



# Μέθοδοι παρατήρησης και πρόγνωσης στη Φυσική Ωκεανογραφία

#### 2. Observing and Forecasting methods in Physical Oceanography **Sarantis Sofianos** Dept. of Physics, University of Athens

- a. Basic observational platforms
- b. Oceanographic instrumentation
- **Hydrography**
- **Dynamic parameters**
- **Ocean Modeling** c.



#### **DEFINING THE PROBLEM:**

- Observations of the oceanic properties are costly and difficult to acquire.
- Spatio-temporal coverage is the main problem in oceanographic observations (compared to other forms of error/uncertainty)

#### In order to overcome the problem, oceanographic observations aim at:

- "Cheaper" observing methods (get as much data as possible covering large spatial and temporal scales)
- Multi-instruments/multi-platforms
- Emphasis on the observing methodologies/strategies
- Combinations

#### Investigating a scientific question in the ocean: Platforms (how do we observe **Platforms/instruments** the ocean?) •Research vessels (R/V) **Platforms** •Ships of opportunity (SOOP) •Moorings •Lagrangian instruments •Satellites Hydrography •CTD Instruments (what do we •Nansen και Niskin bottles observe in the ocean?) Thermosalinograph • Satelite SST (and SSS) **Dynamical** •Current meters observations • Pressure gauges - Wave measurements •Lagrangian instruments •Altimetry



# Research vessels (R/V)





![](_page_4_Picture_0.jpeg)

### Research vessels (R/V)

![](_page_4_Figure_2.jpeg)

![](_page_4_Picture_3.jpeg)

![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

# **Ships of opportunity (SOOPs)**

![](_page_5_Picture_4.jpeg)

![](_page_5_Picture_5.jpeg)

![](_page_6_Picture_0.jpeg)

![](_page_6_Picture_1.jpeg)

### **Moorings (the Eulerian approach)**

![](_page_6_Picture_3.jpeg)

![](_page_6_Figure_4.jpeg)

![](_page_6_Figure_5.jpeg)

![](_page_7_Picture_0.jpeg)

# **Drifting instruments** (the Lagrangian approach)

![](_page_7_Figure_2.jpeg)

![](_page_7_Picture_3.jpeg)

![](_page_8_Picture_0.jpeg)

# Remote Sensing (Satellites)

![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

![](_page_8_Figure_4.jpeg)

![](_page_8_Picture_5.jpeg)

| Platforms | •R/Vs<br>•SOOPs<br>•Moorings<br>•Lagrangian<br>• Satellite |
|-----------|------------------------------------------------------------|
|           |                                                            |

How can we define the proper platform(s) for our experiment:

Scientific question

- Area/process of interest
  - Spatial/temporal coverage required
    - Resources/Expertise

![](_page_9_Picture_6.jpeg)

![](_page_9_Figure_7.jpeg)

#### e.g. Lagrangian vs Eulerian

![](_page_9_Figure_9.jpeg)

# I. HYDROGRAPHY

# Conductivity, Temperature and Depth

![](_page_10_Figure_2.jpeg)

![](_page_10_Picture_3.jpeg)

![](_page_10_Picture_4.jpeg)

# 11111

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_12_Picture_0.jpeg)

#### Sampling/Processing

![](_page_12_Figure_2.jpeg)

REDSEAL

![](_page_12_Figure_3.jpeg)

![](_page_12_Figure_4.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

35

# onductivity, 1 Temperature and **D**epth

# Nansen and Niskin

#### Bottles

#### Calibration $(T, S, O_2)$

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

TSG observations since 2001

#### Thermosalinograph

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

![](_page_15_Figure_5.jpeg)

(as close to ship's bow as possible)

Pump (not included)

![](_page_16_Picture_0.jpeg)

#### Satellite SST (and SSS)

Radiometers that operate in the infrared are used to measure sea surface temperature. Their resolution has steadily increased over the years; the AVHRR (Advanced Very High Resolution Radiometer) has a resolution that comes close to 0.1°C.

Olv2 Sea Surface Temperature(\*C) October 1-29, 2008

![](_page_16_Figure_4.jpeg)

![](_page_16_Figure_5.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

#### **Pressure (tide) gauges and wave measurements**

![](_page_18_Figure_3.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

40 14

# Coupled models and Climate prediction

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

Year