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Ροή διανυσµατικού πεδίου
Ρυθµός διέλευσης (ρεύµα) σωµατιδίων 
µέσα από µια επίπεδη επιφάνεια:

1.10 Gauss’s law 23

Flux = va Flux = 0
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Figure 1.16.
The flux through the frame of area a is v · a,
where v is the velocity of the fluid. The flux is the
volume of fluid passing through the frame, per
unit time.

meters/second. Then, if a is the oriented area in square meters of a frame
lowered into the water, v · a is the rate of flow of water through the frame
in cubic meters per second (Fig. 1.16). The cos θ factor in the standard
expression for the dot product correctly picks out the component of v
along the direction of a, or equivalently the component of a along the
direction of v. We must emphasize that our definition of flux is applicable
to any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the flux
through the entire surface, a scalar quantity which we shall denote by ":

" =
∑

all j

Ej · aj. (1.25)

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. (1.25) to a surface integral:

" =
∫

entire
surface

E · da. (1.26)

A surface integral of any vector function F, over a surface S, means just
this: divide S into small patches, each represented by a vector outward, of
magnitude equal to the patch area; at every patch, take the scalar product
of the patch area vector and the local F; sum all these products, and the
limit of this sum, as the patches shrink, is the surface integral. Do not
be alarmed by the prospect of having to perform such a calculation for

E
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Figure 1.17.
In the field E of a point charge q, what is the
outward flux over a sphere surrounding q?

an awkwardly shaped surface like the one in Fig. 1.15. The surprising
property we are about to demonstrate makes that unnecessary!

1.10 Gauss’s law
Take the simplest case imaginable; suppose the field is that of a single
isolated positive point charge q, and the surface is a sphere of radius r
centered on the point charge (Fig. 1.17). What is the flux " through this
surface? The answer is easy because the magnitude of E at every point
on the surface is q/4πε0r2 and its direction is the same as that of the
outward normal at that point. So we have

" = E · (total area) = q
4πε0r2 · 4πr2 = q

ε0
. (1.27)

v
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dN
dt

=
N
V
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dt

a = ρva

Όταν τα σωµατίδια κινούνται 
παράλληλα µε την επιφάνεια:
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Figure 1.16.
The flux through the frame of area a is v · a,
where v is the velocity of the fluid. The flux is the
volume of fluid passing through the frame, per
unit time.

meters/second. Then, if a is the oriented area in square meters of a frame
lowered into the water, v · a is the rate of flow of water through the frame
in cubic meters per second (Fig. 1.16). The cos θ factor in the standard
expression for the dot product correctly picks out the component of v
along the direction of a, or equivalently the component of a along the
direction of v. We must emphasize that our definition of flux is applicable
to any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the flux
through the entire surface, a scalar quantity which we shall denote by ":

" =
∑

all j

Ej · aj. (1.25)

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. (1.25) to a surface integral:

" =
∫

entire
surface

E · da. (1.26)

A surface integral of any vector function F, over a surface S, means just
this: divide S into small patches, each represented by a vector outward, of
magnitude equal to the patch area; at every patch, take the scalar product
of the patch area vector and the local F; sum all these products, and the
limit of this sum, as the patches shrink, is the surface integral. Do not
be alarmed by the prospect of having to perform such a calculation for
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Figure 1.17.
In the field E of a point charge q, what is the
outward flux over a sphere surrounding q?

an awkwardly shaped surface like the one in Fig. 1.15. The surprising
property we are about to demonstrate makes that unnecessary!

1.10 Gauss’s law
Take the simplest case imaginable; suppose the field is that of a single
isolated positive point charge q, and the surface is a sphere of radius r
centered on the point charge (Fig. 1.17). What is the flux " through this
surface? The answer is easy because the magnitude of E at every point
on the surface is q/4πε0r2 and its direction is the same as that of the
outward normal at that point. So we have

" = E · (total area) = q
4πε0r2 · 4πr2 = q

ε0
. (1.27)

I =
0
dt

= 0

Όταν τα σωµατίδια κινούνται 
υπό γωνία µε την επιφάνεια:

I =
dN
dt

=
N
V

dx
dt

a cos θ = ρva cos θ = ρv ⋅ a
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Figure 1.16.
The flux through the frame of area a is v · a,
where v is the velocity of the fluid. The flux is the
volume of fluid passing through the frame, per
unit time.

meters/second. Then, if a is the oriented area in square meters of a frame
lowered into the water, v · a is the rate of flow of water through the frame
in cubic meters per second (Fig. 1.16). The cos θ factor in the standard
expression for the dot product correctly picks out the component of v
along the direction of a, or equivalently the component of a along the
direction of v. We must emphasize that our definition of flux is applicable
to any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the flux
through the entire surface, a scalar quantity which we shall denote by ":

" =
∑

all j

Ej · aj. (1.25)

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. (1.25) to a surface integral:

" =
∫

entire
surface

E · da. (1.26)

A surface integral of any vector function F, over a surface S, means just
this: divide S into small patches, each represented by a vector outward, of
magnitude equal to the patch area; at every patch, take the scalar product
of the patch area vector and the local F; sum all these products, and the
limit of this sum, as the patches shrink, is the surface integral. Do not
be alarmed by the prospect of having to perform such a calculation for
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Figure 1.17.
In the field E of a point charge q, what is the
outward flux over a sphere surrounding q?

an awkwardly shaped surface like the one in Fig. 1.15. The surprising
property we are about to demonstrate makes that unnecessary!

1.10 Gauss’s law
Take the simplest case imaginable; suppose the field is that of a single
isolated positive point charge q, and the surface is a sphere of radius r
centered on the point charge (Fig. 1.17). What is the flux " through this
surface? The answer is easy because the magnitude of E at every point
on the surface is q/4πε0r2 and its direction is the same as that of the
outward normal at that point. So we have

" = E · (total area) = q
4πε0r2 · 4πr2 = q

ε0
. (1.27)

v
θ

Ροή

Ροή

a = b × c b, c οι πλευρές της επιφάνειας.
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Ροή ηλεκτρικού πεδίου µέσα από κλειστή επιφάνεια

22 Electrostatics: charges and fields

not, we believe, infinite concentrations of charge in zero volume, but
instead finite structures, we simply ignore the mathematical singularities
implied by our point-charge language and rule out of bounds the interior
of our elementary sources. A continuous charge distribution ρ(x′, y′, z′)
that is nowhere infinite gives no trouble at all. Equation (1.22) can be
used to find the field at any point within the distribution. The integrand
doesn’t blow up at r = 0 because the volume element in the numerator
equals r2 sin φ dφ dθ dr in spherical coordinates, and the r2 here can-
cels the r2 in the denominator in Eq. (1.22). That is to say, so long as ρ

remains finite, the field will remain finite everywhere, even in the interior
or on the boundary of a charge distribution.

1.9 Flux
The relation between the electric field and its sources can be expressed
in a remarkably simple way, one that we shall find very useful. For this
we need to define a quantity called flux.

(c)

(b)

(a)

Figure 1.15.
(a) A closed surface in a vector field is divided
(b) into small elements of area. (c) Each
element of area is represented by an outward
vector.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.15 shows such
a surface, the field being suggested by a few field lines. Now divide the
whole surface into little patches that are so small that over any one patch
the surface is practically flat and the vector field does not change appre-
ciably from one part of a patch to another. In other words, don’t let the
balloon be too crinkly, and don’t let its surface pass right through a sin-
gularity8 of the field such as a point charge. The area of a patch has a
certain magnitude in square meters, and a patch defines a unique direc-
tion – the outward-pointing normal to its surface. (Since the surface is
closed, you can tell its inside from its outside; there is no ambiguity.) Let
this magnitude and direction be represented by a vector. Then for every
patch into which the surface has been divided, such as patch number j,
we have a vector aj giving its area and orientation. The steps we have just
taken are pictured in Figs. 1.15(b) and (c). Note that the vector aj does
not depend at all on the shape of the patch; it doesn’t matter how we have
divided up the surface, as long as the patches are small enough.

Let Ej be the electric field vector at the location of patch number
j. The scalar product Ej · aj is a number. We call this number the flux
through that bit of surface. To understand the origin of the name, imagine
a vector function that represents the velocity of motion in a fluid – say in a
river, where the velocity varies from one place to another but is constant
in time at any one position. Denote this vector field by v, measured in

8 By a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but also any place where the field changes magnitude or
direction discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some
finite area.

Η ροή του ηλεκτρικού πεδίου  ορίζεται 
καταρχήν για µια επίπεδη επιφάνεια εµβαδού a.

Φ = E ⋅ a
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direction discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some
finite area.

Για µια κλειστή επιφάνεια, εφαρµόζουµε απειροστικό λογισµό: 
διαιρούµε την επιφάνεια σε ένα σύνολο απειροστών, σχεδόν 
επίπεδων, επιφανειών.

22 Electrostatics: charges and fields

not, we believe, infinite concentrations of charge in zero volume, but
instead finite structures, we simply ignore the mathematical singularities
implied by our point-charge language and rule out of bounds the interior
of our elementary sources. A continuous charge distribution ρ(x′, y′, z′)
that is nowhere infinite gives no trouble at all. Equation (1.22) can be
used to find the field at any point within the distribution. The integrand
doesn’t blow up at r = 0 because the volume element in the numerator
equals r2 sin φ dφ dθ dr in spherical coordinates, and the r2 here can-
cels the r2 in the denominator in Eq. (1.22). That is to say, so long as ρ

remains finite, the field will remain finite everywhere, even in the interior
or on the boundary of a charge distribution.

1.9 Flux
The relation between the electric field and its sources can be expressed
in a remarkably simple way, one that we shall find very useful. For this
we need to define a quantity called flux.

(c)

(b)

(a)

Figure 1.15.
(a) A closed surface in a vector field is divided
(b) into small elements of area. (c) Each
element of area is represented by an outward
vector.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.15 shows such
a surface, the field being suggested by a few field lines. Now divide the
whole surface into little patches that are so small that over any one patch
the surface is practically flat and the vector field does not change appre-
ciably from one part of a patch to another. In other words, don’t let the
balloon be too crinkly, and don’t let its surface pass right through a sin-
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certain magnitude in square meters, and a patch defines a unique direc-
tion – the outward-pointing normal to its surface. (Since the surface is
closed, you can tell its inside from its outside; there is no ambiguity.) Let
this magnitude and direction be represented by a vector. Then for every
patch into which the surface has been divided, such as patch number j,
we have a vector aj giving its area and orientation. The steps we have just
taken are pictured in Figs. 1.15(b) and (c). Note that the vector aj does
not depend at all on the shape of the patch; it doesn’t matter how we have
divided up the surface, as long as the patches are small enough.

Let Ej be the electric field vector at the location of patch number
j. The scalar product Ej · aj is a number. We call this number the flux
through that bit of surface. To understand the origin of the name, imagine
a vector function that represents the velocity of motion in a fluid – say in a
river, where the velocity varies from one place to another but is constant
in time at any one position. Denote this vector field by v, measured in

8 By a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but also any place where the field changes magnitude or
direction discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some
finite area.

Κάθε απειροστό στοιχείο επιφάνειας αναπαρίσταται από ένα διάνυσµα 
µε φορά προς το εξωτερικό της κλειστής επιφάνειας.

Φ = ∑
j

Ej ⋅ aj ⟶ ∮S
E ⋅ da

Κώστας ΒελλίδηςΦυσική ΙΙΙ,  ΕΚΠΑ  2021-22
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Ο νόµος του Gauss

Φ = ∮S
E ⋅ da =

1
ε0 ∑

i

Qi (inside S) =
1
ε0 ∫V(S)

ρ dτ

✦ Μας δίνει το συνολικό φορτίο σε µια περιοχή όταν είναι γνωστό το ηλεκτρικό πεδίο 
σε όλη την επιφάνεια που ορίζει την περιοχή (αντίστροφα µε το νόµο του Coulomb).

✦ Επιτρέπει τον υπολογισµό του ηλεκτρικού πεδίου για κατανοµές φορτίου µε ψηλό 
βαθµό συµµετρίας.

✦ Μπορεί να πάρει µια µορφή που εφαρµόζεται σε κάθε σηµείο µιας περιοχής αντί 
πάνω σε µια επιφάνεια, µια µορφή που είναι πολύ σηµαντική για την περαιτέρω 
ανάπτυξη του ηλεκτροµαγνητισµού.

✦ Είναι ισοδύναµος µε το νόµο του Coulomb (ίδιος νόµος δύναµης, άλλη διατύπωση), 
µε τη διαφορά ότι ισχύει και για πεδία χωρίς κεντρική συµµετρία.

Κώστας Βελλίδης

Ενσωµατωµένη η 
αρχή της επαλληλίας.

Φυσική ΙΙΙ,  ΕΚΠΑ  2021-22



5

Η σχέση των νόµων Coulomb και Gauss

Ο νόµος του Gauss είναι άµεση συνέπεια του 
νόµου δύναµης αντίστροφου τετραγώνου, 
στον οποίο υπάγεται και ο νόµος του Coulomb:

1.10 Gauss’s law 23

Flux = va Flux = 0

a

a
60!

Flux = va cos 60! = 0.5va

a
v

Figure 1.16.
The flux through the frame of area a is v · a,
where v is the velocity of the fluid. The flux is the
volume of fluid passing through the frame, per
unit time.

meters/second. Then, if a is the oriented area in square meters of a frame
lowered into the water, v · a is the rate of flow of water through the frame
in cubic meters per second (Fig. 1.16). The cos θ factor in the standard
expression for the dot product correctly picks out the component of v
along the direction of a, or equivalently the component of a along the
direction of v. We must emphasize that our definition of flux is applicable
to any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the flux
through the entire surface, a scalar quantity which we shall denote by ":

" =
∑

all j

Ej · aj. (1.25)

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. (1.25) to a surface integral:

" =
∫

entire
surface

E · da. (1.26)

A surface integral of any vector function F, over a surface S, means just
this: divide S into small patches, each represented by a vector outward, of
magnitude equal to the patch area; at every patch, take the scalar product
of the patch area vector and the local F; sum all these products, and the
limit of this sum, as the patches shrink, is the surface integral. Do not
be alarmed by the prospect of having to perform such a calculation for

E
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Figure 1.17.
In the field E of a point charge q, what is the
outward flux over a sphere surrounding q?

an awkwardly shaped surface like the one in Fig. 1.15. The surprising
property we are about to demonstrate makes that unnecessary!

1.10 Gauss’s law
Take the simplest case imaginable; suppose the field is that of a single
isolated positive point charge q, and the surface is a sphere of radius r
centered on the point charge (Fig. 1.17). What is the flux " through this
surface? The answer is easy because the magnitude of E at every point
on the surface is q/4πε0r2 and its direction is the same as that of the
outward normal at that point. So we have

" = E · (total area) = q
4πε0r2 · 4πr2 = q

ε0
. (1.27)

Φ = E ⋅ A =
q

4πε0r2
⋅ 4πr2 =

q
ε0

⟶ Ροή ανεξάρτητη 
από την ακτίνα 
της σφαίρας.

24 Electrostatics: charges and fields

The flux is independent of the size of the sphere. Here for the first time
we see the benefit of including the factor of 1/4π in Coulomb’s law
in Eq. (1.4). Without this factor, we would have an uncanceled factor
of 4π in Eq. (1.27) and therefore also, eventually, in one of Maxwell’s
equations. Indeed, in Gaussian units Eq. (1.27) takes the form of
" = 4πq.

A

a

q

R

q

r

Figure 1.18.
Showing that the flux through any closed
surface around q is the same as the flux through
the sphere.

Now imagine a second surface, or balloon, enclosing the first, but
not spherical, as in Fig. 1.18. We claim that the total flux through this
surface is the same as that through the sphere. To see this, look at a cone,
radiating from q, that cuts a small patch a out of the sphere and continues
on to the outer surface, where it cuts out a patch A at a distance R from
the point charge. The area of the patch A is larger than that of the patch
a by two factors: first, by the ratio of the distance squared (R/r)2; and
second, owing to its inclination, by the factor 1/ cos θ . The angle θ is the
angle between the outward normal and the radial direction (see Fig. 1.18).
The electric field in that neighborhood is reduced from its magnitude on
the sphere by the factor (r/R)2 and is still radially directed. Letting E(R)

be the field at the outer patch and E(r) be the field at the sphere, we have

flux through outer patch = E(R) · A = E(R)A cos θ ,
flux through inner patch = E(r) · a = E(r)a. (1.28)

Using the above facts concerning the magnitude of E(R) and the area of
A, the flux through the outer patch can be written as

E(R)A cos θ =
[

E(r)

(
r
R

)2
] [

a
(

R
r

)2 1
cos θ

]

cos θ = E(r)a, (1.29)

which equals the flux through the inner patch.
Now every patch on the outer surface can in this way be put into

correspondence with part of the spherical surface, so the total flux must
be the same through the two surfaces. That is, the flux through the new
surface must be just q/ε0. But this was a surface of arbitrary shape and
size.9 We conclude: the flux of the electric field through any surface
enclosing a point charge q is q/ε0. As a corollary we can say that the
total flux through a closed surface is zero if the charge lies outside the
surface. We leave the proof of this to the reader, along with Fig. 1.19 as
a hint of one possible line of argument.

There is a way of looking at all this that makes the result seem obvi-
ous. Imagine at q a source that emits particles – such as bullets or photons
– in all directions at a steady rate. Clearly the flux of particles through a
window of unit area will fall off with the inverse square of the window’s
distance from q. Hence we can draw an analogy between the electric field
strength E and the intensity of particle flow in bullets per unit area per

9 To be sure, we had the second surface enclosing the sphere, but it didn’t have to, really.
Besides, the sphere can be taken as small as we please.

Η ροή είναι ανεξάρτητη και από το σχήµα της 
κλειστής επιφάνειας:

dΦ(a) = E(r) ⋅ a = E(r)a

dΦ(A) = E(R) ⋅ A = E(R)A cos θ

E(R)A cos θ = [E(r) ( r
R )

2

] [a ( R
r )

2

] = E(r)a

dΩ =
a
r2

=
A cos θ

R2

⟹ dΦ(a) = dΦ(A) ⟹ ∮sphere
dΦ(a) = ∮generic

dΦ(A) =
q
ε0

Κώστας ΒελλίδηςΦυσική ΙΙΙ,  ΕΚΠΑ  2021-22
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Ο νόµος του Gauss για κυλινδρική συµµετρία

Η µακριά (“άπειρου µήκους”) και λεπτή ευθύγραµµη 
ράβδος µε οµοιόµορφη γραµµική πυκνότητα φορτίου λ 
είναι το πιο χαρακτηριστικό παράδειγµα µε κυλινδρική 
συµµετρία.

Φ = EA = E ⋅ 2πrh =
q
ε0

=
λh
ε0

⟹ E =
λ

2πε0r

Ένταση του ηλεκτρικού πεδίου 
σε απόσταση r από τη ράβδο.

61523-7 APPLYI NG GAUSS’ LAW: CYLI N DR ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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There is flux only
through the
curved surface.

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of &5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Το πεδίο σε κάθε σηµείο µιας κυλινδρικής επιφάνειας 
ακτίνας r µε άξονα τη ράβδο είναι κάθετο προς τη 
ράβδο, γιατί οι συνιστώσες που σχηµατίζουν γωνία µε 
τη ράβδο αλληλοαναιρούνται. ⇒ Δεν υπάρχει ροή 
µέσα από τις βάσεις του κυλίνδρου.

Κώστας ΒελλίδηςΦυσική ΙΙΙ,  ΕΚΠΑ  2021-22
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Ο νόµος του Gauss για επίπεδη συµµετρία

Εκτεταµένη (“άπειρη”) επίπεδη πλάκα µε οµοιόµορφη 
επιφανειακή πυκνότητα φορτίου σ.

61723-8 APPLYI NG GAUSS’ LAW: PLANAR SYM M ETRY
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Επιλέγουµε και πάλι µια κυλινδρική περικλείουσα επιφάνεια. 
Το πεδίο είναι κάθετο στην πλάκα (παράλληλες συνιστώσες 
αλληλοαναιρούνται). ⇒ Τώρα υπάρχει ροή µόνο µέσα από 
τις βάσεις του κυλίνδρου.

Φ = E ⋅ πr2 + E ⋅ πr2 =
q
ε0

=
σ ⋅ πr2

ε0
⟹ E =

σ
2ε0

Πεδίο οµοιόµορφης έντασης.

Κώστας Βελλίδης
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Δύο παράλληλες αγώγιµες πλάκες µε αντίθετα φορτία: 
αυτά κατανέµονται οµοιόµορφα στις αντικρυστές 
επιφάνειες των δύο πλακών. Δεν υπάρχει πεδίο από 
τις εξωτερικές πλευρές.

E =
σ1

ε0
+

σ1

ε0
=

2σ1

ε0
⟹ E =

σ
ε0

Φυσική ΙΙΙ,  ΕΚΠΑ  2021-22
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Ο νόµος του Gauss για σφαιρική συµµετρία

26 Electrostatics: charges and fields

It is easy to see that Gauss’s law would not hold if the law of force
were, say, inverse-cube. For in that case the flux of electric field from
a point charge q through a sphere of radius R centered on the charge
would be

! =
∫

E · da = q
4πε0R3 · 4πR2 = q

ε0R
. (1.32)

By making the sphere large enough we could make the flux through it as
small as we pleased, while the total charge inside remained constant.

r0

Figure 1.20.
A charge distribution with spherical symmetry.

This remarkable theorem extends our knowledge in two ways. First,
it reveals a connection between the field and its sources that is the con-
verse of Coulomb’s law. Coulomb’s law tells us how to derive the elec-
tric field if the charges are given; with Gauss’s law we can determine how
much charge is in any region if the field is known. Second, the mathemat-
ical relation here demonstrated is a powerful analytic tool; it can make
complicated problems easy, as we shall see in the following examples. In
Sections 1.11–1.13 we use Gauss’s law to calculate the electric field due
to various nicely shaped objects. In all of these examples the symmetry
of the object will play a critical role.

1.11 Field of a spherical charge distribution
We can use Gauss’s law to find the electric field of a spherically sym-
metrical distribution of charge, that is, a distribution in which the charge
density ρ depends only on the radius from a central point. Figure 1.20
depicts a cross section through some such distribution. Here the charge
density is high at the center, and is zero beyond r0. What is the electric
field at some point such as P1 outside the distribution, or P2 inside it
(Fig. 1.21)? If we could proceed only from Coulomb’s law, we should

E1

P1

P2

S1

S2

E2

r2

r1

Figure 1.21.
The electric field of a spherical charge
distribution.

have to carry out an integration that would sum the electric field vectors
at P1 arising from each elementary volume in the charge distribution.
Let’s try a different approach that exploits both the symmetry of the sys-
tem and Gauss’s law.

Because of the spherical symmetry, the electric field at any point
must be radially directed – no other direction is unique. Likewise, the
field magnitude E must be the same at all points on a spherical surface S1
of radius r1, for all such points are equivalent. Call this field magnitude
E1. The flux through this surface S1 is therefore simply 4πr2

1E1, and by
Gauss’s law this must be equal to 1/ε0 times the charge enclosed by the
surface. That is, 4πr2

1E1 = (1/ε0) · (charge inside S1) or

E1 = charge inside S1

4πε0r2
1

. (1.33)

Comparing this with the field of a point charge, we see that the field
at all points on S1 is the same as if all the charge within S1 were con-
centrated at the center. The same statement applies to a sphere drawn

E1 =
Q inside S1

4πε0r2
1

Το πεδίο έξω από τη φορτισµένη σφαίρα 
είναι το ίδιο µε το πεδίο όλου του φορτίου 
της σφαίρας συγκεντρωµένου στο κέντρο 
της.

E2 =
Q inside S2

4πε0r2
2

Το πεδίο µέσα στη σφαίρα είναι το ίδιο µε 
το πεδίο όλου του φορτίου σε µικρότερη 
ακτίνα συγκεντρωµένου στο κέντρο της. 
Το φορτίο σε µεγαλύτερη ακτίνα δεν 
συνεισφέρει στο πεδίο.

Κώστας Βελλίδης

1.11 Field of a spherical charge distribution 27

inside the charge distribution. The field at any point on S2 is the same as
if all charge within S2 were at the center, and all charge outside S2 absent.
Evidently the field inside a “hollow” spherical charge distribution is zero
(Fig. 1.22). Problem 1.17 gives an alternative derivation of this fact.

E = 0
inside

Figure 1.22.
The field is zero inside a spherical shell of
charge.

Example (Field inside and outside a uniform sphere) A spherical
charge distribution has a density ρ that is constant from r = 0 out to r = R
and is zero beyond. What is the electric field for all values of r, both less than
and greater than R?

Solution For r ≥ R, the field is the same as if all of the charge were concen-
trated at the center of the sphere. Since the volume of the sphere is 4πR3/3, the
field is therefore radial and has magnitude

E(r) = (4πR3/3)ρ

4πε0r2 = ρR3

3ε0r2 (r ≥ R). (1.34)

For r ≤ R, the charge outside radius r effectively contributes nothing to the field,
while the charge inside radius r acts as if it were concentrated at the center. The
volume inside radius r is 4πr3/3, so the field inside the given sphere is radial
and has magnitude

E(r) = (4πr3/3)ρ

4πε0r2 = ρr
3ε0

(r ≤ R). (1.35)

In terms of the total charge Q = (4πR3/3)ρ, this can be written as Qr/4πε0R3.
The field increases linearly with r inside the sphere; the r3 growth of the effec-
tive charge outweighs the 1/r2 effect from the increasing distance. And the field
decreases like 1/r2 outside the sphere. A plot of E(r) is shown in Fig. 1.23. Note
that E(r) is continuous at r = R, where it takes on the value ρR/3ε0. As we will
see in Section 1.13, field discontinuities are created by surface charge densities,
and there are no surface charges in this system. The field goes to zero at the cen-
ter, so it is continuous there also. How should the density vary with r so that the
magnitude E(r) is uniform inside the sphere? That is the subject of Exercise 1.68.

r
R

E(r)

rR

r
1/r 2

3  0

Figure 1.23.
The electric field due to a uniform sphere of
charge.

The same argument applied to the gravitational field would tell us
that the earth, assuming it is spherically symmetrical in its mass distribu-
tion, attracts outside bodies as if its mass were concentrated at the center.
That is a rather familiar statement. Anyone who is inclined to think the
principle expresses an obvious property of the center of mass must be
reminded that the theorem is not even true, in general, for other shapes.
A perfect cube of uniform density does not attract external bodies as if
its mass were concentrated at its geometrical center.

Newton didn’t consider the theorem obvious. He needed it as the
keystone of his demonstration that the moon in its orbit around the earth
and a falling body on the earth are responding to similar forces. The delay
of nearly 20 years in the publication of Newton’s theory of gravitation

Πεδίο οµογενώς φορτισµένης σφαίρας µε οµοιόµορφη 
κατανοµή φορτίου ρ:

E(r) =
(4πR3/3)ρ

4πε0r2
=

ρR3

3ε0r2
(r ≥ R)

E(r) =
(4πr3/3)ρ

4πε0r2
=

ρr
3ε0

(r ≤ R)
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Διαφορική µορφή του νόµου του Gauss

} ⟹

⟹ divE ≡ ∇ ⋅ E =
ρ
ε0

∮S
E ⋅ da = ∫V(S)

divE dτΑπό το θεώρηµα του Gauss:

∮S
E ⋅ da =

Q inside S

ε0
=

1
ε0 ∫V(S)

ρ dτ ∀ S
Από το νόµο του Gauss σε 
ολοκληρωτική µορφή:

Φυσική ΙΙΙ,  ΕΚΠΑ  2021-22

Απόκλιση του ηλεκτρικού πεδίου: Συνδέει το πεδίο µε την πηγή του στο ίδιο σηµείο.
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Σχέση απόκλισης και ροής του ηλεκτρικού πεδίου

Ο νόµος του Gauss, σε ολοκληρωτική µορφή, δίνει 
τη ροή του πεδίου µέσα από µια πεπερασµένη 
επιφάνεια που περικλείει τα φορτία−πηγές.

Για να βρούµε τη διαφορική µορφή του, εξετάζουµε 
τη ροή του πεδίου µέσα από µια απειροστή 
επιφάνεια ορθογώνιου παραλληλεπιπέδου που 
περικλείει φορτίο µε κατανοµή πυκνότητας ρ.

Ροή στη διεύθυνση x: Ex(B)dydz − Ex(A)dydz = [Ex(A) +
∂Ex

∂x
dx − Ex(A)] dydz =

∂Ex

∂x
dxdydz

Ροή στη διεύθυνση y:
∂Ey

∂y
dxdydz

Ροή στη διεύθυνση z:
∂Ez

∂z
dxdydz

Συνολική ροή: ( ∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z ) dxdydz
dΦ = dq/ε0

=
ρdxdydz

ε0
⟹

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ
ε0

Κώστας Βελλίδης

⟹ ∇ ⋅ E =
ρ
ε0

Φυσική ΙΙΙ,  ΕΚΠΑ  2021-22


