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Table 7.1 Roots of the Wilkinson polynomial (7.2.12) with ¢ = 10°

The first column lists the unperturbed (e = 0) roots 1, 2, ..., 20: the second column gives the results of
first-order perturbation theory (see Prob. 7.22); the third column gives the exact roots. The unper-
turbed roots at 13 and 14, 15 and 16, and 17 and 18 are perturbed into complex-conjugate pairs.
Observe that while first-order perturbation theory is moderately accurate for the real perturbed roots

near 1,2, ..., 12, 19, 20, it cannot predict the locations of the complex roots (but see Prob. 7.23)
First-order

Unperturbed root perturbation theory Exact root

1 1.000 000 000 0 1.000 000 000 0

2 2.000 000 000 0 2.000 000 000 0

3 3.000 000 000 0 3.000 000 000 0

4 4.000 000 000 0 4.000 000 000 0

5 5.000 000 000 0 5.000 000 000 0

6 5.999 999 941 § 5.999 999 941 8

7 7.000 002 542 4 7.000 002 542 4

8 7.999 994 030 4 7.999 994 031 5

9 9.000 839 327 5 9.000 841 033 5
10 9.992 405 941 6 9992 518 124 0
11 11.046 444 571 11.050 622 592
12 11.801 496 835 11.832 935 987
13 13.605 558 629| ,
14 12.667 031 557 13.349 018 036 + 0.532 765 750 0i
15 17.119 065 220| )
16 13.592 486 027/ 15.457 790 724 + 0.899 341 526 2i
17 18.904 402 150 .
18 17.004 413 300/ 17.662 434 477 + 0.704 285 236 9i
19 19.309 013 459 19.233 703 334
20 19.956 900 195 19.950 949 654

This example shows that the roots of high-degree polynomials may be ex-
traordinarily sensitive to changes in the coefficients of the polynomial, even
though the perturbation problem so obtained is regular. It should serve as ample
warning to a “number cruncher” not to trust computer output without sufficient
understanding of the nature of the problem being solved.

7.3 PERTURBATION METHODS FOR LINEAR EIGENVALUE
PROBLEMS

In this section we show how perturbation theory can be used to approximate the
eigenvalues and eigenfunctions of the Schrodinger equation

2
—dd? + V(x) + W(x) - E| y(x) =0, (7.3.1)
subject to the boundary condition
lim y(x)=0. (7.3.2) ‘
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Figure 7.5 Roots of the Wilkinson polynomial (x — 1)(x — 2)(x — 3)-- (x — 20) + ex'? in (7.2.12)
for 11 values of &. When & = 0 the roots shown are 10, 11, ..., 20. As ¢ is allowed to increase very
slowly, the roots move toward each other in pairs along the real-x axis and then veer off in
opposite directions into the complex-x plane, We have plotted the roots fore=0,10"1°2 x 10717,
3 x 107% ... 10~° Some of the roots are numbered to indicate the value of & to which they
correspond; that is, 6 means ¢ = 6 x 107'°, 3 means £ =3 x 107", and so on. The roots starting
at 11, 12, 19, and 20 move too slowly to be seen as individual dots. We conclude from this plot
that very slight changes in the coefficients of a polynomial can cause drastic changes in the values
of some of the roots; one must be cautious when performing numerical calculations.

In (7.3.1) E is called the energy eigenvalue and ¥ + W is called the potential. We
assume that V(x) and W(x) are continuous functions and that both V(x) and
V(x) + W(x) approach oo as |x| — 0.

We suppose that the function V(x) + W(x)is so complicated that (7.3.1)is not
soluble in closed form. One can still prove from the above assumptions that
nontrivial solutions [y(x) # 0] satisfying (7.3.1) and (7.3.2) exist for special discrete
values of E. the allowed eigenvalues of the equation (see Sec. 1.8). On the other
hand, we assume that removing the term W(x) from (7.3.1) makes the equation an
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Figure 7.6 Same as in Fig. 7.5 except that the values of ¢ are 0, —107'%, —2 x 10 1%,
—3x 1071, ..., —107°. The roots pair up and veer off into the complex-x plane, but the pairs are

not the same as in Fig. 7.5.

exactly soluble eigenvalue problem. This suggests using perturbation theory to
solve the family of eigenvalue problems in which W(x) is replaced by eW(x):

2

Cdx?

Our assumptions on the nature of ¥'(x) and W(x) leave no choice about where to
introduce the parameter ¢ if the unperturbed problem is to be exactly soluble.

+ V(x) + eW(x)— E | y(x)= 0. (733}

Example 1 An exactly soluble eigenvalue problem. Several exactly soluble eigenvalue problems
are given in Sec. 1.8. One such example, which is used extensively in this section, is obtained if we
take V(x)= x?/4. The unperturbed problem is the Schrodinger equation for the quantum-
mechanical harmonic oscillator, which is just the parabolic cylinder equation

x2
Y 4y - Ey=0, (73.4)

We have already shown that solutions to this equation behave like e**** as |x| — 0.
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There is a discrete set of values of E for which a solution that behaves like e *"* as x — w also

behaves like ¢ *** as x = — oo (see Example 4 of Sec. 3.5 and Example 9 of Sec 3.8). These
values of E are

E=n+3 n=012.., (7.3.5)
and the associated eigenfunctions are parabolic cylinder functions
Yalx) = D,(x) = e7*"* He, (x), (7.3.6)

where He, (x) is the Hermite polynomial of degree n: He, (x)=1, He, (x)=x,
He, (x)=x*—1,....

In general, once an eigenvalue E, and an eigenfunction y,(x) of the unper-
turbed problem

—:? + V(x) = Eo | yo(x)=0 (7.3.7)

have been found, we may seek a perturbative solution to (7.3.3) of the form

E= i E,¢, (7.3.8)
y(x) = 20 Yu(X)e". (73.9)

Substituting (7.3.8) and (7.3.9) into (7.3.3) and comparing powers of ¢ gives the
following sequence of equations:

2

d n
—F + V(X)— EO yn(x)= —W_V"_l{X)+ ‘Zl Ejyn-j(x)'

NS )e 2 B (7.3.10)
whose solutions must satisfy the boundary conditions
im y(x)=0  n=1 2,3,.. (7.3.11)

lx|—+oa
Equation (7.3.10) is linear and inhomogeneous. The associated homogeneous
equation is just the unperturbed problem and thus is soluble by assumption.
However, technically speaking, only one of the two linearly independent solutions
of the unperturbed problem (the one that satisfies the boundary conditions) is
assumed known. Therefore, we proceed by the method of reduction of order (see
Sec. 1.4); to wit, we substitute

(%) = yo(x)Fo(x), (7.3.12)

where Fo(x) = 1, into (7.3.10). Simplifying the result using (7.3.7) and multiplying
by the integrating factor yo(x) gives

;—x[y%{x)F;(x)]w%{x) W(x)F,_ (x) — gl EF,_(x)|. (73.13)
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If we integrate this equation from —oo to oo and use y§(x)F,(x)=
Yo(x)ya(x) = yo(x)ya(x) = 0 as | x| — o0, we obtain the formula for the coefficient

J.m Yol(x) W(x)yn—l(x)_"__z E;y,-jlx)| dx
E,=—% . 1 ,
| ¥3lx)dx

T=ig

n=1,23.. (13.14)

from which we have eliminated all reference to F,(x). [The sum on the right side of
(7.3.14) is defined to be 0 when n = 1.]
Integrating (7.3.13) twice gives the formula for y,(x):

x ol

¥a(X) = yol(x) [ ;g:%) _'_ _ds Yols) [ W(s)y,-1(s) — g} E;y,-ils)|

‘a a0 i

n=123 .. (73.15)

Observe that in (7.3.15) a is an arbitrary number at which we choose to
impose y,(a) = 0. This means we have fixed the overall normalization of y(x) so
that y(a) = yo(a) [assuming that y,(a) # 0]. If yo () vanishes between a and x, the
integral in (7.3.15) seems formally divergent; however, y,(x) satisfies a differential
equation (7.3.10) which has no finite singular points. Thus, it is possible to define
y.(x) everywhere as a finite expression (see Prob. 7.24).

Equations (7.3.14) and (7.3.15) together constitute an iterative procedure for
calculating the coefficients in the perturbation series for E and y(x). Once the
coefficients Ey, Ey, ..., E,_1, Yos V1, -.-» Va1 are known, (7.3.14) gives E,, and
once E, has been calculated (7.3.15) gives y,. The remaining question is whether or
not these perturbation series are convergent.

Example 2 A regular perturbative eigenvalue problem. Let V(x) = x?/4 and W(x) = x. It may be
shown (Prob. 7.25) that the perturbation series for y(x) is convergent for all ¢ and that the series
for E has vanishing terms of order ¢ for n > 3. This is a regular perturbation problem.

Example 3 A singular perturbative eigenvalue problem. It may be shown (Prob. 7.26) that if
V(x) = x?/4 and W(x) = x*/4, then the perturbation series for the smallest eigenvalue for positive
£ls

Elg)~3+2e—3e? + 3+, e-0+. (7.3.16)

The terms in this series appear to be getting larger and suggest that this series may be divergent
for all ¢+#0. Indeed, (7.3.16) diverges for all ¢ because the nth term satisfies E,~
—(=3)T(n + 4)/6/2* (n — o). (This is a nontrivial result that we do not explain here.)

The divergence of the perturbation series in Example 3 indicates that the perturbation
problem is singular. A simple way to observe the singular behavior is to compare ¢ *"*, the
controlling factor of the large-x behavior of the unperturbed (¢ = 0) solution, with ¢~ *'v*¢, the
controlling factor of the large-x behavior for £ # 0. There is an abrupt change in the nature of
the solution when we pass to the limit (¢ — 0+ ). This phenomenon occurs because the perturbing
term ex*/4 is not small compared with x*/4 when x is large.
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If the functions V(x) and W(x) in Example 3 were interchanged, then the resulting
eigenvalue problem would be a regular perturbation problem because ex? is a small perturbation
of x* for all |x| < cc. However, the unperturbed problem, (-—d?/dx? + x*/4— Eg)ye(x) =0,
1s not soluble in closed form. Thus, it would not be possible to use (7.3.14) and (7.3.15) to compute
the coefficients in the perturbation series analytically.

Also note that if the boundary conditions in Example 3 were given at x = + 4, 4 < oo, then
the perturbation theory would be regular. This is because here ex* is a small perturbation of x*.
However, it is much more difficult to solve the unperturbed problem on a finite interval.

Thus, one 1s forced to accept a solution to Example 3 in the form of a divergent series.
Fortunately, this series is one of many that may be summed by Padé theory to give a finite and
unique result (see Sec. 8.3).

Example 4 Another regular perturbation problem. When V = x*/4 and W = |x| the perturba-
tion problem is regular. But unlike the problem in Example 2, this perturbation series is not
convergent for all ¢ the series in (7.3.8) and (7.3.9) have finite radii of convergence. The
significance of the finite radius of convergence is discussed in Sec. 7.5.

(D) 7.4 ASYMPTOTIC MATCHING

The purpose of this section is to introduce the notion of matched asymptotic
expansions. Asymptotic matching is an important perturbative method which is
used often in both boundary-layer theory (Chap. 9) and WKB theory (Chap. 10)
to determine analytically the approximate global properties of the solution to a
differential equation. Asymptotic matching is usually used to determine a uniform
approximation to the solution of a differential equation and to find other global
properties of differential equations such as eigenvalues. Asymptotic matching may
also be used to develop approximations to integrals.

The principle of asymptotic matching is simple. The interval on which a
boundary-value problem is posed is broken into a sequence of two or more
overlapping subintervals. Then, on each subinterval perturbation theory is used to
obtain an asymptotic approximation to the solution of the differential equation
valid on that interval. Finally, the matching is done by requiring that the asymptot-
ic approximations have the same functional form on the overlap of every pair of
intervals. This gives a sequence of asymptotic approximations to the solution of
the differential equation; by construction, each approximation satisfies all the
boundary conditions given at various points on the interval. Thus, the end result is
an approximate solution to a boundary-value problem valid over the entire
interval.

Asymptotic matching bears a slight resemblance to an elementary technique
for solving boundary-value problems called patching. Patching is helpful when the
differential equation can be solved in closed form. Here is a simple example:

Example 1 Patching. The method of patching may be used to solve the boundary-value problem
y" —y=e " [p(£o0)=0]. There are two regions to consider. When x < 0, the most general
solution which satisfies the boundary condition y(—oc)=0is

y(x) = ae* + Lxe”, (7.4.1)



