
ΦΥΣΙΚΗ  ΙΙΙ 
ΣΤΑΤΙΚΑ ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ 

2021 — 2022

1Φυσική ΙΙΙ,  ΕΚΠΑ  2021-22 Κώστας Βελλίδης



Το ηλεκτρικό πεδίο είναι µια θεµελιακή φυσική οντότητα 
που οφείλεται στα φορτία-πηγές (αίτιο) και εκδηλώνεται 
ασκώντας δύναµη (αποτέλεσµα) στο δοκιµαστικό φορτίο.
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Το ηλεκτρικό πεδίο

Κώστας Βελλίδης

18 Electrostatics: charges and fields

at a point in space is all we need know to predict the force that will act
on any charge at that point is by no means trivial. It might have been
otherwise! If no experiments had ever been done, we could imagine that,
in two different situations in which unit charges experience equal force,
test charges of strength 2 units might experience unequal forces, depend-
ing on the nature of the other charges in the system. If that were true, the
field description wouldn’t work. The electric field attaches to every point
in a system a local property, in this sense: if we know E in some small
neighborhood, we know, without further inquiry, what will happen to
any charges in that neighborhood. We do not need to ask what produced
the field.

Charge −1
Charge +3

(b)

(a)

Figure 1.9.
(a) Field of a charge q1 = 3. (b) Field of a
charge q2 = −1. Both representations are
necessarily crude and only roughly quantitative.

To visualize an electric field, you need to associate a vector, that is, a
magnitude and direction, with every point in space. We shall use various
schemes in this book, none of them wholly satisfactory, to depict vector
fields.

It is hard to draw in two dimensions a picture of a vector function
in three-dimensional space. We can indicate the magnitude and direction
of E at various points by drawing little arrows near those points, mak-
ing the arrows longer where E is larger.7 Using this scheme, we show in
Fig. 1.9(a) the field of an isolated point charge of 3 units and in Fig. 1.9(b)
the field of a point charge of −1 unit. These pictures admittedly add noth-
ing whatsoever to our understanding of the field of an isolated charge;
anyone can imagine a simple radial inverse-square field without the help
of a picture. We show them in order to combine (side by side) the two
fields in Fig. 1.10, which indicates in the same manner the field of two
such charges separated by a distance a. All that Fig. 1.10 can show is the
field in a plane containing the charges. To get a full three-dimensional
representation, one must imagine the figure rotated around the symmetry
axis. In Fig. 1.10 there is one point in space where E is zero. As an
exercise, you can quickly figure out where this point lies. Notice also
that toward the edge of the picture the field points more or less radially
outward all around. One can see that at a very large distance from the
charges the field will look very much like the field from a positive point
charge. This is to be expected because the separation of the charges can-
not make very much difference for points far away, and a point charge
of 2 units is just what we would have left if we superimposed our two
sources at one spot.

Another way to depict a vector field is to draw field lines. These are
simply curves whose tangent, at any point, lies in the direction of the
field at that point. Such curves will be smooth and continuous except at
singularities such as point charges, or points like the one in the example
of Fig. 1.10 where the field is zero. A field line plot does not directly give
7 Such a representation is rather clumsy at best. It is hard to indicate the point in space to

which a particular vector applies, and the range of magnitudes of E is usually so large
that it is impracticable to make the lengths of the arrows proportional to E.

Προϋπόθεση:  όλα τα φορτία είναι ακίνητα στο κενό.


➡ Δεν υπάρχει µαγνητικό πεδίο.


➡ Το δοκιµαστικό φορτίο δεν επιφέρει αναδιάταξη των πηγών

(εξασφαλίζεται όταν ).


➡ Η δύναµη εξαρτάται µόνο από τις πηγές.

q → 0

Ε = ένταση πεδίου παραγόµενου από φορτία-“πηγές”.


q = “δοκιµαστικό” φορτίο σε κάποιο σηµείο κοντά στις πηγές.


F = δύναµη στο q από τα φορτία-πηγές.

Μονάδα στο SI:  N/C = V/m.

E ≡ F/q
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Δυναµικές γραµµές του ηλεκτρικού πεδίου

Κώστας Βελλίδης

1.7 The electric field 19

E = 0 here

Charge −1

Charge +3

Figure 1.10.
The field in the vicinity of two charges, q1 = +3,
q2 = −1, is the superposition of the fields in
Figs. 1.9(a) and (b).

Charge −1
Charge +3 Figure 1.11.

Some field lines in the electric field around two
charges, q1 = +3, q2 = −1.

the magnitude of the field, although we shall see that, in a general way,
the field lines converge as we approach a region of strong field and spread
apart as we approach a region of weak field. In Fig. 1.11 are drawn some
field lines for the same arrangement of charges as in Fig. 1.10, a positive
charge of 3 units and a negative charge of 1 unit. Again, we are restricted

Η ένταση του πεδίου, όπως και η δύναµη 
στο δοκιµαστικό φορτίο, είναι διάνυσµα.

⟹ Το ηλεκτρικό πεδίο είναι διανυσµατικό πεδίο.

Η εποπτική αναπαράσταση ενός 
διανυσµατικού πεδίου γίνεται µε συνεχείς 
γραµµές (δυναµικές γραµµές):  σε κάθε 
σηµείο µιας γραµµής, το διάνυσµα του 
πεδίου εφάπτεται στη γραµµή.

Μια δυναµική γραµµή του ηλεκτρικού πεδίου είναι η τροχιά που θα διαγράψει ένα δοκιµαστικό 
φορτίο κάτω από την επίδραση του πεδίου, όταν βρεθεί σε κάποιο σηµείο της γραµµής.

Η πυκνότητα των δυναµικών γραµµών σε µια περιοχή του χώρου είναι ανάλογη της έντασης 
του πεδίου σε αυτή την περιοχή (➝ νόµος του Gauss).
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Ηλεκτρικό πεδίο σηµειακού φορτίου

Κώστας Βελλίδης

Από το νόµο του Coulob: E =
Q

4πε0r2
̂r

Από την αρχή της επαλληλίας:

E = E1 + E2 + E3 + … =
1

4πε0 ( Q1

r2
1

̂r1 +
Q2

r2
2

̂r2 +
Q3

r2
3

̂r3 + …)
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Ηλεκτρικό πεδίο κατανοµής φορτίου

20 Electrostatics: charges and fields

by the nature of paper and ink to a two-dimensional section through a
three-dimensional bundle of curves.

1.8 Charge distributions
This is as good a place as any to generalize from point charges to contin-
uous charge distributions. A volume distribution of charge is described
by a scalar charge-density function ρ, which is a function of position,
with the dimensions charge/volume. That is, ρ times a volume element
gives the amount of charge contained in that volume element. The same
symbol is often used for mass per unit volume, but in this book we shall
always give charge per unit volume first call on the symbol ρ. If we
write ρ as a function of the coordinates x, y, z, then ρ(x, y, z) dx dy dz is
the charge contained in the little box, of volume dx dy dz, located at the
point (x, y, z).

(x,y,z)

(x!,y!, z!)

r (x!, y!, z!)

r

Figure 1.12.
Each element of the charge distribution
ρ(x′, y′, z′) makes a contribution to the electric
field E at the point (x, y, z). The total field at this
point is the sum of all such contributions; see
Eq. (1.22).

On an atomic scale, of course, the charge density varies enormously
from point to point; even so, it proves to be a useful concept in that
domain. However, we shall use it mainly when we are dealing with large-
scale systems, so large that a volume element dv = dx dy dz can be quite
small relative to the size of our system, although still large enough to
contain many atoms or elementary charges. As we have remarked before,
we face a similar problem in defining the ordinary mass density of a
substance.

If the source of the electric field is to be a continuous charge distri-
bution rather than point charges, we merely replace the sum in Eq. (1.20)
with the appropriate integral. The integral gives the electric field at
(x, y, z), which is produced by charges at other points (x′, y′, z′):

E(x, y, z) = 1
4πε0

∫
ρ(x′, y′, z′)r̂ dx′ dy′ dz′

r2 . (1.22)

This is a volume integral. Holding (x, y, z) fixed, we let the variables of
integration, x′, y′, and z′, range over all space containing charge, thus
summing up the contributions of all the bits of charge. The unit vector
r̂ points from (x′, y′, z′) to (x, y, z) – unless we want to put a minus sign
before the integral, in which case we may reverse the direction of r̂. It is
always hard to keep signs straight. Let’s remember that the electric field
points away from a positive source (Fig. 1.12).

Example (Field due to a hemisphere) A solid hemisphere has radius R
and uniform charge density ρ. Find the electric field at the center.

Solution Our strategy will be to slice the hemisphere into rings around the
symmetry axis. We will find the electric field due to each ring, and then integrate
over the rings to obtain the field due to the entire hemisphere. We will work with

E(x, y, z) =
1

4πε0 ∫
ρ(x′￼, y′￼, z′￼) ̂r dx′￼dy′￼dz′￼

r2

ή

E(r) =
1

4πε0 ∫
ρ(r′￼) ̂r d3r′￼

r2

Προσοχή:  το διάνυσµα ακτίνας r είναι και αυτό 
συνάρτηση του διανύσµατος θέσης r΄ (δεν βγαίνει 
από το ολοκλήρωµα).

Η εφαρµογή αυτής της γενικής εξίσωσης βασίζεται 
στην εύρεση µιας έκφρασης του στοιχείου όγκου d3r΄ 
στο κατάλληλο σύστηµα συντεταγµένων, τέτοιας ώστε 
να αξιοποιείται η οποιαδήποτε συµµετρία της ρ(r΄).
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Πεδίο στο κέντρο οµοιόµορφα φορτισµένου ηµισφαιρίου

Κώστας Βελλίδης

Αντιδιαµετρικά φορτία ως προς τον άξονα 
συµµετρίας z αλληλοαναιρούν συνιστώσες 
παράλληλες στο ισηµερινό επίπεδο ⟹ 
µόνη µη µηδενική συνιστώσα η Ez (κάθετη 
στο ισηµερινό επίπεδο).

1.8 Charge distributions 21

polar coordinates (or, equivalently, spherical coordinates), which are much more
suitable than Cartesian coordinates in this setup.

dr
r

r dq

q

Figure 1.13.
Cross section of a thin ring. The hemisphere
may be considered to be built up from rings.

The cross section of a ring is (essentially) a little rectangle with side lengths
dr and r dθ , as shown in Fig. 1.13. The cross-sectional area is thus r dr dθ . The
radius of the ring is r sin θ , so the volume is (r dr dθ)(2πr sin θ). The charge in
the ring is therefore ρ(2πr2 sin θ dr dθ). Equivalently, we can obtain this result
by using the standard spherical-coordinate volume element, r2 sin θ dr dθ dφ,
and then integrating over φ to obtain the factor of 2π .

Consider a tiny piece of the ring, with charge dq. This piece creates an elec-
tric field at the center of the hemisphere that points diagonally upward (if ρ is
positive) with magnitude dq/4πε0r2. However, only the vertical component sur-
vives, because the horizontal component cancels with the horizontal component
from the diametrically opposite charge dq on the ring. The vertical component
involves a factor of cos θ . When we integrate over the whole ring, the dq simply
integrates to the total charge we found above. The (vertical) electric field due to
a given ring is therefore

dEy = ρ(2πr2 sin θ dr dθ)

4πε0r2 cos θ = ρ sin θ cos θ dr dθ

2ε0
. (1.23)

Integrating over r and θ to obtain the field due to the entire hemisphere gives

Ey =
∫ R

0

∫ π/2

0

ρ sin θ cos θ dr dθ

2ε0
= ρ

2ε0

(∫ R

0
dr

)(∫ π/2

0
sin θ cos θ dθ

)

= ρ

2ε0
· R · sin2 θ

2

∣∣∣∣
π/2

0
= ρR

4ε0
. (1.24)

Note that the radius r canceled in Eq. (1.23). For given values of θ , dθ , and dr, the
volume of a ring grows like r2, and this exactly cancels the r2 in the denominator

E

E

(a)

(b)

Figure 1.14.
The symmetry argument that explains why E
must be vertical.

in Coulomb’s law.

REMARK As explained above, the electric field due to the hemisphere is verti-
cal. This fact also follows from considerations of symmetry. We will make many
symmetry arguments throughout this book, so let us be explicit here about how
the reasoning proceeds. Assume (in search of a contradiction) that the electric
field due to the hemisphere is not vertical. It must then point off at some angle,
as shown in Fig. 1.14(a). Let’s say that the E vector lies above a given dashed line
painted on the hemisphere. If we rotate the system by, say, 180◦ around the sym-
metry axis, the field now points in the direction shown in Fig. 1.14(b), because
it must still pass over the dashed line. But we have exactly the same hemisphere
after the rotation, so the field must still point upward to the right. We conclude
that the field due to the hemisphere points both upward to the left and upward to
the right. This is a contradiction. The only way to avoid this contradiction is for
the field to point along the symmetry axis (possibly in the negative direction),
because in that case it doesn’t change under the rotation.

In the neighborhood of a true point charge the electric field grows
infinite like 1/r2 as we approach the point. It makes no sense to talk about
the field at the point charge. As our ultimate physical sources of field are

Η σφαιρική συµµετρία της κατανοµής φορτίου υποδείχνει τη χρήση 
σφαιρικών πολικών συντεταγµένων.  Τα διανύσµατα θέσης φορτίου 
r΄ ως προς το κέντρο της σφαίρας και ακτίνας r στο σηµείο πεδίου 
(πάλι το κέντρο της σφαίρας) είναι αντίθετα, άρα τα µέτρα τους 
είναι ίσα.  Το ηµισφαίριο έχει οµοιόµορφη πυκνότητα φορτίου ρ.

dEz =
ρd3r′￼

4πε0r2
cos θ =

ρr2dr sin θdθdϕ
4πε0r2

cos θ →
∫ dϕ

ρdr sin θ cos θdθ
2ε0

=
ρdr sin(2θ)dθ

4ε0

1.8 Charge distributions 21

polar coordinates (or, equivalently, spherical coordinates), which are much more
suitable than Cartesian coordinates in this setup.

dr
r

r dq

q

Figure 1.13.
Cross section of a thin ring. The hemisphere
may be considered to be built up from rings.

The cross section of a ring is (essentially) a little rectangle with side lengths
dr and r dθ , as shown in Fig. 1.13. The cross-sectional area is thus r dr dθ . The
radius of the ring is r sin θ , so the volume is (r dr dθ)(2πr sin θ). The charge in
the ring is therefore ρ(2πr2 sin θ dr dθ). Equivalently, we can obtain this result
by using the standard spherical-coordinate volume element, r2 sin θ dr dθ dφ,
and then integrating over φ to obtain the factor of 2π .

Consider a tiny piece of the ring, with charge dq. This piece creates an elec-
tric field at the center of the hemisphere that points diagonally upward (if ρ is
positive) with magnitude dq/4πε0r2. However, only the vertical component sur-
vives, because the horizontal component cancels with the horizontal component
from the diametrically opposite charge dq on the ring. The vertical component
involves a factor of cos θ . When we integrate over the whole ring, the dq simply
integrates to the total charge we found above. The (vertical) electric field due to
a given ring is therefore

dEy = ρ(2πr2 sin θ dr dθ)

4πε0r2 cos θ = ρ sin θ cos θ dr dθ

2ε0
. (1.23)

Integrating over r and θ to obtain the field due to the entire hemisphere gives

Ey =
∫ R

0

∫ π/2

0

ρ sin θ cos θ dr dθ

2ε0
= ρ

2ε0
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2
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)(∫ π/2
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2
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that the field due to the hemisphere points both upward to the left and upward to
the right. This is a contradiction. The only way to avoid this contradiction is for
the field to point along the symmetry axis (possibly in the negative direction),
because in that case it doesn’t change under the rotation.

In the neighborhood of a true point charge the electric field grows
infinite like 1/r2 as we approach the point. It makes no sense to talk about
the field at the point charge. As our ultimate physical sources of field are

z z

Σηµείωση:  Προσέξτε την απαλοιφή του r2.  Οµαλές κατανοµές φορτίου, ,

“προστατεύουν” τα πεδία  από τη φαινοµενική ανωµαλία στο όριο .

ρd3r (r → 0) → 0
E = Q ̂r/(4πε0r2) r → 0

⟹ Ez =
ρ

4ε0 ∫
R

0
dr∫

π/2

0
sin(2θ)dθ =

ρR
4ε0

1
2 ∫

π

0
sin ψdψ =

ρR
4ε0

−(cos π − cos 0)
2

=
ρR
4ε0
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Πεδίο στον άξονα οµοιόµορφα φορτισµένου δακτυλίου
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Some Measures of Electric Charge

Name Symbol SI Unit

Charge q C
Linear charge 

density l C/m
Surface charge 

density s C/m2

Volume charge 
density r C/m3

Table 22-2

Fig. 22-10 A ring of uniform positive
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for
clarity).This element sets up an electric field

at point P. The component of along
the central axis of the ring is dE cos u.

dE
:

dE
:

+ 

+ 

+ + 

+ + + 
+ 

+ 
+ 

+ 

+ 
+ 

+ + + 

+ + + 
+ 

+ 
+ 
+ 

+ 
+ 

+ 
+ 

+ + + 

z 

ds 

R 

r 

θ 

θ 

P 

z 

θ dE cos 
dE 

The perpendicular
components just
cancel but the parallel
components add.
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22-6 The Electric Field Due to a Line of Charge
We now consider charge distributions that consist of a great many closely spaced
point charges (perhaps billions) that are spread along a line, over a surface, or
within a volume. Such distributions are said to be continuous rather than discrete.
Since these distributions can include an enormous number of point charges, we
find the electric fields that they produce by means of calculus rather than by con-
sidering the point charges one by one. In this section we discuss the electric field
caused by a line of charge. We consider a charged surface in the next section. In
the next chapter, we shall find the field inside a uniformly charged sphere.

When we deal with continuous charge distributions, it is most convenient to
express the charge on an object as a charge density rather than as a total charge.
For a line of charge, for example, we would report the linear charge density
(or charge per unit length) l, whose SI unit is the coulomb per meter. Table 22-2
shows the other charge densities we shall be using.

Figure 22-10 shows a thin ring of radius R with a uniform positive linear
charge density l around its circumference. We may imagine the ring to be made
of plastic or some other insulator, so that the charges can be regarded as fixed
in place. What is the electric field at point P, a distance z from the plane of the
ring along its central axis?

To answer, we cannot just apply Eq. 22-3, which gives the electric field set up
by a point charge, because the ring is obviously not a point charge. However, we
can mentally divide the ring into differential elements of charge that are so small
that they are like point charges, and then we can apply Eq. 22-3 to each of them.
Next, we can add the electric fields set up at P by all the differential elements.
The vector sum of the fields gives us the field set up at P by the ring.

Let ds be the (arc) length of any differential element of the ring. Since l is
the charge per unit (arc) length, the element has a charge of magnitude

dq ! l ds. (22-10)

This differential charge sets up a differential electric field at point P, which is
a distance r from the element. Treating the element as a point charge and using
Eq. 22-10, we can rewrite Eq. 22-3 to express the magnitude of as

(22-11)

From Fig. 22-10, we can rewrite Eq. 22-11 as

(22-12)dE !
1

4"#0
 

$ ds
(z2 % R2)

.

dE !
1

4"#0
 

dq
r2 !

1
4"#0

 
$ ds
r2 .

dE
:

dE
:

E
:
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Αναζητούµε το πεδίο κατά µήκος άξονα κάθετου στο 
επίπεδο του δακτυλίου στο κέντρο του.  Το πρόβληµα 
έχει κυλινδρική συµµετρία ⟹ χρησιµοποιούµε 
κυλινδρικές πολικές συντεταγµένες.  Η γραµµική 
πυκνότητα φορτίου στο (λεπτό) δακτύλιο είναι 

.λ = Q/(2πR)

dE =
dQ

4πε0r2
=

λds
4πε0(z2 + R2)

cos θ =
z
r

=
z

(z2 + R2)1/2

dEz = dE cos θ =
zλ

4πε0(z2 + R2)3/2
ds

⟹ Ez(z) =
zλ

4πε0(z2 + R2)3/2 ∫
2πR

0
ds =

zλ(2πR)
4πε0(z2 + R2)3/2

=
Qz

4πε0(z2 + R2)3/2

Φυσική ΙΙΙ,  ΕΚΠΑ  2021-22



8

Πεδίο στον άξονα οµοιόµορφα φορτισµένου δίσκου

Κώστας Βελλίδης

59122-7 TH E E LECTR IC F I E LD DU E TO A CHARG E D DI S K
PART 3

22-7 The Electric Field Due to a Charged Disk
Figure 22-13 shows a circular plastic disk of radius R that has a positive surface
charge of uniform density s on its upper surface (see Table 22-2). What is the
electric field at point P, a distance z from the disk along its central axis?

Our plan is to divide the disk into concentric flat rings and then to calculate
the electric field at point P by adding up (that is, by integrating) the contribu-
tions of all the rings. Figure 22-13 shows one such ring, with radius r and radial
width dr. Since s is the charge per unit area, the charge on the ring is

dq ! s dA ! s (2pr dr), (22-22)

where dA is the differential area of the ring.
We have already solved the problem of the electric field due to a ring

of charge. Substituting dq from Eq. 22-22 for q in Eq. 22-16, and replacing R in
Eq. 22-16 with r, we obtain an expression for the electric field dE at P due to the
arbitrarily chosen flat ring of charge shown in Fig. 22-13:

which we may write as

(22-23)

We can now find E by integrating Eq. 22-23 over the surface of the disk—
that is, by integrating with respect to the variable r from r ! 0 to r ! R. Note that
z remains constant during this process.We get

(22-24)

To solve this integral, we cast it in the form by setting X ! (z2 " r 2),! Xm dX

E ! ! dE !
#z
4$0

 !R

0
 (z2 " r 2)%3/2(2r) dr.

dE !
#z
4$0

 
2r dr

(z2 " r 2)3/2 .

dE !
z#2&r dr

4&$0(z2 " r 2)3/2  ,

Fig. 22-13 A disk of radius R and uni-
form positive charge.The ring shown has
radius r and radial width dr. It sets up a dif-
ferential electric field at point P on its
central axis.

dE
:

R

P

dE

dr r

z

, and dX ! (2r) dr. For the recast integral we have

and so Eq. 22-24 becomes

(22-25)

Taking the limits in Eq. 22-25 and rearranging, we find

(charged disk) (22-26)

as the magnitude of the electric field produced by a flat, circular, charged disk
at points on its central axis. (In carrying out the integration, we assumed that
z ' 0.)

If we let R : ( while keeping z finite, the second term in the parentheses in
Eq. 22-26 approaches zero, and this equation reduces to

(infinite sheet). (22-27)

This is the electric field produced by an infinite sheet of uniform charge located
on one side of a nonconductor such as plastic. The electric field lines for such
a situation are shown in Fig. 22-3.

We also get Eq. 22-27 if we let z : 0 in Eq. 22-26 while keeping R finite. This
shows that at points very close to the disk, the electric field set up by the disk is
the same as if the disk were infinite in extent.

E !
#

2$0

E !
#

2$0
 "1 %

z2z2 " R2 #

E !
#z
4$0

 $ (z2 " r 2)%1/2

%1
2

%R

0
.

! Xm dX !
Xm"1

m " 1
,

m ! %3
2
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Ο (λεπτός) δίσκος φέρει φορτίο µε οµοιόµορφη 
επιφανειακή πυκνότητα σ.  Έχουµε και πάλι 
κυλινδρική συµµετρία ⟹ χρησιµοποιούµε το 
αποτέλεσµα του οµοιόµορφα φορτισµένου δακτυλίου 
αναλύοντας το δίσκο σε συνεχή κατανοµή απειροστά 
λεπτών δακτυλίων.

⟹ E(z) =
σz
4ε0 ∫

R

0
(r2 + z2)−3/2 2rdr =

σz
4ε0 ∫

R2

0
(x + z2)−3/2dx

dQ = σdA = σ ⋅ 2πrdr Φορτίο ενός δακτυλίου.

dE =
zσ2πrdr

4πε0(z2 + r2)3/2
=

σz
4ε0

2rdr
(z2 + r2)3/2 Προηγούµενο αποτέλεσµα.

=
σz
4ε0 [ (x + z2)−(3/2)+1

−(3/2) + 1 ]
R2

0

=
σz
4ε0 [ (r2 + z2)−1/2

−1/2 ]
R

0

=
σ

2ε0 (1 −
z

z2 + R2 )
Στο όριο  έχουµε το πεδίο οµοιόµορφα φορτισµένου απέραντου επιπέδου:R → ∞

E =
σ

2ε0
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Το ηλεκτρικό δίπολο

Κώστας Βελλίδης

Ηλεκτρικό πεδίο, σε πολικές συντεταγµένες, ζεύγους 
αντίθετων φορτίων +Q και −Q σε µεγάλη απόσταση 
r από το κέντρο της µεταξύ τους απόστασης d = 2α:

E =
Q

4πε0r2
1

̂r1 −
Q

4πε0r2
2

̂r2

=
Q

4πε0 ( 1
|r − a |2 −

1
|r + a |2 ) ̂r +

Q
4πε0 (

̂r1 − ̂r
|r − a |2 −

̂r2 − ̂r
|r + a |2 ) = Er ̂r + Eθûθ

Er =
Q

4πε0r2 ( 1
1 − (2a /r)cos θ + (a /r)2

−
1

1 + (2a /r)cos θ + (a /r)2 )
≈

Q
4πε0r2 ( 1

1 − (d /r)cos θ
−

1
1 + (d /r)cos θ ) ≈

Q
4πε0r2 [(1 +

d
r

cos θ) − (1 −
d
r

cos θ)]

και όταν a ≪ r :

Το διάνυσµα  µε κατεύθυνση από το −Q στο +Q είναι η διπολική ροπή του ζεύγους.p ≡ Qd

=
2Qd cos θ

4πε0r3
=

Qd ⋅ ̂r
2πε0r3

=
p ⋅ ̂r

2πε0r3
⟹ Er ≈

p ⋅ ̂r
2πε0r3
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(1 + x)α = 1 + αx +
α(α − 1)

2!
x2 + ⋯
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Το ηλεκτρικό δίπολο

Κώστας Βελλίδης

Για την εγκάρσια συνιστώσα του πεδίου Eθ :

⟹ Eθûθ =
Q

4πε0r2 ( 1
1 − (2a /r)cos θ + (a /r)2

+
1

1 + (2a /r)cos θ + (a /r)2 ) a
r

( ̂r cos θ − â)

( 1
…

+
1
… ) ≈

1
1 − (d /r)cos θ

+
1

1 + (d /r)cos θ
≈ (1 +

d
r

cos θ) + (1 −
d
r

cos θ) = 2

̂r1 − ̂r =
r1

r1
−

r
r

=
r − a

|r − a |
−

r
r

=
r − a

r (1 −
2a
r

cos θ +
a2

r2 )
−1/2

−
r
r

και όταν a ≪ r :

≈ ( r
r

−
a
r ) (1 +

a
r

cos θ) −
r
r

= −
a
r

+
ar
r2

cos θ −
aa
r2

cos θ ≈
a
r

( ̂r cos θ − â)

̂r2 − ̂r =
r2

r2
−

r
r

=
r + a

|r + a |
−

r
r

=
r + a

r (1 +
2a
r

cos θ +
a2

r2 )
−1/2

−
r
r

≈ ( r
r

+
a
r ) (1 −

a
r

cos θ) −
r
r

=
a
r

−
ar
r2

cos θ −
aa
r2

cos θ ≈ −
a
r

( ̂r cos θ − â)

⟹ Eθ ≈
p sin θ
4πε0r3

( ̂r cos θ − â)2 = cos2 θ + 1 − 2 ̂r ⋅ â cos θ = cos2 θ + 1 − 2 cos2 θ = 1 − cos2 θ = sin2 θ

⟹ ̂r cos θ − â = ûθ sin θ

̂r cos θ

̂r cos θ − â

â

̂r

−â

ûθ

θ
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Επίδραση εξωτερικού πεδίου στο ηλεκτρικό δίπολο

Κώστας Βελλίδης

594 CHAPTE R 22 E LECTR IC F I E LDS

22-9 A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-18 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105°, as shown in Fig. 22-18. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-8.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-19a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-19a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d " x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u # F(d " x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-19b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-19 is

t ! "pE sin u. (22-35)

Potential Energy of an Electric Dipole
Potential energy can be associated with the orientation of an electric dipole in an
electric field. The dipole has its least potential energy when it is in its equilibrium
orientation, which is when its moment p: is lined up with the field (thenE

:

E
:

E
:

$: ! p: ! E
:

E
:

p:

E
:

p:

p:E
:

E
:

p:

Fig. 22-18 A molecule of H2O, showing
the three nuclei (represented by dots) and
the regions in which the electrons can be lo-
cated.The electric dipole moment p: points
from the (negative) oxygen side to the (pos-
itive) hydrogen side of the molecule.

105°

Hydrogen Hydrogen

Oxygen

Positive side

Negative side

p

Fig. 22-19 (a) An electric dipole in a
uniform external electric field E

:
.Two cen-

ters of equal but opposite charge are sepa-
rated by distance d. The line between them
represents their rigid connection. (b) Field
E
:

causes a torque t: on the dipole.The di-
rection of t: is into the page, as represented
by the symbol !.

The dipole is being 
torqued into alignment.
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Οµογενές πεδίο ασκεί ζεύγος δυνάµεων στα δύο φορτία, 
µε αποτέλεσµα µια ροπή ως προς το κέντρο του διπόλου, 
η οποία τείνει να ευθυγραµµίσει το δίπολο µε το πεδίο:

τ = Fx sin θ + F(d − x)sin θ = Fd sin θ = Eqd sin θ = pE sin θ
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22-9 A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-18 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105°, as shown in Fig. 22-18. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-8.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-19a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-19a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d " x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u # F(d " x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-19b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-19 is

t ! "pE sin u. (22-35)

Potential Energy of an Electric Dipole
Potential energy can be associated with the orientation of an electric dipole in an
electric field. The dipole has its least potential energy when it is in its equilibrium
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Γενικεύοντας σε διανυσµατική µορφή για τυχαίο πεδίο:

= p × Eτ

Η δυναµική ενέργεια του διπόλου µέσα στο πεδίο είναι το έργο που εκτελεί το πεδίο για να 
στρέψει τη διπολική ροπή από 90ο σε κάποια γωνία θ ως προς τη διεύθυνση του πεδίου:

U = W = ∫
θ

90∘

τdθ′￼= ∫
θ

90∘

pE sin θ′￼dθ′￼= − pE cos θ ⇒ U = − p ⋅ E
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