Μέφος Β'

Μετρήσεις σωματιδίων

Χωφοχφονικές μεταβολές ενεφγητικών ηλεκτφονίων

Energetic particles in space

what do we measure in space ? omnidirectional flux differential flux pitch angle distribution <u>time evolution</u> of particle fluxes, & pitch angle distributions

<u>Integral directional flux</u> particle counts = N / t (particles with E > E')

<u>Integral directional flux</u> particle counts = N / t (particles with E > E')

detector area = $A \ cm^2$ field of view = $\Omega \ sr$ (solid angle)

flux = N / [A Ω t] units = cm⁻² Sr⁻¹ sec⁻¹

<u>Integral directional flux</u> particle counts = N / t (particles with E > E')

detector area = $A \text{ cm}^2$ field of view = $\Omega \text{ sr}$ (solid angle)

flux = N / [A Ω t] units = cm⁻² Sr⁻¹ sec⁻¹

 $\begin{array}{l} \underline{differential\ directional\ flux}} \\ flux = N \ / \ [A \ \Omega \ \Delta E \ t] \\ detector\ counts\ particles\ with\ E1 < E < E2 = \Delta E \end{array}$

<u>Integral directional flux</u> particle counts = N / t (particles with E > E')

detector area = $A \ cm^2$ field of view = $\Omega \ sr$ (solid angle)

flux = N / [A Ω t] units = cm⁻² Sr⁻¹ sec⁻¹

 $\begin{array}{l} \underline{\text{differential directional flux}}\\ \text{flux = N / [A $\Omega ΔE t]} & \text{units = $cm^{-2} $Sr^{-1} $sec^{-1} MeV^{-1}}\\ & \text{detector counts particles with $E1 < E < E2 = ΔE}\\ \underline{\text{Omnidirectional flux}} => $over full 4π sr \end{array}$

Electron fluxes in geospace

Electron fluxes in geospace

Interaction of charged particles with matter

When charged particles pass through matter (M > m_e)

a) <u>they lose energy</u>

inelastic collisions mainly with atomic electrons cause ionization or excitation of the atoms many many many collisions !! statistical average energy loss/unit length <u>"dE/dx"</u>

Stopping power (ισχύς πέδησης):

$$S = -\frac{dE}{dx}$$

b) <u>they change direction</u>
 ➢ elastic scattering from atomic nuclei

Principle of operation: simple solid-state detector

 $Q \propto \Delta E$

Charged particle passing through silicon creates electron-hole pairs. The total charge collected is proportional to the energy lost by the charged particle

Ανιχνευτές Στερεάς Κατάστασης

Οι φορείς οδηγούνται λόγω του ηλεκτρικού πεδίου στην άνοδο (ηλεκτρόνια) και την κάθοδο (οπές)

An electron spectrometer type instrument

Electrons bend in a magnetic field and reach the detection plane at different distances proportional to their energies and are detected by dE/dx loss in individual solid state detectors

MagEIS: Magnetic Electron Ion Spectrometer of Van Allen Probes

MagEIS: Magnetic Electron Ion Spectrometer

MagEIS

Van Allen radiation belts

Particle motions in a magnetic dipole

Relativistic Electrons & Geomagnetic Storms

- Recovery phase
 - Increased fluxes
 - Energization
- Main phase
 - Flux dropout
 - Adiabatic field change & particle loss
- Flux changes
 - Decrease or no change in about 50% of storms – GEO data

SAMPEX Shows Traditional Two Belt Structure

Long term (~12 year) plot from SAMPEX shows the established two belt structure

Electron acceleration in the outer radiation belt

Relativistic Electrons: Energization

- High solar wind speeds

 (> 500 km/s) and
 southward B_z
- Substorm-generated seed population (extending to hundreds of keV)
- Physical processes
 - radial transport
 - in-situ acceleration

MagEIS Medium Unit (Calculation of nominal energy)

Pixel	P1	P2	P3	P4	P5	P6	P7	P8
r (mm)	8.1	10.2	12.2	14.1	16.1	17.9	19.7	21.5

MagEIS Medium Unit (Calculation of differential flux)

$$J = \frac{Counts}{\Delta \mathbf{E} \cdot \Delta t \cdot \mathbf{G}}$$

Pixel	P1	P2	P3	P4	P5	P6	P7	P8
CR (#/sec)	5607	2461	1932	1347	906	721	523	398
ΔE (keV)	72	90	106	120	132	144	150	162
G (cm ² sr keV)	0.281	0.328	0.342	0.343	0.332	0.316	0.303	0.287