Charge/Current Distribution

$$
\partial_{\mu} F^{\mu v}=\mathrm{Jv}
$$

E and M fields

Its Maxwell E/M equations general solution:

$$
\begin{aligned}
\vec{B} & =\sum_{l, m}\left[\alpha_{E}(l, m) f_{l}(k \vec{r}) \vec{X}_{l m}-\frac{i}{k} \alpha_{M}(l, m) \vec{\nabla} \times g_{l}(k \vec{r}) \vec{X}_{l m}\right] \\
\vec{E} & =\sum_{l, m}\left[\frac{i}{k} \alpha_{E}(l, m) \vec{\nabla} \times f_{l}(k \vec{r}) \vec{X}_{l m}+\alpha_{M}(l, m) g_{l}(k \vec{r}) \vec{X}_{l m}\right]
\end{aligned}
$$

Its Radiation emitted:

In detail

$$
\begin{aligned}
\vec{B} & =\sum_{l, m}\left[\alpha_{E}(l, m) f_{l}(k \vec{r}) \vec{X}_{l m}-\frac{i}{k} \alpha_{M}(l, m) \vec{\nabla} \times g_{l}(k \vec{r}) \vec{X}_{l m}\right] \\
\vec{E} & =\sum_{l, m}\left[\frac{i}{k} \alpha_{E}(l, m) \vec{\nabla} \times f_{l}(k \vec{r}) \vec{X}_{l m}+\alpha_{M}(l, m) g_{l}(k \vec{r}) \vec{X}_{l m}\right]
\end{aligned}
$$

Is : generalized spherical harmonics
iks : coefficients of E, M fields
Its : linear combinations of Hankel functions

Multipoles

$$
\begin{aligned}
& \alpha_{E}(l, m) \simeq \frac{4 \pi k^{l+2}}{i(2 l+1)!!}\left(\frac{l+1}{l}\right)^{1 / 2}\left(Q_{l m}+Q_{l m}^{\prime}\right) \\
& \alpha_{M}(l, m) \simeq \frac{4 \pi i k^{l+2}}{(2 l+1)!!}\left(\frac{l+1}{l}\right)^{1 / 2}\left(M_{l m}+M_{l m}^{\prime}\right)
\end{aligned}
$$

Multipoles

Is The Generalized Spherical Harmonics carry the information on the order of multipolarity

Its Multipoles are used to approximate the behavior of current densities in the presence of $E \& B$ fields

It They are described by the order of the term in the expansion

In more detail

Its Magnetic l-order moment

$$
M_{l m}=\frac{1}{l+1} \int d^{3} x r^{l} Y_{l m}^{*} \vec{\nabla} \cdot\left(\frac{\vec{r} \times \vec{J}}{c}\right)
$$

Is Electric l-order moment

$$
Q_{l m}=\int d^{3} x r^{l} Y_{l m}^{*} \rho
$$

Interaction energy

$$
H_{E M}=q \Phi-\vec{p} \cdot \vec{E}+\frac{1}{6} \sum_{i=1}^{3} \sum_{j=1}^{3} Q_{i j} \frac{\partial E_{j}}{\partial x_{i}}+\ldots-\vec{\mu} \cdot \vec{H}+\ldots
$$

Most common (and typically stronger) terms are: afs Electric Dipole Moment [] \#\& Electric Quadrupole Moment [] It Magnetic Dipole Moment []

The EM moments

$$
\begin{aligned}
& H_{E M}=q \Phi-\vec{p} \cdot \vec{E}+\frac{1}{6} \sum_{i=1}^{3} \sum_{j=1}^{3} Q_{i i} \frac{\partial E_{j}}{\partial x_{i}}+\ldots-\vec{\mu} \cdot \vec{H}+\ldots \\
& \vec{p}(\vec{r})=\int d^{3} r^{\prime} \rho\left(\overrightarrow{r^{\prime}}\right) \overrightarrow{r^{\prime}} \\
& \vec{\mu}\left(\vec{r}^{\prime}\right)=\int d^{3} r^{\prime} \vec{r}^{\prime} \times \vec{j}(\vec{r}) \\
& Q_{i j}(r)=\int d^{3} r^{\prime} \rho\left(r^{\prime}\right)\left(3 x_{i}^{\prime} x_{j}^{\prime}-\delta_{i j} r^{\prime 2}\right)
\end{aligned}
$$

It's all on the field

Is Static (big magnet!)

\#s Mössbauer
ats Hyperfine fields揞 NMR

Lifetime is also important

I* The production mechanism is related to the method of producing spin-orientation
Its Coulex, fusion-evaporation, fragmentation etc

Excitations mechanisms

Q Spallation

Q Induced fission

Q Fragmentation

Excitation mechanisms

Q Multi-fragmentation

Q Vaporization

Q Charge pickup

Hamiltonian term

μ

I\& Zeeman splitting

$$
H_{B}=-\vec{\mu} \cdot \overrightarrow{B_{o}}=-g \mu_{N} \vec{J} \cdot \overrightarrow{B_{o}}=-\omega_{L} J_{z}
$$

Zeeman levels

$\mathrm{VL}=\mathrm{g} \mu_{\mathrm{n}} \mathrm{B} / \mathrm{h}$:Larmor frequency

Level population

The angular correlation

$$
W(\theta, \phi, t)=\sum_{k, n} \frac{\sqrt{4 \pi}}{2 k+1} A_{k} B_{k}^{n}(t) Y_{k}^{n}(\theta, \phi)
$$

as
ensemble: $B_{0}=1$. All others equal 0

Is Its
ensemble: Bko for
ensemble: $\mathrm{B}_{\mathrm{k}}{ }^{\mathrm{o}}$ for
survive survive

$$
\begin{aligned}
& 600 \\
& 000 \\
& 8 \& 8
\end{aligned}
$$

What is the observable?

Its The magnetic moment precesses around the field as This changes the decay pattern of the emitted radiation (angular correlation is Is Detection of the perturbation is detected in detectors

Going Perturbed

Quantum Picture

I\& Observables become expectation values of operators
\#s Magnetic Dipole Moment

$$
\vec{\mu}(\vec{r})=\frac{1}{2} \int d^{3} r^{\prime} \overrightarrow{r^{\prime}} \times \vec{j}\left(r^{\prime}\right)
$$

$$
\mu(I)=\langle\pi=T\rangle
$$

The Electric Quadrupole

Its A deviation from the spherical shape of the nucleus in one direction results in an inhomogeneous charge distribution

$$
Q=\left(\frac{2 Z e}{5}\right)\left(a^{2}-c^{2}\right)
$$

Q and shapes

Is Q is a direct probe of the nuclear shape

Higher-Order Moments

Is Are there any other moments? \& Can we measure them?

Nature 497, 199 (2013)

The Anomalous μ

First seen with electrons

We know why!

$$
g_{e}=2(1+\alpha / 2 \pi)
$$

Important for nuclear magnetic moments

Adopted values

$\mu($ proton $)=+2.792847356(23) \mu_{N}$ $\mu($ neutron $)=-1.9130427(5) \mu_{N}$

The distinction in both and
is of great importance

The g factor

its The magnetic moment can be directly connected to the spin of the level, J (units of μ_{n})

$$
\begin{aligned}
& \vec{\mu}=g \vec{J} \\
& \vec{\mu}=g_{l} \vec{l}+g_{s} \vec{s}
\end{aligned}
$$

Generalize to A nucleons

Is The magnetic moment is a one-body operator It It can be easily expanded to a system of A nucleons

$$
\vec{\mu}=\sum_{i=1}^{A} g_{l}^{i} l^{i}+\sum_{i=1}^{A} g_{s}^{i} s^{i}
$$

The g factor of proton

\& For a perfectly charged sphere:

Is If proton is a Dirac particle:

However...

$$
g_{s}=+5.587
$$

$$
g_{s}=2
$$

Nucleonic System

Important Detail:

Protons and Neutrons have g-factor values

	g_{l}	g_{s}
proton	1	+5.587
neutiron	0	-3.826

The Deuteron μ

The Magnetic Moments of the Proton and the Deuteron
The Radiofrequency Spectrum of H_{2} in Various Magnetic Fields *
J. M. B. Kellogg, I. I. Rabi and N. F. Ramsey, Jr.

Columbia University, New York, New York
AND
J. R. Zacharias

Hunter College, New York, New York
(Receivẹd July 31, 1939)

Non-Additivity

It From experimental deuteron data we know:

$$
\begin{aligned}
& \mu_{p}=+2.792847356(23) \\
& \mu_{\mathrm{n}}=-1.9130427(5) \\
& \mu_{\mathrm{pn}}=\mu_{\mathrm{p}}+\mu_{\mathrm{n}}=+0.8798046(5) \\
& \mu_{\mathrm{D}}(\text { exp })=+0.857438240(12)
\end{aligned}
$$

ats So the deuteron is exactly a proton and a neutron (in terms of the w.f.)

$$
\mu(D) \neq \mu(p)+\mu(n)
$$

Addition Theorem

\# We can add moments (or g's) using vector analysis:

$$
g(I)=\frac{1}{2}\left[\left(g_{1}+g_{2}\right)+\left(g_{1}-g_{2}\right) \frac{I_{1}\left(I_{1}+1\right)-I_{2}\left(I_{2}+1\right)}{I(I+1)}\right]
$$

Illations

its Use $I_{1}=I_{2}=1$

$$
g(j)=g(I)
$$

\& The result may be generalized for \mathbf{N} nucleons
\& We may apply this for the case of L. and S degrees of freedom of an individual nucleon, e.g. $g_{l}+g_{s}$ of proton

Direct application

ats In a (or isotones), the spin of a certain state may be determined by simply measuring the g factor (exotic nuclei!)
ads Within one nucleus, the

to check whether the

 configuration within a sequence of spinstates $(0,2,4,6,8, \ldots)$, produced by the gradual alignment of two identical nucleons, is pure down to the lowest excitation energy.
Holes vs. Particles

A particle is... a hole!

hole

core

particle

The Electric Quadrupole

Its A deviation from the spherical shape of the nucleus in one direction results in an inhomogeneous charge distribution

$$
Q=\left(\frac{2 Z e}{5}\right)\left(a^{2}-c^{2}\right)
$$

Dynamical effects

Meson-current

 exchange
Core

Polarization
Tensor
Effects

Free vs. effective

als In the dynamic nuclear environment, the bare values change

$$
g_{s}^{e f f}(p, n) \approx 0.75 \cdot g_{s}^{\text {free }}(p, n)
$$

Ifs and for p, n respectively:

$$
g_{l}^{e f f} \approx 1.1 \text { or }-0.1
$$

It pion clouds are mainly responsible for the alteration

Core polarization

ats The closed shells seize to be inert and p-h excitations are allowed
as Coupling between the core and the valence nucleons alter the matrix elements

Its Corrections may be significant

Meson Exchange Currents

ats There are effective interactions due to pion exchange

Is In a more fundamental picture, quark currents are responsible for the effective field iss Contributions are typically $\sim 10 \%$

Tensor effects

\#t The magnetic moment is a rank- 1 tensor by construction

If In case coupling 2-body or 3-body operators, the tensor effects become significant for the expectation values

How do models treat moments?

ałs Liquid-Drop Model
 i\& Collective Models (rotational etc)
 \&s Shell Models
 \#s...

Liquid-Drop Model

Is Simplified picture: A lump of protons and neutrons (indistinguishable)
Its protons carry the charge
If neutrons contribute only to the volume \#* A simplified prediction:

$$
g=\frac{Z}{A}
$$

Quick proof

$$
\vec{\mu}=\frac{1}{2 c} \int d^{3} r \vec{r} \times \vec{j}(\vec{r})=\frac{1}{2 c} \int d^{3} r \vec{r} \times \rho \vec{v}
$$

$$
\rho=(\mathrm{Ze}) / V=(\mathrm{Ze}) /\left(\mathrm{Am} / \mathrm{d}_{\mathrm{m}}\right)
$$

$$
\begin{array}{rlr}
\vec{\mu} & =\frac{1}{2 c} \int d^{3} r \vec{r} \times \rho \vec{v} \\
& =\frac{Z e}{2 A m} \int d^{3} r \vec{r} \times d_{m} \vec{v} & \mu=\frac{\mu_{N}}{\hbar}\left(\frac{Z}{A}\right) J \\
& =\frac{\mu_{N}}{\hbar}\left(\frac{Z}{A}\right) \int d^{3} r d_{m} \vec{r} \times \vec{v} &
\end{array}
$$

$$
g=\frac{Z}{A}
$$

Does It Work?

Its For collective states, it usually does
Is However, most levels deviate significantly
Is Mainly responsible for those deviations are shell effects that break collectivity

Its Of Great Value: starting point to look
as
: All g's are Z/A ...

Are they all =Z/A?

Collective models

a Collectivity is the best playground for the magnetic moment
as The observable is rather insensitive
ats Best operator is probably the electric quadrupole moment, Q

Vibrational

I* One-phonon states
ał Two-phonon states
ałs Prediction falls in the Z/A value
Is Application to vibrational nuclei e.g. Cd or Pd

Rotational

Is Intrinsic frame

$$
\mu=g_{\Omega} \Omega=\langle\Psi| \sum g_{l} l_{z}+g_{s} s_{z}|\Psi\rangle
$$

I\& Lab frame (take into account the nuclear

 rotation)$$
\mu=g_{R} I+\left(g_{\Omega}-g_{R}\right) \frac{\Omega^{2}}{I+1}
$$

Algebraic Models

IBA-I

Is In IBA-I, the lowest-order transition ogerator

 may be expressed as:$$
\begin{gathered}
T_{1 \mu}(M)=\beta_{1}\left[d^{\dagger} \otimes \tilde{d}\right]_{\mu}^{(1)} \\
T_{2 \mu}(E)=\alpha_{2}\left[d^{\dagger} \otimes \tilde{s}+s^{\dagger} \otimes \tilde{d}\right]_{\mu}^{(2)}+\beta_{2}\left[d^{\dagger} \otimes \tilde{d}\right]_{\mu}^{(2)}
\end{gathered}
$$

Its And in terms of the angular momentum L:

$$
T_{1 \mu}=\left(\frac{3}{4 \pi}\right)^{1 / 2} g_{B} L_{\mu}
$$

ats For all limits in the Casten triangle

$$
\mu=\left(\frac{4 \pi}{3}\right)^{1 / 2}\left\langle L, M_{L}=L\right| T_{10}(M)\left|L, M_{L}=L\right\rangle=g_{B} L
$$

IBA-II

Ifs In IBA-II, the transition operator distinguished between protons and neutrons

$$
T_{1}(M 1)=\sqrt{\frac{3}{4 \pi}}\left(g_{\pi} L_{\pi}+g_{v} L_{v}\right)
$$

Its The g factor in IBA-II is:

$$
g=g_{\pi} \frac{N_{\pi}}{N_{\pi}+N_{\nu}}+g_{v} \frac{N_{v}}{N_{\pi}+N_{v}}
$$

Its If $g_{\pi}=1$ and $g_{v}=0$ then $g=Z / A$

Single-Particle

Assume closed shells

$+$
 odd (1,s) nucleon

Schmidt limits

Trend along the nuclear chart

Schmidt limits

Its From the addition properties, if one couples an nucleon with the even core

$$
g_{j}=g_{l} \pm \frac{g_{s}-g_{l}}{2 l+1}, \quad j=l \pm \frac{1}{2}
$$

Its However, there are deviations from these values throughout the nuclear chart

Schmidt limits

$$
\begin{aligned}
& \mu\left(l+\frac{1}{2}\right)=\left[\left(j-\frac{1}{2}\right) g_{l}+\frac{1}{2} g_{s}\right] \mu_{N} \\
& \mu\left(l-\frac{1}{2}\right)=\frac{j}{j+1}\left[\left(j+\frac{3}{2}\right) g_{l}-\frac{1}{2} g_{s}\right] \mu_{N}
\end{aligned}
$$

Experimental Data

Almost all data deviate from Schmidt limits.

Almost all data deviate inwards

Q data

Single-particle orbits

For each energy level, a corresponding g factor may be predicted

It is interesting to study effects of coupling between different orbits

An online database for nuclear EM moments

Its Official server (Nuclear Data Section):
http://www-nds.iaea.org/nuclearmoments

I* Updated database:
https://magneticmoments.info

https://magneticmoments.info

Welcome to NUMOR, the Nuclear Moments and Charge Radii Database A compilation of non-evaluated experimental data | Database cut-off date: 2019.03.31
Search
Blog
Cite the DB
Send us data
Helic Table
Help
you may search for $(Z),(A)$ or $(Z$ and $A)$
type Z
type A

Search Clear

Welcome to NUMOR, the Nuclear Moments and Charge Radii Database A compilation of non-evaluated experimental data | Database cut-off date: 2019.03.31

Search	Periodic Tsble	Z-Helik	Particles
8 log	Cite the DB	Send us data	Help

Plotting systematics is still in beta, use with caution.

Suggested References

ał Castel \& Towner "Modern Theories on Nuclear Moments", ISBN 0198517289
is web:
Is http://data.magneticmoments.info
Iłs http://www-nds.iaea.org/nuclearmoments
ats doi:
Its G. Neyens, 10.1088/0034-4885/66/4/205
ats R. Neugart \& G. Neyens, 10.1007/3-540-33787-3_4

Its K-H. Speidel et al., 10.1016/ S0146-6410(02)00144-8
\#s N. Benczer-Koller et al., 10.1088/0954-3899/34/9/R01
at tim, 10.1016/j.nima.2015.10.096
ats More refs:
\#ts Phys.Rev. 79, 795 (1950)
\#s Phys.Rev. 76, 1 (1949)
as Prog. Theor. Phys. VI, 801 (1951)
Its Phys.Rev. 80, 751 (1950)
\#t Annu. Rev. Nucl. Sci. 1957.7:349-40
\#* Annu. Rev. Nucl. Sci. 1964.14:403-482
\#bs Annu. Rev. Nucl. Sci. 1968.18:291-342
as Annu. Rev. Nucl. Sci. 1972.22:121-164

Q and shapes

Is Q is a direct probe of the nuclear shape

Higher-Order Moments

Is Are there any other moments? \& Can we measure them?

Nature 497, 199 (2013)

