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Perturbation theory using series expansions and the Riccati equation
N. Bessis and G. Bessis
Laboratoire de Physique des Lasers, U.R.A. 282 du C.N.R.S., Universite´ Paris-Nord, avenue J.B. Clement,
93430 Villetaneuse, France

~Received 29 March 1995; accepted 17 May 1995!

An algebraic procedure is proposed for the analytical solution of Schro¨dinger equations that can be
viewed as a factorizable equation with an adequately chosen perturbation. This procedure relies on
the solution of the Riccati equation associated with the given eigenequation and the use of power
series of suitable functions which are specific to each factorization type. As illustrative examples,
analytical solution of the symmetric anharmonic oscillator, perturbed Morse oscillator and singular
anharmonic oscillator equations are carried out. Further applications are pointed out. ©1995
American Institute of Physics.

I. INTRODUCTION

In many problems of current interest in quantum me-
chanics, particularly in atomic and molecular physics, one
requires analytical solutions of wave equations which, in
most cases, are not exactly solvable equations. Nevertheless,
very often, at many stages of the physical modelization, after
exact or approximate separation of variables, it is possible to
manage in order to deal with the solution of equations which
are, or are amenable to be exactly solvable eigenequations
with an additional perturbation. After appropriate transfor-
mations of variable and function, these equations can be
written in the standard form

H d2

dx2
1U ~0!~x,m!1V~x!1LJ C~x!50, ~1!

whereV(x) is a perturbation andm5m0 ,m011,m012,... is
a quantum number which takes successive discrete values
labeling the eigenfunctions.

Actually, the potential functionsU (0)(x,m) leading to an
exactly solvable eigenequation are comparatively few and,
mostly, can be related to a Infeld and Hull1 factorizable equa-
tion ~see Table I!. If we restrict ourselves to bound states,
analytical expressions of the unperturbed eigenvalues are
readily obtained from the knowledge of the factorization
function, i.e.,

L~0!5L ~0!~ j̃ !, ~2!

where j̃5m1v11 ~or j̃5m2v! according to the class of
factorization, i.e., according to whetherL (0)(m) is an in-
creasing~or a decreasing! function ofm; v50,1,2,... is a non
negative integer.

Closed-form expressions of the eigenfunctions have
been obtained2 and involve classical orthogonal polynomials
~see Table I!. The whole set of unperturbed eigenvalues and
eigenfunctions being known, one can resort to the usual per-
turbation theories such as the traditional Rayleigh–
Schrödinger framework. One can also use the logarithmic
perturbation method,3 or the perturbed ladder operator
method,4 and obtain analytical expressions of the perturbed
eigenvalues and perturbed eigenfunctions showing their de-
pendence in the quantum numbersm andv.

In the present paper, a straightforward procedure is pro-
posed which is based on the solution of the perturbed Riccati

equation associated with the given Eq.~1! and the use of
power series of suitable functions which are specific to each
factorizable type of Table I. For any given state, this proce-
dure provides the analytical solution of eigenequation~1!
without having either to get analytical expressions of the
required matrix elements between unperturbed functions and
manage with the many summations of the Rayleigh–
Schrödinger method, or to perform the successive integra-
tions of the logarithmic method, or to solve the finite-
difference equations of the perturbed ladder operator method.

After giving the main features of the method, it is shown
that, provided the perturbationV(x) is conveniently chosen,
the present procedure works well for all the unperturbed po-
tential U (0)(x,m) belonging to Table I and, for any given
state, one can obtain analytical expressions of the perturbed
eigenfunctions and eigenvalues by merely using algebraic
operations~Sec. II!. As illustrative examples, analytical ex-
pressions of the symmetric anharmonic-oscillator, perturbed
Morse-oscillator, and singular anharmonic-oscillator energies
and eigenfunctions are carried out~Sec. III!. Further appli-
cations of the method are pointed out~Sec. IV!.

II. METHOD

When settingdC/dx5F(x)C(x), the given eigenequa-
tion ~1! is readily transformed into the following Riccati
equation

dF

dx
1@F~x!#21U ~0!~x,m!1V~x!1L50. ~3!

Let us assume thatV(x) as well asL can be expanded in a
perturbation series of a parameterh and let us set

V~x!5hV~1!~x!1h2V~2!~x!1••• ,

L5L~0!1hL~1!1h2L~2!1••• , ~4!

Fv~x!5
Rv

~0!~x!1hRv
~1!~x!1h2Rv

~2!~x!1•••

Sv
~0!~x!1hSv

~1!~x!1h2Sv
~2!~x!1•••

,

where theRv
(N)(x) andSv

(N)(x) functions have to be found
for each statev.

Since the unperturbed functionFv
(0)(x)5Rv

(0)(x)/
Sv
(0)(x)5[1/Cv

(0)(x)](dCv
(0)/dx) is solution of the zeroth-

order Riccati equation, when substituting forV(x), Fv(x),
and L from Eq. ~4! into Eq. ~3!, at each orderN of the
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perturbation, the quadratic character of the original Riccati
equation is blown off and the resulting equations to be solved
are linear equations. At the successive orders~N51,2,...! of
the perturbation, we get

Sv
~0!

dRv
~1!

dx
2Rv

~1!
dSv

~0!

dx
12Rv

~0!Rv
~1!12Sv

~0!Sv
~1!@U ~0!1L~0!#

1~Sv
~0!!2@V~1!1L~1!#50, ~5!

Sv
~0!

dRv
~2!

dx
1Sv

~1!
dRv

~1!

dx
2Rv

~0!
dSv

~2!

dx
2Rv

~1!
dSv

~1!

dx
12Rv

~0!Rv
~2!

1~Rv
~1!!21@2Sv

~0!Sv
~2!1~Sv

~1!!2#@U ~0!1L~0!#

12Sv
~0!Sv

~1!@V~1!1L~1!#1~Sv
~0!!2@V~2!1L~2!#

50...and so on ~6!

where, at each orderN under consideration, theRv
(n)(x) and

Sv
(n)(x) functions of the preceding orders (n50,1,...N21)
are known.

For each factorization type, the unperturbed function
Fv
(0)(x)5Rv

(0)(x)/Sv
(0)(x) is easily obtained in closed form

from the knowledge of its counterpartCv
(0)(x) which is so-

lution of a factorizable equation. We get

Fv
~0!~x!5F ~0!~x!1

1

Fv

dFv

dx
, ~7!

whereF (0)(x)5Fv50
(0) (x) is the ground state~v50! function

andFv5Fv(x) is the polynomial which is involved in the
expression of the unperturbed functionCv

(0)(x) of Table I.
Since these polynomialsFv(x) are either Jacobi, associ-

ated Laguerre or Hermite polynomials, the second term in
the expression~7! of the unperturbed functionsFv

(0)(x) is
easily obtained, for any value ofv, by using, together with
the already known expressions of the polynomials, the fol-
lowing relations5

d

dy
Pv

~a,b!~y!5 1
2~v1a1b11!Pv21

~a11,b11!~y!,

d

dy
Lv

a~y!52Lv21
a11~y!,

d

dy
Hv~y!52vHv21~y!.

We get

1

fv

dfv

dx

5

a~v1a1b11!( t50
v21~21! t11S v1a

v2t21D S v1b
t Du2t11

( t50
v ~21! tS v1a

v2t D S v1b
t Du2t

~ type A!; ~8!

1

fv

dfv

dx
5

b( t50
v21~21! t11S v1a

v2t21D @~bu! t/t! #

( t50
v ~21! tS v1a

v2t D @~bu! t/t! #

~ types B, C, and F!; ~9!

1

fv

dfv

dx
5

b( t50
@~v21!/2#~21! t@~bu!v22t21/t! ~v22t21!! #

( t50
@~v !/2#~21! t@~bu!v22t/t! ~v22t !! #

~ type D!; ~10!

whereu5tan~ax/2! for type A, u5eax for type B,u5x for
types C, D, F andu5cotax for type E. The expression~9!
has to be multiplied by a factor (au) for type B and a factor
(2u) for type C.@v/2# denotes the integer part ofv/2.

Briefly stated, as a consequence of the expression~7! of
Fv
(0)(x)5Rv

(0)(x)/Sv
(0)(x), the unperturbed functionsRv

(0)(x)
andSv

(0)(x) are both already known polynomials ofu5u(x)

TABLE I. Infeld–Hull exact factorizable eigenequations.e511 and j̃5m1v11 ~or e521 and j̃5m2v! according to whether the factorization function
L (0)(m) is an increasing~or a decreasing! function ofm. Pv

(a,b) ~ !, Lv
a ~ ! andHv ~ ! are, respectively, a Jacobi, Laguerre and Hermite polynomial of degree

v.

Type U (0)(x,m) Cv
(0)(x) Parameters L (0)(m)

A 2
a2@m(m11)1d21(2m11)d cosax#

sin2 ax
'Ssinax2 Da11/2Scosax2 Db11/2

Pv
~a,b!~cosax!

a5e(m1d11/2)
b5e(m2d11/2)

a2m2

B 2a2d2e2ax1a2(2m11)deax 'exp@
1
2~aax2beax!#Lv

a~beax!
a522e j̃
b522ed

2a2m2

C 2
m~m11!

x2
2b2x21b~2m11! 'xa11/2 expS2 bx2

2 DLva~bx2!
a5e~m11/2!
b52eb

24bm

D 2b2x21b(2m11) 'expS2 b2x2

2 DHv@bx# b5~2eb!1/2 22bm

E 2
a2m~m11!

sin2 ax
22aqcotax '~sinax!2a exp~2ebx!Pv

(a1 ib,a2 ib)~2i cotax!
a52e j̃
b52q/ j̃ a2m22

q2

m2

F 2
m~m11!

x2
2
2q

x
'xm11 expS2 bx

2 DLva~bx!
a52m11
b522q/ j̃

2
q2

m2
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~see Table II, forv50,1!. Moreover, we remark that, for each
of the six factorization types, the unperturbed potential
U (0)(x,m) involves only powers of the sameu5u(x) as the
unperturbed functionFv

(0)(x) ~see Tables I and II!. This is

obvious for factorization types B, C, D, and F. For types A
and E, it is easily checked that the unperturbed potentials
U (0)(x,m) can be conveniently written again.

For type A,

U ~0!~x,m!52
a2@~m1d11!~m1d!12„d21m~m11!…u21~m2d11!~m2d!u4#

4u2
, where u5tan~ax/2!. ~11!

For type E

U ~0!~x,m!52a2m~m11!~11u2!22aqu;

u5cot ax. ~12!

Now, let us assume that, at each orderN of the pertur-
bation, the given perturbation can be expanded in power se-
ries ofu5u(x), i.e., that the perturbation termsV(N)(x) can
be written

V~N!~x!5(
s51

SN

bs
~N!us ~13!

and let us set

Rv
~N!~x!5(

s
cs

~N!us; Sv
~N!~x!5(

s
ds

~N!us, ~14!

then, at each orderN of the perturbation, the solution of the
original Eq. ~3!, i.e., the determination of the perturbed ei-
genvalueLv

(N) and of the expansion coefficientscs
(N) andds

(N)

of theRv
(N)(u), andSv

(N)(u) functions to be found, amounts
to the solution of a linear system of equations.

III. ILLUSTRATIVE EXAMPLES

Since the main purpose of this paper is to illustrate the
simplicity of the procedure rather than to give new results or
extensive tables, we limit ourselves to some test examples.

A. Symmetric anharmonic-oscillator eigenvalues and
eigenfunctions

As a first example, let us consider the anharmonic-
oscillator eigenequation, that is the perturbed type D
eigenequation~2`,x,1`!

H d2

dx2
2b2x21b~2m11!1V~x!1LJ C~x!50, ~15!

whereV(x) is a symmetric perturbation with perturbation
terms

V~N!~x!5b1
~N!x21b2

~N!x41b3
~N!x61••• .

When V(x)50, this eigenequation~15! reduces to an
exact type D factorizable equation~see Table I!. Let us as-
sumeb.0:6 The factorization functionL (0)(m)522bm is a
decreasing function ofm so thate521 and j̃5m2v. The
unperturbed eigenvalue isL~0!5L (0)(m2v)522b(m2v)
and we find again the expected expression of the un-
perturbed harmonic-oscillator energiesE~0!, i.e., 2E(0)

5b(2m11)1L (0)52b(v1 1
2).

Let us now consider the perturbed eigenequation~15!
and, in order to avoid writing down too much extensive ex-
pressions, let us consider thex4 anharmonic-oscillator
eigenequation

H d2

dx2
2b2x222gx412EJ C~x!50, ~16!

TABLE II. The unperturbed functionsFv
(0)(x)5Rv

(0)(x)/Sv
(0)(x) in terms ofu5u(x).

Type u(x) v50 v51

A
tan

ax

2
a@~a1

1
2!2~b1

1
2!u

2#

2u

a@~2a11!~a11!2~4ab17~a1b!110!u21~2b11!~b11!u4#

4@~a11!u2~b11!u3#

B eax a

2
~a2bu!

a@a~a11!2~2a13!bu1b2u2#

2~a112bu!
C x

~a1
1
2!2bu2

u

~2a11!~a11!2~4a17!bu212b2u4

2u~a112bu2!

D x 2b2u 12b2u2

u
E cotax 2aau2b a~a11!2b21b~11a2aa!u1a~a11!2u2

b2~a11!u
F x a112bu

2u

~a11!222~a12!bu1b2u2

2u~a112bu!
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where the perturbation reduces to

V~x!5hV~1!~x!522hgx4. ~17!

When dealing with the ground state~v50!, since the
unperturbed type D function isF0

(0)5R0
(0)522b2u; S0

~0!51
~see Table II!, we set

F0~x!522b2u1hR0
~1!1h2R0

~2!1h3R0
~3!1h4R0

~4! ,
~18!

where

R0
~N!5c1

~N!u1c2
~N!u31c3

~N!u51••• .

When substituting forF0(x) from Eq. ~18! and forV(x), L
from Eqs.~17! and~4! into Eq.~3!, and then equating to zero
the coefficients ofhN successively forN51 to N54, we get
four linear systems of equations allowing the determination
of the expansion coefficientsck

(N) of R0
(N) and of the per-

turbed eigenvaluesL(N). Solving successively these systems
and settingu5x, b252eb5b, we get

E05
1

2
L05

b

2
1hg

3

4b2
2h2g2

21

8b5
1h3g3

333

16b8

2h4g4
30885

128b11
, ~19!

F0~x!52bx2hgS x3b 1
3x

2b2D1h2g2S x5

2b3
1
11x3

4b4
1
21x

4b5 D
2h3g3S x7

2b5
1
21x5

4b6
1
45x3

2b7
1
333x

8b8 D1h4g4S 5x98b7

1
163x7

16b8
1
1159x5

16b9
1
8669x3

32b10
1
30885x

64b11 D . ~20!

When dealing with the first excited state~v51!, owing
to the expression of the unperturbed function~see type D in
Table II!, we set

F1~x!5
12bu21hR1

~1!1h2R1
~2!1•••

u1hS1
~1!1h2S1

~2!1•••
,

where theRv
(N) andSv

(N) are polynomials inu5x

When substituting this expression into Eq.~3! and mul-
tiplying both sides by~u1hS1

~1!1...!2, we obtain relations
leading to the following solution

E15
1

2
L15

3b

2
1hg

15

4b2
2h2g2

165

8b5
1h3g3

3915

16b8

2h4g4
520485

128b11
, ~21!

F1~x!5R1 /S1 ,

R1512bx22hg
7x2

2b2
1h2g2

22x2

b5
2h3g3

551x2

2b8

1h4g4
298229x2

64b11
, ~22!

S15x2hg
x3

b2
1h2g2S 3x52b4

1
33x3

4b5 D
2h3g3S 5x72b6

1
53x5

2b7
1
899x3

8b8 D
1h4g4S 35x98b8

1
1119x7

16b9
1
8129x5

16b10
1
62367x3

32b11 D .

When dealing with the second excited state~v52!, we
set

F2~x!5
2b2u325bu1hR2

~1!1h2R2
~2!1•••

122bu21hS2
~1!1h2S2

~2!1•••

and we get

E25
5b

2
1hg

39

4b2
2h2g2

615

8b5
1h3g3

20079

16b8

2h4g4
3576255

128b11
1h5g5

191998593

256b14
, ~23!

F2~x!5R2 /S2 ,

where

R252b2x325bx1hg
28x2

b2
2h2g2

1699x

4b5
1h3g3

70 117x

8b8
2h4g4

1375 411x

64b11
1h5g5

760 529 019x

128b14
,

S25122bx21hgS 2x4b 1
10x2

b2
2

19

2b3D2h2g2S 2
3x6

b3
2
34x4

b4
2
577x2

4b5
1
611

4b6 D1h3g3S 5x8b5
1
91x6

b6
1
2933x4

4b7

1
11641x2

4b8
2
12 571

4b9 D2h4g4S 35x104b7
1
223x8

b8
1
42 373x6

16b9
1
293 943x4

16b10
1
282 701x2

4b11
1
2428 159

32b12 D
1h5g5S 63x124b9

1
2087x10

4b10
1
132 051x8

16b11
1
1287 363x6

16b12
1
16 439 691x4

32b13
1
62 324 979x2

32b14
2
264 159 051

128b15 D .
~24!

It is easily checked that the expressions~19!, ~21!, and~23! of E0, E1, andE2 give again already known results.7
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With the help of a general software system, such as
Mathematica,8 the computation can be performed up to
higher ordersN of the perturbation, higher excited states and,
if required, with a more extensive perturbationV(x) than
expression~17!, without any other special difficulty than
dealing with more and more extensive expressions. More-
over, the procedure provides simultaneously the energies and
the perturbed eigenfunctionsCv(x)'exp*Fv(x)dx, which
are solutions of the original eigenequation~15!.

Let us remark that, when comparing the above expres-
sions of the first-order energies with their counterparts within
the traditional Rayleigh–Schro¨dinger framework, we get, as
a byproduct, the expressions of the diagonal matrix elements
^x4& between the unperturbed harmonic oscillator functions
Cv

(0)(x) of Table I

^v50ux4uv50&5
3

4b2
; ^v51ux4uv51&5

15

4b2
;

^v52ux4uv52&5
39

4b2
.

This is in accordance with the known expression
^vux4uv&5(3/2b2)[ (v1 1

2)
21 1

4].

B. Perturbed Morse-oscillator eigenvalues and
eigenfunctions

We consider the perturbed type B equation

H d2

dx2
2a2d2e2ax1a2d~2m11!eax1V~x!1LJ C~x!50

~25!

and assume that the given perturbation is, withu5eax ~see
type B in Table II!

V~x!5hV~1!~x!5ha2~g1u1g2u
21g3u

31g4u
4!. ~26!

Sincedu/dx5au, the Riccati equation to be solved is

au
dF

du
1@F~u!#21U ~0!1V1L50. ~27!

When dealing with the ground state~v50! eigenvalues
and eigenfunctions, after picking up the expression of the
unperturbed function from Table II, we set

F0~u!5
a

2
~a2bu!1hR0

~1!1h2R0
~2!1••• .

After substituting this expression into Eq.~27!, we readily
obtain the following results:

L052a2m22a2hH g12d ~2m!1
g2

~2d!2
~2m11!21

g3
~2d!3

~2m12!31
g4

~2d!4
~2m13!4J

22h2a2H g1
2

~2d!2
1
2g1g2
~2d!3

~4m11!1
4g1g3
~2d!4

~6m216m11!1
4g1g4
~2d!5

~16m3136m2122m13!

1
g2
2

~2d!4
~16m2110m11!1

4g2g3
~2d!5

~24m3136m2114m11!1
4g2g4
~2d!6

~64m41184m31168m2152m13!

1
g3
2

~2d!6
~36m4190m3174m2121m11!1

8g3g4
~2d!7

~96m51384m41560m31354m2185m13!J 1••• , ~28!

F0~u!5a~m2du!1ahH g12d1
g2

~2d!2
~2m11!1

g3
~2d!3

~2m12!21
g4

~2d!4
~2m13!3

1F g22d1
g3

~2d!2
~2m12!1

g4
~2d!3

~2m13!2Gu1F g32d1
g4

~2d!2
~2m11!Gu21 g4

2d
u3J 1••• . ~29!

For the sake of brevity, but only the expression of the first-
order perturbed eigenfunction is reproduced. It has been as-
sumed that ‘‘a’’ is a real constant so that we havea52(m
2v)52m, b52d. (n)k5n(n21)...(n2k11) is a
generalized factorial.

When dealing with the first excited state~v51!, we set

F1~u!

5
a@a~a11!2~2a13!bu1bu21hR1

~1!1hR1
~1!1•••#

2~a112bu1hS1
~1!1hS1

~1!1••• !

After substituting this expression into Eq.~27! and setting

a52m22, b52d, we readily obtain theck
(N) anddk

(N) coef-
ficients of theR1

(N) andS1
(N) functions and the perturbed ei-

genvalue

L152a2~m21!21hH g12d ~2m22!1
g2

~2d!2
~2m11!

3~2m22!1
g3

~2d!3
4m~m21!~2m15!

1
g4

~2d!4
4m~2m11!~10m2222m13!J 1••• .

~30!
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With the help ofMathematica, the computation can be
carried out up to higher orders and higher excited states
without any other difficulty than dealing, of course, with
more and more cumbersome expressions.

Then, these type B results can be used in order to obtain
analytical expressions of the perturbed Morse-oscillator en-
ergies and eigenfunctions. When introducing the dimension-
less coordinatex5(mve/\)

1/2(r2r e), the vibrational con-
stant ve5(2De/m)

1/2b and the harmonicity constants
ze5\ve/4De , the perturbed Morse-oscillator eigenequation
~0<r,`!

H 2
\2

2m

d2

dr2
1De~12e2b~r2r e!!21U~r !J F~r !5EF~r !,

U~r !5De(
t
bt~12e2b~r2r e!! t

becomes (2r e<x,`)

H d2dx2
2

1

2ze
e22~2ze!1/2x1

1

ze
e2~2ze!1/2x1

1

2ze
1V~x!1

2

\ve
EJ

3C~x!50, ~31!

V~x!5
1

2ze
(
t
bt~12e2~2ze!1/2x! t. ~32!

WhenV(x)50, the eigenequation~31! reduces to an ex-
act type B factorizable equation where

a52~2ze!
1/2; d5

1

2ze
;

~33!

m52
1

2
1

1

2ze
; L~0!5

2E~0!

\we
1

1

2ze
.

Since a52(2ze)
1/2 is a real constant,L (0)(m)52a2m2

~see Table I! is a decreasing function ofm and
L~0!52a2(m2v)2. Settingm521/211/2ze , we get the
expected expression of the unperturbed Morse energy
Ev
(0)5\we[v1 1

22ze(v1 1
2)
2]. Note that, as usually done, it

is implicitly assumed that the Ter Haar approximation9 holds,
i.e., that a sufficiently close approximation of the solution of
eigenequation~31! is obtained when taking the range ofx to
be !2`,1`~.

When giving to the type B parameters their actual values
~33!, settinga52(m2v); b52d and introducing suitable
expressions for thegk expansion coefficients of the given
perturbation~32! in a series ofe2xA2ze, one can use the

present perturbed type B results in order to obtain analytical
expressions of the perturbed Morse-oscillator energies and
eigenfunctions. Particularly, one can introduce for the rota-
tional term (r e/r )

2 a rather extensive expansion and obtain
elaborate expressions of the diatomic rotation–vibration en-
ergies, or one can extract the internuclear distance depen-
dence of diatomic structure constants~fine structure,
L-doubling, spin-rotation constants,...! from the experimen-
tal centrifugal data.10

C. Singular anharmonic-oscillator energies and
eigenfunctions

In order to test the capabilities of the procedure when
dealing with a singular potential and as a last example, let us
consider the solution of the spiked anharmonic-oscillator
eigenequation

H d2

dx2
2b2x22

l

x4
1EJ F~x!50. ~34!

As already pointed out,11 the solution of Eq.~34! can be
obtained via the solution of a perturbed type C eigenequation
~0<x,`!

H d2

dx2
2
m~m11!

x2
2b2x21b~2m11!1V~x!1LJ C~x!50,

~35!

where

V~x!5hV~1!~x!5h~g1x
221g2x

24!. ~36!

WhenV(x)50, this eigenequation reduces to an exact
type C factorizable equation of Table I. Assumingb,0, the
factorization function L (0)(m)524bm is an increasing
function of m, the unperturbed eigenvalue is
L~0!524b(m1v11) and we get the expression of the un-
perturbed energy, i.e., E(0)(m)5b(2m11)1L (0)

52b(4v12m13).
Let us now consider, for instance, the ground state~v

50! of the perturbed eigenequation~35!. We set~see Table
II !

F0~x!5
~a1 1

2!2bx21hR0
~1!1h2R0

~2!1•••

x1hS0
~1!1h2S0

~2!1•••
.

When substituting this expression into Eq.~3!, multiplying
both sides by~x1hS0

(1)1•••!2 and settinga5m1 1
2;b52b,

we obtain relations leading to the following solution
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E0~m!52b~2m13!1hH 2g1b

2m11
2

4g2b
2

~2m11!~2m21! J 2h2H 2g1
2b

~2m11!3
1

16g1g2b
2

~2m11!3~2m21!2

2
16g2

2b3~8m226m21!

~2m11!3~2m21!3~2m23! J 14h3H g1
3b

~2m11!5
2
4g1

2g2b
2~16m222m11!

~2m11!5~2m21!3

1
16g1g2

2b3~80m42168m3280m216m15!

~2m11!5~2m21!4~2m23!2

2
g2
4b4~4096m5214 080m4113 312m322176m221024m2368!

~2m11!5~2m21!5~2m23!2~2m25! J 1••• , ~37!

F0~x!5
m11

x
1bx2hH S g2

2m21D 1

x3
1S g1

2m11
1

2g2b

~2m11!~2m21!
D 1

x J 2h2H S g2
2

~2m21!2~2m23!
D 1

x5

1S 2g1g2
~2m11!~2m21!2

2
2g2

2b~6m25!

~2m11!~2m21!3~2m23!
D 1

x3
1S g1

2

~2m11!3
1

16g1g2bm

~2m11!3~2m21!2

1
8g2

2b2~8m226m21!

~2m11!3~2m21!3
~2m23! D 1

x J 1••• . ~38!

These expressions~37! and ~38! can be used in order to
obtain an analytical solution of the spiked anharmonic-
oscillator equation ~34! when setting g15m(m11),
g252l. Moreover, in order to deal with a core potential
conveniently adapted to the perturbation, that is an unper-
turbed potential virtually induced by the singular potential
~Klauder effect12!, the values ofm can be chosen so that they
contain, in addition, a dependence upon the coupling con-
stantl.11

IV. CONCLUSION

Finally, the present procedure allows an analytical solu-
tion of perturbed eigenequations by means of very simple
algebraic operations, provided these eigenequations can be
conveniently described by a factorizable equation with an
adequately chosen perturbation. Moreover, when using a
software system such asMathematicaor else, for any re-
quired state, analytical expressions of the perturbed eigenval-
ues and perturbed eigenfunctions can be obtained up to
rather high ordersN of the perturbation. Nevertheless, the
given perturbationV(x) has to be expanded in power series
of the functionsu(x) which are specific to each factorization
type. This necessary condition is not at all fortituous or sur-
prising. Within the perturbed ladder operator framework,4

this is a necessary condition for building up perturbed ladder
operators associated withV(x) and allowing the perturbed
factorization of the given eigenequation. Briefly stated, the
present procedure provides, in a simple way, the results that
should be obtained from more elaboratev-dependent results
when giving tov its actual value. This way of doing may be
very useful since, in many cases, suchv-dependent results
may be at disposal but only for low orders of the perturba-
tion, or, even, are not at all available. Furthermore, the ex-
pressions of the perturbed eigenfunctions are obtained in the
same batch.

Although only three illustrative examples have been
worked out, the range of application of the method is rather
large. Indeed, the use of perturbed model equations enables
one to tackle many real problems encountered in quantum
physics. Among unperturbed functions of current interest in
atomic and molecular calculations, let us briefly mention that
the WignerDm,m8

( i ) (w,u,f) or the symmetric top functions,
the associated spherical harmonic functionsYl

m~u,w!, the
Pöschl–Teller functions, and more generally, the Gauss hy-
pergeometric functions can be directly related to type A
eigenfunctions while the Morse-oscillator functions and con-
fluent hypergeometric functions belong to the family of type
B functions.1 Type C and type D factorization play a central
role for harmonic-oscillator problems while type F~or type
E! factorizations serve for problems involving Coulomb in-
teractions in the usual Euclidean Space~or in a curved three
space with constant curvature!, either within the Schro¨dinger
or within the Dirac framework.1 Moreover, the use of an
exactly solvable equation together with an adequate pertur-
bation may also be of interest in order to obtain approximate
analytical solutions of equations involving several other
model potentials such as the Hulthe´n potential, the screened
Coulombic potential,13 the lx2/(11gx2) potential14 or the
Gaussian potential.15 Hence, in many cases, the present pro-
cedure can be used as a preliminary approach to an analytical
expression of the eigenvalues and eigenfunctions which are
involved in the physical modelization, before tackling a more
elaborate and sophistical solution of the actual equations to
be considered.
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