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Preface and Acknowledgments

Physicists have abandoned determinism as a fundamental description of real-
ity. The most precise physical laws we have are quantum mechanical, and the
principle of quantum uncertainty limits our ability to predict, with arbitrary
precision, the future state of even the simplest imaginable system. However,
scientists began developing probabilistic, that is, stochastic, models of natu-
ral phenomena long before quantum mechanics was discovered in the 1920s.
Classical uncertainty preceded quantum uncertainty because, unlike the latter,
the former is rooted in easily recognized human conditions. We are too small
and the universe too large and too interrelated for thoroughly deterministic
thinking.

For whatever reason—fundamental physical indeterminism, human finitude,
or both—there is much we don’t know. And what we do know is tinged with
uncertainty. Baseballs and hydrogen atoms behave, to a greater or lesser degree,
unpredictably. Uncertainties attend their initial conditions and their dynamical
evolution. This also is true of every artificial device, natural system, and physics
experiment.

Nevertheless, physics and engineering curriculums routinely invoke precise
initial conditions and the existence of deterministic physical laws that turn these
conditions into equally precise predictions. Students spend many hours in in-
troductory courses solving Newton’s laws of motion for the time evolution of
projectiles, oscillators, circuits, and charged particles before they encounter
probabilistic concepts in their study of quantum phenomena. Of course, deter-
ministic models are useful, and, possibly, the double presumption of physical
determinism and superhuman knowledge simplifies the learning process. But
uncertainties are always there. Too often these uncertainties are ignored and
their study delayed or omitted altogether.

An Introduction to Stochastic Processes in Physics revisits elementary and
foundational problems in classical physics and reformulates them in the lan-
guage of random variables. Well-characterized random variables quantify un-
certainty and tell us what can be known of the unknown. A random variable
is defined by the variety of numbers it can assume and the probability with
which each number is assumed. The number of dots showing face up on a
die is a random variable. A die can assume an integer value 1 through 6, and,
if unbiased and honestly rolled, it is reasonable to suppose that any particular
side will come up one time out of six in the long run, that is, with a probability
of 1/6.



x i i PREFACE AND ACKNOWLEDGMENTS

This work builds directly upon early twentieth-century explanations of the
“peculiar character in the motions of the particles of pollen in water,” as de-
scribed in the early nineteenth century by the British cleric and biologist Robert
Brown. Paul Langevin, in 1908, was the first to apply Newton’s second law to
a “Brownian particle,” on which the total force included a random component.
Albert Einstein had, three years earlier than Langevin, quantified Brownian mo-
tion with different methods, but we adopt Langevin’s approach because it builds
most directly on Newtonian dynamics and on concepts familiar from elementary
physics. Indeed, Langevin claimed his method was “infinitely more simple”
than Einstein’s. In 1943 Subrahmanyan Chandrasekhar was able to solve a
number of important dynamical problems in terms of probabilistically defined
random variables that evolved according to Langevin’s version of F = ma.
However, his famous review article, “Stochastic Problems in Physics and As-
tronomy” (Chandrasekhar 1943) is too advanced for students approaching the
subject for the first time.

This book is designed for those students. The theory is developed in steps,
new methods are tried on old problems, and the range of applications extends
only to the dynamics of those systems that, in the deterministic limit, are de-
scribed by linear differential equations. A minimal set of required mathe-
matical concepts is developed: statistical independence, expected values, the
algebra of normal variables, the central limit theorem, and Wiener and Ornstein-
Uhlenbeck processes. Problems append each chapter. I wanted the book to be
one I could give my own students and say, “Here, study this book. Then we
will do some interesting research.”

Writing a book is a lonely enterprise. For this reason I am especially grate-
ful to those who aided and supported me throughout the process. Ten years
ago Rick Shanahan introduced me to both the concept of and literature on
stochastic processes and so saved me from foolishly trying to reinvent the field.
Subsequently, I learned much of what I know about stochastic processes from
Daniel Gillespie’s excellent book (Gillespie 1992). Until his recent, untimely
death, Michael Jones of Los Alamos National Laboratory was a valued part-
ner in exploring new applications of stochastic processes. Memory eternal,
Mike! A sabbatical leave from Bethel College allowed me to concentrate on
writing during the 1999–2000 academic year. Brian Albright, Bill Daughton,
Chris Graber, Bob Harrington, Ed Staneck, and Don Quiring made valuable
comments on various parts of the typescript. Willis Overholt helped with the
figures. More general encouragement came from Reuben Hersh, Arnold Wedel,
and Anthony Gythiel. I am grateful for all of these friends.
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Random Variables

1.1 Random and Sure Variables

A quantity that, under given conditions, can assume different values is a
random variable. It matters not whether the random variation is intrinsic and
unavoidable or an artifact of our ignorance. Physicists can sometimes ignore
the randomness of variables. Social scientists seldom have this luxury.

The total number of “heads” in ten coin flips is a random variable. So also
is the range of a projectile. Fire a rubber ball through a hard plastic tube with a
small quantity of hair spray for propellant. Even when you are careful to keep the
tube at a constant elevation, to inject the same quantity of propellant, and to keep
all conditions constant, the projectile lands at noticeably different places in sev-
eral trials. One can imagine a number of causes of this variation: different initial
orientations of a not-exactly-spherical ball, slightly variable amounts of propel-
lant, and breeziness at the top of the trajectory. In this as well as in similar cases
we distinguish between systematic error and random variation. The former can,
in principle, be understood and quantified and thereby controlled or eliminated.
Truly random sources of variation cannot be associated with determinate phys-
ical causes and are often too small to be directly observed. Yet, unnoticeably
small and unknown random influences can have noticeably large effects.

A random variable is conceptually distinct from a certain or sure variable. A
sure variable is, by definition, exactly determined by given conditions. Newton
expressed his second law of motion in terms of sure variables. Discussions of
sure variables are necessarily cast in terms of concepts from the ivory tower of
physics: perfect vacuums, frictionless pulleys, point charges, and exact initial
conditions. The distance an object falls from rest, in a perfect vacuum, when
constantly accelerating for a definite period of time is a sure variable.

Just as it is helpful to distinguish notationally between scalars and vectors, it is
also helpful to distinguish notationally between random and sure variables. As
is customary, we denote random variables by uppercase letters near the end of
the alphabet, for example, V ,W , X ,Y , and Z , while we denote sure variables by
lowercase letters, for example, a, b, c, x , andy. The time evolution of a random
variable is called a random or stochastic process. Thus X (t)denotes a stochastic
process. The time evolution of a sure variable is called a deterministic process
and could be denoted by x(t). Sure variables and deterministic processes are
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familiar mathematical objects. Yet, in a sense, they are idealizations of random
variables and processes.

Modeling a physical process with sure instead of random variables involves
an assumption—sometimes an unexamined assumption. How do we know,
for instance, that the time evolution of a moon of Jupiter is a deterministic
process while the time evolution of a small grain of pollen suspended in water
is a random process? What about the phase of a harmonic oscillator or the
charge on a capacitor? Are these sure or random variables? How do we choose
between these two modeling assumptions?

That all physical variables and processes are essentially random is the more
general of the two viewpoints. After all, a sure variable can be considered
a special kind of random variable—one whose range of random variation is
zero. Thus, we adopt as a working hypothesis that all physical variables and
processes are random ones. The details of a theory of random variables and
processes will tell us under what special conditions sure variables and deter-
ministic processes are good approximations. We develop such a theory in the
chapters that follow.

1.2 Assigning Probabilities

A random variable X is completely specified by the range of values x it can
assume and the probability P(x) with which each is assumed. That is to say,
the probabilities P(x) that X = x for all possible values of x tell us everything
there is to know about the random variable X . But how do we assign a number
to “the probability that X = x”? There are at least two distinct answers to
this question—two interpretations of the word probability and, consequently,
two interpretations of the phrase random variable. Both interpretations have
been with us since around 1660, when the fundamental laws of mathematical
probability were first discovered (Hacking 1975).

Consider a coin toss and associate a random variable X with each possible
outcome. For instance, when the coin lands heads up, assign X = 1, and when
the coin lands tails up, X = 0. To determine the probability P(1) of a heads-up
outcome, one couldflip the coin many times under identical conditions and form
the ratio of the number of heads to the total number of coin flips. Call that ratio
f (1). According to the statistical or frequency interpretation of probability,
the ratio f (1) approaches the probability P(1) in the limit of an indefinitely
large number of flips. One virtue of the frequency interpretation is that it
suggests a direct way of measuring or, at least, estimating the probability of a
random outcome. The English statistician J. E. Kerrich so estimated P(1) while
interned in Denmark during World War II (Kerrich 1946). He flipped a coin
10,000 times and found that heads landed uppermost in 5067 “spins.” Therefore,
P(1) ≈ f (1) = 0.5067—at least for Kerrich’s coin and method of flipping.
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Figure 1.1. Frequency of heads, f (1), versus number of flips, n. Replotted, from
Kerrich 1946.

Kerrich’s was not the first heroic frequency measurement. In 1850 the Swiss
astronomer Wolf rolled one white and one red die 20,000 times, kept track
of the results, and determined the frequency of each outcome (Bulmer 1967).
Also, a certain nineteenth-century English biologist Weldon also rolled twelve
dice 26,306 times and recorded the number of 5s and 6s (Fry 1928).

That actual events can’t be repeated ad infinitum doesn’t invalidate the fre-
quency interpretation of probability any more than the impossibility of a perfect
vacuum invalidates the law of free fall. Both are idealizations that make a claim
about what happens in a series of experiments as an unattainable condition is
more and more closely approached. In particular, the frequency interpretation
claims that fluctuations in f (1) around P(1) become smaller and smaller as the
number of coin flips becomes larger and larger. Because Kerrich’s data, in fact,
has this feature (see figure 1.1), his coin flip can be considered a random event
with its defining probabilities, P(1) and P(0), equal to the limiting values of
f (1) and f (0).

An alternative method of determining P(1) is to inspect the coin and, if
you can find no reason why one side should be favored over the other, simply
assert that P(1) = P(0) = 1/2. This method of assigning probabilities is
typical of the so-called degree of belief or inductive interpretation of probability.
According to this view, a probability quantifies the truth-value of a proposition.
In physics we are primarily concerned with propositions of the form X =
x . In assigning an inductive probability P(X = x), or simply P(x), to the
proposition X = x , we make a statement about the degree to which X = x is
believable. Of course, if they are to be useful, inductive probabilities should
not be assigned haphazardly but rather should reflect the available evidence
and change when that evidence changes. In this account probability theory
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extends deductive logic to cases involving partial implication—thus the name
inductive probability. Observe that inductive probabilities can be assigned to
any outcome, whether repeatable or not.

The principle of indifference, devised by Pierre Simon Laplace (1749–1827),
is one procedure for assigning inductive probabilities. According to this prin-
ciple, which was invoked above in asserting that P(1) = P(0) = 1/2, one
should assign equal probabilities to different outcomes if there is no reason to
favor one outcome over any other. Thus, given a seemingly unbiased six-sided
die, the inductive probability of any one side coming up is 1/6. The principle
of equal a priori probability, that a dynamical system in equilibrium has an
equal probability of occupying each of its allowed states, is simply Laplace’s
principle of indifference in the context of statistical mechanics. The principle
of maximum entropy is another procedure for assigning inductive probabilities.
While a good method for assigning inductive probabilities isn’t always obvious,
this is more a technical problem to be overcome than a limitation of the concept.

That the laws of probability are the same under both of these interpretations
explains, in part, why the practice of probabilistic physics is much less contro-
versial than its interpretation, just as the practice of quantum physics is much
less controversial than its interpretation. For this reason one might be tempted
to embrace a mathematical agnosticism and be concerned only with the rules
that probabilities obey and not at all with their meaning. But a scientist or
engineer needs some interpretation of probability, if only to know when and to
what the theory applies.

The best interpretation of probability is still an open question. But probability
as quantifying a degree of belief seems the most inclusive of the possibilities.
After all, one’s degree of belief could reflect an in-principle indeterminism or
an ignorance born of human finitude or both. Frequency data is not required
for assigning probabilities, but when available it could and should inform one’s
degree of belief. Nevertheless, the particular random variables we study also
make sense when their associated probabilities are interpreted strictly as limits
of frequencies.

1.3 The Meaning of Independence

Suppose two unbiased dice are rolled. If the fact that one shows a “5” doesn’t
change the probability that the other also shows a “5,” the two outcomes are said
to be statistically independent, or simply independent. When the two outcomes
are independent and the dice unbiased, the probability that both dice will show
a “5” is the product (1/6)(1/6) = 1/36. While statistical independence is the
rule among dicing outcomes, the random variables natural to classical physics
are often statistically dependent. For instance, one usually expects the location
X of a particle to depend in some way upon its velocity V .
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Let’s formalize the concept of statistical independence. If realization of
the outcome X = x does not change the probability P(y) that outcome Y =
y obtains and vice-versa, the outcomes X = x and Y = y are statistically
independent and the probability that they occur jointly P(x&y) is the product
P(x)P(y), that is,

P(x&y) = P(x)P(y). (1.3.1)

When condition (1.3.1) obtains for all possible realizations x and y, the
random variables X and Y are said to be statistically independent. If, on the
other hand, the realization X = x does change the probability P(y) that Y = y
or vice-versa, then

P(x&y) �= P(x)P(y) (1.3.2)

and the random variables X and Y are statistically dependent.
The distinction between independent and dependent random variables is cru-

cial. In the next chapter we construct a numerical measure of statistical depen-
dence. And in subsequent chapters we will, on several occasions, exploit special
sets of explicitly independent and dependent random variables.

Problems

1.1. Coin Flipping. Produce a graph of the frequency of heads f (1) versus
the number of coin flips n. Use data obtained from

a. flipping a coin 100 times,
b. pooling your coin flip data with that of others, or
c. numerically accessing an appropriate random number generator 10,000

times.

Do fluctuations in f (1) obtained via method a, b, and c diminish, as do those
in figure 1.1, as more data is obtained?

1.2 Independent Failure Modes. A system consists of n separate com-
ponents, each one of which fails independently of the others with probability
Pi where i = 1 . . . n. Since each component must either fail or not fail, the
probability that the i th component does not fail is 1 − Pi .

a. Suppose the components are connected in parallel so that the failure
of all the components is necessary to cause the system to fail. What
is the probability the system fails? What is the probability the system
functions?

b. Suppose the components are connected in series so that the failure of
any one component causes the system to fail. What is the probability
the system fails? (Hint: First, find the probability that all components
function.)
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Expected Values

2.1 Moments

The expected value of a random variable X is a function that turns the prob-
abilities P(x) into a sure variable called the mean of X . The mean is the one
number that best characterizes the possible values of a random variable. We
denote the mean of X variously by mean{X} and 〈X〉 and define it by

〈X〉 =
∑

i

xi P(xi ) (2.1.1)

where the sum is over all possible realizations xi of X . Thus, the mean number
of dots showing on an unbiased die is (1+2+3+4+5+6)/6 = 3.5. The square
of a random variable is also a random variable. If the possible realizations of
X are the numbers 1, 2, 3, 4, 5, and 6, then their squares, 1, 4, 9, 16, 25, and
36, are the possible realizations of X2. In fact, any algebraic function f (x)

of a random variable X is also a random variable. The expected value of the
random variable f (X) is denoted by 〈 f (x)〉 and defined by

〈 f (x)〉 =
∑

i

f (xi )P(xi ). (2.1.2)

The mean 〈X〉 parameterizes the random variable X , but so also do all the
moments 〈Xn〉 (n = 0, 1, 2, . . .) and moments about the mean 〈(X − 〈X〉)n〉.
The operation by which a random variable X is turned into one of its moments
is one way of asking X to reveal its properties, or parameters. Among the
moments about the mean,

〈(x − 〈X〉)0〉 = 〈1〉
=

∑
i

P(x)

= 1 (2.1.3)

simply recovers the fact that probabilities are normalized. And

〈(X − 〈X〉)1〉 =
∑

i

(x1 − 〈X〉)P(xi )
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=
∑

i

xi P(xi ) − 〈X〉
∑

i

P(xi )

= 〈X〉 − 〈X〉〈1〉
= 0 (2.1.4)

follows from normalization (2.1.3) and the definition of the mean (2.1.1).
Higher order moments (with n ≥ 2 ) describe other properties of X . For
instance, the second moment about the mean or the variance of X , denoted by
var{X} and defined by

var{X} = 〈(X − 〈X〉)2〉, (2.1.5)

quantifies the variability, or mean squared deviation, of X from its mean 〈X〉.
The linearity of the expected value operator 〈〉 (see section 2.2) ensures that
(2.1.5) reduces to

var{X} = 〈X2 − 2X〈X〉 + 〈X〉2〉
= 〈X2〉 − 2〈X〉2 + 〈X〉2

= 〈X2〉 − 〈X〉2. (2.1.6)

The mean and variance are sometimes denoted by the Greek letters µ and σ 2,
respectively, and

√
σ 2 = σ is called the standard deviation of X . The third

moment about the mean enters into the definition of skewness,

skewness{X} = 〈(X − µ)3〉
σ 3

, (2.1.7)

and the fourth moment into the kurtosis,

kurtosis{X} = 〈(X − µ)4〉
σ 4

. (2.1.8)

The skewness and kurtosis are dimensionless shape parameters. The former
quantifies the asymmetry of X around its mean, while the latter is a measure of
the degree to which a given variance σ 2 is accompanied by realizations of X
close to (relatively small kurtosis) and far from (large kurtosis) µ ± σ . Highly
peaked and long-tailed probability functions have large kurtosis; broad, squat
ones have small kurtosis. See Problem 2.1, Dice Parameters, for practice in
calculating parameters.
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2.2 Mean Sum Theorem

The sum of two random variables is also a random variable. As one might
expect, the probabilities and parameters describing X + Y are combinations of
the probabilities and parameters describing X and Y separately. The expected
value of a sum is defined in terms of the joint probability P(xi&yi ) that both
X = xi and Y = yi , that is, by

〈X + Y 〉 =
∑

i

∑
j

(xi + yi )P(xi & y j ). (2.2.1)

That

〈X + Y 〉 =
∑

i

xi

∑
j

P(xi & yi ) +
∑

j

y j

∑
i

P(xi & yi )

=
∑

i

xi P(xi ) +
∑

j

y j P(y j )

= 〈X〉 + 〈Y 〉 (2.2.2)

follows from (2.2.1) and the laws of probability. For this reason, the expected
value brackets 〈 〉 can be distributed through each term of a sum. In purely ver-
bal terms: the mean of a sum is the sum of the means. An obvious generalization
of (2.2.2) expressing the complete linearity of the operator 〈 〉 is

〈aX + bY 〉 = a〈X〉 + b〈Y 〉, (2.2.3)

where a and b are arbitrary sure values.
We will have occasions to consider multiple-term sums of random variables

such as
X = X1 + X2 + · · · + Xn (2.2.4)

where n is very large or even indefinitely large. For instance, a particle’s
total displacement X in a time interval is the sum of the particle’s successive
displacements Xi (with i = 1, 2, . . . n) in successive subintervals. Because the
mean of a sum is the sum of the means,

〈X〉 = 〈X1〉 + 〈X2〉 + · · · + 〈Xn〉, (2.2.5)

or, equivalently,

mean

{
n∑

i=1

Xi

}
=

n∑
i=1

mean{Xi }. (2.2.6)

We call (2.2.5) and (2.2.6) the mean sum theorem.
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2.3 Variance Sum Theorem

The moments of the product XY are not so easily expressed in terms of
the separate moments of X and Y . Only in the special case that X and Y are
statistically independent can we make statements similar in form to the mean
sum theorem. In general,

〈XY 〉 =
∑

i

∑
j

xi y j P(xi & y j ). (2.3.1)

But when X and Y are statistically independent, P(xi & y j ) = P(xi )P(y j ) and
equation (2.3.1) reduces to

〈XY 〉 =
∑

i

xi P(xi )
∑

j

y j P(yy), (2.3.2)

which is equivalent to

〈XY 〉 = 〈X〉〈Y 〉, (2.3.3)

that is, the mean of a product is the product of the means. Statistical indepen-
dence also ensures that

〈XnY m〉 = 〈Xn〉〈Y m〉 (2.3.4)

for any n and m. If it happens that 〈XnY m〉 = 〈Xn〉〈Y m〉 for some but not all n
and m, then X and Y are not statistically independent.

When the random variables X and Y are dependent, we can’t count on 〈XY 〉
factoring into 〈X〉〈Y 〉. The covariance

cov{X, Y } = 〈(X − 〈X〉)(Y − 〈Y 〉)〉
= 〈[XY − 〈X〉Y − X〈Y 〉 + 〈X〉〈Y 〉]〉
= 〈XY 〉 − 〈X〉〈Y 〉 (2.3.5)

and the correlation coefficient

cor{X, Y } = cov{X, Y }√
var{X} var{Y } (2.3.6)

are measures of the statistical dependence of X and Y . The correlation coeffi-
cient establishes a dimensionless scale of dependence and independence such
that −1 ≤ cor{X, Y } ≤ 1. When X and Y are completely correlated, so that
X and Y realize the same values on the same occasions, we say that X = Y .
In this case cov{X, Y } = var{X} = var{Y } and cor{X, Y } = 1. When X and
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Y are completely anticorrelated, so that X = −Y , cor{X, Y } = −1. When X
and Y are statistically independent, so that 〈XY 〉 = 〈X〉〈Y 〉, cov{X, Y } = 0
and cor{X, Y } = 0. See Problem 2.2, Perfect Linear Correlation.

We exploit the concept of covariance in simplifying the expression for the
variance of a sum of two random variables. We call

var{X +Y } = 〈(X +Y −〈X +Y 〉)2〉
= 〈(X −〈X〉)2〉+〈(Y −〈Y 〉)2〉+2〈(X −〈X〉)(Y −〈Y 〉)〉
= 〈(X −〈X〉)2〉+〈(Y −〈Y 〉)2〉+2(〈XY 〉−〈X〉〈Y 〉)
= var{X}+var{Y }+2 cov{X, Y } (2.3.7)

the variance sum theorem. It reduces to the variance sum theorem for indepen-
dent addends

var{X + Y } = var{X} + var{Y } (2.3.8)

only when X and Y are statistically independent. Repeated application of
(2.3.8) to a sum of n statistically independent random variables leads to

var

{
N∑

i=1

Xi

}
=

N∑
i=1

var{Xi }. (2.3.9)

Thus, the variance of a sum of independent variables is the sum of their vari-
ances.

For instance, suppose we wish to express the mean and variance of the area
A of a rectangular plot of land in terms of the mean and variance of its length L
and width W . If L and W are statistically independent, 〈LW 〉 = 〈L〉〈W 〉 and
〈L2W 2〉 = 〈L2〉〈W 2〉. Then

mean{A} = 〈LW 〉
= 〈L〉〈W 〉 (2.3.10)

and

var{A} = 〈A2〉 − 〈A〉2

= 〈L2W 2〉 − 〈LW 〉2

= 〈L2〉〈W 2〉 − 〈L〉2〈W 〉2. (2.3.11)

Given that 〈L2〉 = var{L} + 〈L〉2 and 〈W 2〉 = var{W } + 〈W 〉2, equations
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(2.3.10) and (2.3.11) achieve the desired result. For other applications of the
mean and variance sum theorems, see Problem 2.3, Resistors in Series, and
Problem 2.4, Density Fluctuations.

2.4 Combining Measurements

How do we combine different measurements of the same random quantity?
Suppose, for instance, I use a meter stick to measure the width of the table on
which I write. My procedure produces a realization x1 of a random variable X1.
The variable X1 is random because the table sides are not perfectly parallel,
its ends are not well defined, I must visually interpolate between the smallest
marks on the rule to get the last digit, my eyesight is not so good, nor is my
hand perfectly steady, and the meter stick is not really rigid. Now, suppose I
tilt the table surface and measure its angle of incline to the horizontal, time a
marble rolling across the table width, measure the marble’s radius, and from this
data and the local acceleration of gravity compute the table width. For similar
reasons, this number x2 is also the realization of a random variable X2. Finally, I
use a laser interferometer and electronically count fringes as the interferometer
mirror is moved across the table. This procedure results in a number x3 that is
the realization of a third random variable X3. Among the three numbers x1, x2,
and x3, which is the best measurement of the table width? Assuming I avoid
systematic errors (for example, I don’t use a meter stick whose end has been
cut off), then

〈X1〉 = 〈X2〉 = 〈X3〉 (2.4.1)

because each procedure measures the same quantity—the table width. How-
ever, the different procedures accumulate random error in different amounts,
and these will be reflected in their different variances. If the interferometer
measurement x3 is the least prone to random error, then var{X3} < var{X1} and
var{X3} < var{X2}. In this sense, x3 is the best measurement.

But is x3 any better than the arithmetical average

x̄ = 1

3
(x1 + x2 + x3)? (2.4.2)

Before the mid-eighteenth century, scientists were reluctant to average mea-
surements that were produced in substantially different ways. They feared the
most precise measurement, in this case x3, would be “contaminated” by those
of lesser precision, in this case x2 and x3—that “errors would multiply, not
compensate” (Stigler 1986). The issue is easily resolved given the insight that
the average x̄ is a particular realization of the random variable

X̄ = 1

3
(X1 + X2 + X3). (2.4.3)
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Now X̄ has a mean,

〈X̄〉 = 〈X1〉 = 〈X2〉 = 〈X3〉, (2.4.4)

and a variance,

var{X̄} = 〈(X̄)2〉 − 〈X̄〉2

= 1

9
[var{X1} + var{X2} + var{X3}]. (2.4.5)

In deriving the latter we have assumed that X1, X2, and X3 are statistically
independent and employed the variance sum theorem for independent addends
(2.3.9). If var{X3} < var{X̄}, then x3 is a better measurement than x̄ , and x3

would be contaminated if averaged together with x1 and x2. If, on the other
hand, var{X̄} < var{X1}, var{X̄} < var{X2}, and var{X̄} < var{X3}, then the
average x̄ is better than any one of the values from which it is composed. In
this case the errors in x1, x2, and x3 compensate for each other in the average
x̄ . Either ordering is possible.

In general, although not always, the more terms included in the average,
the better statistic, or estimator, it becomes. Suppose we devise n different,
independent ways of making the same measurement. The random variable
representing the average measurement is

X̄ = (X1 + X2 + · · · + Xn)

n
, (2.4.6)

and the variance of the average is

var{X̄} =

n∑
i=1

var{Xi }

n2
. (2.4.7)

Because the numerator of the right-hand side of (2.4.7) increases (roughly)
with n and the denominator increases with n2, the variance of the average X̄
decreases with increasing n as 1/n. Thus, averaging is generally a good idea.

Averaging is, in fact, always helpful if all the measurements are made in the
same way. Jacob Bernoulli put it this way in 1731: “For even the most stupid of
men, by some instinct of nature, by himself and without any instruction (which
is a remarkable thing), is convinced that the more observations have been made,
the less danger there is of wandering from one’s goal” (Stigler 1986). Hence,
if all the measurements are made in the same way,

var{X1} = var{X2} = . . . var{Xn} (2.4.8)

and given (2.4.7), the variance of the average is

var{X̄} = var{X1}
n

. (2.4.9)
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Figure 2.1. Resistors in series.

Furthermore, the standard deviation of the average is

std{X̄} =
√

var{X̄}

= std{X1}√
n

. (2.4.10)

Thus, the more terms included in the average, the smaller the standard deviation
of the average. Asn becomes indefinitely large, X̄ approaches a random variable
whose variance vanishes, that is, X̄ approaches the sure value 〈X̄〉.

The standard deviation divided by the mean,

std{X̄}
〈X̄〉 = 1√

n

std{X1}
〈X1〉 , (2.4.11)

measures the precision of a particular measurement and is called the coefficient
of variation. The smaller the coefficient of variation, the more likely is each
realization of X̄ close to 〈X̄〉. Problem 2.4, Density Fluctuations, applies this
mathematics in another context.

Problems

2.1. Dice Parameters. An unbiased die realizes each of its values, 1, 2,
3, 4, 5, and 6, with equal probability 1/6. Find the mean, variance, standard
deviation, skewness, and kurtosis of the random variable X so defined.

2.2. Perfect Linear Correlation. Two random variables X and Y are re-
lated by Y = mX + b. This means that every realization xi of X is related to
a realization yi of Y by yi = mxi + b where m and b are sure variables. Prove
that cor{X, Y } = m/

√
m2 = sgn{m} where sgn{m} is the sign of m.

2.3. Resistors in Series. You are given a box of n carbon resistors (see
figure 2.1). On each the manufacturer has color-coded a nominal resistance,
which we understand to be a mean{Ri }, and a dimensionless “tolerance” or
“precision” ti whose definition we take to be

ti =
√

var{Ri }
mean{Ri } × 100%

where i = 1 . . . n. Assume the resistances Ri are statistically independent
random variables.
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a. Write expressions for the mean, variance, and tolerance of the total
resistance R of a series combination of n identically defined resistors
in terms of the mean{Ri } and tolerance ti of one resistor.

b. Suppose the box contains 10 nominally 5-Ohm resistors, each with a
20% tolerance. Calculate the mean, variance, and tolerance of the resis-
tance of their series combination. Is the tolerance of this combination
less than the tolerance of the separate resistors? It should be.

2.4. Density Fluctuations. The molecular number density ρ = N/V of
a gas contained in a small open region of volume V within a larger closed
volume V0 fluctuates as the number of molecules N in V changes. To quan-
tify fluctuations in the density ρ, let the larger volume V0 contain exactly N0

molecules (figure 2.2). The number N can be considered a sum of statistically
independent auxiliary “indicator” random variables Xi , defined so that Xi = 1
when molecule i is within volume V and Xi = 0 when it is not. Then,

N =
No∑

i=1

Xi .

Assume, as is reasonable, that when the gas is in equilibrium,

P(Xi = 1) = V

Vo

Figure 2.2. The number of molecules N within a small open volume V is a random
variable. The total number of molecules N0 within the larger closed volume V0 is a sure
variable.
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and

P(Xi = 0) = Vo − V

Vo

for all i .

a. Compute mean{Xi } and var{Xi } in terms of the constants Vo, and V .
b. Determine mean{N }, var{N }, and the coefficient of variation√

var{N }/ mean{N }

in terms of No, Vo, and V .
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Random Steps

3.1 Brownian Motion Described

We are ready to use our knowledge of how random variables add and multiply
to model the simplest of all physical processes—a single particle at rest. If at
one instant a particle occupies a definite position and has zero velocity, it will,
according to Newton’s first law of motion, continue to occupy the same position
as long as no forces act on it. Consider, though, whether this deterministic (and
boring) picture can ever be a precise description of any real object. Even when
great care is taken to isolate the particle, there are always air molecules around
to nudge it one way or the other.

If the particle is very small (≤ 50 × 10−6m), the net effect of these nudges
can be observed in an optical microscope. These Brownian motions are so
called after the Scottish naturalist and cleric Robert Brown (1773–1858), who
investigated the phenomenon in 1827. (That Jan IngenHousz [1730–1799)], a
Dutch-born biologist, observed and described Brownian motion even earlier,
in 1785, is just one of many illustrations of Stigler’s Law of Eponymy—which
states that no discovery is named after its original discoverer.) When looking
through a microscope at grains of pollen suspended in water, Brown noticed
that a group of grains always disperses and that individual grains move around
continuously and irregularly. Brown originally thought that he had discovered
the irreducible elements of a vitality common to all life forms. However, upon
systematically observing these irregular motions in pollen from live and dead
plants, in pieces of other parts of plants, in pieces of animal tissue, in fossilized
wood, in ground window glass, various metals, granite, volcanic ash, siliceous
crystals, and even in a fragment of the Sphinx, he gave up that hypothesis.

We now know that Brownian motion is a consequence of the atomic theory of
matter. When a particle is suspended in anyfluid media (air as well as water), the
atoms or molecules composing the fluid hit the particle from different directions
in unequal numbers during any given interval. While the human eye cannot
distinguish the effect of individual molecular impacts, it can observe the net
motion caused by many impacts over a period of time.
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3.2 Brownian Motion Modeled

Let’s model Brownian motion as a sum of independent random displace-
ments. Imagine the Brownian particle starts at the origin x = 0 and is free to
move in either direction along the x-axis. The net effect of many individual
molecular impacts is to displace the particle a random amount Xi in each interval
of duration �t . Assume each displacement Xi realizes one of two possibilities,
Xi = +�x or Xi = −�x , with equal probabilities ( 1

2 ) and that the various Xi

are statistically independent. After n such intervals the net displacement X is

X = X1 + X2 + · · · + Xn. (3.2.1)

This is the random step or random walk model of Brownian motion. According
to the model,

〈X1〉 = 〈X2〉 = . . . 〈Xn〉 = 0 (3.2.2)

since 〈Xi 〉 = (1/2)(+�x) + (1/2)(−�x) = 0 for each i = 1, 2, . . . n. There-
fore, the mean sum theorem yields

〈X〉 = 〈X1〉 + 〈X2〉 + · · · + 〈Xn〉
= 0, (3.2.3)

that is, while any single Brownian particle may drift from its starting point, the
mean of the displacement 〈X〉 maintains its initial (zero) value. Now,

var{X1} = var{X2} = . . . var{Xn} = �x2 (3.2.4)

since

var{Xi } = 〈X2
i 〉 − 〈Xi 〉2

= 〈X2
i 〉

=
(

1

2

)
(+�x)2 +

(
1

2

)
(−�x)2

= �x2 (3.2.5)

for each i = 1, 2, . . . n. For this reason, and because the Xi are statistically
independent, the variance sum theorem yields

〈X2〉 =
n∑

i=1

var{Xi }

= n�x2. (3.2.6)
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Figure 3.1. Random walk in two dimensions realized by taking alternate steps along the
vertical and horizontal axes and determining the step polarity (left/right and up/down)
with a coin flip.

Since the total duration of the walk is t = n�t , equation (3.2.6) is equivalent
to

〈X2〉 =
(

�x2

�t

)
t. (3.2.7)

This equation expresses the signature property of Brownian motion: the vari-
ance 〈X2〉 of the net displacement X is proportional to the time t during which
that displacement is made.

It is easy to generalize the one-dimensional random walk in several ways.
For instance, figure 3.1 shows the effect of taking alternate displacements in
different perpendicular directions and so creating Brownian motion in a plane.
See also Problem 3.1 Two-Dimensional Random Walk. One can also suppose
that either the probabilities or the step sizes are different in different direc-
tions. See, for instance, Problems 3.2, Random Walk with Hesitation, and 3.3,
Multistep Walk.

3.3 Critique and Prospect

In spite of its attractions, the random step process is deficient as a physical
model of Brownian motion. One deficiency is that the variance of the total dis-
placement, as described in equation (3.2.7), seems to depend separately upon the
arbitrary magnitudes �x and �t through the ratio (�x2/�t). Unless (�x2/�t)
is itself a physically meaningful constant, the properties of the total displace-
ment X will depend on thefineness with which it is analyzed into subincrements.
That (�x2/�t) is, indeed, a characteristic constant—equal to twice thediffusion
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constant—will, in chapter 6, be shown to follow from the requirement of conti-
nuity, but in the present oversimplified account this claim remains unmotivated.

Another difficulty with the random step model of Brownian motion is that
it lacks an obvious connection to Newton’s second law. Why shouldn’t the
integrated second law,

V (t) = V (0) + 1

M

∫ t

0
F(t ′) dt′, (3.3.1)

apply even when the individual impulses
∫ ti +�t

ti
F(t ′) dt′ composing the total

impulse
∫ t

0 F(t ′) dt′ are delivered randomly? In such case we might attempt
to express the right-hand side of (3.3.1) as a sum of N independent, random
impulses per unit mass, each with vanishing mean and a finite variance equal
to, say, �v2, having units of speed squared. This strategy leads to

〈V 2〉 =
(

�v2

�t

)
t, (3.3.2)

an absurd result because a kinetic energy M〈V 2〉/2 cannot grow without bound.
We shall see that Brownian motion can, in fact, be made consistent with New-
ton’s second law, but first some new concepts are required.

Problems

3.1. Two-Dimensional Random Walk.

a. Produce a realization of a two-dimensional random walk with the algo-
rithm described in the caption of figure 3.1. Use either 30 coin flips or,
a numerical random number generator with a large (n ≥ 100) number
of steps n.

b. Plot X2 + Y 2 versus n for the realization chosen above.

3.2. Random Walk with Hesitation. Suppose that in each interval�t there
are three equally probable outcomes: particle displaces to the left a distance
�x , particle displaces to the right a distance �x , or particle hesitates and stays
where it is. Show that the standard deviation of the net displacement X after n
time intervals, each of duration �t , is

√
〈X2〉 = �x

√
2n/3.

3.3. Multistep Walk. Let the independent displacements Xi of an n-step
random walk be identically distributed so that mean{X1} = mean{X2} =
. . . mean{Xn} = µ and var{X1} = var{X2} = . . . var{Xn} = σ 2. The net
displacement is given by X = X1 + X2 + · · · + Xn .

a. Find mean{X}, var{X}, and 〈X2〉 as a function of n.
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b. A steady wind blows the Brownian particle, causing its steps to the right
to be larger than those to the left. That is, the two possible outcomes
of each step are X1 = �xr and X2 = −�xl where �xr > �xl > 0.
Assume the probability of a step to the right is the same as the probability
of a step to the left. Find mean{X}, var{X}, and 〈X2〉 after n steps.

3.4. Autocorrelation. According to the random step model of Brownian
motion, the particle position is, after n random steps, given by

X (n) =
n∑

i=1

Xi

where the Xi are independent displacements with 〈Xi 〉 = 0 and 〈X2
i 〉 = �x2

for all i . Of course, after m random steps (with m ≤ n), the particle position is
X (m). In general, X (n) and X (m) are different random variables.

a. Find cov{X (n), X (m)}.
b. Find cor{X (n), X (m)}.
c. Show that X (n) and X (m)become completely uncorrelated asm/n → 0

and completely correlated as m/n → 1. The quantity cov{X (n), X (m)}
is sometimes referred to as an autocovariance and cor{X (n), X (m)} as
an autocorrelation because they compare the same process variable at
different times.

3.5. Frequency of Heads. Suppose the number of heads N in n coin flips
is given by

N =
n∑

i=1

Xi ,

where Xi = 1 means that the i th flip has turned up heads and Xi = 0 that it
has turned up tails. Assume these two outcomes are equally probable.

a. Find mean{Xi } and var{Xi }.
b. Find mean{N } and var{N }.
c. Find mean{N/n} and var{N/n}.
d. Is the answer to part c consistent with the behavior of the frequency of

heads f (1) = N/n in figure 1.1 (on page 3)?
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Continuous Random Variables

4.1 Probability Densities

In order to describe the position of a Brownian particle more realistically
we require a language that allows its net displacement X to realize values
lying within a continuous range. The classical physical variables whose time
evolution we wish to model (positions, velocities, currents, charges, etc.) are of
this kind. Therefore, in place of the probability P(x) that X = x we require a
probability p(x) dx that X falls within the interval (x, x + dx). The function
p(x) is a probability density. Because probabilities are dimensionless, the
probability density p(x) has the same units as 1/x . A continuous random
variable X is completely defined by its probability density p(x).

The probability p(x) dx obeys the same rules as does P(x), even if these
must be formulated somewhat differently. For instance, probability densities
are normalized, ∫ ∞

−∞
p(x) dx = 1, (4.1.1)

because some value X = x must be realized. The probability density p(x)

must be non-negative. Also, two random variables X and Y are statistically
independent if and only if their joint, p(x & y), and individual, p(x) and p(y),
probability densities are related by

p(x & y) = p(x)p(y). (4.1.2)

The expected value 〈X〉 of a continuous random variable X is given by

〈X〉 =
∫ ∞

−∞
xp(x) dx . (4.1.3)

We will have occasions to adopt specific probability densities p(x) as modeling
assumptions. Among them are those defining the uniform, normal, and Cauchy
random variables. Also see Problems 4.3, Exponential Random Variable, and
4.4, Poisson Random Variable.
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4.2 Uniform, Normal, and Cauchy Densities

The uniform random variable U (m, a) is defined by the probability density

p(x) = 1

2a
when (m − a) ≤ x ≤ (m + a);

p(x) = 0 otherwise. (4.2.1)

See figure 4.1. We say that U (m, a) is a uniform random variable with center
m and half-width a. Note that this density is normalized, so that

mean{U (m, a)} = 〈U (m, a)〉

=
∫ ∞

−∞
xp(x) dx

= 1

2a

∫ m+a

m−a
x dx

= m (4.2.2)

and that

var{U (m, a)} = 〈(U (m, a) − m)2〉

=
∫ ∞

−∞
(x − m)2 p(x) dx

Figure 4.1. Probability density defining a uniform random variable U (0, 1) with center
0 and half-width 1.
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= 1

2a

∫ m+a

m−a
(x − m)2 dx

= a2

3
. (4.2.3)

Other moments about the mean are given by

〈(X − 〈X〉)n〉 = 1

2a

∫ m+a

m−a
(x − m)n dx

= an+1 − (−a)n+1

2a(n + 1)
. (4.2.4)

Thus, 〈(X − 〈X〉)n〉 = 0 when n is odd.
U (m, a) represents a quantity about which we know nothing except that it

falls within a certain range (m − a, m + a). Numbers taken from analog and
digital measuring devices are of this kind. For instance, the “reading” 3.2 is
actually the random number U (3.2, 0.05) because its last significant digit, 2, is
the result of taking a number originally found with uniform probability density
somewhere within the interval (3.15, 3.25) and rounding it up or down. Digital
computers also employ particular realizations of uniform random numbers.

The normal random variable N (m, a2), defined by the probability density

p(x) = exp[−(x − m)2/2a2]√
2πa2

− ∞ ≤ x ≤ ∞ (4.2.5)

and illustrated in Figure 4.2, is especially useful in random process theory. The
parameters m and a2 are, by design, the mean and variance of N (m, a2). The
moments of N (m, a2) about its mean are given by

〈(N (m, a2) − m)n〉 = 1√
2πa2

∫ ∞

−∞
(x − m)n exp

[−(x − m)2

2a2

]
dx

= 1 · 3 · 5 . . . (n − 1) · an for even n, and

= 0 for odd n. (4.2.6)

From (4.2.6) we find that

kurtosis{N (m, a2)} = 〈(N (m, a2) − m)4〉
〈(N (m, a2) − m)2〉2

= 3a4

a4

= 3. (4.2.7)
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Figure 4.2. Probability density defining a normal random variable N (0, 1) with mean
0 and variance 1.

The kurtosis of a normal variable is taken as a standard of comparison. When
the kurtosis of a random variable is greater than 3, its probability density is said
to leptokurtic (after the Greek word λεπτoς , for “thin”), and when it is less
than 3, the probability density is platykurtic (after πλατυξ meaning “broad”).
For instance, the uniform density, which has a kurtosis of 1.8, is platykurtic.
The normal probability density function is also known as a Gaussian curve
or a bell curve, and, when molecular speeds are the independent variable, a
Maxwellian.

All random variables must obey the normalization law 〈X0〉 = 1, but the
other moments don’t even have to exist. In fact, the Cauchy random variable
C(m, a), with center m and half-width a, defined by

p(x) = (a/π)

(x − m)2 + a2
− ∞ ≤ x ≤ ∞ (4.2.8)

appears to have infinite even moments. Actually, neither the odd nor the even
moments of C(m, a) exist in the usual sense of an improper integral with lim-
its tending to ±∞. Thus C(m, a) is maximally leptokurtic, with a thin peak
and long tails (see figure 4.3). Still, C(m, a) can represent physically moti-
vated probability densities (see Problem 4.1, Single-Slit Diffraction). Spec-
tral line shapes, called Lorentzians, also assume this form. The Cauchy den-
sity takes its name from the French mathematician Augustin Cauchy (1789–
1857).



MOMENT-GENERATING FUNCTIONS 27

Figure 4.3. Probability density defining the Cauchy random variable C(0, 1), with
center 0 and half-width 1.

Figure 4.4 compares the uniform, normal, and Cauchy densities. In the limit
a → 0 of vanishing variance or half-width, each of the three random variables
U (m, a), N (m, a2), and C(m, a) collapses to its mean or center m. So we can
write

m = U (m, 0)

= N (m, 0)

= C(m, 0). (4.2.9)

4.3 Moment-Generating Functions

Moment-generating functions are a convenient way to calculate the moments
of a random variable. By definition, the moment-generating function Mx (t) of
the random variable X is the expected value of the function etx where t is an
auxiliary variable. Thus

MX (t) = 〈et X 〉. (4.3.1)

When X is a continuous variable with probability density p(x),

MX (t) =
∫ ∞

−∞
etx p(x) dx . (4.3.2)
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Figure 4.4. Probability densities of the uniform U (0, 1), normal N (0, 1), and Cauchy
C(0, 1) random variables.

Now, we can write the moments

〈Xn〉 =
∫ ∞

−∞
dxp(x)xn (4.3.3)

as

〈Xn〉 = lim
t→0

∫ ∞

−∞
dxp(x)

(
d

dt

)n

(etx )

= lim
t→0

(
d

dt

)n ∫ ∞

−∞
dxp(x)etx

= lim
t→0

(
d

dt

)n

MX (t). (4.3.4)

Thus, the moment 〈Xn〉 is the limit as t → 0 of the nth derivative of MX (t)
with respect to the auxiliary variable t . Taking derivatives is easier than doing
integrations—hence the convenience.

For example, the moment-generating function of the uniform variableU (m, a)

is

MU (t) = 1

2a

∫ m+a

m−a
etx dx

= et (m+a) − et (m−a)

2at
, (4.3.5)
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and that of a normal variable N (m, a2) is

MN (t) = 1√
2πa2

∫ ∞

−∞
dx exp

[
t x − (x − m)2

2a2

]
. (4.3.6)

By completing the square in the argument of the exponential, the latter reduces
to

MN (t) =
exp

[
mt + t2a2

2

]
√

2πa2

∫ ∞

−∞
dx exp

[−(x − m − ta2)2

2a2

]
. (4.3.7)

Given the substitution u = x − m − ta2 (4.3.7) becomes

MN (t) =
exp

[
mt + t2a2

2

]
√

2πa2

∫ ∞

−∞
du e−u2/2a2

= emt+a2t2/2, (4.3.8)

from which we can easily deduce expressions for the moments of a normal (see
Problem 4.2, Moments of a Normal). Since only random variables with finite
moments have a moment-generating function, the Cauchy variable C(m, a)

does not have one except in the special case when a = 0, in which case it
collapses to the sure variable m. The moment-generating function of any sure
variable m is Mm(t) = 〈emt 〉 = emt 〈1〉 = emt .

When they exist, moment-generating functions completely define a random
variable, or, alternatively, completely define its probability density. Showing
that two random variables have the same moment-generating function is equiv-
alent to showing that the two have identical probability densities, or that they,
are identically distributed. Herein lies the moment-generating function’s great-
est theoretical utility. For instance, if two variables, X1 and X2 , have the same
moment-generating function, namely eµt+σ 2t2/2, both are normal variables with
mean µ and variance σ 2. We exploit this property of moment-generating func-
tions in chapter 5. Recall, though, that two random variables can be identically
distributed without being correlated.

Problems

4.1. Single-Slit Diffraction. According to the probability interpretation of
light, formulated by Max Born in 1926, light intensity at a point is proportional
to the probability that a photon exists at that point.

a. What is the probability density p(x) that a single photon passes through
a narrow slit and arrives at position x on a screen parallel to and at a
distance d beyond the barrier? Each angle of forward propagation θ is
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the uniform random variable U (0, π/2). See Figure 4.5. [Hint: Each
differential range of realizations (θ + dθ, θ) maps into a differential
range of realizations (x +dx, x) in such a way that p(θ)dθ = p(x) dx ,
where the relationship between θ and x is clear from the geometry.]

b. The light intensity produced by diffraction through a single, narrow slit,
as found in almost any introductory physics text, is proportional to

1

r2

sin2[(πa/λ) sin θ)]

sin2 θ

where r is the distance from the center of the slit to an arbitrary place on
the screen, a is the slit width, and λ the light wavelength. Show that for
slits so narrow that πa/λ � 1, the above light intensity is proportional
to the photon probability density derived in part a.

4.2. Moments of a Normal. Starting from the moment-generating function
for N (0, a2), as provided in equation (4.3.8), show that 〈N (0, σ 2)n〉 = 1 · 3 ·
5 . . . (n − 1) · σ n for even n.

4.3. Exponential Random Variable. Also according to Born’s interpreta-
tion of light, the intensity of light exiting a slab of uniformly absorbing media
is proportional to the probability that a photon will survive passage through the
slab. If, as is reasonable to assume, the light absorbed d I (x) in a differentially
thin slab is proportional to its local intensity I (x) and to the slab thickness dx ,
then d I (x) = −λI (x)dx and I (x) ∝ e−λx . When normalized (on the semi-
infinite line x ≥ 0), the intensity of surviving photons becomes the photon
probability density

p(x) = λe−λx x ≥ 0

= 0 x < 0.

Figure 4.5. Single-slit diffraction.
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The random variable so defined is called the exponential random variable E(λ).

a. Show that mean{E(λ)} = 1/λ.
b. Find the moment-generating function ME (t) of E(λ) for t < λ.
c. Use the moment-generating function to find var{E(λ)}.
d. Also, find 〈E(λ)n〉 for arbitrary integer n.

4.4. Poisson Random Variable. The probability that n identical outcomes
are realized in a very large set of statistically independent and identically dis-
tributed random variables when a each outcome is extremely improbable is
described by the Poisson probability distribution

Pn = e−µµn

n!
,

where n = 0, 1, 2, 3, . . . is the number of outcomes. For instance, the number
of decays per second of a sample of the radioisotope U 238

92 is a Poisson random
variable, because the probability that any one nuclei will decay in a given second
is very small and the number of nuclei within a macroscopic sample is very
large. By definition, µ = ∑n=∞

n=0 nPn , which one can demonstrate as

∞∑
n=0

nPn = e−µ
∞∑

n=0

µn+1

n!

= µe−µ
∞∑

n=0

µn

n!

= µe−µ

[
1 + µ + µ2

2!
+ µ3

3!
+ · · ·

]
= µ.

The last step follows from the Taylor series expansion,

eµ = 1 + µ + µ2

2!
+ µ3

3!
+ · · · .

a. Given that the average number of decays per second registered by a
Geiger counter is 2, what is the probability that within a series of one-
second rate measurements the number of decays per second will be 5?

b. Show that Pn is normalized—that is, show that

1 =
∞∑

n=0

e−µµn

n!
.
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Normal Variable Theorems

5.1 Normal Linear Transform Theorem

Normal random variables have several properties that are especially valuable
in applied statistics and random process theory. Here we formulate the nor-
mal linear transform theorem, the normal sum theorem, and the central limit
theorem. In proving these theorems, we will exploit the properties of moment-
generating functions.

According to the normal linear transform theorem, a linear function of a
normal variable is another normal variable with appropriately modified mean
and variance. Thus

α + βN (m, a2) = N (α + βm, β2a2). (5.1.1)

If in (5.1.1) we set m = 0 and a2 = 1, we have

α + βN (0, 1) = N (α, β2). (5.1.2)

Therefore, an arbitrary normal variable N (α, β2) is a linear transform of a
so-called unit normal N (0, 1) with a mean of zero and a variance of one.

The proof of the normal linear transform theorem follows from identifying
the moment-generating function of α+βN (m, a2) with the moment-generating
function of N (α + βm, β2a2). For the former we have, by definition,

Mα+βN (m,a2)(t) = 〈et (α+βN [m,a2])〉
= etα〈etβN (m,a2)〉
= etα MN (m,a2)(tβ). (5.1.3)

From (4.3.8) we know that

MN (m,a2)(t) = emt+ a2 t2

2 , (5.1.4)

and so

MN (m,a2)(tβ) = emtβ+ a2 t2β2

2 , (5.1.5)
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which when substituted into the right-hand side of (5.1.3) yields

Mα+βN (m,a2)(t) = et (α+βm)+ β2a2 t2

2 . (5.1.6)

The right-hand side of (5.1.6) is, by definition, the moment-generating function
of N (α + βm, β2a2). That is, (5.1.6) is equivalent to

Mα+βN (m,a2)(t) = MN (α+βm,β2a2)(t). (5.1.7)

Because the random variables α + βN (m, a2) and N (α + βm, β2a2) have
the same moment-generating function, they are identically distributed, and,
consequently, the normal linear transform theorem (5.1.1) is proved. See also
Problem 5.1, Uniform Linear Transform.

5.2 Normal Sum Theorem

According to the normal sum theorem, two statistically independent normal
variables sum to another normal variable. In particular,

N (m1 + m2, a2
1 + a2

2) = N1(m1, a2
1) + N2(m2, a2

2) (5.2.1)

when N1(m1, a2
1) and N2(m2, a2

2) are statistically independent. The normal sum
theorem is, of course, consistent with the already established fact (in sections 2.2
and 2.3) that the mean and variance of a sum of statistically independent random
variables is the sum of the individual means and variances.

The proof of the normal sum theorem also follows from the properties of
moment-generating functions. Suppose that X1 = N1(m1, a2

1) and X2 =
N2(m2, a2

2). Then, according to (4.3.8), MX1(t) = em1t+ a2
1

t2

2 and MX2(t) =
em2t+ a2

2
t2

2 .

MX1+X2(t) = 〈et (X1+X2)〉
= 〈et X1〉〈et X2〉
= MX1(t)MX2(t)

= et (m1+m2)+
t2(a2

1
+a2

2
)

2 (5.2.2)

where, in the second line, we have assumed that X1 and X2 are statistically
independent. The right-hand side of (5.2.2) is now in the form of the moment-
generating function of N (m1 + m2, a2

1 + a2
2). Thus, the moment-generating

function of N (m1, a2
1) + N2(m2, a2

2) is identical to the moment-generating
function of N (m1 + m2, a2

1 + a2
2), and the normal sum theorem for statistically

independent addends has been proved.
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Together, the normal linear transform and normal sum theorems establish that
any linear function of statistically independent normal variables is another nor-
mal variable. Although uniform variables U (m, a) and most random variables
do not sum to their own kind, Cauchy variables C(m, a) do so. See Problem 5.2,
Adding Uniform Variables. The analog theorems for Cauchy variables are

α + βC(m, a) = C(α + βm, βa) (5.2.3)

and
C1(m1, a1) + C2(m2, a2) = C(m1 + m2, a1 + a2). (5.2.4)

The latter requires that C1(m1, a1) and C2(m2, a2) be statistically independent.
Because C(m, a) has infinite moments, we cannot prove (5.2.3) and (5.2.4)
with moment-generating functions. The most direct proof of (5.2.3) and (5.2.4)
exploits the so-called random variable transform theorem (Gillespie 1992).

5.3 Jointly Normal Variables

We can make an even more powerful statement: statistically dependent nor-
mals, if jointly normal, also sum to a normal. Two variables are jointly normal
when they are each linear combinations of a single set of independent normals.
To illustrate, consider the variables defined by

X1 = aN1(0, 1) (5.3.1)

and
X2 = bN1(0, 1) + cN2(0, 1). (5.3.2)

Here a, b, and c are constants and N1(0, 1) and N2(0, 1) are, by specification,
statistically independent unit normals. Here, as before, the different subscripts
attached to N (0, 1) denote statistical independence; identical subscripts would
denote complete correlation. Thus, the variables X1 and X2 are, by definition,
jointly normal. The property of joint normality covers a number of possible
relationships. When b �= 0 and a �= 0, X1 and X2 are statistically dependent
normal variables. When c = 0 and a = b, X1 and X2 are completely correlated,
and, when b = 0, they are statistically independent. Yet, according to the
normal sum (5.2.1) and linear transform (5.1.1) theorems,

X1 + X2 = aN1(0, 1) + bN1(0, 1) + cN2(0, 1)

= (a + b)N1(0, 1) + cN2(0, 1)

= N1(0, (a + b)2) + N2(0, c2)

= N (0, (a + b)2 + c2). (5.3.3)

Therefore, dependent but jointly distributed normals sum to a normal. See
Problem 5.3, Dependent Normals.
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Jointly normal variables arise naturally in the multivariate systems we discuss
in chapters 8 and 9. There we exploit another of their special properties: two
jointly normal variables,

Y1 = a0 +
m∑

i=1

ai Ni (0, 1) (5.3.4)

and

Y2 = b0 +
m∑

i=1

bi Ni (0, 1), (5.3.5)

are completely determined by only five moments: mean{Y1} = a0, var{Y1} =∑m
i=1 a2

i , mean{Y2} = b0, var{Y2} = ∑m
i=1 b2

i , and cov{Y1, Y2} = ∑m
i=1 aibi ,

even when the number m of independent unit normals Ni (0, 1) out of which Y1

and Y2 are composed is larger than five. Thus, variations among the ai and bi

which preserve these five quantities do not change Y1 and Y2.
The proof of this statement is beyond the scope of this book, but may be

found in Springer (1979). Here we simply note that the probability density of
two jointly normal variables Y1 and Y2 is

p(y1 & y2) = 1

2πσ1σ2

√
1 − ρ2

e
−1

(1−ρ2)

[
(y1−µ1)2

2σ2
1

+ (y2−µ2)2

2σ2
2

−ρ
(y1−µ1)(y2−µ2)

σ1σ2

]
. (5.3.6)

For convenience, we have adopted the notationµ1 = mean{Y1}, µ2 = mean{Y2},
σ 2

1 = var{Y1}, σ 2
2 = var{Y2}, and ρ = cor{Y1, Y2}. Note that in (5.3.6)

p(y1 & y2) has the expected property that when Y1 and Y2 are statistically in-
dependent, ρ = 0 and the joint probability density p(y1 & y2) factors into a
product of two normal densities.

5.4 Central Limit Theorem

Can anything be said about the sum of random variables when the nature
of the individual addends is not known? Amazingly, under certain conditions,
the answer is yes. If the random variables X1, X2, . . . Xm are statistically
independent, their means and variances finite, and their number m large, the
sum

Sm = X1 + X2 + · · · + Xm (5.4.1)

is approximately normal with mean

µm =
m∑

i=1

mean{Xi } (5.4.2)

and variance

σ 2
m =

m∑
i=1

var{Xi }. (5.4.3)
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Approximating the sum Sm with N (µm, σ 2
m) works well because the approxi-

mation is based on the central limit theorem, according to which

lim
m→∞

Sm − µm

σm
= N (0, 1) (5.4.4)

when the Xi composing the sum Sm are statistically independent and have finite
means and variances. The central limit theorem is so called because it plays a
central role in the statistical sciences.

Repeated addition turns statistically independent non-normal variables with
finite means and variances into normal variables. Note, however, that the central
limit theorem makes no claim about how quickly normality is approached as
more terms are added to the sum Sm . One suspects that the closer to normal
the addends Xi are, the more quickly Sm approaches normality. After all,
normality is achieved with only two addends if the two are individually normal.
Alternatively, if the addends are sufficiently non-normal—for example, if the
addends are Cauchy variables C(m, a)—the central limit theorem doesn’t apply
and normality is never achieved.

We will prove the central limit theorem for the special case of identically dis-
tributed random addends Xi (i = 1, 2, . . . , m) for which moment-generating
functions exist and so for which all moments 〈Xn

i 〉 (n = 1, 2, . . .) are finite.
Then it will follow that µ0 = 〈Xi 〉 and σ 2

0 = 〈X2
i 〉 − 〈Xi 〉2 for all i . Con-

sequently, µm = mµ0 and σ 2
m = mσ 2

0 . As a first step, we form the random
variable

Zm = (Sm − µm)

σm

= (Sm − mµ0)√
mσ 2

0

. (5.4.5)

Given (5.4.1), we find that Zm can be expressed as

Zm =
m∑

i=1

(Xi − µ0)√
mσ 2

0

= 1√
m

m∑
i=1

Yi (5.4.6)

where the auxiliary variables

Yi = (Xi − µ0)

σ0
, (5.4.7)

by design, have mean{Yi } = 0 and var{Yi } = 1.
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The central limit theorem claims that Zm approaches the unit normal N (0, 1)

as m becomes indefinitely large. Our strategy is to prove that the moment-
generating function of Zm approaches the moment-generating function of the
unit normal N (0, 1) as m becomes indefinitely large. From (5.4.6) and the
definition of a moment-generating function (4.3.1), we find that

MZm (t) = M 1√
m

∑
Yi

(t)

=
〈
e

t√
m

∑m

i=1
Yi

〉
. (5.4.8)

Because the Xi and, consequently, the Yi are statistically independent,

MZm (t) =
〈
e

tY1√
m

〉 〈
e

tY2√
m

〉
· · ·

〈
e

tYm√
m

〉
. (5.4.9)

Because the Yi are identically distributed,

MZm (t) =
[〈

e
tY1√

m

〉]m

. (5.4.10)

Expanding the exponential etY1/
√

m inside (5.4.10) in a Taylor series, we find
that

MZm (t) =
[〈

1 + tY1√
m

+ t2Y 2
1

2!m
+ t3Y 3

1

3!m3/2
+ · · ·

〉]m

=
[
1 + t2

2!m
+ t3〈Y 3

1 〉
3!m3/2

+ · · ·
]m

(5.4.11)

since 〈Y1〉 = 0 and 〈Y 2
1 〉 = 1. Because all the moments 〈Y p

1 〉 are assumed
finite, only the first two terms of the “multinomial” expansion (5.4.11) survive
the m → ∞ limit. Thus,

lim
m→∞ MZm (t) = lim

m→∞

[
1 + t2

2m

]m

(5.4.12)

or, finally,
lim

m→∞ MZm (t) = et2/2. (5.4.13)

The last step follows from the basic properties of the exponential function
(Courant and Robbins 1941). Since et2/2 is the moment-generating function
of N (0, 1), (5.4.13) proves the central limit theorem for identically distributed
independent addends.

Many variables found in nature and conceived in physical models are sums
of a large number of statistically independent variables, and thus are normal-
like random variables. In chapter 6, we appeal to the central limit theorem
in formulating the fundamental dynamical equations that govern random pro-
cesses. The normal linear transform and normal sum theorems help us solve
these dynamical equations.
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Problems

5.1. Uniform Linear Transform. ProveU (α, β) = α+βU (0, 1)by show-
ing that MU (α,β)(t) = Mα+βU (0,1)(t).

5.2. Adding Uniform Variables. Prove that the sumU1(m1, a1)+U2(m2, a2)

of two statistically independent uniform variables U1(m1, a1) and U2(m2, a2)

is not itself a uniform random variable by showing that the moment-generating
function of U1(m1, a1)+U2(m2, a2) is not in the form of a moment-generating
function of a uniform random variable.

5.3. Dependent Normals. Given that X1 = aN1(0, 1) and X2 = bN1(0, 1)+
cN2(0, 1) where a, b, and c are constants and N1(0, 1) and N2(0, 1) are statis-
tically independent unit normal variables, find

a. cov{X1, X2},
b. var{X1 + X2}, and
c. var{X1} + var{X2}.
d. Show that var{X1 + X2} �= var{X1} + var{X2}.
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Einstein’s Brownian Motion

6.1 Sure Processes

In large part, the goal of physics is to discover the time evolution of variables
that describe important parts of the universe. By hypothesis, these variables
are random variables. For instance, chapter 3 describes a model of the random
position of a Brownian particle, but that model employs neither continuous
random variables nor their continuous evolution in time. Chapters 4 and 5 have
prepared us to work with continuously distributed random variables. Here we
also investigate the consequences of assuming continuity in time. In preparation
for that task, we first review important properties of continuous sure processes.
Some of these properties carry over into random processes and some do not.

Consider the charge q(t) on a capacitor of capacitance C shorted through a
resistor of resistance R as illustrated in Figure 6.1.

Kirchoff’s law,

i(t)R + q(t)

C
= 0, (6.1.1)

governs the process. Given that the current in the circuit i(t) and the charge on
the capacitor q(t) are related by i(t) = dq(t)

dt , (6.1.1) becomes

dq(t) + q(t)

RC
dt = 0, (6.1.2)

Figure 6.1. Charge q(t) on a capacitor shorted through a resistor. The current i(t) is
dq(t)/dt .
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which can also be written as

q(t + dt) − q(t) = −q(t)

RC
dt, (6.1.3)

where we have replaced the differential dq(t) with its equivalent q(t+dt)−q(t).
The very form of (6.1.3) expresses continuity, smoothness, memorylessness,

and determinism. Actually, two kinds of continuity are built into this dynamical
equation. On the one hand, since time t is arbitrary and the increment dt can
be made arbitrarily small, the process is time-domain continuous. On the other
hand, since

lim
dt→0

q(t + dt) = q(t), (6.1.4)

the process is process-variable continuous. The process is also smooth because
the limit

lim
dt→0

q(t + dt) − q(t)

dt
(6.1.5)

exists. Here we deliberately treat the differential dt as if it is a small but
finite quantity. Smoothness requires process-variable continuity, and process-
variable continuity, in turn, requires time-domain continuity. However, a con-
tinuous process need not be smooth.

The process q(t) is also a memoryless one, or, more commonly, a Markov
process, because the value of q(t) at any one instant, say at t = t1 + dt, is
determined by its value at t = t1 through a dynamical equation, in this case
(6.1.3) with t1 replacing t . Alternatively stated, q(t1) alone predicts q(t1 + dt);
no previous values q(t0) where t0 < t1 are needed. Most well-known processes
in physics are Markov processes. Magnetic systems and others having long-
term memory or hysteresis are exceptions. The Russian mathematician A. A.
Markov (1856–1922) even used memoryless processes to model the occurrence
of short words in the prose of the great Russian poet Pushkin.

Finally, the process q(t) is sure, or deterministic, because equation (6.1.3)
returns a unique value of q(t + dt) for each q(t).

Many of the familiar processes of classical physics belong to the class of time-
domain and process-variable continuous, smooth, and Markov sure processes.
In the next section we investigate a particular random process that is continuous
(in both senses) and Markov but neither smooth nor sure. Such continuous,
Markov, random processes incrementally, but powerfully, generalize the well-
behaved, sure processes of classical physics they most closely resemble.

Although we don’t explore them here, other kinds of random processes are
both possible and useful (Gillespie 1992). In so-called discrete time processes,
the time-domain on which the random variable is defined is a countable set of
discrete times {t0, t1, . . .} such as might characterize different rounds of a game
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of chance or generations of a population. Numerical simulations of continuous
processes are, necessarily, discrete time processes. In jump processes, the range
of values the process variable can assume is countably discrete. For instance,
the number of molecules N (t) within a given permeable volume is defined on
a continuous time interval, but N (t) must equal some integer.

6.2 Wiener Process

A process variable X (t) is defined by its associated probability density
p(x, t). Its two arguments, x and t , refer to the two different ways X (t)
can vary: in time t and in value x at each time. More specifically, X (t) and
X (t + dt) are different random variables which, when representing different
parts of a Markov process, are related by a dynamical equation of form

X (t + dt) − X (t) = F[X (t), dt]. (6.2.1)

The Markov propagator function F[X (t), dt] is itself a random variable and
a function of a random variable. The propagator probabilistically determines
X (t + dt) from X (t) via (6.2.1)—that is, in so far as one random variable can
determine another. We assume time-domain and process variable continuity,
so that F[X (t), dt] → 0 as dt → 0, but we do not require smoothness. The
form (6.2.1) generalizes the sure processes of classical physics.

The Wiener process, defined by the Markov propagator

F[X (t), dt] =
√

δ2 dtN t+dt
t (0, 1), (6.2.2)

where δ2 is a process-characterizing parameter, is the simplest of all continuous
Markov processes. Its corresponding dynamical equation,

X (t + dt) − X (t) =
√

δ2 dtN t+dt
t (0, 1), (6.2.3)

is the basic unit out of which more complicated random processes are composed.
Here Nt+dt

t (0, 1) denotes a unit normal (with mean 0 and variance 1) associated
explicitly with the time interval (t, t + dt). Operationally, equation (6.2.3)
means that when the Wiener process variable X (t) realizes the sure value x(t)
at time t , X (t + dt) is a normally distributed random variable with mean x(t)
and variance δ2 dt, or X (t + dt) = N (x(t), δt dt). Alternatively, the realization
x(t + dt) is the sum of the sure variable x(t) and the product of

√
δ2 dt and a

realization of the unit normal N (0, 1).
The factor

√
dt in the dynamical equation (6.2.3) seems odd. Are

√
dt and

dt allowed in the same differential equation? If one’s standard is the ordinary
calculus of sure processes, certainly not. Terms proportional to

√
dt are in-
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definitely larger than terms proportional to dt as dt → 0. However, here
√

dt
is multiplied by the unit normal Nt+dt

t (0, 1), which in different subintervals
assumes different positive and negative values. The net effect of adding them
together is to reduce the magnitude of

√
dtN t+dt

t (0, 1) to that of dt. But note
that as dt → 0,

X (t + dt) → X (t) (6.2.4)

and

dx

dt
=

√
δ2

dtN t+dt
t

(0, 1) → ∞. (6.2.5)

Thus, the Wiener process is, on its domain, everywhere continuous but nowhere
smooth. This special property makes the Wiener process dynamical equa-
tion (6.2.3) a different kind of mathematical object—a stochastic differential
equation.

Time-domain continuity restricts possible interpretations of the Wiener pro-
cess dynamical equation (6.2.3) and, as we shall see, encourages us to adopt the
sub- and superscripts placed on the unit normal symbol Nt+dt

t (0, 1). Because
of time-domain continuity, X (t + dt/2) exists and we can formally divide the
process-variable increment X (t +dt)− X (t) into the sum of two subincrements
so that

X (t+dt)−X (t)= [X (t+dt)−X (t+dt/2)]+[X (t+dt/2)−X (t)]. (6.2.6)

While condition (6.2.6) seems trivial, it has a surprising consequence. Substi-
tuting the Wiener process propagator into both sides of (6.2.6) yields

√
δ2 dtN t+dt

t (0, 1) =
√

δ2(dt/2)Nt+dt

t+ dt
2

(0, 1)

+
√

δ2(dt/2)N
t+ dt

2
t (0, 1), (6.2.7)

a condition that has been called self-consistency (Gillespie 1996). Self-consis-

tency obtains only when the unit normals Nt+dt

t+ dt
2

(0, 1) and N
t+ dt

2
t (0, 1) are sta-

tistically independent. As a rule, normals associated with temporally disjunct
time intervals must be statistically independent in order that self-consistency
and, ultimately, time-domain continuity be observed. In a phrase, Nt+dt

t (0, 1)

is temporally uncorrelated. If the time intervals are identical, the associated
normals are completely correlated; if overlapping, statistically dependent; and
if disjunct, statistically independent. For this reason—to remind us of their de-
gree of mutual independence or dependence—we place sub- and superscripts
on the unit normal symbol Nt+dt

t (0, 1).
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The Cauchy variable Ct+dt
t (0, 1) also reduces terms of magnitude

√
dt down

to dt and satisfies self-consistency. In fact, the Cauchy process defined by

X (t + dt) − X (t) =
√

δ2dtCt+dt
t (0, 1) (6.2.8)

in many ways mimics the Wiener process (6.2.3). The relatively long tails on
the probability density associated with C(0, 1) make longer excursions in X (t)
possible at the expense of many shorter ones. Normal and Cauchy variables
are only two members of a class of Lévy variables, named after the French
mathematician Paul Lévy (1886–1971), who studied their properties. Each
Lévy variable preserves its nature under linear transformation and addition. For
this reason, each can also be made the basis of a Lévy process with properties
similar to the Wiener and Cauchy processes. Applications range from the
seemingly random flight of the albatross to particle motion in turbulent media
(Klafter et al., 1996 and 1999).

Yet normal processes are the only continuous Markov processes that produce
random variables with finite variances, and finite variances are often required
for physical interpretation. For instance, the variance of a random velocity
V (t) is related to the mean kinetic energy, and the latter must be finite. The
central limit theorem also favors normal processes. One can imagine a process
that, on the smallest time scales, is composed of non-normal but statistically
independent increments with finite means and variances. A large number of
these subscale increments sum, via the central limit theorem, to a propagator
that is approximately continuous and normal on time scales of interest.

6.3 Brownian Motion Revisited

The Wiener process is the perfect mathematical vehicle for describing con-
tinuous Brownian motion. Suppose, as in chapter 3, the Brownian particle
moves in one dimension along the x-axis. The net effect of many molecular
impacts is to displace the particle an amount

X (t + dt) − X (t) =
√

δ2 dtN t+dt
t (0, 1) (6.3.1)

in the interval (t, t + dt). These displacements are indifferently positive and
negative, with size regulated by the parameter δ2.

How does the net displacement of the Brownian particle evolve with time?
We now have the tools to integrate the stochastic differential equation (6.3.1)
and answer this question. When t = 0, (6.3.1) becomes

X (dt) = X (0) +
√

δ2 dtNdt
0 (0, 1), (6.3.2)
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and when t = dt,

X (2dt) = X (dt) +
√

δ2dtN 2dt
dt (0, 1). (6.3.3)

Dropping the former into the right-hand side of the latter produces

X (2dt) = X (0) +
√

δ2 dtNdt
0 (0, 1) +

√
δ2 dtN 2dt

dt (0, 1). (6.3.4)

Because Ndt
0 (0, 1) and N 2dt

dt (0, 1) apply to disjunct time intervals, they are
statistically independent, and the two terms on the far right of (6.3.4) sum, via
the normal sum and linear transform theorems, to

X (2dt) = X (0) + N 2dt
0 (0, δ22dt). (6.3.5)

Repeating this substitution and addition indefinitely produces

X (t) = X (0) + Nt
0(0, δ2t). (6.3.6)

Thus X (t) − X (0) is normally distributed with a vanishing mean and, as in
chapter 3, a variance that grows linearly in time t . But note that here a single
parameter δ2 has replaced the quotient �x2/�t of two independently specified
parameters �x2 and �t .

6.4 Monte Carlo Simulation

A Brownian particle, initially at the origin, occupies the position

X (t) = Nt
0(0, 1)

√
δ2t (6.4.1)

at time t . But how does X evolve in time between 0 and t? One could evaluate
(6.4.1) at a series of intermediate times 0, t/n, 2t/n, 3t/n, . . . t where n > 1
and so produce a sequence of position variables

X (0) = 0,

X

(
t

n

)
= Nt/n

0 (0, 1)

√
δ2

t

n
,
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Figure 6.2. The dots represent a realization of the Wiener process X (t) = N t
0(0, t),

determined every time steop of size �t = 1 for 100 steps by solving the update equation
(6.4.3) recursively. The solid line is a one-standard deviation envelope ±√

t .

X

(
2t

n

)
= N 2t/n

0 (0, 1)

√
δ2

2t

n
,

· · ·
X (t) = Nt

0(0, 1)
√

δ2t . (6.4.2)

But a special problem arises if one wants to produce realizations of these vari-
ables: the unit normals Nt/n

0 (0, 1), N 2t/n
0 (0, 1), . . . Nt

0(0, 1) are mutually de-
pendent, and the process X (t) is autocorrelated. See Problem 6.1, Autocorre-
lated Process. Self-consistency can be used to link the correlated variables in
(6.4.2), but usually one accounts for autocorrelation with a different method:
by numerically advancing the particle position with an update equation,

X (t + �t) = x(t) + Nt+�t
t (0, 1)

√
δ2�t, (6.4.3)

derived by replacing t in the exact solution (6.3.6) with t +�t and applying the
initial condition X (t) = x(t). A Monte Carlo simulation is simply a sequence
of such updates with the realization of the updated position x(t + �t) at the
end of each time step used as the initial position x(t) at the beginning of the
next. Figure 6.2 was produced in this way. The 100 plotted points mark sample
positions along the particle’s trajectory. Equally valid, if finer-scaled, sample
paths could be obtained with smaller time steps �t . But recall that X (t) is not
a smooth process and its time derivative does not exist. For this reason it would
be misleading to connect the points in figure 6.2 with a smooth curve.



48 EINSTEIN’S BROWNIAN MOTION

6.5 Diffusion Equation

The probability density

p(x, t) = 1√
2πδ2t

e− x2

2δ2 t (6.5.1)

defines the random variable Nt
0[0, δ2t]. Figure 6.3, displaying p(x, t) versus

x at times t = 1/4, 1, and 4, illustrates the possibilities inherent in the time
evolution of a Wiener process more completely, if more abstractly, than the
sample path of figure 6.2. Inspecting the partial derivatives

∂

∂t
p(x, t) = − p(x, t)

2t

[
1 − x2

δ2t

]
, (6.5.2)

∂

∂x
p(x, t) = − x

δ2t
p(x, t), (6.5.3)

and
∂2

∂x2
p(x, t) = − p(x, t)

δ2t

[
1 − x2

δ2t

]
, (6.5.4)

Figure 6.3. The probability density p(x, t) = (2πδ2t)−1/2 exp{−x2/2δ2t} at times
t = 1/4, 1, and 4.
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we find that p(x, t) solves the classical diffusion equation

∂p(x, t)

∂t
= δ2

2

∂2 p(x, t)

∂x2
. (6.5.5)

Equation (6.5.5) is mathematically equivalent to the stochastic dynamical equa-
tion (6.3.1). The latter equation governs the random variable X (t), while the
former governs its probability density p(x, t).

Deducing the diffusion equation (6.5.5) from its solution (6.5.1) reverses the
usual order in modeling and problem solving. A more physically motivated
derivation of (6.5.5) often starts with the observation, called Fick’s law, that a
gradient in the probability density ∂p/∂x drives a probability density flux J
so that

J = −D
∂p

∂x
. (6.5.6)

where the proportionality constant D is called the diffusion constant. Fick’s
law, like F = ma and V = IR, both defines a quantity (diffusion constant, mass,
or resistance) and states a relation between variables. The diffusion constant is
positive definite, that is, D ≥ 0, because a gradient always drives an oppositely
directed flux in an effort to diminish the gradient. Combining Fick’s law and
the one-dimensional conservation or continuity equation

∂p

∂t
+ ∂ J

∂x
= 0 (6.5.7)

yields the diffusion equation (6.5.5) with D replacing δ2/2.
In his famous 1905 paper on Brownian motion, Albert Einstein (1879–1955)

constructed the diffusion equation in yet another way—directly from the conti-
nuity and Markov properties of Brownian motion. Our approach, in section 6.3,
to the mathematically equivalent result X (t) − X (0) = Nt

0(0, 2Dt) has been
via the algebra of random variables. We use the phrase Einstein’s Brownian
motion to denote both these configuration-space descriptions (involving only
position x or X ) of Brownian motion. In chapters 7 and 8, we will explore their
relationship to Newton’s Second Law and possible velocity-space descriptions
(involving velocity v or V as well as position).

Problems

6.1. Autocorrelated Process. Let X (t) and X (t ′) be the instantaneous
random position of a Brownian particle at times for which t ′ ≤ t .

a. Find cov{X (t), X (t ′)}.
b. Find cor{X (t), X (t ′)}.
c. Evaluate cor{X (t), X (t ′)} in the limits t ′/t → 0 and t ′/t → 1.

(Hint: Refer to the solution [6.3.6] and to self-consistency [6.2.7]. Also com-
pare with Problem 3.4, Autocorrelation.)
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Figure 6.4. Local particle density N0 p(x, t) versus time at x = x1 > 0, given that all
the particles are initialized at x = 0. Here δ2 = 1, x1 = 10, and N0 = 100.

6.2. Concentration Pulse. Suppose that N0 particles of dye are released
at time t = 0 in the center (at x = 0) of a fluid contained within an essentially
one-dimensional pipe, and the dye is allowed to diffuse in both directions along
the pipe. The diffusion constant D = δ2/2. At position X (t) and time t the
density of dye particles is the product N0 p(x, t), where p(x, t) is the probability
density of a single dye particle with initialization X (0) = 0. An observer at
position x = x1 �= 0 sees the concentration of dye increase to a maximum value
and then decay away. See figure 6.4. At what time does the concentration peak
pass the observer?

6.3. Brownian Motion with Drift. Consider the dynamical equation X (t+
dt) − X (t) = αdt +

√
δ2 dtN t+dt

t (0, 1), describing Brownian motion superim-
posed on a steady drift of rate α.

a. Given the initial condition X (0) = 0, solve this equation using the
method in section 6.3.

b. Find the associated probability density p(x, t).
c. Show that the full width of p(x, t) at half its maximum value increases

in time as 2
√

2δ2t ln 2.

Because the center of p(x, t) evolves as αt and its full width at half maximum
evolves more slowly as 2

√
2δ2t ln 2, it is possible to separate different species
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Figure 6.5. Sedimentation: layers of Brownian particles drifting downward and diffus-
ing in a viscous fluid. Time increases to the right.

of Brownian particles with different drift rates α. Figure 6.5 illustrates this
separation in the context of sedimentation. In similar fashion, electrophoresis
uses an electric field to separate charged Brownian particles (Berg 1993).

6.4. Brownian Motion in a Plane. Use solutions X (t) = Nt
0,x (0, 1)

√
δ2t

and Y (t) = Nt
0,y(0, 1)

√
δ2t and the method in section 6.4 to generate and plot

a Brownian particle sample path in the x-y plane. Assume the unit normals
Nt

0,x (0, 1) and Nt
0,y(0, 1) (and thus displacements in the two directions) are

statistically independent.





7

Ornstein-Uhlenbeck Processes

7.1 Langevin Equation

Newton’s second law identifies the net force F(t) per unit particle mass M
with the rate at which the particle changes its velocity V (t). This velocity, in
turn, describes the rate at which the particle changes its position X (t). These
familiar relations,

dV(t)

dt
= F(t)

M
(7.1.1)

and
dX(t)

dt
= V (t), (7.1.2)

are no less true when V (t) and X (t) are random variables than otherwise. In
differential form, we have

V (t + dt) − V (t) =
[

F(t)

M

]
dt (7.1.3)

and

X (t + dt) − X (t) = V (t) dt. (7.1.4)

Albert Einstein and his French contemporary Paul Langevin (1872–1946) in-
troduced randomness into these equations in different ways.

Einstein’s actual analysis resulted in the diffusion equation (6.5.5), but we
now know that in his procedure he essentially ignored Newton’s second law
(7.1.3) and replaced V (t) dt on the right-hand side of (7.1.4) with

√
δ2 dt

N t+dt
t (0, 1) (Einstein, 1905). This replacement turns (7.1.4) into

X (t + dt) − X (t) =
√

δ2 dtN t+dt
t (0, 1), (7.1.5)

and thus turns X (t) into a Wiener process with parameter δ2.
Attacking the same problem a few years later, Paul Langevin modeled the

specific impulse [F(t)/M] dt in Newton’s second law (7.1.3) as a viscous drag
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−γ V (t) dt plus random fluctuations
√

β2 dtZt . According to Langevin, the
random variable Zt had mean zero, variance one, was “indifferently positive
and negative,” and was uncorrelated with position X (t). If one specifies that
Zt = Nt+dt

t (0, 1), equation (7.1.3) becomes the Langevin equation,

V (t + dt) − V (t) = −γ V (t) dt +
√

β2 dtN t+dt
t (0, 1). (7.1.6)

The Langevin equation is said to govern an Ornstein-Uhlenbeck or O-U process,
after L. S. Ornstein and G. E. Uhlenbeck, who formalized the properties of this
continuous Markov process (Uhlenbeck and Ornstein 1930). The O-U process
V (t) and its time integral X (t) together describe Langevin’s Brownian motion.

Langevin’s main insight was that viscous drag and velocity fluctuations are
complementary effects of a single, subscale phenomenon: numerous, frequent
collisions between fluid molecules and the Brownian particle. The same colli-
sions in the same interval contribute to the fluctuation term

√
β2 dtN t+dt

t (0, 1)

and to the viscous drag term −γ V (t) dt. The former, no less than the latter,
represents the effect of many collisions. It may be for this reason that Langevin
referred to the fluctuating term in (7.1.6) as the “complementary force.” An
English translation of Langevin’s landmark paper appears in Appendix A. In
this chapter we solve the Langevin equation, quantify the link between drag
(or dissipation) γ and fluctuation β2 constants, and model electrical noise with
an O-U process before returning, in chapter 8, to complete the description of
Langevin’s Brownian motion.

7.2 Solving the Langevin Equation

We could directly integrate the Langevin equation (7.1.6) to find an expres-
sion for V (t) just as we integrated, in section 6.3, the stochastic differential
equation describing Einstein’s Brownian motion to find X (t). We would do
this by recursively evaluating the stochastic differential equation (7.1.6) at dif-
ferent times and summing the parts. However, the sums are difficult—in part
because the addends are correlated. Instead, we adopt a simpler and more pow-
erful method for solving stochastic differential equations. This new method is
based on the following logic. Since each variable in the sequence of random
variables V (dt), V (2 dt), . . . , V (t) is a linear combination of the independent
normal variables Ndt

0 (0, 1), N 2dt
dt (0, 1), . . . , Nt

t−dt(0, 1) and linear combinations
of statistically independent normals are themselves normal, then V (t) is itself
normal, that is,

V (t) = Nt
0(mean{V (t)}, var{V (t)}). (7.2.1)

So our problem reduces tofinding expressions for the sure functions mean{V (t)}
and var{V (t)} and substituting these into the form (7.2.1).
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Taking the expected value of both sides of the Langevin equation (7.1.6)
produces an ordinary differential equation whose solution is mean{V (t)}. Thus

〈V (t + dt) − V (t)〉 = 〈−γ V (t) dt +
√

β2 dtN t+dt
t (0, 1)〉, (7.2.2)

and

〈V (t + dt)〉 − 〈V (t)〉 = −γ 〈V (t)〉 dt +
√

β2 dt〈Nt+dt
t (0, 1)〉

= −γ 〈V (t)〉 dt, (7.2.3)

or, equivalently,

d〈V (t)〉
dt

= −γ 〈V (t)〉, (7.2.4)

where we have exploited the linearity of the expected value operator 〈〉 and the
fact that 〈Nt+dt

t (0, 1)〉 = 0. Solving the ordinary differential equation (7.2.4),
we find that

mean{V (t)} = ν0e−γ t (7.2.5)

given the initial condition V (0) = ν0.
The time evolution of var{V (t)}, or, equivalently, of 〈V (t)2〉 − 〈V (t)〉2, also

follows from the Langevin equation but less directly so. Since, from (7.2.5), we
already know that 〈V (t)〉2 = v2

0e−2γ t , we only need find 〈V (t)2〉. By definition,

d[V (t)2] = [V (t + dt)]2 − [V (t)]2. (7.2.6)

The Langevin equation (7.1.6) provides an expression for V (t + dt) that, when
substituted into (7.2.6), yields

d[V (t)2] = [V (t)(1 − γ dt] +
√

β2 dtN t+dt
t (0, 1)]2 − [V (t)]2

= V (t)2(1 − γ dt)2 + 2V (t)(1 − γ dt)
√

β2 dtN t+dt
t (0, 1)

+ β2 dt[Nt+dt
t (0, 1)]2 − V (t)2

= −2V (t)2γ dt + 2V (t)
√

β2 dtN t+dt
t (0, 1)

+ β2 dt[Nt+dt
t (0, 1)]2, (7.2.7)

where we have dropped terms of order dt2 and dt3/2 because they are ignorably
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small compared to dt. Taking the expected value of (7.2.7) produces

d〈V (t)2〉 = −2〈V (t)2〉γ dt + 2〈V (t)Nt+dt
t (0, 1)〉

√
β2 dt

+ 〈[Nt+dt
t (0, 1)]2〉β2 dt

= −2〈V (t)2〉γ dt + 2〈V (t)Nt+dt
t (0, 1)〉

√
β2 dt

+ β2 dt. (7.2.8)

Recall that V (t) is a linear combination of Ndt
o (0, 1), N 2dt

dt (0, 1), . . . and Nt
t−dt(t)

but not of Nt+dt
t (t). Thus, V (t) and Nt+dt

t (t) are statistically independent, and

〈V (t)Nt+dt
t (0, 1)〉 = 〈V (t)〉〈Nt+dt

t (0, 1)〉
= 0. (7.2.9)

Then (7.2.8) becomes

d〈V (t)2〉 = −2〈V (t)2〉γ dt + β2dt (7.2.10)

or
d

dt
〈V (t)2〉 = −2γ 〈V (t)2〉 + β2. (7.2.11)

Solving (7.2.11) subject to the initial condition V (0) = ν0 yields

〈V (t)2〉 = ν2
0e−2γ t +

(
β2

2γ

)
(1 − e−2γ t ). (7.2.12)

With practice one learns to streamline these manipulations. Combining 〈V (t)〉2

and 〈V (t)2〉 from (7.2.5) and (7.2.12), we find

var{V (t)} = 〈V (t)2〉 − 〈V (t)〉2

=
(

β2

2γ

)
(1 − e−2γ t ), (7.2.13)

as is consistent with the expected initial condition var{V (0)} = 0. Substituting
expressions for mean{V (t)} from (7.2.5) and var{V (t)} from (7.2.13) into the
normal variable form (7.2.1) yields the desired O-U process solution

V (t) = Nt
0

(
ν0e−γ t ,

(
β2

2γ

)
(1 − e−2γ t )

)
. (7.2.14)
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The corresponding probability density is

p(ν, t) =
exp

[ −(ν − ν0e−γ t )2

2(β2/2γ )(1 − e−2γ t )

]
√

2π

(
β2

2γ

)
(1 − e−2γ t )

. (7.2.15)

These describe not only the velocity of a Brownian particle but also any process
governed by a competition between linear damping and constant magnitude
randomfluctuations. See, for instance, the discussion in section 7.5 on thermally
generated electrical noise and that in section 10.1 on molecular effusion.

Here we note two useful generalizations. First, suppose the initial condition
was left an unspecified random variable. Then,

V (t) = V (0) + Nt
0

(
〈V (0)〉(e−γ t − 1),

(
β2

2γ

)
(1 − e−γ t )

)
(7.2.16)

solves the Langevin equation. Second, suppose the Langevin equation included
a drift νd to which V (t), apart from fluctuations, relaxed in the long time limit,
so that (7.1.6) is replaced by

V (t + dt) − V (t) = −γ [V (t) − νd ] dt +
√

β2 dtN t+dt
t (0, 1). (7.2.17)

Such drift νd might be the terminal velocity caused by gravity, by an electric
field, or by any other constant force in the presence of dissipation. The solution
of (7.2.17) is

V (t) = Nt
0

(
νd + e−γ t (ν0 − νd),

(
β2

2γ

)
(1 − e−2γ t )

)
, (7.2.18)

given V (0) = ν0. See Problem 7.1, Terminal Speed for an application of the
O-U process with drift.

7.3 Simulating the O-U Process

Because the random variable V (t) is autocorrelated, numerically simulating
the O-U process is not simply a matter of substituting a time t into the desired
form of the solution, choosing a realization of the unit normal, and calculating
the result. The best way to account numerically for potentially strong autocor-



58 ORNSTEIN-UHLENBECK PROCESSES

Figure 7.1. Points on a sample path of the normalized O-U process defined by (7.3.2)
with initial value ν̃o = 4 and drift ν̃d = 0. Solid curves show mean{Ṽ (t̃)} and

mean{Ṽ (t̃)} ±
√

var{Ṽ (t̃)}.

relation is, as in section 6.4, to write the general solution (7.2.18) in updated
form

V (t + �t) = ν(t)e−γ�t + νd(1 − e−γ�t )

+
√(

β2

2γ

)
(1 − e−2γ�t )Nt+�t

t (0, 1), (7.3.1)

in which the initial condition ν(t) is a particular realization of the process
variable V (t) determined in the previous interval.

Before proceeding, we recast (7.3.1) in terms of the following dimensionless
variables and parameters: t̃ = γ t , �t̃ = γ�t , Ṽ (t) = V (t)/

√
β2/2γ , ν̃d =

νd/
√

β2/2γ , and ν̃(t) = ν(t)/
√

β2/2γ . Then (7.3.1) becomes

Ṽ (t̃ + �t̃)= ν̃(t̃)e−�t̃ + ν̃d̃(1 − e−�t̃ ) +
√

(1 − e−2�t̃ )N t̃+�t̃
t̃

(0, 1), (7.3.2)

from which we have formally eliminated γ and β2. Thus one sample path
generated by recursively solving (7.3.2) works for all values of γ and β2. One
simply reinterprets the meaning of t̃ , �t̃ , Ṽ (t̃), ν̃d , and ν̃(t̃). Figure 7.1 (with
ν̃0 = 4 and ν̃d = 0) and figure 7.2 (with ν̃0 = 0 and ν̃d = 3) display such
sample paths.
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Figure 7.2. Points on a sample path of the normalized O-U process defined by (7.3.2)
with initial value ν̃0 = 0 and drift ν̃d = 3. Solid curves show mean{Ṽ (t̃)} and
mean{Ṽ (t̃)} ±

√
var{ṽ(t̃)}

7.4 Fluctuation-Dissipation Theorem

Competition between linear damping and random fluctuations defines the
O-U process. In the long time limit γ t → ∞, a balance is achieved between
the two, and the average kinetic energy of a Brownian particle of mass M in
the frame in which the drift vanishes becomes, according to (7.2.13),

M var{V (∞)}
2

= Mβ2

4γ
. (7.4.1)

But in the same limit (γ t → ∞), the Brownian particle also approaches thermal
equilibrium with the surroundingfluid. According to the equipartition theorem,
the equilibrium energy associated with fluctuations in each degree of freedom
is kT/2, where T is the fluid temperature. Thus, it must be that

M var{V (∞)}
2

= kT

2
. (7.4.2)

Therefore, the O-U process is consistent with thermal equilibrium only if

Mβ2

4γ
= kT

2
, (7.4.3)
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that is, only if β2/2γ = kT/M . Equation (7.4.3) is one version of the
fluctuation-dissipation theorem, so named because it relates fluctuation β2 and
dissipation γ parameters.

Fluctuation-dissipation applies to any O-U process when fluctuations are
caused by interaction with an environment that is itself in thermal equilibrium.
In practice, fluctuation-dissipation helps fix the parameters β2 and γ . When
modeling a Brownian particle, one usually choses a dissipation rate γ and then
solves (7.4.3) for β2. For instance, when the Brownian particle is immersed in
a viscous liquid, as assumed by Einstein and Langevin, Stokes’s law

γ = 6πηr

M
(7.4.4)

applies. Here η is the liquid viscosity and r the particle radius. Consequently,
β2 = 12πηrkT/M2. On the other hand, if the fluid is composed of gas
molecules with mass m0 and density n0 colliding with the Brownian parti-
cle at a rate n0σνth, determined by the molecule-particle cross section σ and
the gas thermal velocity νth = √

kT/m0, then

γ = m0n0σνth

M
. (7.4.5)

In this case, fluctuation-dissipation yields β2 = 2m0n0σνthkT/M2.

7.5 Johnson Noise

Consider how the electrostatic energy stored on a charged capacitor dissi-
pates when the capacitor is shorted through a resistor, as illustrated in figure 7.3.
As charge carriers flow through the circuit, they collide with, and transfer en-
ergy to, the atoms of the resisting material. Eventually, the resistor shares this
dissipated energy with the environment. However, since the resistor is not at ab-
solute zero, its atoms contain thermal energy, which makes them vibrate around
their equilibrium positions and randomly transfer energy to the charge carriers.
Where there is dissipation, there is fluctuation. In the language of macro-scale
physics: the resistor simultaneously Joule heats and delivers random voltage
pulses to the circuit. The random pulses, first observed by J. B. Johnson in
1928, are called Johnson noise.

Johnson noise is easily modeled with an O-U process. Applying Kirchoff’s
law to an RC circuit with a fluctuating voltage source yields

IR + Q

C
+ (Johnson · noise) = 0 (7.5.1)
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Figure 7.3. Capacitance C shorted through a resistance R at temperature T . The current
I (t) is d Q(t)/dt.

or, given that I = dQ/dt,

dQ = − Q

RC
dt − (Johnson · noise)

R
dt. (7.5.2)

If the Johnson noise voltage fluctuations are described by a Wiener process with
parameter β2, (7.5.2) becomes

dQ = − Q

RC
dt +

√
β2 dtN t+dt

t (0, 1). (7.5.3)

This a Langevin equation with relaxation rate γ = 1/RC and fluctuation pa-
rameter β2, so we may take its solution,

Q(t) = Nt
0

(
q0e−γ t ,

(
β2

2γ

)
(1 − e−2γ t )

)
, (7.5.4)

directly from (7.2.14). The longtime, steady-state variance of the charge fluc-
tuations, β2/2γ , must be consistent with thermal equilibrium at temperature T .
According to the equipartition theorem, the mean fluctuating electrostatic en-
ergy stored at equilibrium in the capacitor is given by var{Q(∞)}/2C = kT/2.
Combining these requirements, we have, as before, the fluctuation-dissipation
theorem, B2/4γ C = kT/2, which, on using γ = 1/RC, yields β2 = 2kT/R.
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Therefore, in terms of circuit parameters R and C , the charge on the capacitor
is given by

Q(t) = Nt
0(q0e−t/RC , kTC(1 − e−2t/RC)). (7.5.5)

For an application of Johnson noise in a slightly different context, see Prob-
lem 7.2 RL Circuit.

Problems

7.1. Terminal Speed. One way to determine the viscous drag parameter
γ is to apply a steady force F to a particle of mass M and measure its mean
terminal speed νd .

a. Express γ in terms of F , M , and νd .
b. Use thefluctuation-dissipation theorem to express thefluctuation param-

eter β2 in terms of kT , F , M , and νd where T is the fluid temperature.

7.2. RL Circuit. Use energy equipartition to show that, in a circuit com-
posed of an inductance L shorted through a resistance R at equilibrium temper-
ature T , equilibrium current fluctuations have a mean 〈I (∞)〉 = 0 and variance
〈I (∞)2 = kT/L .
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Langevin’s Brownian Motion

8.1 Integrating the O-U Process

The O-U process V (t) and its integral X (t) together describe Langevin’s
Brownian motion. Given the velocity V (t) of a Brownian particle, how do we
find its position X (t)? We might try substituting

V (t) = Nt
0

(
v0e−γ t + vd(1 − e−γ t ),

(
β2

2γ

)
(1 − e−2γ t )

)
, (8.1.1)

into

X (t + dt) − X (t) = V (t)dt (8.1.2)

and solving iteratively. Such procedure generates a series of expressions for
X (dt), X (2dt), . . . , X (t), each one of which is a linear combination of corre-
lated unit normals Ndt

0 (0, 1), N 2dt
0 (0, 1), . . . , Nt−dt

0 (0, 1). Each of these is, in
turn, a linear combination of statistically independent unit normals Ndt

0 (0, 1),
N 2dt

dt (0, 1), . . . , Nt−dt
t−2dt (0, 1). While, in principle, it might be possible to un-

pack these linear combinations, it is, as before, easier to exploit the general
result based on the normal sum theorem that

X (t) = Nt
0(mean{X (t)}, var{X (t)}). (8.1.3)

Recall from section 5.3 that any pair of correlated normals, say X (t) and V (t),
is completely determined by their means, variances, and a covariance. The
O-U process (8.1.1) provides us with expressions for mean{V (t)} and var{V (t)}.
Thus, our task reduces to finding and solving the ordinary differential equations
governing mean{X (t)}, var{X (t)}, and cov{X (t), V (t)}.

For convenience, in the following we replace X (t + dt) − X (t) with dX and
X (t + dt) with X + dX, and we, likewise, replace V (t + dt) − V (t) with dV



64 LANGEVIN’S BROWNIAN MOTION

and V (t + dt) with V + dV . With these substitutions the Langevin equation
with drift Vd becomes

dV = −γ (V − vd)dt +
√

β2dt N t+dt
t (0, 1) (8.1.4)

and (8.1.2) becomes

dX = Vdt. (8.1.5)

Combining the expected value of dX = Vdt and of V (from [8.1.1]) generates
the differential equation

d〈X〉
dt

= 〈V 〉
= v0e−γ t + vd(1 − e−γ t ), (8.1.6)

whose solution is

mean{X (t)} = x0 + v0

γ
(1 − e−γ t ) + vd

γ
(γ t + e−γ t − 1) (8.1.7)

assuming initial conditions V (0) = v0 and X (0) = x0. We already see a differ-
ence between Einstein’s simple result, mean{X (t)} = x0 +vd t , and Langevin’s
more complicated one (8.1.7).

The equation governing var{X (t)} also follows from dX = Vdt and the
expression (8.1.1) for V (t). By definition, dX(t)2 = X (t + dt)2 − X (t)2,
which, in our streamlined notation, becomes

dX2 = (X + dX)2 − X2

= 2XdX + (dX)2

= 2XVdt + (Vdt)2. (8.1.8)

Taking the expected value of (8.1.8), dividing by dt , and taking the limit dt → 0
produces

d〈X2〉
dt

= 2〈XV〉. (8.1.9)

Consequently,

d var{X}
dt

= d

dt
[〈X2〉 − 〈X〉2]
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= d〈X2〉
dt

− 2〈X〉d〈X〉
dt

= 2〈XV〉 − 2〈X〉〈V 〉
= 2 cov{X, V }. (8.1.10)

Thus, var{X} couples to the as yet unknown function cov{X, V }. In deriving the
equation governing cov{X, V }, we retain terms through order dX, dV , (dV)2,
and dt and drop terms of order (dX)2, dXdV , (dt)3/2, and smaller because these
vanish after dividing by dt and taking the limit dt → 0. Consequently,

d cov{X, V } = d[〈XV〉 − 〈X〉〈V 〉]
= 〈XdV〉 + 〈V dX〉 − 〈X〉d〈V 〉 − 〈V 〉d〈X〉
= −γ 〈XV〉dt + 〈X Nt+dt

t (0, 1)〉
√

β2dt + 〈V 2〉dt

+ γ 〈X〉〈V 〉dt − 〈V 〉2dt, (8.1.11)

where we have used dX = Vdt, d〈X〉 = 〈V 〉dt , d〈V 〉 = −γ 〈V 〉dt , and
Langevin’s equation (8.1.4) for dV . Equation (8.1.11) simplifies to

d cov{X, V } = −γ cov{X, V }dt + var{V }dt

+ 〈XNt+dt
t (0, 1)〉

√
β2dt . (8.1.12)

If not identically zero, the term 〈XNt+dt
t (0, 1)〉

√
β2dt in (8.1.12) would dom-

inate over the others because
√

dt is very much larger than dt . However,
because X (t) and Nt+dt

t (0, 1) are statistically independent, 〈XNt+dt
t (0, 1)〉 =

〈X〉〈Nt+dt
t (0, 1)〉 = 0, and (8.1.12) reduces to the ordinary differential equation

d

dt
cov{X, V } = −γ cov{X, V } + var{V }. (8.1.13)

Multiplying through by an integrating factor eγ t turns (8.1.13) into

d

dt
[eγ t cov{X, V }] = eγ t var{V }, (8.1.14)

which, given that var{V } = (β2/2γ )(1 − e−2γ t ) from (8.1.1) and initial condi-
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tions V (0) = v0 and X (0) = x0, integrates to

cov{X, V } = β2

2γ 2
(1 − 2e−γ t + e−2γ t ). (8.1.15)

Substituting this result into the differential equation (8.1.10) for var{X} pro-
duces

d

dt
var{X} = β2

γ 2
(1 − 2e−γ t + e−2γ t ), (8.1.16)

which is immediately integrated to yield

var{X} = β2

γ 2

[
t − 2

γ
(1 − e−γ t ) + 1

2γ
(1 − e−2γ t )

]
. (8.1.17)

Collecting the results (8.1.7) and (8.1.17), we have

X (t) = Nt
0

(
x0 + v0

γ
(1 − e−γ t ) + vd

γ
(γ t + e−γ t − 1),

β2

γ 3

[
tγ − 2(1 − e−γ t ) + 1

2
(1 − e−2γ t )

])
. (8.1.18)

This expression, together with (8.1.1) for V (t) and (8.1.15) for cov{X (t), V (t)},
completely describes Langevin’s Brownian motion with drift vd . Note that only
after many relaxation times (that is, when γ t � 1) does var{X (t)} have the
linear time dependence β2t/γ 2 characteristic of Einstein’s Brownian motion.

8.2 Simulating Langevin’s Brownian Motion

Our purpose in this section is to derive a simulation algorithm for an O-U
process. This is equivalent to deriving an expression for the updated quantities
V (t + �t) and X (t + �t) in terms of the initial values V (t) and X (t) and the
O-U process parameters β2 and γ . Since V (t + �t) and X (t + �t) are jointly
distributed normals, they are correlated and, therefore, can be cast into the form

X (t + �t) = a0 + a1N1(0, 1) + a2N2(0, 1) (8.2.1)

and

V (t + �t) = b0 + b1N1(0, 1). (8.2.2)
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The unit normals N1(0, 1) and N2(0, 1) are, by design, statistically independent.
Furthermore, the parameters a0, a1, a2, b0, and b1 must be chosen in order to
give X (t+�t) and V (t+�t) the right values of mean{X (t+�t)}, mean{V (t+
�t)}, var{X (t +�t)}, var{V (t +�t)}, and cov{X (t +�t), V (t +�t)}. Taking
moments of (8.2.1) and (8.2.2), we find that

a0 = mean{X (t + �t)}, (8.2.3)

b0 = mean{V (t + �t)}, (8.2.4)

b2
1 = var{V (t + �t)}, (8.2.5)

a1 = cov{X (t + �t), V (t + �t)}√
var{V (t + �t)} , (8.2.6)

and

a2
2 = var{X (t + �t)} − (cov{X (t + �t), V (t + �t)})2

var{V (t + �t)} . (8.2.7)

See Problem 8.1 Derivation. The time dependences of mean{X (t + �t)},
mean{V (t +�t)}, var{X (t +�t)}, var{V (t +�t)}, and cov{X (t +�t), V (t +
�t)} follow directly from expressions (8.1.1), (8.1.15), and (8.1.18), already de-
rived for mean{X (t)}, mean{V (t)}, var{X (t)}, var{V (t)}, and cov{X (t), V (t)}.
In particular, we find that

mean{V (t + �t)} = v(t)e−γ�t + vd(1 − e−γ�t ), (8.2.8)

var{V (t + �t)} = β2

2γ
(1 − e−2γ�t ), (8.2.9)

mean{X (t + �t)} = x(t) + v(t)

γ
(1 − e−γ�t )

+ vd

γ
(γ�t + e−γ�t − 1) (8.2.10)

var{X (t + �t)} = β2

γ 3
(γ�t) − 2β2

γ 3
(1 − e−γ�t )

+ β2

2γ 3
(1 − e−2γ�t ), (8.2.11)
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Figure 8.1. Points represent normalized sample velocities v/
√

β2/2γ versus normal-
ized time γ t of a Brownian particle from (8.2.2) with drift vd = 0 and initial con-
dition v0 = 0. Solid curves represent mean{v/

√
β2/2γ } and mean{v/

√
β2/2γ } ±

std{v/
√

β2/2γ }.

and

cov{X (t + �t), V (t + �t)} = β2

2γ 2
(1 − 2e−γ�t + e−2γ�t ), (8.2.12)

which, when substituted into (8.2.3) through (8.2.7), provide the sought-for
simulation algorithm for Langevin’s Brownian motion in time steps of dura-
tion �t .

Figures 8.1 and 8.2 display sample time evolutions x(t) and v(t) generated
by solving (8.2.1) and (8.2.2) iteratively with vd = 0 and initial conditions
x0 = 0 and v0 = 0. As expected, when v(t) > 0, x(t) increases in time, when
v(t) < 0, x(t) decreases in time. Also, as expected, x(t) appears to evolve
smoothly in time while v(t) does not.

8.3 Smoluchowski Approximation

Langevin’s Brownian motion reduces to Einstein’s in the so-called Smolu-
chowski limit, that is, on time scales for which the independent variable V (t)
changes little and its integral X (t) changes much. The Smoluchowski ap-
proximation effectively minimizes inertial effects and maximizes randomness.
Formally, we access this regime by setting dV = 0 in the Langevin equation

dV = −γ Vdt +
√

β2dt N t+dt
t (0, 1) (8.3.1)
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Figure 8.2. Points represent normalized sample positions x/[γ −1
√

β2/2γ ] versus nor-
malized time γ t of a Brownian particle from (8.2.1) and (8.2.2) with drift vd = 0
and initial condition x0 = 0. Solid curves represent mean{x/γ −1

√
β2/2γ } and

mean{x/γ −1
√

β2/2γ } ± std{x/γ −1
√

β2/2γ }.

and using dX = Vdt to eliminate the variable V altogether. In this way (8.3.1)
reduces to the Wiener process equation

dX =
√

β2

γ 2
dt N t+dt

t (0, 1). (8.3.2)

Its solution

X (t) = Nt
0

(
x0,

β2t

γ 2

)
(8.3.3)

reproduces Einstein’s Brownian motion, with β2/γ 2 playing the role of the
diffusion parameter δ2. Apart from a constant offset in the mean position,
solution (8.3.3) realizes the late-time, high-dissipation regime (γ t � 1) of
Langevin’s Brownian motion as described by (8.1.18) with vd = 0.

8.4 Example: Brownian Projectile

A neutral molecule and a droplet of uncombusted gas thrust from a car tail
pipe both obey the same stochastic dynamics—both are, in principle, Brownian
particles evolving as an O-U process. Their vastly different masses account for
quantitative rather than qualitative differences. In both cases the fluctuation-
dissipation theorem fixes β2/2γ at kT/M . Then the dissipation rate γ and the
thermal velocity

√
kT/M alone adjust the degree to which, at any time t , the

Brownian particle manifests either random or deterministic behavior.
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Suppose, for instance, the Brownian particle is initialized as a projectile (with
x0 = y0 = z0 = 0, vx0 = vy0 �= 0, and vz0 = 0) and moves under the influence
of gravity (g = −gŷ) in the x − y plane. The equations of motion are

dVx = −γ Vxdt +
√

β2dt N t+dt
t,x (0, 1), (8.4.1)

dV y = −γ (Vy − vd)dt +
√

β2dt N t+dt
t,y (0, 1), (8.4.2)

dX = Vxdt , and dY = Vydt . Here vd = −g/γ and the unit normals,
Nt+dt

t,x (0, 1) and Nt+dt
t,y (0, 1), associated withfluctuations in different directions,

are statistically independent. The solutions

X (t) = Nt
0,x

(
vx,0

γ
(1 − e−γ t ),

β2

γ 3

[
tγ − 2(1 − e−γ t ) + 1

2
(1 − e−2γ t )

])
(8.4.3)

and

Y (t) = Nt
0,y

(
vy,0

γ
(1 − e−γ t ) − g

γ 2
(γ t + e−γ t − 1),

β2

γ 3

[
tγ − 2(1 − e−γ t ) + 1

2
(1 − e−2γ t )

])
(8.4.4)

are taken from (8.1.18).
These configuration space coordinates reveal deterministic behavior at early

times, that is, at times for which γ t � 1. In particular, through leading order
in the assumed small quantity γ t ,

mean{X (t)} = vx,0t (8.4.5)

and

mean{Y (t)} = vy,0t − gt2

2
, (8.4.6)

which are familiar from introductory physics, and

var{X (t)} = var{Y (t)} = β2t3

3
. (8.4.7)

Thus, the early-time regime preserves the effect of initial conditions and repro-
duces familiar projectile motion, and the variance grows relatively slowly with
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Figure 8.3. Early-time (0 ≤ γ t ≤ 0.01) sample trajectories (points) and mean trajectory
(solid) for a Brownian particle under the influence of a normalized gravity of magnitude
(gγ −1/

√
β2/2γ = 220. Initial conditions are x0 = y0 = 0 and vx0 = vy0 =

√
β2/2γ .

time t . In contrast, at late times (when γ t � 1), the coordinates change more
randomly. Through leading order terms in 1/γ t ,

mean{X (t)} = 0, (8.4.8)

mean{Y (t)} = −gt

γ
, (8.4.9)

and

var{X (t)} = var{Y (t)} = β2t

γ 2
. (8.4.10)

Thus, at late times Brownian motion is superimposed on a downward constant
drift.

Simulations of the processes (8.4.3) and (8.4.4) are displayed in figures 8.3
and 8.4 as trajectories in the x-y plane. Figure 8.3 shows a pair of largely
deterministic and projectilelike trajectories. The trajectory of figure 8.4 passes
through deterministic to random Brownian motion. In spite of the resemblance
of figure 8.3 to familiar ballistic trajectories, the model producing them applies
only at low speeds in viscous media—that is, only to Brownian projectiles.
Typically, the drag force on baseballs and other macroscopic objects in air is
not linear but quadratic in the speed.
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Figure 8.4. Early- through late-time (0 ≤ γ t ≤ 1.0) sample trajectory (points) and
mean trajectory (solid) for a Brownian particle under the influence of a normalized
gravity of magnitude (gγ −1/

√
β2/2γ = 3. Initial conditions are x0 = y0 = 0 and

vx0 = vy0 =
√

β2/2γ .

The Langevin equation and its direct extensions are well suited for weaving
deterministic and random effects together. In chapter 9 we investigate stochastic
models of two other multivariate systems with familiar deterministic limits: the
harmonic oscillator and the magnetized charged particle.

Problems

8.1. Derivation. Derive (8.2.3) through (8.2.7) from (8.2.1) through (8.2.2).

8.2. X-V Correlation. Find cor{X (t), V (t)} for Langevin’s Brownian mo-
tion in the late time, high-dissipation regime, that is, through leading order in
the assumed large quantity γ t .

8.3. Range Variation. A Brownian particle starts at the origin and com-
pletes projectilelike motion in the X -Y plane under the influence of gravity
while in its deterministic phase (γ t � 1). Its time of flight t f is the nonzero
solution of mean{Y (t f )} = 0.

a. Express var{X (t f )} in terms of fluctuation parameter β2, relaxation rate
γ , acceleration of gravity g, and initial vertical velocity vy0.
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b. Given that vx0 = vy0 =
√

β2/2γ , find an expression for the ratio of
std{X (t f )} to the distance γ −1

√
β2/2γ in terms of Vyo, γ , and g.

c. Numerically evaluate the dimensionless ratio std{X (t f )}/[γ −1
√

β2/2γ ]
with parameters used in producing figure 8.3. Is your result consistent
with that of figure 8.3? Note: the sample paths of figure 8.3 suggest
that std{X (t f )}/[γ −1

√
β2/2γ ] ≈ 10−3.
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Other Physical Processes

9.1 Stochastic Damped Harmonic Oscillator

Imagine a massive object attached to a spring and submerged in a viscous
fluid, as illustrated in figure 9.1. If set in motion, the object moves back and
forth with an amplitude that slowly decays in time. The deterministic equations
of motion governing this system,

dv = −ω2xdt − γ vdt (9.1.1)

and

dx = vdt (9.1.2)

are those of a damped harmonic oscillator with oscillation frequency ω and
decay rate γ . Yet the collisions causing the oscillations to decay also cause
the oscillator to fluctuate randomly. The simplest self-consistent equations of
motion describing a stochastically damped harmonic oscillator are

dV = −ω2 Xdt − γ Vdt +
√

β2dt Nt (0, 1) (9.1.3)

and

dX = Vdt. (9.1.4)

The symbol Nt (0, 1) in (9.1.3) slightly abbreviates previous notation Nt+dt
t (0, 1)

for the temporally uncorrelated unit normal associated with the time interval
(t, t + dt). The β → 0 limit of (9.1.3) formally recovers the deterministic
equation of motion (9.1.1), but, as before, the fluctuation-dissipation theorem
requires that β and γ be related through β2/2γ = kT/M , where M is the
object mass and T the fluid temperature. Thus, only when the thermal speed√

kT/M is ignorably small compared to the oscillator speed is a deterministic
description appropriate.

Solving (9.1.3) and (9.1.4) is a demanding but worthwhile task, first accom-
plished by Subrahmanyan Chandrasekhar (1910–95) in 1943. The harmonic
oscillator, much more than the stationary particle or the free-falling projectile, is
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Figure 9.1. Viscously damped harmonic oscillator.

the ideal multipurpose tool of theoretical physics. When displaced a little from
stable equilibrium, almost any object vibrates as a damped harmonic oscillator,
and models of complex objects are often constructed out of weakly interacting
oscillators. Furthermore, the harmonic oscillator has been a means of exploring
the physics of new phenomena—nonlinearity, quantum mechanics, and, here,
stochasticity.

The methods of chapter 8 suffice. Because equations (9.1.3) and (9.1.4) are
linear stochastic differential equations, X (t) and V (t) are linear combinations
of a set of uncorrelated normals Nt (0, 1). Thus

X (t) = N (mean{X (t)}, var{X (t)}) (9.1.5)

and

V (t) = N (mean{V (t)}, var{V (t)}) (9.1.6)

where cov{X (t), V (t)} �= 0. As before, our task reduces to finding and solving
ordinary differential equations governing the time dependence of the means,
mean{X} and mean{V }, the variances, var{X} and var{V }, and the covariance
cov{X, V }. The equations for 〈X〉 and 〈V 〉,

d〈V 〉
dt

= −ω2〈X〉 − γ 〈V 〉 (9.1.7)

and
d〈X〉

dt
= 〈V 〉, (9.1.8)

are solved in many classical mechanics texts. These texts usually distinguish
among lightly damped (γ < 2ω), critically damped (γ = 2ω), and strongly
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damped (γ > 2ω) behaviors. The solutions

〈X (t)〉 = e−γ t/2

[
x0 cos(ω′t) +

(
v0 + γ x0

2

) sin(ω′t)
ω′

]
(9.1.9)

and

〈V (t)〉 = e−γ t/2

[
v0 cos(ω′t) −

(
x0ω

2 + γ v0

2

) sin(ω′t)
ω′

]
(9.1.10)

apply in all three regimes but are written here to emphasize the lightly damped
case. The reduced frequency ω′ =

√
ω2 − γ 2/4 is, of course, only real and

positive definite when the oscillator is lightly damped.
The ordinary differential equation governing var{V (t)} follows from the

equation of motion (9.1.3) by way of

dV2 = (V + dV)2 − V 2

= 2V dV + (dV)2, (9.1.11)

d〈V 2〉 = −2γ 〈V 2〉dt − 2ω2〈VX〉dt + β2dt, (9.1.12)

and

d〈V 2〉
dt

= −2γ 〈V 2〉 − 2ω2〈VX〉 + β2. (9.1.13)

Combining (9.1.13) and (9.1.7), we find the desired equation

d var{V }
dt

= −2γ var{V } − 2ω2 cov{X, V } + β2. (9.1.14)

The equation governing the time dependence of var{X (t)} follows, in like
manner, from dX = Vdt via dX2 = 2XdX + (dX)2, dX2 = 2XVdt, d〈X2〉 =
2〈XV〉dt , and d〈X〉/dt = 〈V 〉. From these we find

d var{X}
dt

= 2 cov{X, V }. (9.1.15)

Also, from d(XV) = (X + dX)(V + dV)− XV we have d(XV) = XdV + V dX
and, consequently, d〈XV〉 = −ω2〈X2〉dt − γ 〈XV〉dt + 〈V 2〉dt , which, given
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(9.1.7) and (9.1.8), becomes

d cov{X, V }
dt

= −γ cov{X, V } − ω2 var{X} + var{V }. (9.1.16)

The three ordinary differential equations (9.1.14) through (9.1.16) are readily
decoupled and solved. In particular, we use (9.1.15) to eliminate cov{X, V }
and, subsequently, (9.1.16) to eliminate var{V }. This procedure generates the
equation

d3 var{X}
dt3

+ 3γ
d2 var{X}

dt2
+ (4ω2 + 2γ 2)

d var{X}
dt

+ 4γω2

(
var{X} − β2

2γω2

)
= 0, (9.1.17)

which can be expressed in terms of the auxiliary variable

y = var{X} − β2

2γω2
(9.1.18)

in the convenient form

d3y

dt3
+ 3γ

d2y

dt2
+ (4ω2 + 2γ 2)

dy

dt
+ 4γω2y = 0. (9.1.19)

Equation (9.1.19) has solutions of form ept , where the constant p solves the
indicial equation

p3 + 3γ p2 + (4ω2 + 2γ 2)p + 4γω2 = 0. (9.1.20)

In general, cubic equations have complicated solutions. Fortunately, this cubic
has relatively simple ones,

p = −γ, −γ ± 2iω′, (9.1.21)

for which we recall that ω′ =
√

ω2 − γ 2/4. Therefore, the general solution of
(9.1.17) is the linear combination

var{X} = β2

2γω2
+ e−γ t [a + be2iω′t + ce−2iω′t ]. (9.1.22)

The constants a, b, and c in (9.1.22) are determined by imposing the ini-
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tial conditions X (0) = x0 and V (0) = v0 or their equivalents on (9.1.22),
(9.1.16), and (9.1.15). In particular, recall that the variances and covariances
of sure variables always vanish. Thus, var{X (0)} = 0, var{V (0)} = 0, and
cov{X (0), V (0)} = 0. The results are

var{X} = β2

2γω2
+ e−γ t

(
β2

8γω′2ω2

)

× [−4ω2 + γ 2 cos(2ω′t) − 2γω′ sin(2ω′t)], (9.1.23)

cov{X, V } = e−γ t

(
β2

4ω′2

)
[1 − cos(2ω′t)], (9.1.24)

and

var{V } = β2

2γ
+ e−γ t

(
β2

8γω′2

)
[−4ω2 + γ 2 cos(2ω′t)

+ 2γω′ sin(2ω′t)]. (9.1.25)

As one might expect, in the long time limit γ t → ∞, var{V } → β2/2γ , and,
if the oscillator approaches thermal equilibrium with its environment so that

Figure 9.2. Dots represent the sample time evolution, while the solid lines represent the
mean, and mean ± standard deviation of the normalized velocity coordinate v/

√
β2/2γ

of a lightly damped (γ = ω/3) stochastic harmonic oscillator.
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Figure 9.3. Dots represent the sample time evolution, while the solid lines repre-
sent the mean, and mean ± standard deviation of the normalized position coordinate
x/(γ −1

√
β2/2γ ) of a lightly damped (γ = ω/3) stochastic harmonic oscillator.

var{V } → kT/M , then, the fluctuation dissipation theorem, β2/2γ = kT/M ,
also obtains. These expressions, (9.1.23) through (9.1.25), and those for
mean{X (t)} and mean{V (t)}, (9.1.9) and (9.1.10) respectively, completely
describe the stochastic damped harmonic oscillator. See also Problem 9.3,
Oscillator Energy.

Expressions (9.1.9), (9.1.10), and (9.1.23) through (9.1.25), pass the test of
reducing to known results in appropriate limits. Of course, t = 0 recovers
stipulated initial conditions, and β2 = 0 reduces the random process to the
familiar deterministic one. Less obvious is the ω2 → 0 limit, which takes
the oscillator process defined by (9.1.3) and (9.1.4) into Langevin’s Brownian
motion, defined by (8.1.4) and (8.1.5). See Problem 9.4, O-U Process Limit.

Figures 9.2 and 9.3 display sample speeds V (t) and positions X (t) of a
lightly damped (γ = ω/3) stochastic harmonic oscillator, as generated from
equations (9.1.9) and (9.1.10) and (9.1.23) through (9.1.25) with the simulation
method of section 8.2.

9.2 Stochastic Cyclotron Motion

One can add fluctuation and dissipation terms to any ordinary differential
equation having time as an independent variable. Whether the resulting stochas-
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tic differential equation describes a physically meaningful process or not is, of
course, another question. Adding dissipation and fluctuation to a charged par-
ticle in a magnetic field, in fact, makes perfect sense when the aim is to model
simultaneous cyclotron motion and random scattering, as might occur, say, in
the earth’s magnetosphere, in a mass spectrometer, or in a particle accelerator.

A particle with charge Q and mass M in a stationary uniform magnetic field
B = Bẑ obeys Newton’s second law

M
dv

dt
= Qv × B, (9.2.1)

or, equivalently,
dv = (v × �)dt, (9.2.2)

where � = �ẑ and �(= QB/M) is the cyclotron frequency. Components of
(9.2.2) in the x − y plane, that is, in the plane normal to the magnetic field, are
dvx = �vydt and dvy = −�vxdt . Adding dissipation and fluctuation to these
produces the stochastic differential equations

dVx = �Vydt − γ Vxdt +
√

β2dt Nt,x (0, 1) (9.2.3)

and
dV y = −�Vxdt − γ Vydt +

√
β2dt Nt,y(0, 1). (9.2.4)

Here Nt,x (0, 1) and Nt,y(0, 1) are mutually independent and individually tem-
porally uncorrelated unit normals. These, as well as

dX = Vxdt (9.2.5)

and
dY = Vydt, (9.2.6)

govern the multivariate stochastic cyclotron process. A complete description of
the particle dynamics also requires solving dVz = −γ Vzdt +

√
β2dt Nt,z(0, 1)

and dZ = Vzdt for motion parallel to the magnetic field. Since Vz(t) is an O-U
process and Z(t) is its integral, we can refer to chapter 8 for their description.

The four coupled stochastic differential equations, (9.2.3) through (9.2.6),
describing motion in the plane normal to the magnetic field, are linear in
the dependent variables X (t), Y (t), Vx (t), and Vy(t). For this reason, these
variables are different linear combinations of a single set of mutually inde-
pendent unit normals and, therefore, via the normal sum theorem, are them-
selves correlated normals. Their complete description requires finding and
solving the fourteen independent coupled ordinary differential equations gov-
erning the time dependence of their fourteen defining moments: mean{X},
mean{Y }, mean{Vx }, mean{Vy}, var{X}, var{Y }, var{Vx }, var{Vy}, cov{X, Y },
cov{X, Vx }, cov{X, Vy}, cov{Y, Vx }, cov{Y, Vy}, and cov{Vx , Vy}. This task is
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Figure 9.4. Trajectory of a stochastic magnetized charged particle described by the
model of (9.2.3) through (9.2.6). See Lemons and Kaufman (1999).

too lengthy to outline here but requires only the methods already employed in
chapter 8 and in section 9.1. Figure 9.4 shows a sample trajectory.

Here, instead of deriving the exact solutions necessary to generate particle
trajectories like the one shown in figure 9.4, we use the Smoluchowski approx-
imation to extract the physics of collision-limited charged particle diffusion
across magnetic field lines. In particular, setting dVx = 0 and dV y = 0 in
(9.2.3) and (9.2.4) and using (9.2.5) and (9.2.6) to eliminate velocity variables
Vx and Vy , we have

0 = �dY − γ dX +
√

β2dt Nt,x (0, 1) (9.2.7)

and
0 = −�dX − γ dY +

√
β2dt Nt,y(0, 1). (9.2.8)

Multiplying each term in (9.2.7) by γ and each in (9.2.8) by � and adding the
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resulting equations produces

0 = −(γ 2 + �2)dX + γ
√

β2dt Nt,x (0, 1) + �
√

β2dt Nt,y(0, 1), (9.2.9)

that is,

dX =
√

γ 2β2dt

(γ 2 + �2)2
Nt,x (0, 1) +

√
�2β2dt

(γ 2 + �2)2
Nt,y(0, 1). (9.2.10)

Similar manipulations eliminating X in favor of Y yield

dY =
√

γ 2β2dt

(γ 2 + �2)2
Nt,y(0, 1) −

√
�2β2dt

(γ 2 + �2)2
Nt,x (0, 1). (9.2.11)

Summing the two terms on the right-hand sides of (9.2.10) and (9.2.11) reveals
that X (t) and Y (t) are Wiener processes with solutions

mean{X} = mean{Y } = a constant (9.2.12)

and

var{X} = var{Y } = β2t

�2 + γ 2
. (9.2.13)

Thus the Smoluchowski approximation reduces stochastic cyclotron motion
to cross-field diffusion with a diffusion constant (β2/2)

�2+γ 2 reduced by a factor of

γ 2/(�2 + γ 2) from its field free (�2 → 0) limit. Although not immediately
obvious, the equations of motion (9.2.10) and (9.2.11) imply that X and Y are
statistically independent. See Problem 9.5 Statistical Independence.

Problems

9.1. Smoluchowski Oscillator. Find the Smoluchowski approximation to
the equations of motion (9.1.3) and (9.1.4) of a stochastic damped harmonic
oscillator and solve for X (t).

9.2. Critical Damping. Find mean{X} and var{X} for the critically damped
(γ = 2ω) stochastic oscillator by taking the appropriate limits of (9.1.9) and
(9.1.23).

9.3. Oscillator Energy. The total energy of a simple harmonic oscillator
is the sum of its kinetic MV2/2 and potential ω2MX2/2 energies. Show that, in
equilibrium when γ t → ∞, solutions (9.1.23) and (9.1.25) and the fluctuation-
dissipation theorem imply that the mean kinetic and potential energy are each
equal to kT/2.
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9.4. O-U Process Limit. Show that the ω2 → 0 limit reduces expressions
(9.1.9) and (9.1.23) to those describing the mean and variance of the integral
X (t) of an O-U process as found in (8.1.18).

9.5. Statistical Independence. Show that (9.2.10) and (9.2.11) imply that
d
dt cov{X, Y } = 0, and, thus, given sure value initial conditions, that cov{X,

Y } = 0 at all times.
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Fluctuations without Dissipation

10.1 Effusion

Every physicist who maintains a vacuum system struggles to defeateffusion—
the process whereby gas molecules flow through a small opening from one
region (the environment) into another (the vacuum). Effusion can be quanti-
fied deterministically with a simple rate equation or stochastically as an O-U
process. The latter, of course, includes the effect of fluctuations.

Figure 10.1 shows the situation we consider—a closed region divided into
two compartments of volumes VA and VB containing, respectively, NA and
NB molecules. An opening of area σ allows the molecules to move between
compartments. We assume that the molecules are identical, that the gases are
uniformly distributed within each compartment, that the gases are in thermal
equilibrium with each other, and that the integers NA and NB are large enough
to be treated as continuous variables. The rate at which molecules leave volume
VA must be proportional to their density NA/VA in compartment A. Likewise,
the rate at which molecules enter volume VA (from volume VB) is proportional
to NB/VB . Thus

dN A

dt
= −r

(
NA

VA
− NB

VB

)
, (10.1.1)

r is the effusion rate. The larger the area of the opening σ and the higher
the gas temperature T , the more rapidly the molecules effuse; the larger the
particle mass M , the more slowly the effusion. According to a simple model,
r = σ

√
kT/(2π M). By hypothesis, the total number of molecules is a constant

N0 = NA + NB . Using this relation to eliminate NB from (10.1.1) transforms
it into an equation for NA alone,

dN A

dt
= −r

(
1

VA
+ 1

VB

) 
NA − N0(

VB

VA
+ 1

)

 . (10.1.2)
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Figure 10.1. Effusion parameters.

Solving yields

NA(t) = N0

(
VA

VA + VB

)
+ e−r

(
1

VA
+ 1

VB

)
t
[

NA(0) − N0

(
VA

VA + VB

)]
.

(10.1.3)

As t → ∞
NA(t) → N0

(
VA

VA + VB

)
, (10.1.4)

and likewise

NB(t) → N0

(
VB

VA + VB

)
. (10.1.5)

Thus, as t → ∞ the densities in each compartment equalize.
More generally, NA and NB are random variables. In place of the determin-

istic rate equation (10.1.2) we propose the stochastic differential equation

dN A = −γ (NA − N∞
A )dt +

√
β2dt Nt (0, 1) (10.1.6)

for NA, where, for convenience we have adopted the notation γ = r( 1
VA

+ 1
VB

)

and N∞
A = N0(

VA
VA+VB

). Since (10.1.6) describes an O-U process, its solution is

NA(t) = N

(
N∞

A + e−γ t (NA(0) − N∞
A ),

β2

2γ
(1 − e−2γ t )

)
. (10.1.7)

However, var{NA} is not an energy, and therefore β2 cannot be expressed in
terms of a rate γ and a temperature T by requiring the equipartition of energy
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at equilibrium. The fluctuation-dissipation theorem does not apply; NA and NB

fluctuate without dissipation.
Nonetheless, long-time, steady-state, or equilibrium values of mean{NA} and

var{NA} provide a means of choosing the process parameters. From (10.1.7)
we see that

mean{NA(∞)} = N∞
A (10.1.8)

and

var{NA(∞)} = β2

2γ
. (10.1.9)

Consider the following line of reasoning (also used in Problem 2.4, Density
Fluctuations). A molecule must occupy a position in VA or in VB . Suppose
these two mutually exclusive and exhaustive possibilities are realized with prob-
abilities PA and PB = 1− PA. At equilibrium PA and PB are constant numbers.
Thus mean{NA(∞)} and var{NA(∞)} must be functions of the equilibrium
probabilities PA and PB . But what functions? To find out, let the random
variables Xi with i = 1, 2, . . . N0 be a set of statistically independent indicator
variables defined so that Xi = 1 when molecule i is within volume VA and
Xi = 0 when molecule i is within volume VB . By design, the variables Xi

characterize the gas in equilibrium. Clearly, NA = ∑N0
i=1 Xi , and, consequently,

mean{Xi } = 1 · PA + 0 · PB

= PA (10.1.10)

for all i . Likewise,

var{Xi } = (1 − mean{Xi })2 · PA + (0 − mean{Xi })2 · PB

= (1 − PA)2 · PA + (0 − PA)2 · PB

= (1 − PA)PA

= PA PB (10.1.11)

for all i . Because the variables Xi are statistically independent,

mean{NA(∞)} =
N0∑
i

mean{Xi }

= N0 mean{X1}
= N0 PA, (10.1.12)
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and, likewise,

var{NA(∞)} = N0 PA PB . (10.1.13)

Combining these results with (10.1.8) and (10.1.9), we find that

N∞
A (∞) = N0 PA (10.1.14)

and
β2

2γ
= N0 PA PB . (10.1.15)

In terms of probabilities PA and PB , the O-U process (10.1.7) becomes

NA(t) = N (N0 PA+e−γ t (NA(0)−N0 PA), N0 PA PB(1−e−2γ t )). (10.1.16)

We can reasonably assume that the equilibrium probability of being within a
certain volume is proportional to that volume, or

PA = VA/(VA + VB) (10.1.17)

and

PB = VB/(VA + VB). (10.1.18)

Using (10.1.17) to eliminate PA in (10.1.14) recovers (10.1.4), while using
(10.1.17) and (10.1.18) to eliminate both PA and PB in (10.1.15) produces an
expression for the characteristic fluctuation magnitude β2.

This stochastic model of effusion extends the deterministic model, but both
models have the same built-in artificiality: they ignore location within the
compartments. For this reason, when either or both of the compartments are
large, the assumption that equilibrium probabilities PA and PB are the same
for each molecule becomes unrealistic. However, this problem doesn’t arise
when we apply the same mathematics to collections of quantum systems, as in
Problem 10.1, Two-Level Atoms.

10.2 Elastic Scattering

A particle of mass M and speed V0 moves among objects from which it
scatters elastically, that is, without losing or gaining kinetic energy. Think,
for instance, of electrons colliding with Helium ions in a hot plasma, neutrons
diffusing through a matrix of cold material, elastically scattering photons, or
even self-propelled flagellated bacteria swimming along at roughly constant
speeds while randomly changing their heading (Berg 1993). Suppose that in
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Figure 10.2. Direct numerical solutions of (10.2.2), (10.2.3), and (10.2.4), describing
the trajectory of an elastically scattering particle. Axes are numbered in units of V0γ

−1,
and the total path length is 10 V0γ

−1.

each small time interval dt the particle shifts its direction of propagation (in
the x-y plane) only slightly by d� in such a way that

d� =
√

2γ dt Nt (0, 1). (10.2.1)

Thus �(t) is a Wiener process. Of course,

�(t) = N (�0, 2γ t) (10.2.2)

solves the stochastic differential equation (10.2.1). Hereγ is a (positive definite)
scattering rate having units of inverse time and so denoted, as we shall see, in
order to emphasize the formal similarity with Brownian motion. Configuration-
space coordinates X and Y are determined by a presumed constant speed V0

and � through

dX = V0 cos �dt (10.2.3)

and

dY = V0 sin �dt. (10.2.4)

In principle, the time evolution of these three process variables �, X , and
Y completely defines the time evolution of the elastically scattering particle.
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Yet, when we attempt to solve (10.2.3) and (10.2.4) a difficulty arises. The
trigonometric functions cos � and sin � are nonlinear in the random variable
� and, for this reason, can’t be integrated via the normal sum theorem. But
we can eliminate the nonlinearity by replacing the random angle � with the
random velocities

Vx = V0 cos � (10.2.5)

and

Vy = V0 sin �. (10.2.6)

The equation governing Vx comes from

dVx = d[V0 cos �]

= V0[cos(� + d�) − cos �]

= V0[cos � cos d� − sin � sin d� − cos �]

= Vx [cos d� − 1] − Vy sin d�, (10.2.7)

which for small d� and d� = √
2γ dt Nt (0, 1) becomes

dVx = −Vx
(d�)2

2
− Vyd�

= −Vxγ [Nt (0, 1)]2dt − Vy

√
2γ dt Nt (0, 1). (10.2.8)

The factor [Nt (0, 1)]2dt requires special attention. Although in the form of
a random variable, [Nt (0, 1)]2dt can, without approximation, be replaced in
(10.2.8) with the sure variable dt . The proof is simple. The moments of
[Nt (0, 1)]2dt and of dt are effectively identical through terms of order dt . In
particular, 〈[Nt (0, 1)]2dt〉 = 〈dt〉 = dt and 〈([Nt (0, 1)]2dt)n〉 ≈ 〈dtn〉 =
dtn = 0 for n > 1. Thus, the role played by [Nt (0, 1)]2dt in the stochas-
tic differential equation (10.2.8) is no different from the role played by dt .
Consequently, equation (10.2.8) reduces to

dVx = −γ Vxdt − Vy

√
2γ dt Nt (0, 1). (10.2.9)

A similar derivation produces

dV y = −γ Vydt + Vx

√
2γ dt Nt (0, 1). (10.2.10)

Note that the unit normals Nt (0, 1) in the two equations (10.2.9) and (10.2.10)
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are completely correlated—in other words, they produce the same realizations.
These equations of motion, along with

dX = Vxdt (10.2.11)

and

dY = Vydt, (10.2.12)

govern the time evolution of this multivariate, but now linear, system.
The stochastic differential equations of motion (10.2.9) and (10.2.10) govern-

ing Vx and Vy have several noteworthy and useful properties. First, as expected,
they exactly conserve kinetic energy M(V 2

x + V 2
y )/2. To see this, use (10.2.9)

to replace dVx on the right-hand side of dV2
x = 2VxdVx +(dVx )

2, discard terms
smaller than dt , and replace [Nt (0, 1)]2dt with dt . The result is

dV2
x = −2γ V 2

x dt − 2Vx Vy

√
2γ dt Nt (0, 1) + 2γ V 2

y dt (10.2.13)

and similarly

dV2
y = −2γ V 2

y dt + 2VyVx

√
2γ dt Nt (0, 1) + 2γ V 2

x dt. (10.2.14)

Adding these produces the expected statement of conservation

d(V 2
x + V 2

y ) = 0, (10.2.15)

whose solution is V 2
x + V 2

y = V 2
0 . Second, the equations of motion (10.2.9)

and (10.2.10) can be expressed compactly in vector form as

dV = −γ V dt − [V ×
√

2γ dt Nt (0, 1)ẑ], (10.2.16)

where V = Vx x̂ + Vy ŷ. Thus, the effect of elastic scattering is identical to the
effect of a linear drag force −γ MV plus a fluctuating magnetic field

B = − M

Q

√
2γ

dt
Nt (0, 1)ẑ (10.2.17)

on a particle of charge Q and mass M . As dt → 0, thisfluctuatingfield becomes
indefinitely large while its net effect over the interval dt becomes indefinitely
small. Random variables with this behavior are said to exhibit white noise.
Third, the structure of the fundamental equations of motion (10.2.9) through
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(10.2.12) allows us to turn any valid expression derived from them into another
valid expression by applying the transformation

Vx → Vy, (10.2.18)

Vy → −Vx , (10.2.19)

X → Y, (10.2.20)

and

Y → −X. (10.2.21)

Fourth, while the dynamical equations (10.2.9) and (10.2.10) are linear in the
process variables Vx and Vy , they still contain Vx Nt (0, 1) and Vy Nt (0, 1), prod-
ucts of two random variables, one of which is a normal. Because such products
are not normal variables, we still cannot use the normal sum theorem to solve
(10.2.9) and (10.2.10). Neither can we exploit the central limit theorem—
conservation of kinetic energy keeps the terms in (10.2.9) and (10.2.10) from
being statistically independent. We can, however, derive ordinary differential
equations that determine the time evolution of the moments of X , Y , Vx , and
Vy . See Problem 10.3, Mean Square Displacement.

Taking the mean of equations (10.2.9) and (10.2.11) for Vx and X produces

d〈Vx 〉
dt

= −γ 〈Vx 〉 (10.2.22)

and

d〈X〉
dt

= 〈Vx 〉, (10.2.23)

which, given the sure initial conditions X (0) = x0 and Vx (0) = vx0, are solved
by

〈Vx 〉 = vx0e−γ t (10.2.24)

and

〈X〉 = x0 + vx0

γ
(1 − e−γ t ). (10.2.25)

Applying the transformation (10.2.18) through (10.2.21) to these solutions
yields 〈Vy〉 = vy0e−γ t and 〈Y 〉 = y0 + (vy0/γ )(1 − e−γ t ). Furthermore,
from dX2 = 2XdX and (10.2.11) we find that d〈X2〉 = 2〈XVx 〉dt , which,
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with (10.2.23), produces

d

dt
var{X} = 2 cov{X, Vx }. (10.2.26)

Likewise, from d(XVx ) = XdVx + VxdX we find

d

dt
cov{X, Vx } = var{Vx } − γ cov{X, Vx } (10.2.27)

and, from dV2
x = 2VxdVx + (dVx )

2,

d

dt
var{Vx } = −2γ var{Vx } + 2γ 〈V 2

y 〉. (10.2.28)

We can use conservation of energy (10.2.15) and the solution for 〈Vx 〉 (10.2.24)
to express the quantity 〈V 2

y 〉 in (10.2.28) in terms of var{X}, cov{X, Vx }, and
var{Vx } so that

〈V 2
y 〉 = V 2

0 − 〈V 2
x 〉

= V 2
0 − var{Vx } − 〈Vx 〉2

= V 2
0 − V 2

x0e−2γ t − var{Vx }. (10.2.29)

In this way, (10.2.28) becomes

d

dt
var{Vx } = −4γ var{Vx } + 2γ (V 2

0 − V 2
x0e−2γ t ). (10.2.30)

Equations (10.2.26), (10.2.27), and (10.2.30), are coupled, linear, ordinary
differential equations. Solving these for var{X}, we find

var{X} =
(

V0

γ

)2 [
γ t + 4e−γ t

3
− e−4γ t

12
− 5

4

]

+
(

Vx0

γ

)2 [
e−4γ t

6
+ 4e−γ t

3
− e−2γ t − 1

2

]
. (10.2.31)

Applying the transformation (10.2.18) through (10.2.21) to this solution gen-
erates a similar equation for var{Y }.

Apart from a drift velocity vd , which can also be included in this calcula-
tion, the main difference between these results and those describing Langevin’s
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Brownian motion is the way in which the initial velocities Vx0 and Vy0 contribute
(or do not contribute) to the time evolution of the spatial variances var{X} and
var{Y }. In the very long time regime (γ t � 1), elastic scattering reproduces,
through leading order in (γ t)−1, the linear time dependence characteristic of
Brownian motion. That is,

var{X} ≈ var{Y } ≈ V 2
0 t

γ
. (10.2.32)

However, an expansion of (10.2.31) through leading order in γ t yields

var{X} ≈ 2γ Vy0t3

3
(10.2.33)

and, in like manner,

var{Y } ≈ 2γ Vx0t3

3
. (10.2.34)

Apparently, at first, elastic scattering contributes more to the spatial variance
in the plane normal to the initial velocity than in the direction of the initial
velocity. In contrast, as shown in (8.1.17) the initial velocities do not appear at
all in the expression for the spatial variance of a Brownian particle.

Problems

10.1. Two-Level Atoms. A gas is composed of N0 molecules, each one of
which can occupy one of two states denoted A and B. In thermal equilibrium,
the probability that a molecule occupies a state A is proportional to the Boltz-
mann factor, e−EA/kT , and the probability that it occupies state B is proportional
to e−EB/kT , where EA and EB are allowed energy levels.

a. Find expressions for the equilibrium probabilities PA and PB in terms
of EA, EB , and temperature T .

b. Given that the stochastic differential equation

dN A = −γA(NA − N∞
A )dt +

√
β2dt(0, 1)

governs the number of molecules in state A, evaluate the parameters
N∞

A and β2 in terms of γA, EA, EB , and T .

10.2. Cross-Field Diffusion. Consider the ability of elastic scattering to
cause the diffusion of a particle with charge Q and mass M across a stationary,
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uniform, magnetic field B = B0 ẑ. In particular, add a Lorentz force to the
equations of motion for elastic scattering (10.2.9) and (10.2.10), turning the
latter into

dVx = −γ Vxdt + Vy�dt − Vy

√
2γ dt Nt (0, 1)

and
dV y = −γ Vydt − Vx�dt + Vx

√
2γ dt Nt (0, 1)

where �0 = QB/M .

a. Show that these equations conserve kinetic energy, that is, show that
d(V 2

x + V 2
y ) = 0.

b. Apply the Smoluchowski approximation—that is, set dVx = dV y = 0
and replace Vxdt with dX and Vydt with dY . The Smoluchowski ap-
proximation extracts the physics of the limit in which configuration
space diffusion is relatively large and velocity space diffusion is rela-
tively small.

c. Separate dX and dY into two equations. Recall that the unit normal sym-
bols Nt (0, 1) appearing in the two equations denote the same variable.

d. Show that 〈X〉 = 〈Y 〉 = 0.
e. Show that

〈X2 + Y 2〉 = 2γ V 2
0 t

[�2 + γ 2]
.

10.3. Mean Square Displacement. Show that the mean square displace-
ment of the elastically scattering particle with initial position x0 = 0, y0 = 0 is
given by

〈X2 + Y 2〉 = 2v2
0

γ 2
(γ t + e−γ t − 1).





Appendix A

“On the Theory of Brownian
Motion” by Paul Langevin

I. The very great theoretical importance presented by the phenomena of Brow-
nian motion has been brought to our attention by Gouy.1 We are indebted to
this physicist for having clearly formulated the hypothesis that sees in the con-
tinual movement of particles suspended in a fluid an echo of molecular-thermal
agitation and for having demonstrated this experimentally, at least in a quali-
tative manner, by showing the perfect permanence of Brownian motion and its
indifference to external forces when the latter do not modify the temperature of
the environment.

A quantitative verification of this theory has been made possible by Einstein,2

who has recently given a formula that allows one to predict, at the end of a given
time τ , the mean square �2

x displacement �x of a spherical particle in a given
direction x as the result of Brownian motion in a liquid as a function of the
radius a of the particle, of the viscosity µ of the liquid, and of the absolute
temperature T . This formula is

�2
x = RT

N

1

3πµa
τ, (A.1)

where R is the ideal gas constant relative to one gram-molecule and N the
number of molecules in one gram-molecule, a number well known today and
around 8 × 1023.

Smoluchowski3 has attempted to approach the same problem with a method
that is more direct than that used by Einstein in the two successive demonstra-
tions he has given of his formula, and he has obtained for �2

x an expression of
the same form as (1) but which differs from it by the coefficient 64/27.

II. I have been able to determine, first of all, that a correct application of the
method of Smoluchowski leads one to recover the formula of Einstein precisely,

“Sur la théorie du mouvement brownien” Comptes rendus Académie des Sciences (Paris) 146,
(1908) 530–533. Translation by Anthony Gythiel, first published in American Journal of Physics
65 (1997): 1079–1081. Reprinted with permission. c© 1997, American Association of Physics
Teachers.
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and, furthermore, that it is easy to give a demonstration that is infinitely more
simple by means of a method that is entirely different.

The point of departure is the same: the theorem of the equipartition of the
kinetic energy between the various degrees of freedom of a system in thermal
equilibrium requires that a particle suspended in a liquid possesses, in the
direction x , an average kinetic energy RT/2N equal to that of a gas molecule
of any sort, in a given direction, at the same temperature. If ξ = dx/dt is the
speed, at a given instant, of the particle in the direction that is considered, one
therefore has, for the average extended to a large number of identical particles
of mass m,

mξ 2 = RT

N
. (A.2)

A particle such as the one we are considering, large relative to the average
distance between the molecules of the liquid and moving with respect to the
latter at the speed ξ , experiences (according to Stokes’s formula), a viscous
resistance equal to −6πµaξ . In actual fact, this value is only a mean, and
by reason of the irregularity of the impacts of the surrounding molecules, the
action of the fluid on the particle oscillates around the preceding value, to the
effect that the equation of the motion in the direction x is

m
d2x

dt2
= −6πµa

dx

dt
+ X. (A.3)

We know that the complementary force X is indifferently positive and negative
and that its magnitude is such as to maintain the agitation of the particle, which,
given the viscous resistance, would stop without it.

Equation (3), multiplied by x, may be written as:

m

2

d2x2

dt2
− mξ 2 = −3πµa

dx2

dt
+ Xx . (A.4)

If we consider a large number of identical particles and take the mean of the
equations (4) written for each one of them, the average value of the term Xx is
evidently null by reason of the irregularity of the complementary forces X . It
turns out that, by setting z = dx2/dt ,

m

2

dz

dt
+ 3πµaz = RT

N
.

The general solution

z = RT

N

1

3πµa
+ Ce− 6πµa

m t

enters a constant regime in which it assumes the constant value of the first term
at the end of a time of order m/6πµa or of approximately 10−8 seconds for the
particles for which Brownian motion is observable.
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One therefore has, at a constant rate of agitation,

dx2

dt
= RT

N

1

3πµa
;

hence, for a time interval τ ,

x2 − x2
0 = RT

N

1

3πµa
τ.

The displacement �x of a particle is given by

x = x0 + �x ,

and, since these displacements are indifferently positive and negative,

�2
x = x2 − x2

0 = RT

N

1

3πµa
τ ;

thence the formula (1).
III. A first attempt at experimental verification has just been made by T. Sved-

berg,4 the results of which differ from those given by formula (1) only by about
the ratio 1 to 4 and are closer to the ones calculated with Smoluchowski’s
formula.

The two new demonstrations of Einstein’s formula, one of which I obtained
by following the direction begun by Smoluchowski, definitely rule out, it seems
to me, the modification suggested by the latter.

Furthermore, the fact that Svedberg does not actually measure the quantity
�2

x that appears in the formula and the uncertainty in the real diameter of
the ultramicroscopic granules he observed call for new measurements. These,
preferably, should be made on microscopic granules whose dimensions are
easier to measure precisely and for which the application of the Stokes formula,
which neglects the effects of the inertia of the liquid, is certainly more legitimate.

Notes
1Gouy, Journ. de Phys., 2d ser., 7 (1888): 561; Comptes rendus 109 (1889):

102.
2A. Einstein, Ann. d. Physik, 4th ser., 17 (1905): 549; Ann. d. Physik, 4th ser.,

19 (1906): 371.
3M. von Smoluchowski, Ann. d. Physik, 4th ser., 21 (1906): 756.
4T. Svedberg, Studien zer Lehre von den kolloı̈den Lösungen (Upsala, 1907).





Appendix B

Kinetic Equations

Chapter 6 presents two alternative but equivalent mathematical descriptions of
a Wiener process: one in terms of the random variable X (t) and its defining
stochastic differential equation d X =

√
δ2 dt Nt (0, 1), and the other in terms

of the probability density p(x, t) and its defining partial differential equation

∂p

∂t
=

(
δ2

2

)
∂2 p

∂x2
.

All continuous, Markov, stochastic, normal processes have a similar dual de-
scription. Each two-variable process is governed by two stochastic differential
equations of the general form

dV = a(X, V ) dt +
√

b2(X, V ) dt Nt (0, 1) (B.1)

and
d X = V dt, (B.2)

where the functions a(X, V ) and b(X, V ) are general enough to accommodate
many cases. What is the partial differential equation governing the equivalent
two-variable probability density p(x, v, t)?

The key to converting between one description and the other is the identity∫∫
f (x, v)

∂p

∂t
dx dv =

〈
d f (X, V )

dt

〉
, (B.3)

where f (X, V ) is any smooth function of X and V . Now

d f = ∂ f

∂ X
d X + ∂ f

∂V
dV + ∂2 f

∂V 2

(dV )2

2

= ∂ f

∂ X
V dt + ∂ f

∂V

[
a dt +

√
b2 dt Nt (0, 1)

]
+ ∂2 f

∂V 2

b2 dt

2
, (B.4)

where we have dropped terms smaller than dt . Substituting this result into
(B.3) yields ∫∫

f
∂p

∂t
dx dv =

〈
V

∂ f

∂ X
+ a

∂ f

∂V
+ b2

2

∂2 f

∂V 2

〉
(B.5)
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since 〈
√

b2(X, V )Nt (0, 1)〉 = 〈
√

b2(X (t), V (t))〉〈Nt+dt
t (0, 1)〉 = 0. Express-

ing the right-hand side of (B.5) as an integration over phase space, we have∫∫
f
∂p

∂t
dx dv =

∫∫ [
v
∂ f

∂v
+ a

∂ f

∂x
+ b2

2

∂2 f

∂v2

]
p dx dv, (B.6)

which, upon integrating the right-hand side by parts and dropping surface terms
(at infinity), produces∫∫

f (x, v)
∂p

∂t
dx dv

=
∫∫

f (x, v)

[
−v

∂p

∂x
− ∂

∂v
(ap) + 1

2

∂2

∂v2
(b2 p)

]
dx dv. (B.7)

This equation holds for arbitrary function f (x, v) if and only if

∂p

∂t
+ v

∂p

∂x
= − ∂

∂v
(ap) + 1

2

∂2

∂v2
(b2 p), (B.8)

which is the kinetic equation for arbitrary characterizing functions a(x, v) and
b2(x, v).

The O-U process stochastic differential equations are dV = −γ V dt +√
β2 dt Nt (0, 1) and d X = V dt . Thus a = −γ V , b2 = β2, and the equivalent

kinetic equation is the Fokker-Planck equation

∂p

∂t
+ v

∂p

∂x
= γ

∂

∂v
(vp) + β2

2

∂2 p

∂v2
. (B.9)

The simple harmonic oscillator stochastic differential equations are dV =
−ω2 X dt − γ V dt +

√
β2 dt Nt (0, 1) and d X = V dt . The equivalent kinetic

equation,
∂p

∂t
+ v

∂p

∂x
= ∂

∂v
[(ω2x + γ v)p] + β2

2

∂2 p

∂v2
, (B.10)

is one example of the Kramers kinetic equation

∂p

∂t
+ v

∂p

∂x
= ∂

∂v

[(−F(x, v)

m
+ γ v

)
p

]
+ β2

2

∂2 p

∂v2
, (B.11)

describing the effect of an arbitrary smooth force F(x, v) and a constant fluc-
tuation parameter β2 (Gardiner 1994).



Answers to Problems

Chapter 1

1.2 a.
n∏

i=1

Pi and 1 −
n∏

i=1

Pi

b. 1 −
n∏

i=1

(1 − Pi )

Chapter 2

2.1 mean{X} = 3.50, var{X} = 2.92, std{X} = 1.71, skewness{X} = 0,
and kurtosis{X} = 1.73

2.3 a. mean{R} = n〈Ri 〉, var{R} = n

[
ti 〈Ri 〉
100

]2

, t = ti√
n

b. mean{R} = 50�, var{R} = 10�2, tolerance{R} = 6.3%
2.4 a. mean{Xi } = V/Vo, var{Xi } = (V/Vo)(1 − V/Vo)

b. mean{N } = No(V/Vo), var{N } = No(V/Vo)(1 − V/Vo), and√
var{N }/ mean{N } =

√
(1 − V/Vo)/(NoV/Vo)

Chapter 3

3.3 a. mean{X} = nµ, var{X} = nσ 2, and 〈X2〉 = nσ 2 + n2µ2

b. mean{X} = (n/2)(�xr − �xl), var{X} = n

4
(�xr + �xl) and

〈X2〉 = n

4
(�xr + �xl)

2 + n2

4
(�xr − �xl)

2

3.4 a. m�x2

b.
√

m/n
3.5 a. mean{Xi } = 1/2, var{Xi } = 1/8

b. mean{N } = n/2, var{N } = n/8

c. mean{N/n} = 1/2, var{N/n} = 1/(8n)

Chapter 4

4.1 a. p(x) = d/[π(x2 + d2)] for −∞ < x < ∞. Note that this
probability distribution is that of a Cauchy variable C(0, d).
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4.3 b. λ/(λ − t) for t < λ

c. 1/λ2

d. n!/λn .
4.4 a. 0.0361.

Chapter 5

5.3 a. ab

b. (a + b)2 + c2

c. a2 + b2 + c2.

Chapter 6

6.1 a. δ2t ′

b.
√

t ′
t

6.2 t = x2
1/δ

2.
6.3 a. X (t) = Nt

0(αt, δ2t).

b. p(x1t) = e−(x−αt)2/2δ2t

√
2πδ2t

Chapter 7

7.1 a. γ = F/(Mvd)

b. β2 = 2FkT/(M2vd).

Chapter 8

8.2 1/
√

2γ t .
8.3 a. (8β2vy0

3)/(3g3)

b.

√
16γ 3v3

y0

3g3

c. 0.0007

Chapter 9

9.1 X (t) = N
(

x0e−ω2t/γ ,
(
β2/2ω2γ

) (
1 − e−2ω2t/γ

))
.

9.2 mean{X (t)} = e−ωt (x0 + v0t + ωx0t),

var{X (t)} = β2

4ω3
[1 − e−2ωt (1 + 2ωt + 2ω2t2)]
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Chapter 10

10.1 a. PA = e−EA/kT /
(
e−EA/kT + e−EB/kT

)
,

PB = e−EB/kT /
(
e−EA/kT + e−EB/kT

)
.

b. N∞
A = N0e−EA/kT /

(
e−EA/kT + e−EB/kT

)
,

β2 = 2γA N0e−(EA+EB )/kT /
(
e−EA/kT + e−EB/kT

)2
.
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79–80, 83p; and Johnson noise, 61–62

Fokker-Planck equation, 102

harmonic oscillator process, 75–80; critical
damping limit of, 84p; energy of, 83p;
Ornstein-Uhlenbeck process limit of, 84p;
Smoluchowski limit of, 83p

indicator random variable, 15p, 87
inductive probability, 3–4
IngenHousz, Jan, 17

Johnson, J. B., 60
Johnson noise, 60–62, 62p
jointly normal random variables, 35–36, 39p

Kerrich, J. E., 2–3
kinetic equations, 48–49, 101–2
Kirchoff’s law, 41, 60–61
Kramer’s equation, 102
kurtosis, 8, 25–26

Langevin equation, 54–57, 64, 98
Langevin, Paul, 53, 60, 97
Laplace, Pierre Simon, 4
leptokurtosis, 26
Levy, Paul, 45
Levy process, 45

Markov, A. A., 42
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Markov process, 42
mathematical agnosticism, 4
mean sum theorem, 9
moments, 7–8, 28; moments of a normal, 30.

See also expected value
moment-generating function, 27–29; of

exponential random variable 30p; of
identically distributed random variable, 29,
38; of normal 29, 30p; of Poisson, 31p; of
uniform, 28

Monte-Carlo simulation: of Einstein’s
Brownian motion, 46–47; of
Ornstein-Uhlenbeck process, 57–59; of
Langevin’s Brownian motion, 66–68

multinomial expansion, 38

normal process, 45
normal random variable, 25–26, 28, 30p,

33–36, 39p; moment-generating function
of, 29

normal sum theorem, 34–35

Ornstein-Uhlenbeck process, 54–59, 63–66; in
effusion, 86; as limit of harmonic oscillator
process, 83p; relation of, to Brownian
motion, 66, 69; in two-level atom process,
94p

platykurtosis, 26
Poisson random variable, 31p
precision of measurements, 14
probability: interpretations of, 2–4; and light

29–30p; of jointly occurring events, 5
probability density: of continuous random

variables, 23; of correlated normal
variables, 36; of Ornstein-Uhlenbeck
process, 57; of Wiener process, 48

projectile motion, 1, 69–71, 72

random process, 1, 42–45, 48; autocorrelated
49–50p; continuous, 42; cyclotron motion,
80–83; effusion, 85–88; elastic scattering,
88–94; harmonic oscillator, 75–80;
Ornstein-Uhlenbeck, 54–59, 63–66;

random process (cont.), projectile, 69–71;
random walk, 18–19, 20–21p; RC circuit,
60–62; RL circuit, 62p; Wiener, 43–45, 53,
61, 89. See also Brownian motion

random variable, 1–4, 23; Cauchy, 26–27, 35,
37; combining measurements of, 12–14;
exponential, 30–31p; indicator, 15, 87;
Levy, 45; normal, 25–26, 28, 29, 30p,
33–36, 39p; Poisson, 31p; uniform, 24–25,
28, 39p

random walk, 18–19, 20–21p
resistors in series, 14p

sedimentation, 51
shape parameters of a random variable, 8
single-slit diffraction, 29–30p
skewness, 8
Smoluchowski approximation, 68–69; of

cyclotron motion, 82–83, 94–95p; of
harmonic oscillator, 83p; of
Ornstein-Uhlenbeck process, 68–69

standard deviation, 8
statistic, 13
statistical independence, 4–5; of cyclotron

variables, 83, 84p; of failure modes, 5p; of
jointly occurring events, 10

Stigler’s law of eponymy, 17
stochastic differential equation, 44
stochastic process. See random process
Stokes’s law, 60, 98, 99
sure process, 41–42
sure variable, 1–2
Svedberg, T., 99

two-level atom, 94p

uniform random variable, 24–25, 28, 39p
update equation, 47, 58

variance, 8
variance sum theorem, 10–11

white noise, 91
Wiener process, 43–45, 53, 61, 89
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