CHAPTER I

The Algebra of Linear Transformations
and Quadratic Forms

In the present volume we shall be concerned with many topics in
mathematical analysis which are intimately related to the theory
of linear transformations and quadratic forms. 'A brief résumé of
pertinent aspects of this field will, therefore, be given in Chapter I.
The reader is assumed to be familiar with the subject in general.

$l. Linear Equations and Linear Transformations

1. Vectors. The results of the theory of linear equations can be
expressed concisely by the notation of vector analysis. A system

of n real numbers z;, z; , - - - , 7, is called an n-dimensional vector or a
vector in n-dimensional space and denoted by the bold face letter x;
the numbers z; ( = 1, - - - , n) are called the components of the vector

x. If all components vanish, the vector is said to be zero or the null
vector; for n = 2 or n = 3 a vector can be interpreted geometrically
as a ‘“‘position vector” leading from the origin to the point with the
rectangular coordinates z;. For n > 3 geometrical visualization is
no longer possible but geometrical terminology remains suitable.

Given two arbitrary real numbers A and u, the vector Ax + uy = z
is defined as the vector whose components z; are given by z;
= Az; + wy;. Thus. in particular, the sum and difference of two
vectors are defined.

The number
M xy=zmpm+ -+ zyn =yt -+ ya2a =y°X

is called the “‘“nner product” of the vectors x and y.

Occasionally we shall call the inner product x-y the component of
the vcctor y with respect to x or vice versa.

If the inner product x-y vanishes we say that the vectors x and y
are orthogonal; for n = 2 and n = 3 this terminology has an imme-
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2 I. LINEAR TRANSFORMATIONS AND QUADRATIC FORMS

diate geometrical meaning. The inner product x-x = x* of a vector
with itself plays a special role; it is called the norm of the vector.
The positive square root of x° is called the length of the vector and
denoted by | x| = 4/x%. A vector whose length is unity is called a
normalized vector or unit vector.

The following inequality is satisfied by the inner product of two
vectorsa = (ai, -, a,) and b = (by, ---, b,):

(@-b)’ < a’’

or, without using vector notation,

o) (59 E0)

where the equality holds if and only if the a; and the b; are propor-
tional, i.e. if a relation of the form \a + ub = 0 with A\* + W~ 0is
satisfied.

The proof of this “Schwarz inequality” follows from the fact that
the roots of the quadratic equation

i(a.-ac+b.-)2 ’Ea.+2x2a.b +Eb

[ Tl

for the unknown z can never be real and distinct, but must be imagi-
nary, unless the a; and b; are proportional. The Schwarz inequality
is merely an expression of this fact in terms of the discriminant of
the equation. Another proof of the Schwarz inequality follows im-
mediately from the identity

SaXei-(Seb) =113 @b - ab)’

Vo1 Jml kel

Vectors x;, X2, * -+, Xn, are said to be linearly dependent if a set
of numbers A\;, Az, **+, Am (not all equal to zero) exists such that
the vector equation

AXi+ oo+ AnXm =0

is satisfied, i.e. such that all the components of the vector on the left
vanish. Otherwise the vectors are said to be lnearly independent.
The n vectors e,,e;, - -+, e, in n-dimensional space whose com-

1 This relation was, as a matter of fact, used by Cauchy before Schwarz.



LINEAR EQUATIONS AND LINEAR TRANSFORMATIONS 3

ponents are given, respectively, by the first, second, - - -, and n-th
rows of the array

10 -« 0

01 0

0 0 -+ 1,

form a system of n linearly independent vectors. For, if a relation
Ner + - -+ 4+ e, = 0 were satisfied, we could multiply® this relation
by es and obtain A, = O for every k, since e; = 1 and e;-e, = 0 if
h % k. Thus, systems of n linearly independent vectors certainly
exist. However, for any n 4+ 1 vectors u;, u,, ---, Uny (in n-
dimensional space) there is at least one linear equation of the form

piy + o Fpnpttagn = 0,

with coefficients that do not all vanish, since n homogeneous linear
equations

nt1
Z;Wi:o k=1---,n)
for the n + 1 unknowns u;, uz, - -+, unsy1 always have at least one

nontrivial solution (cf. subsection 3).

2. Orthogonal Systems of Vectors. Completeness. The above ‘“co-
ordinate vectors” e; form a particular system of orthogonal unit
vectors. In general a system of n orthogonal unit vectors e,,e,, - - -, e,
is defined as a system of vectors of unit length satisfying the relations

es=1 ere,=0 (h # k)

for h, k, = 1, 2, ---, n. As above, we see that the n vectors
e, e, - -, e, are linearly independent.
If x is an arbitrary vector, a relation of the form
CX — (i€ — *++ — Cnen = 0

with constants ¢; that do not all vanish must hold; for, as we have
seen, any n + 1 vectors are linearly dependent. Since the e; are
linearly independent, ¢, cannot be zero; we may therefore, without

1To multiply two vectors is to take their inner product.
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loss of generality, take it to be equal to unity. Every vector x can
thus be expressed in terms of a system of orthogonal unit vectors in
the form

2 X =ce + -+ calar
The coefficients ¢; , the components of x with respect to the system
e, e, -, e,, may be found by multiplying (2) by each of the vec-

tors e; ; they are
c = X-e;

From any arbitrary system of m linearly independent vectors

Vi, V2, ***, Vm, we may, by the following orthogonalization process
due to E. Schmidt, obtain a system of m orthogonal unit vectors
e, e, ,e,: First set ¢ = v;/|v;|. Then choose a number

¢1in such a way that v, — cie, is orthogonal to e, , i.e. set e = Vo-e.
Since v, and v, , and therefore e, and v, , are linearly independent,
the vector v; — cye, is different from zero. We may then divide this
vector by its length obtaining a unit vector e, which is orthogonal
toe,. We next find two numberscy , c; such that v; — cie; — cs e,
is orthogonal to both e, and e, i.e. we set ¢i = vi-e;andc; = vs-e.
This vector is again different from zero and can, therefore, be nor-
malized; we divide it by its length and obtain the unit vector ey .
By continuing this procedure we obtain the desired orthogonal system.

For m < n the resulting orthogonal system is called incomplete,
and if m = n we speak of a complete orthogonal system. Let us

denote the components of a vector x with respect toe;, e;, - -+ , e, by
¢1,C, ***, Cn 88 before. The self-evident inequality
(X —ce;— +++ — cmem)’ >0

is satisfied. Evaluating the left side term by term according to the
usual rules of algebra (which hold for vectors if the inner product of
two vectors is used whenever two vectors are multiplied), we find

X' -2 D cet+ci=x"-23ci+2ci20
=1 =1 =1 i=1
or

3) >3
Tom ]
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where m < n and ¢; = x-e; ; the following equality holds for m = n:
4) =2 c
fem]l

Relations (3) and (4)—(4) expresses the theorem of Pythagoras in
vector notation—have an intuitive significance for n < 3; they
are called, respectively, Bessel’s tnequality and the completeness rela-
tion. Relation (4), if it is satisfied for every vector x, does in fact in-
dicate that the given orthogonal system is complete since (4) could not
be satisfied for a unit vector orthogonal to all vectors e, , €3,--- , €m,
and such a vector necessarily exists if m < n.

The completeness relation may also be expressed in the more general
form

6)) xx = ;lc,cﬁ,

which follows from the orthogonality of the e;.

So far these algebraic relations are all purely formal. Their sig-
nificance lies in the fact that they occur again in a similar manner in
transcendental problems of analysis.

3. Linear Transformations. Matrices. A system of n linear equa-
tions

auZy + 6% + -+ + GaZa = U1,

®) T + GuTs + ¢+ 4 GaZn = V2,

L R N N I I N A NI

@T1 + GpaZs + - + CGaaZn = Yn,

with coefficients a.. , assigns a unique set of quantities y1,y2, * -+ , ¥n
to every set of quantities z; ,2;, ---, z,. Such an assignment is
called a linear transformation of the set z,, 22, - - , z, into the set
Y1, Y2, """, Ya, or, briefly, of the vector x into the vector y. This
transformation is clearly linear since the vector A\;y; 4+ AJy: corre-
sponds to the vector \ix; 4+ AoXa.

The most important problem in connection with linear transforma-
tions is the p oblem of inversion, the question, in other words, of the
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existence of a solution of a system of linear equations. The answer
is given by the following fundamental theorem of the theory of linear
equations, whose proof we assume to be known:

For the gystem of equations

any + @t + -+ 4 G = U1,

an?1 + anTa + - + amZn = U,

D R R R R N Y

A%y + GnaTa + ¢ + QraZn = Yn,
or, briefly,

) hZ‘aazu=y.- @E=1---,n),
with given coefficients ax , the following alternative holds: Either 1t
has one and only one solution x for each arbitrarily given vector y,
in particular the solution x = 0 for y = 0; or, alternatively, the homo-
geneous equations arising from (7) for y = 0 have a positive number
p of nontrivial (not identically zero) linearly independent solutions
X,X2, -, X, , which may be assumed to be normalized. In the latter
case the “transposed’’ homogeneous system of equations

(8) tEla:‘z;=0 ('L=l";n)’
where a:g = o, also has ezxactly p linearly independent nontrivial so-
lutions X1 , X3, --- , X, . The inhomogeneous system (7) tlwn possesses
solutions for just those vectors y which are orthogoral to Xy , X3, - -+ , X, .
These solutions are determined only to within an additive term which s
an arbitrary solution of the homogeneous system of equations, t.e. if x
18 a solution of the inhomogeneous system and x, is any solution of the
homogeneous system, then x + X, 18 also a solution of the inhomogeneous
system.

In this formulation of the fundamental theorem reference to the
theory of determinants has been avoided. Later, to obtain explicit
expressions for the solutions of the system of equations, determinants
will be required.



LINEAR EQUATIONS AND LINEAR TRANSFORMATIONS 7

The essential features of such a linear transformation are contained
in the array of coefficients or matrix of the equations (7):

Gy Qg - Qa

an G - G
9) A = (aw) =

................

with the determinant
a1 Gz - Qin
A QG2 -°* Qgn
A= Ia.kl =

Gny Gz - Qnn

It is sometimes useful to denote the transformation itself (also called
tensor' or operator) by a special letter A. The elements au of the
matrix A are called the components of the tensor. The linear trans-
formation (7) may be regarded as a “multiplication” of the tensor A
by the vector x, written symbolically in the form

Ax =y.

Many results in the algebra of linear transformations may be ex-
pressed concisely in terms of matrices or tensors, once certain simple
rules and definitions known as mairiz algebra have been introduced.
First we define matrix multiplication; this concept arises if we sup-
pose that the vector x, which is transformed in equations (7), is itself
the product of a tensor B with components b, and another vector w:

'El bg,“w,"= Ty (k = 1, cecy n).
J=-

Multiplying w by a tensor C we obtain the vector y. The matrix C
which corresponds to the tensor C is obtained from A and B by the
rule of matriz multiplication, C = AB, which states that the element
c;; is the inner product of the ¢-th row of A and the j-th column of B:

(10) Cij = Za«,bu (1,] = l, LN n).
k=1

1In modern usage the term “operator” is customary to denote linear trans-
formatious.
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The tensor or transformation C is therefore called the inner prod-
uct or simply the product of the tensors or transformations A and B.
Henceforth tensors and the equivalent matrices will not be distin-

guished from each other. Note that matrix products obey the
associative law

(AB)C = A(BOC),

so that the product 4,4; - - - A of any number of matrices written in
a fixed order has a unique meaning. For 4, = 4, = --- =4, = A
we write this product as the h-th power A* of the matrix A. It is,
on the other hand, essential to note that the commutative law of mul-
tiplication is in general not valid; AB, in other words, differs in
general from BA. Finally the matrix AA + uB is defined as the
matrix whose elements are Aay + wbi ; thus the null matrix is the
matrix in which all components vanish.! The validity of the dis-
ributive law

(4 + B)C = AC + BC

is immediately evident.
The unit matriz is defined by

1 0 0
E = (o) = 01 0
00 --- 1
It is characterized by the fact that the equation
AE =FEA = A

holds for an arbitrary matrix 4. The unit matrix corresponds to
the identity transformation

zi = Y G=1,---,n).
The zero-th power of every matrix A is defined as the unit matrix:
A’ =E.

1 Note that in matrix algebra it does not necessarily follow from the matrix
equation AB = (0) that one of the two factors vanishes, as can be seen from

the example 4 = ((l) g), B = (g (1,
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Since the powers A* of a matrix are defined, we can also define
polynomials whose argument is a matrix. Thus, if

f@) =a+az+ - + anz”
is a polynomial of the m-th degree in the variable z, then f(4) is
defined by
f(4) = aE + ad + -+ + and”
as a (symbolic) polynomial in the matrix A. This definition of a
matrix as a function f(4) of A can even, on occasion, be extended to

functions which are not polynomials but which can be expressed as
power series. The matrix e*, for example may be defined by

3
B=¢'=E+4+5 +:§4: -4
e VI

Note that in such a series one first considers the sum of the first N
terms and then investigates whether each of the n’ elements of the
resulting matrix converges to a limit with increasing N; if this is the
case, the matrix formed from the n® limiting values is considered to
be the sum of the series. In the particular case of the matrix e* it
turns out, as will be shown below, that the series always converges.

A particularly important relation is obtained for a matrix S defined
by a geometric series with partial sums S, given by

San=E+A+A"+---4+4™

Multiplying the equation which defines S» by A, we obtain the
equation

SmA +E = Sn+ A™",
from which it follows that
Sm(E — A) = E — A™".

Now if the matrix S, approaches a limit S with increasing m, so
that A™*" tends to zero, we obtain the relation

S(E—-A)=E

for the matrix S defined by the infinite geometric series

S=E+ A+ A*+ ZA
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Under what circumstances an infinite geometric series of matrices or
a Neumann sertes, as it is occasionally called, converges will be in-
vestigated in the next section.

Matrix polynomials may be handled very much like ordinary poly-
nomials in z. For example, an identity between two polynomials in
z implies the corresponding identity for an arbitrary matrix A. Thus
the identity

242 +3z+4=E"+1)(=+2)+ 2+ 2)

corresponds to the relation

A*+ 24+ 34 +4E = (A*+ E) (A + 2E) + (24 + 2E)
valid for every matrix A. The factorization
fx) =a+ar+ -+ anx" =anlz—n) (T —2) -+ (z — :c,,.),

where z; , 2, - - - , Tm are the zeros of the polynomial f(z), leads to the
matrix equation

f(A) = B + a4 + -+ + and™
= an(d — 2E)YA — BE) -+ (A — znE)

for every matrix A.

Every matrix A with components ay , which may in general be
complex, is associated with certain other matrices. If d; is the com-
plex number conjugate to ax , then the matrix A = (@u) is called
the conjugate matrix; the matrix A’ = (ax:) obtained by interchanging
corresponding rows and columns of 4 is called the transposed matrix
or the transpose of A and A* = A’ = (d) the conjugate transpose
of A. The conjugate transpose is thus obtained by replacing the
elements by their complex conjugates and interchanging rows and
columns.

The equation

(ABY = B'A’

is immediately verifiable. A matrix for which A = A’ is called
symmetric; a real matrix which satisfies

AA' = F
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is called orthogonal. Finally, a complex matrix is called unitary if
it satisfies
AA* = E.

The inversion of the linear transformation (7) is possible for arbi-
trary y;, as is known from the theory of determinants, if and only if
the determinant A = | a,; | does not vanish. In this case the solution
is uniquely determined and is given by a corresponding transforma-
tion

(11) x.-=:zidayk G=1---,n).
The coefficients d,; are given by

-— AH
(12) G = A

where A;; is the cofactor to the element ai; in the matrix A. The
matrix A = (da) is called the reciprocal or inverse of A and is dis-
tinguished by the fact that it satisfies

AA = A4 = E.

We denote this uniquely determined matrix by A~ instead of 4;
the determinant of A" has the value A™. Thus the selution of a
system of equations whose matrix A has a nonvanishing determinant
is characterized, in the language of matrix algebra, by a matrix B =
A" which satisfies the relations

AB = BA = E.
4. Bilinear, Quadratic, and Hermitian Forms. To write the linear

equations (7) concisely we may employ the bilinear form which cor-
responds to the matrix A. This bilinear form

(13) Ay,z) = ‘él QiU

is obtained by multiplying the linear forms in z;,z,, ---, . on
the left-hand side in equation (7) by undetermined quantities
Uy, Uz, -, Uy and adding. In this way we obtain from the system
of equations (7) the single equation

(14) A(u, z) = E(u, y)
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valid for all u; here E(u, y) = 2 i1 uy:;is the bilinear form correspond-
ing to the unit matrix, the unit bilinear form. The symbolic preduct
of two bilinear forms A (u, ) and B(u, z) with matrices 4 and B is
defined as the bilinear form C(u, z) with the matrix C = AB; the
h-th power A*(u, z) is often called the h-fold iterated form. The
“reciprocal bilinear form” A™* (u, x) with the matrix A" may, accord-
ing to the theory of determinants, be written in the form

(15) A7 z) = — AT,

where
0 i ceosn Un

Zy Gn **° Gin L
Ay, z) = = — 2 Aatau.

Tn Gur *** CGpn

The symmetric linear transformations, characterized by the condi-
tion ag = ai;, are of special interest. To investigate them it is
sufficient to consider the gquadratic form

Az, z) = ”Z:l AiZiTr (ari = aw)

which is obtained from the bilinear form by putting u; = z,. For,
from a quadratic form A(z, z) one can obtain a symmetric bilinear
form

Z.: aauze = % i u; a____A;x,- z)
Skl tml T
_Al+uz+u) — Az, 7) — A(u,u)

2

which is called the polar form corresponding to the quadratic form
A(z, z).

If A(u, z) = 3 i1 Gau is an arbitrary nonsymmetric bilinear
form (with real coefficients), then AA’(u, z) and A’A(u, z) are always
symmetric bilinear forms; specifically we have

AA' (u,z) = i: (g ik T; ’_Z'; ajkui)

k=1

A'A(u,z) = 2 ( aaZs 2 aij“i)'
=1 =1 =1
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The corresponding quadratic forms
n n 2
AA (@, 2) = 2, (Z a..sc) ,
k=1 1
n » 2
A'Alz,z) = 2, (Z aaxt) ’
tem]l \ b=l

which are sums of squares, assume only non-negative values. Forms
of this kind are called positive definite quadratic forms.

An important generalization of the quadratic form is the Hermitian
form. A Hermitian form is a bilinear form

A(u,z) = D caum
1 ol

whose coefficients a, have complex values subject to the condition
Ay = Q.

Thus a Hermitian form assumes real values if the variables u; are
taken to be the complex conjugates of z;; it is usually written in
the form

H(z, ) = _kZl aaZiZy = .;1 uiZiTy .

k-

To an arbitrary bilinear form

Ay, z) = ‘;_l AT

with complex coefficients there correspond the Hermitian forms

n n 2
AA*(z, %) = AA'(z, %) = “E a.-»z.-’
-1 | Seml
and
n n 2
A*A(z, 8) = A'A(2,8) = 2| Y aus|.
tem] | ke=l

If the variables of a bilinear form

Az, y) = 2 aatap
1 =1
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are subjected to the two transformations
n n
z = Elc-'fi' ; and  p = ‘Z bum
= =1

with matrices C and B, respectively, we obtain

Az, y) = _;l aatyr = 2. aaCibutm

i.0,k, l=1
n n

2 patm; P = 2. auCib -
7o lmml 1 k=1

Thus A is transformed into a bilinear form with the matrix
(ps) = C'AB,

whose determinant is, according to the theorem on the multiplica-
tion of determinants, equal to ABI". In particular, if A is a quadratic
form

K(z,2) = 2. kpZpz,
Pge=1

with the symmetric matrix K = (k,,) and the determinant K = | k,, |,
and if we set C = B, and transform the variables z we obtain a
quadratic form with the symmetric matrix C’KC whose determinant
is Kr’.

5. Orthogonal and Unitary Transformations. We now consider
the problem of finding ‘“orthogonal” linear transformations L

(16) Ty = ;lqu = LP(y) (P = lr ] n)v

with the real matrix L = (I,,) and the determinant A = |1, |, i.e.
transformations which transform the unit quadratic form

E(,z) = 2. 25
p=1
into itself, thus satisfying the relation

17 E(z,z) = E(y, y)

for arbitrary y.
Applying our rules of transformation to the quadratic form
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A(z, z) = E(z, z), we find that requirement (17) yields the equa-
tions

(18) LEL=LL=LL =E; L =L

as a necessary and sufficient condition for the orthogonality of L.
Thus the transposed matrix of an orthogonal transformation is identi-
cal with its reciprocal matrix; therefore the solution of equations (16)
is given by the transformation

(19) Yp = 2 lste = Ly(a),
Qo=
which is likewise orthogonal. We see that an orthogonal trans-

formation is one whose matrix is orthogonal as defined in subsection 3.
Written out in detail, the orthogonality conditions become

(20) 2h=1 Ll =0 RN

or, equivalently,

(21) Zi G =1, Zl lpley = 0 (P = 9.
To express an orthogonal transformation in vector notation we pre-

scribe a system of n orthogonal unit vectors 1;,1z, * - -, 1, into which

the coordinate vectors e, e;, - - -, e, are to be transformed. Then

the vector x is represented by

X=1o€ + 2+ -+ Teea =y + ppls + - + Yala.
Multiplying by e, we obtain z, = > s y.(e,l,); hence

e = €51y

From (18) it follows that A’ = 1, i.e. that the determinant of an
orthogonal transformation is either 41 or —1. Therefore the deter-
minant of an arbitrary quadratic form is invariant with respect to
orthogonal transformations.

Furthermore, the relation L'(AB)L = (L’AL)(L’BL) follows from
(18) for the matrices A, B, and L of any two bilinear forms and any
orthogonal transformation. This means that the symbolic product
of a number of bilinear forms may be transformed orthogonally by
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subjecting each factor to the same orthogonal transformation. In
particular, it follows that the orthogonal transforms of two reciprocal
forms are also reciprocal.

The generalization of these considerations to Hermitian forms

HE2) = 3 hoast

Pq=-

leads to unitary transformations. A unitary transformation

xr=zlmyc p=1---n)
qe=1

is defined as a transformation (with complex coefficients l,;) which
transforms the unit Hermitian form

Z | Ty |’ = E ZpTyp
p=1 p=1
into itself, i.e. for which
= 2 3 2
2 |z, |" = E ALK
p=1 Pl
In exactly the same way as above one obtains the matrix equation

LL*=L*L = F

as a necessary and sufficient condition for the unitary character of
the transformation whose matrix is L. Here L* = L’ is the conjugate
transpose of L. L must therefore be a unitary matrix as defined in
subsection 3. Specifically, a transformation is unitary if the follow-
ing conditions hold:

(22) Z‘ | Ly I’ =1, ‘Z; lvrlm =0 (» # q),
or, equivalently,
(23) Z; [ Lo | =1, ; Ll =0 (p # q).

The determinant of a unitary transformation has the absolute
value 1, as follows immediately from the equation LL* = E.
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§2. Linear Transformations with a Linear Parameter

In many problems the system of equations of a linear transforma-
tion takes the form

(24) T — N2 taZs = Ui (G=1--,n
kel

where \ is a parameter (in general complex). The corresponding
bilinear form is E(u, z) — AT(u, z), where T'(u, x) is the form whose
matrix is ({z). As we have seen in the preceding section, the problem
of solving the system of equations (24) is equivalent to the problem
of finding the reciprocal bilinear form R(u, y; A\) with the matrix R
which satisfies the equation (E— AT)R = E. We know that this
reciprocal matrix R exists if and only if the determinant | E — AT | is
different from zero.

Let us consider the zeros of the determinant | E—~ AT’ | or, equiva-
lently, for x = 1/X # 0, the zeros of the determinant | T — «E | .
Clearly, | T — «E |is a polynomial in « of the n-th degree. There-
fore there exist n values of x (namely the zeros of the polynomial) for
which the form R(u, y; \) fails to exist. These values «; are known
as the “characteristic values,” ‘‘proper values,” or “eigenvalues” of
T with respect to the unit matrix E; they form the so-called
“spectrum’ of the matrix T.'

The particular form of equations (24) suggests a solution by itera-
tion: In the equation

= g+ A L tass
we substitute for the quantities z; on the right the expressions
e+ N 2 by,
,-

and then again repeat this substitution. The procedure is conveni-
ently described if we write B = E 4+ ATR and continue:

R=E+ TR =E +\T + N'T'R
E+ AT +NT'+NTR = ..

! Sometimes the set of values \; = 1/x; , for which no reciprocal of E — AT
exists, is called the spectrum. We shall call this the “reciprocal spectrum”’
and the \; the “reciprocal eigenvalues.”
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We thus obtain an expression for R as an infinite series
R=E4+\NT +NT" 4+ N1+ ...,

which—assuming that it converges—represents the reciprocal matrix
of E — AT. To see this we simply multiply the series by £ — AT
and remember that symbolic multiplication may be carried
out term by term provided the result converges. It is then imme-
diately clear that the representation

R=(E-\T)"=E+\T +NT"+ 3T + -..

is, formally, completely equivalent to the ordinary geometric series.
(Compare the discussion of geometric series on page 9, where we
need only put A = AT to obtain equivalence.)

Let us now represent our original system of equations using bilinear
forms instead of the corresponding matrices:

E(u, ) — \T'(u, z) = E(u, y).
We may write the solution of this equation in the form
E(u,y) + \T(u, y; N) = E(u, 2),
which is completely symmetric to it; here
T(u, y;N) = T 4+ A\T* + N'T° + ...

= R(u’ Y; A) - E(u’ y)
X .

The form T is called the resolvent of T.

The convergence of the above Neumann series for R or T for suffi-
ciently small | A |is easily proved: If M is an upper bound of the
absolute values of the numbers ¢ , it follows immediately that upper

bounds for the absolute values of the coefficients of the forms 7%,
7%, -, T" are given by nM*, i’M®, --- , n*'M"*. Thus

(M + aM* + Nn*M* + ---)
Aum|+w|+ - Flw D)ol + - +lyal)

is a majorant of the Neumann series for T(u, y; \); it is certainly
convergent for |\ | < 1/aM. Therefore our Neumann series also
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converges for sufficiently small |\ |and actually represents the
resolvent of T(u, z).'

The above estimate proves, incidentally, that in any everywhere
convergent power series f(z) = D w0 We may replace z by an
arbitrary matrix A and obtain a new matrix f(4) = Z',’_o A" .
Thus, in particular, the matrix ¢* always exists.

While the above expression for R or T converges only for sufficiently
small | A | , we may obtain from equation (15) of the previous section
an expression for the reciprocal form or matrix R = (E — AT)™
which retains its meaning even outside the region of convergence.
For, if we identify the form E — AT with the form 4 (%, z), we imme-
diately obtain, for the reciprocal form,

) Ay, y; N)
R(u, y; N) ALY

! The convergence of the majorant obtained above evidently becomes worse
with increasing n. It may, however, be pointed out that, by slightly refining
the argument, an upper bound for the coefficients of the form T can be obtained
which is independent of n and which, therefore, can be used for the generaliza-
tion to infinitely many variables. We denote the elements of the matrix 7" by
t$? and set

S D
2|t 2p.
a-ll pa | =2

Then, if 5 is an upper bound for all the n quantities z, , it follows, as will be
shown below by induction, that

P9

> ‘ t(') | S“_l.;
=1

therefore, | e | < B1”

forp,g =1,2, --- ,n and everyr. From this we see that our Neumann series
converges for | A | < 1/M. We thus have a bound which does not depend on n
explicitly.

To prove the above inequality for arbitrary » we assume it to be proved for
the index » — 1; we then have

n »
ST 2l

n
(1) ,(r=1)
¢§1 ‘Pﬂ ta'
Q] aml

n n
S /

Ell fo | «§|
E-ReY) o | ,r=1) =1, 3 | 41 y

=2 |t |(¢§,|z,, |)5M 2t | <A1

Since the inequality is valid for » = 1, it is proved for arbitrary ».
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and, for the resolvent T,

: 1
T(u, y; \) = RACTR V. 5 E(u, y),

RYOR
where
0 U Un
A, yin) = [B 1~ M —in
Yn  —Am 1 — Alnn
and
I =Ny =M -+ —Aha
AQ) = —Na 1 — ANgp -+ —Ab2n
—Alm —Atn2 1 — Man
are polynomials in A of at most the (n — 1)-st and =n-th

degree. Thus the zeros of A(\) form the reciprocal spectrum of the
form T as defined above, i.e. the totality of values of A for which the
form E — AT has no reciprocal.

By means of the formula

2 23 L= _A(u,y;)\)_l
T + AT 4+ \*T° + = TAN XE(u.y)

the series on the left, which does not converge for all A, is continued
analytically into the entire A\-plane. The reciprocal form R, as well
as the resolvent T, is a rational function of A whose poles are given
by the spectrum of the form T.

If we expand the determinants A(u, y; A\) and A(\) in powers of
A, we obtain the expressions

Ay, y; N) = Ay, y) — NAs(y, y)
+ X’Ag(u, y) - + (—1)'kn—lAﬂ(u) y)r

AQ) =1 — A +X’A, - e 4 (—l)'X”A",
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where

0 uy Up,
M) = T |V Bt

Yo tr,p, tv.p.

and
tv‘p, tr,r, e t’;’u
tr.vl bosps " loys,

The summations here are extended over all integers p,, p2, - , Da

fromlton withp < pe < -+ < 4.
It is often advantageous to consider the form xE — T with the
determinant

—lu —te ot K=t
Its zeros x1, k2, *+ - , k, (eigenvalues of T) are the reciprocals of
the zeros of A(\). For the reciprocal form (xE— T)~’, which exists
for all values of « different from «;, x2, - -- , x,, one obtains the
Neumann series expansion

2
(xE—T)_l=§+Z;+.T_:,+
K K K

which is valid for sufficiently large values of | x|. A noteworthy
conclusion can be drawn from this expansion. It is clear from the
above discussion that the left side is a rational function of « with the
denominator ¢(x); therefore ¢(x)(xE — T)™* must be a form which
is integral and rational in x and its expansion in powers of x can con-
tain no negative powers. Accordingly, if we multiply the above
equation by ¢(x) = «" + ak™! 4+ -+ + ca, all the coefficients of
negative powers of x in the resulting expression on the right must
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vanish. But the coefficient of « ' is, as is seen immediately, the ex-
pression T" + ¢,T" ' + -+ + ¢, , and we thus arrive at the following
theorem, which is due to Cayley: If the determinant of xE — T 1s
denoted by ¢(x), then the relation

o(T) =0

18 satisfied by the matriz T.

Another important aspect of the spectrum of the eigenvalues
K1, K2, *** , Kk, 15 expressed by the following theorem:

If the eigenvalues of a matrix T are k, , k2, - -+ , ks and 1f g(x) 18 any
polynomial in x, then the eigenvalues of the matrix g(T) are g(x),

g(“)) Tty g("")'
To prove this we start from the relation

|[kE — T | = o) = I];(x—x.),
which is an identity in 7. We wish to obtain the relation

[ = o(r) | = IT (6 = gle).

Let h(x) be an arbitrary polynomial of degree » which may be writ-
ten in terms of its zeros z; , 2, - - - , x, in the form

h(z) = afI (x — z,)

Ll

Then the identity
WT) = a [ (T = x,E)
pual

holds for an arbitrary matrix T. By considering the determinants of
the matrices in this equation we obtain

| A(T) | =a"I!I|T—:c,E[ = (—1)"'a"ﬁ|:c,E— T

e et = (-0 T (1T e - )

p=1

(=0 (=0 I (IT 6 - 2) = I e

Va1
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If we now let A(T') be the function xkE — ¢(T'), the desired equation

|«E — o(T) | = II (« = g(x)

ya=l

follows immediately.

§3. Transformation to Principal Axes of Quadratic and
Hermitian Forms

Linear transformations x= Z(y) which reduce a quadratic form
K(z,2) = 2 kpepte
P.gm=1
to a linear combination of squares
K(z,2) = 2 x0)
P=

are highly important in algebra. We are particularly interested in
reducing K (z, z) to this form by means of an orthogonal transforma-
tion

Tp = Z losa = Lyp(y) p=1---,n)
qe=1

Transformations of this kind are called transformations to principal
axes.

1. Transformation to Principal Axes on the Basis of a Maximum
Principle. Let us first convince ourselves that a transformation to
principal axes is always possible for any given quadratic form K (z, z).
To do this we use the theorem that a continuous function of several
variables (which are restricted to a finite closed domain) assumes a
greatest value somewhere in this domain (Theorem of Weierstrass).'

! The transformation to principal axes may also be accomplished by direct
algebraic methods. An orthogonal matrix L is required, such that L'KL = D
is a diagonal matrix with diagonal elements x;, x2, +-- , x,. From the relation
KL = LD we obtain the equations

é kpelas = lpixi
q=1

for the matrix elements l,;, which yield the «; as roots of equation (30), cf. p. 27.
Then, on the basis of simple algebraic considerations we can construct an
orthogonal system of n? quantities l; . The method used in the text is pref-
erable to the algebraic method in that it may be generalized to a larger class of
transcendental problems.
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According to this theorem, there exists a unit vector 1, with com-
ponents by , L2, - - - , liasuch that, forx,; =l , -+ - , 2. = La, K(z, 2)
assumes its greatest value, say «; , subject to the subsidiary condition

(25) ilz’, -1

Geometrically, the vector 1, represents on the ‘“unit sphere” (25) a
point P so that the surface of the second degree K(z, x) = const.
containing P touches the unit sphere at P.

There exists, moreover, a unit vector l,, orthogonal to 1,, with
componentsly , - - - , L, such that, forz; = by, - -+, 2 = b, K(z, 1)
assumes the greatest possible value «; subject to the condition

(26) S ha, =0
p=1

in addition to condition (25). The problem solved by 1, for the whole
unit sphere is solved by 1. for the manifold formed by the intersection
of the unit sphere and the “plane” (26).

Furthermore, there exists a unit vector 13, orthogonal to 1, and 1,,
with components l3; , L2, - - - , 3o such that, forz; = l;; (e =1, - -+ , n),
K(z, x) takes on its greatest value «; , subject to the subsidiary condi-
tions (25), (26), and

@ ’; sy = 0.

Continuing in this manner we obtain a system of » mutually orthog-
onal vectors 1;,1;, -+, 1,, which will be called the “principal azis
vectors” or “‘etgenvectors.” According to (21) their components [,
define an orthogonal transformation

(28) Tp = qy_«: lasYq p=1--,n)

this transformation, we assert, is the solution of our problem.
Since equations (28) are solved by

(29) Uy = gz,@. (p=1,--,m),

the equation x = 1, is equivalent to the statement y, = 1, y, = 0
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for ¢ # p. Thus, in particular, the maximum «; is attained for
=1, =0,:--,y. = 0; hence, in the transformed form

Cly,y) = zlcnyryc = K(z, 2)

the first coefficient ¢;; equals ;. The form

H(y,y) = ’Z_l hoeypye = Cy, y) — Kl(y: + -+ yi)

assumes, moreover, no positive values. For, by the maximum
character of x;, H(y, y) isnonpositive provided Y pu1 Tp = 2 o1 Y5 =
1; hence it is nonpositive for all y; with >, 3 = 0. If y, should
occur in the expression for H(y, y), e.g. if ki = hy were different from
zero, we would obtain the value

2hise + hae® = €(2hys + hae)
for H(y, y) with
yl=1y y’=¢, y‘=°"’=yn=0-

This could be made positive by a suitable choice of .
It has thus been shown that, after the transformation, K(z, z) is
reduced to

Cly, ¥) = xy1 + Ci(y, v),

where C\(y, y) is a quadratic form in then — 1 variablesyz, 3, * =, Un-
If the subsidiary condition y; = 0 is imposed the transformed form
is equal to Ci(y, y). In the same way we may now conclude that
Ci(y, v) is of the form xyz + Ci(y, y), where Cx(y, y) depends only
on the n — 2 variables ys3, y4, -+, ¥a , and so forth.
Thus we have demonstrated the possibility of a transformation to

principal axes so that

E kpeZsTs = Z‘ayzp; Zz; = Z y;-

?,q=1 p=1 p=1 Pl
We might note that the corresponding minimum problem would
have served equally well as a starting point for the proof;i.e. we might
have looked for the minimum of K(z, z), subject to the auxiliary
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condition E(z, z) = 1. In that case we would have arrived at the
quantities x; , k2, - * * , ks i the reverse order. One could also keep
K(z, z) constant and look for the maxima or minima of E(x, x); then
the minimum values A; would be the reciprocals of the «; .

2. Eigenvalues. We shall now show that the values «; defined in
the previous subsection as successive maxima are identical with the
eigenvalues as introduced in §2.

The equation

e(k) = (k — k1) (k = x2) ~=+ (k — xa) = 0

satisfied by the numbers «; , may be written in the form

K— K 0 o .- 0
0 k—«xg 0 .- 0

............................

But this determinant is just the determinant of the quadratic form
k2 Yp — 2 K3,
Pp=1 p=1

which is obtained by applying an orthogonal transformation to the
form

xzn: zy — K(z, z).

p=1
Therefore the relation
K — K 0
0 K — K2
0 0 K — Kn
K — kn —ku _kln
—kn Kk — ks —kan

..............................
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is an identity in x. Consequently the numbers «x; are the roots of
the algebraic equation

‘ kn — « kl2 v kin
(30) o mmE -0
I\nl kn2 ]hm - K

for the unknown «; i.e. they are the eigenvalues introduced in §2.

Our method of derivation shows automatically that the roots of
equation (30) are necessarily real if the k,, are arbitrary real quanti-
ties subject to the condition k,, = k,p.' We may also remark in
passing that the absolute values of the reciprocals of the eigenvalues
are geometrically significant as the squares of the lengths of the
principal axes of the surface K(x, £) = 1 in n-dimensional space.
If at least one eigenvalue is equal to zero the form is said to be ‘“‘de-
generale”; it can then be represented as a form of less than n variables.
It is clear from equation (30) that this is the case if and only if | kg |
vanishes. For K(z, x) to be positive definite the condition «, > 0,
p = 1,2, ---, nis necessary and sufficient.

Suppose the representation of a form K(z, x) in terms of principal
axes

K@) = 2 x5
Pp=1
is given. Then, using the properties of the orthogonal transforma-
tions of products discussed above, the expressions
\
K'z,7) = 2 35, K'(2,2) = 2 &5yh, -
p=1 p=1

are easily obtained for the iterated forms. It follows that the eigen-
values of the h-fold iterated form K*(z, z) are the h-th powers of the
eigenvalues of K(z, z) (this also follows immediately from the theorem
on page 22); moreover we see that, for even h, the form K'(z, z)
is positive definite.

! Equation (30) is customarily called the secular equation because it oc-

curs in the problem of secular perturbations of planetary orbits. For a direct
proof that the eigenvalues are real, see Ch. III, §4, 2.
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3. Generalization to Hermitian Forms. A transformation to princi-
pal axes can be carried out in exactly the same way for Hermitian
forms. A Hermitian form

H(z, %) = E hpeZoZq
P gl

with the matrix H = H’ can always be transformed by a unitary
transformation L, given by

Tp = Z lasYq
g1
into the form

H(z, %) = Z KoYy = Z Xp | yvlzv
p=1 p=1
where all the coefficients «, are real. These eigenvalues «. reappear
as the maxima of the Hermitian form H (z, ), subject to the auxiliary
conditions

n
2z P=1 and Q. lyd, =0 =1 ---,m—=1).
p=1 Pl

4. Inertial Theorem for Quadratic Forms. If we relinquish the
requirement that the linear transformation be orthogonal, a quadratic
form may be transformed into a sum of squares by many different
transformations. In particular, after the above orthogonal trans-
formation has been carried out, any transformation in which each
variable is simply multiplied by a factor of proportionality leaves the
character of the form as a sum of squares unaltered. Thus it is pos-
sible to transform the form in such a way that all the (real) coeffi-
cients have the value +1 or —1. The following theorem, known as
the inertial theorem for quadratic forms, holds:

The number of positive and megative coefficients, respectively, in a
quadratic form reduced to an expression Y, ¢,z by means of a nonsingu-
lar real linear transformation does not depend on the particular trans-
formation.

Proof: The positive and negative coefficients may be made equal
to +1 and —1, respectively. Suppose, now, that the quadratic
form K(z, z) is transformed by two different transformations into



TRANSFORMATION TO PRINCIPAL AXES 29
2 2 2 2 -2 2 2 2
Y1 +...+ Yr = Yr41 —*** — y”andzl +...+z._z.+l__..._z”
with » < 8. We then have

i+ i thdut o+
=Yt Fyntat oo+l

Let us consider the conditions ;= -+ =y, = 2z,u= -+ = 2, = 0,
which imply that the remaining y; also vanish. By imagining the
2; expressed in terms of the y; and regarding these conditions as a
system of fewer than n equations in the y;, we obtain the contra-
diction that there exists a non-vanishing solution vector.

5. Representation of the Resolvent of a Form. The resolvent of the
quadratic form K(z, ) can be expressed in a suggestive way. Ac-
cording to §2 the resolvent may be defined by the symbolic equation

[E(z, z) — M\K(z, 2)]* — E(z, :c)

K(z,z;\) = 3
We suppose that K(z, ) has been brought into the form
Kz, 2) = Z Us,
p—l ?

The resolvent of 3 p.1 ¥5/A, must be identical with the resolvent of
K(z, x), since [E(z, z) — MK (z, z)]”" goes over into

[E(y, y) — A }5 y—f’]—l

p=1 )\,

when the transformation is applied. Now the following relations
hold:

H(Ew -2 22) - 500

A p=1 p=1 )\,,

A [EX2 ) - rwn ] =12 22y - Eww]
=l[i e Zyp]-E y:‘)‘.

ALp=1Ap — p=1Ap

If we now transform back to the variables z,, using the notation
(19) we obtain the expression

31) K, 7 \) = Zl ;L'(”)x]
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for the resolvent of K(z, x); thus, for the bilinear form, we have
32) K, 75 ) = 3, 2oLy,
Pp=1 xp - A

From this representation it is evident, incidentally, that the residuc
of the rational function K(u, z; A\) of X at the point A, is equal to
— L, (u)L’,(z), assuming that \, 5 A, for p = g.

6. Solution of Systems of Linear Equations Associated with Forms.
In conclusion we shall present, with the help of the eigenvectors, the
solution of the system of linear equations

(33) Ip—kzlk,qxq=yp (p: 1,-..’n)
q=
associated with the quadratic form
Kz, z) = 2 kpeZpzg-
1

P.g=
If we apply the transformation to principal axes
Tp = Z lopUyq Yp = z los¥q
g=1 qm1
to the variables z; and y; , K(z, x) goes over into
Z": 2
K Ug
qwl
and the bilinear form K(z, 2) is similarly transformed. Hence, our
system of equations (33) becomes
(34) Up — Npllp = tp p=1--,n).
the solution of which is
T — Ay A A, =A%

-5

(35) Up

In terms of the original variables, we obtain the equivalent formula
for the solution

(36) x=2
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in which the solution appears as a development in terms of the eigen-
vectors 1, I, +--, 1, of the form K(z, z). We have here used the
notation y-1, = > oy Lptq -

The principal axis vector or eigenvector 1, is itself the normalized
solution of the homogeneous equations

z,—)\,gk,.:c,= 0

or Ug — Apkgtty = 0 (g=1,---,n).

If, for ¢ # p, all the «, are different from «x, = 1/),, there exists only
one normalized solution,

u, =1,
U =0 (¢ # p)
or x=1,.

If several characteristic numbers coincide the principal axis vectors
are not uniquely determined.

§4. Minimum-Maximum Property of Eigenvalues

1. Characterization of Eigenvalues by a Minimum-Maximum Problem.
In the above discussion we have obtained the eigenvalues by solving
a series of maximum problems, each one of which depended on the so-
lutions of the previous problems of the series. We shall now show
that each eigenvalue can be directly characterized as the solution of
a somewhat different problem in which all reference to the solutions
of previous problems is avoided.

The problem is to maximize the form

K(z,z) = 2, kpozyz,
1

P q=-

if the condition (25)

n

Zx’,=l

p=1

is imposed and if the A — 1 equations

n

(37) > ez, =0 1, -+, h—1;h<n)
p=1

<
I
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must be satisfied. This maximum value of K(z, z) is of course a
function of the parameters a,,. We now choose the a,, in such a
way as to give this maximum its least possible value. We assert
that this minimum value of the maximum is just the A-th eigenvalue
«n of K(z, z), provided the eigenvalues are ordered in a sequence of
decreasing values, «; being the greatest eigenvalue, x» the next, and
S0 on.
The transformation to principal axes changes K(z, z) into

;1 "r?/; (Kl .>_ et 2 Kn))
condition (25) into
(38) 2y =1,

Pl
and equations (37) into
(39) 2 Brsyp = 0, G=1,h=1;h<n)

p=1
where the 8,, are new parameters. If we set
Yrgl = **° = Un =0

equations (39) become & — 1 equationsin A unknowns ¥, , ¥z, * -+, ¥n,

which can certainly be satisfied for a set of values y; also satisfying
(38). For these values we have
Kiz,z)=xayi+ - +ana@+ - +y2)=mux.
Thus the required maximum of K (z, z) for any set of values B,, is not
less than «, ; but it is just equal to «; if we take for (39) the equations
th=-+°=yq =0

It follows therefore that:
The h-th eigenvalue xy of the quadratic form K (z, x) is the least value
which the maximum of K (z, x) can assume if, in addition to the condition

n
Z .’C: =1,
p=1
h — 1 arbitrary linear homogeneous equations connecting the x, are

prescribed.
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2. Applications. Constraints. This independent minimum-maxi-
mum property of the eigenvalues shows how the eigenvalues are
changed if 7 independent constraints

(40) gl YopTp (8 =1-.., j)

are imposed on the variables, so that K(z, z) reduces to a quadratic
form K(z, z) of n — j independent variables. The h-th eigenvalue
ks is obtained from the same minimum-maximum problem as x,
in which the totality of sets of admissible values z; has been narrowed
down by (40). Therefore the maximum, and thus the eigenvalue
of K(z, z), certainly does not exceed the corresponding quantity for
K(z, z).

Furthermore, ;4 is the least maximum which K(z, z) can possess
if, in addition to (25), & + j — 1 linear homogeneous conditions are
imposed on the z, ; xj;a is therefore certainly not greater than &,
for which j of these conditions are given by the fixed equations (40).

We have thus the theorem: If a quadratic form K (z, z) of n variables
18 reduced by j linear homogeneous constraints to a quadratic form
K(z, z) of n — j variables, then the eigenvalues &y , ks, - - , Ko_j of
K(z, z) are not greater than the corresponding numbers of the sequence
K1y Kz, ', kn—j and not less than the corresponding numbers of the se-
QUENCE Kjt1, Kjv2, *°° K'\'l

If, in particular, we let ; = 1 and take for our constraint the condi-
tion z, = 0, then the quadratic form K goes over into its (n — 1)-st
“section,” and we obtain the theorem: The h-th eigenvalue of the
(n — 1)-st section is at most equal to the h-th eigenvalue of the original
quadratic form, and at least equal to the (h + 1)-st etgenvalue.

If this theorem is applied to the (n — 1)-st section of the quadratic
form, there results a corresponding theorem for the (n — 2)-nd sec-
tion, and so forth. In general we note that the eigenvalues of any
two successive sections of a quadratic form are ordered in the indi-
cated manner.

Moreover, we may conclude: If a positive definite form is added

1 This may be illustrated geometrically: Let us consider the ellipse
formed by the intersection of an ellipsoid and a plane passing through its
center. The length of the major axis of this ellipse is between the lengths of
the longest and the second axes of the ellipsoid, while the length of the minor
axis of the ellipse is between those of the second and the shortest axes of the
ellipsoid.



34 I. LINEAR TRANSFORMATIONS AND QUADRATIC FORMS

to K (x, x), the eigenvalues of the sum are not less than the corresponding
etgenvalues of K (z, z).

Instead of utilizing a minimum-maximum problem to characterize
the eigenvalues we may use a mazimum-minimum problem. In this
case the eigenvalues will appear in the opposite order.

It may be left to the reader to formulate and prove the minimum-
maximum character of the eigenvalues of Hermitian forms.

§5. Supplement and Problems

1. Linear Independence and the Gram Determinant. The question
of the linear dependence of m given vectors v, , V2, -+ , v,, may be
very simply decided in the following way without explicity determi-
ning the rank of the component matrix: We consider the quadratic
form

Gz, z) = mVi+ - +TuVm)’ = '»Zx (Vi Vi) k-

Clearly G(z, ) > 0, and the vectors v; are linearly dependent if and
only if there exists a set of values z; , Z,, -+ , Zm with (25")

}:,12:3 =1,

for which G(z, ) = 0. Thus if the vectors v; are linearly dependent
the minimum of the form G(z, x) subject to condition (25") must be
equal to zero. But this minimum is just the smallest eigenvalue of
the quadratic form G(z, z), i.e. the least root of the equation

Vi—k (Vi'v)) o (V1eVm)
(41) (v2-vy) V:—K cor (Voo Vm) ~0

............................

(Vm'V1) (Vm'V2) <++ Vm — &
The theorem follows:
A necessary and sufficient condition for the linear dependence of the

veclors vy, Vo, * -+ , Vi 18 the vanishing of the “Gram determinant”
V: (vive) oo (V1°Vn)
(v2- ) V: cor (V2 Vm)
(42) r =

............................

(VW) (Vmeva) - m
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An alternate expression for I" follows from (41). If the left side of
equation (41), which is satisfied by the (all non-negative) eigenvalues
K1,Ke, * -+, km Of G(z, ), is developed in powers of «, then the term
independent of « is equal to I, while the coefficient of «™ is equal
to (—1)™. According to a well-known theorem of algebra it follows
that

(43) M= K1K2 *** Km

Consequently the Gram determinant of an arbitrary system of vectors
18 never negative. Relation

(44) r=|[viw|>0 Gk=1,---,m),
in which the equality holds only for linearly dependent vectors
Vi,V2, -+, Vm, is a generalization of the Schwarz inequality (see
page 2)

2
A4 (Vl'Vz)
vivi — (mw)’ =

(vew) V2

The value of the Gram determinant or, alternatively, the lowest
eigenvalue x, of the form G(z, x) represents a measure of the linear
independence of the vectors vy, v2, -+, ¥, . The smaller this num-
ber, the “flatter” is the m-dimensional polyhedron defined by vectors
Vi, V2, -+, Vm ; if it is equal to zero the polyhedron collapses into
one of at most m — 1 dimensions. In this connection the Gram de-
terminant has a simple geometrical significance. It is equal to the
square of the m!-fold volume of the m-dimensional polyhedron de-
fined by the vectors v;, va, --- , v,, . Thus, for m = 2, it is the
square of twice the area of the triangle formed from v, and v, .

Gram’s criterion for linear dependence must of course be equivalent
to the usual one. The latter states that vectors are linearly de-
pendent if and only if all determinants formed with m columns of the
rectangular component array

th Y2 Uy

Un Vo2 *++ Ulop

----------------
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are equal to zero. And indeed, according to a well-known theorem
of the theory of determinants,

Vtey Uty  *°° Ulay |2

Vs Vo vee Vo -
(45) r= Z 2 29 ) ,

Ums;  Umay e Umsp
where the summation is extended over all integers s;,s2, *- , $n
fromltonwiths; <8< ¢+ < 8m.

2. Hadamard’s Inequality for Determinants. Every determinant

an Gz o Qia

a1 Q2 *°° Q2n
A= l Ak | =

An1  Q2n e Ann

(46) A? < H 2 ak.
Proof: Let the elements ax vary, keeping the sums of squares
> ah = ¢} G=1--,n)
k=1

fixed. If AL, is the greatest value of the function A’ of the elements
ay under these n conditions—the existence of such a maximum follows
immediately from Weierstrass’s theorem (see page 23)—then the
elements of An.x in €ach row must be proportional to the correspond-
ing cofactors. For, if A is fixed, we have

A= aMAM + tet + AhnAhn ’
thus, by the Schwarz inequality,
A’ < ZG:EZAL: = C:Z Ak .
k=1 ka1 kel

If the au are not proportional to the Ay the inequality holds, and A’
certainly can not have its maximum value. For, in this case, by
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suitably changing the n quantities an (k = 1, --- , n), with ci and
the Ay held constant, the square of the determinant can be made
equal to the right-hand side.

If we now multiply Amsx by itself, we obtain, according to the
multiplication theorem for determinants,

»
2
Amax = Hcir
fanl

since the inner products of different rows of Am.x vanish as a result
of the proportionality just demonstrated and of elementary theorems
on determinants. Therefore the original determinant satisfies
Hadamard’s inequality
A< Ilei = I1 2 aa.
[= ] fom]l kuml

The geometrical meaning of Hadamard’s inequality is that the volume
of the polyhedron formed from n vectors of given lengths in n-
dimensional space is greatest if the vectors are mutually orthogonal.

Hadamard’s inequality is also valid for complex au if A and ag
are replaced by their absolute values.

3. Generalized Treatment of Canonical Transformations. For gen-
eralizations and applications to many problems of analysis the
following concise treatment of the simultaneous canonical trans-
formation of two quadratic forms is most appropriate. Again we
consider two quadratic forms in an n-dimensional vector space of
vectors x,y, --- :

»

(a) H(z,2) = 2. hpettse,

P.g=1

which we assume positive definite, and

(b) K(z,z) = ’i . kpeZsZq

which is not necessarily definite. By definition we interpret
H(z, z) as the square of the length of the vector x, and the polar form

H(I! y) = (X, Y) = ,él hP'zPyc
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as the inner product of x and y. The problem is to find a linear
transformation

II’:EllﬂﬂyG (p=l)"')")
Qo=
which transforms K and H into the sums
K(z,z) = Zl pryp, Hlz,z) = Zl Y-
p= p=

To obtain this transformation explicit expressions for the forms K
and H are not required; our proof is based merely on the properties
that H and K are continuous functions of the vector x, that with
arbitrary constants A and p equations of the form

(47) HQOz + py, \x + py) = N’H(z, z) + 2\H (2, y) + w*H(y, )
(48) KO + uy, A + uy) = N’K(z,z) + 2MuK(z, y) + £°K(y, y)

hold, and that H is positive definite, vanishing only for x = 0.
We consider a sequence of maximum problems: First we define
a vector x = x! for which the quotient

K(z, z)/H(z, x)

attains its maximum value p;. Without affecting the value of this
quotient the vector x may be normalized, i.e. subjected to the con-
dition H(z, z) = 1.

Then we define another normalized vector x° for which the quotient
K(x, z)/H(z, z) attains its maximum value p» under the orthogonality
condition H(x, ') = 0. Proceeding in this way, we define a se-
quence of normalized vectors x', x*, - - - , x*, such that for x = x" the
quotient K(z, z)/H(x, x) attains its maximum value pi under the
orthogonality conditions

H(z,z) =0 w=1,---,k—1).
After n steps we obtain a complete system of vectors x', x*, - -+, x"
for which the relations
(49) H@&', 2 =1, =k  H@E,2) =0 1<Kk
and

(50) K@\ 2)=p, di=k; K@,2)=0, i<k
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hold. Relations (49) are merely the orthogonality relations stipulated
in our maximum problems. To prove relations (50) we consider
first x'. The maximum property of x! is expressed by the inequality

Kz + e,2 + &) —pHE + e, 20 + ) <0

valid for an arbitrary constant e and an arbitrary vector {. Because
of (47) and (48), it yields

2¢A + B <0
where
4 = K(x‘ly g.) - P!H(xl) f)) B = K(g-’ f) - PlH(g-) I’)

Since this inequality is valid for arbitrarily small positive or negative
e it implies that A = 0 or that

(51) K@\ ¢) — mH(, §) = 0
for arbitrary {. The maximum problem for x* yields as above
K@, t) — mH@E, §) =0
for an arbitrary vector { satisfying the relations
Ht,z') =0 v=1,--,h—1).

Now, for b < k, we may take { = x*. Since H(z* %) = 0, we may
conclude that K (z", z*) = 0 for h < k, while by definition K (z*, z*) =

Ph -
Since the n orthogonal vectors x” form a complete system in our
vector space, an arbitrary vector x can be expressed in the form

"
x= 2 yx
Pl
where y, = H(z, ”). We substitute these expressions in H and K

and use the expansions corresponding to (47), (48) for n summands;
because of (49), (50) it follows immediately that

H(z,z) = ilyf,

K(z,z) = ’Z_:.lp.yf.

Thus we have accomplished the required transformation.
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Exactly as before the values p, are shown to have the following
minimum-maximum property.
Under the auxiliary conditions

gla,,x,=0 =1--h—1),

pn (with pp 2 -+« 2> p,) ts the least value which the maxrimum
of K(x, x)/H(zx, x) can assume—this maximum is regarded as a func-
tion of the paramelters a,, .

To construct the transformation of which we have proved the
existence we first show that for all iniegers h the “variational
equation”

K@) — mH@E, ) =0

holds with an arbitrary vector {. So far the relation has been proved
only under the restriction ({, x") = 0 for v < h. However, if { is
arbitrary the vectorn = { — ex' — -+ — X’ ' with ¢, = (¢, X°)
satisfies the orthogonality condition H(y, z) = 0, v < h, hence
0 = K@ 1) — mH@EY 7) = K@, §) — sl (2, §); here the final
equality sign follows from (49) and (50).

Writing the variational equation for x* = x, p = p we obtain for
the components z; of x = x" the system of linear homogeneous equa-
tions

Zl(kii—Phij)xj=0 (i= 1, "'yn);
=
hence the values p, satisfy the determinant equation || k;; — phi; || = 0

and the vectors x* are obtained from the linear equations after the
quantities p = p, have been found. Clearly, these considerations
characterize the numbers p, and the vectors x* as the eigenvalues and
eigenvectors of the matrix (k,,) with respect to the matrix (h,,).

Thus for each eigenvalue ps there exists a solution in the form of a
vector x*. The solutions for different eigenvalues are orthogonal; if
two eigenvalues are equal the corresponding solutions are not neces-
sarily orthogonal but may be made so by the orthogonalization process
of page 4. These mutually orthogonal solutions may be normal-
ized to unit length; the resulting vectors are the eigenvectors of the
problem and their components are the coefficients of the required
transformation.
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These coefficients I,, are obtained from x = Y o, yx° if we mul-
tiply by the vector e? which defines the original coordinate system.
Thus z, = (X, €°) = Y o y(x’, €°); hence [,, = (X%, €”).

4. Bilinear and Quadratic Forms of Infinitely Many Variables.
Under suitable conditions our theory remains valid if the number of
variables increases beyond all bounds. For example, this is the case
if both the sum of the squares of the coefficients of the bilinear or
quadratic forms and the sum of the squares of the variables converge.
This theory of forms of infinitely many variables, developed by
Hilbert, may then be applied to numerous problems of analysis.
However, the theory of forms in vector spaces of infinitely many
dimensions can be more adequately developed on the basis of abstract
concepts as indicated in subsection 3. As we shall see, many topics
in analysis can be illuminated from the viewpoint of such a generalized
theory of quadratic forms.

5. Infinitesimal Linear Transformations. An infinitesimal linear
transformation is defined as a transformation whose matrix is

1 + €ay €ae AR €Ql1n
€agy 14+ ean - €Qlon
A=F+ (ow) = ,
€Qln) €0ng cor 1 4 eann

where ¢ denotes an infinitesimal quantity of the first order, i.e. a
quantity whose higher powers are, for the problem at hand, negligible
in comparison with lower powers of e. The product of two such in-
finitesimal transformations with the matrices A = E 4+ (eaa) and
B=F + (eﬁ.}) has the matrix C = E + (Eau + eﬂu). Thus the
product does not depend on the order of the factors; in other words,
infinitestmal transformations commuie with each other.

Furthermore, the reciprocal matrix of A = E + (eaa) ©s
A™' = E — (eaa), and the determinant of the matriz A is equal to

1+ 6(0!11 + o+ -+ aun)-

If the infinitesimal transformation is to be orthogonal, we have the
condition A’A = E, where A’ is the transposed matrix. We must
therefore have aix + axs = 0, or, in other words:

A mnecessary and sufficient condition for the orthogonality of an in-
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finitestmal transformation is that the difference between its matriz and
the unit matrix be skew-symmetric.

Any infinitesimal transformation with the matrix C = E 4+ (eya)
may be represented as the product of an orthogonal transformation
A = E + (eay) and a symmetric transformation B = E + (e84),
where

A = %(7‘# - 'Yh'))
Ba = (yw + i)

Consider a symmetric transformation y; = E,, $qxx Whose matrix
is 8 = (si), not necessarily infinitesimal. Its geometrical signifi-
cance is that of a dilatation in #» mutually orthogonal directions.
To see this let us transform the quadratic form S(x, x) to principal
axes, transforming the z; into u; and the y; into »;. We then have

n
D SaZdr = D Kui,

i ,k=1 t=1
and the equations y; = Y _i s become
Vs = KU .

These equations evidently represent a dilatation by the factor «;
in the direction of the 7-th principal axis. The ratio of the increase
of volume to the initial volume, known as the volume dilatation, is
evidently given by the difference xixz - - x, — 1 = |sa| — 1. If,in
particular, the transformation is infinitesimal, i.e. (sa) = E + (e8.),
we have

koo kn— 1 = e(Bu+ -+ 4 Ban).

Since an orthogonal transformation represents a rotation we may
summarize by stating:

An infinitesymal transformation whose matriz is E 4 (eya) may be
represented as the product of a rotation and a dilatation; the volume
dilatation is € 3 iy vii -

6. Perturbations. In the theory of small vibrations and in many
problems of quantum mechanics it is important to determine how
the eigenvalues and eigenvectors of a quadratic form K(z, z) =
> lie1 baxizy are changed if both the form K(z, x) and the unit
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form E(z, ) are altered. Suppose E(z, z) is replaced by E(z, z) +
eA(z, z) and K(z, z) by K(z, z) + B(z, z), where

Az, z) = Z QkTiTk B(z, z) = .gl BTk

kw1

and e is a parameter. The problem is then to transform E 4 A
and K + B simultaneously into canonical form. If we put

K(z,z) + eB(z,z) = Y bizan,

i kw1
n
’
Z: Q@ ik TiZk
|

the equations for the components of the eigenvectors become

E(x, z) + ¢A(z, 2)

E(b‘k_l’a&)xk_ (1'= 1)"')"),
where p’ may be obtained from the condition that the determinant of
this system of equations must vanish. Let us denote the eigenvalues
of K(z,z) by p1, p2, - -+ , pn and assume that they are all different;
let the correspondmg values for the varied system be denoted by
p1,p2, -+, pn. The original form K(z, z) may be assumed to be
a sum of squares:

K(z,z) = ;i + ps%s + -+ + pathn.

The quantities p;, being simple roots of an algebraic equation, are
single-valued analytic functions of ¢ in the neighborhood of ¢ = 0;
the same is, therefore, true of the components i of the varied eigen-
vectors belonging to the eigenvalues pr. Thus the quantities ps
and zx: may be expressed as power series in ¢, the constant terms of
which are, of course, the original eigenvalues p; and the components of
the original eigenvectors z., respectively. In order to compute
successively the coefficients of ¢ ¢, --- we must substitute these
power series in the equations

kzl (b:'k - p;'.a:-g)x;k =0 Gh=1,--,n)

in which we have b"g = Pik + Gﬁ.'k N a';k = da + €k with pis =
pi,pax =07 #k),d;; =1,85 = 0(z k). By collecting the terms
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in each power of ¢ in these equations and then setting the coefficient
of each power of ¢ equal to zero we obtain an infinite sequence of new
equations. An equivalent procedure, which is often somewhat more
convenient, is given by the following considerations of orders of
magnitude, in which e is regarded as an infinitesimal quantity. We
first consider the equation with ¢ = h. By setting the coefficient of
the first power of e equal to zero we obtain
r_ pnt B
Pr

= —_— = — EPpQ, €
1+ eam Ph pactan + €O,

except for terms of the second or higher orders in e. The same pro-
cedure applied to the equations with 7 = A yields the result

’ ’
o = 1, T = —e€

anpr — Bin

pr — pi
except for infinitesimal quantities of the second order in e.

By using these values of the components of the eigenvectors we may
easily obtain the eigenvalues up to and including the second order
in e. Again we consider the h-th equation for the components of the

h-th eigenvector:
g (bae — praae)Zme = O.

If we neglect quantities of the third order in e on the left-hand side
and write the term with A = k separately, we obtain

n
’ ' ’ ’ v 1\ Qk, - Bkh
ban — paam = Z e(bae — pranr) ol B
=1 Ph — Pk
n 2
=&y (awn s — Bra) .

k=1 Pr — Pk

It follows that

’

n (a _ 2
o = o — e(pram — Bun) — Eanm(Bun — pran) + € 2 AP T T Br)”

k=1 Ph — Pk
Here we have used the symbol Y . to denote summation over all
values of k from 1 to n except for k = h.
7. Constraints. Constraints expressed by linear conditions

721+ o0+ yaa = 0,
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and the resulting diminution of the number of independent variables
of the quadratic form K(z, £) = D p g1 kpeZpZ, , may be regarded
as the end result of a continuous process. Consider the quadratic
form K(z, z) + t(yst1 + - -+ + vaZa)’, where ¢ is a positive parameter.
If ¢ increases beyond all bounds, each eigenvalue increases mono-
tonically. The greatest eigenvalue increases beyond all bounds, while
the others approach the eigenvalues of the quadratic form which is
obtained from K(z, ) by elimination of one variable in accordance
with the given constraint.

8. Elementary Divisors of a Matrix or a Bilinear Form. Let A be a
tensor and A = (a.) the corresponding matrix. Then the polynomial

K—au —06 -°° —0n
—Gan K— Qg -°° —Gan
IxE — A| =
—an —GCn2 et K= Qpn

may be decomposed according to certain well-known rules into the
product of its ‘“elementary divisors”

(x =)', (x — Tg)", ey (k= 7‘5)“,

where some of the numbers 7,, 72, - - - , 7, may be equal. For each
divisor (x — r,)*” there is a system of e, vectors f{”, £, .- , £
such that the equations

A = £, A = £ 4107, 0 MD = 1 f0 4+ £,
are valid. Here the n vectors

1 1
f{) . f()'

y "7y Ley

f(’) . f(2).

y leg » °°

f(h) . fS:)

are linearly independent If they are introduced as new variables

2P, 2P, -,z the matrix A is transformed into the matrix
A, 0 - 0]
0 A, --- 0
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in which 4,, A., ---, Ay are themselves matrices; 4, is a matrix
of ordere, :
(r, 00 00
1 r, O 00
Ay =1 i
0 00 --- 1 r,]

9. Spectrum of a Unitary Matrix. We shall now show that the
spectrum of a unitary matrix lies on the unit circle, i.e. that all of its
eigenvalues have the absolute value 1.

We note that the elements of a unitary matrix cannot exceed unity
in absolute value. Therefore the absolute values of the coefficients
of the characteristic equations of all unitary matrices of the n-th
degree must lie below a certain bound which is independent of the
particular matrix considered. Since the absolute values of the first
and last coefficients of the characteristic equation are equal to 1,
this means that the absolute values of the eigenvalues must lie be-
tween certain positive upper and lower bounds which are independent
of the particular matrix. On the other hand all powers A™ of a
unitary matrix A are also unitary, and their eigenvalues are the
m-th powers of the corresponding eigenvalues of A. But the absolute
values of these powers and their reciprocals can remain below a bound
which is independent of m only if the absolute value of each eigenvalue
(and all of its powers) is 1.

Another proof, which can be used for infinite matrices as well,
follows from the convergence of the Neumann series for (£ — \A)~.
The series

(E—-2)" =E+NM 4N+ -,

where A is a unitary matrix, certainly convergesif | A | < 1. For the
eleménts of the matrices A™ all have absolute values of at most 1,
and thus the geometric series is a dominating series for the matrix
elements. Thus no zeros of | E — A4 | can lie inside the unit circle.
On the other hand we have, in virtue of the relation A4’ = E,

= 15 1, 1
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Here the geometric series on the right converges for | 1/A | < 1 since
A’ is also a unitary matrix. Thus no zero of | E — XA | can lie out-
side the unit circle. Therefore all these zeros lie on the unit circle,
and our assertion is proved.
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