surface
These parametrically excited surface waves form a variety of striking patterns:
Faraday himself saw square or rectangular grids of wavecrests, or circular pat-
terns, depending on the strength of the vibration. Subsequent experiments have
revealed more exotic patterns, such as the one with twelvefold rotational sym-
metry in Figure 1.2 Faraday used an array of different household fluids - milk.
egg white, alcohol, ink and turpentine - to produce his patterns. He also found



1.3 F a r a d a y waves

standing waves
o n f r e e s u r f a c e

21

w w w w A accelerationy a cos@r

fluid

Fig 1.14 A container of fluid is vibrated up and down sinusoidally. Surface
waves form in the Faraday instability

crispations of 'extreme beauty' in mercury Recently patterns including stripes.
squares and hexagons have been seen in vibrated layers of granular material (see,
for example, Melo, Umbanhowar & Swinney, 1995), though in this case the insta-
bility mechanism is different from Faraday's Faraday observed his patterns by eye
using reflections from the fluid surface or, particularly in the case of milk, by shin-
ing a light through the fluid from below He also sprinkled sand over the container
and saw that it was arranged into patterns under the water. In modern experiments
the patterns are typically imaged by reflection from a light placed near a camera.
Flat regions of the surface reflect light directly back to the camera, and so they
appear bright, while inclined surfaces appear darker. Usually the images are aver-
aged over a whole cycle of oscillation.

In a typical experiment the fluid layer is vibrated vertically (Figure 1 14) with
acceleration a cos wt, for constant a and w, so that the effective gravitational
acceleration felt by the layer is

8eff (t) = - g + a cos wt, (1 .55 )

where g is the acceleration due to gravity on a still layer. At low forcing amplitude,
a, the surface of the layer remains flat, but standing waves or crispations form
once the amplitude increases beyond a threshold value, ac, at which the forced
acceleration is strong enough to overcome viscous dissipation, the loss of energy
as heat through fluid friction For deep enough layers the response is subharmonic,
the surface waves oscillating at half the driving frequency, as observed by Faraday
who wrote that 'each heap. recurs or is re-formed in two complete vibrations of
the sustaining surface'

The driving does not have to be sinusoidal: the pattern shown in Figure 1.2 was
produced using two-frequency forcing of the form

geff = - g + a[cos e cos 4wt + sin A cos(Swt + ф)] (1 56)

for constant a, O, w and . This type of forcing can produce a variety of interesting
planforms including examples of so-called superlattices and quasipatterns, which
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will be described in detail in Chapter 6. The effective gravity, geff, is periodic with
period 27 /w; for appropriate choices of the parameters this forcing can lead to
patterns that are harmonic, oscillating with this same period.

The calculation of the instability threshold is complicated, even for the simple
forcing (1 55), (see, for example, Kumar, 1996), so I will not present it here How-
ever the starting points are the Navier-Stokes equation, with time-varying effective
gravity, and the continuity equation,

(ди
p • + (u. V)u = - Vp - p(g -acosct)ê+ put?u,

a t
(1 .57)

V u = 0. (1 58)

together with suitable boundary conditions that prescribe, among other things, how
the fluid responds to surface tension at the free surface

1.4 Outline of the rest of t h e book

Convection, reaction-diffusion and Faraday waves comprise the three most com-
monly studied pattern-forming systems, and much of the theory of pattern forma-
tion has been developed in an attempt to explain experimental results in one or
other of them Of course, there are others: spatial patterns can be seen in flame
fronts, lasers and solidifying metal alloys, for example The theory set out in the
rest of this book will start from the symmetries and observable features of the
patterns themselves, rather than the specifics of any one experiment.

Chapters 2 and 3 set out some introductory material on bifurcation theory and
group theory, respectively, that will be needed for the analysis of patterns If you
have a strong background in either or both of these areas you can simply skip
the relevant chapters) and refer back to them if you need to. The bulk of the
book from Chapter 4 onwards describes theoretical approaches to understanding
pattern formation. Roughly speaking we start with the most regular patterns in
Chapters 4 and 5 and work towards the most irregular in Chapters 10 and 11.
There is a corresponding transition from the theory of bifurcations with symmetry
at the beginning of the book to asymptotic methods at the end.

At the end of each chapter from Chapter 2 onwards there is a set of exer-
cises. A set of partial solutions to the exercises can be found on the web page
www cambridge org/9780521817509. I will also post any errata at the same
address from time to time.
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