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ABSTRACT

We present the results of 16 years of monitoring stellar orbits around the massive black hole in the center of
the Milky Way, using high-resolution near-infrared techniques. This work refines our previous analysis mainly
by greatly improving the definition of the coordinate system, which reaches a long-term astrometric accuracy
of ≈ 300 μas, and by investigating in detail the individual systematic error contributions. The combination of a
long-time baseline and the excellent astrometric accuracy of adaptive optics data allows us to determine orbits of 28
stars, including the star S2, which has completed a full revolution since our monitoring began. Our main results are:
all stellar orbits are fit extremely well by a single-point-mass potential to within the astrometric uncertainties, which
are now ≈ 6× better than in previous studies. The central object mass is (4.31 ± 0.06|stat ± 0.36|R0 ) × 106M�,
where the fractional statistical error of 1.5% is nearly independent from R0, and the main uncertainty is due to the
uncertainty in R0. Our current best estimate for the distance to the Galactic center is R0 = 8.33 ± 0.35 kpc. The
dominant errors in this value are systematic. The mass scales with distance as (3.95 ± 0.06)×106(R0/8 kpc)2.19M�.
The orientations of orbital angular momenta for stars in the central arcsecond are random. We identify six
of the stars with orbital solutions as late-type stars, and six early-type stars as members of the clockwise-
rotating disk system, as was previously proposed. We constrain the extended dark mass enclosed between the
pericenter and apocenter of S2 at less than 0.066, at the 99% confidence level, of the mass of Sgr A*. This is
two orders of magnitudes larger than what one would expect from other theoretical and observational estimates.
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1. INTRODUCTION

Observations of Keplerian stellar orbits in the Galactic center
(GC), which revolve in the gravitational potential created by a
highly-concentrated mass of roughly 4×106 M� (Schödel et al.
2002; Eisenhauer et al. 2005; Ghez et al. 2003, 2005), currently
constitute the best proof for the existence of an astrophysical
massive black hole. In this experiment, the stars in the innermost
arcsecond (the so-called S-stars) of our galaxy are used as test
particles to probe the potential in which they move. Unlike gas,
the motion of stars is determined solely by gravitational forces.
Since the beginning of the observations in 1992 one of the stars,
called S2, has now completed one full orbit. Its orbit (Schödel
et al. 2002; Ghez et al. 2003) has a period of 15 years. Since 2002
the number of reasonably well-determined orbits has grown
from 1 to 28; in total, we currently monitor 109 stars, see
Figure 1.6

Due to the high interstellar extinction of ≈ 30 magnitudes
in the optical toward the GC, the measurements have to be
performed in the near-infrared (NIR), where the extinction
amounts to only ≈ 3 magnitudes. The first positions of S-stars
were obtained in 1992 by Speckle imaging at European Southern
Observatory’s (ESO’s) NTT in La Silla, a 4 m telescope, and in
1995 at the Keck telescope, a 10 m telescope. Since 1999 (Keck:
Ghez et al. 2001) and 2002 (VLT: Schödel et al. 2002), the
combination of 8 m/10 m class telescopes and adaptive optics

5 William Z. and Eda Bess Novick Career Development Chair.
6 This work is based on observations collected between 1992 and 2008 at the
European Southern Observatory, both on Paranal and La Silla, Chile.

(AO) has been routinely used for deep (H ≈ 19) diffraction
limited (FWHM 40–100 mas) imaging and spectroscopy.

The GC is a uniquely accessible laboratory for exploring
the interactions between a massive black hole (MBH) and
its stellar environment. By tracking the orbits of stars close
to the MBH, one can gather information on the gravitational
potential in which they move. Of prime interest is the value
of R0, the distance to the GC, as it is one of the fundamental
quantities in models for our Galaxy. Equally interesting is the
nature of the mass responsible for the strong gravitational forces
observed. While the measured mass makes a compelling case
for an MBH, the exact form of the potential encodes answers
to many interesting questions. Clearly, testing general relativity
for such a heavy object is among the goals; the first step would
be to detect the Schwarzschild precession of the pericenters of
some orbits. A measurable deviation from a point mass potential
would give access to a possible cluster of dark objects around the
MBH, testing many theoretical ideas, such as mass segregation,
or the concept of a loss cone. Another focus of interest are the
properties of the stellar orbits. The distributions of the orbital
elements may have conserved valuable information about the
formation scenario of the respective stars. This addresses, for
example, the so-called “paradox of youth” for the stars in the
central arcsecond (Ghez et al. 2003), or the puzzling existence
of a large number of O-stars and Wolf-Rayet stars in the GC
(Paumard et al. 2006).

This paper is the continuation of our long-term work on
stellar motions in the vicinity of Sgr A*. We reanalyzed all
data available to our team from 16 years. The basic steps of the
analysis are as follows.
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Figure 1. Finding chart of the S-star cluster. This figure is based on a natural guide star adaptive optics image obtained as part of this study, using NACO at UT4
(Yepun) of the VLT on 2007 July 20 in the H band. The original image with a FWHM of ≈ 75 mas was deconvolved with the Lucy–Richardson algorithm and
beam restored with a Gaussian beam with FWHM = 2 pixel = 26.5 mas. Stars as faint as mH = 19.2 (corresponding roughly to mK = 17.7) are detected at the 5σ

level. Only stars that are unambiguously identified in several images have designated names, ranging from S1 to S112. Blue labels indicate early-type stars, red labels
late-type stars. Stars with unknown spectral type are labelled in black. At the position of Sgr A* some light is seen, which could be either due to Sgr A* itself or due
to a faint, so far unrecognized star being confused with Sgr A*.

1. Obtain high-quality, astrometrically unbiased maps of the
S-stars. Obtain high-quality spectra for these stars.

2. Extract pixel positions from the maps and radial velocities
from the spectra.

3. Transform the pixel positions to a common astrometric
coordinate system; transform the radial velocities to the
local standard of rest (LSR). For the astrometric data,
several steps are needed.

a. Relate the fainter S-stars positions to those of the
brighter S-stars (Speckle data only).

b. Relate the S-stars positions to a set of selected reference
stars.

c. Relate the reference stars to a set of SiO maser stars, of
which the positions relative to Sgr A* are known with
good accuracy from radio (VLA) observations (Reid
et al. 2007).

4. Fit the data with a model for the potential and gather in
that way orbital parameters as well as information about
the potential.

We organize this paper according to these steps.

2. DATABASE

The present work relies on data obtained over many years
with different instruments. In this section, we briefly describe
the different data sets.

2.1. SHARP

The first high-resolution imaging data of the GC region were
obtained in 1992 with the SHARP camera built at the Max–
Planck-Institut für Extraterrestrische Physik (MPE; Hofmann
et al. 1992; Eckart et al. 1994). SHARP was used by MPE
scientists until 2002 at ESO’s 3.5 m NTT in Chile. The data
led to the detection of high proper motions close to Sgr A*
(Eckart & Genzel 1996). The camera was operating in speckle
mode with exposure times of 0.3 s, 0.5 s and 1.0 s, which
was the optimum compromise between sufficient signal-to-noise
ratio (S/N) and fast sampling of the atmospheric turbulence.
The data are described in Schödel et al. (2003); a summary
is given in Table 1. We used the simple shift-and-add (ssa)
technique (Chistou 1991) in order to obtain deep diffraction
limited images from the raw frames. Compared to our previous
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Table 1
Summary of the Yearly Number of Epochs for Which We Obtained S-star

Images and the Yearly Mean Number of S-star Positions Determined per Epoch

Year Instrument No. of Epochs No. of S−star Positions
Epoch

1992 SHARP 1 33
1994 SHARP 1 41
1995 SHARP 1 38
1996 SHARP 2 38.5
1997 SHARP 1 38
1998 SHARP 1 33
1999 SHARP 1 39
2000 SHARP 1 38
2000 GEMINI 1 31
2001 SHARP 1 39
2002 SHARP 1 21
2002 NACO 8 81.9
2003 NACO 12 83.8
2004 NACO 11 75.3
2005 NACO 5 86
2006 NACO 13 72.8
2007 NACO 13 101.2
2008 NACO 5 104.8

analysis (Schödel et al. 2003; Eisenhauer et al. 2005), we did
not base the astrometry on images combined from multiple-
pointing positions. Due to the camera’s image distortions, one
should not trust the larger scale astrometry of such multipointing
images, since co-adding different pointings in the presence
of static image distortions will lead to discontinuities in the
effective distortion map of the combined image. These, in turn,
would not be described well by the polynomial relations we
use to map pixel positions onto the astrometric coordinate
system, resulting in astrometric biases (Reid et al. 2003). Single
pointing combinations are astrometrically unbiased, although
not necessarily linear. They do not show discontinuities and
represent smooth coordinate grids. Hence, we co-added the
frames pointingwise, yielding typically four co-added maps per
observing epoch (Ott 2002). In order to get deeper in the central
arcsecond, we also co-added all frames into one single map
per epoch. Of the latter map, the astrometry, however, can only
be trusted for a region as small as the central arcsecond (the
region which was present in all pointing positions), leading to
an additional step of cross-calibration between the deep map
and the four single-pointing maps per epoch. The ssa maps
had a typical Strehl ratio of 30%. We further cleaned them
using careful deconvolution and beam restoration, following
the strategy outlined in Schödel et al. (2003). In order to
assess the errors introduced by the deconvolution, we used
two different deconvolution methods: the Lucy–Richardson
algorithm (Lucy 1974) and an iterative blind deconvolution
process (Jefferies & Christou 1993), yielding two different
(although not independent) maps.

2.2. NACO

The first AO imaging data available to us of the GC region
were obtained in 2002 with the Naos-Conica (NACO) system
mounted at the fourth unit telescope Yepun of the VLT (Lenzen
et al. 1998; Rousset et al. 1998). Compared to the SHARP data
the NACO data are superior due to the larger telescope aperture
(8.0 m versus 3.5 m) and the higher Strehl ratios (typically 40%
for NACO) of the AO, which is equipped with an IR wavefront
sensor, allowing the use of the nearby K = 6.5 mag star IRS7 as
AO guide star. Furthermore, the sampling is increased compared

Table 2
Summary of the Number of Available Maser Star Mosaic Images, Number of
Maser Stars Present in Each Frame and the Respective FWHM of the PSF in

the Images

Date No. of Mosaics FWHM (mas) No. of Maser Stars

May 2002 1 70 7
May 2003 1 74 6
June 2004 3 70, 81, 86 6, 6, 8
May 2005 1 88 8
April 2006 2 100, 100 7, 7
March 2007 2 80, 80 8, 8
March 2008 1 84 8

to the Speckle data. For NACO, we have typically 10 epochs
yr−1, compared with 1 epoch yr−1 for SHARP. We obtained
images both in the 27 mas pixel−1 and the 13 mas pixel−1 image
scales.

1. In order to measure the positions of the SiO maser stars
IRS9, IRS10EE, IRS12N, IRS15NE, IRS17, IRS19NW,
IRS28 and SiO-15 (Reid et al. 2007), we used the
27 mas pixel−1 image scale both in H and K band in all years
since 2002. The data are described in (Trippe et al. 2008)
and summarized in Table 2. The typical single-detector inte-
gration time was 2 s, such that the bright IR sources present
in the r ≈ 20′′ field covered did not get saturated. Mostly,
we used a dither pattern of four positions that guaranteed
that the central 10 arcsec are imaged in each pointing po-
sition. The number of useful maser positions per image
varied between 6 and 8. IRS19NW was not in the images
in 2002, 2003, and 2006; SiO-15 was not covered in 2003.
Due to their brightness, IRS17 and IRS9 were in the non-
linear regime of the detector in the observations from 2004
June 12 and, thus, excluded for that epoch. Since the NACO
camera when operated in the 27 mas pixel−1 mode exhibits
notable geometric image distortions, we constructed dedis-
torted mosaics from the individual images by applying a
distortion correction, involving rebinning of the measured
flux distribution to a new pixel grid. The procedure is de-
scribed in detail in (Trippe et al. 2008) and relies on compar-
ing distances between stars present in the different point-
ings. The distortion model used is �p = �p ′(1 − β �p ′ 2) with
β ≈ 3 × 10−9 where �p and �p ′ denote true and distorted
pixel positions with respect to some origin in the image that
also is determined from the data (see also Figure 6). We did
not apply deconvolution techniques on these images.

2. The positions of the S-stars were determined mostly from
images obtained in the 13 mas pixel−1 image scale. (Only
when no image in the 13 mas pixel−1 scale was available
sufficiently close in time, we used also images obtained
in the 27 mas pixel−1 scale.) A typical data set contains
2 hr of data. The single-detector integration time was
mostly around 15 s, and the field of view was moved
after a few integrations successively to four positions such
that the central 4 arcsec are present in all frames. The
data are summarized in Table 1, and a complete list of
the data sets used is given in the table in Appendix A.
The reduction followed the usual steps of sky subtraction
and flat fielding. Manually-selected high-quality frames
were combined to a single ssa map per epoch, since the
optical distortions are small enough to be neglected in
the 13 mas pixel−1 scale (Trippe et al. 2008) for the frame
combination. A distortion model of the same type as for
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the 27 mas pixel−1 scale images was constructed for each
epoch; however, the best-fitting model parameters varied
more than expected between the different epochs. We
concluded that we were not able to solve for the distortion
parameters with our observations. Hence, we did not apply
distortion models to the 13 mas pixel−1 data, but used
higher-order transformations when relating pixel positions
to astrometric positions (see Figure 5). In order to separate
sources, we moderately deconvolved the central 5 arcsec of
these maps with the Lucy–Richardson algorithm. The latter
used a point-spread function (PSF) constructed from the
map itself obtained by applying the starfinder code (Diolaiti
et al. 2000). In order to estimate the deconvolution error, we
divided each 13 mas pixel−1 data set into two and obtained
two co-added maps, each with half of the integration. Both
maps were then deconvolved in the same way as the full
co-add.

2.3. SINFONI

Spectroscopy enables one to determine radial velocities of
stars if the positions of known atomic, or molecular lines can
be measured in the stellar spectra. The GC is best exploited
with integral field spectroscopy, as one is interested in the radial
velocities of all stars for which one can hope to determine orbits,
i.e., all stars in the central arcsecond. In the NIR, the K-band
(2.0–2.4 μm) is best suited since it contains the hydrogen line
Bracket-γ at 2.16612 μm. This line is present in absorption for
B-type stars, the most common spectral type for the S-stars
(Eisenhauer et al. 2005). For late-type stars, the CO-band heads
at 2.2935 μm, 2.3227 μm, 2.3535 μm, and 2.3829 μm are also
covered by the K-band.

Since 2004 July, we regularly monitored the GC with the AO
assisted field spectrometer SINFONI (Eisenhauer et al. 2003;
Bonnet et al. 2004). The instrument is mounted at the Cassegrain
focus of ESO’s UT-4 (Yepun), and offers several operation
modes concerning pixel scale and wavelength coverage. For the
GC, we operated SINFONI mostly in the AO scale, mapping
0.′′8×0.′′8 onto 64 × 32 spatial pixels. We used the K-band grating
and the combined H+K grating of SINFONI, with spectral
resolutions of 4000 and 1500 respectively. For most of the
data sets, the single-exposure time per frame was 10 minutes; a
few data sets also used 5 minute exposures. We chose various
mosaicking patterns inside the central arcsecond for the different
runs; mainly with the aim to have a good compromise between
monitoring the activity of Sgr A* and building up integration on
the S-stars. For stars at somewhat larger radii (r > 1′′), where
confusion is less severe, we also used data originally obtained for
other scientific programs in the 100 mas pixel−1 scale, offering
a field of view of 3.′′2 × 3.′′2.

The SINFONI AO works in the optical. Since the GC region is
heavily extincted, one has to use a guide star relatively far away
from Sgr A*. It is located 10.′′8 East and 18.′′8 North of Sgr A* and
has a magnitude of mR = 14.65. As a result, the performance
of the AO strongly depends on the seeing conditions. Therefore,
the quality of our SINFONI data is variable over the data set. For
a typical run, one can detect Bracket-γ absorption of early-type
stars as faint as mK = 15.5 and the CO-band heads of late-type
stars up to mK = 16.0. A summary of our data is given in
Table 3.

We applied the standard data reduction for SINFONI data,
including detector calibrations (such as bad pixel corrections,
flat-fielding and distortion corrections) and cube reconstruction.
The wavelength scale was calibrated by means of emission-

Table 3
Summary of SINFONI Data Used for this Work

texp on S2 FWHM No. of S-stars
Date Band (min) (mas) with velocities

2004 July 14 H+k 40 79 7
2004 July 17 K 110 93 25
2004 Aug 18/19 K 80 88 23
2005 Feb 26 K 20 108 4
2005 March 18 K 10 150 4
2005 March 19 K 40 69 16
2005 June 15 K 200 113 8
2005 June 17 K 440 88 25
2005 Aug 28–Sep 5 K 10 >250 5
2005 Oct 2–6 H+K 120 74 22
2006 March 16 H+K 110 76 27
2006 April 21 H+K 10 100 6
2006 Aug 16/17 H+K 100 88 18
2007 March 26 H+K 20 86 10
2007 July 18–23 H+K 133 78 15
2007 Sept 3/4 H+K 70 81 15
2008 April 4–9 H+K 200 65 40
2008 June 4 H+K 10 84 3

Note. The exposure time is the effective shutter-open time on S2, for other
stars the actual exposure time might be different since the observations were
mosaicing around Sgr A*. The FWHM was determined from a median image
of the respective cube on the unconfused star S8.

line lamps and fine tuned on the atmospheric OH lines. The
remaining uncertainty of the wavelength scale corresponds to
typically � 10 km s−1. We did not trust the SINFONI cubes
for their astrometric precision; they were used only for their
spectral dimension. Nevertheless, it is easy to identify stars in
the cubes.

2.4. Other

Beyond the data sets described so far, we included a few more
data points which we describe briefly in this section.

1. Positions from public Gemini data for 2000. In addition
to our observations, we included images from the Galactic
Center Demonstration Science Data Set obtained in 2000
with the 8 m telescope Gemini North on Mauna Kea,
Hawaii, using the AO system Hokupa’a in combination
with the NIR camera Quirc. These images were processed
by the Gemini team and released to be used freely. We
treated these data in the same way as the SHARP data.

2. Published radial velocities of S2 in 2002. The first radial
measurements of S2 were obtained by Ghez et al. (2003).
We included the two published radial velocities since they
extend the sampled time range by one year and clearly
contribute significantly in fixing the epoch of pericenter
passage tP for S2.

3. Radial velocities from longsplit spectroscopy with NACO in
2003. We used NACO in its spectroscopic mode to measure
the radial velocity of S2 in 2003. The data are described in
Eisenhauer et al. (2003).

4. Radial velocities from integral field spectroscopy with
SPIFFI in 2003. SPIFFI is the integral field spectrometer
inside SINFONI. We used it without AO in 2003 as
guest instrument at ESO-VLT UT-4 (Yepun) under superb
atmospheric conditions and obtained cubes from which
radial velocities for 18 stars (namely S1, S2, S4, S8, S10,
S12, S17, S19, S25, S27, S30, S35, S65, S67, S72 S76,
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Figure 2. Open symbols mark the sample of 91 reference stars which are used to
define the astrometric frame for the S-stars. The underlying image was obtained
on 2007 April 3 in H band, deconvolved and beam restored with a beam of 2
pixel. North is up, east is left. The field is 9.′′3 × 9.′′3.

(A color version of this figure is available in the online journal.)

S83, S95, S96). The data are described in Eisenhauer et al.
(2003).

3. ANALYSIS OF ASTROMETRIC DATA

This section describes in some technical detail the astrometric
calibration of our data. The first step is to measure the positions
of stars on the astrometric maps. Next, these positions of
stars on the detector have to be transformed into a common
astrometric reference frame. This procedure ultimately relies on
measurements of eight SiO maser stars of which positions can
be determined both in the radio and in NIR images. However, a
direct comparison of the central arcsecond and the maser stars
on one and the same image is impractical for two reasons: (1)
the exposure times necessary to obtain sufficiently deep images
for the S-stars saturates the detector at the positions of the maser
stars; and (2) the field of view of the 13 mas pixel−1 pixel scale
is too small to show enough maser stars. Therefore, we need to
cross-calibrate the S-stars images with the maser-star images.
This is done by a set of selected reference stars (Figure 2), which
are present both in the S-star images and the maser-star images.
For the SHARP data, even an additional step of cross-calibration
is taken. We selected reference stars with 1′′ � r � 4′′ that are
brighter than mK ≈ 14.5 and apparently unconfused, yielding a
sample size of 91 stars.

3.1. Extraction of Pixel Positions

All pixel positions were obtained by two-dimensional Gaus-
sian fits in the images. The fits yielded both the positions and
estimates for the statistical error of the positions (Section 3.4.3).
For each epoch, for which we have useful S-star data, we ex-
tracted pixel positions for the S-stars and for the reference stars.

3.1.1. SHARP

Only star images that are not visually distorted (e.g., due to a
confusion event) were used from the SHARP data.

1. Reference stars. We obtained the reference stars’ positions
from the four single-pointing maps from each epoch. Due
to the limited field of view in each frame, only a subset of
the reference stars is present.

2. Brighter S-stars. For the brighter S-stars (e.g., S2, S1, S8,
S10, S30, S35) typically all four different pointing positions
could be used. The astrometric position of each star was
determined from the corresponding four pixel positions
using the astrometric average position (see Section 3.4.3).

3. Fainter S-stars. In order to detect faint S-stars, we used
the fifth co-added map which can be trusted astrometrically
only for the innermost arcsecond. The limiting magnitude
for a nonconfused source was typically mK ≈ 15.8. We
determined the pixel positions of the weaker S-stars as well
as the ones of the brighter S-stars. The latter served as a
reference for relating the fainter stars to the astrometric
coordinate system (see Section 3.4.3).

Since we had two different deconvolutions at hand, we
extracted pixel positions from both sets of images. Thus, up to
eight (= two deconvolutions × four pointings) pixel positions
were obtained per star and epoch.

3.1.2. NACO

For the NACO data, we used both the 27 mas pixel−1 data and
the 13 mas pixel−1 data.

1. SiO maser stars. Positions for the SiO maser stars were
obtained by Gaussian fits to the stars’ images in the
27 mas pixel−1 mosaics. The SiO maser stars were uncon-
fused in all mosaics.

2. Reference stars. The positions of the reference stars were
measured both on the 27mas pixel−1 mosaics and on the
13 mas pixel−1 maps (Table 1), since they serve as cross-
calibration between the two sets. They were selected to
be unconfused; thus, essentially it was possible to use all
reference stars visible on any given frame.

3. S-stars. For isolated S-stars, the positions were obtained
from a simple Gaussian fit to the manually identified stars
in the maps. Due to the higher sampling rate with NACO,
confusion events can be tracked much better in the AO data
than in the SHARP data. Therefore, it was reasonable to
also measure positions when stars are partly overlapping.
In such a case, a simultaneous, multiple Gaussian fit to
the individual peaks was used, resulting of course in larger
statistical uncertainties of the obtained positions.

3.2. Relating the Reference Stars to the SiO Maser Stars

The goal of this step is to obtain linear models for the
motions of the reference stars, i.e., to express their velocities and
positions with linear functions x(t), y(t) in terms of astrometric
coordinates. These models then define a common reference
frame that is calibrated in position and velocity such that radio
Sgr A* should be at rest at the origin of the system. Such
a coordinate system allows one to test if the center of mass
obtained from orbital fitting coincides with the compact radio
source.7

7 Systematic problems of the coordinate system could be absorbed into the
orbital fitting by allowing the center of mass to have an offset from 0/0 and a
nonzero velocity, at the cost of not being able to test the coincidence of the
center of mass with radio Sgr A*.
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In the following, we present two ways to obtain the desired
calibration. They differ in the way in which the positions and
velocities for the reference stars are determined: either all maser-
star images are tied to the respective maser positions (multiepoch
cross-calibration), or only one maser-star image is used to tie to
the radio maser positions, and the other maser-star images are
matched to that by an additional step of cross-calibration that
only involves infrared (IR) data (single-epoch cross-calibration).
It turns out that both ways have their specific advantages and
disadvantages in terms of position and velocity calibration of
the resulting coordinate systems. We finally constructed a third
coordinate system, combining the advantages and rejecting the
disadvantages.

3.2.1. Multi-Epoch Cross Calibration with all Maser Star Images

Using the results from Reid et al. (2007), we calculated the
expected radio maser positions for the given observation epochs.
The different maser images contained between seven and nine
SiO masers of which we used six to eight, since we excluded
IRS7 due to its brightness of mK ≈ 6.5. By allowing for a linear
transformation of type �x = �x0 + M. �p between the astrometric
positions �x and the pixel positions �p in the respective image,
we determined a transformation by which any detector position
can be converted into astrometric coordinates. Note that the use
of a linear transformation is justified since the IR images were
distortion-corrected mosaics. The rms of the one-dimensional
residuals of the SiO masers (thus applying the transformation to
the SiO masers’ pixel positions and comparing the result with
the expected radio positions) was 2.28 mas. Correspondingly,
we expect that from our 11 images a coordinate system can be
defined to at most an one-dimensional accuracy of 2.28/

√
11

mas ≈ 0.7 mas if the measurement errors from the 11 images
are uncorrelated. The transformation was applied to the sample
of reference stars in each image. We then fitted the resulting
astrometric positions of the reference stars as a function of
time with linear functions. From these linear fits, we obtained
residuals, allowing obvious outliers to be identified and rejecting
them. We excluded stars that had a residual different from
the median residual by twice that value, if the deviation was
larger than 2 mas. That excluded between 0 and at most 10 of
the 91 reference stars for the various mosaics, the reason for
these outliers being confusion that in some mosaics affects the
fainter reference stars due to the varying image quality. After
this moderate data cleaning, we repeated the fitting. The mean
rms of the one-dimensional residuals per image had then a value
of 1.45 mas.

The next step of refinement was to compare all measured
positions in one mosaic with the positions expected from the
fits, effectively checking how well a given image fits to the
other 10 images. A visual inspection of maps of residual vectors
showed that the residuals are not randomly distributed, but
unveiled some systematic shift and rotation for each image.
Since each image is compared with 10 other images, any
systematic problem in the given image is most likely to come
from that image and not from a combined effect of the others.
Indeed, the interpretation of the observed systematic effect is
straightforward, it means that each individual mosaic is not
registered perfectly with respect to the sample average, i.e., the
transformation for the respective image is slightly wrong. This
systematic error is naturally explained by measurement errors
of the positions of the SiO maser stars in the respective image.
Such an error translates into an error of the parameters of the
linear transformation used to tie the astrometric frame to the

pixel positions in the mosaic and shows up as a systematic
effect in the residuals of the independent set of reference
stars. Thus, we were able to determine better transformation
parameters by adding to the original linear transformation,
the linear transformation that minimizes the residuals of the
reference star sample, yielding a corrected linear transformation.
We applied it to the data and obtained the final linear motion
models for the reference stars. The rms of the one-dimensional
residuals now was 0.55 mas. This step changed the position of
the origin by (Δα, Δδ) = (−0.01, 0.05) mas and the velocity
of the system by less than 4 μas yr−1; these quantities being the
mean differences of the respective quantities for the reference
stars before and after the refinement. Hence, the refinement
effectively did not change the coordinate system calibration.
We call the coordinate system so defined the “maser system” in
the following.

The position of the origin of the maser system and its
velocity are uncertain due to two effects: (1) the nonzero errors
of the SiO maser stars’ radio positions and velocities and
(2) the IR positions of the SiO maser stars show some residuals
to the best-fitting linear motion, indicative of residual image
distortions and of measurement errors in the pixel positions
in the IR images. The propagation of the statistical errors
into the definition of the coordinate system was addressed
using a Monte Carlo technique. We varied the input to the
transformations according to the measured errors and residuals.
We created 105 realizations of transformations, assuming a
Gaussian distribution of the simulated values around the original
values. The standard deviation of the positions obtained for Sgr
A* estimates the positional uncertainty of the maser system
under the assumption of uncorrelated measurement errors. We
obtained (Δα, Δδ) = (0.46, 0.77) mas. Similarly, the standard
deviation of the velocities obtained for Sgr A* estimates the
uncertainty of the maser system’s velocity under the same
assumption. We obtained (Δvα, Δvδ) = (0.29, 0.55) mas yr−1.

However, in our data the assumption that the errors from the
11 maser images are uncorrelated is not fulfilled. We rather
observe a typical residual per SiO maser star for all epochs
when comparing the transformed, measured positions with the
predicted radio positions. Possible reasons are as follows. First,
the linear motion models obtained for the SiO masers could
be inaccurate due to some unknown some unknown systematic
problem of the radio positions. Second, the radio positions could
not be applicable to the IR positions, for instance if the maser
emission would originate from far away of the stellar surface.
Third, the correlation could arise due to some unaccounted
systematics in the IR frames, such as uncorrected distortion.
We fitted the residuals of each star with linear functions and
obtained in that way estimates for the mean-position and mean-
velocity uncertainties for each star. Then we calculated the mean
deviation (over the SiO maser stars which are < 15′′ away from
Sgr A*) of these linear motion model parameters as estimates for
the positional and velocity uncertainty of the maser system given
the correlations in our data. With our initial transformation,
we obtained (Δα, Δδ) = (0.92 ± 0.42, 2.22 ± 0.43) mas and
(Δvα, Δvδ) = (0.41 ± 0.24, 0.29 ± 0.24) mas yr−1. After the
refinement, we got (Δα, Δδ) = (0.95 ± 0.73, 2.35 ± 0.58) mas
and (Δvα, Δvδ) = (0.38 ± 0.41, 0.28 ± 0.33) mas yr−1. Finally,
we conservatively adopt for the uncertainties of the maser
system (Δα, Δδ) = (1.0, 2.5) mas and Δvα = Δvδ = 0.5 mas
yr−1. The positional uncertainty is considerably larger than what
one would have obtained for uncorrelated residuals.

While the maser system is a direct cross-calibration of maser
and reference stars, the resulting velocities of the reference stars
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are directly sensitive to errors in the velocities of the SiO maser
stars, both in the radio data and the NIR 27 mas pixel−1 mosaics.

3.2.2. Single-Epoch Cross Calibration with One Maser Star Image

The sensitivity of the reference star velocities to errors in the
SiO maser velocities can be avoided by an additional step of
cross-calibration. We can measure the positions of the reference
stars in all maser images with respect to a much larger sample
of stars in these images. This cluster of stars is assumed to be
nonrotating and not moving with respect to Sgr A*. The cluster
is tied to the astrometric frame for just one epoch, as given by the
radio positions of the SiO masers, which can be calculated for
the chosen epoch from Reid et al. (2007). For all other epochs it
is assumed that the mean cluster is stationary in time. Hence, the
velocity calibration relies on the statistical argument that for a
sufficiently large sample of cluster stars the mean velocity of the
cluster is expected to become very small. For a typical velocity
of v for a cluster star and N stars, the error of this mean should
be of order v/

√
N .

Effectively, the few maser stars are only used once in this
scheme. Any error in their radio positions, radio velocities, or
NIR detector positions will therefore translate into a positional
offset, but not into a systematic velocity of the coordinate
system. The latter is instead connected to the validity of the
assumption that the cluster mean is stationary. In order to ensure
the best estimate of the velocity calibration, we adopted the fol-
lowing procedure.

1. We selected the maser mosaic from 2005 May 12, which
was chosen since it is of good quality and roughly corre-
sponds to the middle of the range in time covered with
NACO. Building upon the work done by Trippe et al.
(2008), we selected an ensemble of stars in that mosaic of
which the positions can be measured with high reliability.
Take all stars that have a peak flux of more than 25 counts
which at the given noise level of 1.9 counts selects high-
significance stars. In a second step, many stars get excluded
again. All stars with more than 700 counts (they could be
saturated in other frames with longer single-detector inte-
gration times) and all stars that have a potential source (peak
with five counts) within 10 pixels. Furthermore a Gaussian
fit was required to yield a FWHM< 0.05 pixel and the fit-
ted position must coincide with the position obtained using
DAOPHOT FIND. This yielded a sample of 433 stars. We
determined the astrometric positions at the given epoch of
the 433 stars by means of a linear transformation that was
determined from the eight maser stars.

2. We then determined preliminary astrometric positions for
a much larger sample of 6037 stars in all 11 mosaics, by
tying their pixel positions at all 11 epochs to the astrometric
positions of the 433 stars at the reference epoch with a
linear transformation. Note that not taking into account
proper motions in that step makes the velocity calibration
independent from the radio measurements. The error due to
the omission of the proper motions is minimized by using
433 stars instead of few masers for the cross-calibration.

3. We fitted linear motion models to all 6037 stars. After
the fit, we determined the residuals of all star positions
in all mosaics. By inspecting the residuals of any mosaic
as function of position, we were able to map the residual
image distortions in the given mosaic. These residual image
distortions can arise due to imperfect registration of the
individual exposures to the respective mosaic, or due to an

error in the distortion correction applied to the individual
frames.

4. For each star in each mosaic, we determined an estimate of
the residual image distortion by calculating the mean of the
residuals of the stars in the vicinity (r < 2′′) of the chosen
star. The radius was chosen such that a suitable number of
stars were present in the area from which the correction
was determined and the area was sufficiently local. A value
of r < 2′′ was a good compromise, typically yielding 30–
50 stars. The estimate for the residual image distortion
was then subtracted from the given star; the typical values
applied were Δx = 0.66 ± 0.20 mas and Δy = 0.62 ± 0.24
mas.

5. In a second fit, we used the corrected astrometric positions
in order to obtain updated linear motions models for the
6037 stars.

6. Then we defined the final cluster. It consists of all stars
which were present in all 11 mosaics, with radii between 2′′
and 15′′ and which are not known early-type stars. These
criteria yielded a cluster sample size of 2147 stars.

7. We determined the cluster mean velocity, yielding
(−0.04, 0.00) mas yr−1, and subtracted that value from all
velocities of the 6037 stars. This then is the final, velocity-
calibrated list of linear motions from which the reference
star sample is extracted. The mean radius of the 2147 stars
of the cluster sample is 9.′′89, the root mean square (rms)
speed of the stars in the sample is 157 km s−1 ≈ 4.15 mas
yr−1 (for R0 = 8 kpc).

We call the coordinate system defined in this way the “clus-
ter system.” Since we expect the mean of the cluster to show
a net motion of order 157/

√
2147 km s−1 = 3.4 km s−1=

0.09 mas yr−1, we estimate the uncertainty of the velocity
calibration to be of the same size. We checked this num-
ber more thoroughly by means of a Monte Carlo simula-
tion. We divided the cluster into nine radial bins with bound-
aries [2, 5, 7, 8.5, 10, 11, 12, 13, 14, 15] mas (selected such that
in each bin roughly the same number of stars is present).
For each bin, we have determined the rms velocity yielding
3.7, 3.3, 3.0, 2.9, 2.8, 2.7, 2.6, 2.6, 2.6 mas yr−1 respectively.
We then simulated clusters in proper motion space, for each
bin the Gaussian width of the velocity distribution was set to the
respective rms velocity and the number of stars was matched
to the real numbers in each bin. For each simulated cluster, we
were able to obtain in that way a mean velocity; simulating
10,000 clusters allowed us then to estimate the uncertainty of
the mean cluster velocity. We obtained 0.06 mas yr−1; even a
bit better than the simple estimate. Hence, if the assumption of
isotropy is correct, the cluster system should allow for a better
calibration of the reference star velocities than with the maser
system. The assumption could be wrong, for example if a net
streaming motion were present in the GC cluster.

The statistical positional uncertainty of the origin of the
cluster system was estimated by the same means as for the maser
system. We obtained (Δα, Δδ) = (0.85, 1.51) mas. In addition
to these uncertainties, the residuals of the SiO masers also need
to be considered, for the epoch at hand the mean deviation is
(Δα, Δδ) = (1.87, 3.12) mas. The uncertainties here are greater
than the respective numbers for the maser system due to the fact
that the position of Sgr A* in the cluster system is effectively
measured only on one frame, while in the maser system it is
measured in several, and the residuals are not fully correlated.
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3.2.3. The Final, Combined Coordinate System

The maser system has a smaller systematic error in its position
calibration, while the cluster system is superior with respect to
the velocity calibration. Hence, by combining the two, we were
able to construct a system that combines both advantages. The
idea simply is to correct either the velocity calibration of the
maser system such that it agrees with the one from the cluster
system, or to correct the origin of the cluster system such that
it coincides with the origin of the maser system (taking into ac-
count that the systems refer to two different epochs). Note that
this implicitly uses the fact that the second, refining transforma-
tion of the maser system did not change its calibration properties.

We used the sample of reference stars to compare the two
systems. The mean positional offset between the two lists of
positions for the epoch of the cluster system was

�pCSys − �pMSys =
(−1.87

+1.87

)
±

(
0.04
0.04

)
mas. (1)

Here, “Csys” denotes the cluster system, “MSys” the maser
system. The errors are the standard deviation of the sample of
differences. We also calculated the differences of the reference
star velocities, as given by the two linear motion models obtained
for each reference star. We obtained

�vCSys − �vMSys =
(−0.60

+0.56

)
±

(
0.08
0.06

)
mas

yr
, (2)

where again the errors are the standard deviation of the sample
of differences.

This means that the two coordinate systems differ signifi-
cantly in position and velocity calibration in a systematic way.
It should be noted that only the difference between the two co-
ordinate systems is that well defined; for the question how well
each of the coordinate systems relates to Sgr A*, the larger,
systematic errors of Sections 3.2.1 and 3.2.2 need to be consid-
ered. It is exactly the fact the difference between the coordinate
systems is well defined that allowed us to combine the two co-
ordinate systems and to gain accuracy in the combined system
that way. Also note that the size of the offsets occurring here
are consistent with the combined uncertainties of the two coor-
dinate system; much larger offsets would have meant that the
coordinate systems would be inconsistent with each other.

Finally, we chose the method which corrects the cluster
system by a positional offset. The positional difference from
Equation (1) was subtracted from all positions of the cluster
stars (and thus also from the reference stars that are a subset
of the cluster). This combined coordinate system has the same
prior as the cluster system, namely that the cluster is at rest with
respect to Sgr A*. The linear motion models so obtained were
then used for the further analysis.

3.3. Relating the S-Stars to the Reference Stars

We constructed the transformation from pixel positions on the
detector to astrometric positions by means of the reference stars.
For each given image, we calculated the expected astrometric
positions of the reference stars using the linear motions models
as obtained in Section 3.2.3. Given the pixel positions of the
reference stars in the respective image, we related the two sets
of positions by means of a cubic transformation (20 parameters)
of type

xsky = p0 + p1x + p2y + p3x
2 + p4xy + p5y

2

+ p6x
3 + p7x

2y + p8xy2 + p9y
3

ysky = q0 + q1x + q2y + q3x
2 + q4xy + q5y

2

+ q6x
3 + q7x

2y + q8xy2 + q9y
3. (3)

Once the transformations are known, it is straight-forward to
apply them to the pixel positions of the S-stars.

The parameters pi, qi were found by demanding that the
transformation should map the two lists of positions optimally
in a χ2 sense. Since the problem is linear, the parameter set
can be found with a pseudo-inverse matrix (we always used at
least 50 stars, thus 100 coordinates, for 20 parameters). The
procedure also allows for an outlier rejection. For this purpose,
we applied the transformation to reference stars themselves and
calculated the residuals to the expected astrometric positions. By
only keeping reference star positions, which are not more off
than 15 mas from the expected position, we cleaned our sample.
This excluded in total 19 of the 7189 reference star positions.
For the cleaned set, we redetermined the linear motion model for
each star under the side condition that the refinement would not
change the mean position, or the mean velocity of the sample
of reference stars, thus avoiding a change of the origin of the
coordinate system and a change of its velocity. Compared to the
previous work, the number of reference stars used is roughly a
factor 8 larger. This reduced the statistical uncertainty of this
calibration step to a very small level.8

For the SHARP data, we had to use some additional steps
for relating the S-star positions to the reference stars, since
for a given epoch we used two deconvolutions for which we
had four single-pointing frames and one combined map respec-
tively. We used the pixel positions of the reference stars in the
two times four single-pointing images together with the pre-
dicted astrometric positions of the reference stars to set up eight
transformations of the type given in Equation (3). Not all ref-
erence stars are present in all pointings, but in all cases their
number exceeded 50, such that the transformation parameters
were well determined. With these transformations, we calcu-
lated the astrometric positions of the brighter S-stars detected
in the eight frames and used the average astrometric position in
the end. The standard deviation of the eight astrometric posi-
tions was included in the error estimate. For the fainter S-stars,
we used the co-added maps. For the two co-added maps (two
deconvolutions) per epoch, we set up two times four full first
order transformations relating pixel positions of the brighter S-
stars in each co-added map to the respective pixel positions in
the four single-pointing frames. With these transformations, we
determined the pixel positions of the fainter S-stars which they
would have had in the single-pointing frames. These fictitious
pixel positions were then transformed with the cubic transfor-
mation of the respective single-pointing frame into astrometric
positions. The average of the latter was used in the end, the
standard deviation was included in the error estimate.

3.4. Estimation of Astrometric Errors

The goal of this section is to understand the errors of the
astrometric data. This includes both statistical and systematic
error terms. The statistical error is due to the uncertainty of the
measured pixel positions. Among the systematic error terms

8 Actually, some of the reference stars relatively close to Sgr A* were also
considered as S-stars for which we tried to determine orbits. Indeed, four of
those stars showed significant accelerations. However, we did not exclude
them from the sample of reference stars. Therefore, an additional, obvious step
of refinement would be to allow for quadratic motion models for the reference
stars.
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are the influence of the coordinate system, residual image
distortions, transformation errors and unrecognized confusion.

3.4.1. Offset and Velocity of the Coordinate System

The accuracy in two-dimensional position (Δx, Δy) and two-
dimensional velocity (Δvx , Δvy) of the combined coordinate
system is given by the numbers in Sections 3.2.1 and 3.2.2. In
the third dimension, we don’t use any priors for Δz, since we
wish to determine R0 from our data.

For Δvz, we use the prior that Sgr A* is not moving radially,
based both on theoretical arguments and on radio and NIR
measurements. Even if Sgr A* is dynamically relaxed in the
stellar cluster surrounding it, some random Brownian motion
due to the interaction with the surrounding stars is expected.
Merritt et al. (2007) calculated this number and concluded that
the motion should be ≈ 0.2 km s−1. This is consistent with the
findings of Reid & Brunthaler (2004) who show that Sgr A* has
a proper motion of vl = 18 ± 7 km s−1 in galactic longitude
and vb = −0.4 ± 0.9 km s−1 in galactic latitude (assuming
R0 = 8 kpc). The significance of the fact that vl �= 0 is disputed,
and furthermore it is not clear, whether it is truly due to a peculiar
motion of Sgr A*, or due to a difference between the global
and local measures of the angular rotation rate of the Milky
Way (Reid & Brunthaler 2004). Clearly, the motion of Sgr A*
perpendicular to the galactic plane is very small as expected.
In the third dimension, the velocity of Sgr A* can only be
determined indirectly by radial velocity measurements of the
stellar cluster surrounding it. Using a sample of 85 late-ytpe
stars Figer et al. (2003) found that the mean radial velocity of
the cluster is consistent with 0: vz = −10 ± 11 km s−1. Trippe
et al. (2008) used a larger sample of 664 late-type stars and
found consistently vz = 4.6 ± 4.0 km s−1. Compared to that,
the uncertainty ΔU ≈ 0.5 km s−1 in the definition of the local
standard of rest is much smaller (Dehnen & Binney 1998). We
conclude that all measurements are consistent with Sgr A* being
at rest at the dynamical center of the Milky Way, and we assume
a prior of vz = 0 ± 5 km s−1 for our coordinate system.

Summarizing, our combined coordinate system should be
accurate to the numbers listed here, of which finally used the
conservatively rounded values:

Δx = 0.95 mas ≈ 1.0 mas

Δy = 2.35 mas ≈ 2.5 mas

Δvx = 0.06 mas yr−1 ≈ 0.1 mas yr−1

Δvy = 0.06 mas yr−1 ≈ 0.1 mas yr−1

Δvz = 5 km s−1. (4)

3.4.2. Rotation and Pumping of the Coordinate System

Potentially, there are two more degrees of freedom, which
could affect the reliability of the chosen coordinate system,
namely rotation and pumping. An artificial rotation can be
introduced if the selected stars by chance preferentially move
on tangential tracks with a preferred sense of rotation. Similar,
artificial pumping can occur: suppose that by chance all selected
stars move on perfect radial trajectories and that stars further out
move faster than stars closer to Sgr A*. Such a pattern, which
would be somewhat similar to the Hubble flow of galaxies,
would yield under the set of transformations a time-dependent
plate scale and otherwise stationary stars. Both effects can affect
the selection of the reference star sample and (less important)
the selection of cluster stars.

The chosen coordinate system relies on the assumption that
the cluster does not show any net motion (see Section 3.2.2),
net rotation, or net pumping. The selection of a finite number
of cluster stars, however, limits the accuracy with which these
conditions can be satisfied. Given 2147 stars with a rms velocity
of ≈ 157 km s−1 and a typical distance of 10′′, we expect that
any selection leads to a pumping, or rotation effect of the order
of 9 μas yr−1 arcsec−1.

Due to the errors in the SiO maser positions, the maser system
can show artificial pumping, or rotation. Similar to what was
done in Sections 3.2.1 and 3.2.2 we simulated in a Monte
Carlo fashion the error propagation. From 105 realizations of
the transformations, assuming the observed errors of the SiO
maser positions in the NIR and radio, we created perturbed sets
of reference stars. The standard deviation of the pumping and
rotation motion (vr/r and vt/r respectively) over these sets then
estimate the stability of the maser system. We obtained

vr/r|MSys = 37 μas yr−1 arcsec−1,

vt/r|MSys = 33 μas yr−1 arcsec−1. (5)

The cluster system (and therefore also the combined system)
can be checked against the maser system. By calculating the
difference in velocity for each reference star and subtracting
from those the difference of the two coordinate system veloci-
ties, we obtained a vector field of residual velocities, which is
well described by

vr/r|CSy − vr/r|MSy = (32 ± 2|stat ± 9|sys) μas yr−1 arcsec−1

vt/r|CSy − vt/r|MSy = (6 ± 2|stat ± 9|sys) μas yr−1 arcsec−1

(6)

The combined size of the effects from Equations (5) and (6)
estimate the error made when using the assumption that the
combined coordinate system is nonrotating and nonpumping.
At 1′′, these effects can sum up over 15 years to at most 0.7
mas, while for the maximum projected distance of S2 (≈ 0.2′′)
the resulting positional errors are even a factor 5 smaller. We
therefore neglected these effects in the following.

3.4.3. Statistical Errors of the Pixel Positions

This paragraph deals with the uncertainties of the stellar
positions on a given image; the unit of this error term as
measured is therefore pixels. The error which is most easily
accessible is the formal fit error of the Gaussian fit to a source.
However, in deconvolved and beam-restored images it might
be a bad estimator for the positional uncertainties. Therefore,
we compared additionally different deconvolutions of the same
image for each epoch in order to get a more robust estimate.

For the SHARP data, we used up to eight (= two deconvolu-
tions × four pointings) pixel positions. The standard deviation
of the astrometric positions was included in the error estimate for
the statistical position error. For stars which were present only
in one frame, the typical error of the epoch was used instead.

For NACO, we split up each data set into two parts and
deconvolved both co-added images with the same PSF as the
co-added image of the complete data set (see Section 2.2). We
determined the pixel positions of the reference and S-stars in
the two deconvolved frames and applied a pure shift between the
two lists of pixel positions such that the average pixel position is
the same for both. The remaining difference between respective
positions of one star estimates the statistical uncertainty for
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Figure 3. Statistical errors of the pixel positions for the NACO K-band data as
a function of arbitrary detector units of flux. The thin lines show the respective
error model for each epoch; the thick dashed line is the mean for the data. The
mean has a floor at 99 μas, the median (not shown) at 84 μas.

(A color version of this figure is available in the online journal.)
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Figure 4. Measured distribution of the statistical errors of the pixel positions
for the NACO data. The characteristic statistical error (defined as the peak of
the distribution) is 108 μas, the systematic error terms have to be added to this
to come to a fair estimate of the true uncertainty.

(A color version of this figure is available in the online journal.)

that star. The error estimates obtained this way were a strong
function of the stellar brightness. Therefore, we described the
error estimates as a function of flux for each epoch (see Figure 3)
using a simple empirical model of the form ax−n + b. The mean
floor b̄ over all data sets is 99 μas, while for lower fluxes the
error increases up to 2 mas. We used the empirical description
of each image to assign an error to all stellar positions obtained
from that frame. Finally, we checked whether the formal fit error
of the positions was greater than the estimate from the empirical
error model. In such a case, we used the formal fit error instead.
Figure 4 shows the final distribution of statistical errors for the
NACO data. It is effectively the mean error model folded with
the brightness distribution of the S-stars.

For the SHARP data, we obtained a broad distribution of the
statistical pixel position errors with no clear maximum and a tail
to 2 mas. The median error is 360 μas, the mean error 760 μas
in the SHARP data.

3.4.4. Residual Image Distortions

A main source of error at the sub-milliarsecond level is
image distortions. We estimated this error term by comparing
distances of stars in different pointing positions with a dither

offset of 7′′ (see Figure 5). If we had used only the raw
positions and linear transformations, the resulting mean one-
dimensional position error would be as large as 1 mas for the
13 mas pixel−1 NACO data. By applying a distortion model
(see Section 2.2) plus a linear transformation this error can
be reduced to 600 μas. Allowing for a cubic transformation
onto a common grid yields an error of 240 μas only. This
justifies our choice to use a high order transformation rather than
to dedistort the 13 mas pixel−1 NACO images. The numbers
obtained in this way are actually the combined error of the
statistical and transformation uncertainties with the residual
image distortions. Subtracting the former, we conclude that
residual image distortions have a contribution of 210 μas to the
error budget of each individual astrometric data point. We thus
added this value in squares to all other error terms, effectively
acting as a lower bound for the astrometric errors.

We applied the same analysis to the 27 mas pixel−1 NACO
data which had a dither offset of 14′′ (see Figure 6). The
raw differences showed a skewed distribution, indicating the
presence of image distortions. The rms of this distribution is
2.1 mas. After applying the distortion model the typical residual
error is reduced to 1.3 mas and the distribution is a nice Gaussian.
Interestingly, mapping the positions with a cubic transformation
onto each other does less well here. The distribution becomes
less skewed; however, it is still non-Gaussian, and the rms is
1.6 mas. This justifies a-posteriori the use of the distortion
correction for the 27 mas pixel−1 NACO data when determining
the motion models for the reference stars. For the SHARP
data, we obtained a characteristic error due to residual image
distortions of 0.8 mas and a median of 1.2 mas.

3.4.5. Transformation Errors

It is important to notice that any error in deriving the motions
for the reference stars only translates into a global uncertainty
of the coordinate system (which could show up as an offset
of the center of mass from 0/0, or a net motion of the
coordinate system). It will, however, not affect the accuracy
of individual data points in this system. Only the selection
of reference stars and transformation errors contribute to the
errors of the individual data points. We estimated them by
performing all coordinate transformations not only once but
also with subsets of the available reference stars. The standard
deviation of the sample of obtained astrometric positions was
then included in the astrometric error estimate. The typical
uncertainty introduced by the transformations was quite small,
namely 23 μas for the NACO data. This is consistent with the
fact that ≈ 100 stars have been used of which each can be
determined with an accuracy of ≈ 200 μas. For the SHARP
data, we found a value of 100 μas, again consistent with the
characteristic single position error of ≈ 1 mas.

3.4.6. Differential Effects in the Field of View

At the sub-mas level, there is a multitude of differential effects
over the field of view that can influence astrometric positions.
The most prominent ones are relativistic light deflection in the
gravitational field of the sun, light aberration due to Earth’s
motion, or refraction in the atmosphere. Since our analysis is
based on relative astrometry, the absolute magnitudes of the
effects do not matter. Only the differential effects over the field
of view can contribute to the positional uncertainties.

1. Over a field of view of 20′′, the differential effects of
aberration can be described by a global change of image
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(A color version of this figure is available in the online journal.)
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scale (Lindegren & Bastian 2006). Since we fit the image
scale for each epoch separately, the differential aberration
is absorbed into the linear terms of the transformation
and thus is not affecting the astrometry. The size of the
effect for a small field of view with a diameter f amounts
to f × v/c × cos Ψ where Ψ is the angle between the
observation direction and the apex point. For f ≈ 10′′ and
v ≈ 30 km s−1 this yields ≈ 1 mas at most.

2. The light deflection can be approximated by 4 mas ×
cot Ψ/2 where Ψ is the angle between observation direction
and Sun (Lindegren & Bastian 2006). The differential effect
over 20′′ will not exceed 100 μas as long as Ψ > 3.◦6, which
is guaranteed for all our data.

3. From the usual refraction formula R = 44′′ tan z (for
a standard pressure of 740 mbar at Paranal), we find a
differential effect of 4–8 mas over 20′′, or 2–4 mas over the
field in which we selected the reference stars. The effect will
be a change in one direction (toward zenith) of the image
scale. Since the effect is at most quadratic over the field,

it will be absorbed completely into the first- and second-
order terms of the transformations. Note that it is crucial to
allow also for skew terms, i.e., it is not sufficient to use a
shift, rotation and scale factor only in the linear terms, but
the off-diagonal terms in the transformation matrix are also
required.

3.4.7. Unrecognized Confusion

One important contribution to the position errors is the fact
that stars can be confused and that sometimes the confusion is
not recognized. This problem is more severe for the SHARP
data than for the NACO data due to the lower resolution. Of
course, we excluded positions for which we know that they
are confused. However, unrecognized confusion cannot be dealt
with by principle. We therefore simply accept that these events
happen. This means, in turn, that we expect to find a reduced
χ2 > 1 when trying to describe the motions with smooth
functions. In addition, we note that for a sufficiently large
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amount of data points unrecognized confusion events should
only lower the precision but not the accuracy, since no global
bias is expected. Still, if a confusion event happens during an
unfortunate part of the orbit (for example at an end point, or
during pericenter passage) a bias in the results of an orbit fit can
be introduced.

3.4.8. Gravitational Lensing

Gravitational lensing might affect the measured positions. A
quantitative analysis shows that the effects are very small except
in unusual, exceptional geometric configurations. For a star at
a distance z 
 R0 sufficiently far behind Sgr A* the angle of
deflection as measured from Earth is

θ = z

R0

4GMMBH

c2 b
, (7)

where b is the impact parameter. For the GC, this evaluates
to θ ≈ 20 μas × z/b, indicative of a very small astrometric
effect unless z/b � 1 This rough estimate is consistent with the
rigorous treatment of the problem from Nusser & Broadhurst
(2004), who show that in order to achieve a displacement of 1
mas, a star at z ≈ 1000 AU needs to have b ≈ 2 mas ≈ 16 AU.
In our data set, none of the stars gets close to the regime that
gravitational lensing actually becomes important. Therefore, we
neglected the effect.

3.4.9. Comparison of Error Estimates with Noise

We were able to check how well our error estimates agree
with the intrinsic noise of the data. For this purpose, we fitted all
measured positions of the reference stars with simple quadratic
functions. After exclusion of 3σ outliers, we have calculated
the reduced χ2 for each reference star. The mean reduced χ2

for the NACO data is 2.0 ± 0.7, while for the SHARP data, we
obtained values between 0.5 and 2.0 with a mean of 1.0.

Since our data set consists of two subsets (SHARP and
NACO), each covering roughly the same amount of time, the
relative weight of the two subsets matters. Given that we seem

to underestimate the errors for NACO a little, while the SHARP
errors seem consistent with the noise in the data, we decided to
apply a global rescaling factor of r = 1.42 to all NACO data
points. This procedure adjusts the relative weight between the
two subsets. Still we expect a reduced χ2 > 1 when performing
orbit fits due to unrecognized confusion events.

In Figure 7, we show the final error distributions (after
rescaling all NACO errors with the global factor) for the S-
stars and reference stars, both for the NACO and SHARP data.
The characteristic error for a reference star in the NACO data is
360 μas, in the SHARP data it amounts to 760 μas. For the S-
stars, the histogram of the NACO errors has a peak also around
325 μas and a tail toward larger errors, essentially telling us that
for bright S-stars the astrometry is as good as one could hope for
(since it is equally good as for the reference stars). The tail is due
to the fact that many of the S-stars are faint (hence the statistical
error is severe) and probably also unrecognized confusion events
affect the statistical error since confusion can alter the shapes of
the images of faint stars. In the SHARP data, the typical S-stars
error is 2 mas and the lower end of the distribution at ≈ 1 mas is
consistent with what could be expected from the reference stars.

3.5. S2 in 2002

Our data set covers the pericenter passages of several stars.
Particularly important to our analysis is the one of the star S2.
The star is one of the brightest in the sample, and we observed
a full orbit (see Figure 13). In 2002 S2 passed its pericenter,
thus changing quickly in velocity throughout a period of a few
months. These data are particularly useful for constraining the
potential of the MBH. However, as we will now discuss, the
photometry of the star near pericenter-passage is puzzling and
may indicate that the positional information is affected by a
possible confusion event with another star. Figure 8 shows a
K-band PSF-photometrically determined light curve for the star
(Rank 2007). It is clear that S2 was brighter in 2002 than in
the following years. There are several reasons why a star could
change its apparent brightness.
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(1) In 2002, S2 was positionally nearly coincident with Sgr
A* and thus confused with the NIR counterpart of the
MBH. Typically, Sgr A* is fainter than mK = 17 and
thus the extra-light from Sgr A* in quiescence is not
sufficient to explain the observed increase in brightness
of S2. However, Sgr A* is known to exhibit flares that can
reach a brightness level that could account for the observed
increase in brightness (Genzel et al. 2003a; Trippe et al.
2007). In that case, we would expect to see intra-night
variability of S2 in the 2002 data. Assuming conservatively
that we can determine the relative flux of S2 to ΔmK = 0.1
in each frame and given the brightness of S2 (mK ≈ 14),
we estimate that we would have noticed any variations in
Sgr A* that exceed mK ≈ 16.5. Since we did not observe
any intranight variability, we exclude that flares from Sgr
A* significantly contributed to the increased brightness of
S2 in 2002.

(2) Intrinsic variability of S2 might explain the observed light
curve. However, it is unlikely to be the correct explanation,
since it would be a big coincidence that the brightening
happens during the pericenter passage. Also an eclipsing
binary seems unlikely given the slow variation.

(3) The star could change its properties during the pericenter
passage. While tidal heating (Alexander 2005) cannot
plausibly change the temperature of a star within a few
months, the interaction of S2 with some ambient medium
does not seem ruled out. Such an encounter would primarily
change the surface temperature of the star and therefore
would act nearly instantaneously. Effectively the light
curve would then be a direct trace of the density of the
surrounding gas encountered along the orbital path of S2.
However, energetically, this scenario seems unlikely. Given
the maximum velocity of S2 at pericenter (v ≈ 8000 km
s−1), the radius of the star (r = 11R�; Martins et al.
2008) and assuming that the kinetic energy of the gas that
hits the geometric cross-section of the star is converted to
radiation, one can estimate the number density n necessary
to produce the observed brightness increase of ΔmK ≈ 0.5.
We obtained n ≈ 1011cm−3, which is unrealistically high,
and so we do not favor this scenario.

(4) Loeb (2005) proposed that the stellar winds of early-type
stars passing their pericenters close to the MBH could
alter the accretion flow onto Sgr A*. Such an event would

produce a change in the brightness of Sgr A* on the
timescale of months, compatible with Figure 8. However,
Martins et al. (2008) showed that the mass loss rate of S2
is too low for this mechanism to work.

(5) The extinction could be locally smaller than the average
value. For instance, Sgr A* could remove dust in the inter-
stellar medium in its vicinity. This hypothesis can be tested
in the future by observing other S-stars passing close to
Sgr A* during the pericenters of their orbits.

(6) The brightness of S2 could be affected by dust in the
accretion flow onto the MBH. The dust would be heated
by S2 and account for the excess brightness, a proposal
that was used by Genzel et al. (2003b) to explain the MIR
excess of S2/Sgr A*.

(7) The star could be confused with another star. If S2 had
been located very close to another star in projection, the
true nature of this encounter could remain undiscovered,
but the observed brightness of S2 would be increased.

Of the three viable explanations (5 to 7), the first would
not lead to astrometric biases, the others, however, would
displace S2 artificially. Given the importance of the 2002
data, we decided not to discard it completely but to estimate
the astrometric error assuming a confusion event, given the
measured increase in brightness.

For this purpose, we simulated confusion events. We assumed
simple Gaussian PSFs and sampled them as they are sampled
by the 13 mas pixel−1 scale of the NACO camera in K band. By
polluting a primary source with a fainter secondary source, we
generated a confused stellar image. This was then fit by a two-
dimensional Gaussian and the displacement from the position of
the primary source was determined. We varied brightness ratio
and distance between the two sources systematically, yielding a
displacement map (Figure 9). This map allows the determination
of the possible range of displacements if the brightness of
the secondary source is known. The range can be constrained
further, since a bright secondary source in a few pixels distance
will lead to very eccentric images that would be easily detected
in the data. We excluded all points that would lead to a stellar
image of which the major axis is more than 30% larger than
the minor axis. Thus, from the measured S2 fluxes, the known,
unconfused brightness of S2 and the roundness of the S2 images,
we were able to constrain the astrometric bias due to confusion.
For each date, we looked up in Figure 9 the possible range of
astrometric displacements given the observed brightness of S2,
essentially determining the profile along a horizontal line in the
plot. The mean of this distribution was then considered as an
additional two-dimensional error to be added to the respective
astrometric errors for that date. The such obtained error terms
ranged between 2.37 mas and 3.76 mas

We checked whether the residuals of the 2002 data, relative
to an orbit fit to the data other than 2002, show some systematic
trend (Figure 10) and found that indeed all points appear
to be shifted systematically by 10 mas ≈ 1 pixel toward the
northeast. Still, this is hard to interpret. In particular, S2 does not
appear systematically displaced toward Sgr A*. Extrapolating
backwards the track of S19 that was observed from 2003 on
shows that it also was located close to the S2 positions in 2002.
Again, there is no indication that S2 would be displaced toward
the extrapolated positions of S19. Also, S19 with mK ≈ 16.0 is
too faint to account for the observed increase in brightness of
S2. Any other star that potentially was close to S2 in 2002
(candidates are S23, S38, S40, S56) is even fainter. From
Figure 9 one can see that a star with mK ≈ 14.4 − 14.0 in
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given date.

a distance of 2–2.5 pixels would be required to account for the
observed shift. Furthermore, that secondary source would have
to move for a few months and for ≈ 40 mas nearly parallel to
S2. It is extremely unlikely that we have missed such an event.

From this analysis, it is clear that the weight of the 2002
data will influence the resulting orbit fits, since these points will
systematically change the orbit figure at its pericenter. At the
same time, we have no plausible explanation for the increase
in brightness and the systematic residuals in the 2002 data; in
particular a confusion event seems unlikely. Thus, it is clear
that using the 2002 data will affect the results, but we cannot
decide whether it biases toward the correct solution, or away
from it. Therefore, we use in the following two options: (1) we
include the 2002 data with the increased error bars; and (2) we
completely disregard the 2002 data of S2.

4. ANALYSIS OF SPECTROSCOPIC DATA

Most of the radial velocities were obtained with SINFONI.
For the few non-SINFONI data, we used the already published
values (Ghez et al. 2003; Eisenhauer et al. 2003).

From the SINFONI cubes, we determined spectra by manu-
ally selecting on- and off-pixels for each S-star and calculating
the mean of the on-pixels minus the mean of the off-pixels. The
spectra were then used to determine the radial velocities of the
respective stars at the given epoch. We only used spectra in
which we were able to visually identify the stellar absorption
lines without doubt. The most prominent features are the Br-γ
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Figure 10. 2002 data of S2. The gray symbols show the measured positions, the
errors are as obtained from the standard analysis and are not yet enlarged by the
procedure described in Section 3.5. The black dots are the positions predicted
for the observation dates using an orbit fit obtained from all data other than
2002. The blue shaded areas indicate the uncertainties in the predicted positions
resulting from the uncertainties of the orbital elements and of the potential,
taking into account parameter correlations. The little ellipse close to the origin
denotes the position of the fitted mass and the uncertainty in it. This plot shows
that the S2 positions are dragged for most of the data by ≈ 10 mas to the
northeast; they are not biased toward Sgr A*.

line for early-type stars and the CO-band heads for late-type
stars.

Both line profiles are nontrivial, possibly biasing the result
when using a simple Gaussian profile to fit the line. The bias
can be avoided by cross-correlating the spectra with a template
and determining the maximum of the cross-correlation.

For the CO-band heads, we used a template spectrum from
Kleinmann & Hall (1986). We used the well-established tool
“fxcor” which is part of NOAO-package in iraf. We identified
the following stars as late-type stars: S10, S17, S21, S24, S25,
S27, S30, S32, S34, S35, S38, S45, S68, S70, S73, S76, S84,
S85, S88, S89, S111.

Also for the early-type stars one might be worried that radial
velocity measurements are biased due to a complex line profile.
In particular, Br-γ might be affected by nearby He lines. We
tested this for the bright star S2 by generating a template
from our 2004–2006 data.9 We estimated for all S2-spectra
the velocities by simple Gaussian fits to the Br-γ line. We then
Doppler-shifted all spectra to the 0-velocity (using the IRAF task
“dopcor”) and co-added them (using the iraf task “scombine”).
This resulted in a first template for S2. With this template,
we cross-correlated all individual S2-spectra in the wavelength
range 2.08 − 2.20 μm (using the iraf task “fxcor”) and obtained
better estimates for the velocities. With these new velocities, we
reassembled the template spectrum. We stopped after this first
iteration since the velocity differences had already converged to
a mean deviation of 0.2 km s−1 with a standard deviation of 2 km
s−1. This template spectrum is shown in Figure 11. We used it
to determine the final S2-velocities. Comparing the results to
the initial estimates of the velocities showed that the Gaussian
fits were not notably biased. The mean velocity difference was
8 km s−1 with a standard deviation of 27 km s−1. Therefore,

9 The combined S2 spectrum created in this context was also the basis for the
work of Martins et al. (2008).
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Figure 11. Combined S2 spectrum from the 2004–2006 SINFONI data, used
as velocity template.

(A color version of this figure is available in the online journal.)

we simply used the Gaussian fits to the Br-γ line for the other
early-type stars. We identified the following stars as early-type:
S1, S2, S4, S5, S6, S7, S8, S9, S11, S12, S13, S14, S18, S19,
S20, S22, S26, S31, S33, S37, S52, S54, S65, S66, S67, S71,
S72, S83, S86, S87, S92, S93, S95, S96, S97.

Before the measured velocities can be used in a fit they have
to get referred to a common reference frame. The most suitable
choice is the LSR. We used standard tools to determine the
corrections which for our data only depend on the observing
date and the source location. The observatory’s position on Earth
does not matter at the level of 15 km s−1 accuracy, since it leads
to a correction < 0.5 km s−1.

4.1. Radial Velocity Errors

All radial velocities crucially depend on an exact wavelength
calibration. The errors in the radial velocities were estimated
from the following terms:

1. The formal fit error. For radial velocities which were
obtained from a cross-correlation with a template spectrum,
the formal fit error is given by the fit error of the peak in
the cross-correlation, which is calculated routinely with the
cross-correlation routine. For the data, for which we fitted
a simple line profile to the spectrum, the formal fit error is
also an output of the fit routine. The magnitude of this error
depends on the spectral type and the S/N in the spectrum.
For a bright late-type star, e.g., S35 with mK ≈ 13.3, the
formal fit error can be as small as 10 km s−1, for a bright
early-type star, e.g. S2 with mK ≈ 14.0, a typical value is
30 km s−1.

2. Accuracy of wavelength calibration for Br-γ . We used
the nonsky-subtracted data cubes in order to determine the
positions of atmospheric OH lines. Comparing those to the
nominal positions allowed us to estimate the accuracy of
the wavelength calibration in the range of Br-γ and the He-
lines around 2.11 μm. The rms of the OH-line positions
around their nominal positions yielded errors in the order
of 2–3 km s−1.

3. Accuracy of wavelength calibration for CO-band heads.
Since there are no OH emission lines at wavelengths longer
than 2.25 μm, we used atmospheric absorption features in
the nonatmosphere-divided spectra of the respective stan-
dard stars in order to asses the accuracy of the wavelength
calibration at the wavelengths of the CO-band heads. This
was possible since our standard stars were early-type stars
(spectral type around B5) that do not show spectral fea-
tures at the region of interest. We divided the region from
2.25 μm to 2.40 μm into short windows of Δλ = 0.05 μm

and cross-correlated each with a respective theoretical spec-
trum of the atmosphere. The typical resulting deviation was
measured to be 10 km s−1. The accuracy of the procedure is
limited, however, by the accuracy by which the individual
deviations can be measured, which yielded a value of 10 km
s−1, too. So probably the calibration is even more accurate
than 10 km s−1 and consistent with what is found for the
accuracy of the calibration for the shorter wavelengths.

4. Uncertainty of the underlying spectrum. The GC region
is highly confused. Therefore, we did not use an automated
procedure to extract the spectra from the data cubes, but
selected the respective signal and off pixels manually. Since
there is no clear prescription for what the optimum way for
that procedure is, we extracted each spectrum several times.
This allowed us to estimate the error due to the selection
of signal and off pixels. While for bright stars (mK ≈ 14)
this error term is below 10 km s−1, it becomes dominant for
fainter stars. For an early-type star of mK ≈ 15.5 a value
of 100 km s−1 is common.

Since the wavelength calibration is determined independently
for all data sets, these errors will average out with an increasing
database.

5. ORBITAL FITTING

The aim of the orbital fitting is to infer the orbits of the indi-
vidual stars as well as information on the gravitational potential.
A Keplerian orbit can be described by the six parameters: semi-
major axis a, eccentricity e, inclination i, angle of the line of
nodes Ω, angle from ascending node to pericenter ω, and the
time of the pericenter passage tP. If the orbit is only approx-
imately Keplerian, these parameters should be interpreted as
the osculating orbital parameters. The parameters describing a
simple point mass potential are the distance to the GC, R0, the
mass of the central object, MMBH, its position and velocity. Note
that the potential might also be more complicated, for example
due to an extended mass component, or due to the corrections
arising from the Schwarzschild metric. These parameters can be
inferred from our data by orbital fitting.

After 16 years of high-precision astrometry of the innermost
stars in our galaxy and a few years of Doppler-based radial
velocity measurements, the accuracy of the available data has
reached a level at which one might hope to detect deviations
from the Keplerian orbits on which the stars apparently move
due to the existence of the MBH at the dynamical center of the
Milky Way. Such deviations may be due to relativistic effects, or
are the effects of an extended mass component, possibly residing
in the vicinity of the MBH. Both cases are scientifically highly
interesting. In order to analyze these effects, we implemented
a general orbital fitting routine that permits the fitting of orbits
in an arbitrary potential and that can take into account also
relativistic effects.

For a 1/r potential it is well-known that the solutions of
the equations of motion of test particles are (Kepler) ellipses.
Assuming such a potential, orbits can be fitted by adjusting the
orbital elements, since there is a straightforward prescription
for the calculation of the position and velocity vectors at any
given time from the orbital elements. However, a more general
approach is needed if an arbitrary potential determines the
dynamics. Then the trajectory has to be determined numerically.
The problem can be described by the initial conditions of each
test particle plus the parameters describing the potential. For
each set of parameters a χ2 with respect to the measured data can
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be calculated. One seeks the parameter values which minimize
the χ2. This is a computationally demanding problem as at
each step of the high-dimensional minimization the equations
of motion are solved numerically. We chose the high-level tool
Mathematica10 for the implementation and tested it thoroughly,
e.g., by comparing results with results obtained from the former
routine that explicitly uses ellipse-shaped orbits and that was
used for the work of Eisenhauer et al. (2005). Some features of
the new routine are as follows.

1. The NIR flares of SgrA* are believed to appear at the
position of the center of mass for the orbits (Genzel et al.
2003a). When a flare occurs it therefore is reasonable to
take the measured position of the flare into account and to
identify it with the center of mass. This can be achieved
by letting this measurement contribute to the χ2 of the fit.
In total, we measured 22 times a position of Sgr A* (at
various brightness levels, typically at mK ≈15). Note that
with such a fit, while possibly constraining the potential
parameters better, one gives up the possibility of testing
whether the center of mass and the NIR counterpart of Sgr
A* coincide.

2. We implemented four relativistic effects:

(a) the geometric retardation due to the finite speed of
light, also called the Roemer effect. This involves
numerically solving the retardation equation tobs =
tem − z(tem)/c, where z is the coordinate along the line
of sight, in order to know the position and velocity of
the star at the time of emission.

(b) the relativistic Doppler formula, giving rise to the so-
called transverse Doppler effect, affecting only the
radial velocities.

(c) the gravitational redshift due to the potential of the
central point mass, altering the conversion of line
positions to radial velocities. Zucker et al. (2006)
show that effects (a)–(c) might become visible in the
radial velocity measurements during a close periastron
passage of a star.

(d) the first general relativistic correction to the Newto-
nian potential as given by the Schwarzschild metric:
V (r) = −GMMBH/r + GMMBHl2/c2r3 where l is the
orbital angular momentum of the star.

Within the fitting routine all four effects can be turned on
or off, or the strength of the effect can be used as a fit
parameter where 0 means the effect is not present and 1
corresponds to the case in which the effect is as strong as
expected from the theory.

3. We allow for additional mass components in the potential,
described by an arbitrary number of additional parameters,
all of which can be either treated as fixed, or as free
fit parameters. The additional mass components can be
given either as a term in the potential, or as a function
describing the density as function of the spatial coordinates.
In the latter case the routine determines the potential from
the mass distribution by solving the Poisson equation
∇2V (r) = 4πGρ(r). Here, one encounters either a case
in which a closed solution for V (r) can be found, or it
might happen that for each set of parameters for which χ2

10 Wolfram Research, Inc. 2005, Mathematica Version 5.2.

is calculated during the fit the Poisson equation has to be
solved numerically.

4. For some of the parameters of the problem there could
exist independent measurements which one might want
to take into account during the fit. An example is the
position of the central mass. We used radio measurements
of Sgr A* to determine the coordinate system and, thus,
we expect the central point mass to reside in the origin of
the chosen coordinate system. We therefore implemented
the use of priors for any of the parameters, which can
be done straightforwardly by including them into the
calculation of χ2.

5. Instead of fitting the semi-major axis, we fit the periastron
distance p. This has the advantage that we can allow values
of e < 0, effectively exchanging the role of major and
minor semi axis. By using p the parameter space is compact
and the fitting routine can smoothly pass e = 0.

We followed the usual approach when calculating the sta-
tistical fit errors (Press 1992). For the given best-fit solution
at a certain set of values {pi} for the parameters, we deter-
mine the Hessian matrix from the curvature of the χ2-surface:
∂2χ2/∂pi∂pj . The formal fit errors are the diagonal elements of
the inverse of that matrix. Note that still these are only formal,
statistical fit errors. Possible systematic errors come in addition
to them. Parameter correlations are taken into account by the ma-
trix inversion. All orbital elements for a given star are correlated
with each other and with the potential parameters. However, the
other matrix elements describing correlations between orbital
elements of different stars can be set to 0. This reflects the test
particle approach in which one star can only influence the fit
result for another star via its influence on the potential. We ex-
plicitly use the test particle approach also when calculating χ2

for more than one star. It allows one to use several CPUs in
parallel since the contributions to χ2 from the individual stars
are independent.

6. RESULTS

In order to predict the motion of a star in a given gravitational
potential, one has to know six phase space coordinates, e.g. its
position and velocity at a given time. Since the radial position
is not measurable for any of the S-stars and only for a few
the radial velocity is measured, one needs additional dynamical
quantities. As such one can use accelerations, either in the proper
motion, or in the radial velocity. Also, higher order derivatives
(e.g., da/dt) of the astrometric data can be used as additional
dynamical measurables. If more than six dynamical quantities
are measures, the star can be used to retrieve information about
the potential.

This section is organized as follows. First, we check by
polynomial fits (going up to third order), for which stars we can
expect to find orbital solutions and which stars can contribute
in the determination of the potential. Then we determine the
potential, yielding also the orbits of the stars used in this step.
Finally, we determine the orbits of the remaining stars in the
given potential.

6.1. Polynomial Fits

For stars for which a significant part of the orbit is sampled,
the astrometric data cannot be described by polynomial fits
anymore. Most prominently, in our data set this is S2 of which
our astrometric measurements cover more than one complete
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Figure 12. Orbital data for the S-stars other than S2, the data of which are given in Figure 13. Left: the measured declinations as a function of time for the stars for
which we were able to determine orbits together with the orbital solution. Middle: the same plot for right ascenscion. Right: the measured radial velocity for those
stars for which we were able to measure changes in the radial velocity together with the orbital solutions. The radial velocities for the other stars are given in Table 9.

revolution. For all other stars, we report the polynomial fits
to the astrometric data in the table in Appendix B. We also
give there polynomial fits to the radial velocity data of those
stars for which we were able to determine orbits. The order of
the polynomials in all cases was chosen such that the highest
order term still differed significantly (at the 5σ level) from 0.
Significances were calculated after rescaling the errors such that
the reduced χ2 of the respective fit was 1, which is a conservative
approach.

Astrometrically, we found significant da/dt (requiring at
least a 5σ level) values for the stars S1, S4, S12, S13, S14,
S17 and S31. Significant astrometric accelerations (at the 5σ
level, or above) were found in addition for S5, S6, S8, S9, S18,
S19, S21, S23, S24, S27, S28, S29, S33, S38, S39, S40, S48,
S58, S66, S67, S71, S83, S87 and S111, where we checked that
the acceleration vector actually points toward Sgr A*.

We measured changes in the radial velocity for S1, S2, S4,
S8, S13, S17, S19 and S24 (all > 5σ , except S24 with 4.8σ ).
Additionally, we were able to determine radial velocities for S5,
S6, S7, S9, S10, S11, S12, S14, S18, S20, S21, S22, S25, S26,
S27, S29, S30, S31, S32, S33, S34, S35, S37, S38, S45, S52,
S54, S65, S66, S67, S70, S71, S72, S73, S76, S83, S84, S85,
S86, S87, S88, S89, S92, S93, S95, S96, S97 and S111.

Summarizing, we expect

1. that the S2 data will dominate the problem of determining
the gravitational potential;

2. that S1, S4, S8, S12, S13, S14, S17, S19, S24, and S31 can
be used additionally to constrain the potential further;

3. that we can find orbits in addition for S5, S6, S9, S18, S21,
S27, S29, S33, S38, S66, S67, S71, S83, S87, and S111.

The data for the stars, for which we found orbital solutions,
are presented in Figures 12 and 13; see also Table 9.

6.2. Mass of and Distance to Sgr A*

Here and in the following, we report always the fit results
including the (downweighted) 2002 data of S2 and excluding
it. The coordinate system priors were used as given in Equation
(4). The fit errors reported are rescaled such that the reduced
χ2 = 1. Note that these errors include the formal fit errors, tak-
ing into account parameter correlations between the parameters
reported here and the respective orbital elements determined si-
multaneously. The systematic uncertainty due to the coordinate
system is included here as well, since these parameters were
varied during the fits, too. The importance of this was pointed
out also by Nikiforov (2008).

6.2.1. R0 and Mass from S2 Data Only

First, we used the S2 data only to determine a Keplerian
gravitational potential (see Figure 13). Using the priors as
obtained in Equation (4), the fits yield the numbers in the first
and second rows of Table 4. The two values for R0 differ by
more than what the errors suggest, indicating that the 2002 data
influence R0. This confirms the presumption from Section 3.5.
We exploited this further in Figure 14. Assigning the 2002 data
higher weights (smaller errors) pushes the distance estimate up,
smaller weights lower it.

Mass and distance are strongly correlated parameters, see
Figure 15. The scaling of mass with R0 in our data set is a power
law with MMBH ∼ R 2

0 . For a purely astrometric data set, one
would have an exponent of 3 and a complete degeneracy; the fact
that the exponent is < 3 and that the degeneracy is not complete
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Figure 13. Top: S2 orbital data plotted in the combined coordinate system and
fitted with a Keplerian model in which the velocity of the central point mass and
its position were free-fit parameters. The nonzero velocity of the central point
mass is the reason why the orbit figure does not close exactly in the overlap
region 1992/2008 close to apocenter. The fitted position of the central point
mass is indicated by the elongated dot inside the orbit near the origin; its shape
is determined from the uncertainty in the position and the fitted velocity, which
leads to the elongation. Bottom: the measured radial velocities of S2 and the
radial velocity as calculated from the orbit fit.

is due to the influence of the radial velocity information in our
data set and due to the use of priors. The degeneracy can be
understood qualitatively. Changing R0, effectively changes the
conversion from measured angles (in mas) to physical lengths
(in pc), i.e., changing R0 changes the semimajor axis. Since the
orbital period is well determined in our data, the mass has to
change in order to fulfill Kepler’s third law.

The strong dependency means that the uncertainties for mass
and distance are coupled. Fixing the distance yields a very small
fractional error on the mass of ΔMMBH ≈ 0.02MMBH. This
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Figure 14. Fitted value of R0 for various scaling factors of the S2 2002 data,
using a fit with the coordinate system priors. The factor by which the 2002
astrometric errors of the S2 data is scaled up strongly influences the distance.
The mean factor determined in Figure 9 is ≈ 7, corresponding to R0 ≈ 8.1 kpc.
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Figure 15. Contour plot of χ2 as function of R0 and central point mass. The
two parameters are strongly correlated. The contours are generated from the
S2 data including the 2002 data; fitting at each point all other parameters both
of the potential and the orbital elements. The black dots indicate the position
and errors of the best-fit values of the mass for the respective distance; the blue
line is a power-law fit to these points; the corresponding function is given in
the upper row of the text box. The central point is chosen at the best-fitting
distance. The red points and the red dashed line are the respective data and fit
for the S2 data excluding the 2002 data; the fit is reported in the lower row of
the text box. The contour levels are drawn at confidence levels corresponding
to 1σ, 3σ, 5σ, 7σ, 9σ .

shows that the error of the fitted mass is completely dominated
by the uncertainty in the distance. Once the distance is known,
the mass immediately follows from the scaling relation

MMBH = (3.99 ± 0.07|stat ± 0.32|R0 )

× 106 M�

(
R0

8 kpc

)2.02

(incl.2002),

MMBH = (4.08 ± 0.09|stat ± 0.39|R0 )

× 106 M�

(
R0

8 kpc

)1.62

(excl.2002), (8)
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Table 4
Results for the Central Potential from Orbital Fitting

S2 R0 MMBH α δ vα vδ vz

Fit 2002 Priors (kpc) (106M�) (mas) (mas) (μas yr−1) (μas yr−1) (km s−1)

1 S2 only yes 2D, vz 8.31 ± 0.33 4.29 ± 0.35 0.51 ± 0.64 2.18 ± 0.89 −5 ± 87 119 ± 78 0.8 ± 6.2
2 S2 only no 2D, vz 7.36 ± 0.43 3.54 ± 0.35 0.81 ± 0.66 −0.63 ± 1.39 −69 ± 91 103 ± 81 −0.8 ± 6.2
3 S2 only yes vz 8.48 ± 0.38 4.45 ± 0.41 0.37 ± 0.73 2.33 ± 0.94 76 ± 131 231 ± 107 0.8 ± 6.1
4 S2 only no vz 7.31 ± 0.45 3.51 ± 0.36 0.92 ± 0.75 −0.84 ± 1.43 −83 ± 137 154 ± 114 −0.9 ± 6.3
5 S2 only yes none 8.80 ± 0.53 4.93 ± 0.75 0.31 ± 0.71 2.44 ± 0.89 74±127 220 ± 107 29 ± 36
6 S2 only no none 6.63 ± 0.91 2.85 ± 0.74 0.96 ± 0.75 −2.00±2.38 −111 ± 148 162 ± 115 −42 ± 44
7 comb. yes 2D, vz 8.33 ± 0.17 4.31 ± 0.22 0.80 ± 0.63 2.19 ± 0.60 −28 ± 71 100 ± 68 0.0 ± 5.0
8 comb. no 2D, vz 8.20 ± 0.18 4.22 ± 0.22 1.07 ± 0.58 1.54 ± 0.64 −32 ± 73 86 ± 71 0.0 ± 5.1
9 w/o S2 - 2D, vz 8.40 ± 0.29 4.51 ± 0.49 1.49 ± 0.99 2.61 ± 1.37 −66 ± 94 −116 ± 94 −1.3 ± 5.1

10 comb. yes vz 8.38 ± 0.16 4.36 ± 0.21 0.73 ± 0.65 2.10 ± 0.61 51 ± 106 211 ± 97 −0.4 ± 5.1
11 comb. no vz 8.22 ± 0.20 4.25 ± 0.26 1.22 ± 0.81 1.59 ± 0.83 0 ± 133 164 ± 123 −0.5 ± 6.3
12 w/o S2 - vz 8.42 ± 0.31 4.61 ± 0.55 6.2 ± 2.0 6.0 ± 1.9 −335 ± 294 −15 ± 281 −1.0 ± 5.0

Notes. In rows 9 and 12, the combined fit was done without S2.Either S2 data only (rows 1–6), or a combined fit using in addition S1, S8, S12, S13, S14 (rows
7–12) The third column indicates whether the 2002 data from S2 was used or not; the fourth column informs about which of the priors from Equation (4) have
been used.

where the error due to R0 corresponds to the fit error reported in
Table 4.

6.2.2. Position of the Central Point Mass

By construction the position of the radio source Sgr A*
in our coordinate system is located at the origin. Since it
is clear that Sgr A* is the MBH candidate, we used this
fact when applying the priors of Equation (4). However, our
data actually allow us to test this hypothesis. By leaving the
position and proper motion of the mass completely free, we
can check how well the position of the mass coincides with
Sgr A*. Using the S2 data only, no two-dimensional priors but
the prior in vz from Equation (4), we obtained the numbers
presented in the third and fourth rows of Table 4. We note that
the mass is located within ≈ 2 mas at the expected position.
The current accuracy by which this statement holds is an
improvement of a factor ≈ 2 over the work from Schödel et al.
(2003).

We also report the S2-only fits when not using any coordinate
system priors at all (Rows 5 and 6 in Table 4). This enlarges the
errors on R0 and MMBH substantially, the fit values, however,
are not significantly different from the respective fits in which
the vz-prior was applied. Not applying the vz-prior also shows a
large uncertainty on vz of ≈ 50 km s−1; this parameter also is
degenerate with R0.

From the numbers, it seems that the fit excluding the 2002 data
agrees better with the expectations for the coordinate system
(Equation (4)) than the fit including it. The latter is marginally
consistent with the priors, while the former is fully consistent.
This means that the 2002 data not only affect R0 (which we want
to measure and thus cannot use to judge the result), but also the
position and the velocity of the mass, for which we have an
independent measurement via the coordinate system definition.
This argument points toward rejecting the 2002 data.

6.2.3. Position of the IR Counterpart of Sgr A*

At 22 epochs, we have identified a source in the NACO data
between 2003 and 2008 that might be associated with Sgr A*. In
some cases, e.g. when a bright flare occurred, the identification
seems unproblematic. In other cases, one cannot be sure that
the emission is not due to an unrecognized star at or very close
to the position of Sgr A*; an example is Figure 1. Due to this

probably very frequent confusion, we expect that the measured
positions are very noisy, and we decided not to include them
into the orbital fits. However, we checked whether the measured
positions are compatible with the orbital fits. Fitting a linear
motion model to the Sgr A* data, we obtained

α[mas] = (1.2 ± 0.8) + (0.15 ± 0.46) × (t[yr] − 2005.91)

δ[mas] = (2.7 ± 0.7) − (0.73 ± 0.39) × (t[yr] − 2005.91) (9)

The errors here are rescaled for a reduced χ2 of 1. The velocity
errors are approximately a factor 5 larger than the priors from
Equation (4), justifying our choice not to incorporate these data
into the orbital fits. Given the uncertainties, the position of the
IR counterpart of Sgr A* is consistent with the position of the
central point mass. Interestingly, these data seem to prefer a
position of Sgr A*, marginally North of the expected position,
which is also the case for the orbit fits that include the 2002 data
of S2. This weakens again the conclusion from Section 6.2.2
that the 2002 data should be rejected.

6.2.4. R0 and Mass from a Combined Orbit Fit

Given the large uncertainties due to the 2002 data of S2,
we decided to obtain more information about the potential by
using a combined orbit fit and the coordinate system priors. For
comparison, we also excluded S2 completely. We used the stars
S1, S2, S8, S12, S13, S14. We selected these stars from the
sample that can contribute to the potential (Section 6.1) since
for them a large fraction of the respective orbit is covered.
We did not select S4 and S17 as they suffered confusion in
the SHARP data. S19 was omitted because its time base is quite
short still (the star was not detected before 2003). Since S24
would only contribute marginally to the potential, it was left
out, too. Finally, we did not select S31, since the nearby sources
S59 and S60 were confused with S31 in the earlier NACO
data. Not surprising, the final sample contains the same stars as
Eisenhauer et al. (2005) had reported orbits for.

In order to balance the relative weights of the stars used, we
had fitted the five additional stars first alone, leaving also the
potential free (but applying the priors). While the such obtained
fits were not of interest per se, they still provided a smooth,
unbiased model for each star. Hence, we used the resulting
reduced χ2 values to rescale the astrometric and radial velocity
errors such that all stars yielded a value of 1. The scaling factors
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applied ranged from 1.20 to 2.33, the latter value being extreme
and occurring for S13, which perhaps suffered from confusion
in the SHARP data and of which the data in 2006/2007 were
affected by confusion with S2. Our procedure guaranteed that
such a star with a high astrometric noise would not contribute
overly much to the combined χ2. We obtained the results given
in rows 7, 8, and 9 of Table 4. These numbers agree with each
other within the uncertainties. The combined fit including the S2
2002 data also agree with the corresponding S2-only fit. This is
not true for the combined fit excluding the S2 2002 data, which
is hardly compatible with the respective S2-only fit. A possible
reason is that the S2 data before 2002 are only relying on the
SHARP measurements, which not only have larger formal errors
but also are more affected by unrecognized confusion events
than the NACO data.

By fitting the combined data at various, fixed values of R0,
we obtain again the scaling of mass and distance:

MMBH = (3.95 ± 0.06|stat ± 0.18|R0 )

× 106 M�

(
R0

8 kpc

)2.19

(incl.2002) ,

MMBH = (4.01 ± 0.07|stat ± 0.18|R0 )

× 106 M�

(
R0

8 kpc

)2.07

(excl.2002) ,

MMBH = (3.88 ± 0.10|stat ± 0.41|R0 )

× 106 M�

(
R0

8 kpc

)3.07

(excl.S2) , (10)

6.2.5. Other Systematic Errors for R0

Beyond what was considered before, the physical model for
the potential is another source of uncertainty. For example using
a relativistic model instead of a Keplerian orbit model increased
the distance by ΔR0 = 0.18 kpc (0.09 kpc) when including
(excluding) the 2002 data. This is consistent with the formal
error on R0. Since we do not detect explicitly relativistic effects,
we stay with Keplerian orbits and consider the shift of the
value as an uncertainty for R0. Fitting a Plummer model (as
in Section 6.3) instead of a point mass potential increases the
distance by a similar value: 0.14 kpc (0.03 kpc) when including
(excluding) the 2002 data. The additional degree of freedom
in this fit increased the formal uncertainty by 0.11 kpc added in
squares. Finally, we adopted for the uncertainties of the potential
an error of ΔR0 = 0.25 kpc.

An additional, systematic error is whether the use of priors
(Equation (4)) is correct. In order to address this, we repeated
the combined orbit fits without the two-dimensional priors. We
obtained the numbers in rows 10 and 11 of Table 4. The influence
of the priors on the value of R0 is relatively small (compare rows
7 and 8 with 10 and 11 in Table 4). We adopt for this source of
uncertainty ΔR0 = 0.10 kpc.

Furthermore, rows 7, 8 and 9 of Table 4 show that the
uncertainty of the weights of the 2002 data from S2 in a
combined fit alters R0 by ΔR0 = 0.13 kpc. Deselecting S2 from
the fits changes the result by ΔR0 = 0.07 kpc. Finally, we assign
ΔR0 = 0.15 kpc for the uncertainties related to the selection of
data.

Adding up the uncertainties yields that the uncertainty of the
distance to GC is still rather large with ΔtotalR0 = 0.35 kpc.
Table 5 summarizes the error terms for R0.

Table 5
Systematic Errors for the Distance to the GC, R0

Error Source ΔR0(kpc)

Fit error including position and velocity 0.17
uncertainty of coordinate system

Assumed potential 0.25
Using priors or not 0.10
Selection of data 0.15
Total 0.35

6.2.6. Final Estimate for R0 and Mass

We finally adopt the potential from the combined fit, including
the S2 2002 data, the difference to the one excluding that data
are negligible, given the formal fit errors (Section 6.2.4). This
potential will be used in Section 6.4 to determine the orbits of
the other stars, for which we expect to find an orbital solution.
Hence, we find

R0 = 8.33 ± 0.17|stat ± 0.31|sys kpc. (11)

It should be noted that this value is consistent within the errors
with values published earlier (Eisenhauer et al. 2003, 2005). The
improvement of our current work is the more rigorous treatment
of the systematic errors. Also it is worth noting that adding
more stars did not change the distance much over the equivalent
S2-only fit. For the mass, we adopt

MMBH = (3.95 ± 0.06|stat ± 0.18|R0, stat ± 0.31|R0, sys)

× 106 M�

(
R0

8 kpc

)2.19

= (4.31 ± 0.38) × 106 M� for R0 = 8.33 kpc. (12)

6.3. Testing for an Extended Mass Component

While Newtonian physics seems to describe the S-star system
reasonably well, one actually expects to detect deviations from
purely Keplerian orbits with accurate enough astrometric and
spectroscopic data. There are two main reasons for this.

1. The relativistic effects as described in Section 5 lead to
deviations (Rubilar & Eckart 2001; Weinberg et al. 2005;
Gillessen et al. 2006). Note that for S2 the pericenter
advances by 0.◦18 per orbital revolution, not far from the
precision of the orbit orientation in Table 7.

2. In addition to the MBH a substantial amount of mass
might reside in form of a cluster of dark stellar remnants
around the MBH (Morris 1993; Miralda-Escudé & Gould
2000; Muno et al. 2005; Mouawad et al. 2005; Hopman
& Alexander 2006). This will also lead to a non-Keplerian
orbit, with the pericenter precessing in retrograde fashion.

Given our current data base, S2 is the only star for which
one can hope to find a deviation from a Keplerian orbit.
Fitting a relativistic orbit to the S2 data yields a similar χ2

(158.5 compared to 158.7 for the Keplerian fit, both with 114
degrees of freedom). Allowing for an extended mass component,
in addition, does not change χ2 much, typically we found
χ2 ≈ 157.4 (depending on the details of the model) at the
cost of one additional free parameter.

The simplest model for an extended mass component is a
constant mass density ρ(r) described by

ρ(r) = ρ0. (13)
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Table 6
Results from S2 Fits Including an Extended Mass Component

S2 data Including 2002 Excluding 2002
Fit R0 (kpc) η R0 (kpc) η

ρ = const 8.46 ± 0.25 0.029 ± 0.026 8.00 ± 0.33 0.018 ± 0.028
Power law, α = −1.4 8.49 ± 0.26 0.020 ± 0.017 8.03 ± 0.34 0.013 ± 0.016
Power law, α = −1.75 8.49 ± 0.26 0.018 ± 0.015 8.03 ± 0.34 0.012 ± 0.014
power law, α = −2.1 8.52 ± 0.27 0.015 ± 0.013 8.05 ± 0.35 0.012 ± 0.014
Plummer 8.47 ± 0.26 0.025 ± 0.022 8.01 ± 0.33 0.016 ± 0.023

Note. The parameter η describes the ratio of extended mass to the central point mass. The extended mass is accounted for in a spherical shell from the pericenter
distance of S2 to the apocenter distance. The table shows the results for various potentials.

More realistic is a power-law model

ρ(r) = ρ0

(
r

r0

)α

. (14)

The power-law model is motivated by the findings of Genzel et
al. (2003b) who show that the stellar number counts display such
a density profile, which is also expected on theoretical grounds
(Bahcall & Wolf 1977; Young 1980). The parameters ρ0 and α
are a characteristic density at the given radius and the power-law
index. We assumed for the following α = −1.4, α = −1.75
and α = −2.1 (Hopman & Alexander 2006).

Similar investigations (Rubilar & Eckart 2001; Mouawad et
al. 2005) used a Plummer model:

ρ(r) = 3μMMBH

4πr3
core

(
1 +

r2

r2
core

)−5/2

. (15)

The free parameters of the Plummer model are the core radius
rcore and the mass parameter μ, which corresponds to the ratio
of total extended mass versus mass of the central point mass.
This model allows a convenient analytical description of the null
hypothesis—no stellar cusp—and roughly describes the surface
light density distribution around Sgr A* (Scoville et al. 2003;
Schödel et al. 2007). We adopt a core radius of rcore = 15 mpc,
which matches the observed light profile (Mouawad et al. 2005).

We fitted the S2 data for all three mass models and included
in all cases the relativistic effects. The coordinate system priors
were applied (Equation (4)) and an additional prior was set on the
R0 = 8.40 ± 0.29 kpc from the combined fit that excluded S2
completely (row 9, Table 4). Any such fit can only test for mass
inside the S2 orbit; therefore, we express the results in terms of
mass enclosed between S2’s apocenter (r = 0.′′230 = 8.9 mpc)
and pericenter (r = 0.′′015 = 0.58 mpc) relative to the mass of
the MBH and call this parameter η:

η MMBH = 4π

∫ apo

peri
dr r2

∫
dm n(r,m) (16)

The results are shown in Table 6, from which we obtain

ηS2 = 0.021 ± 0.019|stat ± 0.006|model (incl. 2002)

ηS2 = 0.014 ± 0.019|stat ± 0.003|model (excl. 2002). (17)

The statistical fit error includes the uncertainties due to the
coordinate system definition. The result corresponds to a 1σ
upper limit of η � 0.040 (0.033) and a 99% upper limit of
η � 0.066 (0.058) including (excluding) the S2 2002 data,
where the upper limits are defined such that the cumulated
probability density function reaches the specified significance

level at the respective value for η (Feldman & Cousins 1998).
The (small) uncertainty in η due to the model uncertainty
has been excluded for the calculation of the upper limit since
Table 6 shows that it affects rather the amplitude of η than its
significance.

So the basic result of this study, improving measurement
uncertainties by a factor of six over Schödel et al. (2002); Ghez
et al. (2005); Eisenhauer et al. (2005), is that a single-point-mass
potential is (still) the best description of the data. Any deviations
are smaller than a few percent of the point mass, within the orbits
of the central S-star cluster.

6.4. Stars with Orbits

Assuming the potential from Section 6.2.6, we were able to
determine orbits for the stars listed in Section 6.1. During these
fits, each star was considered separately and the potential was
fixed. This yielded a total of 26 measured orbits as expected
from Section 6.1. An illustration of the (inner) stellar orbits is
shown in Figure 16, the orbital elements for all 26 stars for which
we found orbits are summarized in Table 7. For the calculation
of the errors quoted, all measurement errors (astrometry and
radial velocities) were rescaled such that the reduced χ2 = 1.
Furthermore, the uncertainties of the potential were included.

As a double-check, we ran Markov-Chain Monte Carlo
(MCMC) simulations (Tegmark et al. 2004) in order to asses
the probability density distribution of the orbital elements in
the six-dimensional parameter space. Such a chain efficiently
samples high-dimensional parameter spaces. The algorithm is
simple.

(1) Choose a reasonable starting point in the parameter space
and calculate χ2 for that point.

(2) Draw a random jump in the parameter space with the typical
jump distance simultaneously for each parameter being the
respective 1σ uncertainty divided by the square root of
the number of parameters (hence the mean jump distance
corresponds to a 1σ jump). The uncertainties are obtained
from the Hessian matrix at the given point in parameter
space.

(3) Calculate χ2
n for the new point.

(4) If χ2
n < χ2 accept the new point, else accept the new point

with a probability of exp(−(χ2
n − χ2)/2).

(5) Store the new point if it is accepted in the buffer of the
chain, otherwise store the old point.

(6) Go back to step 2.

After running this chain for a many iterations, the distribu-
tion of points in the buffer of the chain measures the probability
density distribution, which thus can be estimated by the chain.
The actual implementation needs some extra tricks, e.g., for
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Figure 16. Stellar orbits of the stars in the central arcsecond for which we were able to determine orbits. In this illustrative figure, the coordinate system was chosen
such that Sgr A* is at rest.

quicker convergence the parameters should be chosen orthog-
onal to each other. Interestingly, for a sufficiently long chain
the result does not depend upon the chosen jump distance; that
value influences rather how fast the chain samples the parameter
space.

For each star, we used the MCMC algorithm. Assuming some
reasonable potential (e.g., as determined from a preliminary fit
to the S2 data) we varied all six orbital elements and checked
whether the region in this six-dimensional parameter space
which is reached by the chain is compact and reasonably well
described by Gaussian functions (see Figure 17). The advantage
of doing so is mainly that, unlike a minimization routine that can
be trapped in a local minimum, the MCMC simulations yield a
global picture of the probability density distribution.

For all 26 stars, for which we were able to determine an orbit,
the probability density distribution was well behaved, i.e., in all
cases, the MCMC sampled a compact region in parameter space,
the size of which was consistent with the expectation from the
fit errors of the parameters. Examples are shown in Figure 17.
We conclude that the orbital solutions presented in Table 7 are
reliable.

Among the stars with orbital solution, six stars are late type
(S17, S21, S24, S27, S38 and S111). It is worth noting that for
the first time, we determine here the orbits of late-type stars
in close orbits around Sgr A*. In particular S17, S21 and S38
have small semi major axes of a ≈ 0.′′25. The late-type star
S111 is marginally unbound to the MBH, a result of its large
radial velocity (−740 km s−1) at r = 1.′′48 which brings its total
velocity up to a value ≈ 1σ above the local escape velocity.

Furthermore, we determined (preliminary) orbits for S96
(IRS16C) and S97 (IRS16SW), showing marginal accelerations
(2.1σ and 3.9σ respectively). These stars are of special interest,

since they were proposed to member of a clockwise-rotating disk
of stars (Paumard et al. 2006). Similarly, we could not detect
an acceleration for S95 (IRS16 NW). This excludes the star
from being a member of the counter-clockwise disk (Paumard
et al. 2006), since in that case it should show an acceleration
of ≈ 150 μas yr−2, while we can place a safe upper limit of
a < 30 μas yr−2.

7. DISCUSSION

7.1. The Distance to the Galactic Center

Our estimate R0 = 8.33 ± 0.17|stat ± 0.31|sys kpc (Equation
(11)) is compatible with our earlier work (Eisenhauer et al. 2003,
2005). While the underlying data base is partially identical, this
work mainly improved the understanding of the systematic un-
certainties. In particular, the astrometric data during the pericen-
ter passage of S2 is hard to understand. This is an unfortunate
situation, since that data potentially is most constraining for the
potential. During the passage the star sampled a wide range of
distances from the MBH, corresponding to a radially dependent
measurement of the gravitational force acting on it. Probably
only future measurements of either S2, or other stars passing
close to Sgr A* will allow one to answer the question, whether
the confusion problem close to Sgr A* is generic, or whether
2002 was a unlucky coincidence.

Besides stellar orbits, there are other techniques to determine
R0. A classical one is to use the distribution of globular clusters.
Bica et al. (2006) applied this technique to a sample of 153
globular clusters and obtained R0 = 7.2 ± 0.3. This value is
only marginally compatible with our result. However, the error
quoted by Bica et al. (2006) corresponds to the formal fit error
derived from their Figure 4. Therefore, one might suspect that
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Table 7
Orbital Parameters of Those S-stars for Which We Were Able to Determine Orbits

Star a(”) e i (◦) Ω (◦) ω (◦) tP[yr-2000] T(yr) Sp mK r

S1 0.508 ± 0.028 0.496 ± 0.028 120.82 ± 0.46 341.61 ± 0.51 115.3 ± 2.5 0.95 ± 0.27 132 ± 11 e 14.7 1.49
S2 0.123 ± 0.001 0.880 ± 0.003 135.25 ± 0.47 225.39 ± 0.84 63.56 ± 0.84 2.32 ± 0.01 15.8 ± 0.11 e 14.0 1.22
S4 0.298 ± 0.019 0.406 ± 0.022 77.83 ± 0.32 258.11 ± 0.30 316.4 ± 2.9 −25.6 ± 1.0 59.5 ± 2.6 e 14.4 1.99
S5 0.250 ± 0.042 0.842 ± 0.017 143.7 ± 4.7 109 ± 10 236.3 ± 8.2 −16.4 ± 2.5 45.7 ± 6.9 e 15.2 1.93
S6 0.436 ± 0.153 0.886 ± 0.026 86.44 ± 0.59 83.46 ± 0.69 129.5 ± 3.1 63 ± 21 105 ± 34 e 15.4 1.45
S8 0.411 ± 0.004 0.824 ± 0.014 74.01 ± 0.73 315.90 ± 0.50 345.2 ± 1.1 −16.2 ± 0.4 96.1 ± 1.6 e 14.5 1.20
S9 0.293 ± 0.052 0.825 ± 0.020 81.00 ± 0.70 147.58 ± 0.44 225.2 ± 2.3 −12.2 ± 2.1 58 ± 9.5 e 15.1 2.23
S12 0.308 ± 0.008 0.900 ± 0.003 31.61 ± 0.76 240.4 ± 4.6 308.8 ± 3.8 −4.37 ± 0.03 62.5 ± 2.3 e 15.5 1.54
S13 0.297 ± 0.012 0.490 ± 0.023 25.5 ± 1.6 73.1 ± 4.1 248.2 ± 5.4 4.90 ± 0.09 59.2 ± 3.8 e 15.8 2.33
S14 0.256 ± 0.010 0.963 ± 0.006 99.4 ± 1.0 227.74 ± 0.70 339.0 ± 1.6 0.07 ± 0.06 47.3 ± 2.9 e 15.7 1.99
S17 0.311 ± 0.004 0.364 ± 0.015 96.44 ± 0.18 188.06 ± 0.32 31945 ± 3.2 −8.0 ± 0.3 63.2 ± 2.0 l 15.3 2.46
S18 0.265 ± 0.080 0.759 ± 0.052 116.0 ± 2.7 215.2 ± 3.6 151.7 ± 2.9 −4.0 ± 0.9 50 ± 16 e 16.7 2.34
S19 0.798 ± 0.064 0.844 ± 0.062 73.58 ± 0.61 342.9 ± 1.2 153.3 ± 3.0 5.1 ± 0.22 260 ± 31 e 16.0 2.31
S21 0.213 ± 0.041 0.784 ± 0.028 54.8 ± 2.7 252.7 ± 4.2 182.6 ± 8.2 28.1 ± 5.5 35.8 ± 6.9 l 16.9 1.55
S24 1.060 ± 0.178 0.933 ± 0.010 106.30 ± 0.93 4.2 ± 1.3 291.5 ± 1.5 24.9 ± 5.5 398 ± 73 l 15.6 1.78
S27 0.454 ± 0.078 0.952 ± 0.006 92.91 ± 0.73 191.90 ± 0.92 308.2 ± 1.8 59.7 ± 9.9 112 ± 18 l 15.6 1.79
S29 0.397 ± 0.335 0.916 ± 0.048 122 ± 11 157.2 ± 2.5 343.3 ± 5.7 21 ± 18 91 ± 79 e 16.7 1.92
S31 0.298 ± 0.044 0.934 ± 0.007 153.8 ± 5.8 103 ± 11 314 ± 10 13.8 ± 2.2 59.4 ± 9.2 e 15.7 1.97
S33 0.410 ± 0.088 0.731 ± 0.039 42.9 ± 4.5 82.9 ± 5.9 328.1 ± 4.5 −32.1 ± 6.5 96 ± 21 e 16.0 2.02
S38 0.139 ± 0.041 0.802 ± 0.041 166 ± 22 286 ± 68 203 ± 68 3.0 ± 0.2 18.9 ± 5.8 l 17.0 2.13
S66 1.210 ± 0.126 0.178 ± 0.039 135.4 ± 2.6 96.8 ± 2.9 106 ± 6.3 −218 ± 23 486 ± 41 e 14.8 1.15
S67 1.095 ± 0.102 0.368 ± 0.041 139.9 ± 2.3 106.0 ± 6.1 215.2 ± 4.8 −305 ± 16 419 ± 19 e 12.1 1.53
S71 1.061 ± 0.765 0.844 ± 0.075 76.3 ± 3.6 34.6 ± 1.5 331.4 ± 7.1 −354 ± 251 399 ± 283 e 16.1 2.44
S83 2.785 ± 0.234 0.657 ± 0.096 123.8 ± 1.3 73.6 ± 2.1 197.2 ± 3.5 61 ± 25 1700 ± 205 e 13.6 1.23
S87 1.260 ± 0.161 0.423 ± 0.036 142.7 ± 4.4 109.9 ± 2.9 41.5 ± 3.7 −353 ± 38 516 ± 44 e 13.6 0.94
S111 −10.5 ± 7.1 1.105 ± 0.094 103.1 ± 2.0 52.8 ± 5.4 131 ± 14 −55 ± 70 − l 13.8 0.94
S96 1.545 ± 0.209 0.131 ± 0.054 126.8 ± 2.4 115.78 ± 1.93 231.0 ± 9.0 −376 ± 34 701 ± 81 e 10.0 1.40
S97 2.186 ± 0.844 0.302 ± 0.308 114.6 ± 5.0 107.72 ± 3.15 38 ± 52 175 ± 88 1180 ± 688 e 10.3 1.15

Notes. The parameters were determined in the potential as obtained in Section 6.2.6, the errors quoted in this table are the formal fit errors after rescaling them such that the reduced χ2 = 1 and including the
uncertainties from the potential. The last three columns give the spectral type (“e” for early-type stars, “l” for late-type stars), the K-band magnitude and the global rescaling factor for that star. S111 formally
has a negative semi major axis, indicative for a hyperbolic orbit with e > 1.
We also cite the orbital solutions for the stars S96 and S97 which showed only marginal accelerations, see Section 7.3.1.
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Figure 17. Examples from the Markov-Chain Monte Carlo simulations. Each panel shows a two-dimensional cut through the six-dimensional phase space of the
orbital elements for the respective star. Left: Example of two well constrained and nearly uncorrelated parameters. Middle: Example for two correlated parameters,
which are nonetheless well constrained. Right: Example of badly constrained parameters, showing a noncompact configuration in parameter space.

(A color version of this figure is available in the online journal.)

systematic problems owed to the method were not yet included
in the error estimate.

The fact that the absolute magnitudes of red clump stars is
known and that the red clump can be identified in the luminos-
ity function obtained from the apparent magnitudes of stars in
the galactic bulge was used by Nishiuyama et al. (2006). These
authors obtain R0 = 7.52 ± 0.10|stat ± 0.35|sys kpc, where the
statistical error is owed mainly to the uncertainty of the local
red clump stars luminosities and the systematic error terms in-
cludes uncertainties in the extinction and population corrections,
the zero point of photometry, and the fitting of the luminosity
function of the red clump stars. This result is in agreement with
our measurement, given the errors of both results.

The known absolute magnitudes from RR Lyrae stars and
Cepheids are the key to the work from Groenewegen, Udalski &
Bono (2008). Their result R0 = 7.94 ± 0.37|stat ± 0.26|stat kpc
is fully consistent with our result. The statistical error here is
due to the photometric measurement errors, the zero point of
photometry and the uncertainty of extinction correction. The
systemtatic error includes the calibration of period-luminosity
relations used and the selection effect, which could affect the
result since only 39 Cepheids and 37 RR Lyrae stars have been
used for this statistical approach.

7.2. Limits on the Binarity of Sgr A*

It is interesting to see how our data limits the possible
existence of a second, intermediate-mass black hole (IMBH)
in the GC. Here, we do not aim at a rigorous treatment of the
problem (which would be beyond the scope of this paper) but
limit ourselves to estimates that appear reasonable given our
findings.

The first constraint comes from the fact that the center of
mass does not move fast. If the central mass were in orbit with
an IMBH, the orbital reflex motion of Sgr A* might show up
in our data. The upper limit on the velocity which we obtain
from Row 7 in Table 4 corresponds to a line in a phase space
plot of IMBH mass versus IMBH–MBH distance (Figure 18),
separating configurations at smaller masses from systems with
higher masses. From our data, we would not have been able
to detect such an orbital motion of the MBH if the orbital
period P were too short, namely much shorter than the orbital
period of S2. We estimate that configurations with P > 5 yr
would be discoverable. Taken together, this excludes an area
toward higher masses and larger distances. This constraint

S
st

ar
s

1
c.

l.

S
st

ar
s

99
c.

l.

P 5 yr

stability S star cluster

ra
di

o
S
gr

A
99

c.
l.

ra
di

o
S
gr

A
1

c.
l.

S2 excluded

HM03

lifetime 10
7yr

GM07

102 103 104 105 106
10 2

10 1

1

10

102

103

104

105

Mass 2nd BH M

d
is

ta
n
c
e

M
B

H
2

n
d

B
H

m
a
s

Figure 18. Constraints on the binarity of Sgr A* as function of the mass of
the secondary black hole and the distance between the black holes. The shaded
areas are excluded due to various arguments. The diagonal lines assume an
orbital motion of Sgr A* around the secondary and correspond to velocity
limits obtained either from the S-stars, or the motion of Sgr A* (Reid &
Brunthaler 2004). We estimate that only periods longer than 5 yr would lead
to an observable effect, thus excluding an area toward higher masses and large
distances. Demanding that the lifetime of the binary black hole exceeds 107 yr
yields another constraint (from Hansen & Milosavljevic (2003). These authors
also made similar arguments for the motion of the Sgr A*, the resulting constraint
is replicated in this plot (denoted as HM03). The stability of the S-star cluster
puts a further constraint (Mikkola & Merritt 2008), as does the stalling radius
found by Gualandris & Merritt (2007), denoted as GM07. Finally, also the S2
orbit excludes some part of the diagram, since it apparently is Keplerian.

(A color version of this figure is available in the online journal.)

assumes implicitly that the stellar cluster rests relative to the
MBH since it was derived in the combined coordinate system.
Using the velocity calibration of the maser system would have
yielded a slightly weaker constraint. However, an even stronger
constraint comes from the radio measurements of Sgr A* (Reid
& Brunthaler 2004). The limit on the motion of radio Sgr A*
in galactic latitude (vb = −0.4 ± 0.9 km s−1) can also be used.
Since this velocity limit is much smaller than the upper limit on
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by Paumard et al. (2006). The orbits of the other stars are oriented randomly.

(A color version of this figure is available in the online journal.)

the MBH motion from the stellar orbits, it is more constraining.
Also for these data, it seems reasonable to assume that only
systems with P > 5 yr would have been discovered. Similar
arguments constraining the binarity of Sgr A* have been put
forward by Hansen & Milosavljevic (2003), whose results we
also show in Figure 18.

Secondly, two black holes in close orbits will loose energy
via gravitational waves and thus spiral in. Demanding a life
time of at least 107 yr for the IMBH–MBH system excludes
configurations toward smaller distances and higher masses.
Dynamical stability can also be demanded for the S-star cluster
as such. Mikkola & Merritt (2008) have shown that an IMBH
with a mass of 10−3 MMBH in a distance of 1 mpc would make
the S-star cluster unstable. It is reasonable to assume that this
also holds for larger masses and radii at least as large as the
S-star cluster extends (≈ 1′′).

Based on simulations, Gualandris & Merritt (2007) concluded
that an IMBH will reach a stalling radius that is proportional
to the mass of the IMBH: astall = 3.5 μas × MIMBH[M�] (for
our values of mass and distance). Since one does not expect
an IMBH to reside at a much smaller radius, this puts another
constraint on the IMBH–MBH binary.

Finally, also the S2 orbit allows us to exclude part of the phase
space. Motivated by the findings of Section 6.3 and Equation
(17), we simply assume that no mass larger than 0.02 MMBH can
be hidden inside the S2 orbit. Actually, also somewhat smaller
radii than the pericenter distance rp of S2 are excluded, since
this would still perturb the orbit figure notably. We estimate
that down to 0.5rp no IMBH more massive than 0.02 MMBH can
reside.

7.3. Properties of the Stellar Orbits

We obtained orbits for 20 early-type stars. This relatively
large number—Eisenhauer et al. (2005) had six orbits, Ghez

et al. (2005) seven—allows us to assess distributions of orbital
parameters and study the properties of the stellar orbits thereby
characterizing the S-star population.

7.3.1. Orientations of Orbital Planes

Figure 19 illustrates the orientations of the orbital planes for
all stars from Table 7. Paumard et al. (2006) suggested that the
six stars S66, S67, S83, S87, S96 and S97 (E17, E15 (S1-3), E16
(S0-15), E21, E20 (IRS16C) and E23 (IRS16SW) in their nota-
tion) are members of the clockwise disk. Our findings explicitly
confirm this. All six stars have an angular distance to the disk be-
tween 9◦ and 21◦ with a mean and standard deviation of 15◦±4◦.
This is somewhat (a factor of 2) more than the disk thickness of
14◦ ± 4◦ found by Paumard et al. (2006). However, statistically
the difference is not very significant and only the inner edge of
the disk is sampled here. All six disk stars have a semi major
axis of a ≈ 1′′ and a small eccentricity (e ≈ 0.2–0.4) in agree-
ment with the estimates from Paumard et al. (2006). The orbital
plane of S5 is also consistent with the disk given its distance of
18◦. However, the lower brightness (mK = 15.2) of the star and
the higher eccentricity (e > 0.8) of the orbit make it unlikely
that S5 is a true disk member. The next closest star to the disk
beyond the six disk stars and S5 is S31 with an angular distance
of 27◦. We also note that the orbital solutions for S96 and S97
derived from marginal accelerations are consistent with the disk
hypothesis. Therefore, we are confident in these orbits, too.

We used a Rayleigh test (Wilkie 1983) to check whether the
distribution of orbital angular momenta for the 22 other stars for
which we found orbits is compatible with a random distribution.
We found a probability of randomness of p = 0.74; meaning
that the nondisk stars do not show a preferred orbit orientation.
Using the projection method from Cuesta-Albertos et al. (2007),
we obtained p = 1.0. The same statement also holds when
testing for randomness of the subset of early-type stars.



1100 GILLESSEN ET AL. Vol. 692

cpdf a1.9 0.3

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

semi major axis ''

cu
m

u
la

tiv
e

P
D

F

Figure 20. Cumulative pdf for the semimajor axis of the early-type stars with
a < 0.′′5. The two curves correspond to the two ways to plot a cumulative
pdf, with values ranging either from 0 to (N − 1)/N or from 1/N to 1. The
distribution can be represented by n(a) ∼ a0.9±0.3.

(A color version of this figure is available in the online journal.)

7.3.2. Distribution of Semi Major Axes

Figure 20 shows the cumulative probability distribution
function (pdf) for the semimajor axes of stars which have semi
major axis smaller than 0.′′5, thus excluding the stars that are
identified to be members of the clockwise disk. The statistic is
limited still (15 stars make up this sample), but nevertheless the
distribution allows us to estimate the functional behavior of the
pdf n(a). Due to the small number of data points, we did not
bin the data but used a log-likelihood fit for n(a). We found
n(a) ∼ a0.9±0.3. This can be converted to a number density
profile as a function of radius (Alexander 2005). We obtain
n(r) ∼ r−1.1±0.3, consistent with the mass profile in Genzel et
al. (2003b) who found ρ(r) ∼ r−1.4 and with the newer work in
Schödel et al. (2007) who found ρ(r) ∼ r−1.2 for the innermost
region of the cusp.

7.3.3. Distribution of Eccentricities

The distribution of eccentricities allows us to estimate the
velocity distribution. Figure 21 shows the cumulative pdf for
the eccentricities of those young (early-type) stars which are not
associated with the clockwise stellar disk. Using again a log-
likelihood fit, we find n(e) ∼ e2.6±0.9. The profile still is barely
consistent with n(e) ∼ e, corresponding to an isotropic, thermal
velocity distribution (Schödel et al. 2003; Alexander 2005). This
would be the expectation for a relaxed stellar system. However,
given that the maximal lifespan for B stars (� 108 yr) is much
shorter than the local two-body relaxation (TBR) time (≈ 109 yr,
Alexander 2005) one does not expect a thermal distribution. In
this light, it is interesting to notice that the distribution appears
to be a bit steeper (i.e., peaked toward higher eccentricities)
than a thermal distribution. This might be a first hint toward the
formation scenario for the S-stars. For example, it is exactly what
one expects in the binary capture scenario (Perets et al. 2007), in
which the S-stars are initially captured on very eccentric orbits
(e � 0.98), and then subsequent relaxation gradually smears out
the distribution of eccentricities toward a thermal distribution.
From the timescales involved, one expects that the latter is not
reached completely, so a high eccentricity bias remains, which
in turn might fit nicely together with our indication for a steeper
than thermal eccentricity distribution.
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Figure 21. Cumulative pdf for the eccentricities of the early-type stars which
are not identified as disk members. The two curves correspond to the two ways
to plot a cumulative pdf, with values ranging either from 0 to (N − 1)/N or
from 1/N to 1. The distribution is only marginally compatible with n(e) ∼ e

(dashed line), the best fit is n(e) ∼ e2.6±0.9.

(A color version of this figure is available in the online journal.)

This lays out a very interesting perspective for the continu-
ation of the orbital monitoring. Increasing the statistics of the
eccentricity distribution by determining more stellar orbits will
allow us to test explicitly whether it truly deviates from a ther-
mal distribution and thus provides us with a quantitative test for
formation scenarios of the S-stars.

7.4. Estimates of the Extended Mass Component

In addition to the population of stars not yet resolved by
current instrumentation, a cluster of dark objects—e.g. stellar
mass black holes (SBHs) as proposed in Morris (1993); Miralda-
Escudé & Gould (2000); Muno et al. (2005); Hopman &
Alexander (2006)—is plausibly present in the GC. As shown
in Section 6.3, the orbital data allow us to test for such extended
mass components. Here, we investigate several theoretical and
observational constraints on the extended mass distribution and
relate these to η. We mostly assume that the extended mass
distribution is due to SBHs with a mass of M� = m� M� with
m� = 10 (Timmes et al. 1996), since this component is likely to
make up most of the mass of a potential dark cluster (Alexander
2007).

7.4.1. Stellar Number Counts

Genzel et al. (2003b) and Schödel et al. (2007) have inferred
a stellar density profile for the GC from completeness-corrected
stellar number counts. Assuming that the luminous objects trace
the total mass, the number density profile, which is determined
reliably on the > 0.01 pc scale, can be extrapolated to the S2
orbit. We obtain

η = 3.7 × 10−4 ×
(

m�

10

)
. (18)

This extrapolation is quite uncertain, since mass segregation
predicts that the SBHs should have a much steeper slope than
the less-massive luminous stars in the central 0.01 pc, where
the SBHs dominate the total mass (Hopman & Alexander 2006;
Alexander 2007). Therefore, both the mass-to-number ratio and
the slope of the density profile are expected to have a significant
radial dependence.
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7.4.2. The Drain Limit

The drain limit is a conservative theoretical upper limit of
the number of compact objects that can exist in a steady state
around an MBH. It is given by the condition that the number of
SBHs that can be packed inside any given radius in the steady
state has to be smaller than the number of SBHs scattered into
the MBH over the age of the Galaxy (Alexander & Livio 2004).
This can be translated into a theoretical limit for η. Close to
m� = 10, and using MMBH = 4 × 106M� and t = 10 Gyr the
relation can be approximated by

η � 0.0011 ×
(

m�

10

)−0.7

. (19)

The drain limit could be violated for a non-steady-state situation.
Indeed, the existence of the young star disks with a relatively
well-defined age of 6 Myr suggests that star formation in the
GC is episodic. However, the amount of mass from SBHs would
hardly exceed 103 M� even assuming an optimistic, top-heavy
initial mass function, given that the total amount of mass in the
disks is ≈ 104 M�.

7.4.3. Dynamical Modeling of the Dark Cluster in the GC

The expected degree of central concentration of SBHs around
the MBH can be estimated by modeling the dynamical evolution
of a system with a present-day mass function similar to that of
the GC (Alexander 2005). Monte Carlo simulations of the GC
using the Hénon method and including also stellar collisions and
tidal disruptions (M. Freitag 2008, private communication; see
also Freitag et al. 2006), but neglecting star formation yield a
rather flat mass density profile of 108(M�pc−3) (r/0.01 pc)−0.5,
which translates to η ∼ 10−4. Due to the statistical nature of
this method the density profile at the very center is not well
determined. An alternative analytic solution for steady-state
distribution using a much more idealized formulation of the
mass segregation problem (Hopman & Alexander 2006) yields a
similar result of η ∼ 5×10−4. However, in this method the fixed
boundary conditions far from the MBH may artificially maintain
a high density in the center by preventing the expansion of the
system. Nevertheless, the fact that these two different methods
yield similar results also consistent with the drain limit lends
some credence to this estimate.

7.4.4. Diffuse X-ray Emission of a Dark Cluster

A cluster of compact objects will accrete the surrounding
gas and thus lead to X-ray emission, which for current X-ray
satellites (≈ 1′′) would be barely resolved. Indeed, the X-ray
source at the position of Sgr A* is slightly extended (Baganoff
et al. 2003). We fit the radial profile of Sgr A* as reported by
Baganoff et al. (2003) by the superposition of a point source
with a Gaussian width of σ = 0.′′375 (Baganoff et al. 2003)
and an extended component with a free width σext. We obtain
as empirical description for the surface brightness profile of
Baganoff et al. (2003), Figure 6:

B(r) [cts/arcsec2] = 73.5 e−r2/2σ 2
+ 40.3 e−r2/2σ 2

ext , (20)

with σext = 1.′′05. Thus, we obtain for the extended luminosity
(assuming the same spectral index of point like and extended
component) LX,ext = 1.95×1033 erg s−1, accounting for ≈ 80%
of the total X-ray luminosity.

The expected X-ray luminosity of a single compact object is
given by the mass accretion rate and the radiation efficiency. A
simple estimate is given by assuming Bondi accretion (Bondi
1952):

ṀB = 4πλ(GM�)2neμmp c−3
s ≈ 109 g s−1, (21)

where λ = 1/4, ne = 26 cm−3 the electron number density,
μ = 0.7 the mean atomic weight, mp the proton mass,
cs = √

5 k Te/3 μmp the speed of sound and Te = 1.3 keV
(Baganoff et al. 2003). Pessah & Melia (2003) estimate the
accretion rate by

ṀP = πr2
acc ρ v ≈ 109 g s−1, (22)

with the accretion radius racc = 2GM�/v
2
eff ≈ 3 × 1011 cm.

Using the density from above and the Keplerian velocity at
r = 1′′ one obtains consistently ṀP ≈ 109 g s−1 ≈ ṀB .

The radiation efficiency depends on the type of object
considered (Haller et al. 1996). For neutron stars 10% is assumed
(Pessah & Melia 2003), since the accreted material will fall onto
a hard surface and the energy released can be radiated away,
resulting in a luminosity of LNS ≈ 1029 erg s−1. For SBHs due
to the absence of a surface most of the emission will be thermal
bremsstrahlung yielding only L� ≈ 2 × 1020 erg s−1 (Haller et
al. 1996). This shows that LX,ext cannot be due to SBHs, since
one would need 1013 objects to explain the observed luminosity.
In the case of neutron stars, one would need ≈ 20,000 objects
within r � 1′′ in order to account for the observed luminosity,
corresponding to η ≈ 0.07. However, this number exceeds the
estimate of the segregated cusp model of Hopman & Alexander
(2006), who predict only ≈ 100 neutron stars there.

7.4.5. X-ray Transients in a Dark Cluster

Muno et al. (2005) report an overabundance of X-ray tran-
sients in the inner parsec of the GC compared to the over-
all distribution of X-ray sources. The sources are classi-
fied as X-ray binaries (XRBs). These authors suggest a dy-
namical origin of the XRBs, namely an exchange of type
Binary + SBH → XRB + Star. The rate density for this reaction
is

γ+ = n� nb Σ σ1, (23)

where nb is the density of binaries,

Σ = πa2 + 2πaG(Mb + M�)/σ 2
1 (24)

the exchange cross-section and σ1 = (GMMBH/3r)1/2 the
one-dimensional velocity dispersion. According to Muno et
al. (2005) the number of XRBs is limited by dynamical
friction, which yields a characteristic life time of τ =
10 Gyr (M�/M�)−1(r/)1/2. Refining this argument, we also take
into account the back reaction XRB + Star → Binary+SBH and
assume for simplicity equal exchange cross-sections for forward
and backward reaction. Both effects together yield a rate density
of

γ− = 1
2n nXRB Σ σ1 +

nXRB

τ
, (25)

where n is the number density of stars, and nXRB is the number
density of XRBs.11 In equilibrium one has γ+ = γ−, which
allows one to solve for nXRB. After integrating nXRB over volume
out to 1 pc and assuming a = 0.1 AU, n = 105 −3(r/)−2,
nb = 0.1n, Mb = 3M�, M� = 10M� and n� = f�n one obtains
the number of XRBs in the central parsec as NXRB = 7×104f�,
where f� is the relative number of SBHs to ordinary stars. A
certain fraction fX of those will shine up as X-ray transients:
fXNXRB = NX. Calculating η from this yields

11 The factor 1/2 takes care of the fact that for the back-reaction either the
SBH, or the ordinary star of the XRB could be replaced by the interaction
partner.
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η = f�

M�

MMBH

∫ apo

peri
4πr2n(r)dr (26)

= 3.8 × 10−7 NX(< 1)

fX
, (27)

relating the number of X-ray transients in the central parsec with
η. Using the values fX � 0.01 and NX = 4 (Muno et al. 2005),
we obtain η ≈ 1.5 × 10−4.

A more detailed investigation by Deegan & Nayakshin (2007)
shows that within r < 0.7 pc a cusp of SBHs with ≈ 20,000
members is consistent with the number of discrete X-ray sources
in the GC. Converting this number for the assumed profile of
n(r) ∼ r−7/4 into η yields η ≈ 2.1×10−4, which is very similar
to our estimate in the previous paragraph.

7.4.6. Further Aspects

There are at least three other aspects of an extended mass
component in the GC which are worth mentioning but beyond
the scope of this paper.

1. Star formation in the presence of a dark cluster. The process
of star formation in the GC might be altered significantly
by the presence of a substantial dark component. The ad-
ditional perturbative gravitational forces due to the SBHs
might assist star formation since they increase the inhomo-
geneities in a star forming gas cloud. On the other hand,
close encounters between individual clumps and SBHs
might result in disruption of the clumps.

2. Interaction of the spin of the MBH with the dark cluster.
The spin of the MBH is subject to evolution by several pro-
cesses. While gas accretion and major mergers can increase
the spin, the accretion of SBHs tends to decrease the spin
(Hughes & Blandford 2003; Gammie et al. 2004), assum-
ing many random infall events of isotropically distributed
SBHs. Furthermore there is the general relativistic spin-
orbit-coupling between a SBH and the MBH spin, leading
to a change of the spin direction of the MBH but not to a
change of its modulus (Lodato & Pringle 2006).

3. Dark matter. Dark matter, which is widely accepted in
cosmology, might also show up in dynamic measurements
in the GC. However, Gendin & Primack (2004) show that
the density of the dark matter at 0.01 pc is ρDM ≈ 3 ×
105 M�/3, which is negligible compared to the theoretically
predicted stellar density there (Hopman & Alexander
2006). See also Vasiliev & Zelnikov (2008).

7.4.7. Conclusions for an Extended Mass Component

The various estimates for η all consistently point toward an
expected value of ≈ 10−3–10−4, approximately two orders
of magnitude smaller than what we can measure with orbital
dynamics today. Nevertheless, some astrophysical insights are
possible.

Among the most important scientific questions in the GC
is the origin of the S-stars, being a population of apparently
young stars close to the MBH (Ghez et al. 2003; Martins et al.
2008). One possible origin is that these stars have reached their
current orbits by TBR. Then the S-stars would have an isotropic,
thermal velocity distribution, naturally explaining the observed
random distribution of angular momentum vectors (Figure 19).
The number of stars visible is by far too low to make TBR
efficient enough to account for the present population of S-stars.
A hypothetical cluster of SBHs could accelerate the process.
The Chandrasekhar TBR timescale (Binney & Tremaine 1987)

is given by

tr ≈ 0.34 σ 3

G2〈M�〉2n� ln Λ
. (28)

For a power-law cusp around an MBH, the velocity dispersion
and the density are related to each other. Assuming ln Λ ≈ 10,
a power-law index of −3/2 (which is approximately what is
observed) and a population of stars with a single mass one
obtains a relaxation time independent of radius

tr ≈ 1.8 × 105 yr η−1
(m�

10

)−1
. (29)

Thus, if the S-stars formed at the same epoch as the stellar disks
6 × 106 yr ago (Paumard et al. 2006) and reached their present-
day orbits by TBR, one needs η � 0.033 for m� = 10 (Timmes
et al. 1996). This exceeds the expectations by at least two orders
of magnitudes. If the S-stars were not born in the presently
observed disks, but in older, now-dispersed disks, one can use
Equation (29) with the typical age of B stars (≈ 5 × 107 yr). For
m� = 10 this yields η � 3.5 × 10−3, which could be marginally
compatible with the other estimates for η.

In order to assess the expected progress, we simulated
future observations with existing instrumentation and similar
sampling. Continuing the orbital monitoring for two more years
will lower the statistical error to Δη ≈ 0.01, corresponding to
tr ≈ 2 × 107 yr. This means we will soon be able to test the
hypothesis that the S-stars formed in the disks and reached their
current orbits by TBR. Furthermore there is a chance to rule out
any TBR origin of the S-stars observationally in the near future,
namely when η � 3.5 × 10−3 is reached.

8. SUMMARY

We continued our long-term study of stellar orbits around
the MBH in the Galactic center. This work is based on our
large, high-quality data base which is based on high-resolution
imaging and spectroscopy from the years 1992 to 2008. The
main results are

1. The best current coordinate reference system uses all
available IR positions of the SiO maser stars (Reid et al.
2007) for the definition of the origin and assumes that the
stellar cluster around Sgr A* is intrinsically at rest such that
it can be used for the calibration of the coordinate system
velocity. Having more measurements of the maser sources
both in the radio and the IR domain we eventually will be
able to directly tie the coordinate system velocity to radio
Sgr A* with a sufficient precision. Then the intermediate
step of cross-calibration with the stellar cluster can be
dropped and the coordinate system definition would be
independent from the assumption that the stellar cluster is
at rest with respect to Sgr A*.

2. We obtained orbits for 28 stars. Eleven of those can con-
tribute to the determination of the gravitational potential,
we used up to 6. For the first time, we were able to de-
termine orbital parameters for six of the late-type stars in
our sample. Furthermore, we confirm unambiguously the
earlier report (Paumard et al. 2006) that six of the stars are
members of the clockwise disk.

3. Overall, we improved measurement uncertainties by a fac-
tor of six over the most recent set of Galactic center papers
(Schödel et al. 2002; Ghez et al. 2005; Eisenhauer et al.
2005). A single-point-mass potential continues to be the
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best fit to these improved data as well. The main contri-
bution to the error in the mass of Sgr A* and the distance
to the Galactic center are systematic uncertainties. While
the value of the mass is driven by the distance estimate,
the latter is subject to many systematic uncertainties that
amount to 0.31 kpc. The statistical error now decreased to
0.17 kpc and became smaller than the systematic one. The
most fruitful way to overcome current limitations would
probably be the observation of another close pericenter
passage of an S-star. Our current best values are

MMBH = (3.95 ± 0.06|stat ± 0.18|R0, stat ± 0.31|R0, sys)

× 106 M�

(
R0

8 kpc

)2.19

= (4.31 ± 0.36) × 106 M� for R0 = 8.33 kpc

R0 = 8.33 ± 0.17|stat ± 0.31|sys kpc. (30)

It should be noted that this value is consistent within the
errors with values published earlier (Eisenhauer et al. 2003,
2005). The improvement of our current work is the more
rigorous treatment of the systematic errors. Also it is worth
noting that adding more stars did not change the distance
much over the equivalent S2-only fit.

4. We have obtained an upper limit for the mass enclosed
within the S2 orbit in units of the mass of the MBH:

η = 0.021 ± 0.019|stat ± 0.006|model, (31)

which corresponds to a 1σ upper limit of η � 0.040.
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APPENDIX A

LIST OF NACO DATA SETS
Table 8

List of NACO Data Sets

DIT No. of No. of
Date Band mas

pixel [s] NDIT Frames S-stars

2002.25 Ks 27 0.5 8 10 35
2002.34 Ks 27 20 3 20 84
2002.39 Ks 13 15 1 11 64
2002.409 Ks 13 15 1 86 70
2002.412 Ks 13 15 1 58 47
2002.414 Ks 13 15 1 45 83
2002.58 Ks 13 15 4 60 83
2002.66 H 13 15 4 25 86
2002.66 Ks 13 15 4 20 84
2003.21 H 13 20 1 32 84
2003.35 H 13 10 6 30 89
2003.36 Ks 13 5 12 8 82
2003.445 Ks 13 5 3 102 81
2003.451 H 13 20 1 116 90
2003.452 Ks 13 20 1 182 86
2003.454 H 13 20 1 150 85
2003.454 Ks 13 10 2 208 81
2003.55 H 13 20 3 72 81
2003.676 H 13 20 3 32 81
2003.678 H 13 2 30 32 65

Table 8
(Continued)

DIT No. of No. of
Date Band mas

pixel [s] NDIT Frames S-stars

2003.76 Ks 13 5 12 34 89
2004.24 H 13 10 3 41 85
2004.33 H 13 15 2 73 92
2004.35 Ks 13 10 3 52 70
2004.44 H 13 15 2 48 94
2004.51 Ks 13 30 1 272 86
2004.52 H 13 30 1 48 82
2004.57 H 13 15 2 47 70
2004.57 Ks 13 15 2 92 46
2004.66 Ks 13 15 2 100 89
2004.73 H 13 25 1 16 92
2005.27 Ks 13 2 15 48 95
2005.37 Ks 13 2 15 71 91
2005.47 Ks 13 10 2 77 83
2005.58 Ks 13 15 4 23 93
2005.67 Ks 27 30 1 19 54
2006.32 H 13 17 2 36 97
2006.41 H 13 17 2 48 80
2006.49 H 13 17 2 48 53
2006.49 Ks 13 17 2 94 58
2006.57 H 13 60 1 32 55
2006.58 Ks 13 2.4 14 38 75
2006.65 H 13 17 2 44 57
2006.726 Ks 13 17.2 2 48 85
2006.728 Ks 13 17.2 2 40 89
2006.75 Ks 13 17.2 2 24 88
2006.78 Ks 13 17.2 2 48 93
2006.80 Ks 13 2.4 14 48 87
2007.17 Ks 13 12 3 32 100
2007.21 H 13 17 2 102 105
2007.21 Ks 13 2.4 14 48 100
2007.214 Ks 13 17.2 2 96 100
2007.252 Ks 13 10 3 48 99
2007.255 H 13 10 3 96 103
2007.255 Ks 13 10 3 63 97
2007.46 Ks 13 17.2 2 110 100
2007.54 H 13 10 3 48 96
2007.55 H 13 10 3 96 106
2007.69 H 13 17 2 48 104
2007.69 Ks 13 17.2 2 48 100
2007.692 Ks 13 17.2 2 48 100
2008.15 Ks 13 17.2 2 48 101
2008.20 Ks 13 17.2 2 68 106
2008.27 Ks 13 17.2 2 96 93
2008.46 Ks 13 17.2 2 96 101
2008.47 H 13 17.2 2 65 88
2008.60 Ks 13 17.2 2 90 104

DIT: single-detector integration time
NDIT: number of single integrations per image file

APPENDIX B

POLYNOMIAL FITS TO THE S-STARS DATA

The following table lists the polynomial fits to the S-stars data
(except S2 which is not well described by polynomial fits). For
stars with a significant (at the 5σ level) astrometric acceleration
pointing toward Sgr A*, we report quadratic fits. For stars with
significant da/dt , we report the cubic fit. Otherwise linear fits
are given. Similarly, for stars for which detected changes in the
radial velocities, we report linear fits. For stars, for which we
determined orbits but did not detect changes in vvrad, we report
the weighted averages.
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Table 9
Polynomial Fits to the S-stars Data

Name, mK α [mas] =
t0 [yr] for (α, δ) δ [mas] =
t0 [yr] for vz vz (km s−1) =
S1, 14.7 (−87.2 ± 0.4) + (19.70 ± 0.15)Δt + (0.665 ± 0.022)(Δt)2 + (−0.0483 ± 0.0026)(Δt)3

2000.41 (−125.4 ± 0.5) + (−32.04 ± 0.16)Δt + (1.080 ± 0.023)(Δt)2 + (0.0398 ± 0.0032)(Δt)3

2005.77 (1094.5 ± 8.4) + (−45.8 ± 4.2)Δt + (13.6 ± 2.6)(Δt)2

S4, 14.4 (269.9 ± 0.2) + (15.95 ± 0.16)Δt + (−0.544 ± 0.070)(Δt)2 + (−0.0260 ± 0.0101)(Δt)3

2003.07 (124.8 ± 0.1) + (−0.36 ± 0.08)Δt + (−0.129 ± 0.023)(Δt)2 + (0.0134 ± 0.0039)(Δt)3

2006.40 (−687.9 ± 13.3) + (−66.7 ± 9.1)Δt

S5, 15.2 (352.0 ± 0.3) + (−4.93 ± 0.12)Δt + (−0.510 ± 0.078)(Δt)2

2005.05 (200.4 ± 0.4) + (8.00 ± 0.15)Δt + (−0.341 ± 0.094)(Δt)2

2006.40 129 ± 39

S6, 15.4 (484.6 ± 0.1) + (6.38 ± 0.04)Δt + (−0.128 ± 0.026)(Δt)2

2005.05 (99.1 ± 0.2) + (0.74 ± 0.05)Δt + (−0.075 ± 0.031)(Δt)2

2006.40 118 ± 21

S7, 15.3 (533.2 ± 0.2) + (−4.03 ± 0.04)Δt

2000.41 (−29.8 ± 0.3) + (−3.08 ± 0.05)Δt

S8, 14.5 (336.1 ± 0.2) + (15.03 ± 0.08)Δt + (−0.347 ± 0.009)(Δt)2

2000.41 (−212.6 ± 0.2) + (−14.60 ± 0.10)Δt + (0.228 ± 0.010)(Δt)2

2005.77 −(53.6 ± 7.6) + (−31.2 ± 5.3)Δt

S9, 15.1 (181.1 ± 0.3) + (1.65 ± 0.16)Δt + (−0.254 ± 0.021)(Δt)2

2001.46 (−335.9 ± 0.3) + (−8.69 ± 0.15)Δt + (0.634 ± 0.019)(Δt)2

2006.40 614 ± 27

S10, 14.1 (64.2 ± 0.1) + (−5.14 ± 0.03)Δt

2001.46 (−381.9 ± 0.1) + (2.96 ± 0.03)Δt

S11, 14.3 (142.4 ± 0.3) + (8.79 ± 0.05)Δt

2000.41 (−548.9 ± 0.2) + (−5.39 ± 0.04)Δt

S12, 15.5 (−66.4 ± 0.3) + (4.73 ± 0.21)Δt + (1.066 ± 0.052)(Δt)2 + (−0.1002 ± 0.0066)(Δt)3

2002.07 (252.0 ± 0.3) + (29.01 ± 0.15)Δt + (−1.606 ± 0.028)(Δt)2 + (0.0745 ± 0.0044)(Δt)3

2005.77 318 ± 7

S13, 15.8 (−187.3 ± 1.6) + (15.22 ± 0.79)Δt + (3.954 ± 0.129)(Δt)2 + (−0.0880 ± 0.0206)(Δt)3

2001.46 (−32.0 ± 1.0) + (44.79 ± 0.48)Δt + (−0.085 ± 0.068)(Δt)2 + (−0.3469 ± 0.0116)(Δt)3

2006.40 (−7.3 ± 22.8) + (186.7 ± 14.7)Δt

S14, 15.7 (64.2 ± 2.4) + (17.48 ± 0.89)Δt + (2.838 ± 0.085)(Δt)2 + (−0.2773 ± 0.0142)(Δt)3

2000.41 (36.7 ± 2.2) + (14.13 ± 0.81)Δt + (2.485 ± 0.076)(Δt)2 + (−0.2473 ± 0.0129)(Δt)3

2006.40 300.3 ± 25.2

S17, 15.3 (10.3 ± 1.0) + (2.81 ± 0.47)Δt + (−0.373 ± 0.072)(Δt)2 + (0.1068 ± 0.0139)(Δt)3

2001.46 (−162.1 ± 1.0) + (20.04 ± 0.39)Δt + (1.408 ± 0.068)(Δt)2 + (−0.1411 ± 0.0146)(Δt)3

2005.85 (594.7 ± 5.2) + (−84.0 ± 4.6)Δt

S18, 16.7 (−202.5 ± 0.5) + (−17.08 ± 0.18)Δt + (0.946 ± 0.115)(Δt)2

2005.47 (−70.2 ± 0.6) + (−18.22 ± 0.22)Δt + (0.008 ± 0.146)(Δt)2

2006.40 −257 ± 53

S19, 16.0 (38.7 ± 1.1) + (−10.27 ± 0.31)Δt + (−2.461 ± 0.216)(Δt)2

2005.98 (−117.3 ± 0.9) + (−19.78 ± 0.26)Δt + (6.068 ± 0.177)(Δt)2

2006.40 (−2314.9 ± 36.4) + (10.4 ± 15.4)Δt + (88.0 ± 13.7)(Δt)2

S20, 15.7 (220.8 ± 0.6) + (−4.94 ± 0.31)Δt

2005.98 (109.5 ± 0.4) + (−6.29 ± 0.21)Δt

S21, 16.9 (−334.1 ± 0.2) + (−11.19 ± 0.06)Δt + (1.001 ± 0.039)(Δt)2

2005.47 (−128.7 ± 0.4) + (4.15 ± 0.10)Δt + (0.598 ± 0.068)(Δt)2

2006.40 410 ± 12

S22, 16.6 (191.2 ± 0.2) + (22.81 ± 0.11)Δt

2005.47 (−268.4 ± 0.3) + (−6.89 ± 0.14)Δt

S23, 17.8 (307.4 ± 1.1) + (−13.81 ± 0.34)Δt + (−0.953 ± 0.196)(Δt)2

2005.47 (−89.1 ± 0.9) + (−11.17 ± 0.23)Δt + (0.525 ± 0.153)(Δt)2

S24, 15.6 (−177.1 ± 0.3) + (6.32 ± 0.14)Δt + (0.065 ± 0.019)(Δt)2

2001.46 (−566.7 ± 0.3) + (10.40 ± 0.13)Δt + (0.210 ± 0.019)(Δt)2

2006.40 (−824.9 ± 6.5) + (−23.0 ± 4.8)(Δt)

S25, 15.2 (−95.3 ± 0.3) + (−2.88 ± 0.06)Δt

2001.46 (−426.4 ± 0.3) + (1.08 ± 0.05)Δt

S26, 15.1 (514.4 ± 0.2) + (6.39 ± 0.05)Δt

2001.46 (440.6 ± 0.2) + (0.81 ± 0.05)Δt
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Table 9
(Continued)

Name, mK α [mas] =
t0 [yr] for (α, δ) δ [mas] =
t0 [yr] for vz vz (km s−1) =
S27, 15.6 (146.9 ± 0.3) + (0.66 ± 0.15)Δt + (−0.032 ± 0.019)(Δt)2

2001.46 (523.1 ± 0.3) + (3.74 ± 0.14)Δt + (−0.112 ± 0.018)(Δt)2

2005.77 −114 ± 3

S28, 17.1 (−19.7 ± 0.6) + (4.06 ± 0.22)Δt + (0.145 ± 0.031)(Δt)2

2001.46 (427.6 ± 0.6) + (12.09 ± 0.27)Δt + (−0.648 ± 0.036)(Δt)2

S29, 16.7 (−206.5 ± 0.2) + (1.79 ± 0.16)Δt + (0.256 ± 0.036)(Δt)2

2003.49 (519.3 ± 0.3) + (−14.93 ± 0.28)Δt + (−0.792 ± 0.064)(Δt)2

2007.94 −273 ± 38

S30, 14.3 (−560.3 ± 0.1) + (0.92 ± 0.02)Δt

2000.41 (384.3 ± 0.1) + (3.37 ± 0.02)Δt

S31, 15.7 (−303.7 ± 0.5) + (5.89 ± 0.23)Δt + (0.561 ± 0.040)(Δt)2 + (0.0269 ± 0.0068)(Δt)3

2001.39 (301.6 ± 0.5) + (−15.88 ± 0.24)Δt + (−0.347 ± 0.045)(Δt)2 + (−0.0421 ± 0.0068)(Δt)3

2006.40 −366 ± 23

S32, 16.6 (−323.3 ± 0.1) + (−4.17 ± 0.05)Δt

2005.43 (−356.2 ± 0.2) + (0.62 ± 0.07)Δt

S33, 16.0 (−411.7 ± 0.5) + (−13.54 ± 0.20)Δt + (0.253 ± 0.020)(Δt)2

2000.41 (−396.2 ± 0.4) + (0.90 ± 0.17)Δt + (0.170 ± 0.017)(Δt)2

2006.42 −139 ± 33

S34, 15.5 (302.3 ± 0.3) + (9.58 ± 0.07)Δt

2002.07 (−469.7 ± 0.3) + (3.78 ± 0.07)Δt

S35, 13.3 (540.5 ± 0.1) + (1.70 ± 0.02)Δt

2000.41 (−437.8 ± 0.1) + (3.16 ± 0.03)Δt

S36, 16.4 (276.5 ± 0.2) + (−1.15 ± 0.16)Δt

2004.56 (246.4 ± 0.3) + (−0.71 ± 0.17)Δt

S37, 16.1 (331.2 ± 0.4) + (−6.16 ± 0.18)Δt

2005.47 (390.2 ± 0.3) + (10.17 ± 0.13)Δt

S38, 17.0 (−179.6 ± 0.6) + (−30.56 ± 0.61)Δt + (4.923 ± 0.488)(Δt)2

2006.94 (55.2 ± 0.7) + (−10.91 ± 0.98)Δt + (−1.951 ± 0.754)(Δt)2

2008.26 −185 ± 70

S39, 16.8 (−102.2 ± 0.7) + (−11.80 ± 0.16)Δt + (1.385 ± 0.132)(Δt)2

2005.50 (268.9 ± 1.2) + (33.61 ± 0.29)Δt + (−2.386 ± 0.233)(Δt)2

S40, 17.2 (144.0 ± 1.5) + (3.96 ± 0.48)Δt + (−3.772 ± 0.512)(Δt)2

2006.42 (33.4 ± 2.9) + (1.71 ± 0.98)Δt + (−2.621 ± 1.026)(Δt)2

S41, 17.5 (−221.0 ± 0.6) + (−0.58 ± 0.37)Δt

2004.94 (−299.0 ± 0.6) + (−1.99 ± 0.38)Δt

S42, 17.5 (−160.1 ± 0.7) + (−6.18 ± 0.43)Δt

2004.98 (−354.3 ± 1.1) + (18.00 ± 0.63)Δt

S43, 17.5 (−493.2 ± 0.3) + (5.39 ± 0.12)Δt

2005.47 (−134.4 ± 0.4) + (7.78 ± 0.16)Δt

S44, 17.5 (−92.2 ± 0.5) + (−9.48 ± 0.43)Δt

2006.52 (−246.0 ± 1.0) + (−10.57 ± 0.76)Δt

S45, 15.7 (193.3 ± 0.2) + (−6.61 ± 0.08)Δt

2005.47 (−515.0 ± 0.3) + (−4.06 ± 0.13)Δt

S46, 15.7 (246.1 ± 0.4) + (0.57 ± 0.12)Δt

2001.46 (−574.3 ± 0.4) + (5.57 ± 0.10)Δt

S47, 16.3 (383.6 ± 0.8) + (−3.82 ± 0.70)Δt

2006.52 (245.2 ± 0.4) + (5.05 ± 0.38)Δt

S48, 16.6 (438.5 ± 0.5) + (−0.33 ± 0.14)Δt + (−0.442 ± 0.098)(Δt)2

2005.47 (472.1 ± 0.5) + (12.26 ± 0.14)Δt + (−0.343 ± 0.098)(Δt)2

S49, 17.5 (585.6 ± 0.6) + (15.61 ± 0.34)Δt

2005.63 (51.6 ± 0.7) + (1.30 ± 0.34)Δt

S50, 17.2 (−504.7 ± 0.3) + (−2.84 ± 0.13)Δt

2005.47 (−528.8 ± 0.3) + (9.51 ± 0.18)Δt

S51, 17.4 (−473.5 ± 0.3) + (7.86 ± 0.14)Δt

2005.47 (−299.4 ± 0.3) + (8.01 ± 0.15)Δt

S52, 17.1 (200.8 ± 0.5) + (2.68 ± 0.56)Δt

2006.94 (286.0 ± 1.3) + (−3.13 ± 1.24)Δt
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Table 9
(Continued)

Name, mK α [mas] =
t0 [yr] for (α, δ) δ [mas] =
t0 [yr] for vz vz (km s−1) =
S53, 17.2 (323.7 ± 0.7) + (12.15 ± 1.04)Δt

2007.46 (514.2 ± 0.7) + (9.04 ± 1.03)Δt

S54, 17.5 (135.4 ± 1.2) + (−1.05 ± 0.90)Δt

2006.59 (−60.1 ± 0.9) + (−26.90 ± 0.67)Δt

S55, 17.5 (93.8 ± 2.9) + (−23.72 ± 4.31)Δt

2006.78 (−95.8 ± 3.0) + (22.74 ± 4.18)Δt

S56, 17.0 (143.5 ± 1.2) + (−15.96 ± 2.81)Δt

2007.81 (154.6 ± 0.5) + (0.16 ± 1.16)Δt

S57, 17.6 (393.6 ± 1.1) + (−9.99 ± 1.43)Δt

2007.46 (−147.4 ± 0.8) + (−4.05 ± 1.07)Δt

S58, 17.4 (−339.6 ± 0.4) + (5.98 ± 0.11)Δt + (0.189 ± 0.069)(Δt)2

2005.47 (−569.7 ± 0.5) + (4.03 ± 0.13)Δt + (0.584 ± 0.085)(Δt)2

S59, 17.2 (−222.8 ± 0.4) + (5.87 ± 0.89)Δt

2007.89 (240.7 ± 0.8) + (−3.83 ± 1.71)Δt

S60, 16.3 (−277.6 ± 0.9) + (3.38 ± 2.19)Δt

2007.82 (168.0 ± 0.5) + (−19.17 ± 1.02)Δt

S61, 17.9 (−205.9 ± 1.4) + (−18.08 ± 2.17)Δt

2007.90 (−45.0 ± 1.4) + (−20.35 ± 2.12)Δt

S62, 17.8 (−59.2 ± 1.3) + (−10.31 ± 2.34)Δt

2007.90 (67.8 ± 1.7) + (2.28 ± 3.47)Δt

S63, 17.5 (196.0 ± 2.1) + (−12.04 ± 4.59)Δt

2007.93 (−134.7 ± 2.8) + (−9.44 ± 5.89)Δt

S64, 17.5 (−12.3 ± 1.1) + (−16.42 ± 0.46)Δt

2005.51 (238.5 ± 1.3) + (8.57 ± 0.57)Δt

S65, 13.7 (−777.0 ± 0.1) + (2.17 ± 0.02)Δt

2000.41 (−269.5 ± 0.1) + (−1.49 ± 0.02)Δt

S66, 14.8 (−47.7 ± 0.2) + (12.90 ± 0.10)Δt + (0.015 ± 0.010)(Δt)2

2000.41 (−1006.8 ± 0.2) + (−1.39 ± 0.08)Δt + (0.047 ± 0.008)(Δt)2

2004.63 12 ± 22

S67, 12.1 (461.4 ± 0.2) + (−13.69 ± 0.07)Δt + (−0.036 ± 0.008)(Δt)2

2000.41 (872.4 ± 0.2) + (1.98 ± 0.08)Δt + (−0.058 ± 0.009)(Δt)2

2003.95 1 ± 33

S68, 12.9 (275.8 ± 0.4) + (4.90 ± 0.07)Δt

2000.41 (764.9 ± 0.4) + (2.83 ± 0.08)Δt

S69, 16.8 (−16.3 ± 0.3) + (−0.25 ± 0.17)Δt

2005.47 (762.7 ± 0.5) + (0.69 ± 0.25)Δt

S70, 16.9 (−348.1 ± 0.1) + (−3.53 ± 0.05)Δt

2005.47 (714.6 ± 0.2) + (−4.09 ± 0.08)Δt

S71, 16.1 (−562.1 ± 0.2) + (7.94 ± 0.07)Δt + (0.152 ± 0.047)(Δt)2

2005.47 (−762.1 ± 0.4) + (14.91 ± 0.09)Δt + (0.324 ± 0.068)(Δt)2

2007.44 −237 ± 85

S72, 14.3 (−668.1 ± 0.2) + (8.88 ± 0.03)Δt

2000.41 (−858.8 ± 0.2) + (−5.86 ± 0.03)Δt

S73, 16.1 (−310.2 ± 0.1) + (−9.93 ± 0.05)Δt

2004.03 (−995.4 ± 0.2) + (−8.95 ± 0.06)Δt

S74, 16.9 (−98.1 ± 0.2) + (−0.78 ± 0.09)Δt

2005.47 (−861.4 ± 0.2) + (4.64 ± 0.09)Δt

S75, 17.1 (−154.5 ± 0.2) + (6.03 ± 0.12)Δt

2005.47 (−727.1 ± 0.2) + (1.06 ± 0.12)Δt

S76, 12.8 (355.2 ± 0.1) + (−3.70 ± 0.02)Δt

2000.41 (−925.9 ± 0.1) + (4.34 ± 0.02)Δt

S77, 15.8 (364.2 ± 0.4) + (10.27 ± 0.17)Δt

2005.50 (−824.5 ± 0.4) + (−6.73 ± 0.20)Δt

S78, 16.5 (453.4 ± 0.2) + (−17.40 ± 0.12)Δt

2005.47 (−665.2 ± 0.4) + (−7.24 ± 0.18)Δt

S79, 16.0 (646.6 ± 0.3) + (1.09 ± 0.16)Δt

2005.47 (−533.5 ± 0.3) + (1.31 ± 0.16)Δt
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Table 9
(Continued)

Name, mK α [mas] =
t0 [yr] for (α, δ) δ [mas] =
t0 [yr] for vz vz (km s−1) =
S80, 16.9 (991.7 ± 0.3) + (−5.38 ± 0.14)Δt

2005.47 (−351.6 ± 0.3) + (4.66 ± 0.13)Δt

S81, 17.2 (769.9 ± 1.2) + (−2.23 ± 2.55)Δt

2007.68 (−481.4 ± 1.1) + (−6.90 ± 2.34)Δt

S82, 15.4 (54.4 ± 0.3) + (−7.78 ± 0.12)Δt

2005.47 (944.8 ± 0.4) + (−14.28 ± 0.20)Δt

S83, 13.6 (−927.6 ± 0.1) + (−4.96 ± 0.05)Δt + (0.086 ± 0.005)(Δt)2

2000.41 (293.2 ± 0.2) + (−11.50 ± 0.06)Δt + (−0.001 ± 0.006)(Δt)2

2004.24 −557 ± 26

S84, 14.4 (−1134.8 ± 0.2) + (4.17 ± 0.04)Δt

2001.46 (−28.1 ± 0.1) + (1.82 ± 0.03)Δt

S85, 15.6 (−904.4 ± 0.1) + (5.62 ± 0.04)Δt

2005.47 (393.1 ± 0.1) + (−0.01 ± 0.07)Δt

S86, 15.5 (−1035.0 ± 0.2) + (1.74 ± 0.11)Δt

2004.56 (211.4 ± 0.2) + (−6.21 ± 0.08)Δt

S87, 13.6 (−855.5 ± 0.1) + (10.97 ± 0.05)Δt + (0.019 ± 0.005)(Δt)2

2000.41 (−996.2 ± 0.2) + (−3.45 ± 0.07)Δt + (0.038 ± 0.007)(Δt)2

2005.77 19 ± 11

S88, 15.8 (−1009.5 ± 0.3) + (−4.05 ± 0.05)Δt

2000.41 (−500.5 ± 0.3) + (−7.98 ± 0.05)Δt

S89, 15.3 (−942.1 ± 0.2) + (−4.61 ± 0.03)Δt

2000.41 (−630.0 ± 0.2) + (−2.42 ± 0.04)Δt

S90, 16.1 (531.9 ± 0.3) + (0.83 ± 0.12)Δt

2005.47 (−970.1 ± 0.2) + (0.50 ± 0.10)Δt

S91, 12.2 (778.9 ± 0.2) + (11.15 ± 0.03)Δt

2000.41 (−681.5 ± 0.2) + (2.82 ± 0.03)Δt

S92, 13.0 (987.3 ± 0.1) + (5.79 ± 0.03)Δt

2000.41 (24.8 ± 0.3) + (1.23 ± 0.05)Δt

S93, 15.6 (1083.8 ± 0.3) + (−2.80 ± 0.12)Δt

2005.47 (174.2 ± 0.4) + (−2.52 ± 0.18)Δt

S94, 16.7 (−154.5 ± 0.5) + (−10.55 ± 0.24)Δt

2005.47 (910.3 ± 0.6) + (2.16 ± 0.27)Δt

S95, 10.2 (22.3 ± 0.2) + (6.03 ± 0.04)Δt

2000.41 (1214.1 ± 0.2) + (0.75 ± 0.03)Δt

S96, 10.0 (1132.3 ± 0.2) + (−8.68 ± 0.03)Δt

2000.41 (482.2 ± 0.2) + (7.64 ± 0.04)Δt

2000.25 158 ± 5

S97, 10.3 (1040.8 ± 0.1) + (7.81 ± 0.02)Δt

2000.41 (−972.0 ± 0.2) + (2.46 ± 0.03)Δt

2005.99 470 ± 50

S98, 15.6 (−908.0 ± 0.1) + (−7.60 ± 0.03)Δt

2001.46 (725.6 ± 0.2) + (2.59 ± 0.04)Δt

S99, 16.9 (−970.1 ± 0.2) + (−10.32 ± 0.08)Δt

2005.47 (824.6 ± 0.2) + (1.28 ± 0.09)Δt

S100, 15.4 (−977.8 ± 0.2) + (−0.77 ± 0.04)Δt

2001.46 (566.5 ± 0.3) + (−2.15 ± 0.06)Δt

S101, 17.4 (−857.5 ± 0.3) + (3.42 ± 0.16)Δt

2005.47 (509.6 ± 0.5) + (7.71 ± 0.26)Δt

S102, 17.6 (−770.4 ± 0.4) + (−4.88 ± 0.18)Δt

2005.47 (462.0 ± 0.3) + (7.14 ± 0.15)Δt

S103, 18.3 (−779.3 ± 0.7) + (10.97 ± 0.43)Δt

2005.63 (560.7 ± 0.6) + (−2.73 ± 0.41)Δt

S104, 17.6 (−686.8 ± 0.7) + (10.23 ± 0.33)Δt

2005.51 (496.4 ± 0.6) + (−1.24 ± 0.27)Δt

S105, 16.5 (−1143.6 ± 0.2) + (3.37 ± 0.09)Δt

2005.47 (513.5 ± 0.2) + (−7.43 ± 0.08)Δt

S106, 17.1 (−1234.2 ± 0.2) + (1.27 ± 0.10)Δt

2005.47 (266.4 ± 0.4) + (2.23 ± 0.18)Δt
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Table 9
(Continued)

Name, mK α [mas] =
t0 [yr] for (α, δ) δ [mas] =
t0 [yr] for vz vz (km s−1) =
S107, 14.8 (−1240.3 ± 0.2) + (−0.53 ± 0.05)Δt

2001.46 (−45.1 ± 0.2) + (5.33 ± 0.05)Δt

S108, 17.0 (−981.1 ± 0.3) + (3.58 ± 0.12)Δt

2005.47 (−797.7 ± 0.3) + (1.77 ± 0.14)Δt

S109, 17.3 (−887.9 ± 0.2) + (5.93 ± 0.11)Δt

2005.47 (−778.2 ± 0.4) + (−4.27 ± 0.18)Δt

S110, 16.9 (−778.5 ± 0.3) + (−3.01 ± 0.13)Δt

2005.47 (−724.7 ± 0.2) + (−0.88 ± 0.11)Δt

S111, 13.8 (−1109.9 ± 0.2) + (−3.69 ± 0.06)Δt + (0.054 ± 0.007)(Δt)2

2000.41 (−895.5 ± 0.2) + (−8.15 ± 0.08)Δt + (0.039 ± 0.008)(Δt)2

2005.77 −741 ± 5

S112, 17.5 (−893.7 ± 0.2) + (4.30 ± 0.08)Δt

2005.47 (953.4 ± 0.3) + (11.15 ± 0.11)Δt
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