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Abbreviation Name
1D one-dimensional
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Table 1: Mathematical Symbols.

Symbol Meaning∶= defined as equal≝ equal by definition≡ equivalent𝒩 the set of natural numbers𝒵 the set of integersℜ the set of real numbers𝒞 the set of complex numbers∃ exists, exist∄ does not exist, do not exist↗ denotes increase↘ denotes decrease
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Table 2: Physical constants (data from NIST:CODATA [1]).

Symbol Name Value𝑒 elementary charge 1.602176565(35)× 10−19 Cℎ Planck constant 6.62606957(29)× 10−34 J s
4.135667516(91)× 10−15 eV sℏ reduced Planck constant 1.054571726(47)× 10−34 J s𝑘B Boltzmann constant 1.3806488(13)× 10−23 J/K
8.6173324(78)× 10−5 eV/K𝑐 speed of light in vacuum 2.99792458× 108 m/s𝑚𝑝 proton mass 1.672621777(74)× 10−27 kg𝑚𝑛 neutron mass 1.674927351(74)× 10−27 kg𝑚𝑒 electron mass 9.10938291(40)× 10−31 kg𝜀0 electrical permittivity of vacuum 8.854187817...× 10−12 F/m𝜇0 magnetic permeability of vacuum 4𝜋× 10−7 N/A2

The units of a physical magnitude𝑀will be denoted as [𝑀].
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[1] CODATA Internationally recommended values of the Fundamental Physical Constants. National Insti-
tute of Standards and Technology (NIST), USA. 2021.



CHAPTER 1

OVERVIEW

In this Chapter:
A panoramic overview of the book contents is presented. I explain concepts that are developed further
below.
Prerequisite knowledge: Some knowledge of Quantum Mechanics, Electromagnetism and Statistical
Physics is necessary, although we will explain what we need.

This book is an evolution of the book [1] and of newer university lectures [2]. Other sources that the
readers could consult are the following textbooks and university lectures [3, 4, 5, 6].

Let us start with a panoramic overview of the contents. Let us explain the basic notions, which will
be further expanded below, and sketch the structure of this book. The book also includes tables with ab-
breviations, a glossary, that is, a dictionary of terminology, as well as a symbolotheque, which includes
physical constants and symbols. Before starting, the author would like to formulate an axiom: “There is
always an error.” Hence, generally, in all human activities, errors exist. During the process of finding these
errors we learn more and understand deeper. It is not a sin to make an error, but to think that you never
make errors. Let us hope that this formulation will motivate readers to think, find and communicate to
me errors and omissions in order to make the book, hopefully in a later edition, better. To the Chinese
philosopher Confucius, 551 - 479 BCE, who died in the year of the Battle of Plataea, is attributed, among
other things, the saying “I hear and forget, I see and I remember, I do and I understand”; a saying that
should accompany the learning process in general. In particular, attending a university course, one should
use lectures, notes, an organized e-class, an e-book, solved old exam problems, exercises, video lectures
and experiment, if possible. Above all, a lively interaction between teacher and students should exist.The
joy of interaction cannot be replaced by anything. Let us keep in mind that the purpose is not evaluation,
but evolution. Finally, in a playfulmood, insteadof bullets, the following initial comment for commutation
and anticommutation and comments on chapters are marked in Linear B.
MtTY -afMtTY At first, for the notation: To simplify the notation𝐴 (operation) 𝐵, we

will write𝐴𝐵. Here the “operation” can be in the simpler cases addition ormultiplication of numbers or of
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2 OVERVIEW

matrices, but it can also be any other exotic operation. Although we will discuss this issue in detail below,
let us say a few words about commutation and anticommutation. The following objects are defined, the
commutator [𝐴, 𝐵] ∶= 𝐴𝐵 − 𝐵𝐴,
and the anticommutator {𝐴, 𝐵} ∶= 𝐴𝐵 + 𝐵𝐴.
If the commutator vanishes, i.e., [𝐴, 𝐵] = 0, then𝐴𝐵 = 𝐵𝐴, that is, objects𝐴 and 𝐵 commute, in other
words,𝐴𝐵 does not differ from𝐵𝐴.This is called commutative property. If the anticommutator vanishes,
i.e., {𝐴, 𝐵} = 0, then𝐴𝐵 = −𝐵𝐴, that is, objects𝐴 and 𝐵 anticommute, in other words,𝐴𝐵 is opposite
to 𝐵𝐴. This is called anticommutative property (from Greek anti which signifies opposition). The repre-
sentation with operators, annihilation or lowering and creation or raising, that is, with ladder operators, is
called second quantization in physics. Hence, bosons (like photons) commute, i.e., the operators which
describe annihilation (lowering) an creation (raising) of bosons follow commutation relations, with ob-
jects [, ], while, fermions (like electrons) anticommute, i.e., the operators, which describe annihilation
(lowering) an creation (raising) of fermions follow anticommutation relations with objects {, }.
KpRo InChapter 2we proceed to an introduction to the quantumnature of light.We present the

idealization called the “black body” and relevant notions. In short, a black body is an object which absorbs
all EM (electromagnetic) waves that fall onto it, regardless of frequency and angle of incidence, that is,
something “pitch-black”, if we can express ourselves in this vulgar way. We define one of the most central
physical quantities in this book, namely, the energy density of EM radiation in an infinitesimal frequency
range, initially, of a black body, in thermodynamic equilibrium, 𝜌(𝜈, 𝑇). The units of measurement in S.I.
are [𝜌(𝜈, 𝑇)] = J

m3Hz
, hence, the units of measurement of [𝜌(𝜈, 𝑇)𝑑𝜈] = J

m3 , that is, 𝜌(𝜈, 𝑇)𝑑𝜈 is energy
density.Wepresent the important laws for black body radiation in thermodynamic equilibrium, that is, for
the quantity 𝜌(𝜈, 𝑇): Rayleigh-Jeans (classical, theoretical, in absolute discrepancy with the experiment),
Wien (empirical, fitting with experiment at high frequencies), Planck (quantum mechanical, theoretical,
in agreementwith the experiment for all frequencies) laws.We also state the Stefan-Boltzmann law (again,
for the black body) in two forms: the first formulation refers to energy density, 𝜚(𝑇), with units [𝜚(𝑇)] =
J

m3 , and the second formulation refers to radiation intensity, 𝐼, with units [𝐼] = J
sm2 = W

m2 .
We remind the readers of the Maxwell equations in differential and in integral form, of the boundary

conditions at an interface between two media, as well as of EM fields in cavities. Then, we define an-
other important quantity, 𝑔(𝜈) = 𝑑𝑁𝑑𝜈 , that is, the infinitesimal number of EM field normal modes in an
infinitesimal frequency range. Normal modes means frequencies and forms (shapes). The quantity 𝑔(𝜈)
and classical physics, that is, the equipartition of energy theorem, lead to the Rayleigh-Jeans law, which
is in absolute discrepancy with the experiment. Whereas, the quantity 𝑔(𝜈) and some (paleo)quantum
hypotheses lead to the Planck’s law, which agrees with the experiment for all frequencies. However, the
Planck’s law, “proven” via this route, reminds us of a student who, not knowing how to solve the exam
problem, tries strange tricks, to find the correct result without remorse of wrong intermediate paths. A
robust proof of Planck’s law was given by Einstein; we will discuss it in Chapter 3. Next, we present the
Wien’s displacement law in the form𝜆0𝑇 = constant (which gives thewavelength𝜆0 wherewe havemax-
imumEM radiation of a black body at temperature𝑇) and in the form 𝜈0/𝑇 = constant′ (which gives the
frequency 𝜈0 where we have maximum EM radiation of a black body at temperature 𝑇). Finally, we de-
scribe the photoelectric effect, which, together with black body radiation, convinced us of the quantum
nature of light. All these happened at the end of 19th century - beginning of 20th century, already far in
the past.
KpRo Chapter 3 is devoted to the interaction mechanisms (or processes) between the EM radi-

ation and the 2LS. Necessary abbreviations here are: 1LS = single-level system, 2LS = two-level system,
3LS = three-level system, MLS = multi-level system. Exampli gratia, a 2LS might be the two consecutive
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levels of an atom, molecule, quantum dot or alternatively nanoparticle. This is schematically shown in
Figure 1.1. We will see how we construct a 2LS from two 1LSs, approaching each other, later, in Chapter

Figure 1.1: Schematically, a two-level system (2LS).

4. Anyway, schematically, the explanation is given in Figure 1.2. Let as assume, for the sake of simplicity,
that each isolated 1LS has an energy level 𝜀.Then, the unified system, that is, the 2LS, has, within a simple
Tight-Binding approach, energy levels 𝐸1 and 𝐸2, which have an energetic separation 2|𝑡|, where 𝑡 is the
transfer integral, 𝑡 = ⟨𝜙L|𝐻̂|𝜙R⟩, which shows how strongly the two 1LSs interact to build the 2LS. [If
the isolated 1LSs are not identical, their levels will not have the same energy, but the result is qualitatively
similar.]

Figure 1.2: Schematically, how, approaching two single-level systems (1LSs), which are separated by infi-
nite distance, one left (L) and one right (R), we construct a two-level system (2LS).The energetic separa-
tion of the two levels is determined by the transfer integral 𝑡 = ⟨𝜙L|𝐻̂|𝜙R⟩, that is, from how strongly the
once (upper panel) separated 1LSs interact to build the unified system, i.e., the 2LS (lower panel). For the
sake of simplicity, we assume that each isolated 1LS has an energy level 𝜀, while, the unified system, that
is, the 2LS, has energy levels𝐸1 and𝐸2, which, within a simple Tight-Binding approach, are energetically
separated by 2|𝑡|.

In summary, themechanisms or processes of EM radiation - 2LS interaction are: (Stimulated) Absorp-
tion, Spontaneous Emission, Stimulated Emission. A process is characterized as stimulated when it exists
due to the existence of energy density of EM radiation, 𝜌, whereas it is characterized as spontaneouswhen
it is not due to the existence of 𝜌. The reason why we put parentheses in “(Stimulated) Absorption” is
exactly that there is no other way: absorption will necessarily be forced, that is, it will owe its existence
to 𝜌. Of these three processes, Stimulated Emission, which was introduced by Einstein, is fundamental to
the operation of LASERs. Actually, the acronym means exactly this: Light Amplification by Stimulated
Emission of Radiation. Let us notice that within this book, we mainly focus on one electron in a 2LS or
3LS or MLS and on its electric dipole interaction, due to its electric charge, with the EM field. However,
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similarly, we could, if we had space and time, extend to phenomena which require magnetic dipole mo-
ment and interaction due to electron spin. This will maybe be done in a next edition. The probability of
(Stimulated) Absorption is 𝑑𝑊st

abs = 𝐵12𝜌(𝜈, 𝑇)𝑑𝑡,
that is, proportional to time 𝑑𝑡 and to 𝜌(𝜈, 𝑇), with proportionality factor 𝐵12. The index 12 means that
with the photon absorption, the electron will be transferred from level 1 to level 2. The probability of
Spontaneous Emission is 𝑑𝑊sp

em = 𝐴21𝑑𝑡,
that is, proportional to time 𝑑𝑡, with proportionality factor𝐴21.The index 21means that with the photon
emission, the electron will be transferred from level 2 to level 1. Since this process is spontaneous, 𝑑𝑊sp

em
does not depend on 𝜌(𝜈, 𝑇). The probability of Stimulated Emission is𝑑𝑊st

em = 𝐵21𝜌(𝜈, 𝑇)𝑑𝑡,
that is, proportional to time 𝑑𝑡 and to 𝜌(𝜈, 𝑇), with proportionality constant 𝐵21. The index 21 means
that with the photon emission, the electron will be transferred from level 2 to level 1. These are shown
schematically in Figure 1.3. In (Stimulated) Absorption, a photon is absorbed, leading to an electron be-
ing transferred from the lower level to the upper level. In Spontaneous Emission, an electron, which was
in the upper level, falls spontaneously at the lower level, which happens to be empty, and as a result, a
photon is emitted, which however, has random direction, phase, polarization. In Stimulated Emission, a
stimulating or driving photon (i.e., this is a stimulated or driven oscillation), let us call it stimulating photon,
with energy 𝐸𝜙 = ℎ𝜈, momentum 𝑝𝜙 = 𝐸𝜙/𝑐, obliges the electron, which initially was at the upper level,
to fall at the empty lower level, leading to another photon being emitted. This second photon is identical
to the stimulating photon, i.e, they have same energy, momentum (direction), phase, polarization. The
properties of LASER are due to this process: same energy⇒ monochromaticity, same momentum⇒
directionality, same phase⇒ coherence, same polarization⇒ polarized light. It is implied that we must
have conservation of energy and momentum; we will discuss all these thoroughly in Chapter 3.

Figure 1.3: Schematically, (Stimulated) Absorption, Spontaneous Emission and Stimulated Emission.

KpRo Chapter 4 is devoted to the continuous and the discrete spectrum. The discrete energy
spectrum is a feature of atoms and molecules as well as of artificial atoms and molecules, i.e., quantum
dots or nanoparticles, which are mainly human-made, either via physical or via chemical paths, as well
as of color centers, which usually appear as defects in crystals. Some other human-made objects or arti-
facts have discrete-continuous energy spectrum, meaning that they have discrete spectrum in one or two
dimensions and continuous spectrum in the rest dimensions. Such systems are quantum wires, with dis-
crete spectrum in two dimensions and continuous in one dimension, and quantum wells, with discrete
spectrum in one dimension and continuous in two dimensions. The continuous spectrum is a feature of
solids, either crystalline or amorphous (with important differences).We also devote space to color centers
and quantum dots, which have discrete spectrum. Moreover, in Chapter 4 we study the transition from
two 1LSs to one coupled system, the 2LS, which is donewith three variants of the Tight-Bindingmethod,
with graded simplicity. For quantum wells, wires and dots, we mainly describe their electronic states and
their corresponding density of states.
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KpRo In Chapter 5 we deal with the so-called semiclassical approximation of the EMfield - 2LS,
3LS, MLS interaction. Semiclasical means that, while we treat the EM field classically, we treat 2LS, 3LS,
MLS quantummechanically, that is, as a systemof eigenstates. Here, we introduce the reader to the dipole
approximation. The electric dipole moment between two charges, one positive (plus, P), 𝑞 > 0, and one
negative (minus, M), −𝑞 < 0, is defined as𝒫 ∶= 𝑞𝑑, where we define 𝑑 = M⃗P (Figure 1.4). Usually,
when studying an atom, we consider the position vector of the electron (E) relative to the nucleus (N),
N⃗E = 𝑟⃗ = −𝑑. Then,𝒫 ∶= 𝑞𝑑 = −𝑒𝑟, if we refer to e.g. the hydrogen atom.

Figure 1.4: (Upper panel)The axes originO, the positive charge P (plus), which can be represented by the
nucleusN in an atom, the negative chargeM(minus), which can be represented by one electronEmoving
around the nucleus.We define 𝑑 ∶= M⃗P. Usually, when studying an atom, we consider the position vector
of the electron relative to the nucleus N⃗E = 𝑟⃗ = −𝑑. The electric dipole moment is defined as𝒫 ∶= 𝑞𝑑
something that we can therefore write 𝒫 = −𝑒𝑟, if we refer to e.g. the hydrogen atom. For the latter
case, we notice the vectors 𝑂𝑃 ∶= 𝑅⃗ and 𝑂𝐸 ∶= 𝑟⃗𝐸. (Lower panel) Very schematically: Under these
conditions, the wave length is much larger than the spatial extent of the system, something like 𝜆 >> 𝛼;
thus, the electric field is practically homogeneous. For example, for optical wavelengths, 𝜆 ∼ 500 nm,
and for the hydrogen atom 𝛼 ∼ 𝛼0 (Bohr radius), hence, 𝜆/𝑎0 ∼ 104. The triangle OPM (ONE), which
is shown in the upper panel, is shown in the lower panel smaller than the wavelength, but in fact it is much
(∼ 104 times) smaller.

We will use time-dependent perturbation theory. Here, by the term unperturbed system we mean the
eigenstate systemwithout EMfield, while, by the term perturbed systemwemean that the potential energy
of interaction with the EM field, which is time-dependent, has been added. Let us call the Hamiltonian
of the unperturbed system 𝐻̂0, the potential energy of the perturbation𝑈ℰ (⃗𝑟, 𝑡) and the Hamiltonian of
the perturbed system 𝐻̂. Then, 𝐻̂ = 𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡).
The potential energy of the perturbation, that is, of the interaction with the electric field ℰ⃗ , has the form𝑈ℰ = −𝒫 ⋅ ℰ⃗ .
Almost everywhere in this bookwe neglect the electron spin and hence the potential energy of interaction
with the magnetic field, which has a similar form, that is,𝑈ℬ = −𝜇 ⋅ ℬ⃗ ,
where 𝜇 is the magnetic dipole moment and ℬ⃗ is the magnetic induction. Nice analogies exist between
electric dipole moment inside an electric field andmagnetic dipole moment inside magnetic field. We re-
mind these analogies to the reader below, as we list the electric dipolemoment, magnetic dipolemoment,
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potential energy of electric dipole, potential energy of magnetic dipole and the respective torques. 𝐿⃗ is
the orbital momentum, 𝑆 is the spin, 𝑔 a dimensionless factor, and 𝑞,𝑚 are the particle charge and mass,
respectively.

Analogies Reminder

ℰ⃗ (Electric Field) 𝐵⃗ (Magnetic Field)

Figure 1.5: Electric and magnetic dipole.

𝒫 = 𝑞𝑑 electric dipole moment

𝑈ℰ = −𝒫 ⋅ ℰ⃗ potential energy𝜏 = 𝒫 × ℰ⃗ torque[𝒫] = Cm[𝑈ℰ ] = Cm
N
C
= Nm = J[𝜏] = Cm

N
C
= Nm

𝜇 = 𝐼𝐴 magnetic dipole moment

or 𝜇 = (𝑞/2𝑚)(𝐿⃗ + 𝑔𝑆)𝑈𝐵 = −𝜇 ⋅ 𝐵⃗ potential energy𝜏 = 𝜇 × 𝐵⃗ torque[𝜇] = Am2[𝑈𝐵] = Am2 N
Am

= Nm = J[𝜏] = Am2 N
Am

= Nm

The essence of the approach we use is shown in Figure 1.4. The wavelength is much larger than the
spatial dimensions of the system under study, i.e.,𝜆 >> 𝛼.
If, for example, we study the hydrogen atom, 𝛼 = 𝛼0 is, let’s say, the Bohr radius. If we examine optical
wavelengths, i.e.,𝜆 ∼500nm, since𝛼0 ≈ 0.529Å∼ 0.5×10−1 nm, then 𝜆/𝛼0 ∼ 104, i.e., the approximation
holds for optical transitions and atomic physics. If indeed this happens, i.e., if the wavelength is much
larger than the system’s spatial extent, then, in a good approximation, the electric field has only temporal
dependence but it is spatially homogeneous. In physics, homogeneousmeans the same everywhere, i.e., in
every point of space, while, isotropicmeans the same towards all directions.

Under these conditions, in Chapter 5 we study and analytically solve the temporal evolution of 2LS
and 3LS, with one electron somehow placed initially (e.g. at the lower level) and finally we obtain the
so-called Rabi oscillations, i.e., how do the probabilities to find the electron at each level oscillate as func-
tions of time. For this purpose, wemake the so-called RotatingWave Approximation (RWA). Practically,
this means that if we denote by 𝜔 the cyclic frequency of the EM field and by ℏΩ the energetic sepa-
ration between e.g. the two levels of a 2LS and solve the problem, then we obtain fast terms containing±(𝜔 +Ω) and slow terms containing±(𝜔 −Ω), but we only keep the slow terms. These oscillations the
electron performs between the two levels are called Rabi oscillations and we meet them here for the first
time, within the semiclassical approximation. Such an example of oscillations of the probability to find an
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Figure 1.6:Wepresent the oscillations of the probability to find the electron at the two levels of a two-level
system (2LS) at resonance (Δ = 0, continuous lines) and out of resonance (Δ ≠ 0, dashed lines). The
period of the oscillations is 𝑇R = 2𝜋/√Ω2

R + Δ2, while, the maximum transfer percentage is𝒜 = Ω2
R/(Ω2

R + Δ2).
To make a graphical representation, we have assigned some values toΩR and Δ. Δ = 𝜔 − Ω is the so-
called detuning andΩR is the Rabi frequency, which shows how much the two levels are tangled by the
electric field.

Figure 1.7: A comparison between theRotatingWaveApproximation (RWA) and the full numerical solu-
tion (noRWA), for some arbitrary values ofΩR,Ω,𝜔,Δ. We present the probabilities to find the electron
at the two levels as functions of time, for initial placement at level 1.The RWA curves are smoother, since
they lack the high-frequency terms ±(Ω + 𝜔) and only low-frequency terms ±(Ω − 𝜔) have been kept.
Also, we observe a slight dephasing, i.e., the RWA curves are little by little left behind the full numerical
solution curves.

electron at the two levels of a 2LS, within RWA, is shown in Figure 1.6. A comparison of RWA with the
full numerical solution, i.e., without ignoring the fast terms, is shown in Figure 1.7. Finally, in Chapter 5
we examine the MLS within RWA, under the assumption that levels are equidistant.
KpRo Chapter 6 is also devoted to the semiclassical approximation. Here, we focus on full nu-

merical solutions, but we also compare with approximatemethods, such as the popular RWA and the first
and second order averaging method [7]. Hence, also in Chapter 6, we study again Rabi oscillations in a
2LS and MLS, at the semiclassical approximation. The solution of the –perturbed by the electric compo-
nent of the EM field– 2LS is approached in three ways: (a) via the rotating wave approximation (RWA),
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(b) via the averaging method, (ΑΜ), and (c) numerically, by solving the original differential equations
without approximation (noRWA). Ways (a) and (b) give approximate solutions. Indicatively, we test the
following initial conditions:

1. 𝐶1(0) = 1,𝐶2(0) = 0 (initial placement of the electron at the lower level),

2. 𝐶1(0) = 0,𝐶2(0) = 1 (initial placement of the electron at the upper level),

3. 𝐶1(0) = 1√2𝑒𝑖𝜃, 𝐶2(0) = 1√2𝑒𝑖𝜙 (initial equiprobable placement of the electron at the two levels,
but generally with different initial phase).

We compare the results of the approximatemethods (a) and (b)with the results of the numerical solution
of the relevant differential equations (c) [with matlab, via the trapezoid, Runge-Kutta (2,3) and Runge-
Kutta (4,5)methods].This study includes resonance (Δ = 0), as well as out-of-resonance (Δ ≠ 0) cases.
KpRo Chapter 7 is devoted to the so-called allowed and forbidden optical transitions, mainly

within the dipole approximation, and to the so-called selection rules, which, in brief, tell us “what is al-
lowed and what is forbidden”. A model system which is often used to explain these concepts is the hydro-
gen atom. We will use it here, too. Given the chance, we also analyze the atomic orbitals of the hydrogen
atom, i.e., their parity (whether they are evenorodd) andnodal surfaces (surfaceswhere thewave function
vanishes).We explain the so-called allowed and forbidden transitions within the dipole approximation as
well as the relevant selection rules. Within the dipole approximation, everything is finally reduced to the
integral 𝑟⃗𝑘′𝑘 = 􏾙𝑑3𝑟 Φ∗𝑘′ (⃗𝑟) 𝑟⃗ Φ𝑘(⃗𝑟),
which expresses the matrix element of the position of the negative charge with respect to the positive
charge e.g. the position of the electron relative to the nucleus. 𝑘 and 𝑘′ are the states betweenwhichwe ask
whether anoptical transition can takeplace. If this integral is zero, then theoptical transition is “forbidden”,
while, if it is not zero, the optical transition is “allowed”; the larger this integral is the stronger the optical
transition. The reason is that the matrix element of the potential energy of the perturbation, which tries
to tangle states 𝑘 and 𝑘′ via the electric field, ℰ⃗ , is𝑈ℰ𝑘′𝑘(𝑡) = 𝑒 ℰ⃗ ⋅ 𝑟⃗𝑘′𝑘.
We observe that, everything reduces to the symmetry of the eigenfunctions of the unperturbed system,
sincewhether thematrix element 𝑟⃗𝑘′𝑘 is zero or not is determined bywhich of them are even or odd, given
that the function 𝑟⃗ is obviously odd. Moreover, in Chapter 7 we discuss hybrid sp, sp2, and sp3 orbitals.
KpRo In chapter 8 we advance to the full quantum mechanical treatment of photon - 2LS, 3LS,

MLS interaction and to the EM field quantization inside a cavity, which is performed with a somehow
heuristicmanner.Wemainly focus here onRabi oscillations of the number of photons within a cavity and
of the probability to find the electron at the levels of a 2LS (or 3LS,MLS) as the electron interacts with the
photons inside the cavity. Hence, here many photons and a single electron are tangled, an electron which
descends and ascends between the two levels. Many-fermion phenomena are out of the subject of this
book. A photon is a boson, i.e., it is benign, in the sense that many bosons can occupy the same quantum
state. But an electron is a fermion, i.e., it is snob, in the sense that two fermions cannot occupy the same
quantum state.This way, while we can condense bosons, we cannot condense (pure) fermions (although
for example, Cooper pairs can be condensed). The Hamiltonian of the𝑚mode of the EM field, 𝐻̂EM,𝑚,
is expressed via photon (boson) annihilation and creation operators. The EM field Hamiltonian is the
sum of all the 𝐻̂EM,𝑚 terms. The 2LS Hamiltonian, 𝐻̂2LS, (or 3LS, MLS), which is described via spinors,
is expressed via electron (fermion) annihilation and creation operators. We also need a Hamiltonian, to
express the interaction of the𝑚mode of the EMfieldwith the 2LS (or 3LS,MLS), let us call it 𝐻̂EM,m-2LS.
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This has alternative notations as𝑈ℰ ,𝑚, 𝐻̂AF,𝑚; AF has its roots in good old atomic physics, it means atom-
field. 𝑈 reminds us that it is the perturbing potential energy, which emanates from the electric field ℰ .
Hence, finally, we have to add all these individual Hamiltonians.

A popular full Hamiltonian of this kind is the Rabi Hamiltonian. It describes an EM field mode,𝑚, a
2LS, and the interaction between them. After some initial simplifications, it can be written in the form𝐻̂R,𝑚 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+ + 𝑆̂−)(𝑎̂†𝑚 + 𝑎̂𝑚).
Thefirst term expresses themode𝑚 of the EMfield, the second term expresses the 2LS and the third term
expresses their interaction. 𝜔𝑚 is the (cyclic) frequency of mode 𝑚 of the EM field and 𝑎̂†𝑚 (𝑎̂𝑚) is the
photon creation (annihilation) operator of such a photon. ℏΩ is the energy separation of the two levels
and 𝑆̂+ (𝑆̂−) is the electron raising (lowering) operator between the upper and the lower level. Finally, 𝑔𝑚
expresses the strength and permissibility of the interaction of mode𝑚 of the EM field with the 2LS. The
third term of the Rabi Hamiltonian can be expanded into four addends. From these, the first addend ex-
presses raising of the electron and creation of a photon (𝑆̂+𝑎̂†𝑚), the second addend raising of the electron
and annihilation of a photon (𝑆̂+𝑎̂𝑚), the third addend lowering of the electron and creation of a photon
(𝑆̂−𝑎̂†𝑚), and the fourth addend lowering of the electron and annihilation of a photon (𝑆̂−𝑎̂𝑚). If there is
only one type of photons in the cavity, that is, only one mode 𝑚, then the first and the fourth addends
seem energetically unreasonable. If we dismiss them, we arrive at the Jaynes-CummingsHamiltonian [8],
a form of which is 𝐻̂JC,𝑚 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚).
Using the Jaynes-Cummings Hamiltonian, we study photon absorption and emission and the relevant
Rabi oscillations of the probability to find the electron at each level (at the lower level ⟨𝑆̂−𝑆̂+⟩, at the
upper level ⟨𝑆̂+𝑆̂−⟩) and of the number of photons ofmode𝑚 in the cavity ( ⟨𝑎̂†𝑚𝑎̂𝑚⟩). Two examples are
shown in Figure 1.8. We calculate, among other things, the average (expected) values ⟨𝑎̂†𝑚𝑎̂𝑚⟩, ⟨𝑆̂+𝑆̂−⟩,

Figure 1.8: Two examples of Rabi oscillations during a photon absorption, i.e., the initial condition is 4
photons in the cavity and 1 electron at the lower level. We use some arbitrary values of the parameters
to make an indicative figure. On the right, the two levels are tangled more strongly (the parameter 𝑔 is
larger). We present, the temporal evolution of the expected value of the number of photons in the cavity,⟨𝑎̂†𝑚𝑎̂𝑚⟩ = 𝑛− 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡) (dashed cyan line), both on resonance (Δ = 0) and out of resonance (Δ ≠0), as well as of the expected value of the number of electrons at the upper level, ⟨𝑆̂+𝑆̂−⟩ = 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡)
and at the lower level, ⟨𝑆̂−𝑆̂+⟩.Ω𝑛 = √(Δ/2)2 + 𝑛𝑔2.⟨𝑆̂+𝑎̂𝑚⟩, ⟨𝑆̂−𝑎̂†𝑚⟩, for 𝐻̂JC,𝑚. Finally, we notice that the eigenstates of the electron in the 2LS and the EM
mode𝑚, without the interaction between them, are usually expressed as |↑, 𝑛𝑚⟩, |↓, 𝑛𝑚⟩, where 𝑛𝑚 is the
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number of photons of EM mode 𝑚 and |↑⟩ (|↓⟩) means that the electron resides at the upper (lower)
level.
KpRo Chapter 9 is also devoted to the full quantum mechanical approach. We discuss bosons,

fermions, commutations, anticommutations, ladder operators and second quantization.We are interested
in:

• the commutator, [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴, and

• the anticommutator, {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴.∗ If the commutator vanishes,𝐴𝐵 = 𝐵𝐴, we have the commutative property.∗ If the anticommutator vanishes,𝐴𝐵 = −𝐵𝐴, we have the anticommutative property.

Boson (e.g. photon) commutation relations: Let us call 𝑎̂𝑚 the boson annihilation operator and 𝑎̂†𝑚 the
boson creation operator at the state or mode 𝑚, where ℏ𝜔𝑚 is the energy of the created or annihilated
boson, then, for bosons, the following commutation relations hold:[𝑎̂𝑚, 𝑎̂†ℓ] = 𝛿𝑚𝑙[𝑎̂𝑚, 𝑎̂ℓ] = 0[𝑎̂†𝑚, 𝑎̂†ℓ] = 0
When [𝐴, 𝐵] = 0 ⇒ 𝐴𝐵 − 𝐵𝐴 = 0 ⇒ 𝐴𝐵 = 𝐵𝐴, i.e., the quantities𝐴 and 𝐵 commute, which shows
the nameorigin. Simultaneously, 𝑎̂†𝑚 can be called raising operator because it raises the energy by ℏ𝜔𝑚, 𝑎̂𝑚
can be called lowering operator because it lowers the energy by ℏ𝜔𝑚 and therefore, since this is a ladder
of raisings and lowerings, the operators 𝑎̂𝑚, 𝑎̂†𝑚 are called ladder operators.

Fermion (e.g. electron) anticommutation relations: Let us call â𝑖 the fermion annihilation operator and
â†𝑖 the fermion creation operator at state 𝑖, where ℏΩ𝑖 is the energy of the created or annihilated fermion,
then, for fermions, the following anticommutation relations hold:{â𝑖, â†𝑗 } = 𝛿𝑖𝑗{â𝑖, â𝑗} = 0{â†𝑖 , â†𝑗 } = 0
When {𝐴, 𝐵} = 0 ⇒ 𝐴𝐵 + 𝐵𝐴 = 0 ⇒ 𝐴𝐵 = −𝐵𝐴, i.e., the quantities 𝐴, 𝐵 anticommute, which
shows the name origin. Simultaneously, â†𝑖 can be called raising operator because it raises the energy byℏΩ𝑖, â𝑖 can be called lowering operator because it lowers the energy by ℏΩ𝑖 and therefore, since this is
a ladder or raisings and lowerings, operators â𝑖, â†𝑖 are called ladder operators, too. Alternatively, we use
the notation: 𝑆̂+ for the raising operator at the upper 2LS level from the lower 2LS level and 𝑆̂− for the
lowering operator to the lower 2LS level from the upper 2LS level. Simultaneously, 𝑆̂+ could be called
electron creation operator at the upper level and destruction operator at the lower level, while 𝑆̂− could
be called electron destruction operator at the upper level and creation at the lower level. If we apply the
relation {â†𝑖 , â†𝑗 } = 0 for the same state, e.g. putting 𝑖 = 𝑗 = 𝑟, we obtain {â†𝑟 , â†𝑟 } = 0 ⇒ â†𝑟 â†𝑟 = 0, which
means that

✿✿✿
we

✿✿✿✿✿✿
cannot put two fermions at the same state, which is the Pauli exclusion principle.

In linear algebra as well as in its applications in quantum mechanics, we define the raising operator,
which increases the eigenvalue of another operator, and the lowering operator, which decreases the eigen-
value of another operator. These are collectively called ladder operators. In quantum mechanics, the rais-
ing operator is frequently called creation operator, and the lowering operator is frequently called annihi-
lation operator. Well-known applications of ladder operators are in the simple harmonic oscillator and in
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angular momentum. In quite a few areas of physics and chemistry, the use of these operators instead of
wavefunctions is known as second quantization.
KpRo In Chapter 10 we discuss the density operator and matrix. We clarify what a pure state is

(the system is described by a wave function), what a mixed state is (the system cannot be described by
a well-defined wave function, e.g., because it is coupled to a reservoir with which it can exchange heat,
particles etc.).We also discuss the relation of the density operator andmatrix with the temporal evolution
of the system and the von Neumann equation. The density operator for a pure state can be written as

𝜌̂ = |Ψ⟩ ⟨Ψ| , |Ψ⟩ = Ϻϻϻϻϻϻϻϻϻϻϼ
𝑐1(𝑡)𝑐2(𝑡)⋮𝑐𝑁(𝑡)

ϽϾϾϾϾϾϾϾϾϾϿ .
That is, |Ψ⟩ = ∑𝑘 𝑐𝑘(𝑡) |Φ𝑘⟩, where |Φ𝑘⟩ is our basis. Hence, ⟨Ψ| = 􏿮𝑐∗1(𝑡) 𝑐∗2(𝑡) ⋯ 𝑐∗𝑁(𝑡)􏿱, hence,
the representation of the density operator in matrix form is

|Ψ⟩ ⟨Ψ| = Ϻϻϻϻϻϻϻϼ𝑐1(𝑡)𝑐2(𝑡)⋮
ϽϾϾϾϾϾϾϿ 􏿮𝑐∗1(𝑡) 𝑐∗2(𝑡)⋯ 􏿱 = Ϻϻϻϻϻϻϻϼ𝑐1(𝑡)𝑐∗1(𝑡) 𝑐1(𝑡)𝑐∗2(𝑡) ⋯𝑐2(𝑡)𝑐∗1(𝑡) 𝑐2(𝑡)𝑐∗2(𝑡) ⋯⋮ ⋮

ϽϾϾϾϾϾϾϿ .
The temporal evolution of the density operator is given by the Liouville - von Neumann equation

𝑖ℏ𝜕𝜌̂(𝑡)𝜕𝑡 = [𝐻̂, 𝜌̂(𝑡)],
where 𝐻̂ = 𝐻̂0 +𝑈ℰ (⃗𝑟, 𝑡) is the systemHamiltonian. If we include energy level relaxations due to spon-
taneous emission or de-excitations, collisions with gas atoms etc, then

𝑖ℏ𝜕𝜌̂(𝑡)𝜕𝑡 = [𝐻̂, 𝜌̂(𝑡)] − 𝑖ℏ2 {Γ̂, 𝜌̂(𝑡)},
where Γ̂Φ𝑘(⃗𝑟) = 𝛾𝑘Φ𝑘(⃗𝑟), 𝛾𝑘 ∈ ℜ and the Hamiltonian is written 𝐻̂ = 𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡) − 𝑖ℏ2 Γ̂.
KpRo Chapter 11 is devoted to LASERs; specifically, to the operation principles, rate equations

for the level populations and for the energy density of the EMwaves in the cavity, longitudinal and trans-
versemodes, and types of LASERs. As a prototype system,we examine theHe -NeLASER,whilewe also
mention other LASER types, such as the p-n junction LASER, the quantumdot LASER etc.We focus on
the rate equations for the level populations𝑁1 and𝑁2, for the levels which participate in the emission of
coherent EM waves and for the energy density of EM waves in the cavity 𝜌, that is, on 𝑑𝑁1/𝑑𝑡, 𝑑𝑁2/𝑑𝑡, 𝑑𝜌/𝑑𝑡.
We explain what the longitudinal and transverse modes are. We discuss the optical transition line widths.
Apart from the temporal evolution of𝑁1,𝑁2, 𝜌, generally, we also focus on the values of𝑁1,𝑁2, 𝜌, at the
steady state, i.e., when a dynamical equilibriumbetween the statistical set of 2LSs (we have a large number
of 2LSs in the cavity) and the energy density of EM waves in the cavity has been established. We explain
what pumping, critical pumping and population inversion is.The differential equations, which tangle𝑁1,𝑁2, 𝜌, generally, cannot be solved analytically, but numerically. Here we solve them by matlab; an exam-
ple is shown in Figure 1.9. We notice, finally, that even though the emission of coherent EM waves (aka
lasing) is usually between two tangled levels (2LS), other levels are also involved in the whole process
with auxiliary role.

The LASER rate differential equations in dimensionless form have the form𝑑𝜈1𝑑𝜏 = 𝜈2 + 𝜚(𝜈2 − 𝜈1) − 𝜈1𝜏1 ,
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Figure 1.9: We modify only one parameter (from the set 𝑟𝑁 , 𝜏1, 𝜏0, 𝐴′/𝐴) and we observe the temporal
evolution of the dimensionless level populations (𝜈1, 𝜈2) as well as of the dimensionless energy density
of EM waves inside the cavity (𝜚) as functions of the dimensionless time (𝜏).

𝑑𝜈2𝑑𝜏 = 𝑟𝑁 + 𝜚(𝜈1 − 𝜈2) − 𝜈2,𝑑𝜚𝑑𝜏 = − 𝜚𝜏0 + 􏿼𝐴′𝐴 𝜈2 + 𝜚(𝜈2 − 𝜈1)􏿿 1𝜏0(1 − 𝜏1) .
Here 𝜈1, 𝜈2, 𝜚 , 𝜏 are dimensionless𝑁1,𝑁2, 𝜌, 𝑡 (time), while, 𝑟𝑁 , 𝜏1, 𝜏0, 𝐴′/𝐴 dimensionless parameters,
whosemeaning is explained in Chapter 11. At the steady state, ignoring 𝐴′/𝐴 ≪ 1, the following equations
hold 𝜈1 = 𝜏1𝑟𝑁, ∀ 𝑟𝑁𝜈2 = 􏿼 𝑟𝑁, ∀ 𝑟𝑁 ≤ 1𝜏1𝑟𝑁 + (1 − 𝜏1), ∀ 𝑟𝑁 ≥ 1

𝜚 = 􏿼 0, ∀ 𝑟𝑁 ≤ 1𝑟𝑁 − 1, ∀ 𝑟𝑁 ≥ 1
An example of numerical solution of the rate equations is shown in Figure 1.9, where wemodify only one
of the parameters 𝑟𝑁 ,𝜏1,𝜏0, 𝐴′/𝐴; Details inChapter 11. Finally, inChapter 11we touch upon the isolation
of the fundamental modeTEM00 as well as of higher ordermodes TEM𝑝′𝑞′ (here TEMmeans transverse
electromagnetic).
KpRo In Chapter 12 we lay down various other useful elements. Among these, we examine the

Fresnel equations, which concern the incidence of an EM wave at an interface between two media, 1
and 2 (Figure 1.10). The plane of incidence 𝑞 is the plane defined by the incident wave vector 𝑘⃗𝑖 and
the normal to the interface, at the point of incidence, unit vector 𝑛̂, that is, in Figure 1.10, the 𝑥𝑦-plane.
The reader can see the angles of incidence, reflection, refraction or transmission, 𝜃𝑖, 𝜃𝑟, 𝜃𝑡, respectively,
as well as the components of the electric field 𝐸⃗, the so-denoted 𝑠 from the German senkrecht or TE
(transverse electric) with 𝐸⃗𝑠 ⟂ 𝑞 and the so-denoted 𝑝 from parallel or TM (transverse magnetic) with
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Figure 1.10: Incidence of EMwave at an interface between twomedia 1 and 2. Plane of incidence 𝑞 is the
plane defined by the incident wave vector 𝑘⃗𝑖 and the normal to the interface, at the point of incidence, unit
vector 𝑛̂, that is here plane 𝑥𝑦. We observe the angles of incidence, reflection, refraction or transmission,𝜃𝑖, 𝜃𝑟, 𝜃𝑡, respectively, as well as the 𝑠 (perpendicular to 𝑞) and 𝑝 (belonging to 𝑞) components of the
incident, reflected, refracted or transmitted electric field 𝐸⃗𝑠𝑖, 𝐸⃗𝑝𝑖, 𝐸⃗𝑠𝑟, 𝐸⃗𝑝𝑟, 𝐸⃗𝑠𝑡, 𝐸⃗𝑝𝑡, respectively.
𝐸⃗𝑝 ∈ 𝑞, that is, the components of the incident (𝑖), reflected (𝑟), refracted or transmitted (𝑡) electric
field 𝐸⃗𝑠𝑖, 𝐸⃗𝑝𝑖, 𝐸⃗𝑠𝑟, 𝐸⃗𝑝𝑟, 𝐸⃗𝑠𝑡, 𝐸⃗𝑝𝑡, respectively.The angle of incidence for which there is no reflected 𝑝 polar-
ization, is called the Brewster angle. We will also define reflectance, 𝑅 ∶= |𝐸⃗𝑟|2/|𝐸⃗𝑖|2, and transmittance,𝑇 ∶= (|𝐸⃗𝑡|2/|𝐸⃗𝑖|2) √𝜀2𝜇1/𝜀1𝜇2 (cos𝜃𝑡/cos𝜃𝑖), which are connected via𝑅 + 𝑇 = 1, the Poynting vector,𝑆 ∶= 𝐸⃗ × 𝐻⃗ which has units of power per unit area, as well as other relevant quantities and properties.

After this overview, it is time to take things from the start ...

htfE YSOf
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CHAPTER 2

THE QUANTUM NATURE OF LIGHT

In this Chapter:
We discuss the quantum nature of light. The chapter is devoted to phenomena and concepts that histor-
ically led to our perception of the quantum nature of light. Specifically: Initially, we refer to the concept
black body and relevant concepts. Then, we describe the energy density of EM radiation in an infinitesi-
mal frequency interval, of a black body in thermodynamic equilibrium.We refer to Planck’s law and com-
pare it with Rayleigh-Jeans andWien approximations. Later, we delineate two formulations of the Stefan-
Boltzmann law, the first with energy density and the second with intensity of radiation. We continue by
discussing the Maxwell equations in total charge and current formulation as well as the boundary con-
ditions at an interface. Also, we discuss the existence of EM waves in the absence of current and charge
density, fields inside an ideal conductor, fields at the boundary of an ideal conductor, fields inside cavities.
Then, we discuss the normal EM modes inside a rectangular parallelepiped cavity, and we calculate the
infinitesimal number of EM field normal modes per infinitesimal frequency interval. At this point we are
in the position to prove the classical Rayleigh-Jeans law, using the equipartition of energy theorem and the
infinitesimal number of EM field normal modes per infinitesimal frequency interval.This law is a colossal
failure of classical physics. Next, we present the proof of Planck’s law as Planck proved it. Then, we prove
the Wien displacement law in several variations. Finally, we describe the photoelectric effect.
Prerequisite knowledge: Basic knowledge of Physics and Mathematics plus a little bit of Electromag-
netism and Statistical Physics.

2.1 Black body and related concepts.

Let us start by some definitions. Let us assume that electromagnetic (EM) waves or, in other words, elec-
tromagnetic radiation impinges on a body, as schematically depicted in Figure 2.1. Then, we define the
following physical quantities:
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• absorption coefficient, 𝛼, is the fraction of EM radiation the body absorbs.

• transmission coefficient, 𝜏, is the fraction of EM radiation that passes through the body.

• reflection coefficient, 𝜌, is the fraction of EM radiation the body reflects.

These three quantities are connected through the relation𝛼 + 𝜏 + 𝜌 = 1. (2.1)

Figure 2.1: Electromagnetic waves impinge on a body. We show schematically the absorption (𝛼), trans-
mission (𝜏), and reflection (𝜌) coefficients, obeying the relation 𝛼 + 𝜏 + 𝜌 = 1.

But what does the term “black” exactly mean? The scientific definition is rather strict... A black body
is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency
and regardless of angle of incidence. A black body lets all incident radiation pass inside it, reflecting no
incident radiation (𝜌 = 0), absorbing all incident radiation (𝛼 = 1) and letting no radiation pass through
it (𝜏 = 0); all these hold for all frequencies and for all angles of incidence. Thus, a black body is a
perfect absorber of incident EM radiation.

Of course, if this was the case (𝛼 = 1, 𝜌 = 𝜏 = 0), then, due to constantly absorbing energy, the
black bodywould continuously increase its temperature.Hence, ablackbody that is in thermodynamic
equilibrium and consequently in constant temperature, should re-emit electromagnetic radiation.
This radiation is called black body radiation and conserves the equilibrium of energy. Black body radia-
tion obeys the Planck’s law (§2.2, §2.13, Figure 2.2) so that its spectrum depends only on temperature,
regardless of the shape and composition of the body, the angle of emission, etc. A black body in thermo-
dynamic equilibrium has the following remarkable properties [1]:

• (P1). It is an ideal emitter, i.e., it emits at each frequency at least asmuch energy as any other body
at the same temperature.

• (P2). It is an isotropic emitter, i.e., the energy is radiated isotropically, independent of direction.

Real bodies emit only a fraction of the black body radiation. The emission coefficient or emissivity,𝜖, is the fraction of EM radiation that is re-emitted by a body. By definition, for a black body in thermo-
dynamic equilibrium, 𝜖 is equal to one,𝜖in thermodynamic equilibrium

black body ∶= 1. (2.2)

In summary, for the black body it holds that𝛼 = 1, 𝜌 = 𝜏 = 0, 𝜖 = 1. (2.3)
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Figure 2.2: Black body radiation according to Planck’s law (see §2.2 and §2.13). It depends only on tem-
perature and not on the shape, body composition, angle of emission, etc..

A bodywith 𝜖 < 1 is called agraybody. A body that reflects all incident radiation is called awhitebody
(𝜌 = 1), thus 𝛼 = 𝜏 = 0. All these supposedly hold regardless of frequency, direction or temperature. A
body that transmits none of the EM radiation that reaches it (𝜏 = 0), thus𝛼+𝜌 = 1, is called an opaque
body. A body that transmits all of the EM radiation that reaches it (𝜏 = 1), thus 𝛼 = 𝜌 = 0 is called a
transparent body. The above definitions are summarized in Table 2.1.

Table 2.1: Definition of bodies..

black body 𝛼 = 1, 𝜌 = 𝜏 = 0, 𝜖 = 1
gray body 𝛼, 𝜌, 𝜏, 𝜖 < 1
white body 𝜌 = 1, 𝛼 = 𝜏 = 0
opaque body 𝜏 = 0, 𝛼 + 𝜌 = 1

transparent body 𝜏 = 1, 𝛼 = 𝜌 = 0
Radiation fromstars, planets andotherbodies is commonly characterizedbyaneffective temperature,

i.e., by the temperature of a black body that would emit the same total (meaning integrated over all
frequencies) intensity of radiation, 𝐼 (units [𝐼] = W/m2, §2.3).

Figure 2.3: Cavity with a hole: an approximate realization of the black body by opening a minimal hole
on the wall of an opaque enclosure.

An approximate realization of the black body can be seen in Figure 2.3. An approximate black body
can be constructed by opening a small hole on the wall of an opaque enclosure, e.g., on a wall of a com-
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mon box, thus creating a cavity with a hole [2]. In photonics, we sometimes refer to the term cavity
implying the presence of this minimal hole. Due to the minimal size of the hole compared to the cav-
ity, the light that enters the cavity is (almost) reflected for ever or absorbed and it is improbable that
it will escape from the cavity, making our system an almost ideal absorber. Whether this system is in
thermodynamic equilibrium and thus the radiation it emits is black body radiation that follows the
Planck’s law depends on the nature of the wall and the other contents of the enclosure [3]. Let us now
assume that the cavity is kept at constant temperature 𝑇 and that the trapped radiation is in ther-
modynamic equilibriumwith the enclosure. Generally, the hole will let a fraction of radiation escape.
If the hole is small enough, the incoming and outgoing radiations have negligible effect on the equilibrium
of radiation inside the cavity. The radiation that escapes will approximately be black body radiation,
distributed according to thePlanck’s law characterized by its temperature𝑇, and itwill not depend
on the properties of the cavity with a hole, at least for wavelengths adequately smaller than the size
of the hole.The cavity with a hole has been used at least since 1898, when it was described byOtto Lum-
mer and FerdinandKurlbaum.Their design was a hole on a platinum box, with its interior blackenedwith
iron oxide [4] or laterwith amixture of chromium, nickel, and cobalt oxides [5]. Below,wemention some
additional approximate realizations of the black body.

There is an interest in near-black bodies ormaterials for applications such as camouflage (mainly from
radars), solar energy collectors, and infrared thermal detectors. As a perfect emitter of radiation, a hotma-
terial with nearly-black-body behavior would create an efficient infrared heater, particularly in space or in
a vacuum, where conductive heat transport is impossible. Near-black bodies are also useful in telescopes
and cameras as anti-reflection surfaces to reduce stray light, and in information-gathering about objects in
areas with high optical contrast, e.g. to observe planets orbiting around their stars, where near-black ma-
terials absorb light that comes from the irrelevant sources. A first approximation of a black body is carbon
black. It has been shown in recent years that nearly perfect black bodies (𝛼 ≈ 0.99) can be constructed
using carbon nanotubes [6, 7], while the simple color black has𝛼 < 0.975.Thematerial “super black” has𝛼 ≈ 0.996 and 𝜌 ≈ 0.004. A few years ago it has been announced by SurreyNanoSystems that a material
called Vantablack has been developed by carbon nanotubes, absorbing, according to the manufacturers,
99.96% of the incident light. An image of Vantablack on an aluminum foil can be seen in Figure 2.4. The
name originates from vertically aligned nanotube arrays (VANTA) [8] and the word “black”. Vertically
aligned carbon nanotubes (CNTs) like a fuzzy forest of tiny trees has been recently used to develop ama-
terial that is one order of magnitude darker than other very black materials [9]. According to the authors
[9], “theCNT-metal hierarchical architectures demonstrate omnidirectional blackbody photoabsorption
with the reflectance of 1× 10−5 over the range from ultraviolet to terahertz region, which is one order of
magnitude lower than that of any previously reported broadband absorber material.”

Figure 2.4: The material Vantablack composed by carbon nanotubes (Surrey NanoSystems) which, ac-
cording to its manufacturers, absorbs 99.96% of incident light, on an aluminum foil.

Planck’s law, formulated in 1900, describes the energy density of EM radiation, in an infinitesimal fre-
quency interval, of a black body in thermodynamic equilibrium, 𝜌(𝜈, 𝑇)𝑑𝜈. Specifically,

𝜌(𝜈, 𝑇)𝑑𝜈 = 8𝜋ℎ𝑐3 𝜈3𝑒 ℎ𝜈𝑘B𝑇 − 1𝑑𝜈. (2.4)
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Theunits of 𝜌(𝜈, 𝑇) are [𝜌(𝜈, 𝑇)] = J
m3Hz

.This is a formulation of Planck’s law as a function of frequency.
There are other formulations, too, which will be described later, e.g., as a function of the wavelength,𝜆, of
the angular frequency,𝜔, and of the wavenumber, 𝑘.
2.2 Energy density of EM radiation in an infinitesimal frequency interval, of a black body in ther-

modynamic equilibrium: Planck's law and comparison with Rayleigh-Jeans and Wien approx-
imations.

The energy density of EM radiation, in an infinitesimal frequency interval, of a black body in thermody-
namic equilibrium, 𝜌(𝜈, 𝑇)𝑑𝜈, was meant to become one of the issues that revealed the quantization
of EMradiation. Below, wemention three equations that were introduced in search of an explanation for
the experimental behavior; the Rayleigh-Jeans expression (theory, classical physics, 1900), theWien’s ex-
pression (fittingwith experimental data of that era, at high frequencies, 1896), and eventually, the Planck’s
expression (theory, old quantum mechanics, 1900) that coincides with the experimental behavior in the
whole frequency range. Hence, we have the Rayleigh-Jeans law (theory, classical physics, 1900),

𝜌RJ(𝜈, 𝑇) = 8𝜋𝜈2𝑘B𝑇𝑐3 = 𝜌RJ, (2.5)

the Wien’s law (fitting with experimental data of that era, at high frequencies, 1896),

𝜌W(𝜈, 𝑇) = 𝛼𝜈3𝑒𝑏𝜈/𝑇 constants from========
Planck’s law

8𝜋ℎ𝑐3 𝜈3𝑒ℎ𝜈/𝑘B𝑇 = 𝜌W, (2.6)

where the notes above andbelow the “=” signmean that before the signwepresent the original expression
thatWienproposed and after the signwepresent the constants predicted byPlanck’s law in the asymptotic
limit of high frequencies, in whichWien’s law approximates Planck’s law. Finally, the Planck’s law (theory,
old quantum mechanics, 1900) that coincides with the experimental behavior for all frequencies,

𝜌(𝜈, 𝑇) = 8𝜋ℎ𝑐3 𝜈3𝑒ℎ𝜈/𝑘B𝑇 − 1 = 𝜌 (2.7)

Let us change the variables, defining 𝑥 = ℎ𝜈𝑘B𝑇 (2.8)

Then, 𝜈 = 𝑘B𝑇ℎ 𝑥 ⇒ 𝑑𝜈 = 𝑘B𝑇ℎ 𝑑𝑥. (2.9)

Then, the essential difference of the above laws is revealed:𝜌RJ(𝑥) = 𝜌0𝑥2 (2.10)

𝜌W(𝑥) = 𝜌0 𝑥3𝑒𝑥 (2.11)

𝜌(𝑥) = 𝜌0 𝑥3𝑒𝑥 − 1 (2.12)

𝜌0 ∶= 8𝜋ℎ2 􏿶𝑘B𝑇𝑐 􏿹3 (2.13)
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The units are [𝜌0] = Js
m3 = J

m3Hz
. Of course, 0 does not belong to the domain of Eq. 2.12, i.e., we do not

refer to zero frequency or infinite temperature. An alternative notation found in the literature for 𝜌(𝜈, 𝑇)
is 𝑢(𝜈, 𝑇).

As mentioned above, the Planck’s law can alternatively be stated as a function, e.g., of the wavelength,𝜆, i.e., in the form 𝜌(𝜆, 𝑇). This can be done by demanding

􏾙∞
0 𝜌(𝜆, 𝑇)𝑑𝜆 ∶= 􏾙∞

0 𝜌(𝜈, 𝑇)𝑑𝜈 ⇒ (2.14)

􏾙∞
0 𝜌(𝜆, 𝑇)𝑑𝜆 = 􏾙∞

0 8𝜋ℎ𝑐3 𝜈3𝑒 ℎ𝜈𝑘B𝑇 − 1𝑑𝜈. (2.15)

However, 𝑐 = 𝜆𝜈 ⇔ 𝜈 = 𝑐𝜆 ⇒ 𝑑𝜈𝑑𝜆 = − 𝑐𝜆2 . (2.16)

Hence,

􏾙∞
0 𝜌(𝜆, 𝑇)𝑑𝜆 = −8𝜋ℎ𝑐􏾙0

∞ 1𝜆5 1𝑒 ℎ𝑐𝜆𝑘B𝑇 − 1 𝑑𝜆 = 8𝜋ℎ𝑐􏾙
∞
0 𝑑𝜆𝜆5(𝑒 ℎ𝑐𝜆𝑘B𝑇 − 1) ⇒ (2.17)

the Planck’s law as a function of the wavelength and the temperature is

𝜌(𝜆, 𝑇) = 8𝜋ℎ𝑐𝜆5(𝑒 ℎ𝑐𝜆𝑘B𝑇 − 1) (2.18)

Defining 𝜓 = ℎ𝑐𝜆𝑘B𝑇 (2.19)

and 𝜌′0 = 8𝜋(𝑘B𝑇)5(ℎ𝑐)4 (2.20)

Eq. 2.18 is written as 𝜌(𝜓) = 𝜌′0 𝜓5𝑒𝜓 − 1 (2.21)

The units of 𝜌′0 are [𝜌′0] = J
m3m. Hence, the units of 𝜌(𝜆, 𝑇) are [𝜌(𝜆, 𝑇)] = J

m3m, as well. These differ
from theunits of 𝜌(𝜈, 𝑇), which are [𝜌(𝜈, 𝑇)] = J

m3Hz
. In other words, althoughwe use the same symbol

(𝜌), it is not the same physical quantity. Of course, in Eq. 2.21, 0 does not belong to the domain of 𝜌(𝜓),
i.e., the wavelength and the temperature cannot become infinite.

The three above expressions are compared in Figure 2.5. The once so-called ultraviolet (UV) catastro-
phe, i.e., the divergence of the classical Rayleigh-Jeans approximation increasing frequency, is more than
evident. Hence, the classical approximation is satisfactory only in the regime of very small frequencies;
then, as the frequency increases, it predicts an infinite 𝜌, in disastrous contradiction with the experimen-
tal data. The Wien’s approximation has a problem on the opposite limit, i.e., for small frequencies, where
it deviates from the experimental behavior, a fact once called far-infrared (FIR) problem.These characteri-
zations are related to the available experimental data around the 1900s and are, in this sense, deceptive. In fact,
the region where deviations begin to be significant obviously depends on the temperature of the black
body: the expressions 2.10, 2.11, 2.12 differ only in the function of 𝑥, which according to Eq. 2.8 depends
not only on frequency, 𝜈, but also on temperature, 𝑇.
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Figure 2.5: Comparison of the Rayleigh-Jeans (Eq. 2.10), Wien (Eq. 2.11), and Planck (Eq. 2.12) laws.
We have set 𝜌0 = 1 (Eq. 2.13), for simplicity, to make the plot. We observe the deviation of the clas-
sical Rayleigh-Jeans theory from Planck’s law (which agrees with the experiment) very soon increasing𝑥 = ℎ𝜈𝑘B𝑇 , as well as the deviation of the Wien fitting from Planck’s law at low enough 𝑥. 𝑥 includes both
frequency, 𝜈, and temperature, 𝑇.

2.3 Two formulations of the Stefan-Boltzmann law: (1) Energy density. (2) Intensity of radiation.

We present two common formulations of the Stefan-Boltzmann law, which refers to a black body at tem-
perature 𝑇.

Figure 2.6: [Left] The 1st formulation of the Stefan-Boltzmann law refers to the energy density 𝜚 (units
J/m3) inside a black body in thermodynamic equilibrium at temperature 𝑇 and has the form 𝜚(𝑇) = 𝑎𝑇4.𝑎 = 8𝜋5𝑘4B15𝑐3ℎ3 ≈ 7.5657 × 10−16 J

m3K4 . [Right] The 2nd formulation of the Stefan-Boltzmann law refers to
the energy emitted per unit area per unit time, i.e., to the power emitted per unit area or to the intensity of
radiation 𝐼 (units J

m2s = W
m2 ), and has the form 𝐼 = 𝜎𝑇4. 𝜎 = 2𝜋5𝑘4B15𝑐2ℎ3 ≈ 5.67 × 10−8 W

m2K4 .
In its first form, the Stefan-Boltzmann law defines the energy density (units J/m3) inside a black body
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at temperature 𝑇. To calculate it, we have to integrate Eq. 2.7, i.e., 𝜌(𝜈, 𝑇), over all frequencies. Let us use
Eq. 2.8. Briefly,

𝜚(𝑇) ∶= ∞􏾙0 𝜌(𝜈, 𝑇)𝑑𝜈 = ∞􏾙0 8𝜋ℎ𝑐3 𝜈3𝑒ℎ𝜈/𝑘B𝑇 − 1𝑑𝜈 Eq.2.8==== 8𝜋ℎ𝑐3 􏿶𝑘B𝑇ℎ 􏿹3 𝑘B𝑇ℎ ∞􏾙0 𝑥3𝑒𝑥 − 1𝑑𝑥􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍
𝜋4/15

⇒

𝜚(𝑇) = 8𝜋5𝑘4B15𝑐3ℎ3𝑇4. (2.22)

Thus 𝜚(𝑇) = 𝑎𝑇4 (2.23)

which is the Stefan-Boltzmann law in its 1st formulation. Here,

𝑎 = 8𝜋5𝑘4B15𝑐3ℎ3 ≈ 7.5657 × 10−16 J
m3K4 . (2.24)

Of course, theunits of𝜚(𝑇) are [𝜚(𝑇)] = J/m3 (energydensity).The1st formulationof theStefan-Boltzmann
law is depicted in Figure 2.6 (left). An alternative symbolism for 𝜚(𝑇) is 𝑢̆(𝑇).

In its 2nd form, the Stefan-Boltzmann law defines the energy emittedper unit area per unit time, i.e.,
the power emitted per unit area or the intensity of radiation 𝐼 (units J

m2s = W
m2 ). Let as take for granted

from the kinetic theory of gases [10, 11, 12] that the number of particle collisions (here, photons) onto a
wall per unit area and per unit time (units 1𝑚2𝑠) or the flux of particles (here, photons) is

Φ𝜎 = 𝑛4⟨𝑣⟩, (2.25)

where 𝑛 is the particle density (units 1/m3) and ⟨𝑣⟩ is the mean velocity of the particles (here, photons).
Thus, for photons, Φ𝛾 = 𝑛4𝑐. (2.26)

But 𝐼 = ⟨ℎ𝜈⟩Φ𝛾, (2.27)

where ⟨ℎ𝜈⟩ = 𝜚𝑛 (2.28)

is the average value of energy each photon carries. From Eqs. 2.26, 2.27, 2.28 it follows that𝐼 = 𝑐4𝜚. (2.29)

Hence, due to Eq. 2.23, 𝐼 = 􏿶 2𝜋5𝑘4B15𝑐2ℎ3 􏿹 𝑇4 (2.30)

or 𝐼 = 𝜎𝑇4 (2.31)

which is the 2nd and most common formulation of the Stefan-Boltzmann law. Here,

𝜎 = 2𝜋5𝑘4B15𝑐2ℎ3 ≈ 5.67 × 10−8 𝑊
m2K4 . (2.32)
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The 2nd formulation of the Stefan-Boltzmann law is depicted in Figure 2.6 (right). In other words, the
2nd formulation of the Stefan-Boltzmann law states that the total intensity of radiation emitted by a black
body at temperature 𝑇 is proportional to the 4th power of temperature.

Some electromagnetic issues...
Inorder toprovePlanck’s law, but also toprove the classicalRayleigh-Jeans law,weneed toknow, among

other things, the normal modes of EM field in a cavity and, more specifically, 𝑔(𝜈) = 𝑑𝑁𝑑𝜈 that is, the
infinitesimal number of EM field normal modes in an infinitesimal frequency range. Hence, we will need
to address some electomagnetic issues...

2.4 Maxwell's equations. Formulation in terms of total charge and total current.

We know the Gauss’s theorem 􏽤𝑆=𝜕𝑉Δ⃗ ⋅ 𝑑a⃗ = 􏾙𝑉 ∇⃗ ⋅ Δ⃗ 𝑑𝑉, (2.33)

and the Stokes’ theorem 􏽤𝐿=𝜕𝑆Δ⃗ ⋅ 𝑑ℓ⃗ = 􏾙𝑆 ∇⃗ × Δ⃗ ⋅ 𝑑a⃗. (2.34)

Here, Δ⃗ denotes a vector field, such as the electric field, magnetic induction, etc., 𝑆 = 𝜕𝑉 denotes the
surface𝑆 containing a volume𝑉,𝐿 = 𝜕𝑆 denotes the line𝐿 containing the surface𝑆. Also, 𝑑ℓ⃗, 𝑑a⃗, 𝑑𝑉 de-
note infinitesimal length, infinitesimal area, and infinitesimal volume, respectively. These theorems allow
us to pass from the differential form of Maxwell’s equations

∇⃗ ⋅ 𝐸⃗ = 𝜌𝜀0 Gauss’s law for electrism (1st) (2.35a)

∇⃗ ⋅ 𝐵⃗ = 0 Gauss’s law for magnetism (2nd) (2.35b)

∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 Faraday’s law of induction (3rd) (2.35c)

∇⃗ × 𝐵⃗ = 𝜇0𝐽⃗ + 𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 Ampère’s law and Maxwell’s correction (4th) (2.35d)

after some calculations,

􏽤𝑆=𝜕𝑉𝐸⃗ ⋅ 𝑑a⃗ = 􏾙𝑉 ∇⃗ ⋅ 𝐸⃗ 𝑑𝑉 = 􏾙𝑉 𝜌𝜀0 𝑑𝑉 = 𝑞enclosed in 𝑉𝜀0 ⇒ (2.36a)

􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 􏾙𝑉 ∇⃗ ⋅ 𝐵⃗ 𝑑𝑉 = 0 ⇒ (2.36b)

􏽤𝐿=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = 􏾙𝑆 ∇⃗ × 𝐸⃗ ⋅ 𝑑a⃗ = −􏾙𝑆 𝜕𝐵⃗𝜕𝑡 ⋅ 𝑑a⃗ = − 𝜕𝜕𝑡 􏾙𝑆 𝐵⃗ ⋅ 𝑑a⃗ ⇒ (2.36c)

􏽤𝐿=𝜕𝑆𝐵⃗ ⋅ 𝑑ℓ⃗ = 􏾙𝑆 ∇⃗ × 𝐵⃗ ⋅ 𝑑a⃗ = 􏾙𝑆 ϴϵϵϵ϶𝜇0𝐽⃗ + 𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 ϷϸϸϸϹ ⋅ 𝑑a⃗ = 𝜇0􏾙𝑆 𝐽⃗ ⋅ 𝑑a⃗ + 𝜇0𝜀0􏾙𝑆 𝜕𝐸⃗𝜕𝑡 ⋅ 𝑑a⃗ ⇒
(2.36d)
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to their integral formΦ𝐸,𝑆=𝜕𝑉 ∶= 􏽤𝑆=𝜕𝑉𝐸⃗ ⋅ 𝑑a⃗ = 𝑞enclosed in 𝑉𝜀0 Gauss’s law for electrism (1st) (2.37a)

Φ𝐵,𝑆=𝜕𝑉 ∶= 􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 0 Gauss’s law for magnetism (2nd) (2.37b)

ℰEMF ∶= 􏽤𝐿=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = −𝜕Φ𝐵,𝑆𝜕𝑡 Faraday’s law of induction (3rd) (2.37c)

􏽤𝐿=𝜕𝑆𝐵⃗ ⋅ 𝑑ℓ⃗ = 𝜇0𝐼passing through 𝑆 + 𝜇0𝜀0𝜕Φ𝐸,𝑆𝜕𝑡 Ampère’s law and Maxwell’s correction (4th)

(2.37d)

In 2.37d, 𝐼passing through 𝑆 is the current passing through the surface 𝑆.
In vacuum, where 𝜌 = 0 and 𝐽⃗ = 0⃗, Eqs. 2.35a-2.35d become∇⃗ ⋅ 𝐸⃗ = 0 (2.38a)∇⃗ ⋅ 𝐵⃗ = 0 (2.38b)∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 (2.38c)

∇⃗ × 𝐵⃗ = 𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 (2.38d)

2.5 Boundary conditions at interfaces.

We will now describe the boundary conditions at an interface. This information can also be found in a
electromagnetism textbook [13, 14].

Figure 2.7: Boundary conditions for the 1st Maxwell’s equation. The direction of vectors 𝐸⃗1 and 𝐸⃗2 has
been chosen arbitrarily on purpose. Similarly we treat the 2nd Maxwell’s equation, where 𝐸⃗ should be
replaced by 𝐵⃗.♣ Let us apply the 1st Maxwell’s equation 2.37a on Figure 2.7, where an arbitrary direction of vectors 𝐸⃗1
and 𝐸⃗2 has been drawn on purpose.Φ𝐸,𝑆=𝜕𝑉 ∶= 􏽤𝑆=𝜕𝑉𝐸⃗ ⋅ 𝑑a⃗ = 𝑞 enclosed in 𝑉𝜀0 ⇒
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Φ𝐸, upper circle + Φ𝐸, lower circle + Φ𝐸, lateral = 𝑞 enclosed in 𝑉𝜀0 .
Φ𝐸, upper circle = 𝐸⃗1 ⋅ 𝐴1 = 𝐸1⟂𝐴1 andΦ𝐸, lower circle = 𝐸⃗2 ⋅ 𝐴2 = 𝐸2⟂𝐴2, where 𝐸1⟂, 𝐸2⟂,𝐴1, 𝐴2 are
algebraic values. Thus

𝐴𝐸1⟂ − 𝐴𝐸2⟂ + 􏾙𝐴lateral⃗

𝐸 ⋅ 𝑑a⃗ = 𝜎 ⋅ 𝐴𝜀0
But when ℎ → 0 ⇒ 𝐴lateral → 0⇒ 􏾙𝐴lateral⃗

𝐸 ⋅ 𝑑a⃗ → 0

ЄЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃІ
⇒ 𝐸1⟂ − 𝐸2⟂ = 𝜎𝜀0

and
if 𝜎 = 0 ⇒ 𝐸1⟂ = 𝐸2⟂

We denoted |𝐴1| = |𝐴2| = |𝐴| = 𝐴. Hence, if, e.g., we have spread positive surface charge density 𝜎
on the interface, then 𝐸⃗1⟂ and 𝐸⃗2⟂ point outside of the interface. Concisely, we can write the alternative
forms

𝐸1⟂ − 𝐸2⟂ = 𝜎𝜀0 (2.39a)

or (𝐸⃗1 − 𝐸⃗2) ⋅ 𝑒̂ = 𝜎𝜀0 𝑒̂ = 𝑛̂21 (from 2 towards 1) (2.39b)

or (𝐸⃗1 − 𝐸⃗2) ⋅ 𝑛̂21 = 𝜎𝜀0 (2.39c)

or (𝐸⃗2 − 𝐸⃗1) ⋅ 𝑛̂12 = 𝜎𝜀0 𝑛̂12 (from 1 towards 2) (2.39d)

♢ Similarly, let us now apply the 2nd Maxwell’s equation 2.37b on Figure 2.7, by switching 𝐸⃗ to 𝐵⃗.
Φ𝐵,𝑆=𝜕𝑉 ∶= 􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 0.

In accordance with the above, we arrive at the following alternative expressions

𝐵1⟂ = 𝐵2⟂ (2.40a)

or (𝐵⃗1 − 𝐵⃗2) ⋅ 𝑒̂ = 0 𝑒̂ = 𝑛̂21 (from 2 towards 1) (2.40b)

or (𝐵⃗1 − 𝐵⃗2) ⋅ 𝑛̂21 = 0 (2.40c)

or (𝐵⃗2 − 𝐵⃗1) ⋅ 𝑛̂12 = 0 𝑛̂12 (from 1 towards 2) (2.40d)

♡ Let us now apply the 3rd Maxwell’s equation 2.37c on Figure 2.8.

ℰEMF ∶= 􏽤𝐿=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = −𝜕Φ𝐵,𝑆𝜕𝑡 ⇒
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Figure 2.8: Boundary conditions for the 3rd Maxwell’s equation. The direction of vectors 𝐸⃗1 and 𝐸⃗2 has
been chosen arbitrarily on purpose. Here, the loop is on the plane (𝑒̂, 𝑔̂).

𝐸⃗1 ⋅ 𝐿⃗1 + h interval􏾙
small left

𝐸⃗ ⋅ 𝑑ℓ⃗ + 𝐸⃗2 ⋅ 𝐿⃗2 + h interval􏾙
small right

𝐸⃗ ⋅ 𝑑ℓ⃗ = − 𝜕𝜕𝑡 􏾙𝑆 𝐵⃗ ⋅ 𝑑a⃗
but when ℎ → 0 ⇒ 𝑆 = ℎ𝐿 → 0 ⇒ 􏾙𝑆 𝐵⃗ ⋅ 𝑑a⃗ → 0
but when ℎ → 0 ⇒ h interval􏾙

small left

𝐸⃗ ⋅ 𝑑ℓ⃗ = 0 = h interval􏾙
small right

𝐸⃗ ⋅ 𝑑ℓ⃗

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ
⇒

𝐸⃗1 ⋅ 𝐿⃗1 + 𝐸⃗2 ⋅ 𝐿⃗2 = 0 ⇒ 𝐸1∥𝐿1 + 𝐸2∥𝐿2 = 0 ⇒ −𝐸1∥𝐿 + 𝐸2∥𝐿 = 0 ⇒ 𝐸1∥ = 𝐸2∥.
Above, we denoted |𝐿⃗1| = |𝐿⃗2| = |𝐿⃗| = 𝐿, while 𝐸1∥, 𝐸2∥, 𝐿1, 𝐿2 are algebraic values. Since

𝐸⃗1 ⋅ 𝐿⃗1 + 𝐸⃗2 ⋅ 𝐿⃗2 = 0 ⇒(𝐸⃗2 − 𝐸⃗1) ⋅ 𝑔̂ = 0.
Hence, when the loop is on the plane (𝑒̂, 𝑔̂) ⇒ the difference (𝐸⃗2 − 𝐸⃗1) ⟂ 𝑔⃗.

Similarly, when the loop is on the plane (𝑒̂, 𝑡̂) ⇒ the difference (𝐸⃗2 − 𝐸⃗1) ⟂ 𝑡⃗.
That is, the difference (𝐸⃗2 − 𝐸⃗1) ⟂ interface

which can be written as (𝐸⃗2 − 𝐸⃗1) × 𝑒̂ = 0⃗.
Hence, concisely, we arrive at the alternative forms

𝐸2∥ = 𝐸1∥ (2.41a)(𝐸⃗2 − 𝐸⃗1) × 𝑒̂ = 0⃗ (2.41b)

♠ Let us now apply the 4th Maxwell’s equation 2.37d on Figure 2.9.

􏽤𝐿=𝜕𝑆𝐵⃗ ⋅ 𝑑ℓ⃗ = 𝜇0𝐼passing through 𝑆 + 𝜇0𝜀0𝜕Φ𝐸,𝑆𝜕𝑡 ⇒
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Figure 2.9: Boundary conditions for the 4th Maxwell’s equation. The direction of vectors 𝐵⃗1 and 𝐵⃗2 has
been chosen arbitrarily on purpose.

𝐵⃗1 ⋅ 𝐿⃗1 + h interval􏾙
small left

𝐵⃗ ⋅ 𝑑ℓ⃗ + 𝐵⃗2 ⋅ 𝐿⃗2 + h interval􏾙
small right

𝐵⃗ ⋅ 𝑑ℓ⃗ =
𝜇0𝐽linear, passing through𝑆 𝐿 + 𝜇0𝜀0 𝜕𝜕𝑡 􏾙𝑆=𝐿ℎ 𝐸⃗ ⋅ 𝑑a⃗
but when ℎ → 0 ⇒ h interval􏾙

small left

𝐵⃗ ⋅ 𝑑ℓ⃗ = 0 = h interval􏾙
small right

𝐵⃗ ⋅ 𝑑ℓ⃗
but when ℎ → 0 ⇒ 𝑆 = 𝐿ℎ → 0 ⇒ 􏾙𝑆=𝐿ℎ 𝐸⃗ ⋅ 𝑑a⃗ → 0

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ

⇒

−𝐵1∥𝐿 + 𝐵2∥𝐿 = 𝜇0𝐽linear, passing through 𝑆𝐿.
Hence, concisely, we can write the following alternative forms(𝐵⃗2 − 𝐵⃗1) × 𝑒̂ = 𝜇0𝐽⃗linear, passing through𝑆 (2.42a)𝐵2∥ − 𝐵1∥ = 𝜇0𝐽linear, passing through𝑆 (2.42b)

If 𝐽linear, passing through 𝑆 = 0 ⇒ 𝐵2∥ = 𝐵1∥. 𝐵1∥, 𝐵2∥ are algebraic values. We denoted |𝐿⃗1| = |𝐿⃗2| = |𝐿⃗| =𝐿. The units of 𝐽linear, passing through𝑆 are A/m. Thus, in Eq. 2.42a or 2.42b the units are T = (N/A2)(A/m).

2.6 Existence of EM waves in the absence of charge density and charge current.

Let’s see how the Maxwell’s equations are transformed when 𝜌 = 0, 𝐽⃗ = 0⃗.∇⃗ ⋅ 𝐸⃗ = 𝜌𝜀0 (1st)∇⃗ ⋅ 𝐵⃗ = 0 (2nd)∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 (3rd)
∇⃗ × 𝐵⃗ = 𝜇0𝐽⃗ + 𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 (4th)

ЄЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃІ
𝜌=0⟹⃗𝐽=0⃗

∇⃗ ⋅ 𝐸⃗ = 0 (1st′)∇⃗ ⋅ 𝐵⃗ = 0 (2nd′)∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 (3rd′)
∇⃗ × 𝐵⃗ = 𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 (4th′)

(2.43)
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We will now use the identity ∇⃗ × (∇⃗ × Δ⃗) = ∇⃗ (∇⃗ ⋅ Δ⃗) − ∇2Δ⃗, (2.44)

where∇2 is the Laplacian, for 𝐸⃗ and for 𝐵⃗.• For 𝐸⃗:
∇⃗ × (∇⃗ × 𝐸⃗) = ∇⃗ (∇⃗ ⋅ 𝐸⃗) − ∇2𝐸⃗ (1st′)⟹(3rd′) (2.45)

∇⃗ × 􏿵 − 𝜕𝐵⃗𝜕𝑡 􏿸 = −∇2𝐸⃗ ⇒ (2.46)

− 𝜕𝜕𝑡(∇⃗ × 𝐵⃗) = −∇2𝐸⃗ (4th′)⟹ (2.47)𝜕𝜕𝑡􏿵𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 􏿸 = ∇2𝐸⃗ ⇒ (2.48)

wave equation

ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

∇2𝐸⃗ = 𝜀0𝜇0𝜕2𝐸⃗𝜕𝑡2 , 𝜐𝜙 = 1√𝜀0𝜇0 = 𝑐 ⇒
∇2𝐸⃗ = 1𝑐2 𝜕2𝐸⃗𝜕𝑡2 or

􏿯∇2 − 1𝑐2 𝜕2𝜕𝑡2 􏿲𝐸⃗ = 0⃗ or

!𝐸⃗ = 0⃗ where ! is the so-called D’ Alembertian.
(2.49)

• For 𝐵⃗:
∇⃗ × (∇⃗ × 𝐵⃗) = ∇⃗ (∇⃗ ⋅ 𝐵⃗) − ∇2𝐵⃗ (2nd′)⟹(4th′) (2.50)

∇⃗ × 􏿵𝜀0𝜇0𝜕𝐸⃗𝜕𝑡 􏿸 = −∇2𝐵⃗ ⇒ (2.51)

𝜀0𝜇0 𝜕𝜕𝑡(∇⃗ × 𝐸⃗) = −∇2𝐵⃗ (3rd′)⟹ (2.52)

𝜀0𝜇0 𝜕𝜕𝑡􏿵 − 𝜕𝐵⃗𝜕𝑡 􏿸 = −∇2𝐵⃗ ⇒ (2.53)

wave equation

ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

∇2𝐵⃗ = 𝜀0𝜇0𝜕2𝐵⃗𝜕𝑡2 , 𝜐𝜙 = 1√𝜀0𝜇0 = 𝑐 ⇒
∇2𝐵⃗ = 1𝑐2 𝜕2𝐵⃗𝜕𝑡2 or

􏿯∇2 − 1𝑐2 𝜕2𝜕𝑡2 􏿲𝐵⃗ = 0⃗ or

!𝐵⃗ = 0⃗ where ! is the so-called 𝐷′𝐴𝑙𝑒𝑚𝑏𝑒𝑟𝑡𝑖𝑎𝑛.
(2.54)
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2.7 Fields inside an ideal conductor.

Agood conductor is amaterial that reflectsmost of the energy of an EMwave that impinges on it [14].We
define as an ideal conductor a material that reflects all the energy of an EMwave that impinges on it [14].
Since the energy density of an EM wave is

𝑈 = 𝜀02 𝐸2 + 12𝜇0𝐵2 = 𝜀02 􏿯𝐸2 + 𝑐2𝐵2􏿲, (2.55)

with units [𝑈] = J
m3 , it follows that

inside an ideal conductor, 𝐸⃗ = 0⃗ and 𝐵⃗ = 0⃗ (2.56)

2.8 Fields at the boundary of an ideal conductor.

Let us remember the boundary conditions at an interface between twomaterials and further assume that
materal (1) is an ideal conductor while material (2) is vacuum or, in approximation, air.

𝐸1⟂ − 𝐸2⟂ = 𝜎𝜀0 GBC𝐵1⟂ = 𝐵2⟂𝐸1∥ = 𝐸2∥𝐵2∥ − 𝐵1∥ = 𝜇0 𝐽linearpassing through𝑆􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
units [𝐴/𝑚]

ЄЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃІ
⟹ (2.57)

if

material (1) is an ideal conductor (𝐵⃗1 = 0⃗ and 𝐸⃗1 = 0⃗)
material (2) is vacuum or air

ЄЃЃЃЅЃЃЃІ⟹ (2.58)

−𝐸2⟂ = 𝜎𝜀0 SBC𝐵2⟂ = 0𝐸2∥ = 0𝐵2∥ = 𝜇0 𝐽linearpassing through𝑆

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
(2.59)

GBC stands for general boundary conditions and SBC means specific boundary conditions. Also, let us
denote SBC* the subset of boundary conditions we will use more often.𝐵2⟂ = 0 SBC*𝐸2∥ = 0

ЄЃЃЅЃЃІ (2.60)

2.9 Fields inside cavities.

We learned above that the largest fraction of the energy of an EM wave that impinges on the surface of
a good conductor is reflected; actually, if the conductor is ideal, then all the energy is reflected. Hence,
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Figure 2.10: On the surface of an ideal conductor, the component of 𝐵⃗ that is perpendicular to its surface
and the component of 𝐸⃗ that is parallel to its surface vanish, so the fields can only have some of the orien-
tations presented in this figure.

we can store EM energy in the form of standing waves inside a cavity with walls made of an ideal (or, in
approximation, good) conductor.

We also saw the SBC and focused on the SBC*𝐵2⟂ = 0𝐸2∥ = 0,
i.e., for an ideal conductor, the component of 𝐵⃗ that is perpendicular to its surface and the component of 𝐸⃗
that is parallel to its surface vanish, as shown in Figure 2.10.Thus, the possible patterns and frequencies of
the standing waves that are preserved inside a cavity are determined by the shape of that cavity. Schemat-
ically,

(normal) modes

ЀЃЃЃЁЃЃЃЂpatternsand
frequencies

2.10 Normal EM modes inside rectangular parallelepiped cavity.

Let us assume a rectangular parallelepiped cavity such as the one shown in Figure 2.11.

Inside the cavity 𝜌 = 0, 𝐽⃗ = 0⃗ ⋯⟹
∇2𝐸⃗ = 1𝑐2 𝜕2𝐸⃗𝜕𝑡2 WEE (2.61)

and

∇2𝐵⃗ = 1𝑐2 𝜕2𝐵⃗𝜕𝑡2 WEB (2.62)

WEE means wave equation for 𝐸⃗ and WEB means wave equation for 𝐵⃗. Since the walls of the cavity are
perfectly (ideally) conducting, in each one of its faces, the perpendicular component of themagnetic field
and the parallel component of the electric field must vanish (conditions SBC*), i.e.,𝐵⟂ = 0 (2.63a)𝐸∥ = 0 (2.63b)
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Figure2.11: A rectangular parallelepipedcavitywithperfectly (ideally) conductingwalls. Inside the cavity
there is vacuum or, in approximation, air. To make a clear picture, only the lower (𝑥 = 0) and upper
(𝑥 = 𝑎𝑥) faces have been colored, but all six faces are made of perfectly (ideally) conducting walls.

✿✿✿✿✿
Plane

✿✿✿✿✿✿
waves

✿✿
in

✿✿✿✿
free

✿✿✿✿✿
space

✿✿✿
do

✿✿✿
not

✿✿✿✿✿✿
satisfy

✿✿✿✿✿✿
these

✿✿✿✿✿✿✿✿✿
boundary

✿✿✿✿✿✿✿✿✿✿
conditions.We can, however, search for solutions

by separating the variables 𝑟⃗, 𝑡, i.e., of the form

𝐸⃗(𝑥, 𝑦, 𝑧, 𝑡) = space𝐸⃗𝑟⃗(𝑥, 𝑦, 𝑧) time𝑒−𝚤𝜔𝑡 (2.64)

Due to Eq. 2.64, the WEE becomes

✟✟✟𝑒−𝑖𝜔𝑡∇2𝐸⃗𝑟⃗ = 1𝑐2 (−𝑖𝜔)2✟✟✟𝑒−𝑖𝜔𝑡𝐸⃗𝑟⃗ ⇒
∇2𝐸⃗𝑟⃗ + 𝜔2𝑐2 𝐸⃗𝑟⃗ = 0⃗ (2.65)

Then, we separate the variables 𝑥, 𝑦, 𝑧, of 𝑟⃗. After several calculations [14] that will be omitted here, we
have: 𝐸𝑥 = 𝐸𝑥0 cos(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑦 = 0 and 𝑧 = 0 (2.66)𝐸𝑦 = 𝐸𝑦0 sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑥 = 0 and 𝑧 = 0 (2.67)𝐸𝑧 = 𝐸𝑧0 sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑥 = 0 and 𝑦 = 0 (2.68)

where

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 = 𝜔2𝑐2 (2.69)

In Figure 2.11, the lower and upper faces (where 𝑥 = 0 and 𝑥 = 𝑎𝑥, respectively) have been colored, but
all six faces are made of perfectly (ideally) conducting walls. As it is evident from Eqs. 2.66, 2.67, 2.68,
in the lower face, the electric field has only 𝑥-component, i.e., it is perpendicular to this face. Similarly,
the electric field has only 𝑦-component in the back face and only 𝑧-component in the left face; it is thus
perpendicular to these faces. In the same manner, the electric field, must have only 𝑥-component in the
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upper face, 𝑦-component in the front face, and 𝑧-component in the right face, i.e., itmust be perpendicular
to these faces, as well.
Since 𝐸𝑥 must vanish for both 𝑦 = 𝑎𝑦 and 𝑧 = 𝑎𝑧 ⇒

sin􏿴𝑘𝑦𝑎𝑦􏿷 = 0 ⇒ 𝑘𝑦𝑎𝑦 = 𝑚𝑦𝜋
sin(𝑘𝑧𝑎𝑧) = 0 ⇒ 𝑘𝑧𝑎𝑧 = 𝑚𝑧𝜋

Since 𝐸𝑦 must vanish for both 𝑥 = 𝑎𝑥 and 𝑧 = 𝑎𝑧 ⇒
sin(𝑘𝑥𝑎𝑥) = 0 ⇒ 𝑘𝑥𝑎𝑥 = 𝑚𝑥𝜋
sin(𝑘𝑧𝑎𝑧) = 0 ⇒ 𝑘𝑧𝑎𝑧 = 𝑚𝑧𝜋

Since 𝐸𝑧 must vanish for both 𝑥 = 𝑎𝑥 and 𝑦 = 𝑎𝑦 ⇒
sin(𝑘𝑥𝑎𝑥) = 0 ⇒ 𝑘𝑥𝑎𝑥 = 𝑚𝑥𝜋
sin􏿴𝑘𝑦𝑎𝑦􏿷 = 0 ⇒ 𝑘𝑦𝑎𝑦 = 𝑚𝑦𝜋

Concisely, in the upper and lower faces the electric field has only 𝑥-component, i.e., it is perpendicular to
these faces, in the back and front faces the electric field has only 𝑦-component, i.e., it is perpendicular to
these faces, and in the left and right faces the electric field has only 𝑧-component, i.e., it is perpendicular
to these faces.

Additionally, it occurs that

𝑘𝑥 = 𝑚𝑥𝜋𝑎𝑥 , 𝑘𝑦 = 𝑚𝑦𝜋𝑎𝑦 , 𝑘𝑧 = 𝑚𝑧𝜋𝑎𝑧 , (2.70)

where𝑚𝑥,𝑚𝑦,𝑚𝑧 ∈ ℤ.
Furthermore, from the (1st′) Maxwell’s equation, ∇⃗ ⋅ 𝐸⃗ = 0 ⇒𝑘𝑥𝐸𝑥0 + 𝑘𝑦𝐸𝑦0 + 𝑘𝑧𝐸𝑧0 = 0, (2.71)

while, from the (3rd′) Maxwell’s equation, ∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 ⇒
𝐵𝑥 = 𝑖𝜔 􏿵𝐸𝑦0𝑘𝑧 − 𝐸𝑧0𝑘𝑦􏿸 sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 (2.72)

𝐵𝑦 = 𝑖𝜔 􏿵𝐸𝑧0𝑘𝑥 − 𝐸𝑥0𝑘𝑧􏿸 cos(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 (2.73)

𝐵𝑧 = 𝑖𝜔 􏿵𝐸𝑥0𝑘𝑦 − 𝐸𝑦0𝑘𝑥􏿸 cos(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 (2.74)

Checking whether 𝐵⃗ satisfies the SBC* on the walls as well as the (2nd′), ∇⃗ ⋅ 𝐵⃗ = 0, and (4th′), ∇⃗ × 𝐵⃗ =𝜀0𝜇0𝜕𝐸⃗𝜕𝑡 , Maxwell’s equations is left for the reader.
From Eqs. 2.69 and 2.70 we can write

𝜔𝑚𝑥,𝑚𝑦,𝑚𝑧 = 𝑐√􏿵𝑚𝑥𝜋𝑎𝑥 􏿸2 + 􏿵𝑚𝑦𝜋𝑎𝑦 􏿸2 + 􏿵𝑚𝑧𝜋𝑎𝑧 􏿸2. (2.75)
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For a rectangular parallelepiped cavity,

𝜔𝑚𝑥,𝑚𝑦,𝑚𝑧 = 𝜋𝑐√􏿵𝑚𝑥𝑎𝑥 􏿸2 + 􏿵𝑚𝑦𝑎𝑦 􏿸2 + 􏿵𝑚𝑧𝑎𝑧 􏿸2, (2.76)

for a tetragonal parallelepiped cavity (𝑎𝑥 = 𝑎𝑦 = 𝑎′),
𝜔𝑚𝑥,𝑚𝑦,𝑚𝑧 = 𝜋𝑐√𝑚2𝑥 + 𝑚2𝑦𝑎′2 + 𝑚2𝑧𝑎𝑧 2, (2.77)

and, for a cubic cavity (𝑎𝑥 = 𝑎𝑦 = 𝑎𝑧 = 𝑎),𝜔𝑚𝑥,𝑚𝑦,𝑚𝑧 = 𝜋𝑐𝑎 √𝑚2𝑥 + 𝑚2𝑦 + 𝑚2𝑧. (2.78)

Table 2.2: The values of 𝑎𝜔/𝜋𝑐 occurring from Eq. 2.78 in the case of cubic cavity, for several values of the
natural numbers𝑚𝑥,𝑚𝑦,𝑚𝑧. Whether zero electric and magnetic field occurs from Eqs. 2.66, 2.67, 2.68
and 2.72, 2.73, 2.74, respectively, is also noted, in column “amplitude”.𝑚𝑥 𝑚𝑦 𝑚𝑧 𝑎𝜔/𝜋𝑐 “amplitude”

0 0 0 0 0
0 0 1 1 0
0 1 1 √2 ≠ 0
1 1 1 √3 ≠ 0
2 0 0 2 0
2 1 0 √5 ≠ 0

Wecanalso choose𝑚𝑥,𝑚𝑦,𝑚𝑧 ∈ ℕ (natural numbers) thus absorbing the signchange in𝐸𝑥0, 𝐸𝑦0, 𝐸𝑧0,
i.e., allowing𝐸𝑥0, 𝐸𝑦0, 𝐸𝑧0 to take positive or negative values such that they agree with the boundary con-
ditions. In Table 2.2 we present some 𝑎𝜔𝜋𝑐 occurring from Eq. 2.78 for the cubic cavity for several values
of𝑚𝑥,𝑚𝑦,𝑚𝑧. Whether zero electric and magnetic field occurs from Eqs. 2.66, 2.67, 2.68 and 2.72, 2.73,
2.74, respectively, is also noted, in column “amplitude”.

2.11 Infinitesimal number of EM field normal modes per infinitesimal frequency interval.

Below, we will prove that 𝑔(𝜈) = 𝑑𝑁𝑑𝜈 = 8𝜋𝜈2𝑉𝑐3 (2.79)

where 𝑑𝑁 is the infinitesimal number of modes in an infinitesimal frequency interval 𝑑𝜈 and 𝑉 is the
volume of the cavity, which is a 3D box. In other words, we are interested in the quantity

𝑔(𝜈) = 𝑑𝑁𝑑𝜈 = 𝑑(number of normal modes)𝑑(frequency)[𝑔(𝜈)] = 1
Hz

Theproof will be provided for periodic boundary conditions and for the rectangular parallelepiped cavity
of the previous Section 2.10.



34 THE QUANTUM NATURE OF LIGHT

2.11.1 1st case: Periodic boundary conditions.

Let us suppose that the electric field is subject to periodic boundary conditions, i.e., that

𝐸⃗(⃗𝑟, 𝑡) = 𝐸⃗0𝑒𝑖(⃗𝑘⋅⃗𝑟−𝜔𝑡+𝜙)𝐸⃗(0, 𝑡) = 𝐸⃗0𝑒𝑖(−𝜔𝑡+𝜙)𝐸⃗((𝑎𝑥, 0, 0), 𝑡) = 𝐸⃗0𝑒𝑖(𝑘𝑥𝑎𝑥−𝜔𝑡+𝜙)
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑒𝚤𝑘𝑥𝑎𝑥 = 1 ⇔ 𝑘𝑥𝑎𝑥 = 2𝜋𝑛𝑥, 𝑛𝑥 ∈ ℤ

Thus 𝑘𝑥 = 2𝜋𝑛𝑥𝑎𝑥 , 𝑛𝑥 ∈ ℤ
similarly, 𝑘𝑦 = 2𝜋𝑛𝑦𝑎𝑦 , 𝑛𝑦 ∈ ℤ

𝑘𝑧 = 2𝜋𝑛𝑧𝑎𝑧 , 𝑛𝑧 ∈ ℤ
(2.80)

As seen in Eq. 2.80, the possible values of 𝑘 are discrete. The step defining the discreteness in 𝑘-space isΔ𝑘𝑥 = 2𝜋𝑎𝑥 in the 𝑥-axis,Δ𝑘𝑦 = 2𝜋𝑎𝑦 in the 𝑦-axis, andΔ𝑘𝑧 = 2𝜋𝑎𝑧 in the 𝑧-axis. These points in 𝑘-space are
drawn inFigure2.12.Note that inFigure2.12onlyoneoctantof the𝑘-space is shown;however,𝑘 covers all
eight octants, i.e., the whole 𝑘-space. FromEq. 2.80 it occurs that the infinitesimal 𝑘-volume is 8𝜋3𝑉 , where

Figure 2.12: The possible values of 𝑘 are discrete and the infinitesimal 𝑘-volume is 8𝜋3𝑉 , where 𝑉 is the
volume of the cavity (Eq.2.80). In each of the 8 vertices of this infinitesimal volume lies one 𝑘-state which
belongs to it by 1/8, since it is shared by 8 similar adjoining infinitesimal rectangular parallelepipeds.𝑉 is the volume of the cavity. In each of the 8 vertices of this infinitesimal volume lies one 𝑘-state which
belongs to it by 1/8, since it is shared by 8 similar adjoining infinitesimal rectangular parallelepipeds. Let
us also consider the infinitesimal volume from 𝑘 to 𝑘+ 𝑑𝑘, i.e. the spherical shell of radius 𝑘 and thickness𝑑𝑘, which is equal to 4𝜋𝑘2𝑑𝑘, and denote by 𝑑𝑁𝑘 the number of 𝑘-states inside this spherical shell. Hence,

in 𝑘-space (2𝜋)3𝑎𝑥𝑎𝑦𝑎𝑧 = 8𝜋3𝑉 ∃ 818 = 1 𝑘-state
in 𝑘-space 𝑘 → 𝑘 + 𝑑𝑘 i.e. 4𝜋𝑘2𝑑𝑘 ∃ 𝑑𝑁𝑘 𝑘-states

ЄЃЃЃЅЃЃЃІ ⇒
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𝑑𝑁𝑘 = 4𝜋𝑘2𝑑𝑘𝑉8𝜋3 = 12𝜋2 𝑘2𝑑𝑘𝑉𝑐 = 𝜆𝜈 = 2𝜋𝑘 𝜈 ⇒ 𝑘 = 2𝜋𝑐 𝜈 ⇒ 𝑑𝑘 = 2𝜋𝑐 𝑑𝜈
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑑𝑁𝜈 = 12𝜋2 4𝜋2𝜈22𝜋𝑑𝜈𝑉𝑐2 𝑐 = 4𝜋𝑉𝑐3 𝜈2𝑑𝜈

However, there are two possible polarizations of the electric field perpendicular to 𝑘⃗, as shown in Figure
2.13. Therefore, the number of states is 𝑑𝑁 = 8𝜋𝑉𝑐3 𝜈2𝑑𝜈, (2.81)

hence, 𝑔(𝜈) = 𝑑𝑁𝑑𝜈 = 8𝜋𝜈2𝑉𝑐3 ,
which is Eq. 2.79 that was to be proven.

Figure 2.13: There are two possible polarizations of the electric field perpendicular to 𝑘⃗.
2.11.2 2nd case: Rectangular parallelepiped cavity.

From Eq. 2.66, if we suppose that, for symmetry reasons, the electric field should point towards the same
side of the upper and lower faces of the rectangular parallelepiped, i.e., if 𝐸𝑥(𝑥 = 0) = −𝐸𝑥(𝑥 = 𝑎𝑥), it
is implied that 1 = − cos(𝑘𝑥𝑎𝑥) ⇒ cos(𝑘𝑥𝑎𝑥) = −1 ⇒ 𝑘𝑥 = (2𝑚𝑥+1)𝜋𝑎𝑥 , 𝑚𝑥 ∈ ℤ. Thus, the step that

defines the discreteness in 𝑘-space in the 𝑥-axis is Δ𝑘𝑥 = 2𝜋𝑎𝑥 (similar considerations hold also for the 𝑦-
and 𝑧-axes.). Hence, the infinitesimal 𝑘-volume is 8𝜋3𝑉 , where𝑉 is the volume of the cavity. Hence, just as
in the previous Subsection 2.11.1, Eq. 2.79, which was to be proven, occurs.

2.12 Proof of the classical Rayleigh-Jeans law using the equipartition theorem and the infinitesimal
number of EM field normal modes per infinitesimal frequency interval.

As shown below,𝜌(𝜈, 𝑇) is the energy density per unit volume per unit frequency, while 𝑔(𝜈)𝑉 is the density

of normal modes per unit volume per unit frequency. Hence, for a given 𝑔(𝜈)𝑉 , we have tomultiply it by the
average energy of each normal mode, 𝐸̄ to obtain 𝜌(𝜈, 𝑇).

𝑔(𝜈) = 𝑑𝑁𝑑𝜈 = 8𝜋𝜈2𝑉𝑐3 ⇒ [𝑔(𝜈)] = 1
Hz

= s𝑔(𝜈)𝑉 = 8𝜋𝜈2𝑐3 􏿰𝑔(𝜈)𝑉 􏿳 = 1
Hz m3 = s

m3𝜌(𝜈, 𝑇) = 𝐸̄𝑔(𝜈)𝑉 [𝜌(𝜈, 𝑇)] = J
m3Hz

= Js
m3
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According to the classical equipartition theorem [10, 11, 12], in thermal equilibrium, we attribute to each
degree of freedom of the building block of the system the average energy 𝐸(𝑇) = 12𝑘B𝑇. Thus, e.g., in

a system of 𝑁 building blocks, each having 𝑀 degrees of freedom, the energy is 𝑁𝑀2 𝑘B𝑇. The average
energy of each normal mode is 𝐸(𝑇) = 𝑀 × 12𝑘B𝑇. (2.82)

Hence,

in a 3D ideal gas 𝐸̄KIN = 32𝑘B𝑇 ⇒ 𝐸̄ = 32𝑘B𝑇
in a 1D ideal gas 𝐸̄KIN = 12𝑘B𝑇 ⇒ 𝐸̄ = 12𝑘B𝑇
in a 1D simple harmonic oscillator (SHO) 𝐸̄POT = 𝐸̄KIN = 12𝑘B𝑇 ⇒ 𝐸̄ = 𝑘B𝑇𝐸̄POT (𝐸̄KIN) is the average potential (kinetic) energy. Therefore, supposing an ensemble of SHOs with𝐸̄ = 𝑘B𝑇, we conclude that

𝜌(𝜈, 𝑇) = 8𝜋𝜈2𝑐3 𝑘B𝑇 Rayleigh-Jeans law (2.83)

Hence, for 𝜈 → ∞ ⇒ 𝜌(𝜈, 𝑇) → ∞, that is, we have great problem increasing frequency, because this
behaviour contradicts emphatically experimental data: The limit to infinity disagrees with experimental
data, i.e., we have “catastrophic” disagreement with the experiment at higher frequencies. This behaviour
was named in the past “ultraviolet catastrophy” because it was first observed in the ultraviolet regime.This
issue was addressed in Section 2.2. Let us notice that if we did not assume two degrees of freedom so that
to obtain 𝐸̄ = 22𝑘B𝑇 = 𝑘B𝑇 but𝑀 degrees of freedom, then the only thing that would change would

be a constant, because we would obtain 𝐸̄ = 𝑀2 𝑘B𝑇 and we would arrive to 𝜌(𝜈, 𝑇) = 8𝜋𝜈2𝑐3 𝑀2 𝑘B𝑇. The
extremely problematic behavior 𝜈2 that increasing 𝜈 leads to infinite 𝜌(𝜈, 𝑇)would not change at all.

2.13 Proof of the Planck's law the way Planck did it.

We will follow here the assumptions Planck was forced to make in 1900 in order to prove the equation
known today as the “Planck’s law” [15], which agreeswith experimental data on black body radiation.The
problem of black body radiation had been opened at least since 1859 by Kirchhoff. Planck was involved
with the problem of black body radiation from 1894.TheWien’s law, which provides an equation that just
happens to fit the experimental data at high frequencies, was proposed in 1896. The Rayleigh-Jeans law,
which emerges from classical physics, can describe the black body radiation only at very low frequencies,
i.e., it fails miserably, as we have just seen above. Thus, a consistent theoretical explanation covering all
frequencies was missing.

After several failed attempts, Planck proposed in 1900 a proof involving the assumption that EM en-
ergy can only be a discrete, “quantized”,multiple of the quantity ℎ𝜈, where ℎ is what we now call “the
Planck’s constant” and 𝜈 is the radiation frequency. Furthermore, he utilized the statistical Boltzmann dis-
tribution. Hewas definitely not happy with these assumptions; however they were imposed to him by the
need to explain the experimental data. Soon, in 1905, Einstein [16] explained the photoelectric effect by
assuming that such quanta of light exist.The term “photon” was written for the first time in 1926 by G. N.
Lewis [17].

Planck was essentially forced to introduce the notion of the resonator, which has discrete, that is, not
continuousbutdependingonanatural number,𝑛, in otherwords, “quantized”, allowedvaluesof its energy,
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𝐸𝑛, for a given frequency, 𝜈. Then he had to assume that the energy corresponding to a given frequency,𝜈, and temperature, 𝑇, is in reality an average value, 𝐸(𝜈, 𝑇), of the energies of a large number of identical
resonators, each of which is at a different energy level, 𝐸𝑛, while the occupation probability of the levels,𝑝𝑛, is given by Boltzmann statistics.

So, we will assume that the EM energy of a resonator with frequency 𝜈 inside a black body cavity can
only take discrete values, i.e., it is “quantized” and, actually, that it takes the form𝐸𝑛 = ℎ𝜈𝑛, 𝑛 = 0, 1, 2, 3, … (2.84)

We underline that if, instead of this relation, we set 𝐸𝑛 = ℎ𝜈(𝑛 + 12), as we know today for the quantum
simple harmonic oscillator, we do not obtain the Planck’s law... We notice that classically, according to
the equipartition theorem, in thermal equilibrium we attribute an average energy 𝐸(𝑇) = 12𝑘B𝑇 to each
degree of freedom of the building block of the system. Hence, e.g., in a system with 𝑁 building blocks,
each having𝑀degrees of freedom, the energy is 𝑁𝑀2 𝑘B𝑇. In contrast, herewewill assume that the average
energy of a normal mode depends not only on temperature, but also on frequency𝐸(𝜈, 𝑇) = 􏾜𝑛 𝐸𝑛𝑝𝑛 (2.85)

and that the probability that the building block has energy 𝐸𝑛 is 𝑝𝑛, given by Boltzmann statistics, i.e.,

𝑝𝑛 = 𝑒−𝐸𝑛𝑘B𝑇𝑍 , (2.86)

𝑍 =􏾜𝑛 𝑒−𝐸𝑛𝑘B𝑇 . (2.87)

𝑍 is called “the partition function”. Let us define

𝑥 ∶= ℎ𝜈𝑘B𝑇 . (2.88)

From Eqs. 2.84, 2.85, 2.86, 2.87, 2.88, it follows that

𝐸(𝜈, 𝑇) = 􏾜𝑛 𝑛𝑥𝑘B𝑇 𝑒−𝑛𝑥𝑍 = 𝑘B𝑇𝑥𝑍 􏾜𝑛 𝑛𝑒−𝑛𝑥􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍𝒜
, (2.89)

𝑍 =􏾜𝑛 𝑒−𝑛𝑥 = 11 − 𝑒−𝑥 , (2.90)

since we have an infinite sum of terms of the geometric progression 𝑎𝑛 = 𝑒−𝑛𝑥 with initial value 𝑎0 =𝑒−0𝑥 = 1 and ratio ϡ= 𝑎𝑛+1𝑎𝑛 = 𝑒−𝑥 < 1. [Here, we used the archaic Greek letter sampi (“san pi”, which
means “like a𝜋”).] Let us now also try to express𝒜 as a function of 𝑥. From Eq. 2.90 it occurs that𝜕𝑍𝜕𝑥 = −􏾜𝑛 𝑛𝑒−𝑛𝑥 = − 𝑒−𝑥(1 − 𝑒−𝑥)2 ⇒ (2.91)

𝒜 = 𝑒−𝑥(1 − 𝑒−𝑥)2 . (2.92)
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Consequently, from Eqs. 2.89, 2.90, 2.92 we obtain

𝐸(𝜈, 𝑇) = 𝑘B𝑇𝑥 𝑒−𝑥1 − 𝑒−𝑥 = 𝑘B𝑇𝑥 1𝑒𝑥 − 1. (2.93)

And, if we remember how 𝑥was defined (Eq. 2.88), we arrive at

𝐸(𝜈, 𝑇) = ℎ𝜈𝑒 ℎ𝜈𝑘B𝑇 − 1. (2.94)

In analogy with what we did in Section 2.12,

𝑔(𝜈) = 𝑑𝑁𝑑𝜈 = 8𝜋𝜈2𝑉𝑐3 ⇒ [𝑔(𝜈)] = 1
Hz

= s𝑔(𝜈)𝑉 = 8𝜋𝜈2𝑐3 􏿰𝑔(𝜈)𝑉 􏿳 = 1
Hz m3 = s

m3𝜌(𝜈, 𝑇) = 𝐸(𝜈, 𝑇)𝑔(𝜈)𝑉 [𝜌(𝜈, 𝑇)] = J
m3Hz

= Js
m3

Now𝐸(𝜈, 𝑇) depends not only on temperature𝑇 but also on frequency 𝜈. Actually, it is given by Eq. 2.94,
therefore, 𝜌(𝜈, 𝑇) = ℎ𝜈𝑒 ℎ𝜈𝑘B𝑇 − 1 8𝜋𝜈

2𝑐3 . (2.95)

Consequently, the energy density per unit frequency of the EM radiation of a black body in thermody-
namic equilibrium, 𝜌(𝜈, 𝑇), with units J

m3Hz
, is

𝜌(𝜈, 𝑇) = 8𝜋ℎ𝑐3 𝜈3𝑒 ℎ𝜈𝑘B𝑇 − 1 (2.96)

In other words, we have obtained the Planck’s law (Eq. 2.7).

2.14 Proof of the Wien's displacement law.

For Planck’s law in the form 𝜌(𝜈, 𝑇), proven above, we will find the –as a function of temperature– fre-
quency,𝜈0(𝑇), wherewehavemaximumof𝜌(𝜈, 𝑇), i.e., Eq. 2.98. Let us remember the formof thePlanck’s
law after the change of variables (Eq. 2.8), i.e., after we have set

𝑥 = ℎ𝜈𝑘B𝑇 ⇒ 𝜈 = 𝑘B𝑇ℎ 𝑥 ⇒ 𝑑𝜈 = 𝑘B𝑇ℎ 𝑑𝑥.
Then, Eq. 2.12 occurs, 𝜌 = 𝜌0 𝑥3𝑒𝑥 − 1,
where, according to Eq. 2.13, 𝜌0 = 8𝜋ℎ2 􏿶𝑘B𝑇𝑐 􏿹3
with units [𝜌0] = Js

m3 = J
m3Hz

.
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Of course,𝑥 = 0does not belong to the domain of the function𝜌(𝑥), i.e., we donot refer to zero frequency
of infinite temperature. Therefore,𝑑𝜌𝑑𝑥 = 𝜌03𝑥2(𝑒𝑥 − 1) − 𝑥3𝑒𝑥(𝑒𝑥 − 1)2 = 𝜌0𝑥2 3(𝑒𝑥 − 1) − 𝑥𝑒𝑥(𝑒𝑥 − 1)2 . (2.97)

Since we are looking for extrema, the derivative 𝑑𝜌𝑑𝑥 should become zero, thus,𝑑𝜌𝑑𝑥 = 0 ⇒ 3(𝑒𝑥 − 1) − 𝑥𝑒𝑥 = 0 ⇒ (since 𝑥 ≠ 0) 𝑥0 ∼ 3.𝑥0 is the desired root and 𝜈0 the respective frequency, i.e. 𝑥0 = ℎ𝜈0𝑘B𝑇 . More precisely, a graphical or numer-
ical solution gives 𝑥0 ≈ 2.821439. The graphical solution is presented in Figure 2.14. Finally,𝜈0 = 𝑘B𝑇𝑥0ℎ ≈ 𝑘B𝑇 2.821439ℎ ≈ (58.789 GHz/K) 𝑇 ⇒𝜈0𝑇 ≈ 58.789 GHz/K (2.98)

Eq. 2.98 shows how the frequency at which we have amaximum of 𝜌(𝜈, 𝑇) is shifted as a function of tem-
perature 𝑇, it is thus a “displacement law”, although it is expressed in terms of frequency and not wave-
length, as the usual “Wien’s displacement law”, of Eq. 2.101, which is proven below.

Figure 2.14: Graphical solution of equation 3(𝑒𝑥 − 1) − 𝑥𝑒𝑥 = 0. The first root is 𝑥0 = 0, which does not
belong to the domain of 𝜌(𝑥). The other root is 𝑥0 ≈ 2.821439.

Next, using Planck’s law as a function of wavelength, 𝜌(𝜆, 𝑇), in the form of Eq. 2.21, we will find the
–as a function of temperature– wavelength,𝜆0(𝑇), where we have maximum of 𝜌(𝜆, 𝑇), that is Eq. 2.101
below. Taking the derivative of Eq. 2.21, we obtain𝑑𝜌𝑑𝜓 = 𝜌′0 5𝜓4(𝑒𝜓 − 1) − 𝜓5𝑒𝜓(𝑒𝜓 − 1)2 = 𝜌′0𝜓4 5(𝑒𝜓 − 1) − 𝜓𝑒𝜓(𝑒𝜓 − 1)2 . (2.99)

Since we are looking for extrema, the derivative 𝑑𝜌𝑑𝜓 should become zero, thus,𝑑𝜌𝑑𝜓 = 0 ⇒ 5(𝑒𝜓 − 1) − 𝜓𝑒𝜓 = 0 ⇒ (since 𝜓 ≠ 0) 𝜓0 ∼ 5.
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𝜓0 is the desired root and 𝜆0 the respective wavelength, i.e. 𝜓0 = ℎ𝑐𝜆0𝑘B𝑇 . More precisely, a graphical
solution gives𝜓0 ≈ 4.965114. The graphical solution is presented in Figure 2.15. Finally,𝜆0 = ℎ𝑐𝜓0𝑘B𝑇 ≈ ℎ𝑐4.965114𝑘B𝑇 ⇒ (2.100)

𝜆0𝑇 ≈ 2.897772 × 10−3 m K (2.101)

Figure 2.15: Graphical solution of equation 5(𝑒𝜓 − 1) − 𝜓𝑒𝜓 = 0. The first root is 𝜓0 = 0, which does
not belong to the domain of 𝜌(𝜓). The other root is𝜓0 ≈ 4.965114.

Eq. 2.98 shows how the wavelength at which there is maximum of 𝜌(𝜆, 𝑇) is shifted as a function of
temperature 𝑇, it is thus a “displacement law”, the so-called “Wien’s displacement law”. This is the “con-
temporary form” of Wien’s displacement law; it was derived by W. Wien in 1893 with the phraseology
that the black body radiation for different temperatures peaks at a wavelength inversely proportional to
its temperature, i.e.: 𝜆0𝑇 = constant (2.102)
This behavior, although it can be derived by Planck’s law, as shown above, leading to Eq. 2.101, it was
discovered by W. Wien some years before Planck’s proof of his law (Eq. 2.12 ή Eq. 2.18). Planck’s law in
the form 𝜌(𝜆, 𝑇) for 𝑇 = 1595 Κ as well as 𝜆0 of Wien’s displacement law are depicted in Figure 2.16.
We chose this value of 𝑇 with reference to Figure 2 of the historic article by W. W. Coblentz [18], which
contains experimental data and comparison with Planck’s law at this temperature.

Planck’s law for several black body temperatures is depicted in Figure 2.17. We notice a shift of the
spectrum towards smaller wavelengths, as the temperature increases, which is expressed by Wien’s dis-
placement law. For these temperatures, the corresponding 𝜆0, at which there is a peak of 𝜌(𝜆, 𝑇) is also
shown. Furthermore, the visible region of the EM spectrum is depicted, which will be useful in some ex-
ercises on bodies emitting EM radiation, where we assume that they can be approximated by black bodies
of some “effective temperature”. The effective temperature of a body is the temperature of the black body
thatwould emit the same total amount of EM radiation.However, this does notmean that the distribution
of radiation as a function of wavelength or frequency essentially follows Planck’s law. Planck’s law,𝜌(𝜈, 𝑇),
for some black body temperatures is shown in Figure 2.18.We observe the shift of the spectrum to higher
frequencies, as we increase the black body absolute temperature, 𝑇, which is what Wien’s displacement
law expresses. We also observe that generally the whole distribution 𝜌(𝜈, 𝑇) is increased, as we increase
the temperature Τ.
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Figure 2.16: Planck’s law in the form 𝜌(𝜆, 𝑇) for 𝑇 = 1595 Κ as well as 𝜆0 of Wien’s displacement law.
This value of 𝑇 was chosen with reference to Figure 2 of the historic article by W. W. Coblentz [18].

Figure 2.17: [Top] Planck’s law 𝜌(𝜆, 𝑇) for several black body temperatures.We notice a shift of the spec-
trum towards smaller wavelengths, as the temperature increases, which is expressed by Wien’s displace-
ment law. The corresponding 𝜆0, at which there is a peak of 𝜌(𝜆, 𝑇) is also included. We observe that
generally the whole distribution 𝜌(𝜆, 𝑇) is increased, as we increase the temperature, 𝑇. [Bottom] The
visible part of the EM spectrum.
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Figure 2.18: Planck’s law, 𝜌(𝜈, 𝑇), for some characteristic black body temperatures. We observe the shift
of the spectrum to higher frequencies, as the black body absolute temperature 𝑇 is increased, which is
what Wien’s displacement law expresses. We also observe that generally the whole distribution 𝜌(𝜈, 𝑇) is
increased, as we increase the temperature Τ.
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2.15 Photoelectric effect.

Thephotoelectric effect (PEE) is the emission of electrons from amaterial that has absorbed energy from
EM radiation, usually in the visible or ultraviolet regime. It was observed by H. Hertz [19] in 1887, who
showed that it is easier to create electric sparks when ultraviolet light shines on the electrodes. To occur,
the photoelectric effect needs photons with energies of the order of 1 eV to 1MeV (inmaterials with large
atomic number). The study of the photoelectric effect led to the acceptance of the quantum nature of
light and of the wave-particle duality. In 1905, A. Einstein explained the PEE by hypothesizing that light
is composed of discrete packets (“quanta”) instead of continuous waves [16]. Those discrete packets are
now called photons, a term attributed to G. N. Lewis [17] that came to common use much later.

Figure 2.19: A schematic representation of the photoelectric effect.

Einstein used Planck’s theory of black body radiation and assumed that the energy of each photon,𝐸, is proportional to its frequency, 𝜈, with the proportionality constant being what was later named “the
Planck’s constant”, ℎ, i.e., he assumed that 𝐸 = ℎ𝜈. This is how he explained the PEE: a photon with
frequency larger than a threshold value contains the necessary energy to eject a single electron from the
material. For his explanation of the PEE, which lead to the quantum revolution, Einstein was honored
with the 1921 Nobel Prize in Physics. He proposed that, under certain conditions, light is equivalent to a
flow of particles (light quanta, today called photons). He discovered this result by analyzing the thermo-
dynamics of black body radiation in the Wien’s regime. Among the consequences of his proposition was
the explanation of several puzzling characteristics of the photoelectric effect.

So, when visible or UV radiation hits a metallic surface, electrons begin to be ejected, if the frequency
of EM radiation is high enough. For example, when monochromatic light impinges on the cathode of a
discharge tube, current between the anode and the cathode is created, due to the displacement of ejected
electrons from the cathode towards the anode. In the setup of Figure 2.20, the voltage between the an-
ode and the cathode can be either positive or negative. When it is positive, electrons accelerate, thus the
current is increased, while, when it is negative, electrons decelerate, thus the current is decreased. For an
adequately negative voltage, −𝑉0, the current vanishes.𝑉0 is called threshold voltage or potential differ-
ence.

One of the puzzling aspects of the PEEwas that, irrespective of the intensity of the incidentmonochro-
matic radiation, the threshold voltage always remains the same. The existence of a voltage that can stop
electric current implies a maximum kinetic energy that electrons ejected from the cathode can gain. This
maximumkinetic energy is equal to the threshold voltage𝑉0multiplied by the elementary charge, 𝑒.Thus,𝑚𝑒𝑢22 |𝑚𝑎𝑥 = 𝑒𝑉0. (2.103)

In other words, the kinetic energy the electrons obtain when ejected from the metallic surface has a max-
imum value which always remains the same, regardless the intensity of monochromatic EM radiation.
Every metal has a work function𝑊0, which means an electron inside a metal has to obtain energy at least
equal to𝑊0 to be removed. If it obtains exactly𝑊0, then it “goes out”with zero velocity, while, if it obtains
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Figure 2.20: (a)The setup needed to study the energy of electrons emitted during the photoelectric effect
(PEE). (b)The shape of the characteristic current-voltage curve, 𝐼(𝑉), for two different intensities of inci-
dent EM radiation. In case ii, the intensity of EM radiation is larger than in case i. We observe that there is
a voltage, −𝑉0, at which the current, 𝐼, vanishes at both cases, i.e.,𝑉0 does not depend on the intensity of
incident radiation. (c) The relation𝑉0(𝜈). (d) The setup used to demonstrate the frequency dependence
within the PEE.

𝐸 > 𝑊0, it uses the excess amount as kinetic energy. Hence,

𝐸 = 𝑊0 + 𝑚𝑒𝑢22 . (2.104)

So, Einstein [16] hypothesized that light is composed of “packets” or otherwise “particles” or otherwise
“quanta”, each of which carries energy equal to ℎ𝜈.Thus, if we assume that an electron absorbs the energy
of the photon, the previous equation can be written as

ℎ𝜈 = 𝑊0 + 𝑚𝑒𝑢22 . (2.105)

Hence, applying the previous relationship to the maximum kinetic energy, we haveℎ𝜈 = 𝑊0 + 𝑒𝑉0. (2.106)

Therefore, 𝑉0 = ℎ𝑒 𝜈 − 𝑊0𝑒 . (2.107)

Thus, if we plot the threshold voltage, 𝑉0, as a function of frequency, 𝜈, we will obtain a straight line;
see Figure 2.20(c). According to Einstein, the increase of monochromatic EM radiation intensity means
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an increase in the number of electrons with kinetic energy 𝑚𝑒𝑢22 but not an increase in this kinetic energy.
In Figure 2.20(d), the setup used to demonstrate the frequency dependence within the PEE is presented.
The light source is a mercury vapor lamp emitting 5 intense lines from yellow to the UV regime, as seen
in Table 2.3.

Table 2.3: The photoelectric effect using a mercury vapor lamp as a light source.

Emission line Frequency 𝜈 (×1014 Hz) Threshold voltage𝑉0 (V)
ultraviolet 2 8.22 1.807
ultraviolet 1 7.41 1.546
bright blue 6.88 1.359

green 5.49 0.738
yellow 5.19 0.624

This setup ensures the separation of emission lines, and a photoelectric detector counts the energies of
ejected electrons. The results of a typical experiment, plotted in Figure 2.20(c) are shown in Table 2.3.
According to Eq. 2.107, the line’s slope is ℎ𝑒 . So, according to the aforementioned data, we have ℎ𝑒 =(0.400 ± 0.016) × 10−14 Js/C, while, today we know that this ratio is approximately ℎ𝑒 = 0.414 × 10−14
Js/C. The predictions of Einstein’s theory were verified later, with the most important moment being the
experiments by R. Millikan [20, 21]. The second one [21] is far more detailed.
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CHAPTER 3

INTERACTION PROCESSES BETWEEN A PHOTON
AND A TWO-LEVEL SYSTEM

In this Chapter:
We describe the interaction mechanisms or processes between a photon and a two-level system (2LS).
These processes are usually called Einstein mechanisms or processes: spontaneous emission, stimulated
emission, (stimulated) absorption. This way we also introduce the relevant Einstein coefficients A and
B. Of course, from them, only stimulated emission was introduced by Einstein. The other two processes
were already known, but nobody had up to then seen them as an integral whole, if I am not mistaken.
Here the Planck law is proven, with a proof almost identical to that of Einstein himself, with the help of
these processes and the Boltzmann statistics. A comparison between Maxwell-Boltzmann, Fermi-Dirac,
and Bose-Einstein statistics, which is followed by classical particles, fermions, and bosons, respectively,
is included. We also compare spontaneous with stimulated emission as well as the stimulated processes
between them.
Prerequisite knowledge: Basic knowledge of Physics andMathematics as well as a little bit of Statistical
Physics.

3.1 Interaction processes between a photon and a two-level system (2LS). (Stimulated) Absorp-
tion. Spontaneous Emission. Stimulated Emission. Einstein coefficients A and B.

LASER is an acronym that means Light Amplification by Stimulated Emission of Radiation. Einstein set
the theoretical foundations of the LASER in 1916-1917, through a re-derivation, that is a new proof, of
the Planck’s law for black body radiation. His proof was based on the so-called today “Einstein processes
ormechanisms”, which describe the probabilities of (Stimulated)Absorption, SpontaneousEmission and
StimulatedEmission.These are theprocesses involved in the interactionbetweenEMradiation andmatter
or,more precisely, between a photon and a two-level system, e.g., within an atom,molecule, quantumdot,
nonoparticle etc.
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Hence, we will deal with the interaction of EM radiation or, better, light quanta (photons) with a two-
level system, e.g., focusing on two energy levels of an atom, 𝐸1 and 𝐸2 > 𝐸1. We will suppose that this
two-level system has a sole electron. According to Einstein [1, 2], there are three processes that affect this
interaction: Spontaneous Emission, Stimulated Absorption and, finally, Stimulated Emission. The latter
was introduced by Einstein [1, 2]. A process is called “stimulated” when it needs the influence of EM ra-
diation, i.e., of photons, on the 2LS to occur. A process is called “spontaneous” when it does not need the
influence of EM radiation, i.e., of photons, on the 2LS to occur.The word “stimulated” is often omitted in
the term Stimulated Absorption, since it is implied; any absorption is stimulated, needing EM radiation
to happen. Below we will examine in detail what exactly Stimulated Emission and the rest two processes
(i.e., Spontaneous Emission and Stimulated Absorption) are.Themechanisms or processes of interaction
between EM radiation and a two-level system are analyzed in articles [1, 2], which were published dur-
ing 1916-1917. In the same articles, together with the definition of these processes, the derivation of the
Planck’s law using them is included. So, concisely

Stimulated Emission due to 𝜌(𝜈, 𝑇)
Stimulated Absorption due to 𝜌(𝜈, 𝑇)
Spontaneous Emission

A. Einstein had already (1905) explained the photoelectric effect [3] assuming that there exist light
quanta with energy 𝐸 = ℎ𝜈, these would later be termed photons. [Probably the word was introduced in
1926byG.N. Lewis [4].] It is worth noting here that it was only several decades later –mainly in the 1950s
and 1960s– and after international efforts bymany prominent or not physicists that it became possible to
construct the firstMASERs (“M” stands forMicrowaves) andLASERs. In 1964,CharlesTownes,Nikolay
Basov and Aleksandr Prokhorov shared the Nobel Prize in Physics “for (their) fundamental work in the
field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the
maser-laser principle”.

We will suppose that we are inside a black body in thermodynamic equilibrium. The mechanisms or
processes of interaction between photons and a two-level system are explained below. As it will become
clear later, for the so-called Einstein coefficients𝐴21, 𝐵12, 𝐵21 we use𝐴 for the spontaneous process and𝐵 for the stimulated processes.

In Sections 3.1.1, 3.1.2, 3.1.3, as an example of a two-level system, we focus on two energy levels, 𝐸1
and 𝐸2, of an atom.

3.1.1 (Stimulated) Absorption.

The Stimulated Absorption of a photon with energy 𝐸ph and momentum 𝑝ph, between two energy levels𝐸1 and𝐸2 of an atomwhere we focus on, is illustrated in Figure 3.1. Let us suppose that initially the atom
is motionless. Additionally, let us assume that the probability, 𝑑𝑊st

ab, that the atom absorbs a photon in
time 𝑑𝑡 is given by 𝑑𝑊st

ab = 𝐵12𝜌(𝜈, 𝑇)𝑑𝑡 (3.1)

i.e., it is proportional to the time interval 𝑑𝑡 and the EM energy density in an infinitesimal frequency in-
terval,𝜌(𝜈, 𝑇), with a constant of proportionality𝐵12, where the index 12means that after the absorption
the electron will jump from level 1 to level 2.

We apply the laws of Conservation of Energy and Momentum.

Conservation of Energy 𝐸1 + ℎ𝜈 = 𝐸2 +
✓
✓
✓✓✼

supposedly negligible𝑝2at2𝑚at
⇒ 𝐸2 − 𝐸1 = ℎ𝜈

Conservation of Momentum 𝑝ph = 𝑝at ⇒ 𝑝at = ℎ𝜈𝑐 = ℎ𝑐𝜆𝑐 = ℎ𝜆 = ℎ2𝜋2𝜋𝜆 = ℏ𝑘 ⇒ 𝑝at = ℎ𝜆 = ℏ𝑘
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Figure 3.1: Stimulated Absorption of a photon with energy 𝐸ph and momentum 𝑝ph, accompanied with
an electron transfer between two energy levels 𝐸1 and 𝐸2 of an atom.

Let us now check whether the kinetic energy of the atom after the absorption, 𝑝2at2𝑚at
, is indeed negligible

compared to the photon energy, 𝐸𝜙, by calculating their ratio,Λ.

Λ = 𝑝2at2𝑚at𝐸𝜙 = ℎ2 𝜆𝜆22𝑚atℎ𝑐 = ℎ2𝜆𝑐𝑚at
.

ForΛ to increase,𝑚at must decrease. Hence, let us set𝑚at equal to themass of the smallest possible atom,
hydrogen. 𝑚at ≈ 𝑚𝑝 + 𝑚𝑒𝑚𝑝 ≈ 1.673 ⋅ 10−27 kg𝑚𝑒 ≈ 9.109 ⋅ 10−31 kg

ЄЃЃЃЅЃЃЃІ ⇒ 𝑚at ≃ 1.673 ⋅ 10−27 kg
Wewrote𝑚at ≈ 𝑚𝑝+𝑚𝑒 insteadof𝑚at = 𝑚𝑝+𝑚𝑒 because there is a (small) “mass defect”, i.e., the binding
energy of the electron and the proton in the hydrogen atom. Let us consider a typical green photon with𝜆 ≈ 500 nm. Then,Λ = 6.626 ⋅ 10−34Js s2 ⋅ 500 ⋅ 10−9m 3 ⋅ 108m 1.673 ⋅ 10−27kg ≈ 1.320 ⋅ 10−9.
Hence, in our example, the kinetic energy of the atom is indeed negligible compared to the photon energy.

Question: For which wavelength 𝜆, does the ratioΛ become equal to 0.05 in the hydrogen atom?
Answer:Λ = ℎ2𝜆𝑐𝑚αϾ

= 0.05 ⇒
𝜆 = ℎ2𝑐𝑚αϾΛ = 6.626 ⋅ 10−34Js ⋅ s2 ⋅ 3 ⋅ 108 m ⋅ 1.673 ⋅ 10−27 kg ⋅ 0.05 ≈ 13.2 ⋅ 10−15 m = 13.2fm.

This is an extremely tiny wavelength. Even𝛾-rays have typical wavelengths below pm (10×10−12m), but,
here we are at the fm regime, that is at the 10−15 m regime. Even the diameter of the atomic nuclei varies
from1.75 fm=1.75×10−15m for hydrogen (the diameter of a proton) to≈ 15 fm for some of the heaviest
atoms like uranium. Thus, our assumption that the kinetic energy of the atom is negligible compared to
the photon energy is valid nearly across the whole EM spectrum.
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3.1.2 Spontaneous Emission.

The Spontaneous Emission is illustrated in Figure 3.2. Let us assume that the probability, 𝑑𝑊sp
em, that the

Figure 3.2: Spontaneous Emission of a photon with energy 𝐸ph and momentum 𝑝ph, accompanied with
an electron transfer between two energy levels 𝐸2 and 𝐸1 of an atom.

atom spontaneously emits a photon at time 𝑑𝑡 is given by𝑑𝑊sp
em = 𝐴21𝑑𝑡 (3.2)

i.e., it is proportional to the time interval, 𝑑𝑡, with a constant of proportionality𝐴21, where the index 21
means that with the emission of the photon, the electron will fall from level 2 to level 1. We note that
since this process is spontaneous, 𝑑𝑊sp

em does not depend on the EM energy density in an infinitesimal
frequency interval, 𝜌(𝜈, 𝑇). We can define the lifetime of level 2 as the time it takes for the photon to
be emitted spontaneously with certainty (hence the electron is transferred from level 2 to level 1). If we
denote it by 𝜏2 = 𝜏, then, from Eq. (3.2), we obtain 1 = 𝐴21𝜏. Thus,

𝜏2 = 𝜏 = 1𝐴21 . (3.3)

We now apply the laws of Conservation of Energy andMomentum, supposing that the atom is initially
motionless. Hence, when a photon is emitted, it will move towards the opposite direction.

Conservation of Energy 𝐸2 = 𝐸1 + 𝐸ph + 𝑝2at2𝑚at
Conservation of Momentum 𝑝at + 𝑝ph = 0

Since this process is spontaneous, photons are emitted towards a random direction, i.e., without direc-
tionality, and with a random phase, i.e., without coherence. In other words, they are incoherent photons.
Directionality means that EM radiation is emitted towards a certain direction.Coherence is a constant
relationship between the phase of waves with the same frequency. For example, two light beams are
coherent when the phase difference between them remains constant, while they are incoherent when
there is a random or varying phase difference between them. Stable forms of interference are created
only by coherent beams. In fact, they usually come from a single beam which is separated into two or
more beams. A LASER, unlike an incandescent light source, produces a light beam the components of
which have constant relationship between their phases. Similarly, two photons with a constant phase re-
lationship are coherent.
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3.1.3 Stimulated Emission.

TheStimulatedEmission is illustrated inFigure 3.3. In this process, before the electron falls spontaneously
from level 2 to level 1, a stimulating photon causes it to fall. Let us suppose that the atom is initially mo-
tionless. Let us consider as positive the initial direction of the stimulating photon. Let us further suppose
that the probability, 𝑑𝑊st

em, that the atom emits a photon in time 𝑑𝑡 via this process is given by𝑑𝑊st
em = 𝐵21𝜌(𝜈, 𝑇)𝑑𝑡 (3.4)

i.e., it is proportional to the time interval 𝑑𝑡 and the EM energy density in an infinitesimal frequency
interval,𝜌(𝜈, 𝑇), with a constant of proportionality𝐵21, where the index 21means that after the emission
of the photon, the electron will fall from level 2 to level 1.

Figure 3.3: Stimulated Emission of a photon with energy 𝐸ph and momentum 𝑝ph, accompanied with an
electron transfer between two energy levels 𝐸2 and 𝐸1 of an atom. An initial stimulating photon causes
the creation of another photon with identical characteristics (energy, momentum, phase, polarization).

The two photons, i.e., the initial stimulating photon and the photon that is emitted by the atom, are
identical, indistinguishable, i.e., they have the same

✿✿✿✿✿✿
energy (→

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monochromaticity), . . . . . . . . . . . . . . .momentum,. . . . . . . .hence

. . . . . . . . . . .direction (→ . . . . . . . . . . . . . . . . .directionality), phase (→ coherence), polarization (→ polarized light).

monochromaticity
directionality

coherence
polarization

ЄЃЃЃЃЃЅЃЃЃЃЃІ are properties of a LASER

Although the two photons involved in the process of Stimulated Emission have the same polarization,
i.e., the electric field of these photons is in the same direction, the rest two processes, Spontaneous Emis-
sion and (Stimulated) Absorption, are still present in the effective medium of a LASER device. However,
in Spontaneous Emission, the emitted photons have random direction, phase, and polarization (while
their energy, in a strictly two-level system is the same). Thus, overall, the photons present inside the ef-
fective medium of a LASER device, do not have a specific polarization. On the other hand, the light of
a LASER device can become polarized by attaching a polarizer (a material that lets only light of specific
polarization pass) or a “Brewster window” at the exit of the LASER device.

When a light beam impinges on the interface between two media, its reflected part and its transmitted
(in other words, refracted) part are described by the Fresnel Equations and depend on the polarization of
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the incident light and the angle of incidence. Thus, 𝑝-polarized light (electric field polarized in the plane
defined by the incident beam and the normal to the interface) will not be reflected if the angle of inci-
dence is 𝜃B = arctan(𝑛2/𝑛1), where 𝑛1, 𝑛2 are the refraction indices of the initial and the other medium.
This equation is known as the Brewster’s law and the angle 𝜃B is referred to as the Brewster’s angle. We

Figure 3.4: The Brewster angle.

discuss the Fresnel Equations and the Brewster’s angle in detail in Section 12.1, and the emission of a
polarized beam in Section 12.3. In practice, the light of some LASER devices is largely polarized (e.g., in
gas LASERs), while the light of some other LASER devices is polarized to a lesser extent (e.g., in diode
LASERs). LASER devices have a cavity that confines the effective medium and creates a competition be-
tween the EMmodes and between polarizations. In the end, the mode and polarization with the smallest
losses dominate. However, there are also LASERs with many modes or polarizations.

Let us notice that:

• What is mentioned above about same phase and polarization is not discussed in Einstein articles
[1, 2] nor they doplay any role in the derivation of Planck’s law therein, derivation presented below,
too.

• Photons are bosons, thus two or more photons can have the same energy, momentum (hence,
direction), and phase.

• We need to assume that the initial stimulating photon, with energy 𝐸ph = 𝐸2 − 𝐸1 = ℎ𝜈, is not at
all affected during Stimulated Emission.

• We could state that the initial stimulating photon determines the phase and the polarization of the
emitted photon just as the stimulating force determines the phase and the polarization of a forced
or stimulated oscillation.

We now apply the laws of Conservation of Energy andMomentum, supposing that the atom is initially
motionless. According to what we have discussed up to now

Conservation of energy 𝐸2 + 𝐸ph = 2𝐸ph + 𝐸1 +
✓
✓
✓✓✼

small𝑝2at2𝑚at
Conservation of momentum 𝑝⃗ph = 2𝑝⃗ph + 𝑝⃗at
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We could, of course, attempt to consider that the two photons might have different energy and momen-
tum, e.g., to write

Conservation of energy 𝐸2 +✚
✚𝐸ph = 𝐸1 +✚

✚𝐸ph + 𝐸′ph +
✓
✓
✓✓✼

small𝑝2at2𝑚at
⇒𝐸′ph = 𝐸2 − 𝐸1 = 𝐸ph

the photons have the same energy
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Let us assume the initial direction of the stimulating photon as positive, that is 𝑝𝜙 > 0.
Conservation of momentum %

%𝑝⃗ph =%
%𝑝⃗ph + 𝑝′ph + 𝑝⃗at ⇒ 𝑝′ph = −𝑝⃗at

If we assume that the stimulating photon determines the direction of the new photon, then

𝑝′ph > 0 𝑝′ph = 𝐸′ph𝑐 = 𝐸ph𝑐 = 𝑝ph ⇒ the photons have the same momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In brief, because the photons have
✿✿✿✿✿
same

✿✿✿✿✿✿✿
energy, the outgoing light will have

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monochromaticity and be-

cause the photons have . . . . . . . . . . . . . . .momentum . . .in . . . .the. . . . . . .same. . . . . . . . . . . .direction, the outgoing light will have . . . . . . . . . . . . . . . . .directionality.

3.2 Derivation of Planck's law via emission and absorption processes and Boltzmann statistics.
Relationship between Einstein coefficients A and B.

Let us consider the interaction between the EM field and matter in thermodynamic equilibrium, so that
the temperature𝑇 = constant. Let us denote by𝑁𝑖 the population of the level 𝑖, i.e., the average number of
atoms with the electron at level 𝑖, for which we assume that it follows the Boltzmann distribution, which
is

(1) with same statistical weights (2) with different statistical weights
(simpler form) (general form)

𝑁𝑖 = 𝑁tot
𝑒− 𝐸𝑖𝑘B𝑇𝑍􏿋􏻰􏻰􏿌􏻰􏻰􏿍𝑝𝑖

𝑁𝑖 = 𝑁tot
𝑔𝑖𝑒− 𝐸𝑖𝑘B𝑇𝑍􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍𝑝𝑖

or

𝑍 = ∑𝑖 𝑒− 𝐸𝑖𝑘B𝑇 Z=∑𝑖 𝑔𝑖𝑒− 𝐸𝑖𝑘B𝑇
Here,𝑝𝑖 is the occupation probability for level 𝑖.TheBoltzmanndistribution is definedusing thepartition
function,𝑍, which plays a central role in the description of the statistical properties of a system in thermo-
dynamic equilibrium (see a statistical physics textbook, e.g., [5]). Sincewe have assumed

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
thermodynamic

✿✿✿✿✿✿✿✿✿✿✿
equilibrium, the variations of the level populations in time𝑑𝑡will be equal, i.e., the number of atomswhere
electrons jump from 1 to 2 will be equal to the number of atoms where electrons drop from 2 to 1, i.e.,𝑑𝑁1→2 = 𝑑𝑁2→1. (3.5)𝑑𝑁1→2 will be equal to the population𝑁1 multiplied by the transition probability from 1 to 2 in time 𝑑𝑡.
This probability is associated with (Stimulated) Absorption, and is given by Eq. 3.1. 𝑑𝑁2→1 will be equal
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to the population 𝑁2 multiplied by the transition probability from 2 to 1 in time 𝑑𝑡. This probability is
associatedwith Spontaneous Emission, given by Eq. 3.2, and Stimulated Emission, given by Eq. 3.4.Thus,𝑁1𝑑𝑊st

ab = 𝑁2(𝑑𝑊sp
em + 𝑑𝑊st

em). (3.6)

(1)To begin with, let us make calculations with same statistical weights. Due to Eqs. 3.1, 3.2, 3.4, Eq. 3.6
becomes

𝑁tot
𝑒− 𝐸1𝑘B𝑇𝑍 𝐵12𝜌(𝜈, 𝑇)𝑑𝑡 = 𝑁tot

𝑒− 𝐸2𝑘𝐵𝑇𝑍 􏿵𝐴21𝑑𝑡 + 𝐵21𝜌(𝜈, 𝑇)𝑑𝑡􏿸 ⇒
𝐵12𝑒− 𝐸1𝑘B𝑇 𝜌(𝜈, 𝑇) − 𝐵21𝑒− 𝐸2𝑘B𝑇 𝜌(𝜈, 𝑇) = 𝐴21𝑒− 𝐸2𝑘B𝑇 ⇒
𝜌(𝜈, 𝑇) = 𝐴21𝑒− 𝐸2𝑘B𝑇𝐵12𝑒− 𝐸1𝑘B𝑇 − 𝐵21𝑒− 𝐸2𝑘B𝑇 .

However, we already know (cf. e.g. Figure 2.18) that

lim𝑇→∞𝜌(𝜈, 𝑇) = ∞ ⇒𝐴21𝐵12 − 𝐵21 = ∞ ⇒ 𝐵12 = 𝐵21 ∶= 𝐵𝐴21 ∶= 𝐴.
Hence,

𝜌(𝜈, 𝑇) = 𝐴𝐵𝑒(𝐸2−𝐸1)𝑘B𝑇 − 1.
Comparing with Planck’s law (or even, dimensionally, with Wien’s law), we have

up to now 𝜌(𝜈, 𝑇) = 𝐴𝐵𝑒(𝐸2−𝐸1)𝑘B𝑇 − 1 Planck’s law 𝜌(𝜈, 𝑇) = 8𝜋ℎ𝑐3 𝜈3𝑒 ℎ𝜈𝑘B𝑇 − 1
Thus, 𝐴𝐵 = 8𝜋ℎ𝜈3𝑐3 (3.7)𝐸2 − 𝐸1 = ℎ𝜈 (3.8)

(2) Let us now make calculations with different statistical weights. Due to Eqs. 3.1, 3.2, 3.4, Eq. 3.6 be-
comes

𝑁tot
𝑔1 𝑒− 𝐸1𝑘B𝑇𝑍 𝐵12𝜌(𝜈, 𝑇)𝑑𝑡 = 𝑁tot

𝑔2 𝑒− 𝐸2𝑘B𝑇𝑍 􏿵𝐴21𝑑𝑡 + 𝐵21𝜌(𝜈, 𝑇)𝑑𝑡􏿸 ⇒
􏿵𝑔1 𝑒− 𝐸1𝑘B𝑇 𝐵12 − 𝑔2 𝑒− 𝐸2𝑘B𝑇 𝐵21􏿸𝜌(𝜈, 𝑇) = 𝑔2 𝑒− 𝐸2𝑘B𝑇 𝐴21 ⇒

𝜌(𝜈, 𝑇) = 𝑔2 𝐴21 𝑒− 𝐸2𝑘B𝑇𝑔1 𝐵12𝑒− 𝐸1𝑘B𝑇 − 𝑔2 𝐵21𝑒− 𝐸2𝑘B𝑇 .
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However, we already know that

lim𝑇→∞𝜌(𝜈, 𝑇) = ∞ ⇒𝑔2 𝐴21𝑔1 𝐵12 − 𝑔2 𝐵21 = ∞ ⇒
𝑔1 𝐵12 = 𝑔2 𝐵21 (3.9)

Hence, comparing with Planck’s law

up to now 𝜌(𝜈, 𝑇) = 𝐴21𝐵21𝑒𝐸2−𝐸1𝑘B𝑇 − 1 Planck’s law 𝜌(𝜈, 𝑇) = 8𝜋ℎ𝑐3 𝜈3𝑒 ℎ𝜈𝑘B𝑇 − 1
Thus, 𝐴21𝐵21 = 8𝜋ℎ𝜈3𝑐3 (3.10)

𝐸2 − 𝐸1 = ℎ𝜈 (3.11)

3.3 Comparison between emissions.

Let us compare Spontaneous Emission with Stimulated Emission.

incoherent process𝑑𝑊sp
em𝑑𝑊st
em

coherent process

= 𝐴21𝑑𝑡𝐵21𝜌(𝜈, 𝑇)𝑑𝑡 =
8𝜋ℎ𝜈3𝑐38𝜋ℎ𝑐3 𝜈3𝑒ℎ𝜈/𝑘B𝑇 − 1 = 𝑒

ℎ𝜈𝑘B𝑇 − 1
Since Spontaneous Emission is an incoherent process, i.e., the produced photons are not coherent (they
do not have a constant phase relation), and Stimulated Emission is a coherent process, i.e., the produced
photons are coherent (they have the same phase), seeking COHERENCE implies that we need as much
as possible (1) larger 𝑇, (2) smaller 𝜈 (or larger 𝜆). [See Figure 3.5, where the function 𝑓(𝑥) = 𝑒𝑥 − 1 is
depicted.Here, 𝑥 = ℎ𝜈/𝑘B𝑇.]Thus, in this sense, it seems easier to create a coherent beam, for example, in

Figure 3.5: Graphical representation of 𝑓(𝑥) = 𝑒𝑥 − 1. Here, 𝑥 = ℎ𝜈/𝑘B𝑇.
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microwaves than in the visible regime.Maybe this is why some of the first attempts to create a device that
produces coherent EM waves were focused on microwaves and led to the creation of the MASER [Mi-
crowave Amplification by Stimulated Emission of Radiation] as a predecessor of LASER [Light Amplifi-
cation by Stimulated Emission of Radiation]. However, today, the acronym LASER is used even for the
invisible parts of the EM spectrum. For example, the terms infrared laser, ultraviolet laser, X-ray laser, etc,
are used. Today, the term atom-laser is used, too, to describe a device which produces coherent beams of
atoms that are bosons, such as 8737Rb [6]. Because theMASERwas developed prior to the LASER, devices
functioning in the microwaves are still commonly referred to as MASERs instead of microwave lasers or
radio lasers.The firstMASERwas created in 1953 byCharles Townes, JamesGordon andHerbert Zeiger.
Schematically,

MASER (𝜆 ∼ 1 cm) LASER (𝜆 ∼ 500 nm)
easier to achieve coherence harder to achieve coherence

Let us assume, for example, that we want the ratio
𝑑𝑊sp

em𝑑𝑊st
em
= 1, and examine at which temperatures this

is possible, (a) in the visible region, e.g., for 𝜆 ∼ 700 nm, and (b) in the microwaves, e.g., for 𝜆 ∼ 1 cm.
We have 𝑑𝑊sp

em𝑑𝑊st
em
= 1 ⇒ 𝑒 ℎ𝜈𝑘B𝑇 − 1 = 1 ⇒ 𝑒 ℎ𝜈𝑘B𝑇 = 2 ⇒ ℎ𝜈𝑘B𝑇 = ln 2 ⇒

𝑇 = ℎ𝜈𝑘B ln 2 ή 𝑇 = ℎ𝑐𝜆𝑘B ln 2
(a) . . . . .For . . . . . . . . . . . . . . . .𝜆 = 700 nm. . . . . .(red . . . . . . .light).

𝑇 = 6.626 ⋅ 10−34Js 3 ⋅ 108 m K700 ⋅ 10−9m 1.38 ⋅ 10−23Js ln 2 ≃ 6.626 ⋅ 37 ⋅ 1.38 10−34+30+8 K
ln 2 ≃ 29687K.

Hence, in thermodynamic equilibrium, this is practically unachievable. For example, the Sun’s photo-
sphere has an effective temperature of ∼ 6000 Κ, while temperatures ∼ 30000 K can only be found
in the surface of stars with 20 times the Sun’s mass (Figure 3.6). This practical impossibility has lead
researchers to seek for solutions outside thermodynamic equilibrium, such as the population inversion
through pumping. These will be addressed in Chapter 11.

(b)
✿✿✿✿
For

✿✿✿✿✿✿✿✿✿
𝜆 = 1 cm

✿✿✿✿✿✿✿✿✿✿✿✿
(microwaves).

Similarly, we find 𝑇 ∼ 2.078 K, i.e., although low, an experimentally achievable temperature.

3.4 Comparison between stimulated processes.

Let us now compare the two stimulated processes.𝑑𝑊st
ab𝑑𝑊st
em
= 𝐵12✘✘✘✘𝜌(𝜈, 𝑇)%%𝑑𝑡𝐵21✘✘✘✘𝜌(𝜈, 𝑇)%%𝑑𝑡 = 1,

for a system with equal statistical weights (𝑔1 = 𝑔2).
However, in thermodynamic equilibrium,𝑁2 << 𝑁1𝑑𝑁st2→1 = 𝑁2 ⋅ 𝑑𝑊st

em𝑑𝑁st1→2 = 𝑁1 ⋅ 𝑑𝑊st
ab

ЄЃЃЃЅЃЃЃІ ⇒ 𝑑𝑁st2→1 << 𝑑𝑁st1→2.
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Figure 3.6: The Hertzsprung-Russell diagram, showing the relation between a stars’ luminosity and sur-
face temperature [7].

Hence, through the stimulated processes, the population of level 2 increases, therefore, the EM radiation
density decreases.Then, spontaneous emission, which is accompanied by an electron dropping from level
2 to level 1, increases the incoherent EM radiation. This problem (caused by the fact that, in thermody-
namic equilibrium,𝑁2 << 𝑁1) can be solved by population inversion through pumping, which will be
addressed in Chapter 11. There are many kinds of pumping. Pumping means that one somehow uploads
electrons in level 2 so that𝑁2 > 𝑁1.

Now, let as check, from a quantitative point of view, what does exactly𝑁2 << 𝑁1 in thermodynamic
equilibriummean (see alsoExercise 5 of the presentChapter inAppendixA). Let us consider an ensemble
of hydrogen atoms in thermodynamic equilibrium.The eigenenergies of each atom are given by the well-
known Bohr relation, 𝐸𝑛 ≈ − Ry/𝑛2, where Ry ≈ −13.6 eV is the Rydberg energy. We will examine the
population ratio of the first two levels. Given that

𝑁𝑖 = 𝑁tot𝑒−𝛽𝐸𝑖𝑍 , (3.12)

this ratio will be 𝑁2𝑁1 = 𝑒−𝛽𝐸2𝑒−𝛽𝐸1 = 𝑒𝛽(𝐸1−𝐸2). (3.13)

At room temperature (𝑇 = 300 K), this ratio yields 𝑒−394.5 ≈ 4.7 ⋅ 10−172. It is thus evident that, in
thermal equilibrium, the population of the next level is overwhelmingly smaller than the population of
the previous level.
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3.5 Comparison between Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Previously, in Sec. 3.2, we derived the Planck’s law via the emission and absorption processes, assuming
that the populations of the electronic levels obey theMaxwell-Boltzmann statistics. Itwould be reasonable
to wonder why this distribution was used instead of the Fermi-Dirac distribution, given that electrons
are fermions. Well, this happened because in 1916-1917, when Einstein formulated his theory on the
interaction processes between EM radiation and a two-level system, the Fermi-Dirac distribution was not
known, it was only introduced in 1926. Additionally, as we will see below, at large temperatures or at low
concentrations, the Fermi-Dirac distribution converges to the Maxwell-Boltzmann distribution. Let us
compare with somehow higher detail [8] the Maxwell-Boltzmann [9, 14, 15, 16, 17, 18, 19, 20, 21, 10,
11, 12, 13], Fermi-Dirac [22, 23, 24] and Bose-Einstein [25, 26, 27] distributions, which are obeyed by
classical particles, fermions and bosons, respectively.

In what follows, we denote the average number of particles at state 𝑖, with energy 𝐸𝑖, by 𝑛̄𝑖, while, we
denote the total number of particles by 𝑁. We assume that #𝑖 >> 𝑁, in other words, the number of
energy levels is much greater than the total number of particles. Moreover, 𝜇 is the chemical potential,
while 𝛽 = 1/𝑘𝐵𝑇.

• TheMaxwell-Boltzmann(MB)statistics describes classical particles forwhichweconsidernoquan-
tized energy levels, such as the building blocks of the classical ideal gas. It has the form

𝑛̄𝑖 = 1𝑒𝛽(𝐸𝑖−𝜇) . (3.14)

We notice that 𝜇 is determined by the relation􏾜𝑖 𝑛̄𝑖 = 𝑁. (3.15)

Thus, 􏾜𝑖 𝑒−𝛽𝐸𝑖𝑒𝛽𝜇 = 𝑁 ⇒ 𝑒𝛽𝜇 = 𝑁􏾜𝑖 𝑒−𝛽𝐸𝑖 . (3.16)

Hence, 𝑛̄𝑖 = 𝑁𝑒−𝛽𝐸𝑖􏾜𝑖 𝑒−𝛽𝐸𝑖 . (3.17)

• The Fermi-Dirac (FD) statistics describes quantum particles which obey the Pauli exclusion prin-
ciple that a quantum state cannot be occupied bymore than one particle.These particles are called
fermions and their spin is a half-integer (half-natural) multiple (1/2, 3/2, 5/2, …) of the quantity ℏ.
Such particles are, e.g., electrons, protons, and neutrons. For the FD statistics, it holds that

𝑛̄𝑖 = 1𝑒𝛽(𝐸𝑖−𝜇) + 1. (3.18)

• The Bose-Einstein (BE) statistics describes quantum particles with the property that a quantum
state can be occupied by any number of particles. These particles are called bosons and their spin
is an integer (natural) multiple (0, 1, 2, …) of the quantity ℏ. Such particles are, e.g., photons, 42He
atoms, and 42He atomic nuclei. For the BE statistics, it holds that

𝑛̄𝑖 = 1𝑒𝛽(𝐸𝑖−𝜇) − 1. (3.19)
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In FD and BE systems with a constant𝑁,𝜇 is also determined by the requirement of Eq. 3.15. Overall,
we can concisely write

𝑛̄𝑖 = 1𝑒𝛽(𝐸𝑖−𝜇) +1 (FD)−1 (BE)
or 0 (MB)

and the relationship 􏾜𝑖 𝑛̄𝑖 = 𝑁 determines 𝜇. (3.20)

The MB, FD and BE distributions are illustrated in Figure 3.7.

Figure 3.7: Representation of the Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distributions.

The FD and BE distributions converge to the MB distribution in each of the following cases:

(𝑎) The concentration of particles 𝑛 is small compared to the quantum concentration

𝑛𝑄 = 􏿶𝑚𝑘𝐵𝑇2𝜋ℏ2 􏿹
32 , (3.21)

i.e., when 𝑛 < 𝑛𝑄. For example, at room temperature (𝑇 = 300 K), and for protons, 𝑛𝑄 ≈1000 nm−3, while for electrons, 𝑛𝑄 ≈ 0.015 nm−3. Convergence in low concentrations occurs
since 𝑁 very small ⇒ 𝑛̄𝑖 << 1,∀𝑖 ⇒ 𝑒𝛽(𝐸𝑖−𝜇) >> 1,∀𝑖.

(𝑏) The temperatures are high enough, since then, the distribution covers energetically a broader range,
with smaller occupation probabilities. Hence, 𝑒𝛽(𝐸𝑖−𝜇) >> 1, ∀ 𝑖. Many levels with higher energy,
even with 𝐸𝑖 > 𝜇, are partially occupied.

In both cases, since 𝑒𝛽(𝐸𝑖−𝜇) >> 1, ∀ 𝑖, (3.22)̄𝑛𝑖 = 1𝑒𝛽(𝐸𝑖−𝜇) ± 1 ≈ 1𝑒𝛽(𝐸𝑖−𝜇) , (3.23)

i.e., both the FD and the BE distribution converge to the MB distribution.
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CHAPTER 4

CONTINUOUS AND DISCRETE SPECTRUM

In this Chapter:
We deal with continuous and discrete energy spectrum. The discrete energy spectrum refers, crudely, to
atoms, molecules, quantum dots (which are, in a way, artificial atoms and molecules), color centers etc.,
the discrete-continuous spectrum refers to quantumwires andwells, and finally, the continuous spectrum
refers to solids. We focus on color centers and use a simplistic three-dimensional infinite quantum well
model to describe them, hence, we present a complete solution of the infinite quantum well. We refer to
quantum dots and use, exempli gratia, a simple three-dimensional finite square quantum well to describe
them, hence, we present a complete solution of the finite square quantum well. Moreover, we describe
the transition from single-level systems to one two-level or three level or four-level system, with three
gradual variations of the tight-binding method. The discrete-continuous energy spectrum refers to cases
with free motion in 2 (or 1) dimensions and bound states in 1 (or 2) dimensions, i.e., quantum wells (or
quantum wires): From the free motion we have continuous energy spectrum with subbands, while, from
the bound states we have levels. We utilize the Slater theorem, the Envelope Function Approach and the
Effective Mass Approximation.
Prerequisite knowledge: Basic knowledge of Quantum Physics and Mathematics.

4.1 Continuous spectrum: solids. Discrete spectrum: atoms and molecules, color centers, artifi-
cial atoms and molecules.

Atoms and molecules have discrete energy spectrum. In other words, there exist some allowed energy
levels, separated by energy gaps, where the presence of electrons is forbidden. On the other hand, solids
have continuous energy spectrum, composed of allowed bands, separated by energy gaps insidewhich the
presence of electrons is forbidden.These are depicted simplistically in Figure 4.1. In a discrete, e.g. molec-
ular, system, the highest occupied level is called HOMO (highest occupied molecular orbital), while the
lowest empty level is called LUMO (lowest unoccupiedmolecular orbital). In a continuous system, e.g. a
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solid, the respective quantities are the top of the valence band, 𝐸V, and the bottom of the conduction
band,𝐸C.The difference𝐸C −𝐸V ∶= 𝐸g defines the fundamental band gap. Materials for which𝐸g = 0
are metals. For relatively small values of 𝐸g we have semiconductors, while for large values of 𝐸g we have
insulators.

Figure 4.1: Simplistic representation of the energy structure. Left: Discrete spectrum. Right: Continuous
spectrum.

We could assume that an approximation of a two-level system(2LS) could be a simple atom (andwhat
is simpler than the hydrogen atom) forwhichwe restrict ourselves to the lowest two levels.However, there
are also caseswhere theremay exist a discrete energy spectrum inside a solid.This happenswhen there are
perturbations in the order of the solid (in periodicity, when a periodic crystal is concerned) either due to
impurities, defects, etc, or by construction, for example in heterostructures. [Heterostructures are struc-
turesmade up of differentmaterials, so that there is partial order (orwhen periodic crystals are concerned,
partial periodicity). Such changes in order or periodicity are commonly of the order of, very roughly, 1
nm - 1000 nm.]. Color centers are characteristic examples of the former category, while quantum dots,
which are also commonly called nanoparticles, since these are particles of the order of some nanometers,
are examples of the latter category. Therefore, we could assume, as an approximation of a 2LS, a color
center or a quantum dot for which we restrict ourselves to the lowest two energy levels.

In Section 4.2 we discuss color centers, in a somewhat simplistic manner. In this discussion, it is useful
to know the full solution of the infinite square well; this is done in § 4.2.1. Similarly, in Section 4.3 we
discuss quantum dots. In this discussion, it is useful to know the full solution of the finite square well; this
is done in § 4.3.1.

4.2 Color centers.

An ideal crystal extends to infinity. [Here, when we refer to crystals, we mean periodic crystals. There
are also quasicrystals etc.] As known, just as solid = lattice + motif, crystal = crystal lattice + motif. The
crystal lattice, i.e., a collection of mathematical points with spatial periodicity, is created by an integer
linear combination of the primitive lattice vectors.The crystal is created by placing themotif (a collection
of atoms, molecules, ions with well-defined orientation) at each crystal lattice point. Amonocrystal is the
simplest approximation of an ideal crystal. It differs from the latter in that periodicity is terminated on
the crystal surfaces. However, even in such a crystal, there are deviations from periodicity. Each deviation
from the perfect crystalline structure is a defect. Some common defects include impurities, vacancies,
interstitial atoms, etc. In the case of impurities, the crystal within which these occur is called the host
crystal. The properties of the material depend on both the host crystal and the defects.
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Here, wewill focus on a type of defect called color center of F-center (from theGermanword Farbe =
color), which is a light-absorbing defect.These defects have taken their name from the characteristic color
they give to alkaline halide crystals. Every defect in the crystal structure related to a “trapped” electron
can be characterized as a color center if it absorbs approximately in the visible region of the EM spectrum.
Color centers can easily be formed inside ionic crystals of alkaline halides (e.g. KCl) using ionizing radi-
ation, such as X-rays (e.g. from a powder diffractometer or a synchrotron; a Tesla coil can be also used).
A powerful source of 𝛾-rays, such as 60Co, could also be an appropriate ionizing radiation source. Ioniz-
ing radiation can release an electron from a halide anion (e.g. Cl−). The now “free” electron can wander
inside the crystal until it is finally trapped in a position of a missing halide anion, i.e., in an anion vacancy.
In a KCl crystal, a vacancy has 6 K+ cations as is first neighbors [Figure 4.2(left)]. In a rather simplistic
approximation, the potential energy at a color center is≈ − 6𝑒24𝜋𝜀𝜀0𝑟 < 0, where 𝑟 = 𝑎/2 is the neighboring
anion-cation distance, 𝑎 is the lattice constant or lattice parameter, and 𝜀 is the dielectric constant. A
simple model that can describe the situation is a particle in a 3D potential well, since there is trapping in
three dimensions. A 2D representation of a color center in a KCl crystal is shown in Figure 4.2(right).
Apart from electron centers, hole centers, impurity centers, etc, can also occur.

Figure 4.2: (Left) A potassium chloride crystal (KCl). Its structure can be described by a face-centered
cubic (fcc) lattice with a diatomic basis (a cation-anion pair). For example, we place (𝑖) a cation exactly
on a lattice point and (𝑖𝑖) an anion on a point at a distance (𝑎/2)(𝑥̂+ 𝑦̂+ 𝑧̂), where 𝑎 is the lattice constant.
For example, on the lattice point at the origin [(0, 0, 0)] there is a cation and the corresponding anion is
placed at the center of the conventional cubic cell. For example, any occurrent vacancy of chloride anion
has 6 potassium cations as its first neighbors. (Right) A two-dimensional representation of a color center
with a trapped electron in a Cl− vacancy. An electron has left a Cl− anion, e.g., due to irradiation. The
distribution of the electron’s wavefunction is determined by the shape of the 3D quantum well created
inside the vacancy.

The color depends on the size of the vacancy, i.e., finally, on the type of themissing halogen atom, since
the narrower the quantumwell, the more separated become the allowed energy states inside it, while, the
wider the quantum well, the more they approach each other. In a very rough approximation of the color
center, let us remember the infinite quantumwell. In a 1D–along the 𝑥-axis– infinite potential energywell
of width 𝐿, with potential energy

𝑈(𝑥) = ЀЃЁЃЂ0, 0 < 𝑥 < 𝐿∞, elsewhere
(4.1)
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the discrete energy spectrum is 𝐸𝑛 = ℏ2𝜋2𝑛22𝑚𝐿2 , (4.2)

where𝑛 = 1, 2, 3, … and𝑚 is the particlemass (in our case, the particle is an electron). Since the electron
does not move in free space but inside a crystal, the mass𝑚 should be replaced by the so-called effective
mass𝑚∗.The effectivemass is a useful approximation relative to the dispersion relation of electrons inside
a crystal, e.g., close to the bottom of its conduction band. Schematically,

𝐸(𝑘) = ℏ2𝑘22𝑚 (free electrons) (4.3)

𝐸(𝑘) = ℏ2𝑘22𝑚∗ (electrons in a crystal ) (4.4)

where 𝑘 is the wavenumber. This approximation is based on the fact that, for small 𝑘 (e.g., close to the
bottom of the conduction band, where there is a minimum), the dispersion relation of electrons inside
the crystal can be approximated by the parabolic form of the dispersion relation of free electrons, since

𝐸(𝑘) = 𝐸(0) + 𝐸′(0)􏿅=0 𝑘 + 𝐸′′(0)𝑘22 + … . (4.5)

Thus, choosing the origin such that 𝐸(0) = 0 and ignoring higher-order terms,

𝐸(𝑘) ≈ 𝐸′′(0)2 𝑘2 ∶= ℏ22𝑚∗ 𝑘2 ⇒ 𝑚∗ = ℏ2𝐸′′(0) . (4.6)

Hence, returning to our square well, we have

𝐸𝑛 = ℏ2𝜋2𝑛22𝑚∗𝐿2 . (4.7)

Thus, the distance between consecutive energy levels is

𝐸𝑛+1 − 𝐸𝑛 = ℏ2𝜋22𝑚∗𝐿2 (2𝑛 + 1) 𝑛 = 1, 2, 3, … (4.8)

i.e. inversely proportional to the square of the width of the well.
Let us now remember that the wavefunction for the energy level 𝑛 is

𝜓𝑛(𝑥) = ЀЃЃЃЁЃЃЃЂ√2𝐿 sin 􏿵𝑛𝜋𝑥𝐿 􏿸, 0 < 𝑥 < 𝐿0, elsewhere
(4.9)

thus, the respective probability density to find the particle positioned at 𝑥 is

𝑃𝑛(𝑥) = ЀЃЃЁЃЃЂ2𝐿 sin2 􏿵𝑛𝜋𝑥𝐿 􏿸, 0 < 𝑥 < 𝐿0, elsewhere
(4.10)

In color centers, the coloring is due to photon absorption by the trapped electron and the consequent
excitation of the latter from the ground state to an excited state. The energy difference between these
states is given by Eq. 4.8. Hence, using this simple 1D model, we predict that an increase (decrease) in
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Figure 4.3: Eigenfunctions, eigenerergies, and energy dispersion (𝑘𝑛 = 𝑛𝜋/𝐿, 𝑛 = 1, 2, 3, … ) of the
particle in the simplistic model of the infinite well. In the panel depicting the energy dispersion, the con-
tinuous gray line represents a particle moving freely inside the crystal.

𝐿 leads to absorption of photons with smaller (larger) energy. In other words, the spectrum is shifted
towards red (blue). This is called redshift(blueshift).

The problem is somewhatmore complex in 3D.However, an increase in the lattice constant 𝑎 increases
the space around the vacancy, where the color center is created. If we assume, reasonably, that𝐿 ∝ 𝑎, then,
as evident from the above equations, the absorption spectrum is shifted towards lower energies, that is,
larger wavelengths. For example, since 𝑎NaCl < 𝑎KCl < 𝑎KBr, their absorption spectra are ordered in the
manner depicted in Figure 4.4(left). The dependence of the absorption peak on the lattice constant, 𝑎, in
alkaline halide crystals is presented in Figure 4.4(right).

Figure 4.4: (Left) Color-center absorption spectra obtained on air, in 298 Κ, at the UV-visible, by NaCl,
KCl, andKBr crystals radiated using a Tesla coil. [1].The color depends on the size of the space left by the
defect, i.e., by the lattice parameter or lattice constant, 𝑎. The peak of the absorption spectrum is shifted
this way because 𝑎NaCl < 𝑎KCl < 𝑎KBr. (Right) Dependence of the absorption peak on 𝑎 in alkaline
halide crystals [1]. The increase in 𝑎 creates larger vacancies when an ion is missing; thus there is a wider
potential energy well.This leads to a decrease in the energy distance between the ground and first excited
level, hence the energy (wavelength) of the photon that corresponds to this transition is smaller (larger).

Several theoretical models have been proposed to explain the optical properties of color centers [2].
All of them consider that, in the region of the vacancy, the potential energy is represented by a 3D well
responsible for the electron binding, which in turn leads to a change in optical properties, e.g., in absorp-
tion or emission. Below, we will describe a simplistic 3D infinite well model. We assume that the color
center of an alkaline halide crystal is a 3D infinite potential energy well along the 𝑥, 𝑦, 𝑧 axes, respectively,
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𝑈1(𝑥),𝑈2(𝑦),𝑈3(𝑧), such that 𝑈(⃗𝑟) = 𝑈1(𝑥) + 𝑈2(𝑦) + 𝑈3(𝑧), (4.11)

where all𝑈𝑖 are infinitewells.We further assume that thewidth of thewell in each axis,𝐿𝑖, should beor the
order of the lattice constant 𝑎. Let us investigate the energy of the photons corresponding to a transition
from the ground level to the 1st excited level, for example, in LiF and NaCl crystals. Due to the form of
the potential energy, the variables can be fully separated and the energy spectrum of such an infinite well
is 𝐸𝑛1,𝑛2,𝑛3 = ℏ2𝜋2𝑛212𝑚∗1𝐿2𝑥 + ℏ2𝜋2𝑛222𝑚∗2𝐿2𝑦 + ℏ2𝜋2𝑛232𝑚∗3𝐿2𝑧 . (4.12)

If we also assume that 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿 and𝑚∗1 = 𝑚∗2 = 𝑚∗3 = 𝑚∗, then
𝐸𝑛1,𝑛2,𝑛3 = ℏ2𝜋22𝑚∗𝐿2 (𝑛21 + 𝑛22 + 𝑛23). (4.13)

Thus, the ground level (GL, 𝑛1 = 𝑛2 = 𝑛3 = 1) and the 1st excited level (1stEL, one of 𝑛𝑖 is equal to 2
and the two rest are equal to 1) have, respectively, eigenenergy

𝐸GL = 3ℏ2𝜋22𝑚∗𝐿2𝐸1stEL = 6ℏ2𝜋22𝑚∗𝐿2
ЄЃЃЃЃЅЃЃЃЃІ (4.14)

Hence, the photon energy which is, e.g., absorbed in order for the electron to jump from GL to 1stEL is

ℎ𝜈 = 3ℏ2𝜋22𝑚∗𝐿2 . (4.15)

If we now suppose that 𝐿 = 𝑎2 , ℎ𝜈 = 6ℏ2𝜋2𝑚∗𝑎2 . (4.16)

In NaCl, where 𝑎 ≈ 0.565 nm,𝑚∗ ≈ 1.13 𝑚𝑒, the energy is ℎ𝜈 ≈ 12.498 eV. If we used 𝐿 = 𝑎, we would
find ℎ𝜈 = 3ℏ2𝜋22𝑚∗𝑎2 , (4.17)

thus ℎ𝜈 ≈ 3.1245 eV. The experimental value for the absorption peak of NaCl is ℎ𝜈exp ≈ 2.7 eV. This
means that the deviation of our simple model’s prediction from the experimental value is ≈ 16%, not
very far. This 2.7 eV corresponds to 𝜆 ≈ 460 nm, i.e., to the blue. It is obvious that all these are very
approximative. However, apart from numerical factors, it occurs that

ℎ𝜈 ∝ 1𝑎2 , (4.18)

hence ℎ𝜈 decreases when 𝑎 increases. This is a qualitative explanation of Figure 4.4. For LiF, the effective
mass can be assumed, in a fair approximation (Equation 2.72 of Reference [2]),𝑚∗ ≈ 1.5 𝑚𝑒.Thus, from
Eq. 4.17, for LiF it holds that ℎ𝜈 ≈ 4.62 eV, a value deviating from the experimental value by just 12%. On
the other hand, of course, the value of the effectivemass can be rather different; for example, according to
Reference [3], for LiF it holds that𝑚∗ ≈ 𝑚𝑒. It is of no use to try to fit our simplistic theoretical approach
exactly to the experiment by playing with the value of the effective mass. We will restrict ourselves to
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noting that something that simple can come so close to experimental results, and can actually predict the
approximate 𝑎−2 dependence. This model, which was employed here as an effortless guess, has actually
been used in roughly the same form to study color centers [2], giving satisfactory results. Specifically, the
formula ℎ𝜈 ≈ 0.97(𝑎 in nm)1.772 eV (4.19)

can be used to fit all the experimental data for alkaline halides [2] (see Figure 4.4).
A careful eye might have noticed that, even though we refer to transitions between discrete levels the

spectraofFigure4.4 arenotdelta functions; on the contrary, theyhavea rather largewidth.The rea-
son for this is that, up to now, we have taken into account only the discrete levels stemming from spatial
localization. Generally, we distinguish two types of broadening: homogeneous broadening and inho-
mogeneous broadening. If the physical cause of broadening is the same for every absorber or emitter
(here, for every 2LS) then it is called homogeneous. An example of homogeneous broadening is the one
related to the lifetime of the energy level (lifetime broadening). In particular, the lifetime, 𝜏, of an excited
level, corresponding to Spontaneous Emission to a lower level, is related to the uncertainty in the energy
of the excited level, Δ𝐸, i.e., 𝜏 Δ𝐸 ∝ ℎ. [We remind the reader of the definition of lifetime, for Spon-
taneous Emission from level 2 to level 1, according to the relation 3.2, 𝑑𝑊sp

em = 𝐴21𝑑𝑡 ⇒ 1 = 𝐴21𝜏,
for a dilute gas of identical atoms.] A small lifetime means large uncertainty in energy, hence broad emis-
sion. This type of broadening leads to a Lorentzian profile of the spectrum. Usually, in condensed matter
physics, we have a large set of absorbers or emitters and the fluctuationΔ𝐸 is different for each absorber or
emitter.The reason is that in a large system, such as a crystal, the environment of each absorber or emitter
is rarely identical, due to the random presence of impurities, defects, etc. In other words, the quantum
wells are not exactly the same (Figure 4.5, left). Inhomogeneous broadening commonly leads to a Gaus-
sian profile. It should also be noted that broadening can be attributed to several causes, hence its shape
is varying. There are additional causes that shape the energy spectrum, such as the vibrational degrees
of freedom (Figure 4.5, right). Therefore, the spectra, mirroring this situation, will be broad. Moreover,
all these are found inside a solid, hence the whole background of the latter will be also present. In prac-
tice (cf. upper Fig. 4.6), by absorbing a photon, an electron can be transferred, e.g., from the ground level
to a higher level than the first excited level (let’s say to a higher vibrational level), then relax at the first
excited level by emitting one or more phonons (quanta of lattice vibrations), and finally fall back to the
ground level by emitting a photon, this time, with energy smaller than the one of the initially absorbed
photon by the energy of the phonon(s). The wavelength or frequency of energy difference between the
position of the absorption and emission peak is called Stokes shift (Figure 4.6). If the emitted photon
has a larger energy, this energy difference is called anti-Stokes shift. These differences are mostly due to
lattice vibrations (phonons) [4].

Figure 4.5: Left: In a large system as e.g. in a crystal, the environment of each absorber or emitter is rarely
identical, in other words, the quantumwells are not exactly the same. Right: Vibrational and spatial levels.
The spectra, mirroring this situation, will be broad.
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Figure 4.6: Upper: Explanation of the Stokes shift between absorption and emission. Lower: Stokes shifts
of color centers inKCl, KBr andKI; figure adapted fromReference [5]. In accordancewithReference [6],
the Stokes shift in KCl is≈ 1.1 eV.

4.2.1 Full solution to the infinite square well.

We will try to give a a detailed solution of the infinite square quantum well. Let us think of the infinite
square quantum well of potential energy shown in Figure 4.7. The one-dimensional –along the 𝑥-axis–
infinite quantumwell, of width 𝐿, is symmetrically extended from−𝐿/2 to 𝐿/2. We distinguish the spatial
regions I (left), II (medium) and III (right). Its potential energy is

𝑈(𝑥) = ЀЃЃЃЁЃЃЃЂ∞, 𝑥 < −𝐿/2 region I0, −𝐿/2 ≤ 𝑥 ≤ 𝐿/2 region II∞, 𝑥 > 𝐿/2 region III
(4.20)

The particle cannot be found in regions I and III, because there the potential energy is infinite, hence,
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Figure 4.7: Schematic representation of an infinite square quantum well of potential energy.

its wavefunction will be𝜓(𝑥) = 0. In region II, the time-independent Schrödinger equation is

− ℏ22𝑚𝜓′′(𝑥) = 𝐸𝜓(𝑥). (4.21)

Let us try solutions of the form 𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, 𝑘 ≥ 0. (4.22)

However, for 𝑘 = 0, we obtain 𝜓(𝑥) = 𝐴 + 𝐵. Due to the demand that the wavefunction is continuous
at the points 𝑥 = −𝐿/2 and 𝑥 = 𝐿/2, since𝜓(−𝐿/2) = 0 = 𝜓(𝐿/2), it follows that𝐴 + 𝐵 = 0, therefore𝜓(𝑥) = 0 everywhere, i.e., the particle is found nowhere. Therefore, we will assume below that 𝑘 > 0.
Hence, 𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥, 𝑘 > 0. (4.23)

Therefore, from Eqs. (4.21) and (4.23), it follows that

− ℏ22𝑚[𝐴𝑖𝑘𝑖𝑘𝑒𝑖𝑘𝑥 + 𝐵(−𝑖𝑘)(−𝑖𝑘)𝑒−𝑖𝑘𝑥] = 𝐸[𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥], (4.24)

ℏ2𝑘22𝑚 [𝐴𝑒𝑖𝑘𝑥] + ℏ2𝑘22𝑚 [𝐵𝑒−𝑖𝑘𝑥] = 𝐸𝐴𝑒𝑖𝑘𝑥 + 𝐸𝐵𝑒−𝑖𝑘𝑥, (4.25)

􏿰ℏ2𝑘22𝑚 − 𝐸􏿳𝐴𝑒𝑖𝑘𝑥 + 􏿰ℏ2𝑘22𝑚 − 𝐸􏿳 𝐵𝑒−𝑖𝑘𝑥 = 0. (4.26)

Consequently, since this holds∀𝑥, we obtain

𝐸 = ℏ2𝑘22𝑚 . (4.27)

Let us now use the boundary conditions.

𝜓(−𝐿/2) = 0 ⇒ 𝐴𝑒−𝑖𝑘𝐿/2 + 𝐵𝑒𝑖𝑘𝐿/2 = 0 ⇒ −𝐴𝐵 = 𝑒𝑖𝑘𝐿 (4.28)𝜓(𝐿/2) = 0 ⇒ 𝐴𝑒𝑖𝑘𝐿/2 + 𝐵𝑒−𝑖𝑘𝐿/2 = 0 ⇒ −𝐴𝐵 = −𝑒𝑖𝑘𝐿. (4.29)

Consequently, 𝑒𝑖𝑘𝐿 = −𝑒𝑖𝑘𝐿 ⇒ 𝑒2𝑖𝑘𝐿 = 1 = 𝑒𝑖2𝜋𝑛, 𝑛 ∈ 𝒵 . (4.30)
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Hence, 𝑘 = 𝜋𝑛𝐿 , 𝑛 ∈ 𝒵 . (4.31)

However, we have noticed above that 𝑘 > 0, hence
𝑘 = 𝜋𝑛𝐿 , 𝑛 ∈ 𝒩 ∗ (4.32)

Moreover, due to Eq. (4.27), it follows that

𝐸𝑛 = ℏ2𝜋2𝑛22𝑚𝐿2 (4.33)

Now, due to Eq. (4.32) and because of

−𝐴𝐵 = 𝑒𝑖𝑘𝐿, (4.34)−𝐴𝐵 = −𝑒𝑖𝑘𝐿, (4.35)

we are led to −𝐴𝐵 = 𝑒𝑖𝜋𝑛 = 𝑒−𝑖𝜋𝑛. (4.36)

Then, however, 𝐴𝐵 = −1, if 𝑛 even, (4.37)𝐴𝐵 = +1, if 𝑛 odd. (4.38)

Well, therefore,

𝜓𝑛(𝑥) = 𝐴𝑒𝑖𝜋𝑛𝑥𝐿 + 𝐴𝑒− 𝑖𝜋𝑛𝑥𝐿 = 2𝐴 cos 􏿵𝜋𝑛𝑥𝐿 􏿸 , if 𝑛 odd, (4.39)𝜓𝑛(𝑥) = 𝐴𝑒𝑖𝜋𝑛𝑥𝐿 − 𝐴𝑒− 𝑖𝜋𝑛𝑥𝐿 = 2𝐴𝑖 sin 􏿵𝜋𝑛𝑥𝐿 􏿸 , if 𝑛 even. (4.40)

Let us now proceed to normalization

􏾙𝐿/2
−𝐿/2 4|𝐴|2 cos2 􏿵𝜋𝑛𝑥𝐿 􏿸 𝑑𝑥 = 1, if 𝑛 odd, (4.41)

􏾙𝐿/2
−𝐿/2 4|𝐴|2 sin2 􏿵𝜋𝑛𝑥𝐿 􏿸 𝑑𝑥 = 1, if 𝑛 even. (4.42)

However, it holds that

􏾙𝜋/2
−𝜋/2 cos(𝑚𝑧) cos(ℓ𝑧)𝑑𝑧 = 𝜋2 𝛿𝑚ℓ, (4.43)

􏾙𝜋/2
−𝜋/2 sin(𝑚𝑧) sin(ℓ𝑧)𝑑𝑧 = 𝜋2 𝛿𝑚ℓ. (4.44)
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Hence, with a change of variable, 𝑧 = 𝜋𝑥𝐿 , the following must hold

|𝐴|2 = 12𝐿. (4.45)

We can, therefore, choose,

𝐴 = 1√2𝐿, if 𝑛 odd, (4.46)

𝐴 = −𝑖√2𝐿, if 𝑛 even. (4.47)

After all this manipulation, we obtain

𝜓𝑛(𝑥) = √2𝐿 cos 􏿵𝜋𝑛𝑥𝐿 􏿸 if 𝑛 odd (4.48)

𝜓𝑛(𝑥) = √2𝐿 sin 􏿵𝜋𝑛𝑥𝐿 􏿸 if 𝑛 even (4.49)

The first four eigenfunctions of an infinite square quantum well are shown in Figure 4.8.

Figure 4.8:The first four eigenfunctions,𝜓𝑛(𝑥), of an infinite square quantumwell.The number of nodes
is 𝑛 − 1.

Whereas, if we assumed the well in the region 𝑥 ∈ [0, 𝐿], the boundary conditions would be0 = 𝜓(0) = 𝐴 + 𝐵 ⇒ 𝐵 = −𝐴, (4.50)0 = 𝜓(𝐿) = 𝐴𝑒𝑖𝑘𝐿 − 𝐴𝑒−𝑖𝑘𝐿. (4.51)

Hence, 𝑒2𝑖𝑘𝐿 = 1 = 𝑒𝑖2𝜋𝑛 ⇒ 𝑘 = 𝜋𝑛𝐿 , 𝑛 ∈ 𝒩 . (4.52)

Therefore,

𝜓𝑛(𝑥) = 𝐴𝑒𝑖𝜋𝑛𝑥𝐿 − 𝐴𝑒− 𝑖𝜋𝑛𝑥𝐿 = 2𝐴𝑖 sin 􏿵𝜋𝑛𝑥𝐿 􏿸 . (4.53)
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However, similarly, it holds that

􏾙𝜋
0 cos(𝑚𝑧) cos(ℓ𝑧)𝑑𝑧 = 𝜋2 𝛿𝑚ℓ, (4.54)

􏾙𝜋
0 sin(𝑚𝑧) sin(ℓ𝑧)𝑑𝑧 = 𝜋2 𝛿𝑚ℓ. (4.55)

Normalizing again, the following must hold

􏾙𝐿
0 4|𝐴|2 sin2 􏿵𝜋𝑛𝑥𝐿 􏿸 𝑑𝑥 = 1. (4.56)

According to the above, with a change of variable, 𝑧 = 𝜋𝑥𝐿 , the following must hold

|𝐴|2 = 12𝐿. (4.57)

We can, therefore, choose,

𝐴 = −𝑖√2𝐿. (4.58)

Hence, 𝜓𝑛(𝑥) = √2𝐿 sin 􏿵𝜋𝑛𝑥𝐿 􏿸 (4.59)

In other words, we obtain Eq. (4.9). We notice that moving the variable by 𝐿/2 and using trigonometric
identities, we can, naturally, be transferred from Eq. (4.59) to Eqs. (4.48)-(4.49) and vice versa. We note
that for 𝜇 ≠ 0, 𝐴̂𝑣⃗ = 𝑎𝑣⃗ ⇔ 𝐴̂(𝜇𝑣⃗) = 𝑎(𝜇𝑣⃗), and specifically, naturally it holds for 𝜇 ± 1.
4.3 Quantum Dots.

A typical, square, finite quantum well formed by a semiconductor heterostructure is presented in Fig-
ure 4.9 where we can see the well width 𝐿, the bottom of the conduction band 𝐸C, the top of the valence
band 𝐸V, the conduction band offset Δ𝐸C, and the valence band offset Δ𝐸V. Depending on the materi-
als that constitute the heterostructure, the quantum well has commonly Δ𝐸C and Δ𝐸V of the order of
0.01-10 eV and 𝐿 is commonly in the range 0.1-100 nm.

Quantum confinement can occur in one dimension (1D), for which we use the expression quantum
well, in two dimensions (2D), for which we use the expression quantum wire, or in three dimensions
(3D), for which we use the expression quantumdot. See also Figure 4.10, where, in the case of quantum
dots, the profile of the density of states (DOS) becomes discrete. Quantum dots are also referred to as
artificial atoms, when they are single, or artificial molecules, when they are coupled.

In a square, finite 1D quantumwell, there is at least one bound state [7]. In Figure 4.9 we have assumed
that thewell of the conduction band has two levels, while thewell of the valence band has one. A quantum
well of width 𝐿 contains [7] 𝑛 = 1 + Int

Ϻϻϻϻϻϼ√2𝑚∗𝑈𝑏𝐿2𝜋2ℏ2 ϽϾϾϾϾϿ (4.60)

bound energy states or “levels”. Int(𝜉) is the integer part of 𝜉,𝑈𝑏 is the discontinuity of the conduction
or valence band (Δ𝐸C or Δ𝐸V, respectively) between the two materials, and 𝑚∗ is the electron or hole
effective mass. Hence, in a quantum dot we can choose as a two-level system one level of the conduction
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Figure 4.9: A square, finite quantum well, e.g. in an AlAs/GaAs/AlAs heterostructure. The well width 𝐿,
the bottom of the conduction band 𝐸C, the top of the valence band 𝐸V, the conduction band offsetΔ𝐸C,
and the valence band offsetΔ𝐸V, are shown. The wells have been drawn, schematically, as square; in fact,
their shape depends on several factors, factors beyond the scope of this book.

Figure 4.10: Quantum confinement in 0D, 1D, 2D and 3D (top) and the respective densities of states
(bottom).

band and one level of the valence band, two levels of the conduction band, or two levels of the valence
band. In the two latter cases there is, of course, the restriction of Eq. 4.60; i.e., theremight be only one level
in the valence or conduction band. In the following, we will prove Eq. 4.60 by fully solving the problem
of the finite square well.

4.3.1 Full solution to the finite square well.

Wewill try to give a detailed solution of the finite square quantumwell [8]. Let us assume the finite square
quantum well of Figure 4.11.⊟ Let us examine the regions with 𝐸 < 0 [regions (m) and (l)], where bound states may exist.

• Spatial regions I and III. In these regions, the time-independent Schrödinger equation is

− ℏ22𝑚Ψ′′(𝑥) = 𝐸Ψ(𝑥) ⟺ Ψ′′(𝑥) + 2𝑚𝐸ℏ2 Ψ(𝑥) = 0. (4.61)

Since 𝐸 < 0, we can assume that 2𝑚𝐸ℏ2 ≝ −𝑞2; also, let 𝑞 > 0. Hence, the above equation takes the
form Ψ′′(𝑥) − 𝑞2Ψ(𝑥) = 0. (4.62)
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Figure 4.11: Schematic representation of a finite square quantum well of potential energy.

Let us now try solutions of the formΨ(𝑥) = 𝐴𝑒−𝑞𝑥 + 𝐵𝑒𝑞𝑥 ⇒ (4.63)Ψ′(𝑥) = −𝐴𝑞𝑒−𝑞𝑥 + 𝐵𝑞𝑒𝑞𝑥 ⇒ (4.64)Ψ′′(𝑥) = 𝐴𝑞2𝑒−𝑞𝑥 + 𝐵𝑞2𝑒𝑞𝑥, (4.65)

which, as it can be easily verified, satisfy the Schrödinger equation. Additionally, sinceΨ(𝑥)must
be square-integrable, it should hold that

lim𝑥→∞Ψ(𝑥) = 0 ⇒ ΨIII(𝑥) = 𝐴𝑒−𝑞𝑥 (4.66)

lim𝑥→−∞Ψ(𝑥) = 0 ⇒ ΨI(𝑥) = 𝐵𝑒𝑞𝑥. (4.67)

Consequently, ΨI(𝑥) = 𝐵𝑒𝑞𝑥 (4.68)ΨIII(𝑥) = 𝐴𝑒−𝑞𝑥 (4.69)

• Spatial region II. There are two cases.

– Energy region l. In this region, the time-independent Schrödinger equation is− ℏ22𝑚Ψ′′(𝑥) − 𝑈𝑏Ψ(𝑥) = 𝐸Ψ(𝑥) ⟺ Ψ′′(𝑥) + 2𝑚ℏ2 (𝐸 + 𝑈𝑏)Ψ(𝑥) = 0. (4.70)

Since 𝐸 < −𝑈𝑏 ⟺ 𝐸 + 𝑈𝑏 < 0, we can assume that 2𝑚(𝐸+𝑈𝑏)ℏ2 ≝ −𝑄2; also, let𝑄 > 0.
Hence, the above equation takes the formΨ′′(𝑥) − 𝑄2Ψ(𝑥) = 0. (4.71)

We try solutions of the form Ψ(𝑥) = Γ𝑒−𝑄𝑥 + Δ𝑒𝑄𝑥 ⇒ (4.72)Ψ′(𝑥) = −Γ𝑄𝑒−𝑄𝑥 + Δ𝑄𝑒𝑄𝑥 ⇒ (4.73)Ψ′′(𝑥) = Γ𝑄2𝑒−𝑄𝑥 + Δ𝑄2𝑒𝑄𝑥, (4.74)

which, as it can be easily verified, satisfy the Schrödinger equation. Thus,ΨII(𝑥) = Γ𝑒−𝑄𝑥 + Δ𝑒𝑄𝑥 (4.75)
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– Energy region m. In this region, the time-independent Schrödinger equation is

− ℏ22𝑚Ψ′′(𝑥) − 𝑈𝑏Ψ(𝑥) = 𝐸Ψ(𝑥) ⟺ Ψ′′(𝑥) + 2𝑚ℏ2 (𝐸 + 𝑈𝑏)Ψ(𝑥) = 0. (4.76)

Since 0 > 𝐸 > −𝑈𝑏 ⟺ 𝐸 + 𝑈𝑏 > 0, we can assume that 2𝑚(𝐸+𝑈𝑏)ℏ2 ≝ 𝑘2; also, let 𝑘 > 0.
Hence, the above equation takes the formΨ′′(𝑥) + 𝑘2Ψ(𝑥) = 0. (4.77)

We try solutions of the form Ψ(𝑥) = Γ𝑒𝑖𝑘𝑥 + Δ𝑒−𝑖𝑘𝑥 ⇒ (4.78)Ψ′(𝑥) = 𝑖𝑘Γ𝑒𝑘𝑥 − 𝑖𝑘Δ𝑒−𝑖𝑘𝑥 ⇒ (4.79)Ψ′′(𝑥) = −𝑘2Γ𝑒𝑖𝑘𝑥 − 𝑘2Δ𝑒−𝑖𝑘𝑥, (4.80)

or of the form Ψ(𝑥) = Γ cos(𝑘𝑥) + Δ sin(𝑘𝑥) ⇒ (4.81)Ψ′(𝑥) = −Γ𝑘 sin(𝑘𝑥) + Δ𝑘 cos(𝑘𝑥) ⇒ (4.82)Ψ′′(𝑥) = −𝑘2Γ cos(𝑘𝑥) − 𝑘2Δ sin(𝑘𝑥), (4.83)

which, as it can be easily verified, both satisfy the Schrödinger equation.Thus, we can choose
either ΨII(𝑥) = Γ𝑒𝑖𝑘𝑥 + Δ𝑒−𝑖𝑘𝑥 (4.84)

or ΨII(𝑥) = Γ cos(𝑘𝑥) + Δ sin(𝑘𝑥) (4.85)

To sum up, in spatial region II there are two different solutions: Eq. 4.84 or Eq. 4.85 for energy
region m, and Eq. 4.75 for energy region l.⊚ To find the full solution, we must, as we know, equate the wave functions and their first derivatives

at the borders of the spatial regions, i.e., for 𝑥 = ±𝐿2 .⊚ Let us try to equate the solutions of Eqs. 4.68, 4.69, and 4.75, i.e., in energy region l, for 𝑥 = ±𝐿2 .∗ For 𝑥 = −𝐿2 , we have

ΨI 􏿵−𝐿2􏿸 = 𝐵𝑒−𝑞𝐿2ΨII 􏿵−𝐿2􏿸 = Γ𝑒𝑄𝐿2 + Δ𝑒−𝑄𝐿2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐵𝑒−𝑞𝐿2 = Γ𝑒𝑄𝐿2 + Δ𝑒−𝑄𝐿2 (4.86)

and Ψ′
I 􏿵−𝐿2􏿸 = 𝐵𝑞𝑒−𝑞𝐿2Ψ′
II 􏿵−𝐿2􏿸 = −Γ𝑄𝑒𝑄𝐿2 + Δ𝑄𝑒−𝑄𝐿2

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐵𝑞𝑒−𝑞𝐿2 = −Γ𝑄𝑒𝑄𝐿2 + Δ𝑄𝑒−𝑄𝐿2 (4.87)
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Dividing the above relations by parts, it occurs that

𝑞 = −Γ𝑄𝑒𝑄𝐿2 + Δ𝑄𝑒−𝑄𝐿2Γ𝑒𝑄𝐿2 + Δ𝑒−𝑄𝐿2 ⇒
Γ𝑞𝑒𝑄𝐿2 + Δ𝑞𝑒−𝑄𝐿2 = −Γ𝑄𝑒𝑄𝐿2 + Δ𝑄𝑒−𝑄𝐿2 ⇒Γ(𝑞 + 𝑄)𝑒𝑄𝐿2 = Δ(𝑄 − 𝑞)𝑒−𝑄𝐿2 ⇒ΓΔ = 𝑄 − 𝑞𝑄 + 𝑞𝑒−𝑄𝐿 (4.88)

∗ For 𝑥 = 𝐿2 , we have

ΨIII 􏿵𝐿2􏿸 = 𝐴𝑒−𝑞𝐿2ΨII 􏿵𝐿2􏿸 = Γ𝑒−𝑄𝐿2 + Δ𝑒𝑄𝐿2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐴𝑒−𝑞𝐿2 = Γ𝑒−𝑄𝐿2 + Δ𝑒𝑄𝐿2 (4.89)

and Ψ′
III 􏿵𝐿2􏿸 = −𝐴𝑞𝑒−𝑞𝐿2Ψ′
II 􏿵𝐿2􏿸 = −Γ𝑄𝑒−𝑄𝐿2 + Δ𝑄𝑒𝑄𝐿2

ЄЃЃЃЃЅЃЃЃЃІ ⇒ −𝐴𝑞𝑒−𝑞𝐿2 = −Γ𝑄𝑒−𝑄𝐿2 + Δ𝑄𝑒𝑄𝐿2 (4.90)

Dividing the above relations by parts, it occurs that

−𝑞 = −Γ𝑄𝑒−𝑄𝐿2 + Δ𝑄𝑒𝑄𝐿2Γ𝑒−𝑄𝐿2 + Δ𝑒𝑄𝐿2 ⇒
−Γ𝑞𝑒−𝑄𝐿2 − Δ𝑞𝑒𝑄𝐿2 = −Γ𝑄𝑒−𝑄𝐿2 + Δ𝑄𝑒𝑄𝐿2 ⇒Γ(𝑄 − 𝑞)𝑒−𝑄𝐿2 = Δ(𝑄 + 𝑞)𝑒𝑄𝐿2 ⇒ΓΔ = 𝑄 + 𝑞𝑄 − 𝑞𝑒𝑄𝐿 (4.91)

Combining Eqs. 4.88 and 4.91, we conclude that

𝑒−2𝑄𝐿 = (𝑄 + 𝑞)2(𝑄 − 𝑞)2 (4.92)

which is absurd, since for𝑄, 𝑞 > 0, it holds that 𝑒−2𝑄𝐿 < 1, while (𝑄+𝑞)2(𝑄−𝑞)2 > 1. In other words, there is no
solutions in the lower energy region l.⊚Let us now try to equate the solutions of Eqs. 4.68, 4.69, and 4.84, i.e. in energy regionm, for 𝑥 = ±𝐿2 .∗ For 𝑥 = −𝐿2 , we have

ΨI 􏿵−𝐿2􏿸 = 𝐵𝑒−𝑞𝐿2ΨII 􏿵−𝐿2􏿸 = Γ𝑒−𝑖𝑘 𝐿2 + Δ𝑒𝑖𝑘𝐿2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐵𝑒−𝑞𝐿2 = Γ𝑒−𝑖𝑘 𝐿2 + Δ𝑒𝑖𝑘𝐿2 (4.93)
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and Ψ′
I 􏿵−𝐿2􏿸 = 𝐵𝑞𝑒−𝑞𝐿2Ψ′
II 􏿵−𝐿2􏿸 = Γ𝑖𝑘𝑒−𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒𝑖𝑘 𝐿2

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐵𝑞𝑒−𝑞𝐿2 = Γ𝑖𝑘𝑒−𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒𝑖𝑘 𝐿2 (4.94)

Dividing the above relations by parts, it occurs that

𝑞 = Γ𝑖𝑘𝑒−𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒𝑖𝑘 𝐿2Γ𝑒−𝑖𝑘 𝐿2 + Δ𝑒𝑖𝑘𝐿2 ⇒
Γ𝑞𝑒−𝑖𝑘 𝐿2 + Δ𝑞𝑒𝑖𝑘 𝐿2 = Γ𝑖𝑘𝑒−𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒𝑖𝑘 𝐿2 ⇒Δ(𝑖𝑘 + 𝑞)𝑒𝑖𝑘 𝐿2 = Γ(𝑖𝑘 − 𝑞)𝑒−𝑖𝑘 𝐿2 ⇒ΔΓ = 𝑖𝑘 − 𝑞𝑖𝑘 + 𝑞𝑒−𝑖𝑘𝐿 (4.95)

∗ For 𝑥 = 𝐿2 , we have

ΨIII 􏿵𝐿2􏿸 = 𝐴𝑒−𝑞𝐿2ΨII 􏿵𝐿2􏿸 = Γ𝑒𝑖𝑘 𝐿2 + Δ𝑒−𝑖𝑘 𝐿2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐴𝑒−𝑞𝐿2 = Γ𝑒𝑖𝑘 𝐿2 + Δ𝑒−𝑖𝑘 𝐿2 (4.96)

and Ψ′
III 􏿵𝐿2􏿸 = −𝐴𝑞𝑒−𝑞𝐿2Ψ′
II 􏿵𝐿2􏿸 = Γ𝑖𝑘𝑒𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒−𝑖𝑘 𝐿2

ЄЃЃЃЃЅЃЃЃЃІ ⇒ −𝐴𝑞𝑒−𝑞𝐿2 = Γ𝑖𝑘𝑒𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒−𝑖𝑘 𝐿2 (4.97)

Dividing the above relations by parts, it occurs that

−𝑞 = Γ𝑖𝑘𝑒𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒−𝑖𝑘 𝐿2Γ𝑒𝑖𝑘 𝐿2 + Δ𝑒−𝑖𝑘 𝐿2 ⇒
−Γ𝑞𝑒𝑖𝑘 𝐿2 − Δ𝑞𝑒−𝑖𝑘 𝐿2 = Γ𝑖𝑘𝑒𝑖𝑘 𝐿2 − Δ𝑖𝑘𝑒−𝑖𝑘 𝐿2 ⇒Δ(𝑖𝑘 − 𝑞)𝑒−𝑖𝑘 𝐿2 = Γ(𝑖𝑘 + 𝑞)𝑒𝑖𝑘 𝐿2 ⇒ΔΓ = 𝑖𝑘 + 𝑞𝑖𝑘 − 𝑞 𝑒𝑖𝑘𝐿 (4.98)

Combining Eqs. 4.95 and 4.98, we conclude that

𝑒2𝑖𝑘𝐿 = (𝑖𝑘 − 𝑞)2(𝑖𝑘 + 𝑞)2 = −𝑘2 + 𝑞2 − 2𝑖𝑘𝑞−𝑘2 + 𝑞2 + 2𝑖𝑘𝑞 (4.99)

At this point, it would be useful to introduce the dimensionless quantities

𝜉 = 𝑘𝐿2 and 𝜂 = 𝑞𝐿2 (4.100)
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as well as the quantity 𝛼2 ≝ 𝜉2 + 𝜂2 (4.101)

Therefore, 𝛼2 = 𝐿24 (𝑘2 + 𝑞2) = 𝐿24 􏿰2𝑚ℏ2 (𝐸 + 𝑈𝑏) − 2𝑚ℏ2 𝐸􏿳 ⇒
𝛼2 = 𝑚𝑈𝑏𝐿22ℏ2 (4.102)

Hence,𝛼 is constant, independent of𝐸, and expresses the efficiencyof the quantumwell. It is proportional
to the mass𝑚 or the effective mass𝑚∗ of the particle, the depth of the well𝑈𝑏 and the squared width of
the well 𝐿2. In other words, the quantity 𝛼2 expresses the lack of freedom of the particle, since when its
mass or the depth of the well or the width of the well increase, the particle becomes more bound.

Additionally, if we define the quantity 𝛽2 ≝ −𝜉2 + 𝜂2 (4.103)

Eq. 4.99 becomes

𝑒𝑖4𝜉 = −𝜉2 + 𝜂2 − 2𝑖𝜉𝜂−𝜉2 + 𝜂2 + 2𝑖𝜉𝜂 = 𝛽2 − 2𝑖𝜉𝜂𝛽2 + 2𝑖𝜉𝜂 = (𝛽2 − 2𝑖𝜉𝜂)2(𝛽2 + 2𝑖𝜉𝜂)(𝛽2 − 2𝑖𝜉𝜂) = 𝛽4 − 4𝑖𝜉𝜂𝛽2 − 4𝜉2𝜂2𝛽4 + 4𝜉2𝜂2 ⇒
𝑒𝑖4𝜉(𝛽4 + 4𝜉2𝜂2) = 𝛽4 − 4𝑖𝜉𝜂𝛽2 − 4𝜉2𝜂2. (4.104)

However, from the definitions of 𝛽2 and 𝛼2, we have𝛽4 + 4𝜉2𝜂2 = 𝜉4 + 𝜂4 − 2𝜉2𝜂2 + 4𝜉2𝜂2 = (𝜉2 + 𝜂2)2 = 𝛼4 (4.105)

and 𝛽4 − 4𝜉2𝜂2 = 𝛽4 + 4𝜉2𝜂2 − 8𝜉2𝜂2 = 𝛼4 − 8𝜉2𝜂2. (4.106)
Thus, Eq. 4.104 becomes 𝛼4𝑒𝑖4𝜉 = 𝛼4 − 8𝜉2𝜂2 − 4𝑖𝜉𝜂𝛽2 ⇒𝛼4 cos(4𝜉) + 𝑖𝛼4 sin(4𝜉) = (𝛼4 − 8𝜉2𝜂2) + 𝑖(−4𝜉𝜂𝛽2) ⇒𝛼4 cos(4𝜉) = 𝛼4 − 8𝜉2𝜂2𝛼4 sin(4𝜉) = −4𝜉𝜂𝛽2 􏿿 ⇒ tan(4𝜉) = −4𝜉𝜂𝛽2𝛼4 − 8𝜉2𝜂2 , (4.107)

which seems rather complex.However, it couldbe somewhat simplified ifwenotice that, by addingEqs. 4.105
and 4.106, it occurs that

2𝛽2 = 2𝛼4 − 8𝜉2𝜂2 ⇒ 𝜉2𝜂2 = 𝛼4 − 𝛽44 ⇒ 𝜉𝜂 = √𝛼4 − 𝛽42 . (4.108)

The condition 𝛼4 − 𝛽4 > 0 is true, since, performing the relevant substitutions, it is reduced to the con-
dition 𝐸 +𝑈𝑏 > 0, which is true, given that we are in energy region m. Substituting the above relation to
Eq. 4.107, we conclude that the bound states in region m are given by the condition

tan(4𝜉) = 2√𝛼4 − 𝛽4𝛽2𝛼4 − 2𝛽4 (4.109)

Let us examine if we can derive alternative, simpler forms than the one of Eq.4.109, by equating this
time Eqs. 4.68, 4.69 and 4.85 (i.e., the alternative forms of the solutions in spatial region II) in energy
regionm, for 𝑥 = ±𝐿2 . Wewill exploit the fact that we know that since the potential energy of the system
is even, its eigenfunctions will be alternately even and odd.
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• For even wavefunctions, [Ψ(−𝑥) = Ψ(𝑥)]:
– In spatial regions I and III we haveΨI(𝑥) = ΨIII(−𝑥) ⇒ 𝐵𝑒𝑞𝑥 = 𝐴𝑒𝑞𝑥 ⇒ 𝐵 = 𝐴 (4.110)

– In spatial region ΙΙ we haveΨIΙ(𝑥) = ΨII(−𝑥) ⇒ Γ cos(𝑘𝑥) + Δ sin(𝑘𝑥) = Γ cos(𝑘𝑥) − Δ sin(𝑘𝑥) ⇒ Δ = 0 (4.111)

Hence, to sum up,ΨI(𝑥) = 𝐴𝑒𝑞𝑥 Ψ′
I(𝑥) = 𝐴𝑞𝑒𝑞𝑥 (4.112)ΨII(𝑥) = Γ cos(𝑘𝑥) Ψ′
II(𝑥) = −Γ𝑘 sin(𝑘𝑥) (4.113)ΨIII(𝑥) = 𝐴𝑒−𝑞𝑥 Ψ′
III(𝑥) = −𝐴𝑞𝑒−𝑞𝑥. (4.114)

By demanding the continuity ofΨ(𝑥) andΨ′(𝑥) at 𝑥 = −𝐿2 , it occurs thatΨI(−𝐿2 ) = ΨII(−𝐿2 ) ⇒ 𝐴𝑒−𝑞𝐿2 = Γ cos􏿵𝑘𝐿2 􏿸, (4.115)

Ψ′
I(−𝐿2 ) = Ψ′

II(−𝐿2 ) ⇒ 𝐴𝑞𝑒−𝑞𝐿2 = Γ𝑘 sin􏿵𝑘𝐿2 􏿸 (4.116)

Dividing the above equations by parts, we conclude that

tan􏿵𝑘𝐿2 􏿸 = 𝑞𝑘 (4.117)

or, alternatively,

tan(𝜉) = 𝜂𝜉 ⇒ tan(𝜉) = √𝛼2 − 𝜉2𝜉 . (4.118)

It can be easily be shown that demanding the continuity ofΨ(𝑥) andΨ′(𝑥) at 𝑥 = 𝐿2 leads to the
exact same expression.

• For odd wavefunctions, [Ψ(−𝑥) = −Ψ(𝑥)]:
– In spatial regions I and III we have−ΨI(𝑥) = ΨIII(−𝑥) ⇒ −𝐵𝑒𝑞𝑥 = 𝐴𝑒𝑞𝑥 ⇒ 𝐵 = −𝐴 (4.119)

– Spatial region II we have−ΨIΙ(𝑥) = ΨII(−𝑥) ⇒ −Γ cos(𝑘𝑥)−Δ sin(𝑘𝑥) = Γ cos(𝑘𝑥)−Δ sin(𝑘𝑥) ⇒ Γ = 0 (4.120)

Hence, to sum up,ΨI(𝑥) = −𝐴𝑒𝑞𝑥 Ψ′
I(𝑥) = −𝐴𝑞𝑒𝑞𝑥 (4.121)ΨII(𝑥) = Δ sin(𝑘𝑥) Ψ′
II(𝑥) = Δ𝑘 cos(𝑘𝑥) (4.122)ΨIII(𝑥) = 𝐴𝑒−𝑞𝑥 Ψ′
III(𝑥) = −𝐴𝑞𝑒−𝑞𝑥. (4.123)
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By demanding the continuity ofΨ(𝑥) andΨ′(𝑥) at 𝑥 = −𝐿2 , it occurs thatΨI(−𝐿2 ) = ΨII(−𝐿2 ) ⇒ −𝐴𝑒−𝑞𝐿2 = −Δ sin􏿵𝑘𝐿2 􏿸, (4.124)

Ψ′
I(−𝐿2 ) = Ψ′

II(−𝐿2 ) ⇒ −𝐴𝑞𝑒−𝑞𝐿2 = Δ𝑘 cos􏿵𝑘𝐿2 􏿸 (4.125)

Dividing the above equations by parts, we conclude that

tan􏿵𝑘𝐿2 􏿸 = −𝑘𝑞 (4.126)

or, alternatively,

tan(𝜉) = −𝜉𝜂 ⇒ tan(𝜉) = − 𝜉√𝛼2 − 𝜉2 . (4.127)

It can be easily be shown that demanding the continuity ofΨ(𝑥) andΨ′(𝑥) at 𝑥 = 𝐿2 leads to the
exact same expression.

To wrap this up, using Eqs. 4.68, 4.69 and 4.85, and imposing the boundary conditions (the continuity
of the wavefunction and its first derivative on the borders of the well), we conclude that in energy region
m there are bound states which are given by the pair of solutions

tan(𝜉) = √𝛼2 − 𝜉2𝜉 even and tan(𝜉) = − 𝜉√𝛼2 − 𝜉2 odd (4.128)

We remind the reader that 𝑘 > 0 ⟺ 𝜉 > 0, while the function tan(𝜉) is not defined for 𝜉 =(2ℓ + 1)𝜋2 , ∀ℓ ∈ ℕ∗. Eqs. 4.128 can be solved graphically. To this end, we define the function

𝑓(𝜉) ∶= √𝛼2 − 𝜉2𝜉 , (4.129)

the field of definition of which is the interval (0, 𝛼], and for which 𝑓(𝛼) = 0, lim𝜉→0+ 𝑓(𝜉) = +∞, as
well as the function 𝑔(𝜉) ∶= − 𝜉√𝛼2 − 𝜉2 , (4.130)

the field of definition of which is the interval [0, 𝛼), and for which 𝑔(0) = 0, lim𝜉→𝛼− 𝑔(𝜉) = −∞. The
graphical solution to Eq. 4.128 is presented in Figure 4.12, for several values of the parameter 𝛼. From
Figure 4.12 we notice that• for 𝛼 ∈ (0, 𝜋/2) ∃ 1 intersection of tan(𝜉) and 𝑓(𝜉), and∄ any intersection of tan(𝜉) and 𝑔(𝜉)• for 𝛼 ∈ [𝜋/2, 𝜋) ∃ 1 intersection of tan(𝜉) and 𝑓(𝜉), and∃ 1 intersection of tan(𝜉) and 𝑔(𝜉)• for 𝛼 ∈ [𝜋, 3𝜋/2) ∃ 2 intersections of tan(𝜉) and 𝑓(𝜉), and∃ 1 intersection of tan(𝜉) and 𝑔(𝜉)• for 𝛼 ∈ [3𝜋/2, 2𝜋) ∃ 2 intersections of tan(𝜉) and 𝑓(𝜉), and∃ 2 intersections of tan(𝜉) and 𝑔(𝜉)• for 𝛼 ∈ [2𝜋, 5𝜋/2) ∃ 3 intersections of tan(𝜉) and 𝑓(𝜉), and∃ 2 intersections of tan(𝜉) and 𝑔(𝜉)• etc.
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Figure 4.12: Graphical solution of the equations tan(𝜉) = 𝑓(𝜉) (cf. Eq. 4.129, dashed lines) and tan(𝜉) =𝑔(𝜉) (cf. Eq. 4.130, dotted lines), for several values of the parameter 𝛼, which expresses the efficiency of
the quantum well, within the intervals mentioned in the right side.

Thus, there is always at least one solution, while every time the parameter𝛼 is increased by 𝜋2 onemore
solution is added. Hence, the number of solutions (bound states) is

𝑛 = 1 + Int

Ϻϻϻϻϻϼ𝛼𝜋2
ϽϾϾϾϾϿ = 1 + Int

Ϻϻϻϻϻϻϻϻϼ√𝑚𝑈𝑏𝐿22ℏ2𝜋2
ϽϾϾϾϾϾϾϾϿ ⇒

𝑛 = 1 + Int

Ϻϻϻϻϻϼ√2𝑚∗𝑈𝑏𝐿2𝜋2ℏ2 ϽϾϾϾϾϿ (4.131)

which is –the now proven– Eq. 4.60.

4.4 From isolated one-level systems to a two-level, three-level, and four-level system.

Wewill now narrate in detail how a 2LS is obtained from two isolated 1LS, when the latter approach each
other. We follow the approach described in the textbook [9]. Relative to the Tight Binding method, the
readers can also consult the textbooks [10, 11, 12].Wewill define all the relevant integrals: normalization,
on-site energies, potential energies of interaction of one 1LS with the other, overlap integrals, transfer or
interaction integrals.Wewill address and solve theproblemat threedifferent approximation levels.Wewill
also discuss the bonding and antibonding orbital of the 2LS, in terms of its eigenvalues and eigenvectors.
Finally, we will also discuss, in a similar manner, how a 3LS is formed by three isolated 1LS, and how a
4LS is formed by four isolated 1LS.
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4.4.1 Two-level system (2LS).

Let us report how a 2LS is formed by two 1LSs which get close to each other, within the tight-binding
approximation. Let us assume that the isolated 1LSs have eigenenergies 𝜖L (the left one) and 𝜖R (the
right one). This holds as long as they are isolated. However, when they are brought closer to each other
and the unified system (i.e., the 2LS) is formed, the latter will have different eigenenergies; let us call them𝐸1 and 𝐸2. This is narrated in a way in Figure 4.13.

Figure 4.13: From two one-level systems (1LSs), one on the left (L) and one on the right (R), which have
eigenenergies 𝜖L and 𝜖R, respectively, and are placed at infinite distance, to the unified two-level system
(2LS), which has eigenenergies 𝐸1 and 𝐸2, different from 𝜖L and 𝜖R.

So, let the distance between the two isolated 1LSs be infinite. The Hamiltonian of the left (L) is 𝐻̂L =𝑇̂ + 𝑈̂L, where 𝑇̂ is the kinetic term and 𝑈̂L is the potential energy term. If its eigenstate is |𝜓L􏽼 and its
eigenenergy is 𝜖L = 􏾉𝜓L| 𝐻̂L |𝜓L􏽼, then 𝐻̂L |𝜓L􏽼 = 𝜖L |𝜓L􏽼 . (4.132)

The right (R) isolated system is at infinite distance from L, with Hamiltonian 𝐻̂R = 𝑇̂ + 𝑈̂R, eigenstate|𝜓R􏽼, and eigenenergy 𝜖R = 􏾉𝜓R| 𝐻̂R |𝜓R􏽼. Thus,𝐻̂R |𝜓R􏽼 = 𝜖R |𝜓R􏽼 . (4.133)

If we further suppose that the two 1LSs come closer to each other so that they become coupled, then
we will have a 2LS. Let us write the eigenstates of the 2LS as a linear combination of the eigenstates of the
two isolated 1LSs, i.e., |𝜓􏽼 = 𝑐L |𝜓L􏽼 + 𝑐R |𝜓R􏽼 . (4.134)

The Ηamiltonian of the 2LS will be 𝐻̂ = 𝑇̂ + 𝑈̂L + 𝑈̂R. (4.135)

Thus, if we substitute Eqs. (4.134) and (4.135) into𝐻̂ |𝜓􏽼 = 𝐸 |𝜓􏽼 , (4.136)

we will obtain (𝑇̂ + 𝑈̂L + 𝑈̂R)(𝑐L |𝜓L􏽼 + 𝑐R |𝜓R􏽼) = 𝐸(𝑐L |𝜓L􏽼 + 𝑐R |𝜓R􏽼). (4.137)

Multiplying Eq. (4.137) by 􏾉𝜓L|, we obtain𝑐L 􏾉𝜓L| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓L􏽼 + 𝑐R 􏾉𝜓L| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓R􏽼 = 𝑐L𝐸⟨𝜓L|𝜓L⟩ + 𝑐R𝐸⟨𝜓L|𝜓R⟩. (4.138)

We call on-site energy of the L 1LS the term𝜖A ∶= 􏾉𝜓A| 𝑇̂ + 𝑈̂A |𝜓A􏽼 , (4.139)
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while, the integral of the potential energy of the R 1LS at the L 1LS is𝑈LRL ∶= 􏾉𝜓L| 𝑈̂R |𝜓L􏽼 . (4.140)

We call transfer or interaction integral between L and R the term𝑡LR ∶= 􏾉𝜓L| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓R􏽼 . (4.141)

Finally, we cal overlap integral between L and R the term𝑆LR ∶= ⟨𝜓L|𝜓R⟩. (4.142)

Given that the eigenfunctions are normalized,⟨𝜓L|𝜓L⟩ = ⟨𝜓R|𝜓R⟩ = 1. (4.143)

Hence, Eq. (4.138) can be written as𝑐L𝜖L + 𝑐L𝑈LRL + 𝑐R𝑡LR = 𝑐L𝐸 + 𝑐R𝐸𝑆LR (4.144)

Given that the integral𝑈LRL is very small, if we ignore it, then Eq. (4.144) reaches the simpler form𝑐L𝜖L + 𝑐R𝑡LR = 𝑐L𝐸 + 𝑐R𝐸𝑆LR (4.145)

The assumption that𝑈LRL is negligible is the essence of the method that is called Tight Binding. It means
that we can approximately ignore the potential energy of the other sites near to a particular site, hence,􏾉𝜓L| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓L􏽼 ≈ 􏾉𝜓L| 𝑇̂ + 𝑈̂L |𝜓L􏽼 = 𝜖L (4.146)

or written alternatively, 􏾉𝜓L| 𝐻̂ |𝜓L􏽼 ≈ 􏾉𝜓L| 𝐻̂L |𝜓L􏽼 = 𝜖L. (4.147)
Additionally, given that the overlap integral𝑆LR is somewhat small, if we ignore it as well, thenEq. (4.145)
reaches the even simpler form 𝑐L𝜖L + 𝑐R𝑡LR = 𝑐L𝐸 (4.148)

Similarly, multiplying Eq. (4.137), by 􏾉𝜓R|, we have𝑐L 􏾉𝜓R| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓L􏽼 + 𝑐R 􏾉𝜓R| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓R􏽼 = 𝑐L𝐸⟨𝜓R|𝜓L⟩ + 𝑐R𝐸⟨𝜓R|𝜓R⟩. (4.149)

Defining the integrals in the same fashion, we have𝜖R ∶= 􏾉𝜓R| 𝑇̂ + 𝑈̂R |𝜓R􏽼 , (4.150)𝑈RLR ∶= 􏾉𝜓R| 𝑈̂L |𝜓R􏽼 , (4.151)𝑡RL ∶= 􏾉𝜓R| 𝑇̂ + 𝑈̂L + 𝑈̂R |𝜓L􏽼 , (4.152)𝑆RL ∶= ⟨𝜓R|𝜓L⟩. (4.153)
Hence, Eq. (4.149) is written as𝑐L𝑡RL + 𝑐R𝜖R + 𝑐R𝑈RLR = 𝑐L𝐸𝑆RL + 𝑐R𝐸 (4.154)

If we ignore the integral𝑈RLR, applying Tight Binding, then Eq. (4.154) reaches the simpler form𝑐L𝑡RL + 𝑐R𝜖R = 𝑐L𝐸𝑆RL + 𝑐R𝐸 (4.155)

while, if we also ignore the integral 𝑆RL, then Eq. (4.155) reaches the even simpler form𝑐L𝑡RL + 𝑐R𝜖R = 𝑐R𝐸 (4.156)

Hence, in respect with the level of approximation chosen, we have to solve the system of Eqs. (4.144) and
(4.154) or of Eqs. (4.145) and (4.155) or of Eqs. (4.148) and (4.156).
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������� )LUVW OHYHO RI DSSUR[LPDWLRQ�

If we do not ignore any of the integrals 𝑈LRL, 𝑈RLR and 𝑆LR, 𝑆RL, then we have to solve the system of
Eqs. (4.144) and (4.154). Since all integrals are real and due to hermiticity, we can define𝑡 = 𝑡LR = 𝑡∗LR = 𝑡RL ∈ ℛ , (4.157)𝑆 = 𝑆LR = 𝑆∗LR = 𝑆RL ∈ ℛ . (4.158)

Moreover, let us suppose, for simplicity that𝑈 = 𝑈LRL = 𝑈∗
LRL = 𝑈RLR ∈ ℛ . (4.159)

Thus, the system of equations can be written in matrix form as

􏿰𝜖L + 𝑈 𝑡𝑡 𝜖R + 𝑈􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰 Ε Ε𝑆Ε𝑆 𝐸 􏿳 􏿰𝑐L𝑐R􏿳 (4.160)

or 􏿰𝜖L + 𝑈 − 𝐸 𝑡 − 𝐸𝑆𝑡 − 𝐸𝑆 𝜖R + 𝑈 − 𝐸􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰00􏿳 . (4.161)

The matrix eigenvalues occur by the roots of its determinant(𝜖L + 𝑈 − 𝐸)(𝜖R + 𝑈 − 𝐸) − (𝑡 − 𝐸𝑆)2 = 0 ⇒𝐸2 − (𝜖L + 𝜖R + 2𝑈)𝐸 + (𝜖L + 𝑈)(𝜖R + 𝑈) − 𝑡2 − 𝐸2𝑆2 + 2𝑆𝑡𝐸 = 0 ⇒(1 − 𝑆2)𝐸2 − (𝜖L + 𝜖R + 2𝑈 − 2𝑆𝑡)𝐸 + (𝜖L + 𝑈)(𝜖R + 𝑈) − 𝑡2 = 0.
So, we arrive at a quadratic equation with respect to the energy 𝐸. Its discriminant isΔ = (𝜖L + 𝜖R + 2𝑈 − 2𝑆𝑡)2 − 4(1 − 𝑆2)[(𝜖L + 𝑈)(𝜖R + 𝑈) − 𝑡2].
Hence, the eigenvalues are

𝐸1,2 = (𝜖L + 𝜖R + 2𝑈 − 2𝑆𝑡) ± √(𝜖L + 𝜖R + 2𝑈 − 2𝑆𝑡)2 − 4(1 − 𝑆2)[(𝜖L + 𝑈)(𝜖R + 𝑈) − 𝑡2]2(1 − 𝑆2) .
(4.162)

If we suppose that the two 1LS are identical, then 𝜖L = 𝜖R ∶= 𝜖 and the calculations are simpler.
Indeed, the matrix becomes 􏿰𝜖 + 𝑈 − 𝐸 𝑡 − 𝐸𝑆𝑡 − 𝐸𝑆 𝜖 + 𝑈 − 𝐸􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰00􏿳 (4.163)

and, from the condition that the determinant becomes zero, we have(𝜖 + 𝑈 − 𝐸)2 − (𝑡 − 𝐸𝑆)2 = 0 ⇒(𝜖 + 𝑈 − 𝐸 + 𝑡 − 𝐸𝑆)(𝜖 + 𝑈 − 𝐸 − 𝑡 + 𝐸𝑆) = 0 ⇒
𝐸 = 𝜖 + 𝑈 ± 𝑡1 ± 𝑆 (4.164)

Let us assume that 𝜖 + 𝑈 > 0, taking the reference level appropriately. Also, usually |𝑡| is small relative
to |𝜖 + 𝑈|. If we assume that 𝑡 < 0 (attraction of the two 1LSs) and 𝑆 > 0 (overlap integral of the
eigenfunctions of the two ground states of the two 1LSs), then 𝐸1 = 𝜖+𝑈+𝑡1+𝑆 < 𝐸2 = 𝜖+𝑈−𝑡1−𝑆 . This can
be shown by the nodes of the eigenvectors, as we will realize immediately below. According to the node
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theorem the number of nodes (roots) increases by 1 as we move from the ground state (no nodes) to
higher states. Hence, the first excited state is the one which has one node. To calculate the eigenvectors,
we use the relations (𝜖 + 𝑈 − 𝐸)𝑐L + (𝑡 − 𝐸𝑆)𝑐R = 0(𝑡 − 𝐸𝑆)𝑐L + (𝜖 + 𝑈 − 𝐸)𝑐R = 0􏿿 . (4.165)

For the eigenvector that corresponds to the eigenvalue 𝐸1 = 𝜖+𝑈+𝑡1+𝑆 , if we replace the eigenvalue 𝐸1 in
Eq. (4.165), we have

􏿶𝜖 + 𝑈 − 𝜖 + 𝑈 + 𝑡1 + 𝑆 􏿹 𝑐L + 􏿶𝑡 − 𝜖 + 𝑈 + 𝑡1 + 𝑆 𝑆􏿹 𝑐R = 0
􏿶𝑡 − 𝜖 + 𝑈 + 𝑡1 + 𝑆 𝑆􏿹 𝑐L + 􏿶𝜖 + 𝑈 − 𝜖 + 𝑈 + 𝑡1 + 𝑆 􏿹 𝑐R = 0

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
􏿶𝜖 + 𝑈 + 𝜖𝑆 + 𝑈𝑆 − 𝜖 − 𝑈 − 𝑡1 + 𝑆 􏿹 𝑐L + 􏿶𝑡 + 𝑡𝑆 − 𝜖𝑆 − 𝑈𝑆 − 𝑡𝑆1 + 𝑆 􏿹 𝑐R = 0
􏿶𝑡 + 𝑡𝑆 − 𝜖𝑆 − 𝑈𝑆 − 𝑡𝑆1 + 𝑆 􏿹 𝑐L + 􏿶𝜖 + 𝑈 + 𝜖𝑆 + 𝑈𝑆 − 𝜖 − 𝑈 − 𝑡1 + 𝑆 􏿹 𝑐R = 0

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒(𝜖𝑆 + 𝑈𝑆 − 𝑡)𝑐L + (𝑡 − 𝜖𝑆 − 𝑈𝑆)𝑐R = 0(𝑡 − 𝜖𝑆 − 𝑈𝑆)𝑐L + (𝜖𝑆 + 𝑈𝑆 − 𝑡)𝑐R = 0􏿿
Thus, 𝑐L = 𝑐R = 𝑐. (4.166)

Hence, the eigenvector that corresponds to the eigenvalue 𝐸1 has the form

𝑣⃗1 = 􏿰𝑐𝑐􏿳 .
For it to be normalized, it must hold that|𝑣⃗1|2 = 1 ⇒ 2|𝑐|2 = 1 ⇒ |𝑐| = 1/√2.
Thus, a convenient choice would be 𝑣⃗1 = 1√2 􏿰11􏿳 . (4.167)

For the eigenvector that corresponds to the eigenvalue 𝐸2 = 𝜖+𝑈−𝑡1−𝑆 , if we replace the eigenvalue 𝐸2 in
Eq. (4.165), we have

􏿶𝜖 + 𝑈 − 𝜖 + 𝑈 − 𝑡1 − 𝑆 􏿹 𝑐L + 􏿶𝑡 − 𝜖 + 𝑈 − 𝑡1 − 𝑆 𝑆􏿹 𝑐R = 0
􏿶𝑡 − 𝜖 + 𝑈 − 𝑡1 − 𝑆 𝑆􏿹 𝑐L + 􏿶𝜖 + 𝑈 − 𝜖 + 𝑈 − 𝑡1 − 𝑆 􏿹 𝑐R = 0

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
􏿶𝜖 + 𝑈 − 𝜖𝑆 − 𝑈𝑆 − 𝜖 − 𝑈 + 𝑡1 − 𝑆 􏿹 𝑐L + 􏿶𝑡 − 𝑡𝑆 − 𝜖𝑆 − 𝑈𝑆 + 𝑡𝑆1 − 𝑆 􏿹 𝑐R = 0
􏿶𝑡 − 𝑡𝑆 − 𝜖𝑆 − 𝑈𝑆 + 𝑡𝑆1 − 𝑆 􏿹 𝑐L + 􏿶𝜖 + 𝑈 − 𝜖𝑆 − 𝑈𝑆 − 𝜖 − 𝑈 + 𝑡1 − 𝑆 􏿹 𝑐R = 0

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒(𝑡 − 𝜖𝑆 − 𝑈𝑆)𝑐L + (𝑡 − 𝜖𝑆 − 𝑈𝑆)𝑐R = 0(𝑡 − 𝜖𝑆 − 𝑈𝑆)𝑐L + (𝑡 − 𝜖𝑆 − 𝑈𝑆)𝑐R = 0􏿿
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Thus, 𝑐L = −𝑐R = 𝑐. (4.168)
Hence, the eigenvector that corresponds to the eigenvalue 𝐸2 has the form

𝑣⃗2 = 􏿰 𝑐−𝑐􏿳 .
For it to be normalized, it must hold that|𝑣⃗2|2 = 1 ⇒ 2|𝑐|2 = 1 ⇒ |𝑐| = 1/√2.
Thus, a convenient choice would be 𝑣⃗2 = 1√2 􏿰 1−1􏿳 . (4.169)

As we can see, the eigenvector 𝑣⃗1 of the level 𝐸1 has no nodes, while the eigenvector 𝑣⃗2 of the level𝐸2 has one node. Hence, the level 𝐸1 = 𝜖+𝑈+𝑡1+𝑆 with eigenvector 𝑣⃗1 is the ground level, while the level𝐸2 = 𝜖+𝑈−𝑡1−𝑆 with eigenvector 𝑣⃗2 is the first excited level. For the condition𝐸1 = 𝜖+𝑈+𝑡1+𝑆 < 𝐸2 = 𝜖+𝑈−𝑡1−𝑆 to
hold, it must also hold that 𝑆 > 0 and 𝑡 < 0 and the numerators have to be positive.Thewavefunctions of
the ground and first excited state of the unified quantum well (i.e., of the 2LS) are shown in Figure 4.14.

Figure 4.14: The wavefunctions of the ground and first excited state of the unified quantum well (i.e., of
the 2LS), which are produced by the normalized addition (as obtained by the eigenvector 𝑣⃗1) and by
the normalized subtraction (as obtained by the eigenvector 𝑣⃗2) of the ground state wavefunctions of the
previously isolated quantum wells (i.e., of the two 1LSs).

������� 6HFRQG OHYHO RI DSSUR[LPDWLRQ�

If we ignore the integrals𝑈LRL = 𝑈RLR = 𝑈, but we do not ignore the integrals 𝑆LR = 𝑆RL = 𝑆, then the
system of Equations to solve is the one of Eqs. (4.145) and (4.155), which can be written in matrix form
as 􏿰𝜖L 𝑡𝑡 𝜖R􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰 Ε Ε𝑆Ε𝑆 𝐸 􏿳 􏿰𝑐L𝑐R􏿳 (4.170)

or 􏿰𝜖L − 𝐸 𝑡 − 𝐸𝑆𝑡 − 𝐸𝑆 𝜖R − 𝐸􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰00􏿳 (4.171)
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The matrix eigenvalues occur by the roots of its determinant, i.e.,(𝜖L − 𝐸)(𝜖R − 𝐸) − (𝑡 − 𝐸𝑆)2 = 0 ⇒𝐸2 − (𝜖L + 𝜖R)𝐸 + 𝜖L𝜖R − 𝑡2 − 𝐸2𝑆2 + 2𝑆𝑡𝐸 = 0 ⇒(1 − 𝑆2)𝐸2 − (𝜖L + 𝜖R − 2𝑆𝑡)𝐸 + 𝜖L𝜖R − 𝑡2 = 0.
So, we arrive at a quadratic equation with respect to the energy 𝐸. Its discriminant isΔ = (𝜖L + 𝜖R − 2𝑆𝑡)2 − 4(1 − 𝑆2)(𝜖L𝜖R − 𝑡2) (4.172)

Hence, the eigenvalues are

𝐸1,2 = (𝜖L + 𝜖R − 2𝑆𝑡) ± √(𝜖L + 𝜖R − 2𝑆𝑡)2 − 4(1 − 𝑆2)(𝜖L𝜖R − 𝑡2)2(1 − 𝑆2) . (4.173)

If we suppose that the two 1LSs are identical, then 𝜖L = 𝜖R ∶= 𝜖 and the calculations are simpler.
Indeed, the system of equations in matrix form becomes

􏿰 𝜖 − 𝐸 𝑡 − 𝐸𝑆𝑡 − 𝐸𝑆 𝜖 − 𝐸 􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰00􏿳 (4.174)

and, from the condition that the determinant should be zero, we have(𝜖 − 𝐸)2 − (𝑡 − 𝐸𝑆)2 = 0 ⇒(𝜖 − 𝐸 + 𝑡 − 𝐸𝑆)(𝜖 − 𝐸 − 𝑡 + 𝐸𝑆) = 0 ⇒
𝐸 = 𝜖 ± 𝑡1 ± 𝑆. (4.175)

Let us assume𝜖 > 0, taking taking the reference level appropriately.Also, usually |𝑡| is small relative to |𝜖|. If
we assume that 𝑡 < 0 (as attraction of the two 1LSs) and 𝑆 > 0 (as overlap integral of the eigenfunctions
of the two 1LSs ground states), then 𝐸1 = 𝜖+𝑡1+𝑆 < 𝐸2 = 𝜖−𝑡1−𝑆 . This can be shown by the nodes of the
eigenvectors, as we will realize immediately below. According to the node theorem the number of nodes
(roots) increases by1 aswemove fromtheground state (nonodes) tohigher states.Hence, thefirst excited
state is the one which has one node. To calculate the eigenvectors, we use the relations(𝜖 − 𝐸)𝑐L + (𝑡 − 𝐸𝑆)𝑐R = 0(𝑡 − 𝐸𝑆)𝑐L + (𝜖 − 𝐸)𝑐R = 0􏿿 (4.176)

For the eigenvector that corresponds to the eigenvalue 𝐸1 = 𝜖+𝑡1+𝑆 , if we replace the eigenvalue 𝐸1 in
Eq. (4.176), we have 􏿵𝜖 − 𝜖 + 𝑡1 + 𝑆􏿸 𝑐L + 􏿵𝑡 − 𝜖 + 𝑡1 + 𝑆𝑆􏿸 𝑐R = 0􏿵𝑡 − 𝜖 + 𝑡1 + 𝑆𝑆􏿸 𝑐L + 􏿵𝜖 − 𝜖 + 𝑡1 + 𝑆􏿸 𝑐R = 0

ЄЃЃЃЃЅЃЃЃЃІ ⇒
􏿶𝜖 + 𝜖𝑆 − 𝜖 − 𝑡1 + 𝑆 􏿹 𝑐L + 􏿶𝑡 + 𝑡𝑆 − 𝜖𝑆 − 𝑡𝑆1 + 𝑆 􏿹 𝑐R = 0
􏿶𝑡 + 𝑡𝑆 − 𝜖𝑆 − 𝑡𝑆1 + 𝑆 􏿹 𝑐L + 􏿶𝜖 + 𝜖𝑆 − 𝜖 − 𝑡1 + 𝑆 􏿹 𝑐R = 0

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒(𝜖𝑆 − 𝑡)𝑐L + (𝑡 − 𝜖𝑆)𝑐R = 0(𝑡 − 𝜖𝑆)𝑐L + (𝜖𝑆 − 𝑡)𝑐R = 0􏿿
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Thus, 𝑐L = 𝑐R = 𝑐. (4.177)

Hence, the eigenvector that corresponds to the eigenvalue 𝐸1 has the form

𝑣⃗1 = 􏿰𝑐𝑐􏿳 .
For it to be normalized, it must hold that|𝑣⃗1|2 = 1 ⇒ 2|𝑐|2 = 1 ⇒ |𝑐| = 1/√2.
Thus, a convenient choice is 𝑣⃗1 = 1√2 􏿰11􏿳 . (4.178)

For the eigenvector that corresponds to the eigenvalue 𝐸2 = 𝜖−𝑡1−𝑆 , if we replace the eigenvalue 𝐸2 in
Eq. (4.176), we have

􏿵𝜖 − 𝜖 − 𝑡1 − 𝑆􏿸 𝑐L + 􏿵𝑡 − 𝜖 − 𝑡1 − 𝑆𝑆􏿸 𝑐R = 0􏿵𝑡 − 𝜖 − 𝑡1 − 𝑆𝑆􏿸 𝑐L + 􏿵𝜖 − 𝜖 − 𝑡1 − 𝑆􏿸 𝑐R = 0
ЄЃЃЃЃЅЃЃЃЃІ ⇒

􏿶𝜖 − 𝜖𝑆 − 𝜖 + 𝑡1 − 𝑆 􏿹 𝑐L + 􏿶𝑡 − 𝑡𝑆 − 𝜖𝑆 + 𝑡𝑆1 − 𝑆 􏿹 𝑐R = 0
􏿶𝑡 − 𝑡𝑆 − 𝜖𝑆 + 𝑡𝑆1 − 𝑆 􏿹 𝑐L + 􏿶𝜖 − 𝜖𝑆 − 𝜖 + 𝑡1 − 𝑆 􏿹 𝑐R = 0

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒(𝑡 − 𝜖𝑆)𝑐L + (𝑡 − 𝜖𝑆)𝑐R = 0(𝑡 − 𝜖𝑆)𝑐L + (𝑡 − 𝜖𝑆)𝑐R = 0􏿿
Thus, 𝑐L = −𝑐R = 𝑐. (4.179)

Hence, the eigenvector that corresponds to the eigenvalue 𝐸2 has the form

𝑣⃗2 = 􏿰 𝑐−𝑐􏿳 .
For it to be normalized, it must hold that|𝑣⃗2|2 = 1 ⇒ 2|𝑐|2 = 1 ⇒ |𝑐| = 1/√2.
Thus, a convenient choice is 𝑣⃗2 = 1√2 􏿰 1−1􏿳 . (4.180)

We observe that the eigenvector 𝑣⃗1 of the level with eigenenergy 𝐸1 has no nodes, while the eigenvec-
tor 𝑣⃗2 of the level with eigenenergy 𝐸2 has one node. Hence, the level with eigenenergy 𝐸1 = 𝜖+𝑡1+𝑆 and

eigenvector 𝑣⃗1 is the ground level, while the level with eigenenergy 𝐸2 = 𝜖−𝑡1−𝑆 and eigenvector 𝑣⃗2 is the

first excited level. For the condition 𝐸1 = 𝜖+𝑡1+𝑆 < 𝐸2 = 𝜖−𝑡1−𝑆 to hold, the conditions 𝑆 > 0 and 𝑡 < 0must
be obeyed and the numerators have to be positive.
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������� 7KLUG OHYHO RI DSSUR[LPDWLRQ�

If we ignore the integrals𝑈LRL = 𝑈RLR = 𝑈 as well as the integrals 𝑆LR = 𝑆RL = 𝑆, then the system of
equations to solve is the one of Eqs. (4.148) and (4.156), which can be written in matrix form as

􏿰𝜖L 𝑡𝑡 𝜖R􏿳 􏿰𝑐L𝑐R􏿳 = 𝐸 􏿰𝑐L𝑐R􏿳 (4.181)

or 􏿰𝜖L − 𝐸 𝑡𝑡 𝜖R − 𝐸􏿳 􏿰𝑐L𝑐R􏿳 = 􏿰00􏿳 (4.182)

The matrix eigenvalues occur by the roots of its determinant, i.e.,(𝜖L − 𝐸)(𝜖R − 𝐸) − 𝑡2 = 0 ⇒𝐸2 − (𝜖L + 𝜖R)𝐸 + 𝜖L𝜖R − 𝑡2 = 0
Hence, we arrive at a quadratic equation with respect to the energy 𝐸. Its discriminant isΔ = (𝜖L + 𝜖R)2 − 4(𝜖L𝜖R − 𝑡2) = (𝜖L − 𝜖R)2 + 4𝑡2 (4.183)

Hence, the eigenvalues are

𝐸1,2 = 𝜖L + 𝜖R ±√(𝜖L − 𝜖R)2 + 4𝑡22 = 𝜖L + 𝜖R2 ±√􏿵𝜖L − 𝜖R2 􏿸2 + 𝑡2. (4.184)

If we define the half-sum and half-difference of the on-site energies as

Σ = 𝜖L + 𝜖R2 , Δ = 𝜖L − 𝜖R2 , (4.185)

then the eigenvalues take the form 𝐸1,2 = Σ ± √Δ2 + 𝑡2 (4.186)

we observe that the two eigenvalues are separated by√Δ2 + 𝑡2 from the half-sum,Σ, of the on-site ener-
gies.Thegapbetween the two levels is |𝐸2−𝐸1| = 2√Δ2 + 𝑡2. If eachof the two1LSswith on-site energies𝜖L and 𝜖R were fully occupied (with two electrons), then, when the 1LSs approach each other, their four
electrons will be placed so that theywill first occupy the lower level with eigenenergy𝐸1 = Σ−√Δ2 + 𝑡2,
and then the upper level with eigenenergy𝐸2 = Σ+√Δ2 + 𝑡2 (cf. upper panel of Figure 4.15). If each of
the two 1LSs was half-occupied (with one electron), then, when the 1LSs approach each other, their two
electrons will be placed so that they will occupy the lower level,𝐸1 = Σ−√Δ2 + 𝑡2, while the upper one
will remain empty (cf. medium panel of Figure 4.15). Finally, if the 1LSs were both empty, the situation
would be like the lower panel of Figure 4.15.

If we suppose that the two 1LSs are identical, then 𝜖L = 𝜖R ∶= 𝜖. Therefore, Σ = 𝜖 and Δ = 0.
Calculations are simpler. The eigenvalues take the simple form𝐸1,2 = 𝜖 ∓ |𝑡|. (4.187)

Then, the energy width of the system will be𝐸2 − 𝐸1 = 2 |𝑡|. (4.188)



92 CONTINUOUS AND DISCRETE SPECTRUM

Figure 4.15: Occupied, semi-occupied and empty two-level system.

To calculate the eigenvectors, we use the relations(𝜖 − 𝐸)𝑐L + 𝑡𝑐R = 0 (4.189)𝑡𝑐L + (𝜖 − 𝐸)𝑐R = 0 (4.190)

For the eigenvector that corresponds to the eigenvalue 𝐸1 = 𝜖 − |𝑡|, that is for the lower level, if we
replace the eigenvalue 𝐸1 in Eq. (4.189), we obtain|𝑡|𝑐L + 𝑡𝑐R = 0𝑡𝑐L + |𝑡|𝑐R = 0􏿿 ⇒ 𝑐R = −|𝑡|𝑡 𝑐L
Hence, the eigenvector that corresponds to the eigenvalue 𝐸1 has the form

𝑣⃗1 = 𝑐L Ϻϻϻϻϼ 1− |𝑡|𝑡
ϽϾϾϾϿ .

For it to be normalized, it must hold that|𝑐L|2 + |𝑐R|2 = 1 ⇒ |𝑐L|2 = 1/2 ⇒ |𝑐L| = 1/√2.
Thus, a convenient choice would be

𝑣⃗1 = 1√2
Ϻϻϻϻϼ 1− |𝑡|𝑡

ϽϾϾϾϿ ⇒ 𝑣⃗1 = 􏿰 1±1􏿳 for 𝑡 ≶ 0. (4.191)

In brief, the eigenvalue 𝐸1 = 𝜖 − |𝑡| corresponds to the ground level of the system and since 𝑡 < 0 there
are no nodes.This is reasonable, since the transfer integral 𝑡 expresses the attraction between the two 1LSs
that form the 2LS.

For the eigenvector that corresponds to the eigenvalue 𝐸2 = 𝜖 + |𝑡|, that is for the upper level, if we
replace the eigenvalue 𝐸2 in Eq. (4.189), we obtain−|𝑡|𝑐L + 𝑡𝑐R = 0𝑡𝑐L − |𝑡|𝑐R = 0􏿿 ⇒ 𝑐R = |𝑡|𝑡 𝑐L
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Hence, the eigenvector that corresponds to the eigenvalue 𝐸2 has the form

𝑣⃗2 = 𝑐L Ϻϻϻϻϼ 1|𝑡|𝑡
ϽϾϾϾϿ .

For it to be normalized, it must hold that|𝑐L|2 + |𝑐R|2 = 1 ⇒ |𝑐L|2 = 1/2 ⇒ |𝑐L| = 1/√2.
Therefore, a convenient choice would be

𝑣⃗2 = 1√2
Ϻϻϻϻϼ 1|𝑡|𝑡
ϽϾϾϾϿ ⇒ 𝑣⃗1 = 􏿰 1∓1􏿳 for 𝑡 ≶ 0. (4.192)

In brief, the eigenvalue 𝐸2 = 𝜖 + |𝑡| corresponds to the first excited level of the system and since 𝑡 < 0
there is one node.

4.4.2 Three-level system (3LS).

Let us hypothesize we deal with a three-level system (3LS) composed of three 1LSs. Moving in a com-
pletely analogousmanner as we did for the case of the 2LS in Subsection 4.4.1, if we ignore the integrals𝑈
and 𝑆 (third level of approximation) and assume that the three 1LSs are identical (so that we have equal
on-site energies 𝜖1 = 𝜖2 = 𝜖3 = 𝜖 and hopping integrals 𝑡), then the system of equations to be solved isϺϻϻϻϻϻϻϼ𝜖 𝑡 0𝑡 𝜖 𝑡0 𝑡 𝜖

ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑐1𝑐2𝑐3
ϽϾϾϾϾϾϾϿ = 𝐸

Ϻϻϻϻϻϻϻϼ𝑐1𝑐2𝑐3
ϽϾϾϾϾϾϾϿ (4.193)

or Ϻϻϻϻϻϻϻϼ𝜖 − 𝐸 𝑡 0𝑡 𝜖 − 𝐸 𝑡0 𝑡 𝜖 − 𝐸
ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑐1𝑐2𝑐3
ϽϾϾϾϾϾϾϿ =

Ϻϻϻϻϻϻϻϼ000
ϽϾϾϾϾϾϾϿ . (4.194)

The matrix eigenvalues occur by the roots of its determinant(𝜖 − 𝐸)[(𝜖 − 𝐸)2 − 𝑡2] − 𝑡2(𝜖 − 𝐸) = 0 ⇒(𝜖 − 𝐸)3 − 2𝑡2(𝜖 − 𝐸) = 0 ⇒(𝐸 − 𝜖)[(𝜖 − 𝐸)2 − 2𝑡2] = 0 ⇒𝐸 = 𝜖 or 𝐸 = 𝜖 ± √2|𝑡|. (4.195)

Hence, for 𝑡 < 0, the eigenvalues of the 3LS are𝐸1 = 𝜖 + √2𝑡, 𝐸2 = 𝜖, 𝐸3 = 𝜖 − √2𝑡. (4.196)

The energy width of the system is 𝐸3 − 𝐸1 = 2√2|𝑡| ≈ 2.83 |𝑡|. (4.197)

Substituting the eigenvalues 𝐸1, 𝐸2 and 𝐸3 to the system of equations(𝜖 − 𝐸)𝑐1 + 𝑡𝑐2 = 0𝑡𝑐1 + (𝜖 − 𝐸)𝑐2 + 𝑡𝑐3 = 0𝑡𝑐2 + (𝜖 − 𝐸)𝑐3 = 0
ЄЃЃЃЅЃЃЃІ , (4.198)
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we obtain the eigenvectors of the system.
For the eigenvalue 𝐸1 = 𝜖 + √2𝑡, we have−√2𝑐1 + 𝑐2 = 0𝑐1 − √2𝑐2 + 𝑐3 = 0𝑐2 − √2𝑐3 = 0

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑐1 = 𝑐3 = 𝑐2√2 ∶= 𝑐. (4.199)

The normalization condition yields|𝑐|2 + |√2𝑐|2 + |𝑐|2 = 1 ⇒ 4|𝑐|2 = 1 ⇒ |𝑐| = 1/2.
Thus, the eigenvector that corresponds to the eigenvalue 𝐸1 is, e.g.,

𝑣⃗1 = 12
Ϻϻϻϻϻϻϻϼ 1√21

ϽϾϾϾϾϾϾϿ . (4.200)

For the eigenvalue 𝐸2 = 𝜖, we have𝑡𝑐2 = 0𝑡𝑐1 + 𝑡𝑐3 = 0𝑡𝑐2 = 0
ЄЃЃЃЅЃЃЃІ ⇒ 𝑐2 = 0, 𝑐1 = −𝑐3 ∶= 𝑐. (4.201)

The normalization condition yields|𝑐|2 + 0 + |𝑐|2 = 1 ⇒ 2|𝑐|2 = 1 ⇒ |𝑐| = 1/√2.
Thus, the eigenvector that corresponds to the eigenvalue 𝐸2 is, e.g.,

𝑣⃗2 = 1√2
Ϻϻϻϻϻϻϻϼ 10−1

ϽϾϾϾϾϾϾϿ . (4.202)

For the eigenvalue 𝐸3 = 𝜖 − √2𝑡, we have

√2𝑐1 + 𝑐2 = 0𝑐1 + √2𝑐2 + 𝑐3 = 0𝑐2 + √2𝑐3 = 0
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑐1 = 𝑐3 = − 𝑐2√2 ≝ 𝑐 (4.203)

The normalization condition yields|𝑐|2 + |√2𝑐|2 + |𝑐|2 = 1 ⇒ 4|𝑐|2 = 1 ⇒ |𝑐| = 1/2.
Thus, the eigenvector that corresponds to the eigenvalue 𝐸3 is, e.g.,

𝑣⃗3 = 12
Ϻϻϻϻϻϻϻϼ 1−√21

ϽϾϾϾϾϾϾϿ (4.204)
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4.4.3 Four-level system (4LS).

Suppose a four-level system (4LS) composed of four 1LSs. In a completely analogousmanner to what we
did in Subsection 4.4.1 for the 2LS, if we ignore the integrals𝑈 and 𝑆 (third level of approximation) and
assume that the four 1LSs are identical (so that they have equal on-site energies 𝜖1 = 𝜖2 = 𝜖3 = 𝜖4 = 𝜖
and hopping integrals 𝑡), then the system of equations to be solved isϺϻϻϻϻϻϻϻϻϻϼ

𝜖 𝑡 0 0𝑡 𝜖 𝑡 00 𝑡 𝜖 𝑡0 0 𝑡 𝜖
ϽϾϾϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϻϻϻϼ
𝑐1𝑐2𝑐3𝑐4
ϽϾϾϾϾϾϾϾϾϾϿ = 𝐸

Ϻϻϻϻϻϻϻϻϻϻϼ
𝑐1𝑐2𝑐3𝑐4
ϽϾϾϾϾϾϾϾϾϾϿ (4.205)

or Ϻϻϻϻϻϻϻϻϻϻϼ
𝜖 − 𝐸 𝑡 0 0𝑡 𝜖 − 𝐸 𝑡 00 𝑡 𝜖 − 𝐸 𝑡0 0 𝑡 𝜖 − 𝐸

ϽϾϾϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϻϻϻϼ
𝑐1𝑐2𝑐3𝑐4
ϽϾϾϾϾϾϾϾϾϾϿ =

Ϻϻϻϻϻϻϻϻϻϻϼ
0000
ϽϾϾϾϾϾϾϾϾϾϿ . (4.206)

The matrix eigenvalues occur by the roots of its determinant(𝜖 − 𝐸)2[(𝜖 − 𝐸)2 − 𝑡2] − (𝜖 − 𝐸)2𝑡2 − 𝑡2[(𝜖 − 𝐸)2 − 𝑡2] = 0 ⇒(𝜖 − 𝐸)2[(𝜖 − 𝐸)2 − 𝑡2] − (𝜖 − 𝐸)2𝑡2 − (𝜖 − 𝐸)2𝑡2 + 𝑡4 = 0 ⇒(𝜖 − 𝐸)4 − 3(𝜖 − 𝐸)2𝑡2 + 𝑡4 = 0
Setting 𝑦 = (𝜖 − 𝐸)2 yields the quadratic equation𝑦2 − 3𝑦𝑡2 + 𝑡4 = 0
with discriminantΔ = 9𝑡4 − 4𝑡4 = 5𝑡4. Thus,

𝑦 = 3 ± √52 𝑡2 ⇒
𝐸 = 𝜖 ±√3 ± √52 |𝑡| (4.207)

Hence, for 𝑡 < 0, the eigenvalues of the 4LS are

𝐸1 = 𝜖 +√3 + √52 𝑡, 𝐸2 = 𝜖 +√3 − √52 𝑡, 𝐸3 = 𝜖 −√3 − √52 𝑡, 𝐸4 = 𝜖 −√3 + √52 𝑡.
(4.208)

The energy width of the system is

𝐸4 − 𝐸1 = 2√3 + √52 |𝑡| ≈ 3.24 |𝑡|. (4.209)

Substituting the eigenvalues 𝐸1, 𝐸2, 𝐸3 and 𝐸4 to the system of equations(𝜖 − 𝐸)𝑐1 + 𝑡𝑐2 = 0,𝑡𝑐1 + (𝜖 − 𝐸)𝑐2 + 𝑡𝑐3 = 0,𝑡𝑐2 + (𝜖 − 𝐸)𝑐3 + 𝑡𝑐4 = 0,𝑡𝑐3 + (𝜖 − 𝐸)𝑐4 = 0,
ЄЃЃЃЃЃЅЃЃЃЃЃІ (4.210)
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we obtain the eigenvectors of the system.

For the eigenvalue 𝐸1 = 𝜖 +√3+√52 𝑡, if we denote

Γ ∶= √3 + √52 = √5 + 12 , (4.211)

we obtain 𝑐2 = Γ𝑐1,𝑐1 − Γ𝑐2 + 𝑐3 = 0,𝑐2 − Γ𝑐3 + 𝑐4 = 0,𝑐3 = Γ𝑐4.
ЄЃЃЃЃЃЅЃЃЃЃЃІ (4.212)

Using the first and fourth equation into the second and third, we obtain𝑐1 − Γ2𝑐1 + Γ𝑐4 = 0,Γ𝑐1 − Γ2𝑐4 + 𝑐4 = 0. 􏿿 ⇒ (1 − Γ2)𝑐1 + Γ𝑐4 = 0,Γ𝑐1 + (1 − Γ2)𝑐4 = 0. 􏿿 (4.213)

From there it follows

𝑐4 = Γ2−1Γ 𝑐1,𝑐4 = ΓΓ2−1𝑐1.
ЄЃЃЅЃЃІ (4.214)

It is apparent from Eq. (4.214), which is OK if Γ ≠ 0, ±1, that Γ2−1Γ = ±1. If we perform detailed calcu-
lations, we obtain Γ2 − 1Γ = ΓΓ2 − 1 = 1. (4.215)

Therefore it will hold that 𝑐1 = 𝑐4 ∶= 𝑐, 𝑐2 = 𝑐3 = Γ𝑐. (4.216)

Consequently,

𝑣⃗1 = 𝑐
Ϻϻϻϻϻϻϻϻϻϻϼ
1ΓΓ1
ϽϾϾϾϾϾϾϾϾϾϿ . (4.217)

Normalizing, we obtain |𝑐|2(2 + 2Γ2) = 1 ⇒ |𝑐|2 = 12(1+Γ2) , that is
|𝑐|2 = 15 + √5. (4.218)

Hence, we can make the convenient choice

𝑐 = 1
√5 + √5. (4.219)
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Therefore, the eigenvector corresponding to the eigenvalue 𝐸1 has the form

𝑣⃗1 = 1
√5 + √5

Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
1√5+12√5+121
ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ . (4.220)

For the eigenvalue 𝐸2 = 𝜖 +√3−√52 𝑡, if we denote

Γ ∶= √3 − √52 = √5 − 12 , (4.221)

we obtain 𝑐2 = Γ𝑐1,𝑐1 − Γ𝑐2 + 𝑐3 = 0,𝑐2 − Γ𝑐3 + 𝑐4 = 0,𝑐3 = Γ𝑐4.
ЄЃЃЃЃЃЅЃЃЃЃЃІ (4.222)

Using the first and fourth equation into the second and third, we obtain𝑐1 − Γ2𝑐1 + Γ𝑐4 = 0,Γ𝑐1 − Γ2𝑐4 + 𝑐4 = 0. 􏿿 ⇒ (1 − Γ2)𝑐1 + Γ𝑐4 = 0,Γ𝑐1 + (1 − Γ2)𝑐4 = 0. 􏿿 (4.223)

From there it follows that 𝑐4 = Γ2−1Γ 𝑐1,𝑐4 = ΓΓ2−1𝑐1.
ЄЃЃЅЃЃІ (4.224)

It is apparent from Eq. (4.224), which is OK if Γ ≠ 0, ±1, that Γ2−1Γ = ±1. If we perform detailed calcu-
lations, we obtain Γ2 − 1Γ = ΓΓ2 − 1 = −1. (4.225)

Therefore, it will hold 𝑐1 ∶= 𝑐, 𝑐2 = Γ𝑐, 𝑐3 = −Γ𝑐, 𝑐4 = −𝑐. (4.226)

Consequently,

𝑣⃗2 = 𝑐
Ϻϻϻϻϻϻϻϻϻϻϼ
1Γ−Γ−1
ϽϾϾϾϾϾϾϾϾϾϿ . (4.227)

Normalizing, we obtain |𝑐|2(2 + 2Γ2) = 1 ⇒ |𝑐|2 = 12(1+Γ2) , that is
|𝑐|2 = 15 − √5. (4.228)
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Hence, a convenient choice would be 𝑐 = 1
√5 − √5. (4.229)

Therefore, the eigenvector corresponding to the eigenvalue 𝐸2 has the form

𝑣⃗2 = 1
√5 − √5

Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
1√5−12−√5−12−1

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ . (4.230)

For the eigenvalue 𝐸3 = 𝜖 −√3−√52 𝑡, if we denote

Γ ∶= √3 − √52 = √5 − 12 , (4.231)

we obtain 𝑐2 = −Γ𝑐1,𝑐1 + Γ𝑐2 + 𝑐3 = 0,𝑐2 + Γ𝑐3 + 𝑐4 = 0,𝑐3 = −Γ𝑐4.
ЄЃЃЃЃЃЅЃЃЃЃЃІ (4.232)

Using the first and the fourth equation into the second and third, we obtain𝑐1 − Γ2𝑐1 − Γ𝑐4 = 0,−Γ𝑐1 − Γ2𝑐4 + 𝑐4 = 0. 􏿿 ⇒ (1 − Γ2)𝑐1 − Γ𝑐4 = 0,−Γ𝑐1 + (1 − Γ2)𝑐4 = 0. 􏿿 (4.233)

From there it follows that 𝑐4 = 1−Γ2Γ 𝑐1,𝑐4 = Γ1−Γ2 𝑐1.
ЄЃЃЅЃЃІ (4.234)

It is evident from Eq. (4.234), which is OK if Γ ≠ 0, ±1, that 1−Γ2Γ = ±1. If we perform detailed calcula-
tions we obtain 1 − Γ2Γ = Γ1 − Γ2 = 1. (4.235)

Consequently, it will hold that 𝑐4 = 𝑐1 ∶= 𝑐, 𝑐2 = −Γ𝑐, 𝑐3 = −Γ𝑐. (4.236)

Therefore,

𝑣⃗3 = 𝑐
Ϻϻϻϻϻϻϻϻϻϻϼ
1−Γ−Γ1
ϽϾϾϾϾϾϾϾϾϾϿ . (4.237)
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Normalizing, we obtain |𝑐|2(2 + 2Γ2) = 1 ⇒ |𝑐|2 = 12(1+Γ2) , that is
|𝑐|2 = 15 − √5. (4.238)

Hence, a convenient choice would be 𝑐 = 1
√5 − √5. (4.239)

Therefore, the eigenvector corresponding to eigenvalue 𝐸3 has the form

𝑣⃗3 = 1
√5 − √5

Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
1−√5−12−√5−121

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ . (4.240)

For the eigenvalue 𝐸4 = 𝜖 −√3+√52 𝑡, if we denote

Γ ∶= √3 + √52 = √5 + 12 , (4.241)

we obtain 𝑐2 = −Γ𝑐1,𝑐1 + Γ𝑐2 + 𝑐3 = 0,𝑐2 + Γ𝑐3 + 𝑐4 = 0,𝑐3 = −Γ𝑐4.
ЄЃЃЃЃЃЅЃЃЃЃЃІ (4.242)

using the first and fourth equation into the second and third, we obtain𝑐1 − Γ2𝑐1 − Γ𝑐4 = 0,−Γ𝑐1 − Γ2𝑐4 + 𝑐4 = 0. 􏿿 ⇒ (1 − Γ2)𝑐1 − Γ𝑐4 = 0,−Γ𝑐1 + (1 − Γ2)𝑐4 = 0. 􏿿 (4.243)

From there is follows that 𝑐4 = 1−Γ2Γ 𝑐1,𝑐4 = Γ1−Γ2 𝑐1.
ЄЃЃЅЃЃІ (4.244)

It is evident from Eq. (4.244), which is OK if Γ ≠ 0, ±1, that 1−Γ2Γ = ±1. If we perform detailed calcula-
tions, we obtain 1 − Γ2Γ = Γ1 − Γ2 = −1. (4.245)

Therefore, it will hold that 𝑐1 ∶= 𝑐, 𝑐2 = −Γ𝑐, 𝑐3 = Γ𝑐, 𝑐4 = −𝑐. (4.246)
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Consequently,

𝑣⃗4 = 𝑐
Ϻϻϻϻϻϻϻϻϻϻϼ
1−ΓΓ−1
ϽϾϾϾϾϾϾϾϾϾϿ . (4.247)

Normalizing, we obtain |𝑐|2(2 + 2Γ2) = 1 ⇒ |𝑐|2 = 12(1+Γ2) , that is|𝑐|2 = 15 + √5. (4.248)

Therefore, a convenient choice would be 𝑐 = 1
√5 + √5. (4.249)

Hence, the eigenvector corresponding to the eigenvalue 𝐸4 has the form

𝑣⃗4 = 1
√5 + √5

Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
1−1+√521+√52−1

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ . (4.250)

4.5 Discrete-continuous energy spectrum, subbands.

There are cases in which we have free motion in 2 (or 1) dimensions and bound states in 1 (or 2) dimen-
sions, respectively; we call these quantum wells (or quantum wires). In such a scenario, the free motion
leads to a continuous energy spectrum (i.e., bands, although since they correspond to less than 3 dimen-
sions are called subbands),while thebound stateswehave adiscrete energy spectrum, i.e. levels.Ourbelow
description is based on the Slater theorem [13], the Envelope Function Approximation, and the Effective
Mass Approximation.

4.6 Slater theorem and consequences.

Using the Slater theorem [13], we can reduce the problem of electronmotion in a crystal lattice plus per-
turbing potentials to a problem similar to electronmotion solely in perturbing potentials; in other words,
we simplify the solving process significantly.Thepapers byBloch [14] andWannier [15] are prerequisites.
The theory of papers [14, 15] is extensively described, e.g. in book [16].

4.6.1 Unperturbed problem.

The Hamiltonian of the unperturbed problem is

𝐻̂0 = − ℏ22𝑚𝑒∇2 + 𝑈L(⃗𝑟). (4.251)

Thefirst term is the kinetic energy and the second term is the potential energy of a perfect periodic crystal.
The solution of the unperturbed problem𝐻̂0 𝜓0(⃗𝑝, 𝑟⃗) = 𝐸0(⃗𝑝) 𝜓0(⃗𝑝, 𝑟⃗), (4.252)
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where 𝐸0(⃗𝑝) or 𝐸0(⃗𝑘) are the energy band diagrams, which are commonly represented graphically, is the
crystal momentum. This solution was provided by Wannier [15], who improved Bloch’s theory [14].

Assume a monoatomic basis in our periodic crystal. Thus, let us suppose that the following hold: (a)
The lattice points are described by the position vectors 𝑅⃗ = 𝑚1𝑎1 + 𝑚2𝑎2 + 𝑚3𝑎3 ∶= 𝑅⃗𝑚, where𝑚 = {𝑚1,𝑚2,𝑚3}, 𝑚𝑖 ∈ 𝒵 is a collective index for the lattice points and {𝑎1, 𝑎2, 𝑎3} are the primi-
tive translation vectors (PTV), and (b) the axes origin coincides with some lattice point. Then [15],

𝜓0(⃗𝑝, 𝑟⃗) = 􏾜𝑚 1√𝑁𝑒 𝑖ℏ 𝑝⃗⋅𝑅⃗𝑚 𝛼(⃗𝑟 − 𝑅⃗𝑚) (4.253)

Alternatively, we can use 𝑘⃗, i.e., 𝐻̂0 𝜓0(⃗𝑘, 𝑟⃗) = 𝐸0(⃗𝑘) 𝜓0(⃗𝑘, 𝑟⃗), (4.254)

𝜓0(⃗𝑘, 𝑟⃗) = 􏾜𝑚 1√𝑁𝑒𝑖𝑘⋅𝑅⃗𝑚 𝛼(⃗𝑟 − 𝑅⃗𝑚). (4.255)

Of course, in our periodic crystalline lattice, the potential energy,𝑈L(⃗𝑟), is also periodic, i.e.,

𝑈L(⃗𝑟 + 𝑅⃗𝑚) = 𝑈L(⃗𝑟). (4.256)

L stands for lattice. The Wannier functions are defined as

𝛼(⃗𝑟 − 𝑅⃗𝑚) = 1√𝑁 􏾜⃗𝑝 𝑒− 𝑖ℏ 𝑝⃗⋅𝑅⃗𝑚𝜓0(⃗𝑝, 𝑟⃗) (4.257)

Given the property 􏾜𝑚 𝑒 𝑖ℏ (⃗𝑝′−𝑝⃗)⋅𝑅⃗𝑚 = ЀЃЁЃЂ0, 𝑝⃗′ ≠ 𝑝⃗𝑁, 𝑝⃗′ = 𝑝⃗ = 𝑁𝛿(𝑝⃗′ − 𝑝⃗), (4.258)

where𝑁 is the total (very large...) number of lattice points in the crystal, it follows that

􏾜𝑚 𝑒 𝑖ℏ 𝑝⃗′⋅𝑅⃗𝑚𝛼(⃗𝑟 − 𝑅⃗𝑚) = 􏾜𝑚 1√𝑁 􏾜⃗𝑝 𝑒 𝑖ℏ (⃗𝑝′−𝑝⃗)⋅𝑅⃗𝑚𝜓0(⃗𝑝, 𝑟⃗) = (4.259)

􏾜⃗𝑝 1√𝑁𝜓0(⃗𝑝, 𝑟⃗)􏾜𝑚 𝑒 𝑖ℏ (⃗𝑝′−𝑝⃗)⋅𝑅⃗𝑚 = 􏾜⃗𝑝 1√𝑁𝜓0(⃗𝑝, 𝑟⃗)𝑁𝛿(𝑝⃗′ − 𝑝⃗) (4.260)

= √𝑁𝜓0(⃗𝑝′, 𝑟⃗). (4.261)

Therefore, changing the symbol 𝑝⃗′ with 𝑝⃗, we have

𝜓0(⃗𝑝, 𝑟⃗) = 􏾜𝑚 1√𝑁𝑒 𝑖ℏ 𝑝⃗⋅𝑅⃗𝑚 𝛼(⃗𝑟 − 𝑅⃗𝑚) (4.262)

which is Eq. (4.253).



102 CONTINUOUS AND DISCRETE SPECTRUM

4.6.2 Perturbed problem.

Now, we want to find the functions𝜓𝑖(⃗𝑟)which satisfy the equation𝐻̂ 𝜓𝑖(⃗𝑟) = 𝐸𝑖 𝜓𝑖(⃗𝑟), 𝐻̂ = 𝐻̂0 + 𝐻̂1, (4.263)

where 𝑖 is some collective quantum number and 𝐻̂1 is the Hamiltonian which contains all the perturbing
potential energies. We assume that 𝐻̂1 changes slowly as a function of 𝑟⃗. We are trying to express𝜓𝑖(⃗𝑟) in
the form 𝜓𝑖(⃗𝑟) = 􏾜𝑚 𝜑𝑖(𝑅⃗𝑚) 𝛼(⃗𝑟 − 𝑅⃗𝑚) (4.264)

In other words, we are trying to find functions𝜑𝑖(𝑅⃗𝑚) that modify the atomic Wannier functions, 𝛼(⃗𝑟 −𝑅⃗𝑚), in order to express the solution of the perturbed problem by substituting the exponential functions,1√𝑁 𝑒 𝑖ℏ 𝑝⃗⋅𝑅⃗𝑚 , whichmodify the atomicWannier functions,𝛼(⃗𝑟−𝑅⃗𝑚), within the unperturbed problem.The
Slater theorem states that the envelope functions,𝜑𝑖(⃗𝑟), satisfy the differential equation

[𝐸0(−𝑖ℏ∇) + 𝐻̂1(⃗𝑟)] 𝜑𝑖(⃗𝑟) = 𝐸𝑖 𝜑𝑖(⃗𝑟) (4.265)

InEq. (4.265),we have changed 𝑅⃗𝑚 to 𝑟⃗, which is nowa coarse grained 𝑟⃗. Eq. (4.265) is called theEnvelope
Function Equation (EFE). However, for the Slater theorem to hold, we have to assume that 𝐻̂1(⃗𝑟) is a
slowly changing function of the coarse grained position 𝑟⃗. Eq. (4.265) is a Schrödinger-type equation for𝜑𝑖(⃗𝑟), in which the perturbing potential energy 𝐻̂1 appears as the potential energy, while 𝐸0(⃗𝑝) of the
unperturbed problem (with 𝑝⃗ being substituted by the differential operator −𝑖ℏ∇) appears as the kinetic
energy operator.

4.7 From the Schrödinger Equation to the Effective Mass Equation, using the Envelope Function
Approximation and the Effective Mass Approximation.

In the single-electron Schrödinger equation 𝐻̂𝜓(⃗𝑟) = 𝐸𝜓(⃗𝑟) (4.266)

the Hamiltonian is written as

𝐻̂ = 𝑝⃗22𝑚𝑒 + 𝑈(⃗𝑟) without external magnetic field, (4.267)

𝐻̂ = ( ̂⃗𝑝 − 𝑞𝐴)22𝑚𝑒 + 𝑈(⃗𝑟) with external magnetic field, where 𝐴 is the vector potential, (4.268)

where𝑈(⃗𝑟) is the total potential energy, analyzed, say, as𝑈(⃗𝑟) = 𝑈L(⃗𝑟) + 𝑈S(⃗𝑟) + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟) + 𝑈M(⃗𝑟). (4.269)𝑈L(⃗𝑟), where L stands for Lattice, is the potential energy of the perfect periodic crystalline lattice.𝑈S(⃗𝑟),
where S stands for Scattering, is the scattering potential energy due to defects, impurities, phonons, etc..𝑈E(⃗𝑟), whereE stands forExternal, is thepotential energydue to externally appliedfields andmacroscopic
space charges.𝑈xc(⃗𝑟), where xc stands for exchange and correlation, is the exchange and correlation po-
tential energy, which describes the effect of the rest electrons. The last term,𝑈M(⃗𝑟), where M stands for
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magnetic, is the magnetic potential energy, e.g., −𝜇 ⋅ 𝐵⃗ or −∑𝑖 𝜇𝑖 ⋅ 𝐵⃗, where 𝑖 runs over the magnetic
building blocks of the system.

Applying the Slater theorem [13], Eq. (4.265), see Section 4.6, we arrive at the Envelope Function
Equation (EFE) 𝐸0(−𝑖ℏ∇)𝜑(⃗𝑟) + [𝑈S(⃗𝑟) + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟) + 𝑈M(⃗𝑟)]𝜑(⃗𝑟) = 𝐸𝜑(⃗𝑟). (4.270)

Here,𝜑(⃗𝑟) is the envelope function, which crudely describes thewavefunction’s configuration from lattice
point to lattice point, see Section 4.6. The operator −𝑖ℏ∇ replaces the crystal momentum 𝑝⃗ = ℏ𝑘⃗ in the
energy band diagrams Ε0(⃗𝑝), i.e., −𝑖∇ replaces 𝑘⃗,

𝑘⃗ = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ↔ −𝑖∇⃗ = −𝑖( 𝜕𝜕𝑥, 𝜕𝜕𝑦, 𝜕𝜕𝑧). (4.271)

The dispersion relation of a free electron is parabolic, with coefficient 𝛼 = ℏ22𝑚𝑒 , i.e.,
Ε0(⃗𝑘) = 𝑝⃗22𝑚𝑒 = ℏ2𝑘⃗22𝑚𝑒 = −ℏ2∇22𝑚𝑒 . (4.272)

Close to the minimum of a specific band (e.g. the conduction band) we can analogously write

Ε0(⃗𝑘) = 𝐸c0 + 𝑝⃗22𝑚∗ = 𝐸c0 + ℏ2𝑘⃗22𝑚∗ = 𝐸c0 − ℏ2∇22𝑚∗ , (4.273)

where𝑚∗ is the effective mass and it is generally a tensor. In more symmetric cases, we can write

Ε0(⃗𝑘) = 𝐸c0 + ℏ2𝑘2𝑥2𝑚∗𝑥 + ℏ2𝑘2𝑦2𝑚∗𝑦 + ℏ2𝑘2𝑧2𝑚∗𝑧 (4.274)

and in the simplest case Ε0(⃗𝑘) = 𝐸c0 + ℏ2𝑘22𝑚∗ = 𝐸c0 − ℏ2∇22𝑚∗ . (4.275)

In other words, the effective mass determines the coefficient 𝛼 = ℏ22𝑚∗ of the parabola, just like in the case

of the free electron, where the coefficient is 𝛼 = ℏ22𝑚𝑒 . This means that the effective mass𝑚∗ expresses the
steepness of the curvature close to the band minimum. See Figure 4.16, in which the case 𝑚∗ < 𝑚𝑒 is
presented. Popular semiconductors have small effective masses. For example, in GaAs,𝑚∗ ≈ 0.067𝑚𝑒.

If we restrict ourselves to the latter, simplest, case, then Eq. (4.270) becomes the so-called Effective
Mass Equation (EME).

−ℏ2∇22𝑚∗ 𝜑(⃗𝑟) + [𝐸c0 + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟) + 𝑈M(⃗𝑟)]𝜑(⃗𝑟) + 𝑈S(⃗𝑟)𝜑(⃗𝑟) = 𝐸𝜑(⃗𝑟). (4.276)

Let us focus on cases without 𝑈M(⃗𝑟). The quantity 𝐸c0 + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟) is the one we draw when we
create band diagrams for heterostructures. Commonly, we solve Eq. (4.276) assuming that 𝑈S(⃗𝑟) = 0
and estimate the effect of𝑈S(⃗𝑟) using the scattering and transport theory (e.g. by solving the Boltzmann
transport equation) [17].

Let us now consider a junction of two different materials, e.g. GaAs and Al𝑥Ga1−𝑥As. In this case, the
conduction band minimum, 𝐸c0, is higher in the trimer than in the dimer (see Figure 4.17). A well is
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Figure 4.16:The steepness of the curvature close to the bandminimum is expressed by the effectivemass,𝑚∗. Here, the case𝑚∗ < 𝑚𝑒 is presented.

Figure 4.17: A junction of two differentmaterials, e.g. GaAs andAl𝑥Ga1−𝑥As, so that the conduction band
minimum, 𝐸c0, is higher in the trimer than in the dimer. A well is formed.

formed. If the well width, i.e. the thickness of the medium layer, is smaller than the electron mean free
path, then a quantum description is needed. Therefore, we have a quantum well.

If𝑚∗ is a constant scalar for each material but has different value for each material, then

Ε0(⃗𝑘) = 𝐸c0(𝑧) + ℏ2(𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧)2𝑚∗(𝑧) (4.277)

and if we further assume that𝑈S(⃗𝑟) = 0, it follows that

− ℏ22𝑚∗(𝑧) 𝜕2𝜑(⃗𝑟)𝜕𝑧2 + ℏ2𝑘𝑥𝑦22𝑚∗(𝑧)𝜑(⃗𝑟) + [𝐸c0 + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟)]𝜑(⃗𝑟) = 𝐸𝜑(⃗𝑟), (4.278)

− ℏ22𝑚∗(𝑧) 𝜕2𝜑(⃗𝑟)𝜕𝑧2 + − ℏ22𝑚∗(𝑧) 􏿶 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 􏿹𝜑(⃗𝑟) + [𝐸c0 + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟)]𝜑(⃗𝑟) = 𝐸𝜑(⃗𝑟), (4.279)

and the variables are not separable, due to the presenceof𝑚∗(𝑧) in the second term, even if𝑈E(⃗𝑟) = 𝑈E(⃗𝑧)
and𝑈xc(⃗𝑟) = 𝑈xc(⃗𝑧). On the other hand, if𝑚∗ is constant and scalar, then the variables can be separated.
Such an assumption is not that unreasonable, since electrons are mainly in GaAs. However, it becomes
less realistic as the well width decreases, since this leads to an increased envelope function surpassing of
the Al𝑥Ga1−𝑥As barrier [17].
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4.8 Electron eigenstates in a quantum well with constant effective mass.

For𝑈S(⃗𝑟) = 0, Eq. (4.276) can be written as

− ℏ22𝑚∗ 􏿶 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2 􏿹𝜑(⃗𝑟) + [𝐸c0 + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟)]􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑈(⃗𝑟) 𝜑(⃗𝑟) = 𝐸𝜑(⃗𝑟). (4.280)

We have defined𝑈(⃗𝑟) ∶= 𝐸c0 + 𝑈E(⃗𝑟) + 𝑈xc(⃗𝑟). Let𝑚∗ be constant and scalar and𝑈(⃗𝑟) = 𝑈(𝑧) as it is
qualitatively shown in Figure 4.18. The presence of three different layers, i.e., of three different 𝐸c0, leads
in itself to a square well without curvature. However, the term𝑈E(⃗𝑟) of the Hamiltonian -specifically, its
part that corresponds to space charges (and occurs by solving the Poisson equation)- and, secondarily, the
term𝑈xc(⃗𝑟), lead to a deformation of the bands which is called band bending [17].

Figure 4.18: A quantum well between three layers of materials with band bending.

We can try a solution of separate variables to Eq. (4.280), i.e. of the form𝜑(⃗𝑟) = 𝑋(𝑥) 𝑌(𝑦) 𝑍(𝑧). (4.281)

Then, − ℏ22𝑚∗ 􏿶 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2 􏿹𝜑(⃗𝑟) + 𝑈(⃗𝑟)𝜑(⃗𝑟) = 𝐸𝜑(⃗𝑟), (4.282)

− ℏ22𝑚∗ 􏿶 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2 + 𝜕2𝜕𝑧2 􏿹 ΧΥΖ + 𝑈(⃗𝑟)ΧΥΖ = 𝐸ΧΥΖ, (4.283)

− ℏ22𝑚∗ΥΖ𝜕2Χ𝜕𝑥2 − ℏ22𝑚∗𝑋Ζ𝜕2𝑌𝜕𝑦2 − ℏ22𝑚∗𝑋𝑌𝜕2𝑍𝜕𝑧2 + 𝑈(𝑧)ΧΥΖ = 𝐸ΧΥΖ, (4.284)

− ℏ22𝑚∗ 1𝑋 𝜕2Χ𝜕𝑥2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑓1(𝑥)
− ℏ22𝑚∗ 1𝑌 𝜕2𝑌𝜕𝑦2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑓2(𝑦)

− ℏ22𝑚∗ 1𝑍 𝜕2𝑍𝜕𝑧2 + 𝑈(𝑧)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑓3(𝑧)
= 𝐸. (4.285)

There are three terms on the left-hand side of Eq. (4.285); the first 𝑓1(𝑥), depends only on 𝑥, the second,𝑓2(𝑦), depends only on 𝑦, and the third, 𝑓3(𝑧), depends only on 𝑧. On the right-hand side there is 𝐸 and
the equation must hold ∀𝑥, 𝑦, 𝑧. Hence, 𝐸 does not depend on 𝑥, 𝑦, 𝑧 and the equation can be divided
into three parts, i.e., 𝐸 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧. (4.286)

− ℏ22𝑚∗ 1𝑋 𝜕2Χ𝜕𝑥2 = 𝐸𝑥, (4.287)

− ℏ22𝑚∗ 1𝑌 𝜕2𝑌𝜕𝑦2 = 𝐸𝑦, (4.288)

− ℏ22𝑚∗ 1𝑍 𝜕2𝑍𝜕𝑧2 + 𝑈(𝑧) = 𝐸𝑧. (4.289)
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• For the first equation, − ℏ22𝑚∗ 𝜕2𝑋(𝑥)𝜕𝑥2 = 𝐸𝑥 𝑋(𝑥), (4.290)

we try solutions of the form 𝑋(𝑥) = 𝐴𝑒𝑖𝑘𝑥𝑥 (eigenfunctions) (4.291)

and it follows that ℏ2𝑘2𝑥2𝑚∗ 𝑋(𝑥) = 𝐸𝑥 𝑋(𝑥), (4.292)

𝐸𝑥 = ℏ2𝑘2𝑥2𝑚∗ (eigenenergies). (4.293)

We observe that the eigenenergies and eigenfunctions are the characteristic ones of a free particle
moving in the 𝑥 dimension. We normalize over the whole length of the heterostructure along the𝑥-axis, i.e.
􏾙+𝐿𝑥/2−𝐿𝑥/2 𝑑𝑥|𝑋(𝑥)|2 = 1 ⇒ |𝐴|2𝐿𝑥 = 1, hence, a convenient choice is 𝐴 = 1√𝐿𝑥 . (4.294)

• For the second equation, − ℏ22𝑚∗ 𝜕2𝑌(𝑦)𝜕𝑦2 = 𝐸𝑦 𝑌(𝑦), (4.295)

we try solutions of the form 𝑌(𝑦) = 𝐵𝑒𝑖𝑘𝑦𝑦 (eigenfunctions) (4.296)

and it follows that ℏ2𝑘2𝑦2𝑚∗ 𝑌(𝑦) = 𝐸𝑦 𝑌(𝑦), (4.297)

𝐸𝑦 = ℏ2𝑘2𝑦2𝑚∗ (eigenenergies). (4.298)

We observe that the eigenenergies and eigenfunctions are the characteristic ones of a free particle
moving in the 𝑦 dimension. We normalize over the whole length of the heterostructure along the𝑦-axis, i.e.
􏾙+𝐿𝑦/2−𝐿𝑦/2 𝑑𝑦|𝑌(𝑦)|2 = 1 ⇒ |𝐵|2𝐿𝑦 = 1, hence, a convenient choice is 𝐵 = 1√𝐿𝑦 . (4.299)

• For the third, equation, − ℏ22𝑚∗ 𝜕2𝑍(𝑧)𝜕𝑧2 + 𝑈(𝑧) Ζ(𝑧) = 𝐸𝑧 Ζ(𝑧), (4.300)

we will generally have some eigenenergies𝐸𝑖 and eigenfunctions 𝜁𝑖(𝑧)which correspond to bound
states. (We will not focus on energies larger than the top of the well.) Let us assumed that the
eigenfunctions are normalized, so that

􏾙+𝐿𝑧/2−𝐿𝑧/2 𝑑𝑧|𝜁𝑖(𝑧)|2 = 1. (4.301)
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Hence, in summary, we obtain the eigenenergies

𝐸𝑖(𝑘𝑥, 𝑘𝑦) = 𝐸𝑖 + ℏ2𝑘2𝑥2𝑚∗ + ℏ2𝑘2𝑦2𝑚∗ (4.302)

and the (envelope) eigenfunctions

𝜑𝑖,𝑘𝑥,𝑘𝑦 (⃗𝑟) = 1√𝑆𝜁𝑖(𝑧)𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦, (4.303)

where 𝑆 = 𝐿𝑥𝐿𝑦 is the cross section of the heterostructure on the 𝑥𝑦-plane. In other words, the electron
is free along the 𝑥- and 𝑦-axes, while it is bound along the 𝑧-axis (at least for energies smaller than the top
of the well). The index 𝑖 is discrete and the indices 𝑘𝑥, 𝑘𝑦 are “continuous”. These two elements constitute
the quasi two-dimensional character of such electrons.

4.9 Density of eigenstates of a quasi two-dimensional electron gas.

The density of eigenstates is defined as𝑔(𝜀) ∶= 􏾜𝜇 𝛿(𝜀 − 𝐸𝜇) = 2􏾜𝜆 𝛿(𝜀 − 𝐸𝜆), (4.304)

where the first (second) summation over 𝜇 (𝜆) denotes all the eigenstates (energy eigenstates), i.e. the
factor 2 is due to spin. Summation is carried out over all “continuous” and discrete indices. In our case, it is
carried out over the “continuous” quantum numbers 𝑘𝑥, 𝑘𝑦 and the discrete quantum number 𝑖. In other
words, 𝑔(𝜀) = 2 􏾜𝑖,𝑘𝑥,𝑘𝑦 𝛿

ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2(𝑘2𝑥 + 𝑘2𝑦)2𝑚∗
ϷϸϸϸϹ . (4.305)

Let us impose periodic boundary conditions along the 𝑥- and 𝑦-directions, i.e.,
𝑒𝑖𝑘𝑥􏿵−𝐿𝑥2 􏿸 = 𝑒𝑖𝑘𝑥􏿵 𝐿𝑥2 􏿸 ⇒ 𝑒𝑖𝑘𝑥𝐿𝑥 = 1 = 𝑒𝑖2𝜋𝑛𝑥, 𝑛𝑥 ∈ 𝒵 ⇒ 𝑘𝑥 = 2𝜋𝑛𝑥𝐿𝑥 . (4.306)

𝑒𝑖𝑘𝑦􏿵−𝐿𝑦2 􏿸 = 𝑒𝑖𝑘𝑦􏿵 𝐿𝑦2 􏿸 ⇒ 𝑒𝑖𝑘𝑦𝐿𝑦 = 1 = 𝑒𝑖2𝜋𝑛𝑦, 𝑛𝑦 ∈ 𝒵 ⇒ 𝑘𝑦 = 2𝜋𝑛𝑦𝐿𝑦 . (4.307)

Therefore, 𝑘𝑥 = 2𝜋𝑛𝑥𝐿𝑥 ⇒ Δ𝑘𝑥 = 2𝜋𝐿𝑥 Δ𝑛𝑥, 𝑘𝑦 = 2𝜋𝑛𝑦𝐿𝑦 ⇒ Δ𝑘𝑦 = 2𝜋𝐿𝑦 Δ𝑛𝑦. (4.308)

𝑔(𝜀) = 2 􏾜𝑖,𝑘𝑥,𝑘𝑦 𝛿
ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2(𝑘2𝑥 + 𝑘2𝑦)2𝑚∗

ϷϸϸϸϹ Δ𝑛𝑥Δ𝑛𝑦, where Δ𝑛𝑥 = Δ𝑛𝑦 = 1. (4.309)

Using Eq. (4.308), it follows that

𝑔(𝜀) = 2 􏾜𝑖,𝑘𝑥,𝑘𝑦 𝛿
ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2(𝑘2𝑥 + 𝑘2𝑦)2𝑚∗

ϷϸϸϸϹ 𝐿𝑥2𝜋Δ𝑘𝑥 𝐿𝑦2𝜋Δ𝑘𝑦. (4.310)
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And, since 𝑆 = 𝐿𝑥𝐿𝑦 is the cross section of the heterostructure on the 𝑥𝑦-plane, we can write

𝑔(𝜀) = 2 𝑆(2𝜋)2 􏾜𝑖,𝑘𝑥,𝑘𝑦 𝛿
ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2(𝑘2𝑥 + 𝑘2𝑦)2𝑚∗

ϷϸϸϸϹ Δ𝑘𝑥Δ𝑘𝑦 (4.311)

Now, let us suppose thatΔ𝑘𝑥 → 𝑑𝑘𝑥 assuming 𝐿𝑥 → ∞ or, better, >> 𝐿𝑧, (4.312)Δ𝑘𝑦 → 𝑑𝑘𝑦 assuming 𝐿𝑦 → ∞ or, better, >> 𝐿𝑧. (4.313)

In this “qualitative” fashion, we conclude that𝑔(𝜀) = 2 𝑆(2𝜋)2 􏾙𝑘𝑥 𝑑𝑘𝑥􏾙𝑘𝑦 𝑑𝑘𝑦􏾜𝑖 𝛿
ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2(𝑘2𝑥 + 𝑘2𝑦)2𝑚∗

ϷϸϸϸϹ (4.314)

which, of course, can also be implied by a known theorem.
Now, let us change the coordinates in the plane 𝑘𝑥𝑘𝑦 from Cartesian to polar. As we can see in Fig-

ure 4.19, the norm, |⃗𝑘| , of the two-dimensional vector 𝑘⃗ = (𝑘𝑥, 𝑘𝑦) in the plane 𝑘𝑥𝑘𝑦, is |⃗∗𝑘| ∶= 𝑘∥ =√𝑘2𝑥 + 𝑘2𝑦, where the infinitesimal change in the radial direction is denoted by 𝑑𝑘∥ and the infinitesimal
change in the polar direction, i.e., normal to the radial direction, is denoted by 𝑑𝑘⟂ = 𝑘∥𝑑𝜙.𝜙 is the polar
angle in the plane 𝑘𝑥𝑘𝑦. Therefore, we can write

Figure 4.19: From Cartesian to polar coordinates in the plane 𝑘𝑥𝑘𝑦.
𝑔(𝜀) = 2 𝑆(2𝜋)2 􏾙∞

0 􏾙2𝜋
0 𝑑𝑘∥𝑘∥𝑑𝜙􏾜𝑖 𝛿

ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2𝑘2∥2𝑚∗
ϷϸϸϸϹ , (4.315)

𝑔(𝜀) = 𝑆𝜋􏾜𝑖 􏾙∞
0 𝑑𝑘∥𝑘∥𝛿 ϴϵϵϵ϶𝜀 − 𝐸𝑖 − ℏ2𝑘2∥2𝑚∗

ϷϸϸϸϹ . (4.316)

Now, performing the variable change

𝜒 = ℏ2𝑘2∥2𝑚∗ ⇒ 𝑑𝜒 = ℏ2𝑚∗ 𝑘∥𝑑𝑘∥, (4.317)

it occurs that 𝑔(𝜀) = 𝑆𝑚∗𝜋ℏ2 􏾜𝑖 􏾙∞
0 𝑑𝜒𝛿(𝜀 − 𝐸𝑖 − 𝜒). (4.318)

As it can be seen in Figure 4.20, when 𝜀 − 𝐸𝑖 lies within the interval (0,∞), i.e., when 𝜀 > 𝐸𝑖, the integral
is equal to 1, otherwise it is 0. This can be expressed as𝑔(𝜀) = 𝑚∗𝑆𝜋ℏ2 􏾜𝑖 Θ(𝜀 − 𝐸𝑖) (4.319)

The density of (eigen)states, with its characteristic step-like form, is presented in Figure 4.21.
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Figure 4.20: 𝜀 − 𝐸𝑖 lies within the interval (0,∞), i.e., when 𝜀 > 𝐸𝑖, the integral is equal to 1, otherwise it
is 0.

Figure 4.21: Density of (eigen)states of a quasi two-dimensional electron gas.

4.10 Spatial density of occupied states, i.e. electron density.

The spatial density of occupied states, i.e. the electron density or spatial electron density is

𝑛(⃗𝑟) ∶= 􏾙+∞
−∞ 𝑑𝜀 𝑔(𝜀) 𝑓0(𝜀) |𝜑𝑖,𝑘𝑥,𝑘𝑦 (⃗𝑟)|2, (4.320)

where 𝑔(𝜀) is the density of states, 𝑓0(𝜀) is the Fermi-Dirac distribution, and𝜑𝑖,𝑘𝑥,𝑘𝑦 (⃗𝑟) is the normalized
envelope function of level 𝑖. Caution: there is already a summation over 𝑖 inside 𝑔(𝜀). Substituting Eqs.
(4.319), (4.303) and the definition of the Fermi-Dirac distribution function, we obtain𝑛(⃗𝑟) = 􏾙+∞

−∞ 𝑑𝜀 𝑚∗𝑆𝜋ℏ2 􏾜𝑖 Θ(𝜀 − 𝐸𝑖) 11 + exp􏿵𝜀−𝜇(𝑇)𝑘B𝑇 􏿸 1𝑆|𝜁𝑖(𝑧)|2 (4.321)

𝑛(⃗𝑟) = 𝑚∗𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 􏾙+∞
−∞ 𝑑𝜀 Θ(𝜀 − 𝐸𝑖) 11 + exp􏿵𝜀−𝜇(𝑇)𝑘B𝑇 􏿸 (4.322)

𝑛(⃗𝑟) = 𝑚∗𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 􏾙+∞
𝐸𝑖 𝑑𝜀 11 + exp􏿵𝜀−𝜇(𝑇)𝑘B𝑇 􏿸 (4.323)

We now perform the variable change 𝜒(𝑇) ∶= 𝜀𝑘B𝑇 , and denote 𝜅(𝑇) ∶= 𝜇(𝑇)𝑘B𝑇 [below we write them as 𝜒
and 𝜅, for simplicity]. Thus, it follows that

𝑛(⃗𝑟) = 𝑚∗𝑘B𝑇𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 􏾙+∞𝐸𝑖𝑘B𝑇 𝑑𝜒 11 + exp(𝜒 − 𝜅), (4.324)
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and since (ln(1 + 𝑒−𝑥))′ = −𝑒−𝑥1+𝑒−𝑥 = −11+𝑒𝑥 , we can write

𝑛(⃗𝑟) = 𝑚∗𝑘B𝑇𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 􏿮− ln􏿴1 + exp(𝜅 − 𝜒)􏿷􏿱+∞𝐸𝑖𝑘B𝑇 . (4.325)

However, 􏿮− ln􏿴1 + exp(𝜅 − 𝜒)􏿷􏿱+∞𝐸𝑖𝑘B𝑇 = 0 + ln􏿶1 + exp􏿶𝜅 − 𝐸𝑖𝑘B𝑇􏿹􏿹, (4.326)

thus, 𝑛(⃗𝑟) = 𝑚∗𝑘B𝑇𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 ln􏿶1 + exp􏿶𝜇(𝑇) − 𝐸𝑖𝑘B𝑇 􏿹􏿹 = 𝑛(𝑧) (4.327)

For 𝑇 = 0, 𝑓0(𝜀) = ЀЃЁЃЂ1, 𝜀 ≤ 𝐸F0, 𝜀 > 𝐸F
= Θ(𝐸F − 𝜀), (4.328)

where 𝐸F is the so-called Fermi energy, i.e., the chemical potential at temperature 𝑇 = 0 [ 𝐸F ∶= 𝜇(0)].
Substituting to the definition (4.320), we obtain

𝑛(⃗𝑟) = 􏾙𝐸F−∞ 𝑑𝜀 𝑚∗𝑆𝜋ℏ2 􏾜𝑖 Θ(𝜀 − 𝐸𝑖) 1 1𝑆|𝜁𝑖(𝑧)|2, (4.329)

𝑛(⃗𝑟) = 𝑚∗𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 􏾙𝐸F−∞ 𝑑𝜀 Θ(𝜀 − 𝐸𝑖), (4.330)

𝑛(⃗𝑟) = 𝑚∗𝜋ℏ2 􏾜𝑖
occupied

|𝜁𝑖(𝑧)|2 􏾙𝐸F𝐸𝑖 𝑑𝜀. (4.331)

Only the occupied levels contribute now. In conclusion, we obtain the formula

𝑛(⃗𝑟) = 𝑚∗𝜋ℏ2 􏾜𝑖
occupied

|𝜁𝑖(𝑧)|2 (𝐸F − 𝐸𝑖) = 𝑛(𝑧) (4.332)

4.11 Spatial electron density, electron energy density, total number of electrons.

As seen in Eq. (4.320) of the previous Section 4.10, the spatial electron density is defined as

𝑛(⃗𝑟) ∶= 􏾙+∞
−∞ 𝑑𝜀 𝑔(𝜀) 𝑓0(𝜀) |𝜑𝑖,𝑘𝑥,𝑘𝑦 (⃗𝑟)|2. (4.333)

Similarly, the electron energy density is defined as

𝑛(𝜀) ∶= 􏾙
everywhere

𝑑3𝑟 𝑔(𝜀) 𝑓0(𝜀) |𝜑𝑖,𝑘𝑥,𝑘𝑦 (⃗𝑟)|2, (4.334)

while the total number of electrons is𝑁 ∶= 􏾙+∞
−∞ 𝑑𝜀􏾙

everywhere
𝑑3𝑟 𝑔(𝜀) 𝑓0(𝜀) |𝜑𝑖,𝑘𝑥,𝑘𝑦 (⃗𝑟)|2, (4.335)



QUANTUM OPTICS 111

since 𝑁 ∶= 􏾙
everywhere

𝑑3𝑟 𝑛(⃗𝑟). (4.336)

In the context of electronic devices, the sheet (or surface) electron density

𝑁s ∶= 𝑁𝑆 . (4.337)

is used. Using Eq. 4.327, which holds for all temperatures 𝑇, we obtain

𝑁 ∶= 􏾙
everywhere

𝑑3𝑟 𝑚∗𝑘B𝑇𝜋ℏ2 􏾜𝑖 |𝜁𝑖(𝑧)|2 ln􏿶1 + exp􏿶𝜇(𝑇) − 𝐸𝑖𝑘B𝑇 􏿹􏿹 ⇒ (4.338)

𝑁 = 𝑚∗𝑆𝑘B𝑇𝜋ℏ2 􏾜𝑖 ln􏿶1 + exp􏿶𝜇(𝑇) − 𝐸𝑖𝑘B𝑇 􏿹􏿹, (4.339)

while, using Eq. 4.332, which holds for 𝑇 = 0, we obtain

𝑁 ∶= 􏾙
everywhere

𝑑3𝑟 𝑚∗𝜋ℏ2 􏾜𝑖
occupied

|𝜁𝑖(𝑧)|2 (𝐸F − 𝐸𝑖) ⇒ (4.340)

𝑁 = 𝑚∗𝑆𝜋ℏ2 􏾜𝑖
occupied

(𝐸F − 𝐸𝑖). (4.341)

Let us provide an example, to obtain a better understanding of the orders of magnitude we are dis-
cussing. Suppose 𝑆 = 1 cm2,𝑚∗ = 0.067𝑚𝑒 (GaAs), and a single occupied state with 𝐸F − 𝐸𝑖 = 30 meV.
Then 𝑁 ≈ 0.067 9.1 10−31 10−4𝜋 1.0542 10−68 30 10−3 1.602 10−19 ≈ 0.9 1012, hence the surface electron density is𝑁s ≈ 0.9 1012 cm−2.
4.12 Density of eigenstates of a quasi one-dimensional electron gas.

It is left as an exercise to prove that, in the case of a quasi one-dimensional electron gas, with free states
along the 𝑥-direction and bound states along the 𝑦-, 𝑧-directions, the envelope eigenfunctions are given
by the expression 𝜑𝑖,𝑗,𝑘𝑥 (⃗𝑟) = 1√𝐿𝑥 𝑒𝑖𝑘𝑥𝑥𝜐𝑗(𝑦)𝜁𝑖(𝑧) (4.342)

and the corresponding eigenenergies by the expression

𝐸𝑖,𝑗,𝑘𝑥 = 𝐸𝑖 + 𝐸𝑗 + ℏ2𝑘2𝑥2𝑚∗ , (4.343)

where 𝑘𝑥 is “continuous” and 𝑖, 𝑗 are discrete.
From the definition of the density of eigenstates [Eq. (4.304)], using Eq. (4.343), we sum over all the

“continuous” and discrete indices. Here, 𝑘𝑥 is “continuous” and 𝑖, 𝑗 are discrete. In other words,

𝑔(𝜀) = 2 􏾜𝑖,𝑗,𝑘𝑥 𝛿 􏿶𝜀 − 𝐸𝑖 − 𝐸𝑗 − ℏ2𝑘2𝑥2𝑚∗ 􏿹 . (4.344)
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Imposing periodic boundary conditions along the 𝑥-axis, we have

𝑒𝑖𝑘𝑥􏿵−𝐿𝑥2 􏿸 = 𝑒𝑖𝑘𝑥􏿵 𝐿𝑥2 􏿸 ⇒ 𝑒𝑖𝑘𝑥𝐿𝑥 = 1 = 𝑒𝑖2𝜋𝑛𝑥, 𝑛𝑥 ∈ 𝒵 ⇒ 𝑘𝑥 = 2𝜋𝑛𝑥𝐿𝑥 ⇒ Δ𝑘𝑥 = 2𝜋𝐿𝑥 Δ𝑛𝑥, (4.345)

whereΔ𝑛𝑥 = 1. Hence, Eq. (4.344) becomes

𝑔(𝜀) = 2 􏾜𝑖,𝑗,𝑘𝑥 𝛿 􏿶𝜀 − 𝐸𝑖 − 𝐸𝑗 − ℏ2𝑘2𝑥2𝑚∗ 􏿹Δ𝑛𝑥 = 2 𝐿𝑥2𝜋 􏾜𝑖,𝑗,𝑘𝑥 𝛿 􏿶𝜀 − 𝐸𝑖 − 𝐸𝑗 − ℏ2𝑘2𝑥2𝑚∗ 􏿹Δ𝑘𝑥. (4.346)

Now, let us suppose thatΔ𝑘𝑥 → 𝑑𝑘𝑥 assuming 𝐿𝑥 → ∞ or, better, >> 𝐿𝑦, 𝐿𝑧. (4.347)

Therefore,

𝑔(𝜀) = 𝐿𝑥𝜋 􏾜𝑖,𝑗 􏾙∞
−∞ 𝑑𝑘𝑥𝛿 􏿶𝜀 − 𝐸𝑖 − 𝐸𝑗 − ℏ2𝑘2𝑥2𝑚∗ 􏿹 = 2𝐿𝑥𝜋 􏾜𝑖,𝑗 􏾙∞

0 𝑑𝑘𝑥𝛿 􏿶𝜀 − 𝐸𝑖 − 𝐸𝑗 − ℏ2𝑘2𝑥2𝑚∗ 􏿹 . (4.348)

We now perform the variable change

𝜒 = ℏ2𝑘2𝑥2𝑚∗ ⇒ 𝑑𝜒 = ℏ2𝑚∗ 𝑘𝑥𝑑𝑘𝑥 ⇒ 𝑑𝑘𝑥 = √𝑚∗ℏ√2 𝑑𝜒√𝜒. (4.349)

Hence, 𝑔(𝜀) = 2𝐿𝑥𝜋 √𝑚∗ℏ√2 􏾜𝑖,𝑗 􏾙∞
0 𝑑𝜒 1√𝜒𝛿 􏿴𝜀 − 𝐸𝑖 − 𝐸𝑗 − 𝜒􏿷 . (4.350)

Thus, 𝑔(𝜀) = 𝐿𝑥√2𝑚∗𝜋ℏ 􏾜𝑖,𝑗 1√𝜀 − 𝐸𝑖 − 𝐸𝑗Θ(𝜀 − 𝐸𝑖 − 𝐸𝑗) (4.351)

The density of (eigen)states, with its characteristic saw-tooth form and the so-called van Hove singulari-
ties, where the DOS gets infinite approaching from above, is presented in Figure 4.22.

4.13 Density of eigenstates of a three-dimensional electron gas.

It is left as an exercise to prove that, in the case of a three-dimensional electron gas, with free states along
all the 𝑥, 𝑦, 𝑧-directions, the envelope eigenfunctions are given by the expression

𝜑𝑖,𝑗,𝑘𝑥 (⃗𝑟) = 1√𝑉 𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦𝑒𝑖𝑘𝑧𝑧, (4.352)

where𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧, and the corresponding eigenenergies by the expression

𝐸𝑘𝑥,𝑘𝑦,𝑘𝑧 = ℏ2(𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧)2𝑚∗ = ℏ2𝑘22𝑚∗ , (4.353)

where 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are “continuous” indices.
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Figure 4.22: Density of (eigen)states of a quasi one-dimensional electron gas with its characteristic saw-
tooth form and the so-called van Hove singularities. In this specific example, we have put 𝐸𝑖=0 = 0.5,𝐸𝑖=1 = 1.5, 𝐸𝑗=0 = 2, 𝐸𝑗=1 = 4, in arbitrary units, just to make the figure.

From the definition of the density of eigenstates [Eq. (4.304)], using Eq. (4.353), we sum over all the
“continuous” indices. In other words,

𝑔(𝜀) = 2 􏾜𝑘𝑥,𝑘𝑦,𝑘𝑧 𝛿 􏿶𝜀 − ℏ2𝑘22𝑚∗ 􏿹 . (4.354)

Imposing periodic boundary conditions along the 𝑥-axis, we have

𝑒𝑖𝑘𝑥􏿵−𝐿𝑥2 􏿸 = 𝑒𝑖𝑘𝑥􏿵 𝐿𝑥2 􏿸 ⇒ 𝑒𝑖𝑘𝑥𝐿𝑥 = 1 = 𝑒𝑖2𝜋𝑛𝑥, 𝑛𝑥 ∈ 𝒵 ⇒ 𝑘𝑥 = 2𝜋𝑛𝑥𝐿𝑥 ⇒ Δ𝑘𝑥 = 2𝜋𝐿𝑥 Δ𝑛𝑥, (4.355)

whereΔ𝑛𝑥 = 1. Similarly, Δ𝑘𝑦 = 2𝜋𝐿𝑦 Δ𝑛𝑦, Δ𝑘𝑧 = 2𝜋𝐿𝑧 Δ𝑛𝑧, (4.356)

whereΔ𝑛𝑦 = Δ𝑛𝑧 = 1. Therefore, Eq. (4.354) becomes

𝑔(𝜀) = 2 􏾜𝑘𝑥,𝑘𝑦,𝑘𝑧 𝛿 􏿶𝜀 − ℏ2𝑘22𝑚∗ 􏿹Δ𝑛𝑥Δ𝑛𝑦Δ𝑛𝑧 = 2𝑉(2𝜋)3 􏾜𝑘𝑥,𝑘𝑦,𝑘𝑧 𝛿 􏿶𝜀 − ℏ2𝑘22𝑚∗ 􏿹Δ𝑘𝑥Δ𝑘𝑦Δ𝑘𝑧. (4.357)

Now, let us suppose that Δ𝑘𝑥 → 𝑑𝑘𝑥 assuming 𝐿𝑥 → ∞ (4.358)Δ𝑘𝑦 → 𝑑𝑘𝑦 assuming 𝐿𝑦 → ∞ (4.359)Δ𝑘𝑧 → 𝑑𝑘𝑧 assuming 𝐿𝑧 → ∞. (4.360)

In this “qualitative” fashion, we conclude that

𝑔(𝜀) = 2𝑉(8𝜋)3 􏾙∞
−∞ 𝑑𝑘𝑥􏾙∞

−∞ 𝑑𝑘𝑦􏾙∞
−∞ 𝑑𝑘𝑧𝛿 􏿶𝜀 − ℏ2𝑘22𝑚∗ 􏿹 . (4.361)

which, of course, can also be implied by a known theorem. Changing to spherical coordinates, the above
relationship becomes 𝑔(𝜀) = 𝑉4𝜋3 􏾙∞

0 4𝜋𝑘2𝑑𝑘𝛿 􏿶𝜀 − ℏ2𝑘22𝑚∗ 􏿹 . (4.362)
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We now perform the variable change

𝜒 = ℏ2𝑘22𝑚∗ ⇒ 𝑑𝜒 = ℏ2𝑚∗ 𝑘𝑑𝑘 ⇒ 𝑑𝑘 = √𝑚∗ℏ√2 𝑑𝜒√𝜒. (4.363)

Hence, 𝑔(𝜀) = 𝑉𝑚∗32√2𝜋2ℏ3 􏾙∞
0 𝑑𝜒 𝜒√𝜒𝛿 (𝜀 − 𝜒) . (4.364)

Thus,

𝑔(𝜀) = 𝑉𝑚∗32√2𝜋2ℏ3 √𝜀Θ(𝜀) . (4.365)

The density of (eigen)states, which, in contrast to the previous cases, is a continuous function of energy,
is presented in Figure 4.23.

Figure 4.23: Density of (eigen)states of a three-dimensional electron gas.

More for continuous spectrum in solids, energy bands, and so on can be found in classical solid state
physics books, for example in [16], [18], [19], [20].

4.14 Degrees of Freedom: translational, vibrational, rotational.

Simply, degrees of freedomof aphysical systemare thenumberof independentways inwhich itmaymove.
These are translational, vibrational or rotational. Alternatively, theminimumnumber of independent vari-
ables required to describe completely the state of the system.Classically, amolecule with𝑁 atoms has 3𝑁
degrees of freedom. Its center of mass canmove in 3 directions, 𝑥, 𝑦, 𝑧, therefore, it has 3 translational de-
grees of freedom. Hence, there remain 3𝑁 − 3 vibrational and rotational degrees of freedom.

Wewill give anexampleof adiatomicmolecule,A-B.Themolecule canvibrate along the line connecting
the two atoms. [Let us suppose that this line lies along the 𝑥-axis.]Therefore, it has one vibrational degree
of freedom. It can also rotate around the perpendicular directions at the line connecting the two atoms,
i.e., here around the 𝑦- and the 𝑧-axis. Therefore it has 2 rotational degrees of freedom.

Generally, if a molecule is linear, it has 2 rotational degrees of freedom, hence, there remain 3Ν − 5
vibrational degrees of freedom. If a molecule is non-linear, it has 3 rotational degrees of freedom, hence,
there remain 3𝑁−6 vibrational degrees of freedom. In the quantumworld, thesemovements correspond
to different quantum numbers. For more, see a Physical Chemistry book, e.g. [21].
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CHAPTER 5

SEMICLASSICAL APPROXIMATION I

In this Chapter:
We discuss the semiclassical approach of the electromagnetic (EM) field - two-level, three-level, multi-
level system (2LS, 3LS, MLS) interaction. We manipulate the EM field classically, while 2LS, 3LS, MLS
are treated quantum mechanically, that is, as a set of eigenstates. We introduce the dipole approximation,
after having discussed briefly the electric dipole moment and its analogies with the magnetic dipole mo-
ment.Unperturbed is the systemwithoutEMfield.Theperturbed system, i.e., the system subjected toEM
field, is manipulated with time-dependent perturbation theory. We arrive at a linear system of differential
equations. We evaluate the perturbation potential energy matrix elements. We give analytical solutions
for 2LS, 3LS, MLS within the rotating wave approximation (RWA). We encounter for the first time Rabi
oscillations, i.e., time-dependent probabilities to find the electron at the levels.We introduce the Rabi fre-
quency, which expresses themagnitude and the effectiveness of the perturbation, i.e., of the entanglement
with the EM field. For the solution of the differential equations we use the eigenvalue method, which is
more general, but also other alternatives. We calculate approximatively the Einstein coefficients. For the
3LS we use a viable, analytically solvable, variation, with equidistant levels in one dimension, an hypoth-
esis that we keep for the MLS, which we solve finally. Relative helpful references are [1, 2, 3, 4, 5, 6].
Prerequisite knowledge: Basic knowledge of Electromagnetism, Quantum Physics, and Mathematics.

Let us recall some necessary abbreviations: 1LS = single-level system, 2LS = two-level system, 3LS
= three-level system, MLS = multi-level system. For example, a 2LS may be two consecutive levels of an
atom,molecule, quantumdot (or nanoparticle).This is schematically depicted inFigure 5.1, togetherwith
relevant quantities: the eigenenergies of the two levels 𝐸2 and 𝐸1, the angular frequency of the EM field,𝜔, the energy distance between the two levels, ℏΩ, the Rabi frequency,Ω𝑅, which shows how much the
two levels are tangled by the EM field, and the detuning,Δ = 𝜔 − Ω.
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Figure 5.1: Schematically, a two-level system (2LS) and relevant quantities: eigenenergies of the two lev-
els,𝐸2 and𝐸1, angular frequency of the EMfield,𝜔, energy distance between the two levels, ℏΩ, Rabi fre-
quency,Ω𝑅, which shows howmuch the two levels are tangled by theEMfield, anddetuning,Δ = 𝜔−Ω.

5.1 Semiclassical treatment. EM field: classically. Two-level system: quantum mechanically.

Semiclassical treatment means that while the two-level system (e.g., atom, quantum dot, nanoparticle,
color center, etc.) is treatedquantummechanically as aneigenstate system, theEMfield is treatedclassically.
The EM field is considered as an external, time-dependent perturbation. Moreover, we consider that
the EM field is so

✿✿✿✿✿
dense that

✿✿✿✿✿✿✿
photon

✿✿✿✿✿✿✿✿✿✿
absorption

✿✿✿
or

✿✿✿✿✿✿✿✿✿
emission by the two-level system of study

✿✿✿✿✿✿
cannot

✿✿✿✿✿✿✿✿✿✿✿
substantially

✿✿✿✿✿✿
affect

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
amplitudes

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿
electric

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
magnetic

✿✿✿✿✿
fields. If we are interested fluctuations of

the EM field density, we need to abandon the semiclassical approximation. This is done in Chapter 8,
where the 2LS - EM field complex is studied in its full quantummechanical form; that is, in Chapter 8 we
will treat the EM field quantum mechanically, as well.

5.2 Unperturbed system, i.e., without an EM field.

Let us consider the electronic Hamiltonian in the unperturbed two-level system,

𝐻̂0 = ̂⃗𝑝 22𝑚𝑒 + 𝑈(⃗𝑟). (5.1)

For example, in the hydrogen atom, the potential (Coulomb) energy is

𝑈(⃗𝑟) = (−𝑒) 14𝜋𝜀0 𝑒𝑟 = −𝑒24𝜋𝜀0𝑟 , (5.2)

where 𝑒 is the elementary charge. In amulti-electron systemwith atomicnumber𝑍 thepotential (Coulomb)
energy is 𝑈(⃗𝑟) = −𝑍𝑒24𝜋𝜀0𝑟 . (5.3)

We can alternatively consider the screened form of the potential energy, i.e.,

𝑈𝑆(⃗𝑟) = −𝑍𝑒24𝜋𝜀0𝑟𝑒−𝑘0𝑟. (5.4)

Generally, the Coulomb potential has the form

𝑉(⃗𝑟) = 14𝜋𝜀0 𝑍𝑒𝑟 , (5.5)
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while the screened Coulomb potential has the form

𝑉𝑆(⃗𝑟) = 14𝜋𝜀0 𝑍𝑒𝑟 𝑒−𝑘0𝑟, (5.6)

where 𝑘0 is the strength of the damping factor orThomas-Fermiwave vector.The screenedpotential𝑉𝑆(⃗𝑟)
is also called the Thomas-Fermi or Yukawa potential. The above potentials and potential energies are, in
final analysis, dependent on 𝑟 and not 𝑟⃗; that means that they are central potentials and central potential
energies. The Yukawa potential drops faster than the Coulomb potential, due to the factor 𝑒−𝑘0𝑟; this is
depicted in Figure 5.2.

Figure 5.2: Comparison of the Yukawa and Coulomb potential energies, which are here simplified as𝑉Yukawa(𝑟) = −1𝑟 𝑒−𝑘0𝑟 and 𝑉Coulomb(𝑟) = −1𝑟 . 𝑟, 𝑘0 are dimensionless and positive. The Coulomb po-
tential energy has an effect in larger distances, while the Yukawa potential energy dropsmore rapidly, due
to the factor 𝑒−𝑘0𝑟.

Let us consider the time-dependent Schrödinger equation

𝑖ℏ𝜕Ψ(⃗𝑟, 𝑡)𝜕𝑡 = 𝐻̂0Ψ(⃗𝑟, 𝑡) (5.7)

whereΨ(⃗𝑟, 𝑡) is the wavefunction of the unperturbed electron. Furthermore, let us assume the separation
of variables Ψ(⃗𝑟, 𝑡) = Φ(⃗𝑟) 𝑇(𝑡). (5.8)

(5.7)(5.8) ⇒ Φ(⃗𝑟)𝑖ℏ𝑑𝑇(𝑡)𝑑𝑡 = 𝑇(𝑡)𝐻̂0Φ(⃗𝑟) ⇒ 𝑖ℏ𝑇(𝑡) 𝑑𝑇(𝑡)𝑑𝑡 = 𝐻̂0Φ(⃗𝑟)Φ(⃗𝑟) , for 𝑇(𝑡) ≠ 0 ≠ Φ(⃗𝑟). [If 𝑇(𝑡) = 0 orΦ(⃗𝑟) = 0, then Eq. 5.7 is trivially satisfied]. However, for the last equation to be satisfied ∀𝑡 and ∀𝑟⃗, it
must hold that 𝑖ℏ𝑇(𝑡) 𝑑𝑇(𝑡)𝑑𝑡 = 𝐻̂0Φ(⃗𝑟)Φ(⃗𝑟) = 𝐸 (CONSTANT) (5.9)

since the one part depends solely on 𝑡 and the other part depends solely on 𝑟⃗. Thus,
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1. 𝐻̂0Φ(⃗𝑟) = 𝐸Φ(⃗𝑟), hence 𝐸 are the energy eigenvalues, generally distinct, which are characterized
by some “collective number” 𝑘, i.e., 𝐻̂0Φ𝑘(⃗𝑟) = 𝐸𝑘Φ𝑘(⃗𝑟). (5.10)

2.
𝑑𝑇𝑇 = 𝐸𝑑𝑡𝑖ℏ ⇒ ln𝑇 = −𝑖𝐸𝑡ℏ + 𝑐 ⇒ 𝑇(𝑡) = 𝑒𝑐𝑒− 𝑖𝐸𝑡ℏ ⇒

𝑇(𝑡) = 𝒩 𝑒− 𝑖𝐸𝑡ℏ . (5.11)

Therefore, wrapping this up Ψ𝑘(⃗𝑟, 𝑡) = 𝒩 𝑒− 𝑖𝐸𝑘𝑡ℏ Φ𝑘(⃗𝑟), (5.12)

where𝒩 is a normalization constant.The eigenstates of theUNPERTURBEDPROBLEMare described
by 𝐻̂0Φ𝑘(⃗𝑟) = 𝐸𝑘Φ𝑘(⃗𝑟), (5.13)

where 𝐸𝑘 are the eigenenergies andΦ𝑘(⃗𝑟) the orthonormal eigenfunctions. In addition, we define𝐸𝑘 ∶= ℏΩ𝑘. (5.14)

Let us demand 􏾙|Ψ𝑘(⃗𝑟, 𝑡)|2𝑑𝑉 = 1 ⇔∣ |𝒩 |2✘✘✘✘✘✘✘✘✿1􏾙 |Φ𝑘(⃗𝑟)|2𝑑𝑉 = 1. (5.15)

This is why we called𝒩 a normalization constant and assumed thatΦ𝑘(⃗𝑟) are orthonormal. 𝑑𝑉 = 𝑑3𝑟
is the elementary volume and 𝑘 a collective quantum number. For example, in the hydrogen atom, 𝑘 ={𝑛, ℓ, 𝑚ℓ}. In the hydrogen atom, the eigenfunctionΦ𝑘(𝑟, 𝜃, 𝜙) corresponds to the eigenvalue

𝐸𝑘 = −𝑅𝐸𝑛2 = 𝐸𝑛, (5.16)

where 𝑅𝐸 = 𝑚𝑒𝑒432𝜋2𝜀20ℏ2 ≃ 13.6 eV (5.17)

is the Rydberg energy. More details on the hydrogen atom can be found in Chapter 7.

5.3 Perturbed system. Time-dependent perturbation theory. Dipole moment. Dipole approxima-
tion.

5.3.1 Arriving at a Linear System of Differential Equations.

Let us consider the hydrogen Hamiltonian in the perturbed 2LS, i.e., subject to an EM field𝐻̂ = 𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡) (5.18)

and assume that the potential energy of the perturbation,𝑈ℰ (⃗𝑟, 𝑡), is adequately small compared to 𝐻̂0.
We want to solve the problem 𝑖ℏ𝜕Ψ(⃗𝑟, 𝑡)𝜕𝑡 = 𝐻̂Ψ(⃗𝑟, 𝑡) (5.19)

under the initial condition Ψ(⃗𝑟, 0) = Φ(⃗𝑟) = known. (5.20)
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We assume that we can expand bothΨ(⃗𝑟, 0) = Φ(⃗𝑟) andΨ(⃗𝑟, 𝑡) over the eigenfunctions of the unper-
turbed problemΦ𝑘(⃗𝑟). Therefore, we can writeΦ(⃗𝑟) = 􏾜𝑘 𝑓𝑘Φ𝑘(⃗𝑟), (5.21)

Ψ(⃗𝑟, 𝑡) = 􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟), (5.22)

thus, 𝐶𝑘(0) = 𝑓𝑘. (5.23)

From Equations 5.18, 5.19, 5.22 it occurs that

𝑖ℏ 𝜕𝜕𝑡􏿮􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟)􏿱 = 􏿮𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡)􏿱􏿮􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟)􏿱. (5.24)

Let us calculate the two hand-sides of Eq. 5.24. For the left hand-side, which we callΑ′, we have:𝐴′ = 𝑖ℏ􏾜𝑘 𝐶̇𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟) + 𝑖ℏ􏾜𝑘 𝐶𝑘(𝑡)(−𝑖Ω𝑘)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟).
Therefore, due to Eq. 5.14, it occurs that𝐴′ = 𝑖ℏ􏾜𝑘 𝐶̇𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟) +􏾜𝑘 𝐶𝑘(𝑡)𝐸𝑘𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟).
For the right-hand side, which we call Β′, we have:𝐵′ = 􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡𝐸𝑘Φ𝑘(⃗𝑟) +􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟).
Thus, by eliminating the second term ofΑ′ and the first term of Β′, it occurs that𝑖ℏ􏾜𝑘 𝐶̇𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟) = 􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟). (5.25)

Now, we exploit the fact thatΦ𝑘(⃗𝑟) are orthonormal. We multiply Eq.(5.25) byΦ∗𝑘′ (⃗𝑟) and integrate over
space, i.e.,

𝑖ℏ􏾜𝑘 𝐶̇𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡 􏾙Φ∗𝑘′ (⃗𝑟)Φ𝑘(⃗𝑟)𝑑𝑉 = 􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡 􏾙Φ∗𝑘′ (⃗𝑟)𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟)𝑑𝑉 (5.26)

However, sinceΦ𝑘(⃗𝑟) are orthonormal,

􏾙Φ∗𝑘′ (⃗𝑟)Φ𝑘(⃗𝑟)𝑑𝑉 = 𝛿𝑘′𝑘,
the above equation becomes, 𝑖ℏ𝐶̇𝑘′(𝑡)𝑒−𝑖Ω𝑘′ 𝑡 = 􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡𝑈ℰ 𝑘′𝑘(𝑡), (5.27)

where 𝑈ℰ𝑘′𝑘(𝑡) = 􏾙Φ∗𝑘′ (⃗𝑟)𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟)𝑑𝑉 = ⟨Φ𝑘′ |𝑈ℰ (⃗𝑟, 𝑡)|Φ𝑘⟩ (5.28)
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are the matrix element of the potential energy of the perturbation. Generally, the matrix elements of any
given physical quantity,𝑀, are defined as

𝑀𝑘′𝑘 ∶= 􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟)𝑀̂(⃗𝑟, −𝑖ℏ∇⃗ )Φ𝑘(⃗𝑟) = ⟨Φ𝑘′ |𝑈ℰ (⃗𝑟, 𝑡)|Φ𝑘⟩ (5.29)

Moreon this subject canbe found inAppendixB.6,where the two formalisms arediscussed inmoredetail.
So, we finally arrive at 𝐶̇𝑘′(𝑡) = −𝑖ℏ 􏾜𝑘 𝐶𝑘(𝑡)𝑒𝑖(Ω𝑘′−Ω𝑘)𝑡𝑈ℰ 𝑘′𝑘(𝑡) (5.30)

In other words, we arrive at a Linear System of First Order Differential Equations. Solving the problem of
Eq. 5.30) is identical to solving the problem of Eqs. 5.18, 5.19.

The above procedure constitutes the so-called time-dependent perturbation theory. We will apply it
to a

✿✿✿✿✿✿✿✿
two-level

✿✿✿✿✿✿✿
system subject to a

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monochromatic and

✿✿✿✿✿✿✿✿
polarized

✿✿✿✿✿✿✿
electric

✿✿✿✿✿
wave, i.e., our perturbation will

have these features. Afterwards, we will apply it to a three-level system, as well.
We notice that since∫ |Ψ(⃗𝑟, 𝑡)|2𝑑𝑉 = 1 ⇔ ∫Ψ∗(⃗𝑟, 𝑡)Ψ(⃗𝑟, 𝑡)𝑑𝑉 = 1,

⇒􏾙𝑑𝑉􏾜𝑘′ 𝐶∗𝑘′(𝑡)𝑒𝑖Ω𝑘′ 𝑡Φ∗𝑘′ (⃗𝑟)􏾜𝑘 𝐶𝑘(𝑡)𝑒−𝑖Ω𝑘𝑡Φ𝑘(⃗𝑟) = 1 ⇒⇒􏾜𝑘′ 􏾜𝑘 𝐶∗𝑘′(𝑡)𝐶𝑘(𝑡)𝑒𝑖(Ω𝑘′−Ω𝑘)𝑡 􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟)Φ𝑘(⃗𝑟) = 1 ⇒
􏾜𝑘 |𝐶𝑘(𝑡)|2 = 1 ⇒􏾜𝑘 |𝐶𝑘(0)|2 = 1 ⇒ 􏾜𝑘 |𝑓𝑘|2 = 1 (5.31)

5.3.2 Dipole moments.

Suppose an electric dipole PM (P: plus, M: minus) with charge 𝑞 > 0 at P and −𝑞 < 0 at M. The electric
dipole moment is defined as 𝒫 ∶= 𝑞𝑑 (5.32)

where 𝑑 = M⃗P. In Figure 5.3 we consider the hydrogen atom, so the electric charge on the nucleus N≡ P
is 𝑞 = 𝑒 > 0, while, on the position of the electronE≡M, it is−𝑞 = −𝑒 < 0. Additionally,𝑑 = M⃗P = E⃗N.
If the axes origin is Ο, we call 𝑟⃗𝐸 the position vector of the electron relative to O, 𝑅⃗ the position vector of
the nucleus relative toO,while 𝑟⃗ = N⃗E = P⃗M is the position vector of the electron relative to the nucleus.
Then, 𝑑 = −𝑟⃗, hence 𝒫 = 𝑞𝑑 = 𝑒(−𝑟⃗) = −𝑒𝑟 (5.33)

Wenowrestrict ourselves to forces coming formtheelectric field
✿✿✿✿✿✿✿✿
traveling

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
monochromatic and

✿✿✿✿✿✿✿✿✿
polarized

EM wave ℰ⃗ = ℰ⃗𝑎 exp􏿮𝑖(⃗𝑘 ⋅ 𝑟⃗𝐻 − 𝜔𝑡 + 𝜙)􏿱
where ℰ⃗𝑎 determined the polarization of the wave and 𝜔 = 2𝜋𝜈 is the angular frequency (𝜈 is the fre-
quency). 𝑘⃗ is the wavevector with magnitude 𝑘 = 2𝜋/𝜆, where 𝜆 is the wavelength. 𝜙 is some arbitrary
phase. However, we will assume that the position of the electron, 𝑟⃗𝐻 , does not significantly differ from
the position of the nucleus, 𝑅⃗, for the length scales that are of interest here. In other words, 𝑟⃗𝐻 ≃ 𝑅⃗ .The
reason why we did so is that we consider optical wavelengths. If, e.g., 𝜆 = 500 nm, then, given that the
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Figure 5.3: (Upper panel)The axes originO, the positive charge P (plus), which can be represented by the
nucleusN in an atom, the negative chargeM(minus), which can be represented by one electronEmoving
around the nucleus.We define 𝑑 ∶= M⃗P. Usually, when studying an atom, we consider the position vector
of the electron relative to the nucleus N⃗E = 𝑟⃗ = −𝑑. The electric dipole moment is defined as𝒫 ∶= 𝑞𝑑
something that we can therefore write 𝒫 = −𝑒𝑟, if we refer to e.g. the hydrogen atom. For the latter
case, we notice the vectors 𝑂𝑃 ∶= 𝑅⃗ and 𝑂𝐸 ∶= 𝑟⃗𝐸. (Lower panel) Very schematically: Under these
conditions, the wave length is much larger than the spatial extent of the system, something like 𝜆 >> 𝛼;
thus, the electric field is practically homogeneous. For example, for optical wavelengths, 𝜆 ∼ 500 nm,
and for the hydrogen atom 𝛼 ∼ 𝛼0 (Bohr radius), hence, 𝜆/𝑎0 ∼ 104. The triangle OPM (ONE), which
is shown in the upper panel, is shown in the lower panel smaller than the wavelength, but in fact it is much
(∼ 104 times) smaller.

size of the electron’s‘ ‘trajectory” is of the order of the Bohr radius, 𝑎0 ≃ 0.529 Å = 0.529 ⋅ 10−10 m≃ 0.5 ⋅ 10−1 nm, it occurs that𝜆𝑎0 = 500 nm0.5 ⋅ 10−1 nm = 5 ⋅ 1025 ⋅ 10−2 = 104 ⇒ 𝜆 >> 𝑎0 ∼ |⃗𝑟|
Thus, the electric field is practicaly homogeneous, it is practically not space-dependent. Therefore,ℰ⃗ ≈ ℰ⃗𝑎 exp􏿮𝑖(⃗𝑘 ⋅ 𝑅⃗ − 𝜔𝑡 + 𝜙)􏿱 = ℰ⃗𝑎 exp􏿮𝑖(⃗𝑘 ⋅ 𝑅⃗ + 𝜙)􏿱􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍ℰ⃗0

exp(−𝑖𝜔𝑡),
hence, ℰ⃗ = ℰ⃗0 exp(−𝑖𝜔𝑡) = ℰ⃗ (𝑡) . (5.34)

Inotherwords,we incorporated the factor exp􏿮𝑖(⃗𝑘 ⋅ 𝑅⃗ + 𝜙)􏿱 into the amplitude, assuming that the electric
field has practically ONLY SPATIAL dependence.

Additionally, let us use the symbol𝑉 to denote potential and the symbol𝑈 to denote potential energy.
We can write ℰ⃗ = −∇⃗𝑉𝑑𝑉 = 𝜕𝑉𝜕𝑥 𝑑𝑥 + 𝜕𝑉𝜕𝑦 𝑑𝑦 + 𝜕𝑉𝜕𝑧 𝑑𝑧 = ∇⃗𝑉 ⋅ 𝑑𝑟⃗

ЄЃЃЃЅЃЃЃІ ⇒ 𝑑𝑉 = −ℰ⃗ ⋅ 𝑑𝑟⃗ ⇒
𝑉(⃗𝑟, 𝑡) −✟✟✟✟✯

set to 0𝑉(0⃗, 𝑡) = −ℰ⃗ ⋅ 𝑟⃗
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It is implied that for this to happen during integration we assumed that ℰ⃗ is space-independent. If we
multiply by (−𝑒), we find the potential energy of the electron due to the perturbation

𝑈(⃗𝑟, 𝑡) −✟✟✟✟✯
we have set to 0𝑈(0⃗, 𝑡) = 𝑒ℰ⃗ ⋅ 𝑟⃗

hence, from Eq. 5.33 it occurs that 𝑈(⃗𝑟, 𝑡) = 𝑒ℰ⃗ ⋅ 𝑟⃗ = −𝒫 ⋅ ℰ⃗ (𝑡) (5.35)

The above set of assumptions, which led to the perturbation potential energy of Eq. 5.35, is called the
dipole approximation.

Next, we remind the reader of some analogies between the electric and magnetic fields, as we list the
electric dipole moment, magnetic dipole moment, potential energy of electric dipole, potential energy of
magnetic dipole and the respective torques. 𝐿⃗ is the orbital momentum, 𝑆 is the spin, and 𝑔 a dimension-
less factor.

Analogies Reminder

Figure 5.4: Electric and magnetic dipole.

ℰ⃗ (Electric Field)𝒫 = 𝑞𝑑 electric dipole moment

𝑈ℰ = −𝒫 ⋅ ℰ⃗ potential energy𝜏 = 𝒫 × ℰ⃗ torque[𝒫] = Cm[𝑈ℰ ] = Cm
N
C
= Nm = J[𝜏] = Cm

N
C
= Nm

𝐵⃗ (Magnetic Field)𝜇 = 𝐼𝐴 magnetic dipole moment

or 𝜇 = (𝑞/2𝑚)(𝐿⃗ + 𝑔𝑆)𝑈𝐵 = −𝜇 ⋅ 𝐵⃗ potential energy𝜏 = 𝜇 × 𝐵⃗ torque[𝜇] = Am2[𝑈𝐵] = Am2 N
Am

= Nm = J[𝜏] = Am2 N
Am

= Nm

We have shown that, for optical wavelengths, we can write (Eq. 5.34)ℰ⃗ = ℰ⃗0 exp(−𝑖𝜔𝑡) = ℰ⃗ (𝑡)
Considering that polarization occurs along the 𝑧-direction and taking the real part of Eq. 5.34, we obtainℰ⃗ (𝑡) = ℰ0 𝑧̂ cos𝜔𝑡
Hence, 𝑈ℰ = −𝒫 ⋅ ℰ⃗ = −(−𝑒)⃗𝑟 ⋅ ℰ0 𝑧̂ cos𝜔𝑡 ⇒𝑈ℰ = 𝑒ℰ0 𝑧 cos𝜔𝑡 (5.36)
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5.3.3 Matrix elements of the perturbation potential energy.

Let us now focus on the matrix elements of the potential energy of the perturbation

𝑈ℰ𝑘′𝑘(𝑡) = 􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟)𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟) = 􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟) 𝑧Φ𝑘(⃗𝑟) 𝑒ℰ0 cos𝜔𝑡 ⇒
𝑈ℰ𝑘′𝑘(𝑡) = 𝑒ℰ0 cos𝜔𝑡􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟) 𝑧Φ𝑘(⃗𝑟) (5.37)

Let us denote the matrix elements of the 𝑧 coordinate as𝑧𝑘′𝑘 ∶= 􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟) 𝑧Φ𝑘(⃗𝑟). (5.38)

These have the properties 𝑧∗𝑘′𝑘 = 𝑧𝑘𝑘′𝑧𝑘𝑘 = 􏾙𝑑𝑉 |Φ𝑘(⃗𝑟)|2􏿋􏻰􏻰􏿌􏻰􏻰􏿍
even

𝑧⏟
odd

= 0 (5.39)

Hence, the non-diagonal elements are symmetric, while the diagonal elements become zero. The latter
property occurs due to the fact that in systems such as atoms, quantum wells, etc, the eigenfunctions are
either even or odd. Therefore, their squared magnitude is an even function.

Finally, the matrix elements of the potential energy of the perturbation can be written as𝑈ℰ𝑘′𝑘(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧𝑘′𝑘 (5.40)

In Figure 5.5 we present a two-level system. This can be composed of the two lowest levels of an atom,
a quantum dot, etc.We commonly choose the photons of the EM field to closely match the energy differ-
ence between the two levels, i.e., ℏ𝜔 = ℎ𝜈 ∼ 𝐸2 − 𝐸1; however this doesn’t mean that they have to be
perfectly matching. This assumption will prove itself useful afterwards, when we introduce the Rotating
Wave Approximation. For a two-level system (𝑘 = 1 or 𝑘 = 2) we can write

Figure 5.5: A two-level system. When the electron is at the lower level, 𝐸1, the system is characterized as
unexcited, while when it is at the upper level, 𝐸2, the system is characterized as excited.

𝑈ℰ12(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧12𝑈ℰ 21(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧21𝑈ℰ 𝑘𝑘(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧𝑘𝑘 = 0 or
𝑈ℰ12(𝑡) = −𝒫𝑧12 ℰ0 cos𝜔𝑡𝑈ℰ21(𝑡) = −𝒫𝑧21 ℰ0 cos𝜔𝑡𝑈ℰ 𝑘𝑘(𝑡) = 0
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The second column is deduced by the first since𝒫 = −𝑒𝑟 ⇒ 𝒫𝑧 = −𝑒𝑧, hence the respective matrix
elements are𝒫𝑧𝑘′𝑘 = −𝑒𝑧𝑘′𝑘. Thus, Eq. 5.40 becomes𝑈ℰ𝑘′𝑘(𝑡) = −𝒫𝑧𝑘′𝑘 ℰ0 cos𝜔𝑡 (5.41)

If our eigenfunctions are real, then for our two-level system it holds that𝒫𝑧12 = −𝑒𝑧12 = −𝑒𝑧21 = 𝒫𝑧21 ∶= 𝒫𝑧 ∶= 𝒫 (5.42)

and
✿✿✿
this

✿✿✿
𝒫

✿✿
is

✿✿✿✿✿
used

✿✿
in

✿✿✿
the

✿✿✿✿✿
next

✿✿✿✿✿✿✿
section. Therefore𝑈ℰ12(𝑡) = −𝒫 ℰ0 cos𝜔𝑡𝑈ℰ21(𝑡) = −𝒫 ℰ0 cos𝜔𝑡𝑈ℰ 𝑘𝑘(𝑡) = 0, 𝑘 = 1 ή 𝑘 = 2

Hence, Eq. 5.41 becomes 𝑈ℰ𝑘′𝑘(𝑡) = −𝒫 ℰ0 cos𝜔𝑡 𝑘 ≠ 𝑘′𝑈ℰ 𝑘′𝑘(𝑡) = 0 𝑘 = 𝑘′ (5.43)

which means that the magnitude of the perturbation is proportional to𝒫ℰ0. This is expressed by

the Rabi frequency Ω𝑅 = 𝒫ℰ0ℏ . The detuning (see Eq. 5.49) and the Rabi frequency (see Eq. 5.50)
determine the period and amplitude of the oscillations within the two-level system, as it will be shown
below.

5.4 Equations describing the time-evolution of a two-level system. Rabi frequency. Rotating Wave
Approximation (RWA).

Wehad arrived at a Linear System of First Order Differential Equations (Eq. 5.30) which, if solved, essen-
tially solves the problem of Eqs. 5.18, 5.19. Eq. 5.30 was

𝐶̇𝑘′(𝑡) = −𝑖ℏ 􏾜𝑘 𝐶𝑘(𝑡)𝑒𝑖(Ω𝑘′−Ω𝑘)𝑡𝑈ℰ 𝑘′𝑘(𝑡)
We will now solve it for a two-level system. We define

Ω ∶= Ω2 − Ω1 = 𝐸2 − 𝐸1ℏ , (5.44)

where Eq. 5.14 was used. We will also use the identity cos𝜔𝑡 = 𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡2 .

𝑘′ = 1 𝐶̇1(𝑡) = − 𝑖ℏ 𝐶1(𝑡)✘✘✘✘✘✿1𝑒𝑖(Ω1−Ω1)𝑡✘✘✘✘✘✿0𝑈ℰ11(𝑡) − 𝑖ℏ 𝐶2(𝑡) 𝑒𝑖(Ω1−Ω2)𝑡 𝑈ℰ 12(𝑡)𝐶̇1(𝑡) = − 𝑖ℏ 𝐶2(𝑡) 𝑒−𝑖Ω𝑡 (−ℰ0)𝒫 cos𝜔𝑡 = 𝑖ℰ0𝒫ℏ 𝐶2(𝑡) 𝑒−𝑖Ω𝑡 􏿻𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡2 􏿾
𝐶̇1(𝑡) = 𝑖ℰ0𝒫2ℏ 􏿯𝑒−𝑖(Ω−𝜔)𝑡 + 𝑒−𝑖(Ω+𝜔)𝑡􏿲𝐶2(𝑡) (5.45)
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𝑘′ = 2 𝐶̇2(𝑡) = − 𝑖ℏ 𝐶1(𝑡) 𝑒𝑖(Ω2−Ω1)𝑡 𝑈ℰ 21(𝑡) − 𝑖ℏ 𝐶2(𝑡)✘✘✘✘✘✿1𝑒𝑖(Ω2−Ω2)𝑡✘✘✘✘✘✿0𝑈ℰ22(𝑡)𝐶̇2(𝑡) = − 𝑖ℏ 𝐶1(𝑡) 𝑒𝑖Ω𝑡 (−ℰ0)𝒫 cos𝜔𝑡 = 𝑖ℰ0𝒫ℏ 𝐶1(𝑡) 𝑒𝑖Ω𝑡 􏿻𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡2 􏿾
𝐶̇2(𝑡) = 𝑖ℰ0𝒫2ℏ 􏿯𝑒𝑖(Ω+𝜔)𝑡 + 𝑒𝑖(Ω−𝜔)𝑡􏿲𝐶1(𝑡) (5.46)

Therefore,wehave the following twoequations,whichdescribe the time-evolutionof the two-level system

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖ℰ0 𝒫2ℏ 􏿯𝑒−𝑖(Ω−𝜔)𝑡 + ✘✘✘✘✘✿
(0 RWA)𝑒−𝑖(Ω+𝜔)𝑡􏿲

𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖ℰ0 𝒫2ℏ 􏿯✘✘✘✘✘✿(0 RWA)𝑒𝑖(Ω+𝜔)𝑡 + 𝑒𝑖(Ω−𝜔)𝑡􏿲 (5.47)

Given that the photons of the EM field adequately match the energy difference between the two levels,
without this meaning that they match perfectly, i.e., assuming that ℏ𝜔 ∼ 𝐸2 − 𝐸1, it follows that 𝜔 ∼Ω2−Ω1 = Ω.Therefore, terms containing (Ω−𝜔) are changing slowly, while terms containing (Ω+𝜔)
are changing rapidly. Hence, in any remarkable time scale, these rapid oscillations will have on average
zero (or, let us say, close to zero) effect on the results. The rotating wave approximation, (RWA) is the
assertion that these rapid terms can be ignored. Thus, subsequent to the RWA, Equations 5.47 become

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖2
Ω𝑅􏿇􏿊􏿊􏿈􏿊􏿊􏿉ℰ0𝒫ℏ 𝑒−𝑖 (Ω − 𝜔)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍−Δ

𝑡

𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖2 ℰ0𝒫ℏ􏿋􏻰􏻰􏿌􏻰􏻰􏿍Ω𝑅
𝑒𝑖 (Ω − 𝜔)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍−Δ

𝑡 (5.48)

We have defined detuning as Δ ∶= 𝜔 − Ω (5.49)

and the Rabi frequency¹ as Ω𝑅 ∶= 𝒫ℰ0ℏ (5.50)

Next, wewillmake a
✿✿✿✿✿✿✿✿✿✿✿✿✿
transformation

✿✿
to

✿✿✿✿✿✿✿
obtain

✿
a
✿✿✿✿✿✿
system

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿
differential

✿✿✿✿✿✿✿✿✿
equations

✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
time-independent

✿✿✿✿✿✿✿✿✿✿
coefficients. In other words, 𝐶1(𝑡) = ℂ1(𝑡) 𝑒−𝑖(Ω−𝜔)𝑡2𝐶2(𝑡) = ℂ2(𝑡) 𝑒 𝑖(Ω−𝜔)𝑡2 (5.51)

𝐶̇1(𝑡) = ℂ̇1(𝑡) 𝑒−𝑖(Ω−𝜔)𝑡2 + ℂ1(𝑡)􏿵−𝑖(Ω − 𝜔)2 􏿸 𝑒−𝑖(Ω−𝜔)𝑡2
𝐶̇2(𝑡) = ℂ̇2(𝑡) 𝑒 𝑖(Ω−𝜔)𝑡2 + ℂ2(𝑡)􏿵 𝑖(Ω − 𝜔)2 􏿸 𝑒 𝑖(Ω−𝜔)𝑡2

¹After Isidor Isaak Rabi (1898-1988).
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Hence, Eq. 5.48 becomesЀЃЃЃЃЃЁЃЃЃЃЃЂ
ℂ̇1(𝑡) 𝑒−𝑖(Ω−𝜔)𝑡2 + ℂ1(𝑡)􏿵−𝑖(Ω − 𝜔)2 􏿸 𝑒−𝑖(Ω−𝜔)𝑡2 = ℂ2(𝑡) 𝑒 𝑖(Ω−𝜔)𝑡2 𝑖ℰ0 𝒫2ℏ 𝑒−𝑖(Ω−𝜔)𝑡
ℂ̇2(𝑡) 𝑒 𝑖(Ω−𝜔)𝑡2 + ℂ2(𝑡)􏿵 𝑖(Ω − 𝜔)2 􏿸 𝑒 𝑖(Ω−𝜔)𝑡2 = ℂ1(𝑡) 𝑒−𝑖(Ω−𝜔)𝑡2 𝑖ℰ0 𝒫2ℏ 𝑒𝑖(Ω−𝜔)𝑡ЀЃЃЃЃЃЁЃЃЃЃЃЂ

ℂ̇1(𝑡) + ℂ1(𝑡) 􏿵−𝑖(Ω − 𝜔)2 􏿸 = ℂ2(𝑡) 𝑒 𝑖(Ω−𝜔)𝑡2 𝑒 𝑖(Ω−𝜔)𝑡2 𝑖ℰ0 𝒫2ℏ 𝑒−𝑖(Ω−𝜔)𝑡
ℂ̇2(𝑡) + ℂ2(𝑡)􏿵 𝑖(Ω − 𝜔)2 􏿸 = ℂ1(𝑡) 𝑒− 𝑖(Ω−𝜔)𝑡2 𝑒− 𝑖(Ω−𝜔)𝑡2 𝑖ℰ0 𝒫2ℏ 𝑒𝑖(Ω−𝜔)𝑡

and, having definedΔ ∶= 𝜔 − Ω (Eq. 5.49) andΩ𝑅 ∶= ℰ0𝒫ℏ (Eq. 5.50)ЀЃЃЃЃЁЃЃЃЃЂℂ̇1(𝑡) = −
𝑖Δ2 ℂ1(𝑡) + 𝑖Ω𝑅2 ℂ2(𝑡)ℂ̇2(𝑡) = +𝑖Ω𝑅2 ℂ1(𝑡) + 𝑖Δ2 ℂ2(𝑡)

Therefore, we arrive at a system of differential equations with time-independent coefficients:

􏿰ℂ̇1(𝑡)ℂ̇2(𝑡)􏿳 =
Ϻϻϻϻϻϼ−𝑖Δ2 𝑖Ω𝑅2𝑖Ω𝑅2 𝑖Δ2

ϽϾϾϾϾϿ 􏿰ℂ1(𝑡)ℂ2(𝑡)􏿳 (5.52)

If our eigenfunctions were not real, then the upper-right matrix element would be 𝑖Ω∗𝑅2 , thus, then we
would define, e.g.,𝒫𝑧21 = −𝑒𝑧21 ∶= 𝒫 , hence𝒫𝑧12 = −𝑒𝑧12 = 𝒫∗𝑧21 = 𝒫∗.

In order to solve the system of Eq. 5.52 we introduce the vector

𝑥⃗(𝑡) = 􏿰ℂ1(𝑡)ℂ2(𝑡)􏿳 . (5.53)

Thus, ̇⃗𝑥(𝑡) = 􏿰ℂ̇1(𝑡)ℂ̇2(𝑡)􏿳 , (5.54)

and denoting

𝐴̃ = Ϻϻϻϻϻϼ−𝑖Δ2 𝑖Ω𝑅2𝑖Ω𝑅2 𝑖Δ2
ϽϾϾϾϾϿ ∶= −𝑖A ⇒ A = Ϻϻϻϻϻϼ Δ2 −Ω𝑅2−Ω𝑅2 −Δ2

ϽϾϾϾϾϿ (5.55)

the system of Eq. 5.52 is written as ̇⃗𝑥(𝑡) = 𝐴̃ 𝑥⃗(𝑡) . (5.56)

Let us try solutions of the form 𝑥⃗(𝑡) = 𝑣⃗ 𝑒𝜆̃𝑡, (5.57)

hence, 𝑣⃗ 𝜆̃ 𝑒𝜆̃𝑡 = 𝐴̃ 𝑣⃗ 𝑒𝜆̃𝑡 ⇒ 𝐴̃𝑣⃗ = 𝜆̃𝑣⃗𝜆̃ ∶= −𝑖𝜆ЄЃЅЃІ ⇒ −𝑖A𝑣⃗ = −𝑖𝜆𝑣⃗ ⇒ A𝑣⃗ = 𝜆𝑣⃗
eigenvalue problem
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Thus, the whole thing is essentially reduced to the eigenvalue problem

A𝑣⃗ = 𝜆𝑣⃗ (5.58)

from which the normalized eigenvectors 𝑣⃗1, 𝑣⃗2, which correspond to the eigenvalues 𝜆1, 𝜆2, will occur.
Having checked that the normalized eigenvectors 𝑣⃗1, 𝑣⃗2, which correspond to the eigenvalues𝜆1, 𝜆2, are
linearly independent, the solution to our problem is

𝑥⃗(𝑡) = 2􏾜𝑘=1 𝑐𝑘 𝑣⃗𝑘 𝑒−𝑖𝜆𝑘𝑡
where, of course, 𝜆̃𝑘 = −𝑖𝜆𝑘. The initial conditions determine the coefficients 𝑐𝑘. But, first, let us obtain
the eigenvalues.

A𝑣⃗ = 𝜆𝑣⃗ ⇒ A𝑣⃗ − 𝜆I𝑣⃗ = 0 ⇒ (A − 𝜆I)𝑣⃗ = 0
where Ι is the 2× 2 unit matrix. Thus,

det(A − 𝜆I) = 0 ⇒ ϺϻϻϻϻϼΔ2 − 𝜆 −Ω𝑅2−Ω𝑅2 −Δ2 − 𝜆
ϽϾϾϾϾϿ = 0 ⇒

in the general case

𝜆2,1 = ±√Ω2𝑅 + Δ22 , (5.59)

while, in the resonance case (Δ = 0) 𝜆2,1 = ±Ω𝑅2 . (5.60)

In the following pages, we will also find the eigenvectors, as well as the solution to the system of Eq. 5.52,
imposing different initial conditions.

SOLUTION forΔ = 0.
We present the analytical SOLUTION for Δ = 0. If we assume that Δ ∶= 𝜔 − Ω = 0, then A =Ϻϻϻϻϻϼ 0 −Ω𝑅2−Ω𝑅2 0

ϽϾϾϾϾϿ and 𝜆2,1 = ±Ω𝑅2
For 𝜆1 = −Ω𝑅2Ϻϻϻϻϻϼ 0 −Ω𝑅2−Ω𝑅2 0

ϽϾϾϾϾϿ 􏿰𝑣11𝑣21􏿳 = −Ω𝑅2 􏿰𝑣11𝑣21􏿳 ⇒ −Ω𝑅2 𝑣21 = −Ω𝑅2 𝑣11−Ω𝑅2 𝑣11 = −Ω𝑅2 𝑣21
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑣21 = 𝑣11

Thus, e.g., the normalized 𝑣⃗1 = Ϻϻϻϻϻϻϼ 1√21√2
ϽϾϾϾϾϾϿ.
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For 𝜆2 = Ω𝑅2 Ϻϻϻϻϻϼ 0 −Ω𝑅2−Ω𝑅2 0
ϽϾϾϾϾϿ 􏿰𝑣12𝑣22􏿳 = Ω𝑅2 􏿰𝑣12𝑣22􏿳 ⇒ −Ω𝑅2 𝑣22 = Ω𝑅2 𝑣12−Ω𝑅2 𝑣12 = Ω𝑅2 𝑣22

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑣22 = −𝑣12
Thus, e.g., the normalized 𝑣⃗2 = Ϻϻϻϻϻϻϼ 1√2− 1√2

ϽϾϾϾϾϾϿ.
Therefore,

𝑥⃗(𝑡) = 􏿰ℂ1(𝑡)ℂ2(𝑡)􏿳 = 𝑐1 𝑣⃗1 𝑒−𝑖𝜆1𝑡 + 𝑐2 𝑣⃗2 𝑒−𝑖𝜆2𝑡 = 𝑐1
Ϻϻϻϻϻϻϼ 1√21√2

ϽϾϾϾϾϾϿ 𝑒𝑖Ω𝑅2 𝑡 + 𝑐2 Ϻϻϻϻϻϻϼ 1√2− 1√2
ϽϾϾϾϾϾϿ 𝑒−𝑖Ω𝑅2 𝑡 ⇒

Ϻϻϻϻϻϻϼ 𝐶1(𝑡) 𝑒𝑖 (Ω−𝜔)2 𝑡𝐶2(𝑡) 𝑒−𝑖 (Ω−𝜔)2 𝑡
ϽϾϾϾϾϾϿ =

Ϻϻϻϻϻϻϻϻϻϻϻϼ
𝑐1√2𝑒𝑖Ω𝑅2 𝑡 + 𝑐2√2𝑒−𝑖Ω𝑅2 𝑡𝑐1√2𝑒𝑖Ω𝑅2 𝑡 − 𝑐2√2𝑒−𝑖Ω𝑅2 𝑡

ϽϾϾϾϾϾϾϾϾϾϾϿ ⇒ (we assumed Δ = 0) ⇒

⇒ 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϻϼ
𝑐1√2𝑒𝑖Ω𝑅2 𝑡 + 𝑐2√2𝑒−𝑖Ω𝑅2 𝑡𝑐1√2𝑒𝑖Ω𝑅2 𝑡 − 𝑐2√2𝑒−𝑖Ω𝑅2 𝑡

ϽϾϾϾϾϾϾϾϾϾϾϿ (5.61)

Let the initial conditions be𝐶1(0) = 1 and𝐶2(0) = 0. Thus,

1 = 𝑐1√2 + 𝑐2√2 ⇒ 𝑐1 + 𝑐2 = √20 = 𝑐1√2 − 𝑐2√2 ⇒ 𝑐1 = 𝑐2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑐1 = 𝑐2 = √22

Therefore,

􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϼ12𝑒𝑖Ω𝑅2 𝑡 + 12𝑒−𝑖Ω𝑅2 𝑡
12𝑒𝑖Ω𝑅2 𝑡 − 12𝑒−𝑖Ω𝑅2 𝑡

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϻϻϼ cos 􏿵

Ω𝑅2 𝑡􏿸𝑖 sin 􏿵Ω𝑅2 𝑡􏿸
ϽϾϾϾϾϾϾϾϾϿ

Hence, 𝐶1(𝑡) = cos 􏿵Ω𝑅2 𝑡􏿸
𝐶2(𝑡) = 𝑖 sin 􏿵Ω𝑅2 𝑡􏿸 (5.62)

and, thus, |𝐶1(𝑡)|2 = cos2 􏿵Ω𝑅2 𝑡􏿸
|𝐶2(𝑡)|2 = sin2 􏿵Ω𝑅2 𝑡􏿸 (5.63)
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Of course, |𝐶𝑘(𝑡)|2 ∶= 𝑃𝑘(𝑡) is the probability that, at time 𝑡, the electron lies at level 𝑘. The period of the
oscillations is 𝑇𝑅 = 2𝜋Ω𝑅 (5.64)

Let us denote𝒜 themaximum transfer percentage, i.e., themaximumprobability to find it, e.g., at level 2,
having placed it initially at level (the amplitude of the oscillation is𝒜 /2.) Thus, in the case of resonance
(𝜔 = Ω ⇔ Δ = 0), we have 𝒜 = 1 (5.65)

Figure 5.6: Oscillations of a two-level system at resonance, i.e., for𝜔 = Ω ⇔ Δ = 0. The period of the
oscillations is 𝑇𝑅 = 2𝜋Ω𝑅 , while their maximum transfer percentage is𝒜 = 1. We have assigned a typical
valueΩ𝑅 = 1 s−1 without having in mind a particular system.

In the general case, themaximum transfer percentage depends on detuning, e.g.𝒜 = Ω2𝑅Δ2 + Ω2𝑅 , as we

will see in the following pages. In Figure 5.6, we present the oscillations of a two-level system at resonance.
We can also define the maximum transfer rate as the ratio between the maximum transfer percentage

and the oscillation’s period, i.e., as 𝒜𝑇𝑅 . For a two-level system at resonance, the maximum transfer rate is𝒜𝑇𝑅 = 12𝜋Ω𝑅 = Ω𝑅2𝜋 (5.66)

Finally, we can define the mean transfer rate as

𝑘 = ⟨|𝐶2(𝑡)|2⟩𝑡2mean
, (5.67)

where ⟨|𝐶2(𝑡)|2⟩ is the time-averaged probability to find the electron at the upper level and 𝑡2mean is the
time it takes so that the probability to find the electron to the upper level becomes equal to its average for
the first time. For a two-level system at resonance, we have⟨|𝐶2(𝑡)|2⟩ = 1𝑇𝑅 􏾙𝑇𝑅0 𝑑𝑡 cos2􏿶2𝜋𝑇𝑅 𝑡􏿹 = 12𝑇𝑅 􏾙𝑇𝑅0 𝑑𝑡 􏿶1 + cos􏿶4𝜋𝑇𝑅 𝑡􏿹􏿹= 12𝑇 ϴϵϵϵϵ϶𝑇 + 𝑇𝑅4𝜋 sin􏿶4𝜋𝑇𝑅 𝑡􏿹|𝑇𝑅0

ϷϸϸϸϸϹ = 12 (5.68)
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and, for 𝑡2mean, it holds that12 = sin2 􏿵Ω𝑅2 𝑡2mean􏿸 = 12 − 12 cos(Ω𝑅𝑡2mean) ⇒ cos(Ω𝑅𝑡2mean) = 0 ⇒ Ω𝑅𝑡2mean = 𝜋2 ⇒𝑡2mean = 𝜋2Ω𝑅 (5.69)

Therefore, 𝑘 = Ω𝑅𝜋 . (5.70)

We observe that the ratio between the mean and the maximum transfer rate is, in our case, equal to 2,
hence, the two rates are connected through the relationship

𝑘 = 2𝒜𝑇𝑅 . (5.71)

Let the initial conditions be𝐶1(0) = 1√2𝑒𝑖𝜃,𝐶2(0) = 1√2𝑒𝑖𝜙, with probability |𝐶1(0)|2 = |𝐶2(0)|2 = 12 .
In other words, we assume that, at time 0, the electron is equally shared between the two levels, while we
also assume an arbitrary phase difference. Thus,

1√2𝑒𝑖𝜃 = 𝑐1√2 + 𝑐2√2 ⇒ 𝑐1 + 𝑐2 = 𝑒𝑖𝜃1√2𝑒𝑖𝜙 = 𝑐1√2 − 𝑐2√2 ⇒ 𝑐1 − 𝑐2 = 𝑒𝑖𝜙
ЄЃЃЃЃЃЅЃЃЃЃЃІ .

If we add and subtract the above two equations by parts, we conclude that

2𝑐1 = 𝑒𝑖𝜃 + 𝑒𝑖𝜙 ⇒ 𝑐1 = 𝑒𝑖𝜃 + 𝑒𝑖𝜙22𝑐2 = 𝑒𝑖𝜃 − 𝑒𝑖𝜙 ⇒ 𝑐2 = 𝑒𝑖𝜃 − 𝑒𝑖𝜙2
ЄЃЃЃЃЅЃЃЃЃІ .

Therefore,

􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϼ 𝑒
𝑖𝜃+𝑒𝑖𝜙2√2 𝑒𝑖Ω𝑅2 𝑡 + 𝑒𝑖𝜃−𝑒𝑖𝜙2√2 𝑒−𝑖Ω𝑅2 𝑡
𝑒𝑖𝜃+𝑒𝑖𝜙2√2 𝑒𝑖Ω𝑅2 𝑡 − 𝑒𝑖𝜃−𝑒𝑖𝜙2√2 𝑒−𝑖Ω𝑅2 𝑡

ϽϾϾϾϾϾϾϾϿ = 1√2
Ϻϻϻϻϻϻϻϻϼ𝑒𝑖𝜃 cos􏿵Ω𝑅2 𝑡􏿸 + 𝑒𝑖𝜙𝑖 sin􏿵Ω𝑅2 𝑡􏿸𝑒𝑖𝜃𝑖 sin􏿵Ω𝑅2 𝑡􏿸 + 𝑒𝑖𝜙 cos􏿵Ω𝑅2 𝑡􏿸

ϽϾϾϾϾϾϾϾϿ ⇒Ϻϻϻϻϼ|𝐶1(𝑡)|2|𝐶2(𝑡)|2
ϽϾϾϾϿ = 12

Ϻϻϻϻϻϻϻϻϼcos2􏿵Ω𝑅2 𝑡􏿸 + sin2􏿵Ω𝑅2 𝑡􏿸 + 𝑒𝑖𝜃 cos􏿵Ω𝑅2 𝑡􏿸𝑒−𝑖𝜙(−𝑖) sin􏿵Ω𝑅2 𝑡􏿸 + 𝑒𝑖𝜙𝑖 sin􏿵Ω𝑅2 𝑡􏿸𝑒−𝑖𝜃 cos􏿵Ω𝑅2 𝑡􏿸
cos2􏿵Ω𝑅2 𝑡􏿸 + sin2􏿵Ω𝑅2 𝑡􏿸 + 𝑒𝑖𝜃𝑖 sin􏿵Ω𝑅2 𝑡􏿸𝑒−𝑖𝜙 cos􏿵Ω𝑅2 𝑡􏿸 + 𝑒𝑖𝜙 cos􏿵Ω𝑅2 𝑡􏿸𝑒−𝑖𝜃(−𝑖) sin􏿵Ω𝑅2 𝑡􏿸

ϽϾϾϾϾϾϾϾϿ
= 12

Ϻϻϻϻϻϻϻϻϼ1 + 𝑖2 cos􏿵Ω𝑅2 𝑡􏿸 sin􏿵Ω𝑅2 𝑡􏿸(𝑒𝑖(𝜙−𝜃) − 𝑒𝑖(𝜃−𝜙))1 + 𝑖2 cos􏿵Ω𝑅2 𝑡􏿸 sin􏿵Ω𝑅2 𝑡􏿸(𝑒𝑖(𝜃−𝜙) − 𝑒𝑖(𝜙−𝜃))
ϽϾϾϾϾϾϾϾϿ = 12 􏿰1 + 𝑖 sin(Ω𝑅𝑡)(𝑒𝑖(𝜙−𝜃) − 𝑒𝑖(𝜃−𝜙))1 − 𝑖 sin(Ω𝑅𝑡)(𝑒𝑖(𝜙−𝜃) − 𝑒𝑖(𝜃−𝜙))􏿳

Thus, if we also exploit the identity 𝑒𝑖𝜓 − 𝑒−𝑖𝜓 = 2𝑖 sin𝜓, we arrive at the expressions

𝑃1(𝑡) = |𝐶1(𝑡)|2 = 12 + 12 sin(Ω𝑅𝑡) sin􏿴𝜃 − 𝜙􏿷𝑃2(𝑡) = |𝐶2(𝑡)|2 = 12 − 12 sin(Ω𝑅𝑡) sin􏿴𝜃 − 𝜙􏿷 (5.72)
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From the form of the above equations, we observe that, in the general case, there is an oscillation around
the value 12 , whichwas the probability imposedby the initial conditions.Theperiod of oscillation is always

the same, Τ = 2𝜋Ω𝑅 , but its amplitude depends on the phase difference. However, we also observe that, if
the coefficients are in-phase, i.e., if 𝜃 − 𝜙 = 0, then the time-dependence of the probabilities vanishes
and it holds that 𝑃1(𝑡) = 𝑃2(𝑡) = 12 , ∀𝑡. In Figure 5.7, we present the oscillations of a two-level system
for these initial conditions, for different values of the phase difference.

Figure 5.7: Oscillations of a two-level system at resonance, i.e., for 𝜔 = Ω ⇔ Δ = 0, for the initial
conditions𝐶1(0) = 1√2𝑒𝑖𝜃,𝐶2(0) = 1√2𝑒𝑖𝜙 and different values of the phase difference𝜃 −𝜙.The period

of the oscillations is𝑇𝑅 = 2𝜋Ω𝑅 , while their maximum transfer percentage depends on the phase difference𝜃 − 𝜙. We have assigned a typical valueΩ𝑅 = 1 s−1 without having in mind a particular system.

Let the initial conditions be𝐶1(0) = 0 and𝐶2(0) = 1. Thus,

0 = 𝑐1√2 + 𝑐2√2 ⇒ 𝑐1 = −𝑐21 = 𝑐1√2 − 𝑐2√2 ⇒ 𝑐1 − 𝑐2 = √2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑐1 = −𝑐2 = √22

Therefore,

􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϼ 12𝑒𝑖Ω𝑅2 𝑡 − 12𝑒−𝑖Ω𝑅2 𝑡
12𝑒𝑖Ω𝑅2 𝑡 + 12𝑒−𝑖Ω𝑅2 𝑡

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϻϻϼ𝑖 sin 􏿵

Ω𝑅2 𝑡􏿸
cos 􏿵Ω𝑅2 𝑡􏿸

ϽϾϾϾϾϾϾϾϾϿ
Hence, 𝐶1(𝑡) = 𝑖 sin 􏿵Ω𝑅2 𝑡􏿸𝐶2(𝑡) = cos 􏿵Ω𝑅2 𝑡􏿸 (5.73)

and, thus, |𝐶1(𝑡)|2 = sin2 􏿵Ω𝑅2 𝑡􏿸
|𝐶2(𝑡)|2 = cos2 􏿵Ω𝑅2 𝑡􏿸 (5.74)
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Comparing toEquations 5.63,weobserve that the situation is completely analogous to the casewith initial
conditions 𝐶1(0) = 0 and 𝐶2(0) = 1. Therefore, the period of the oscillation, the maximum transfer
percentage, as well as themaximum andmean transfer rates will be the same, with the only difference that
here they refer to the probability that the electron drops from the upper level to the lower one.

SOLUTION forΔ ≠ 0
A = Ϻϻϻϻϻϼ Δ2 −Ω𝑅2−Ω𝑅2 −Δ2

ϽϾϾϾϾϿ and 𝜆2,1 = ±√Ω2𝑅 + Δ22
For 𝜆1 = −√Ω2𝑅 + Δ22 ∶= −𝜆 < 0

Ϻϻϻϻϻϼ Δ2 −Ω𝑅2−Ω𝑅2 −Δ2
ϽϾϾϾϾϿ 􏿰𝑣11𝑣21􏿳 = −√Ω2𝑅 + Δ22 􏿰𝑣11𝑣21􏿳 ⇒

Δ2 𝑣11 − Ω𝑅2 𝑣21 = −√Ω2𝑅 + Δ22 𝑣11 ⇒ ϴϵϵϵϵϵϵϵ϶Δ2 + √Ω2𝑅 + Δ22
ϷϸϸϸϸϸϸϸϹ 𝑣11 = Ω𝑅2 𝑣21 (1st)

−Ω𝑅2 𝑣11 − Δ2 𝑣21 = −√Ω2𝑅 + Δ22 𝑣21 ⇒ −Ω𝑅2 𝑣11 = ϴϵϵϵϵϵϵϵ϶Δ2 − √Ω2𝑅 + Δ22
ϷϸϸϸϸϸϸϸϹ 𝑣21 (2nd)

⇒ ϴϵϵϵϵϵϵϵ϶Δ2 + √Ω2𝑅 + Δ22
ϷϸϸϸϸϸϸϸϹ 𝑣11 = Ω𝑅2 −Ω𝑅2 𝑣11ϴϵϵϵϵ϶Δ2 − √Ω2𝑅+Δ22

ϷϸϸϸϸϹ
∗ (if 𝑣11≠0)⇒

Δ24 − Ω2𝑅4 − Δ24 = −Ω2𝑅4 ,
which holds. That is, it is sufficient that

∗𝑣11 ≠ 0 , thus, e.g., from (1st) it is implied that

𝑣21 = Δ2 + √Ω2𝑅+Δ22Ω𝑅2 𝑣11 ή 𝑣21 = 𝛼 𝑣11 thus 𝑣⃗1 = 􏿰 𝛽𝛼𝛽􏿳
For it to be normalized, it must hold that 𝛽2 + 𝛼2𝛽2 = 1, e.g., 𝛽 = 1√1 + 𝛼2 ⇒ 𝑣⃗1 = Ϻϻϻϻϻϻϼ 1√1+𝛼2𝑎√1+𝛼2

ϽϾϾϾϾϾϿ
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For 𝜆2 = +√Ω2𝑅 + Δ22 ∶= +𝜆 > 0
Ϻϻϻϻϻϼ Δ2 −Ω𝑅2−Ω𝑅2 −Δ2

ϽϾϾϾϾϿ 􏿰𝑣12𝑣22􏿳 = √Ω2𝑅 + Δ22 􏿰𝑣12𝑣22􏿳 ⇒
Δ2 𝑣12 − Ω𝑅2 𝑣22 = √Ω2𝑅 + Δ22 𝑣12 ⇒ ϴϵϵϵϵϵϵϵ϶Δ2 − √Ω2𝑅 + Δ22

ϷϸϸϸϸϸϸϸϹ 𝑣12 = Ω𝑅2 𝑣22 (1st)

−Ω𝑅2 𝑣12 − Δ2 𝑣22 = √Ω2𝑅 + Δ22 𝑣22 ⇒ −Ω𝑅2 𝑣12 = ϴϵϵϵϵϵϵϵ϶Δ2 + √Ω2𝑅 + Δ22
ϷϸϸϸϸϸϸϸϹ 𝑣22 (2nd)

⇒ ϴϵϵϵϵϵϵϵ϶Δ2 − √Ω2𝑅 + Δ22
ϷϸϸϸϸϸϸϸϹ 𝑣12 = Ω𝑅2 −Ω𝑅2 𝑣12ϴϵϵϵϵ϶Δ2 + √Ω2𝑅+Δ22

ϷϸϸϸϸϹ
∗ (if 𝑣12≠0)⇒

Δ24 − Ω2𝑅4 − Δ24 = −Ω2𝑅4 ,
which holds. That is, it is sufficient that

∗𝑣12 ≠ 0 , thus, e.g., from (1st) it is implied that

⇒ 𝑣22 = Δ2 − √Ω2𝑅+Δ22Ω𝑅2 𝑣12 ή 𝑣22 = 𝛼′ 𝑣12 thus 𝑣⃗2 = 􏿰 𝛽′𝛼′𝛽′􏿳
For it to be normalized, it must hold that 𝛽′2 + 𝛼′2𝛽′2 = 1, e.g., 𝛽′ = 1√1 + 𝛼′2 ⇒ 𝑣⃗2 = Ϻϻϻϻϻϻϻϼ 1√1+𝛼′2𝛼′√1+𝛼′2

ϽϾϾϾϾϾϾϿ
Therefore,

𝑥⃗(𝑡) = 􏿰ℂ1(𝑡)ℂ2(𝑡)􏿳 =
Ϻϻϻϻϻϻϼ𝐶1(𝑡)𝑒−𝑖Δ2 𝑡𝐶2(𝑡)𝑒𝑖Δ2 𝑡

ϽϾϾϾϾϾϿ = 𝑐1𝑣⃗1𝑒−𝑖𝜆1𝑡 + 𝑐2𝑣⃗2𝑒−𝑖𝜆2𝑡 = Ϻϻϻϻϻϻϼ 𝑐1√1+𝛼2 𝑒−𝑖𝜆1𝑡 + 𝑐2√1+𝛼′2 𝑒−𝑖𝜆2𝑡𝑐1𝛼√1+𝛼2 𝑒−𝑖𝜆1𝑡 + 𝑐2𝛼′√1+𝛼′2 𝑒−𝑖𝜆2𝑡
ϽϾϾϾϾϾϿ (5.75)

Let the initial conditions be𝐶1(0) = 1,𝐶2(0) = 0. Thus,ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1 = 𝑐1√1 + 𝛼2 + 𝑐2√1 + 𝛼′20 = 𝑐1𝛼√1 + 𝛼2 + 𝑐2𝛼′√1 + 𝛼′2 ⇒ 𝑐2 = − 𝛼𝛼′ √1 + 𝛼′2√1 + 𝛼2 𝑐1
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1 = 𝑐1√1 + 𝛼2 − 𝛼𝛼′✘✘✘✘✘√1 + 𝛼′2√1 + 𝛼2 𝑐1

✘✘✘✘✘√1 + 𝛼′2 = 𝑐1 𝛼′ − 𝛼𝛼′√1 + 𝛼2 ⇒ 𝑐1 = 𝛼′√1 + 𝛼2𝛼′ − 𝛼
𝑐2 = − 𝛼𝛼′ √1 + 𝛼′2✘✘✘✘✘√1 + 𝛼2 𝛼′✘✘✘✘✘√1 + 𝛼2𝛼′ − 𝛼 ⇒ 𝑐2 = −𝛼√1 + 𝛼′2𝛼′ − 𝛼

Therefore, Ϻϻϻϻϻϻϼ𝐶1(𝑡)𝑒−𝑖Δ2 𝑡𝐶2(𝑡)𝑒𝑖Δ2 𝑡
ϽϾϾϾϾϾϿ = Ϻϻϻϻϻϻϼ 𝛼′𝛼′−𝛼𝑒−𝑖𝜆1𝑡 − 𝛼𝛼′−𝛼𝑒−𝑖𝜆2𝑡𝛼𝛼′𝛼′−𝛼𝑒−𝑖𝜆1𝑡 − 𝛼𝛼′𝛼′−𝛼𝑒−𝑖𝜆2𝑡

ϽϾϾϾϾϾϿ (5.76)

Let us calculate the coefficients that appear in the first equation of Eq. 5.76.

𝛼′ − 𝛼 = Δ2 − √Ω2𝑅+Δ22 − Δ2 − √Ω2𝑅+Δ22Ω𝑅2 = −2√Ω2𝑅 + Δ2Ω𝑅
𝛼′𝛼′ − 𝛼 = − ✚

✚Ω𝑅2√Ω2𝑅 + Δ2
Δ − √Ω2𝑅 + Δ2

✚
✚Ω𝑅 = √Ω2𝑅 + Δ2 − Δ2√Ω2𝑅 + Δ2𝛼𝛼′ − 𝛼 = − ✚

✚Ω𝑅2√Ω2𝑅 + Δ2
Δ +√Ω2𝑅 + Δ2

✚
✚Ω𝑅 = −√Ω2𝑅 + Δ2 + Δ2√Ω2𝑅 + Δ2

Hence, the first equation becomes

𝐶1(𝑡)𝑒𝑖Δ2 𝑡 = √Ω2𝑅 + Δ2 − Δ2√Ω2𝑅 + Δ2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑘1
𝑒𝑖𝜆𝑡 + √Ω2𝑅 + Δ2 + Δ2√Ω2𝑅 + Δ2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑘2

𝑒−𝑖𝜆𝑡 ⇒
𝐶1(𝑡) = (𝑘1𝑒𝑖𝜆𝑡 + 𝑘2𝑒−𝑖𝜆𝑡)𝑒−𝑖Δ2 𝑡 ⇒|𝐶1(𝑡)|2 = 𝑘21 + 𝑘22 + 𝑘1𝑘2𝑒2𝑖𝜆𝑡 + 𝑘1𝑘2𝑒−2𝑖𝜆𝑡 = 𝑘21 + 𝑘22 + 2𝑘1𝑘2 cos(2𝜆𝑡) ⇒

|𝐶1(𝑡)|2 = Ω2𝑅 + Δ2 + Δ2 −✘✘✘✘✘✘✘2Δ√Ω2𝑅 + Δ24(Ω2𝑅 + Δ2) + Ω2𝑅 + Δ2 + Δ2 +✘✘✘✘✘✘✘2Δ√Ω2𝑅 + Δ24(Ω2𝑅 + Δ2)+ 2Ω2𝑅 +%%Δ2 −%%Δ24(Ω2𝑅 + Δ2) cos(2𝜆𝑡) ⇒
|𝐶1(𝑡)|2 = 2(Ω2𝑅 + 2Δ2)4(Ω2𝑅 + Δ2) + 2Ω2𝑅4(Ω2𝑅 + Δ2) cos(2𝜆𝑡) = Ω2𝑅 + 2Δ2 + Ω2𝑅 cos(2𝜆𝑡)2(Ω2𝑅 + Δ2) ⇒

𝑃1(𝑡) = |𝐶1(𝑡)|2 = 1 − Ω2𝑅Ω2𝑅 + Δ2 sin2(𝜆𝑡)
where 𝜆 = √Ω2𝑅 + Δ22

(5.77)
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The maximum value of |𝐶1(𝑡)|2 is 1, while its minimum value is 1 − Ω2𝑅Ω2𝑅 + Δ2 . Therefore, the maximum

transfer percentage is 𝒜 = Ω2𝑅Ω2𝑅 + Δ2 (5.78)

✿✿✿
For

✿✿✿✿✿✿
Δ = 0,⇒ |𝐶1(𝑡)|2 = cos2 􏿵Ω𝑅𝑡2 􏿸, as expected (Eq. 5.63).

Let us calculate the coefficient that appears in the second equation of Eq. 5.76.

𝛼𝛼′𝛼′ − 𝛼 = √Ω2𝑅 + Δ2 + ΔΩ𝑅 √Ω2𝑅 + Δ2 − Δ2√Ω2𝑅 + Δ2 = Ω2𝑅 +%%Δ2 −%%Δ22Ω𝑅√Ω2𝑅 + Δ2 = Ω𝑅2√Ω2𝑅 + Δ2
Hence,𝐶2(𝑡)𝑒𝑖Δ2 𝑡 = Ω𝑅2√Ω2𝑅 + Δ2 𝑒+𝑖𝜆𝑡 − Ω𝑅2√Ω2𝑅 + Δ2 𝑒−𝑖𝜆𝑡 = Ω𝑅√Ω2𝑅 + Δ2 𝑖 sin(𝜆𝑡) ⇒

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅Ω2𝑅 + Δ2 sin2(𝜆𝑡)
where 𝜆 = √Ω2𝑅 + Δ22

(5.79)

Themaximumvalue of |𝐶2(𝑡)|2 is Ω2𝑅Ω2𝑅 + Δ2 , while itsminimumvalue is 0.Therefore, themaximum trans-

fer percentage is 𝒜 = Ω2𝑅Ω2𝑅 + Δ2
in accordance with Eq. 5.78.

✿✿✿
For

✿✿✿✿✿✿
Δ = 0, |𝐶2(𝑡)|2 = sin2 􏿵Ω𝑅𝑡2 􏿸, as expected (Eq. 5.63).

As evident from Eqs. 5.77 and 5.79, the period of oscillations is

𝑇𝑅 = 2𝜋2𝜆 = 2𝜋
√Ω2𝑅 + Δ2 (5.80)

and forΔ = 0 it follows that𝑇 = 2𝜋/Ω𝑅, in accordance with Eq. 5.64. Furthermore, the maximum transfer
percentage of the oscillations, as given by Eq. 5.78, for Δ = 0 coincides with Eq. 5.65. Oscillations of a
two-level system at resonance and out of resonance are presented in Figure 5.8. We remind that 𝑃𝑘(𝑡) =|𝐶𝑘(𝑡)|2, 𝑘 = 1, 2 are the probabilities to find the electron at level 𝑘. From Eqs. 5.80 and 5.78 it is clear
that

✿✿
as

✿✿✿
we

✿✿✿✿✿
move

✿✿✿✿✿
away

✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿
resonance,

✿✿✿
i.e.,

✿✿✿
as

✿✿✿
|Δ|

✿✿✿✿✿✿✿✿✿
increases,

✿✿✿
the

✿✿✿✿✿✿✿
period

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
maximum

✿✿✿✿✿✿✿✿
transfer

✿✿✿✿✿✿✿✿✿✿
percentage

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
oscillations

✿✿✿✿✿✿✿
become

✿✿✿✿✿✿✿
smaller; this is depicted in Figure 5.8.

The maximum transfer rate is

𝒜𝑇𝑅 = Ω2𝑅√Ω2𝑅 + Δ22𝜋(Ω2𝑅 + Δ2) = Ω2𝑅2𝜋√Ω2𝑅 + Δ2 (5.81)
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Figure 5.8:Oscillations of a two-level systemat resonance (Δ = 0, continuous lines) and out of resonance
(Δ ≠ 0, dashed lines).The period of the oscillations is𝑇R = 2𝜋/√Ω2

R + Δ2, while, themaximum transfer per-

centage is 𝒜 = Ω2𝑅Ω2𝑅+Δ2 . We have assigned some typical values Ω𝑅 = 1 s−1 and Δ = 0.5 s−1 without
referring to a particular system. We observe changes in the period and maximum transfer percentage of
the oscillations when the system is out of resonance. In Appendix C, there is the matlab programOscilla-
tions.m, which creates this figure.

The time-averaged probabilities to find the electron at each level are

⟨|𝐶1(𝑡)|2⟩ = 1𝑇𝑅 􏾙𝑇𝑅0 𝑑𝑡 􏿶1 − Ω2𝑅Ω2𝑅 + Δ2 sin2􏿶2𝜋𝑇𝑅 𝑡􏿹􏿹 = 1 − 12𝑇𝑅 Ω2𝑅Ω2𝑅 + Δ2 􏾙𝑇𝑅0 𝑑𝑡 􏿶1 − cos􏿶4𝜋𝑇𝑅 𝑡􏿹􏿹= 1 − 12𝑇𝑅 Ω2𝑅Ω2𝑅 + Δ2
ϴϵϵϵϵ϶𝑇𝑅 − 𝑇𝑅4𝜋 sin􏿶4𝜋𝑇𝑅 𝑡􏿹|𝑇𝑅0

ϷϸϸϸϸϹ = 1 − Ω2𝑅2(Ω2𝑅 + Δ2) = Ω2𝑅 + 2Δ22(Ω2𝑅 + Δ2) ,
(5.82)

⟨|𝐶2(𝑡)|2⟩ = 1𝑇𝑅 􏾙𝑇𝑅0 𝑑𝑡 Ω2𝑅Ω2𝑅 + Δ2 sin2􏿶2𝜋𝑇𝑅 𝑡􏿹 = 12𝑇𝑅 Ω2𝑅Ω2𝑅 + Δ2 􏾙𝑇𝑅0 𝑑𝑡 􏿶1 − cos􏿶4𝜋𝑇𝑅 𝑡􏿹􏿹= 12𝑇𝑅 Ω2𝑅Ω2𝑅 + Δ2
ϴϵϵϵϵ϶𝑇𝑅 − 𝑇𝑅4𝜋 sin􏿶4𝜋𝑇𝑅 𝑡􏿹|𝑇𝑅0

ϷϸϸϸϸϹ = Ω2𝑅2(Ω2𝑅 + Δ2) , (5.83)

while 𝑡2mean, i.e., the time it takes so that the probability to find the electron at the upper level becomes
equal to its average value for the first time, can be found through the relationship

Ω2𝑅2(Ω2𝑅 + Δ2) = Ω2𝑅Ω2𝑅 + Δ2 sin2
ϴϵϵϵϵϵϵϵ϶√Ω2𝑅 + Δ22 𝑡2mean

ϷϸϸϸϸϸϸϸϹ ⇒ sin2
ϴϵϵϵϵϵϵϵ϶√Ω2𝑅 + Δ22 𝑡2mean

ϷϸϸϸϸϸϸϸϹ = 12
⇒ 1 − cos􏿵√Ω2𝑅 + Δ2𝑡2mean􏿸2 = 12 ⇒ cos􏿶√Ω2𝑅 + Δ2𝑡2mean􏿹 = 0 ⇒ 𝑡2mean = 𝜋2√Ω2𝑅 + Δ2 .
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Thus, the mean transfer rate to the upper level is

𝑘 = ⟨|𝐶2(𝑡)|2⟩𝑡2mean
= 2√Ω2𝑅 + Δ2Ω2𝑅2𝜋(Ω2𝑅 + Δ2) = Ω2𝑅𝜋√Ω2𝑅 + Δ2 (5.84)

We observe that, again, the ratio between the mean and the maximum transfer rate is equal to 2, hence,
the two rates are connected through the relationship

𝑘 = 2𝒜𝑇𝑅 . (5.85)

Let us now examine what happens as the magnitude of the perturbation, i.e., the Rabi frequency, be-
comes smaller with respect to the absolute value of the detuning |Δ| (Ω𝑅 << |Δ|).

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅Ω2𝑅 + Δ2 sin2
ϴϵϵϵϵϵϵϵ϶√Ω2𝑅 + Δ22 𝑡ϷϸϸϸϸϸϸϸϹ

≈ Ω2𝑅Δ2 sin2 􏿵Δ𝑡2 􏿸, Ω𝑅 << |Δ|
(5.86)

Thus, the period becomes 𝑇𝑅 = 2𝜋/|Δ|. Eq. 5.86 is identical to Eq. 5.89 of Section 5.5, which is derived
under the assumption that the time is so small that the solution does not differ much from the initial
conditions. This happens since, for a very smallΩ𝑅, a large period 𝑇𝑅 occurs, which means that the time
evolution is slow.

Let us further examine what happens in the limit of an infinitesimal perturbation.

limΩ𝑅→0 𝑇𝑅 = limΩ𝑅→0 2𝜋
√Ω2𝑅 + Δ2 = 2𝜋|Δ| (5.87)

limΩ𝑅→0𝒜 = limΩ𝑅→0 Ω2𝑅Ω2𝑅 + Δ2 = 0 (5.88)

Therefore, in the limit of an infinitesimal perturbation, the maximum transfer percentage of the oscilla-
tions becomes zero, while their period tends to 2𝜋|Δ| , i.e., it depends solely on detuning. To obtain a better
idea of what happens at smallΩ𝑅, we present Figure 5.9.

5.5 Solution to the system of differential equations, occurring after RWA, using the simplistic
Newton's recursive method.

Let us remember the system of differential equations that occurred after the RWA (Eq. 5.48), which was
exactly solved in Section 5.4:

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖ℰ0𝒫2ℏ 𝑒−𝑖(Ω−𝜔)𝑡
𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖ℰ0𝒫2ℏ 𝑒𝑖(Ω−𝜔)𝑡 Ω𝑅 ∶= 𝒫ℰ0ℏΔ ∶= 𝜔 − Ω
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Figure 5.9:Oscillations of a two-level systemat resonance (Δ = 0, continuous lines) and out of resonance
(Δ ≠ 0, dashed lines). The period of the oscillations is 𝑇R = 2𝜋/√Ω2

R + Δ2, while, the maximum transfer

percentage is𝒜 = Ω2𝑅Ω2𝑅+Δ2 . We have assigned some typical valuesΩ𝑅 = 0.1 s−1 andΔ = 0.5 s−1, i.e.,Ω𝑅
is relatively small. In Appendix C, there is the matlab program Oscillations.m, which creates this figure.

Here, we will solve Eqs. 5.48 for the initial conditions𝐶1(0) = 1 and𝐶2(0) = 0, using the approximate
Newton’s recursivemethod, taking as a zeroth order approximation

𝐶(0)1 (𝑡) ≈ 𝐶1(0) = 1𝐶(0)2 (𝑡) ≈ 𝐶2(0) = 0
i.e., assuming that, at small times, the solution does not differ much from the initial conditions. Thus, the
first order approximation is

𝐶̇(1)1 (𝑡) =✟✟✟✟✯
0𝐶(0)2 (𝑡) 𝑖Ω𝑅2 𝑒𝑖Δ𝑡 = 0

𝐶̇(1)2 (𝑡) =✟✟✟✟✯
1𝐶(0)1 (𝑡) 𝑖Ω𝑅2 𝑒−𝑖Δ𝑡 ⇒ 𝑡′􏾙0 𝑑𝐶(1)2 (𝑡)𝑑𝑡 𝑑𝑡 = 𝑖Ω𝑅2 𝑡′􏾙0 𝑒−𝑖Δ𝑡𝑑𝑡 ⇒

𝐶(1)2 (𝑡′) −✟✟✟✟✯
0𝐶(1)2 (0) = 𝑖Ω𝑅2 1−𝑖Δ􏿮𝑒−𝑖Δ𝑡􏿱𝑡′0 = −Ω𝑅2Δ 􏿴𝑒−𝑖Δ𝑡′ − 1􏿷 ⇒

𝐶(1)2 (𝑡) = −Ω𝑅2Δ 􏿴𝑒−𝑖Δ𝑡 − 1􏿷★ 𝑒𝑖𝑥 − 1 = 2𝑖 sin 􏿵𝑥2􏿸𝑒𝑖 𝑥2
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐶(1)2 (𝑡) = −Ω𝑅2Δ 2𝑖 sin 􏿵−Δ𝑡2 􏿸𝑒− 𝑖Δ𝑡2 ⇒

𝐶(1)2 (𝑡) = Ω𝑅Δ 𝑖 sin 􏿵Δ𝑡2 􏿸𝑒− 𝑖Δ𝑡2 .
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★The proof can be found in Appendix B.4. Thus,

𝑃(1)2 (𝑡) = |𝐶(1)2 (𝑡)|2 = Ω2𝑅Δ2 sin2 􏿵Δ𝑡2 􏿸 or 𝑃(1)2 (𝑡) = |𝐶(1)2 (𝑡)|2 = Ω2𝑅4 sin2 􏿴Δ𝑡2 􏿷􏿴Δ𝑡2 􏿷2 𝑡2 (5.89)

Eq. 5.89 coincides with Eq. 5.86 of Section 5.4, which holds for very smallΩ𝑅, which in turn means that
the period 𝑇𝑅 is very large, yielding a slow time-evolution.

5.6 Alternative solution to the system of differential equations occurring after RWA.

Let us revisit, once more, the system of differential equations that occurred after the RWA (Eq. 5.48),
which was exactly solved in Section 5.4:

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖ℰ0𝒫2ℏ 𝑒−𝑖(Ω−𝜔)𝑡
𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖ℰ0𝒫2ℏ 𝑒𝑖(Ω−𝜔)𝑡 Ω𝑅 ∶= 𝒫ℰ0ℏΔ ∶= 𝜔 − Ω

Here, we will solve Eqs. 5.48 in an alternative manner, this time by decoupling them.
Let us try to differentiate them with respect to time once more. For the first equation, we have𝐶̈1(𝑡) = 𝐶2(𝑡) 𝑖Ω𝑅2 𝑖Δ𝑒𝑖Δ𝑡 + 𝐶̇2(𝑡) 𝑖Ω𝑅2 𝑒𝑖Δ𝑡.

Substituting the expressions for𝐶2(𝑡) and 𝐶̇2(𝑡) from the second equation, we obtain

𝐶̈1(𝑡) = 𝐶̇1(𝑡)
%
%%𝑖Ω𝑅2 ✚

✚𝑒𝑖Δ𝑡%%
%𝑖Ω𝑅2 𝑖Δ✚✚𝑒𝑖Δ𝑡 + 𝐶1(𝑡) 𝑖Ω𝑅2 ✟✟✟𝑒−𝑖Δ𝑡 𝑖Ω𝑅2 ✚

✚𝑒𝑖Δ𝑡 ⇒ 𝐶̈1(𝑡) = 𝑖Δ𝐶̇1(𝑡) − Ω𝑅4 𝐶1(𝑡)
In a completely analogous manner, for the second equation, we have𝐶̈2(𝑡) = −𝑖Δ𝐶̇2(𝑡) − Ω𝑅4 𝐶2(𝑡).
This way, we arrive at the independent equations

𝐶̈1(𝑡) − 𝑖Δ𝐶̇1(𝑡) + Ω𝑅4 𝐶1(𝑡) = 0𝐶̈2(𝑡) + 𝑖Δ𝐶̇2(𝑡) + Ω𝑅4 𝐶2(𝑡) = 0 . (5.90)

We can try solutions of the form 𝐶𝑘(𝑡) = 𝑢𝑘𝑒𝑖𝜇𝑘𝑡 ⇒𝐶̇𝑘(𝑡) = 𝑖𝜇𝑘𝑢𝑘𝑒−𝑖𝜇𝑘𝑡 ⇒𝐶̈𝑘(𝑡) = −𝜇2𝑘𝑢𝑘𝑒−𝑖𝜇𝑘𝑡,
for 𝑘 = 1, 2. Substituting to Eqs. 5.90, we conclude that

−𝜇21 + Δ𝜇1 + Ω𝑅4 = 0−𝜇21 − Δ𝜇2 + Ω𝑅4 = 0 . (5.91)
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The above quadratic equations determine the time-evolution of the coefficients 𝐶1 and 𝐶2 and do not
depend on 𝑢1 𝑢2. Their solutions can be easily found to be

𝜇1 = Δ2 ± √Δ2 + Ω22 = Δ2 ± 𝜆𝜇2 = −Δ2 ± √Δ2 + Ω22 = −Δ2 ± 𝜆, (5.92)

where 𝜆 = √Δ2+Ω2𝑅2 . Therefore, the solutions are of the form

𝐶1(𝑡) = 𝛼𝑒𝑖Δ2 𝑒𝑖𝜆𝑡 + 𝛽𝑒𝑖Δ2 𝑒−𝑖𝜆𝑡𝐶2(𝑡) = 𝛾𝑒−𝑖Δ2 𝑒𝑖𝜆𝑡 + 𝛿𝑒−𝑖Δ2 𝑒−𝑖𝜆𝑡
ЄЃЃЃЅЃЃЃІ ⇒ 𝐶1(𝑡)𝑒−𝑖Δ2 = 􏿴𝛼𝑒𝑖𝜆𝑡 + 𝛽𝑒−𝑖𝜆𝑡􏿷𝐶2(𝑡)𝑒𝑖Δ2 = 􏿴𝛾𝑒𝑖𝜆𝑡 + 𝛿𝑒−𝑖𝜆𝑡􏿷

ЄЃЃЃЅЃЃЃІ (5.93)

• In the case of detuning (Δ ≠ 0), the solutions 5.93 have the same form with the ones occurring
from the general solution of the coupled differential equations with the eigenvalue method (cf.
Eq. 5.75).Therefore, themethod used here produces exactly the same results as the ones discussed
in Section 5.4, in the caseΔ ≠ 0.

• In the case of resonance (Δ = 0), the solutions 5.93 become𝐶1(𝑡) = 𝛼𝑒𝑖𝜆𝑡 + 𝛽𝑒−𝑖𝜆𝑡𝐶2(𝑡) = 𝛾𝑒𝑖𝜆𝑡 + 𝛿𝑒−𝑖𝜆𝑡
ЄЃЅЃІ . (5.94)

The solutions (5.94) have the same form with the ones occurring from the general solution of the
coupled differential equations with the eigenvaluemethod (cf. Eq. 5.61). Hence, we see that, as ex-
pected, themethodusedhereproduces exactly the same results as theonesdiscussed inSection5.4,
in the case of resonance, as well.

5.7 Calculation of Einstein coefficients.

Let us take the equations

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅Δ2 sin2 􏿵Δ𝑡2 􏿸 or 𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅4 sin2 􏿴Δ𝑡2 􏿷􏿴Δ𝑡2 􏿷2 𝑡2 (5.95)

as a starting point. These hold for a very small perturbation, as expressed byΩ𝑅, which leads to a very
large period 𝑇𝑅 = 2𝜋/|Δ|, which in turn means very slow time-evolution. (As we saw above, the same
hold for very small times within the simplistic Newton’s recursive method). Given that the electron was
initially at the 1st level, 𝑃2(𝑡) essentially describes the probability of absorption in a

✿✿✿✿✿✿✿✿
two-level

✿✿✿✿✿✿✿
system for

. . . . . . . . . . .polarized, monochromatic as well as close-to-visible light.
On the other hand, if we are interested in the probability of absorption in

✿✿✿✿✿✿✿✿✿
two-level

✿✿✿✿✿✿
system for . . . . . . . . . . .polarized

yetnotmonochromatic (i.e., containing a large regionof angular frequencies around𝜔0 = Ω) close-to-visible
light, we★ REPLACE★

ℰ 20 = Ω+something􏾙Ω−something

𝑑𝜔𝜌(𝜔)𝜀0 .
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𝜀0 is the vacuum permittivity, with units [𝜀0] = C2
Nm2 and 𝜌 is the energy density of EM radiation in an

infinitesimal angular frequency interval, with units [𝜌] = Js
m3 . Thus, 􏿯 ∫ 𝑑𝜔𝜌(𝜔)𝜀0 􏿲 = ✟✟✟(1/s) J

m3
✟✟✟(1/s)

Nm2
C2 =

JN
mC2 = N2m

mC2 = N2
C2 = 􏿯ℰ 20 􏿲.

Thus, from Eq. 5.95, we arrive at

𝑃2(𝑡) = |𝐶2(𝑡)|2 = 𝒫24ℏ2 Ω+something􏾙Ω−something

𝑑𝜔 𝜌(𝜔)𝜀0 sin2 􏿴 (𝜔−Ω)𝑡2 􏿷􏿴 (𝜔−Ω)𝑡2 􏿷2 𝑡2. (5.96)

We set 𝑥 ∶= (𝜔 − Ω)𝑡2 ⇒ 𝜔 = 2𝑥𝑡 + Ω ⇒ 𝑑𝜔 = 2𝑡 𝑑𝑥. (5.97)

Thus,

𝑃2(𝑡) = 𝒫24ℏ2 2𝑡 𝑡2𝜀0 +something(𝑡/2)􏾙−something(𝑡/2) 𝑑𝑥 𝜌(𝑥)sin
2 𝑥𝑥2 ⇒

𝑃2(𝑡) = 𝒫2 𝑡2ℏ2𝜀0 +something(𝑡/2)􏾙−something(𝑡/2) 𝑑𝑥 𝜌(𝑥) sin2 𝑥𝑥2≃𝜋𝛿(𝑥)★★ For the approximation of 𝛿(𝑥), consult Appendix B.3.

𝑃2(𝑡) = 𝒫2 𝑡2ℏ2𝜀0 𝜌(𝑥 = 0)𝜋𝑥 = 0 ⇒ 𝜔 −Ω2 𝑡 = 0
however 𝑡 is finite

ЄЃЃЅЃЃІ ⇒ 𝜔 = Ω
ЄЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃІ ⇒ 𝑃2(𝑡) = 𝒫2 𝑡 𝜋2ℏ2𝜀0 𝜌(Ω) ⇒

𝑑𝑃2(𝑡)𝑑𝑡 = 𝒫2𝜋2ℏ2𝜀0 𝜌(Ω)
. . . . .The. . . . .EM. . . . . . . . . . . .radiation . . . . . . . . . .coming . . . . . .from. .a. . . . . . .black. . . . . . .body. .is. . . . .not. . . . . . . . . . . . .polarized, . . . . . . . . . . . .generally.Thus, the quantity𝜌(Ω) of one

polarization should, in some sense, be replaced by
𝜌(Ω)3 according to the relationship

􏾊ℰ 20 􏽽 = 􏾊ℰ 20𝑥 + ℰ 20𝑦 + ℰ 20𝑧􏽽 = 3􏾊ℰ 20𝑧􏽽 ⇒ 􏾊ℰ 20𝑧􏽽 = 13􏾊ℰ 20 􏽽
Hence, it should hold that 𝑑𝑃2(𝑡)𝑑𝑡 = 𝒫2𝜋2ℏ2𝜀0 𝜌(Ω)3
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However, the probability of absorption is 𝑑𝑊st.
ab. = 𝐵12𝜌(𝜈)𝑑𝑡 ⇒𝑑𝑊st.
ab.𝑑𝑡 = 𝐵12𝜌(𝜈)

for 𝜔 = Ω 𝑑𝑊st.
ab.𝑑𝑡 = 𝐵12𝜌(Ω)

Thus, 𝑑𝑃2(𝑡)𝑑𝑡 = 𝒫2𝜋2ℏ2𝜀0 𝜌(Ω)3𝑑𝑊st.
ab.𝑑𝑡 = 𝐵12𝜌(Ω)

ЄЃЃЃЃЅЃЃЃЃІ ⇒ (5.98)

𝐵12 = 𝒫2𝜋6ℏ2𝜀0 (5.99)

while, we remind that we had found 𝐴21𝐵21 = 8𝜋 ℎ 𝜈3𝑐3 (5.100)

and 𝐵12 = 𝐵21 (5.101)

Notwithstanding the simplifications that were needed for the calculation, the essence is that it is pos-
sible to calculate the Einstein coefficients of a two-level system.

5.8 Calculation of the Einstein coefficients using the solutions obtained in Section 5.4.

Let us write down Eq. 5.79 of Section 5.4 and Eq. 5.95 of Section 5.7. Eq. 5.79 can also be written in an
analogous manner to Eq. 5.95, i.e.,

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅Ω2𝑅 + Δ2 sin2
ϴϵϵϵϵϵϵϵ϶√Ω2𝑅 + Δ22 𝑡ϷϸϸϸϸϸϸϸϹ or

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅4
sin2

ϴϵϵϵϵϵϵϵ϶√Ω2𝑅 + Δ22 𝑡ϷϸϸϸϸϸϸϸϹϴϵϵϵϵ϶√Ω2𝑅+Δ22 𝑡ϷϸϸϸϸϹ2 𝑡2
(5.102)

just us we wrote 𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅Δ2 sin2 􏿵Δ𝑡2 􏿸 or

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅4 sin2 􏿴Δ𝑡2 􏿷􏿴Δ𝑡2 􏿷2 𝑡2 (5.103)
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As it is evident, there is an analogy between the second versions of 𝑃2(𝑡). So, we can define

𝑥 ∶= √Ω2𝑅 + Δ2 𝑡2 (5.104)

just as we had defined 𝑥 ∶= Δ𝑡2 (5.105)

in the previous Section 5.7 (Eq. 5.97). Thus, the calculation of 𝐵12 would occur just as it was done in the
previous Section 5.7.

5.9 ``Eigenenergies'' of a perturbed two-level system, i.e., subjected to an EM field.

Wewant to solve the problem 𝐻̂Ψ(⃗𝑟) = 𝐸Ψ(⃗𝑟), assuming thatΨ(⃗𝑟) can be expanded over the eigenfunc-
tions of the unperturbed system,Φ𝑘(⃗𝑟), with time-independent coefficients 𝑔𝑘. Then𝐻̂ = 𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡)𝐻̂Ψ(⃗𝑟) = 𝐸Ψ(⃗𝑟)Ψ(⃗𝑟) = 􏾜𝑘 𝑔𝑘Φ𝑘(⃗𝑟)

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
􏿯𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡)􏿲􏾜𝑘 𝑔𝑘Φ𝑘(⃗𝑟) = 𝐸􏿯􏾜𝑘 𝑔𝑘Φ𝑘(⃗𝑟)􏿲

Let us exploit the orthonormality ofΦ𝑘(⃗𝑟).
We multiply byΦ∗𝑘′ (⃗𝑟) and integrate over space.

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒
􏾜𝑘 𝑔𝑘􏾙𝑑3𝑟 Φ∗𝑘′ (⃗𝑟)𝐻̂0Φ𝑘(⃗𝑟) +􏾜𝑘 𝑔𝑘􏾙𝑑3𝑟 Φ∗𝑘′ (⃗𝑟)𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟) = 𝐸 􏾜𝑘 𝑔𝑘􏾙𝑑3𝑟 Φ∗𝑘′ (⃗𝑟)Φ𝑘(⃗𝑟)⇒􏾜𝑘 𝑔𝑘𝐸𝑘𝛿𝑘′𝑘 +􏾜𝑘 𝑔𝑘𝑈ℰ 𝑘′𝑘(𝑡) = 𝐸􏾜𝑘 𝑔𝑘𝛿𝑘′𝑘 ⇒ 𝑔𝑘′𝐸𝑘′ +􏾜𝑘 𝑔𝑘𝑈ℰ 𝑘′𝑘(𝑡) = 𝐸𝑔𝑘′
within the dipole approximation𝑈 = −𝒫 ⋅ ℰ⃗ = +𝑒𝑟 ⋅ ℰ⃗0𝑒−𝑖𝜔𝑡 = 𝑈ℰ (⃗𝑟, 𝑡)𝑈ℰ 𝑘′𝑘(𝑡) = 𝑒𝑒−𝑖𝜔𝑡ℰ⃗0 ⋅ 𝑟⃗𝑘′𝑘

ЄЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃІ ⇒

if we average over time within a period
2𝜋𝜔 of the EM field, then ⟨𝐸⟩ = 𝐸𝑘′

Therefore, the eigenenergies are not affected, on average.

5.10 Solution to the equations describing the time-evolution of a three-level system with quantum
harmonic oscillator eigenstates.

In theprevious sections,we focusedon the interactionof a travelingmonochromatic andpolarizedelectric
field with a two-level system, within the dipole approximation. However, Linear System of First Order
Differential Equations (Eq. 5.30)

𝐶̇𝑘′(𝑡) = −𝑖ℏ 􏾜𝑘 𝐶𝑘(𝑡)𝑒𝑖(Ω𝑘′−Ω𝑘)𝑡𝑈ℰ 𝑘′𝑘(𝑡) (5.106)

can also be solved for a system with three or more levels. In what follows, we will solve this problem,
within the RWA, for a three-level system with with quantum harmonic oscillator eigenstates, i.e., for a
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system described by the Hamiltonian

𝐻̂ = 𝑝̂22𝑚 + 12𝑚Ω2𝑧2 (5.107)

The eigenenergies of a 1D harmonic oscillator are given by the relationship

𝐸𝑛 = ℏΩ􏿶𝑛 + 12􏿹 ⇒ 𝐸𝑛+1 − 𝐸𝑛 = ℏΩ. (5.108)

The eigenfunctions that correspond to these levels have the form

𝑍𝑛(𝑧) = (2𝑛𝑛!𝑎√𝜋)−12𝐻𝑛 􏿵𝑧𝑎􏿸 𝑒− 𝑧22𝑎2 , (5.109)

where𝐻𝑛(𝑥) are theHermite polynomials and 𝑎 = √ℏ/𝑚Ω. Let us assume that we can restrict the problem
to the three lowest levels of the harmonic oscillator. Their eigenfunctions are presented in Table 5.1. For
convenience, we also perform the change of indices 𝑘 = 𝑛 + 1.
Table 5.1: Eigenfunctions of the three energetically lowest levels of the 1D harmonic oscillator and their
parity. 𝑛 𝑘 Φ𝑘(⃗𝑟) = 𝑍𝑛(𝑧) parity

0 1 (𝑎√𝜋)−12 𝑒− 𝑧22𝑎2 even

1 2 (𝑎√𝜋)−12 2 𝑧𝑎𝑒− 𝑧22𝑎2 odd

2 3 (8𝑎√𝜋)−12 􏿴2 − 4𝑧𝑎􏿷 𝑒− 𝑧22𝑎2 even

In Section 5.3.3, we saw that the matrix elements of the potential energy of the perturbation are𝑈ℰ𝑘′𝑘(𝑡) = 𝑒ℰ0 cos𝜔𝑡𝑧𝑘′𝑘
where 𝑧𝑘′𝑘 ∶= 􏾙𝑑𝑉Φ𝑘′ (⃗𝑟) 𝑧Φ𝑘(⃗𝑟)
since, here, the eigenfunctions are real. Observing the above equation together with Table 5.1, we can see
that the diagonal elements become zero, the off-diagonal elements are symmetric, while the off-diagonal
elements for which it holds that |𝑘 − 𝑘′| = even become zero, as well.

For our three-level system (𝑘 = 1, 2, 3), we can write𝑈ℰ12(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧12𝑈ℰ 21(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧21𝑈ℰ 13(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧13 = 0𝑈ℰ31(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧31 = 0𝑈ℰ23(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧23𝑈ℰ 32(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧32𝑈ℰ 𝑘𝑘(𝑡) = 𝑒ℰ0 cos𝜔𝑡 𝑧𝑘𝑘 = 0
or

𝑈ℰ12(𝑡) = −𝒫𝑧12 ℰ0 cos𝜔𝑡𝑈ℰ21(𝑡) = −𝒫𝑧21 ℰ0 cos𝜔𝑡𝑈ℰ13(𝑡) = 0𝑈ℰ31(𝑡) = 0𝑈ℰ23(𝑡) = −𝒫𝑧23 ℰ0 cos𝜔𝑡𝑈ℰ32(𝑡) = −𝒫𝑧32 ℰ0 cos𝜔𝑡𝑈ℰ 𝑘𝑘(𝑡) = 0
and, given the symmetry of the matrix elements 𝑧𝑘𝑘′ ,𝒫𝑧12 = 𝒫𝑧21 ∶= 𝒫 𝒫𝑧23 = 𝒫𝑧32 ∶= 𝒫′ (5.110)
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At this point, we are in the position to solve the Linear System of First Order Differential Equations

(Eq. 5.30) for a three-level system. We will also use the identity cos𝜔𝑡 = 𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡2 . From Eq. 5.108,
we have Ω2 − Ω1 = Ω3 − Ω2 = Ω . (5.111)

Therefore,

𝑘′ = 1 𝐶̇1(𝑡) = − 𝑖ℏ 𝐶2(𝑡) 𝑒𝑖(Ω1−Ω2)𝑡 𝑈ℰ 12(𝑡)𝐶̇1(𝑡) = − 𝑖ℏ 𝐶2(𝑡) 𝑒−𝑖Ω𝑡 (−ℰ0)𝒫 cos𝜔𝑡
𝐶̇1(𝑡) = 𝑖ℰ0𝒫2ℏ 􏿯𝑒−𝑖(Ω−𝜔)𝑡 + 𝑒−𝑖(Ω+𝜔)𝑡􏿲𝐶2(𝑡) (5.112)

𝑘′ = 2 𝐶̇2(𝑡) = − 𝑖ℏ 𝐶1(𝑡) 𝑒𝑖(Ω2−Ω1)𝑡 𝑈ℰ 21(𝑡) − 𝑖ℏ 𝐶3(𝑡) 𝑒𝑖(Ω2−Ω3)𝑡 𝑈ℰ 23(𝑡)𝐶̇2(𝑡) = − 𝑖ℏ 𝐶1(𝑡) 𝑒𝑖Ω𝑡 (−ℰ0)𝒫 cos𝜔𝑡 − 𝑖ℏ 𝐶3(𝑡) 𝑒−𝑖Ω𝑡 (−ℰ0)𝒫 ′ cos𝜔𝑡
𝐶̇2(𝑡) = 𝑖ℰ0𝒫2ℏ 􏿯𝑒𝑖(Ω+𝜔)𝑡 + 𝑒𝑖(Ω−𝜔)𝑡􏿲𝐶1(𝑡) + 𝑖ℰ0𝒫′2ℏ 􏿯𝑒−𝑖(Ω+𝜔)𝑡 + 𝑒−𝑖(Ω−𝜔)𝑡􏿲𝐶3(𝑡)

(5.113)

𝑘′ = 3 𝐶̇3(𝑡) = − 𝑖ℏ 𝐶2(𝑡) 𝑒𝑖(Ω3−Ω2)𝑡 𝑈ℰ 32(𝑡)𝐶̇3(𝑡) = − 𝑖ℏ 𝐶2(𝑡) 𝑒𝑖Ω𝑡 (−ℰ0)𝒫 ′ cos𝜔𝑡
𝐶̇3(𝑡) = 𝑖ℰ0𝒫′2ℏ 􏿯𝑒𝑖(Ω−𝜔)𝑡 + 𝑒𝑖(Ω+𝜔)𝑡􏿲𝐶2(𝑡) (5.114)

We observe that level (2) acts as an intermediate between levels 1 and 3.WithinRWA, we will ignore the
rapidly evolving terms containing (Ω + 𝜔). Moreover, as we did for the two-level system, we will define
detuning as Δ ∶= 𝜔 − Ω
as well as the frequencies Ω𝑅 ∶= 𝒫ℰ0ℏ , Ω′𝑅 ∶= 𝒫′ℰ0ℏ . (5.115)

This, after the RWA, we arrive at the system

𝐶̇1(𝑡) = 𝑖Ω𝑅2 𝐶2(𝑡)𝑒𝑖Δ𝑡𝐶̇2(𝑡) = 𝑖Ω𝑅2 𝐶1(𝑡)𝑒−𝑖Δ𝑡 + 𝑖Ω′𝑅2 𝐶3(𝑡)𝑒𝑖Δ𝑡𝐶̇3(𝑡) = 𝑖Ω′𝑅2 𝐶2(𝑡)𝑒−𝑖Δ𝑡
(5.116)
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Next, we will make a transformation to obtain a system of differential equations with time-independent
coefficients. In other words, 𝐶1(𝑡) = ℂ1(𝑡) 𝑒 𝑖Δ𝑡2𝐶2(𝑡) = ℂ2(𝑡) 𝑒− 𝑖Δ𝑡2𝐶3(𝑡) = ℂ3(𝑡) 𝑒− 𝑖3Δ𝑡2

(5.117)

Inserting the transformations of Equation 5.117 to the above system,we arrive at the systemof differential
equations ЀЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЂ

ℂ̇1(𝑡) = −𝑖Δ2 ℂ1(𝑡) + 𝑖Ω𝑅2 ℂ2(𝑡)ℂ̇2(𝑡) = +𝑖Ω𝑅2 ℂ1(𝑡) + 𝑖Δ2 ℂ2(𝑡) + 𝑖Ω′𝑅2 ℂ3(𝑡)ℂ̇3(𝑡) = 𝑖Ω′𝑅2 ℂ2(𝑡) + 𝑖3Δ2 ℂ3(𝑡)
,

which can be written in the form of a matrix differential equation asϺϻϻϻϻϻϻϼℂ̇1(𝑡)ℂ̇2(𝑡)ℂ̇3(𝑡)
ϽϾϾϾϾϾϾϿ =

Ϻϻϻϻϻϻϻϻϻϻϻϼ
−𝑖Δ2 𝑖Ω𝑅2 0𝑖Ω𝑅2 𝑖Δ2 𝑖Ω′𝑅20 𝑖Ω′𝑅2 𝑖3Δ2

ϽϾϾϾϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼℂ1(𝑡)ℂ2(𝑡)ℂ3(𝑡)

ϽϾϾϾϾϾϾϿ (5.118)

To solve the system of Eq. 5.118, we introduce the vector

𝑥⃗(𝑡) = Ϻϻϻϻϻϻϻϼℂ1(𝑡)ℂ2(𝑡)ℂ3(𝑡)
ϽϾϾϾϾϾϾϿ . (5.119)

Thus,

̇⃗𝑥(𝑡) = Ϻϻϻϻϻϻϻϼℂ̇1(𝑡)ℂ̇2(𝑡)ℂ̇3(𝑡)
ϽϾϾϾϾϾϾϿ , (5.120)

and denoting

𝐴̃ =
Ϻϻϻϻϻϻϻϻϻϻϻϼ
−𝑖Δ2 𝑖Ω𝑅2 0𝑖Ω𝑅2 𝑖Δ2 𝑖Ω′𝑅20 𝑖Ω′𝑅2 𝑖3Δ2

ϽϾϾϾϾϾϾϾϾϾϾϿ ∶= −𝑖A ⇒ A =
Ϻϻϻϻϻϻϻϻϻϻϻϼ

Δ2 −Ω𝑅2 0−Ω𝑅2 −Δ2 −Ω′𝑅20 −Ω′𝑅2 −3Δ2
ϽϾϾϾϾϾϾϾϾϾϾϿ (5.121)

the system of Eq. 5.118 is written as ̇⃗𝑥(𝑡) = 𝐴̃ 𝑥⃗(𝑡) (5.122)

Let us try solutions of the form 𝑥⃗(𝑡) = 𝑣⃗ 𝑒𝜆̃𝑡, (5.123)

hence, 𝑣⃗ 𝜆̃ 𝑒𝜆̃𝑡 = 𝐴̃ 𝑣⃗ 𝑒𝜆̃𝑡 ⇒ 𝐴̃𝑣⃗ = 𝜆̃𝑣⃗𝜆̃ ∶= −𝑖𝜆ЄЃЅЃІ ⇒ −𝑖A𝑣⃗ = −𝑖𝜆𝑣⃗ ⇒ A𝑣⃗ = 𝜆𝑣⃗
eigenvalue problem
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Thus, the whole thing is essentially reduced to the eigenvalue problem

A𝑣⃗ = 𝜆𝑣⃗ (5.124)

from which the normalized eigenvectors 𝑣⃗1, 𝑣⃗2, 𝑣⃗3, which correspond to the eigenvalues 𝜆1, 𝜆2, 𝜆3, will
occur. Having checked that the normalized eigenvectors 𝑣⃗1, 𝑣⃗2, 𝑣⃗3, which correspond to the eigenvalues𝜆1, 𝜆2, 𝜆3, are linearly independent, the solution to our problem is

𝑥⃗(𝑡) = 3􏾜𝑘=1 𝑐𝑘 𝑣⃗𝑘 𝑒−𝑖𝜆𝑘𝑡
where, of course, 𝜆̃𝑘 = −𝑖𝜆𝑘. The initial conditions determine the coefficients 𝑐𝑘.
SOLUTION forΔ = 0.
We present the analytical SOLUTION forΔ = 0, i.e., at resonance. The matrix A has the form

A =
Ϻϻϻϻϻϻϻϻϻϻϻϼ
0 −Ω𝑅2 0−Ω𝑅2 0 −Ω′𝑅20 −Ω′𝑅2 0

ϽϾϾϾϾϾϾϾϾϾϾϿ (5.125)

Its eigenvalues occur by the roots of the determinant

det(A − 𝜆I),
where I is the unit 3 × 3matrix. Thus,

det(A − 𝜆I) = 0 ⇒ − 𝜆 􏵵 −𝜆 −Ω′𝑅2−Ω′𝑅2 −𝜆 􏵵 + Ω𝑅2 􏵵−Ω𝑅2 0−Ω′𝑅2 −𝜆􏵵 = 0⇒ − 𝜆 􏿶𝜆2 − Ω′2𝑅4 􏿹 + 𝜆Ω2𝑅4 = 0 ⇒ −𝜆 􏿶𝜆2 − Ω′2𝑅4 − Ω2𝑅4 􏿹 = 0
⇒𝜆 = 0 ή 𝜆 = ±√Ω2𝑅 + Ω′2𝑅2

Hence,

𝜆1 = −√Ω2𝑅 + Ω′2𝑅2 ∶= −Λ, 𝜆2 = 0, 𝜆3 = √Ω2𝑅 + Ω′2𝑅2 ∶= Λ (5.126)

Let us now obtain the eigenvectors of A.
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For 𝜆1 = −√Ω2𝑅 + Ω′2𝑅2 ∶= −ΛϺϻϻϻϻϻϻϻϻϻϻϼ
Λ −Ω𝑅2 0−Ω𝑅2 Λ −Ω′𝑅20 −Ω′𝑅2 Λ

ϽϾϾϾϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑣11𝑣21𝑣31

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϼ000
ϽϾϾϾϾϾϾϿ ⇒

𝑣11 = Ω𝑅2Λ 𝑣21− Ω𝑅2 𝑣11 + Λ𝑣21 − Ω′𝑅2 𝑣31 = 0𝑣31 = Ω′𝑅2Λ 𝑣21

ЄЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃІ
Substituting the first and the third relationship to the second one, we obtainϴϵϵϵϵϵϵϵ϶Λ − √Ω2𝑅 + Ω′2𝑅2

ϷϸϸϸϸϸϸϸϹ􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍=0
𝑣22 = 0.

Thus, the choice of 𝑣22 arbitrary (albeit non-zero). We choose 𝑣22 = 1. Thus,

𝑣⃗1 = 𝛽
Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ

For 𝑣⃗1 to be normalized, it must hold that|𝑣⃗1|2 = 1 ⇒ |𝛽|2 Ω𝑅 + 4Λ2 + Ω′𝑅4Λ2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍=2
= 1 ⇒ |𝛽|2 = 12.

Hence, e.g., 𝛽 = 1√2 . Therefore,

𝑣⃗1 = 1√2
Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ (5.127)

For 𝜆2 = 0 Ϻϻϻϻϻϻϻϻϻϻϻϼ
0 −Ω𝑅2 0−Ω𝑅2 0 −Ω′𝑅20 −Ω′𝑅2 0

ϽϾϾϾϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑣12𝑣22𝑣32

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϼ000
ϽϾϾϾϾϾϾϿ ⇒

𝑣22 = 0𝑣32 = −Ω𝑅Ω′𝑅𝑣12𝑣22 = 0
ЄЃЃЃЃЃЅЃЃЃЃЃІ
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Thus,

𝑣⃗2 = 𝑣12 Ϻϻϻϻϻϻϻϻϼ 10−Ω𝑅Ω′𝑅
ϽϾϾϾϾϾϾϾϿ .

For 𝑣⃗2 to be normalized, it must hold that

|𝑣⃗2|2 = 1 ⇒ |𝑣12|2 􏿶1 + Ω2𝑅Ω′2𝑅 􏿹 = 1 ⇒ |𝑣12|2 = Ω′2𝑅Ω2𝑅 + Ω′2𝑅 = Ω′2𝑅4Λ2 .
Hence, e.g., 𝑣12 = Ω′𝑅2Λ . Thus,

𝑣⃗2 =
Ϻϻϻϻϻϻϻϻϻϼ
Ω′𝑅2Λ0−Ω𝑅2Λ

ϽϾϾϾϾϾϾϾϾϿ (5.128)

For 𝜆3 = √Ω2𝑅 + Ω′2𝑅2 ∶= Λ Ϻϻϻϻϻϻϻϻϻϻϻϼ
−Λ −Ω𝑅2 0−Ω𝑅2 −Λ −Ω′𝑅20 −Ω′𝑅2 −Λ

ϽϾϾϾϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑣13𝑣23𝑣33

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϼ000
ϽϾϾϾϾϾϾϿ ⇒

𝑣13 = −Ω𝑅2Λ 𝑣23− Ω𝑅2 𝑣13 − Λ𝑣23 − Ω′𝑅2 𝑣33 = 0𝑣33 = −Ω′𝑅2Λ 𝑣23

ЄЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃІ
Substituting the first and the third relationship to the second one, we obtain

√Ω2𝑅 − 4Λ2 + Ω′2𝑅4Λ􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍=0
𝑣23 = 0.

Thus, the choice of 𝑣23 arbitrary (albeit non-zero). We choose 𝑣23 = 1. Thus,

𝑣⃗3 = 𝛽
Ϻϻϻϻϻϻϻϻϻϼ−

Ω𝑅2Λ1−Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ

For 𝑣⃗3 to be normalized, it must hold that

|𝑣⃗3|2 = 1 ⇒ |𝛽|2 Ω𝑅 + 4Λ2 + Ω′𝑅4Λ2􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍=2
= 1 ⇒ |𝛽|2 = 12.
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Hence, e.g., 𝛽 = − 1√2 . Therefore,

𝑣⃗3 = 1√2
Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ−1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ (5.129)

Finally,

𝑥⃗(𝑡) = Ϻϻϻϻϻϻϻϼℂ1(𝑡)ℂ2(𝑡)ℂ3(𝑡)
ϽϾϾϾϾϾϾϿ = 𝑐1 𝑣⃗1 𝑒−𝑖𝜆1𝑡 + 𝑐2 𝑣⃗2 𝑒−𝑖𝜆2𝑡 + 𝑐3 𝑣⃗3 𝑒−𝑖𝜆3𝑡Ϻϻϻϻϻϻϻϻϻϻϻϼ

𝐶1(𝑡) 𝑒−𝑖Δ2 𝑡𝐶2(𝑡) 𝑒𝑖Δ2 𝑡𝐶3(𝑡) 𝑒𝑖 3Δ2 𝑡
ϽϾϾϾϾϾϾϾϾϾϾϿ = 𝑐1√2

Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ 𝑒𝑖Λ𝑡 + 𝑐2

Ϻϻϻϻϻϻϻϻϻϼ
Ω′𝑅2Λ0−Ω𝑅2Λ

ϽϾϾϾϾϾϾϾϾϿ + 𝑐3√2
Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ−1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ 𝑒−𝑖Λ𝑡 ⇒ (we assumed Δ = 0) ⇒

Ϻϻϻϻϻϻϻϼ𝐶1(𝑡)𝐶2(𝑡)𝐶3(𝑡)
ϽϾϾϾϾϾϾϿ = 𝑐1√2

Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ 𝑒𝑖Λ𝑡 + 𝑐2

Ϻϻϻϻϻϻϻϻϻϼ
Ω′𝑅2Λ0−Ω𝑅2Λ

ϽϾϾϾϾϾϾϾϾϿ + 𝑐3√2
Ϻϻϻϻϻϻϻϻϻϼ
Ω𝑅2Λ−1Ω′𝑅2Λ
ϽϾϾϾϾϾϾϾϾϿ 𝑒−𝑖Λ𝑡 (5.130)

Let the initial conditions be𝐶1(0) = 1,𝐶2(0) = 0 and𝐶3(0) = 0. Hence, for 𝑡 = 0, the system of
Eq. 5.130 becomes

1 = 𝑐1√2Ω𝑅2Λ + 𝑐2Ω′𝑅2Λ + 𝑐3√2Ω𝑅2Λ0 = 𝑐1√2 − 𝑐3√2 ⇒ 𝑐1 = 𝑐3 ∶= 𝑐
0 = 𝑐1√2Ω′𝑅2Λ − 𝑐2Ω𝑅2Λ + 𝑐3√2Ω′𝑅2Λ

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
Substituting the condition occurring from the second equation of the system to the third equation, we
obtain 𝑐2 = 𝑐√2Ω′𝑅Ω𝑅 .
Now, substituting to the first equation of the system, we obtain

2Λ = 𝑐Ω𝑅√2 + 𝑐√2Ω′2𝑅Ω𝑅 + 𝑐Ω𝑅√2 = 𝑐2Ω2𝑅 + 2Ω′2𝑅√2Ω𝑅 ⇒ 𝑐 = √2Ω𝑅ΛΩ2𝑅 + Ω′2𝑅 = √2Ω𝑅2√Ω2𝑅 + Ω′2𝑅 = Ω𝑅2√2Λ.
Thus, finally, the system of Eq. 5.130 reaches the formϺϻϻϻϻϻϻϼ𝐶1(𝑡)𝐶2(𝑡)𝐶3(𝑡)

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϻϻϻϻϼ

Ω2𝑅8Λ2 𝑒𝑖Λ𝑡 + Ω′2𝑅4Λ2 + Ω2𝑅8Λ2 𝑒−𝑖Λ𝑡Ω𝑅4Λ 𝑒𝑖Λ𝑡 − Ω𝑅4Λ 𝑒−𝑖Λ𝑡Ω𝑅Ω′𝑅8Λ2 𝑒𝑖Λ𝑡 − Ω𝑅Ω′𝑅4Λ2 + Ω𝑅Ω′𝑅8Λ2 𝑒−𝑖Λ𝑡
ϽϾϾϾϾϾϾϾϾϾϾϿ ⇒Ϻϻϻϻϻϻϻϼ𝐶1(𝑡)𝐶2(𝑡)𝐶3(𝑡)

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϻϻϻϻϼ

Ω2𝑅4Λ2 cos(Λ𝑡) + Ω′2𝑅4Λ2𝑖Ω𝑅2Λ sin(Λ𝑡)Ω𝑅Ω′𝑅4Λ2 cos(Λ𝑡) − Ω𝑅Ω′𝑅4Λ2

ϽϾϾϾϾϾϾϾϾϾϾϿ . (5.131)
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These are the equations that describe the time-evolution of the three-level system.The probability that, at
time 𝑡, the electron is at level 𝑘 is, of course, 𝑃𝑘(𝑡) ∶= |𝐶𝑘(𝑡)|2.• For level 1, Eq. 5.131 yields

|𝐶1(𝑡)|2 = Ω4𝑅16Λ4 cos2(Λ𝑡) + Ω′4𝑅16Λ4 + Ω2𝑅Ω′2𝑅8Λ4 cos(Λ𝑡) ⇒
𝑃1(𝑡) = |𝐶1(𝑡)|2 = Ω4𝑅32Λ4 (cos(2Λ𝑡) + 1) + Ω′4𝑅16Λ4 + Ω2𝑅Ω′2𝑅8Λ4 cos(Λ𝑡) . (5.132)

We see that there are two periods involved in the above equation, namely 𝑇1 = 2𝜋Λ and 𝑇2 = 2𝜋2Λ . Since

the ratio between the two periods is a rational number, specifically 𝑇1𝑇2 = 2, the probability to find the
electron at level 1 will be a periodic function, with period

𝑇1 = 2𝜋Λ = 4𝜋
√Ω2𝑅 + Ω′2𝑅 = 2𝑇2 . (5.133)

Let us examine Equation 5.132 a bit more.∗ After a full period, i.e., at 𝑡 = 𝑇1 = 2𝜋Λ ,

|𝐶1 􏿵2𝜋Λ 􏿸|2 = Ω4𝑅32Λ4 (cos(4𝜋) + 1) + Ω′4𝑅16Λ4 + Ω2𝑅Ω′2𝑅8Λ4 cos(2𝜋) = Ω4𝑅16Λ4 + Ω′4𝑅16Λ4 + Ω2𝑅Ω′2𝑅8Λ4= (Ω2𝑅 + Ω′2𝑅 )216Λ4 = 1,
which is expected, since afteroneperiod, theprobabilitywill return to its initial value, i.e., |𝐶1(0)|2 =1.∗ After half a period, i.e., at 𝑡 = 𝑇2 = 2𝜋2Λ ,

|𝐶1 􏿵 2𝜋2Λ􏿸|2 = Ω4𝑅32Λ4 (cos(2𝜋) + 1) + Ω′4𝑅16Λ4 + Ω2𝑅Ω′2𝑅8Λ4 cos(𝜋) = Ω4𝑅16Λ4 + Ω′4𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4= (Ω2𝑅 − Ω′2𝑅 )216Λ4 = (Ω2𝑅 − Ω′2𝑅 )2(Ω2𝑅 + Ω′2𝑅 )2 .∗ The first derivative of |𝐶1(𝑡)|2 is

d
d𝑡 |𝐶1(𝑡)|2 = − Ω4𝑅16Λ3 sin(2Λ𝑡) − Ω2𝑅Ω′2𝑅8Λ3 sin(Λ𝑡) = −Ω4𝑅8Λ3 sin(Λ𝑡) cos(Λ𝑡) − Ω2𝑅Ω′2𝑅8Λ3 sin(Λ𝑡)

= −Ω2𝑅8Λ3 sin(Λ𝑡) 􏿴Ω2𝑅 cos(Λ𝑡) + Ω′2𝑅 􏿷 (5.134)

The second derivative of |𝐶1(𝑡)|2 is

d2
d𝑡2 |𝐶1(𝑡)|2 = −Ω2𝑅8Λ2 cos(Λ𝑡) 􏿴Ω2𝑅 cos(Λ𝑡) + Ω′2𝑅 􏿷 + Ω4𝑅8Λ2 sin2(Λ𝑡)

= Ω4𝑅8Λ2 􏿴sin2(Λ𝑡) − cos2(Λ𝑡)􏿷 − Ω2𝑅Ω′2𝑅8Λ2 cos(Λ𝑡) (5.135)

From Equation 5.134 it occurs that there are two cases in which extrema occur:



154 SEMICLASSICAL APPROXIMATION I

1. When cos(Λ𝑡) = −Ω′2𝑅Ω2𝑅 . Attention: in this case, it must hold that Ω′2𝑅 ≤ Ω2𝑅. Then, Equa-
tion 5.135 becomes

d2
d𝑡2 |𝐶1(𝑡)|2 = Ω4𝑅8Λ2 􏿶sin2(Λ𝑡) − Ω′4𝑅Ω4𝑅 􏿹 + Ω′4𝑅8Λ2 = Ω4𝑅8Λ2 sin2(Λ𝑡) > 0.

In other words, we have a minimum. Actually, substituting the value cos(Λ𝑡) = −Ω′2𝑅Ω2𝑅 to

Equation 5.132, we can easily find that then |𝐶1| = 0. Additionally, within a period𝑇1 = 2𝜋Λ ,

there will be two times at which it will hold that cos(Λ𝑡) = −Ω′2𝑅Ω2𝑅 , i.e., there will be two zeros
in a single period𝑇1.Therefore, in this case, themaximum transfer percentage from level 1 is

𝒜1 = 1 (5.136)

2. When sin(Λ𝑡) = 0, thus cos(Λ𝑡) = ±1. Hence, there are two subcases:

(a) sin(Λ𝑡) = 0 and cos(Λ𝑡) = 1. Thus, Λ𝑡 = 0, 2𝜋, 4𝜋,… . In other words, we are at
integer multiples of the period 𝑇1. Then, Equation 5.135 becomes

d2
d𝑡2 |𝐶1(𝑡)|2 = −Ω4𝑅8Λ2 − Ω2𝑅Ω′2𝑅8Λ2 < 0.

Hence, we have amaximum.However, as we saw above, after a full period, |𝐶1(𝑡)|2 = 1.
Therefore, this is a global maximum.

(b) sin(Λ𝑡) = 0 and cos(Λ𝑡) = −1. Thus, Λ𝑡 = 𝜋, 3𝜋, 5𝜋… . In other words, we are at
half-integer multiples of the period 𝑇1. Then, Equation 5.135 becomes

d2
d𝑡2 |𝐶1(𝑡)|2 = −Ω4𝑅8Λ2 + Ω2𝑅Ω′2𝑅8Λ2 = Ω2𝑅8Λ2 (Ω′2𝑅 − Ω2𝑅) > 0

Hence, we have a minimum. However, as we saw above, after half a period, |𝐶1(𝑡)|2 =(Ω2𝑅−Ω′2𝑅 )2(Ω2𝑅+Ω′2𝑅 )2 . Therefore, in this case, the maximum transfer percentage from level 1 is

𝒜1 = 1 − (Ω2𝑅 − Ω′2𝑅 )2(Ω2𝑅 + Ω′2𝑅 )2 = 4Ω2𝑅Ω′2𝑅(Ω2𝑅 + Ω′2𝑅 )2 (5.137)

∗ WhenΩ𝑅 = Ω′𝑅, we haveΛ = √2Ω𝑅2 and

𝑇1 = √2 2𝜋Ω𝑅 . (5.138)

The period of the oscillation is equal to√2 times the period of the respective two-level system (see
Equation 5.64). Additionally, then, the above cases 1. and 2. coincide, and the maximum transfer
percentage from level 1 is𝒜1 = 1. Moreover, the expression for the time-evolution of the proba-
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bility |𝐶1(𝑡)|2 reaches the simpler form

|𝐶1(𝑡)|2 = 18 􏿴cos􏿴√2Ω𝑅𝑡􏿷 + 1􏿷 + 14 + 12 cos

ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ
= 14 cos2ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ + 14 + 12 cos

ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ = ϴϵϵϵϵ϶12 cos

ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ + 12ϷϸϸϸϸϹ2
|𝐶1(𝑡)|2 = cos4ϴϵϵϵϵ϶√2Ω𝑅4 𝑡ϷϸϸϸϸϹ. (5.139)

• For level 2, Eq. 5.131 yields |𝐶2(𝑡)|2 = Ω2𝑅4Λ2 sin2(Λ𝑡) ⇒
𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2𝑅8Λ2 − Ω2𝑅8Λ2 cos(2Λ𝑡) . (5.140)

We see that there is one period involved in the above equation, namely𝑇2 = 2𝜋2Λ = 2𝜋
√Ω2𝑅 + Ω′2𝑅 . (5.141)

Thus, the probability to find the electron at level 2 will be a periodic function, with period 𝑇2. Moreover,
the maximum transfer percentage to level 2 is

𝒜2 = Ω2𝑅4Λ2 = Ω2𝑅Ω2𝑅 + Ω′2𝑅 (5.142)

In the caseΩ𝑅 = Ω′𝑅, we haveΛ = √2Ω𝑅2 and Τ2 = 1√2 2𝜋Ω𝑅 . Thus, the period of the oscillation is equal
to 1/√2 times the period of the respective two-level system (see Equation 5.64). Moreover, the expression
for the time-evolution of the probability |𝐶2(𝑡)|2 reaches the simpler form|𝐶2(𝑡)|2 = 14 − 14 cos􏿴√2Ω𝑅𝑡􏿷 ⇒

|𝐶2(𝑡)|2 = 12 sin2ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ (5.143)

• For level 3, Eq. 5.131 yields|𝐶3(𝑡)|2 = Ω2𝑅Ω′2𝑅16Λ4 cos2(Λ𝑡) + Ω2𝑅Ω′2𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4 cos(Λ𝑡) ⇒
𝑃3(𝑡) = |𝐶3(𝑡)|2 = Ω2𝑅Ω′2𝑅32Λ4 (cos(2Λ𝑡) + 1) + Ω2𝑅Ω′2𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4 cos(Λ𝑡) . (5.144)

We see that there are two periods involved in the above equation, namely 𝑇1 = 2𝜋Λ and 𝑇2 = 2𝜋2Λ . Since

the ratio between the two periods is a rational number, specifically 𝑇1𝑇2 = 2, the probability to find the
electron at level 3 will be a periodic function, with period

𝑇1 = 2𝜋Λ = 4𝜋
√Ω2𝑅 + Ω′2𝑅 = 2𝑇2 . (5.145)
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Let us examine Equation 5.144 a bit more.∗ After a full period, i.e., at 𝑡 = 𝑇1 = 2𝜋Λ ,

|𝐶3 􏿵2𝜋Λ 􏿸|2 = Ω2𝑅Ω′2𝑅32Λ4 (cos(4𝜋) + 1) + Ω2𝑅Ω′2𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4 cos(2𝜋)
= Ω2𝑅Ω′2𝑅16Λ4 + Ω2𝑅Ω′2𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4 = 0,

which is expected, since afteroneperiod, theprobabilitywill return to its initial value, i.e., |𝐶3(0)|2 =0.∗ After half a period, i.e., at 𝑡 = 𝑇2 = 2𝜋2Λ ,

|𝐶3 􏿵 2𝜋2Λ􏿸|2 = Ω2𝑅Ω′2𝑅32Λ4 (cos(2𝜋) + 1) + Ω2𝑅Ω′2𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4 cos(𝜋)
= Ω2𝑅Ω′2𝑅16Λ4 + Ω2𝑅Ω′2𝑅16Λ4 + Ω2𝑅Ω′2𝑅8Λ4 = Ω2𝑅Ω′2𝑅4Λ4 = 4Ω2𝑅Ω′2𝑅(Ω2𝑅 + Ω′2𝑅 )2

∗ The first derivative of |𝐶3(𝑡)|2 is

d
d𝑡 |𝐶3(𝑡)|2 = −Ω2𝑅Ω′2𝑅16Λ3 sin(2Λ𝑡) + Ω2𝑅Ω′2𝑅8Λ3 sin(Λ𝑡)

= −Ω2𝑅Ω′2𝑅8Λ3 sin(Λ𝑡) cos(Λ𝑡) + Ω2𝑅Ω′2𝑅8Λ3 sin(Λ𝑡) = Ω2𝑅Ω′2𝑅8Λ3 sin(Λ𝑡) (1 − cos(Λ𝑡))
(5.146)

The second derivative of |𝐶3(𝑡)|2 is

d2
d𝑡2 |𝐶3(𝑡)|2 = Ω2𝑅Ω′2𝑅8Λ2 cos(Λ𝑡) (1 − cos(Λ𝑡)) + Ω2𝑅Ω′2𝑅8Λ2 sin2(Λ𝑡)

= Ω2𝑅Ω′2𝑅8Λ2 􏿮cos(Λ𝑡) − cos2(Λ𝑡) + sin2(Λ𝑡)􏿱 = Ω2𝑅Ω′2𝑅8Λ2 [cos(Λ𝑡) − cos(2Λ𝑡)]
(5.147)

From Equation 5.146 it occurs that there are two cases in which extrema occur:

1. sin(Λ𝑡) = 0. This means that cos(Λ𝑡) = ±1. Hence, there are two subcases:

(a) cos(Λ𝑡) = 1. Thus,Λ𝑡 = 0, 2𝜋, 4𝜋,… . In other words, we are at integer multiples of
the period 𝑇1. Then, Equation 5.147 becomes

d2
d𝑡2 |𝐶3(𝑡)|2 = Ω2𝑅Ω′2𝑅8Λ2 [1 − 1] = 0

Hence, the second derivative does not provide additional information about the ex-
tremum. However, we have already seen that after a full period, it holds that |𝐶3(𝑡)|2 =0. Given that this is a function describing a probability, this value is a global minimum.
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Let us verify this by expanding the first derivative around the limitsΛ𝑡 = 0 ± 𝜖, where𝜖 is an infinitesimally small positive quantity:

d
d𝑡 |𝐶3 􏿴 𝜖Λ􏿷|2 ≈ Ω2𝑅Ω′2𝑅8Λ3 𝜖 􏿰1 − 􏿶1 − 𝜖22 􏿹􏿳 = Ω2𝑅Ω′2𝑅8Λ3 𝜖33 > 0

d
d𝑡 |𝐶3 􏿴− 𝜖Λ􏿷|2 ≈ Ω2𝑅Ω′2𝑅8Λ3 (−𝜖) 􏿰1 − 􏿶1 − 𝜖22 􏿹􏿳 = −Ω2𝑅Ω′2𝑅8Λ3 𝜖33 < 0

Hence, we have a minimum.
(b) cos(Λ𝑡) = −1.Thus,Λ𝑡 = 𝜋, 3𝜋, 5𝜋… . In otherwords,we are at half-integermultiples

of the period 𝑇1. Then, Equation 5.147 becomes

d2
d𝑡2 |𝐶3(𝑡)|2 = Ω2𝑅Ω′2𝑅8Λ2 (−1 − 1) = −Ω2𝑅Ω′2𝑅4Λ2 < 0.

Hence, we have a local maximum. As we saw above, after half a period, |𝐶3(𝑡)|2 =4Ω2𝑅Ω′2𝑅(Ω2𝑅+Ω′2𝑅 )2 . Hence, in this case, the maximum transfer percentage to level 3 is

𝒜3 = 4Ω2𝑅Ω′2𝑅(Ω2𝑅 + Ω′2𝑅 )2 (5.148)

(c) cos(Λ𝑡) = 1. Thus, sin(Λ𝑡) = 0. This reduces to case 1(α).

2. WhenΩ𝑅 = Ω′𝑅, we haveΛ = √2Ω𝑅2 and

𝑇1 = √2 2𝜋Ω𝑅 . (5.149)

The period of the oscillation is equal to √2 times the period of the respective two-level system
(see Equation 5.64). Additionally, then, the maximum transfer percentage from level 1 is𝒜1 =1. Moreover, the expression for the time-evolution of the probability |𝐶3(𝑡)|2 reaches the simpler
form

|𝐶3(𝑡)|2 = 18 􏿴cos􏿴√2Ω𝑅𝑡􏿷 + 1􏿷 + 14 − 12 cos

ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ
= 14 cos2ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ + 14 − 12 cos

ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ = ϴϵϵϵϵ϶12 cos

ϴϵϵϵϵ϶√2Ω𝑅2 𝑡ϷϸϸϸϸϹ − 12ϷϸϸϸϸϹ2
|𝐶3(𝑡)|2 = sin4ϴϵϵϵϵ϶√2Ω𝑅4 𝑡ϷϸϸϸϸϹ. (5.150)

The above conclusions are summarized in Figure 5.10, where the oscillations of a three-level system at
resonance are presented.

The maximum transfer rate from level 1 to level 3 is

𝒜3𝑇1 = 4Ω2𝑅Ω′2𝑅(Ω2𝑅 + Ω′2𝑅 )2 √Ω2𝑅 + Ω′2𝑅4𝜋 = Ω2𝑅Ω′2𝑅𝜋(Ω2𝑅 + Ω′2𝑅 )32 (5.151)
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Figure 5.10: Oscillations of a three-level system at resonance, i.e., for 𝜔 = Ω ⇔ Δ = 0, forΩ𝑅 > Ω′𝑅
(top),Ω𝑅 < Ω′𝑅 (middle) andΩ𝑅 = Ω′𝑅 (bottom). Without having in mind a particular system, we
have assigned typical values (top)Ω𝑅 = 1 s−1 andΩ′𝑅 = 0.5 s−1, (middle)Ω𝑅 = 0.5 s−1 andΩ′𝑅 = 1 s−1,
and (bottom)Ω𝑅 = Ω′𝑅 = 1 s−1.

The time-averaged probability to find the electron at each level is

⟨|𝐶1(𝑡)|2⟩ = Ω4𝑅32Λ4 + Ω′4𝑅16Λ4 = Ω4𝑅 + 2Ω′4𝑅32Λ4⟨|𝐶2(𝑡)|2⟩ = Ω2𝑅8Λ2⟨|𝐶3(𝑡)|2⟩ = Ω2𝑅Ω′2𝑅32Λ4 + Ω2𝑅Ω′2𝑅16Λ4 = 3Ω2𝑅Ω′2𝑅32Λ4
. (5.152)
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The time 𝑡3mean, i.e., the time it takes so that the probability to find the electron to the upper level becomes
equal to its average for the first time can be found from the relationship3Ω2𝑅Ω′2𝑅32Λ4 = Ω2𝑅Ω′2𝑅32Λ4 (cos(2Λ𝑡3mean) + 1) + Ω2𝑅Ω′2𝑅16Λ4 − Ω2𝑅Ω′2𝑅8Λ4 cos(Λ𝑡3mean) ⇒332 = 132 (cos(2Λ𝑡3mean) + 1) + 116 − 18 cos(Λ𝑡3mean) ⇒34 = 14 (cos(2Λ𝑡3mean) + 1) + 12 − cos(Λ𝑡3mean) ⇒34 = 12 cos2(Λ𝑡3mean) + 12 − cos(Λ𝑡3mean) ⇒32 = cos2(Λ𝑡3mean) + 1 − 2 cos(Λ𝑡3mean) ⇒0 = cos2(Λ𝑡3mean) − 2 cos(Λ𝑡3mean) − 12
Thus, we arrived at a quadratic equation in cos(Λ𝑡3mean). Its roots are

cos(Λ𝑡3mean) = 1 ±√32. (5.153)

The root 1 ± √32 > 1 is rejected. Therefore,

cos(Λ𝑡3mean) = 1 −√32 ⇒ Λ𝑡3mean = arccos

ϴϵϵϵϵ϶1 −√32ϷϸϸϸϸϹ = 1.797478 ⇒𝑡3mean ≊ 1.797478Λ (5.154)

Hence, the mean transfer rate from level 1 to level 3 is

𝑘 ≝ ⟨|𝐶3(𝑡)|2⟩𝑡3mean
= 3Ω2𝑅Ω′2𝑅32Λ3 × 1.797478 = 3Ω2𝑅Ω′2𝑅4(Ω2𝑅 + Ω′2𝑅 )32 × 1.797478. (5.155)

Finally, the ratio between the mean and the maximum transfer rate is𝑘𝒜3𝑇1 = 3Ω2𝑅Ω′2𝑅4(Ω2𝑅 + Ω′2𝑅 )32 × 1.797478 𝜋(Ω
2𝑅 + Ω′2𝑅 )32Ω2𝑅Ω′2𝑅 = 3𝜋4 × 1.797478. (5.156)

Therefore, the two rates are connected through the relationship𝑘 ≊ 1.31083𝒜3𝑇1 . (5.157)

Let the initial conditions be𝐶1(0) = 0,𝐶2(0) = 0 and𝐶3(0) = 1. Hence, for 𝑡 = 0, the system of
Eq. 5.130 becomes

0 = 𝑐1√2Ω𝑅2Λ + 𝑐2Ω′𝑅2Λ + 𝑐3√2Ω𝑅2Λ0 = 𝑐1√2 − 𝑐3√2 ⇒ 𝑐1 = 𝑐3 ∶= 𝑐
1 = 𝑐1√2Ω′𝑅2Λ − 𝑐2Ω𝑅2Λ + 𝑐3√2Ω′𝑅2Λ

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
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Substituting the condition occurring from the second equation of the system to the first equation, we
obtain 𝑐2 = −𝑐√2Ω𝑅Ω′𝑅 .
Now, substituting to the third equation of the system, we obtain

2Λ = 𝑐Ω′𝑅√2 + 𝑐√2Ω2𝑅Ω′𝑅 + 𝑐Ω′𝑅√2 = 𝑐2Ω2𝑅 + 2Ω′2𝑅√2Ω′𝑅 ⇒ 𝑐 = √2Ω′𝑅ΛΩ2𝑅 + Ω′2𝑅 = √2Ω′𝑅2√Ω2𝑅 + Ω′2𝑅 = Ω′𝑅2√2Λ.
Thus, finally, the system of Eq. 5.130 reaches the formϺϻϻϻϻϻϻϼ𝐶1(𝑡)𝐶2(𝑡)𝐶3(𝑡)

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϻϻϻϻϼ
Ω𝑅Ω′𝑅8Λ2 𝑒𝑖Λ𝑡 − Ω𝑅Ω′𝑅4Λ2 + Ω𝑅Ω′𝑅8Λ2 𝑒−𝑖Λ𝑡Ω′𝑅4Λ 𝑒𝑖Λ𝑡 − Ω′𝑅4Λ 𝑒−𝑖Λ𝑡Ω′2𝑅8Λ2 𝑒𝑖Λ𝑡 + Ω2𝑅4Λ2 + Ω′2𝑅8Λ2 𝑒−𝑖Λ𝑡

ϽϾϾϾϾϾϾϾϾϾϾϿ ⇒Ϻϻϻϻϻϻϻϼ𝐶1(𝑡)𝐶2(𝑡)𝐶3(𝑡)
ϽϾϾϾϾϾϾϿ =

Ϻϻϻϻϻϻϻϻϻϻϻϼ
Ω𝑅Ω′𝑅4Λ2 cos(Λ𝑡) − Ω𝑅Ω′𝑅4Λ2𝑖Ω′𝑅2Λ sin(Λ𝑡)Ω′2𝑅4Λ2 cos(Λ𝑡) + Ω2𝑅4Λ2

ϽϾϾϾϾϾϾϾϾϾϾϿ . (5.158)

Comparing between Equations 5.158 and 5.131, i.e., the one that occurred for initial placement of the
electron on the lower level, we observe that the transformation 𝐶(𝑡) ⟷ 𝐶3(𝑡),Ω𝑅 ⟷ Ω′𝑅 leads to
exactly the same system of equations. Therefore, the above discussion will hold for this initial condition,
as well, if we consider this transformation.

SOLUTION forΔ ≠ 0
In the presence of detuning, the matrix A has the form

A =
Ϻϻϻϻϻϻϻϻϻϻϻϼ

Δ2 −Ω𝑅2 0−Ω𝑅2 −Δ2 −Ω′𝑅20 −Ω′𝑅2 −3Δ2
ϽϾϾϾϾϾϾϾϾϾϾϿ (5.159)

To make calculations easier, we will solve the problem for the special caseΩ𝑅 = Ω′𝑅 = Δ ∶= 2𝛽
Thus, in this case, we have the matrix

A = 𝛽 Ϻϻϻϻϻϻϻϼ 1 −1 0−1 −1 −10 −1 −3
ϽϾϾϾϾϾϾϿ . (5.160)

Its eigenvalues are obtained by by the roots of the determinant

det(A − 𝜆I),
where I is the unit 3 × 3matrix. Thus,

det(A − 𝜆I) = 0 ⇒(𝛽 − 𝜆) |−𝛽 − 𝜆 −𝛽−𝛽 −3𝛽 − 𝜆| + 𝛽 |−𝛽 0−𝛽 −3𝛽 − 𝜆| = 0⇒(𝛽 − 𝜆) 􏿮(𝛽 + 𝜆)(3𝛽 + 𝜆) − 𝛽2􏿱 + 𝛽2(3𝛽 + 𝜆) = 0⇒ − 𝜆3 − 3𝛽𝜆2 + 3𝛽𝜆2 + 5𝛽3 = 0.
We can verify that the value 𝜆 = −𝛽 satisfies the above relationship. Hence, the rest eigenvalues can by
found by dividing the left-hand side of the above relationship by 𝜆 + 𝛽, i.e.,
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−𝜆3 −3𝛽𝜆2 +3𝛽𝜆2 +5𝛽3 𝜆 + 𝛽⊖ −𝜆3 −𝛽𝜆2 −𝜆2 − 2𝛽𝜆 + 5𝛽2−2𝛽𝜆2 +3𝛽2𝜆 +5𝛽3⊖ −2𝛽𝜆2 −2𝛽2𝜆5𝛽𝜆2 +5𝛽3⊖ 5𝛽𝜆2 +5𝛽30
Hence, the condition that the determinant becomes zero is factored as

(𝜆 + 𝛽)(𝜆2 + 2𝛽𝜆 − 5𝛽2) = 0
and the eigenvalues are

𝜆1 = −𝛽(1 + √6), 𝜆2 = −𝛽(1 − √6), 𝜆3 = −𝛽 . (5.161)

Let us now find the eigenvectors of A.

For 𝜆1 = −𝛽(1 + √6)
Ϻϻϻϻϻϻϻϼ 1 −1 0−1 −1 −10 −1 −3

ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑣11𝑣21𝑣31

ϽϾϾϾϾϾϾϿ = −(1 + √6)
Ϻϻϻϻϻϻϻϼ𝑣11𝑣21𝑣31

ϽϾϾϾϾϾϾϿ ⇒ 𝑣11 − 𝑣21 = −(1 + √6)𝑣11−𝑣11 − 𝑣21 − 𝑣31 = −(1 + √6)𝑣21−𝑣21 − 3𝑣31 = −(1 + √6)𝑣31
ЄЃЃЃЃЅЃЃЃЃІ

⇒ 𝑣21 = (2 + √6)𝑣11𝑣11 + 𝑣31 = √6𝑣21𝑣21 = −(2 − √6)𝑣31
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑣31 = −2 + √62 − √6𝑣11𝑣21 = (2 + √6)𝑣11

ЄЃЃЃЃЅЃЃЃЃІ
Thus,

𝑣⃗1 = 𝑣11
Ϻϻϻϻϻϻϻϻϻϻϼ

12 + √6−2+√62−√6
ϽϾϾϾϾϾϾϾϾϾϿ

For 𝑣⃗1 to be normalized, it must hold that |𝑣⃗1|2 = 1.
Hence, e.g., 𝑣11 = 2−√62√6 . Therefore,

𝑣⃗1 = 12√6
Ϻϻϻϻϻϻϻϻϼ 2 − √6−2−(2 + √6)

ϽϾϾϾϾϾϾϾϿ (5.162)
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For 𝜆2 = −𝛽(1 − √6)Ϻϻϻϻϻϻϻϼ 1 −1 0−1 −1 −10 −1 −3
ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑣12𝑣22𝑣32

ϽϾϾϾϾϾϾϿ = −(1 − √6)
Ϻϻϻϻϻϻϻϼ𝑣12𝑣22𝑣32

ϽϾϾϾϾϾϾϿ ⇒ 𝑣12 − 𝑣22 = −(1 − √6)𝑣12−𝑣12 − 𝑣22 − 𝑣32 = −(1 − √6)𝑣22−𝑣22 − 3𝑣32 = −(1 − √6)𝑣32
ЄЃЃЃЃЅЃЃЃЃІ

⇒ 𝑣22 = (2 − √6)𝑣12𝑣12 + 𝑣32 = −√6𝑣22𝑣22 = −(2 + √6)𝑣32
ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑣32 = −2 − √62 + √6𝑣12𝑣22 = (2 − √6)𝑣12

ЄЃЃЃЃЅЃЃЃЃІ
Thus,

𝑣⃗2 = 𝑣12
Ϻϻϻϻϻϻϻϻϻϻϼ

12 − √6−2−√62+√6
ϽϾϾϾϾϾϾϾϾϾϿ

For 𝑣⃗2 to be normalized, it must hold that |𝑣⃗2|2 = 1.
Hence, e.g., 𝑣12 = 2+√62√6 . Therefore,

𝑣⃗2 = 12√6
Ϻϻϻϻϻϻϻϻϼ 2 + √6−2−(2 − √6)

ϽϾϾϾϾϾϾϾϿ (5.163)

For 𝜆3 = −𝛽 Ϻϻϻϻϻϻϻϼ 1 −1 0−1 −1 −10 −1 −3
ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑣13𝑣23𝑣33

ϽϾϾϾϾϾϾϿ = −
Ϻϻϻϻϻϻϻϼ𝑣13𝑣23𝑣33

ϽϾϾϾϾϾϾϿ ⇒ 𝑣13 − 𝑣23 = −𝑣13−𝑣13 − 𝑣23 − 𝑣33 = −𝑣23−𝑣23 − 3𝑣33 = −𝑣33
ЄЃЃЃЅЃЃЃІ

⇒ 𝑣23 = 2𝑣13𝑣33 = −𝑣13𝑣23 = −2𝑣33􏿿
Thus,

𝑣⃗3 = 𝑣13 Ϻϻϻϻϻϻϻϼ 12−1
ϽϾϾϾϾϾϾϿ

For 𝑣⃗3 to be normalized, it must hold that |𝑣⃗3|2 = 1.
Hence, e.g., 𝑣13 = 1√6 . Therefore,

𝑣⃗3 = 1√6
Ϻϻϻϻϻϻϻϼ 12−1

ϽϾϾϾϾϾϾϿ (5.164)
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After all, the general solution is

𝑥⃗(𝑡) = Ϻϻϻϻϻϻϻϼℂ1(𝑡)ℂ2(𝑡)ℂ3(𝑡)
ϽϾϾϾϾϾϾϿ = 𝑐1 𝑣⃗1 𝑒−𝑖𝜆1𝑡 + 𝑐2 𝑣⃗2 𝑒−𝑖𝜆2𝑡 + 𝑐3 𝑣⃗3 𝑒−𝑖𝜆3𝑡Ϻϻϻϻϻϻϻϼ𝐶1(𝑡) 𝑒−𝑖𝛽𝑡𝐶2(𝑡) 𝑒𝑖𝛽𝑡𝐶3(𝑡) 𝑒𝑖3𝛽𝑡
ϽϾϾϾϾϾϾϿ = 𝑐12√6

Ϻϻϻϻϻϻϻϻϼ2 − √6−22 + √6
ϽϾϾϾϾϾϾϾϿ 𝑒𝑖𝛽(1+√6)𝑡 + 𝑐22√6

Ϻϻϻϻϻϻϻϻϼ2 + √6−22 − √6
ϽϾϾϾϾϾϾϾϿ 𝑒𝑖𝛽(1−√6)𝑡 + 𝑐32√6

Ϻϻϻϻϻϻϻϼ 12−1
ϽϾϾϾϾϾϾϿ 𝑒𝑖𝛽𝑡 (5.165)

As in the previous cases we examined, imposing initial conditions determines the coefficients 𝑐1, 𝑐2, 𝑐3
and, subsequently, the time evolution of the probability to find the electron at each level.

5.11 Multi-level system with equidistant levels within the RWA.

At this point, we will solve the problem of the multi-level system (MLS), i.e., with 𝑁 levels, within the
RWA.To simplify the problem andmake its solution feasible, wewill suppose that the energy levels of the
system are equidistant.This is the samewe did in the previous section, wherewe considered a systemwith
quantumharmonic oscillator eigenstates, whose energy levels are indeed equidistant. FromEq. (5.30),we
have 𝐶̇𝑘′(𝑡) = −𝑖ℏ 􏾜𝑘 𝐶𝑘(𝑡)𝑒𝑖(Ω𝑘′−Ω𝑘)𝑡𝑈ℰ 𝑘′𝑘(𝑡) , (5.166)

where, 𝑈ℰ𝑘′𝑘(𝑡) = 𝑒ℰ0 cos𝜔𝑡􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟) 𝑧Φ𝑘(⃗𝑟) . (5.167)

The matrix elements of the 𝑧-coordinate are𝑧𝑘′𝑘 ∶= 􏾙𝑑𝑉Φ∗𝑘′ (⃗𝑟) 𝑧Φ𝑘(⃗𝑟). (5.168)

We note that, for 𝑘 = 1, 3, 5, ...,Φ𝑘 are even functions, while, for 𝑘′ = 2, 4, 6, ..., they are odd functions.
Therefore, given this fact, and knowing that the 𝑧-coordinate is an odd function, the following hold:

• For 𝑘 = 𝑘′, 𝑧𝑘,𝑘 = 0 since 𝑧𝑘,𝑘 = 􏾙𝑑𝑉 |Φ𝑘(⃗𝑟)|2􏿋􏻰􏻰􏿌􏻰􏻰􏿍
Even

𝑧⏟
Odd

= 0 (5.169)

• For 𝑘 ≠ 𝑘′,∗ If, e.g. 𝑘′ = 𝑘 − 1, then 𝑧𝑘−1,𝑘 ≠ 0. This happens since, from the relation,

𝑧𝑘−1,𝑘 = 􏾙𝑑𝑉Φ∗𝑘−1(⃗𝑟) 𝑧Φ𝑘(⃗𝑟). (5.170)

we notice that if Φ∗𝑘−1(⃗𝑟) ⟶ EVEN, then Φ𝑘(⃗𝑟) ⟶ ODD, while, on the contrary, ifΦ∗𝑘−1(⃗𝑟) ⟶ ODD, then Φ𝑘(⃗𝑟) ⟶ EVEN. Thus, in both cases, the result will be either
EVEN ⋅ODD ⋅ODD or ODD ⋅ODD ⋅ EVEN, i.e., non-zero.∗ Similarly, it can be demonstrated that, for 𝑘′ = 𝑘 − 2, 𝑧𝑘−2,𝑘 = 0, etc.
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Thus, to summarize, 𝑧𝑘−1,𝑘 = 𝑧𝑘,𝑘−1 ≠ 0𝑧𝑘−2,𝑘 = 𝑧𝑘,𝑘−2 = 0𝑧𝑘−3,𝑘 = 𝑧𝑘,𝑘−3 ≠ 0𝑧𝑘−4,𝑘 = 𝑧𝑘,𝑘−4 = 0⋮𝑧𝑘−(𝑁−1),𝑘 = 𝑧𝑘,𝑘−(𝑁−1) 􏿼 ≠ 0 , for 𝑁 = even= 0 , for 𝑁 = odd

Given that thematrix elementof thepotential energyof theperturbationcanbewrittenas (seeEq. 5.41)

𝑈ℰ𝑘′𝑘(𝑡) = −𝒫𝑧𝑘′𝑘 ℰ0 cos𝜔𝑡 = −𝒫𝑧𝑘′𝑘ℰ0 𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡2 , (5.171)

Eq. (5.166) becomes

𝐶̇𝑘′(𝑡) = 𝑖2ℏ 􏾜𝑘 ℰ0𝒫𝑧𝑘′𝑘𝐶𝑘(𝑡) 􏿴𝑒𝑖(Ω𝑘′−Ω𝑘+𝜔)𝑡 + 𝑒𝑖(Ω𝑘′−Ω𝑘−𝜔)𝑡􏿷
Assuming that the energy levels are equidistant, we haveΩ𝑘′ − Ω𝑘 = (𝑘′ − 𝑘)Ω. Thus,

𝐶̇𝑘′(𝑡) =𝑖ℰ02ℏ 𝑘′􏾜𝑘=1𝒫𝑧𝑘′𝑘𝐶𝑘(𝑡) 􏿴𝑒𝑖[(𝑘′−𝑘)Ω+𝜔]𝑡 + 𝑒𝑖[(𝑘′−𝑘)Ω−𝜔]𝑡􏿷 +
𝑖ℰ02ℏ 𝑁􏾜𝑘=𝑘′+1𝒫𝑧𝑘′𝑘𝐶𝑘(𝑡) 􏿴𝑒𝑖[(𝑘′−𝑘)Ω+𝜔]𝑡 + 𝑒𝑖[(𝑘′−𝑘)Ω−𝜔]𝑡􏿷 .

The coefficients 𝑘′ − 𝑘 are presented in the table below:

𝑘 \ 𝑘′ 1 2 3 4 ⋯ 𝑁1 0 1 2 3 ⋯ 𝑁 − 12 −1 0 1 2 ⋯ 𝑁 − 23 −2 −1 0 1 ⋯ 𝑁 − 34 −3 −2 −1 0 ⋯ 𝑁 − 4⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮𝑁 −(𝑁 − 1) −(𝑁 − 2) −(𝑁 − 3) −(𝑁 − 4) ⋯ 0
The terms that correspond to slow changes are, for 𝑘′ − 𝑘 = −1, the exponential 𝑒𝑖[(𝑘′−𝑘)Ω+𝜔]𝑡, and,

for 𝑘′ − 𝑘 = 1 the exponential 𝑒𝑖[(𝑘′−𝑘)Ω−𝜔]𝑡. In any other case, changes are fast, hence, we can omit them
within the RWA.Therefore, from the𝑁 occurring equations, we have, for 𝑘′ = 1, 𝑘′ = 2, 3, ..., 𝑁 − 1 and𝑘′ = 𝑁, respectively,

𝐶̇1(𝑡) = 𝑖𝒫1,2ℰ02ℏ 𝐶2(𝑡)𝑒𝑖Δ𝑡̇𝐶𝑘′(𝑡) = 𝑖𝒫𝑘′,𝑘′−1ℰ02ℏ 𝐶𝑘′−1(𝑡)𝑒−𝑖Δ𝑡 + 𝑖𝒫𝑘′,𝑘′+1ℰ02ℏ 𝐶𝑘′+1(𝑡)𝑒𝑖Δ𝑡̇𝐶𝑁(𝑡) = 𝑖𝒫𝑁,𝑁−1ℰ02ℏ 𝐶𝑁−1(𝑡)𝑒−𝑖Δ𝑡,
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where Δ = 𝜔 − Ω is the detuning. Alternatively, settingΩ𝑅𝑘′𝑘 = 𝒫𝑘′𝑘ℰ0ℏ , the above equations can be
written as 𝐶̇1(𝑡) = 𝑖Ω𝑅1,22 𝐶2(𝑡)𝑒𝑖Δ𝑡 (5.172)̇𝐶𝑘′(𝑡) = 𝑖Ω𝑅𝑘′,𝑘′−12 𝐶𝑘′−1(𝑡)𝑒−𝑖Δ𝑡 + 𝑖Ω𝑅𝑘′,𝑘′+12 𝐶𝑘′+1(𝑡)𝑒𝑖Δ𝑡 (5.173)̇𝐶𝑁(𝑡) = 𝑖Ω𝑅𝑁,𝑁−12 𝐶𝑁−1(𝑡)𝑒−𝑖Δ𝑡. (5.174)

These equations can be solved using the following transformations:

• For even𝑁,

𝐶𝑘′(𝑡) = ℂ𝑘′(𝑡)𝑒𝑖((𝑁+1)−2𝑘′)Δ2 𝑡 ⇒̇𝐶𝑘′(𝑡) = ℂ̇𝑘′(𝑡)𝑒𝑖((𝑁+1)−2𝑘′)Δ2 𝑡 + 𝑖((𝑁 + 1) − 2𝑘′)Δ2 ℂ𝑘′(𝑡)𝑒𝑖((𝑁+1)−2𝑘′)Δ2 𝑡
• For odd𝑁,

𝐶𝑘′(𝑡) = ℂ𝑘′(𝑡)𝑒𝑖(𝑁−2𝑘′)Δ2 𝑡 ⇒̇𝐶𝑘′(𝑡) = ℂ̇𝑘′(𝑡)𝑒𝑖(𝑁−2𝑘′)Δ2 𝑡 + 𝑖(𝑁 − 2𝑘′)Δ2 ℂ𝑘′(𝑡)𝑒𝑖(𝑁−2𝑘′)Δ2 𝑡
Substituting the transformations, we have

• For even𝑁,∗ for 𝑘′ = 1,
ℂ̇1(𝑡)✟✟✟✟✟𝑒𝑖(𝑁−1)Δ2 𝑡 + 𝑖(𝑁 − 1)Δ2 ℂ1(𝑡)✟✟✟✟✟𝑒𝑖(𝑁−1)Δ2 𝑡 = 𝑖Ω𝑅1,22 ℂ2(𝑡)✘✘✘✘✘✘𝑒𝑖(𝑁−3)Δ2 𝑡𝑒𝑖Δ𝑡 ⇒

ℂ̇1(𝑡) = −𝑖(𝑁 − 1)Δ2 ℂ1(𝑡) + 𝑖Ω𝑅1,22 ℂ2(𝑡) (5.175)

∗ for 𝑘′ = 2, 3, .., 𝑁 − 1,
ℂ̇𝑘′(𝑡)✘✘✘✘✘✘✘𝑒𝑖[(𝑁+1)−2𝑘′]Δ2 𝑡 + 𝑖(𝑁 + 1 − 2𝑘′)Δ2 ℂ𝑘′(𝑡)✘✘✘✘✘✘✘𝑒𝑖[(𝑁+1)−2𝑘′]Δ2 𝑡 == 𝑖Ω𝑅𝑘′,𝑘′−12 ℂ𝑘′−1(𝑡)✭✭✭✭✭✭✭✭✭✭✭𝑒𝑖[(𝑁+1)−2(𝑘′−1)]Δ2 𝑡𝑒−𝑖Δ𝑡 + 𝑖Ω𝑅𝑘′,𝑘′+12 ℂ𝑘′+1(𝑡)✭✭✭✭✭✭✭✭✭✭𝑒𝑖[(𝑁+1)−2(𝑘′+1)]Δ2 𝑡𝑒𝑖Δ𝑡 ⇒

̇ℂ𝑘′(𝑡) = 𝑖Ω𝑅𝑘′,𝑘′−12 ℂ𝑘′−1(𝑡) − 𝑖(𝑁 + 1 − 2𝑘′)Δ2 ℂ𝑘′(𝑡) + 𝑖Ω𝑅𝑘′,𝑘′+12 ℂ𝑘′+1(𝑡) (5.176)

∗ for 𝑘′ = 𝑁,

ℂ̇𝑁(𝑡)✟✟✟✟✟𝑒𝑖(1−𝑁)Δ2 𝑡+𝑖((1−𝑁)Δ2 ℂ𝑁(𝑡)✟✟✟✟✟𝑒𝑖(1−𝑁)Δ2 𝑡 = 𝑖Ω𝑅𝑁,𝑁−12 ℂ𝑁−1(𝑡)✭✭✭✭✭✭✭✭✭✭✭𝑒𝑖((𝑁+1)−2(𝑁−1))Δ2 𝑡𝑒−𝑖Δ𝑡 ⇒
̇ℂ𝑁(𝑡) = 𝑖(𝑁 − 1)Δ2 ℂ𝑁(𝑡) + 𝑖Ω𝑅𝑁,𝑁−12 ℂ𝑁−1(𝑡) (5.177)
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• For odd𝑁,∗ for 𝑘′ = 1,
ℂ̇1(𝑡)✟✟✟✟✟𝑒𝑖(𝑁−2)Δ2 𝑡 + 𝑖(𝑁 − 2)Δ2 ℂ1(𝑡)✟✟✟✟✟𝑒𝑖(𝑁−2)Δ2 𝑡 = 𝑖Ω𝑅1,22 ℂ2(𝑡)✘✘✘✘✘✘𝑒𝑖(𝑁−4)Δ2 𝑡𝑒𝑖Δ𝑡 ⇒

ℂ̇1(𝑡) = −𝑖(𝑁 − 2)Δ2 ℂ1(𝑡) + 𝑖Ω𝑅1,22 ℂ2(𝑡) (5.178)∗ for 𝑘′ = 2, 3, .., 𝑁 − 1,ℂ̇𝑘′(𝑡)✘✘✘✘✘𝑒𝑖(𝑁−2𝑘′)Δ2 𝑡 + 𝑖(𝑁 − 2𝑘′)Δ2 ℂ𝑘′(𝑡)✘✘✘✘✘𝑒𝑖(𝑁−2𝑘′)Δ2 𝑡 =
= 𝑖Ω𝑅𝑘′,𝑘′−12 ℂ𝑘′−1(𝑡)✭✭✭✭✭✭✭✭✭𝑒𝑖[𝑁−2(𝑘′−1)]Δ2 𝑡𝑒−𝑖Δ𝑡+𝑖Ω𝑅𝑘′,𝑘′+12 ℂ𝑘′+1(𝑡)✘✘✘✘✘✘✘✘✘𝑒𝑖[𝑁−2(𝑘′+1)]Δ2 𝑡𝑒𝑖Δ𝑡 ⇒
̇ℂ𝑘′(𝑡) = 𝑖Ω𝑅𝑘′,𝑘′−12 ℂ𝑘′−1(𝑡) − 𝑖(𝑁 − 2𝑘′)Δ2 ℂ𝑘′(𝑡) + 𝑖Ω𝑅𝑘′,𝑘′+12 ℂ𝑘′+1(𝑡) (5.179)∗ for 𝑘′ = 𝑁,ℂ̇𝑁(𝑡)✟✟✟✟𝑒−𝑖𝑁 Δ2 𝑡 − 𝑖𝑁Δ2 ℂ𝑁(𝑡)✟✟✟✟𝑒−𝑖𝑁 Δ2 𝑡 = 𝑖Ω𝑅𝑁,𝑁−12 ℂ𝑁−1(𝑡)✭✭✭✭✭✭✭✭✭𝑒𝑖(𝑁−2(𝑁−1))Δ2 𝑡𝑒−𝑖Δ𝑡 ⇒

̇ℂ𝑁(𝑡) = +𝑖𝑁Δ2 ℂ𝑁(𝑡) + 𝑖Ω𝑅𝑁,𝑁−12 ℂ𝑁−1(𝑡) (5.180)

Hence, three different forms occur in each case (i.e., three forms for even𝑁 and three forms for odd𝑁). We notice that in both cases, we have arrived at a system of first-order differential equations of the
form Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ

ℂ̇1(𝑡)ℂ̇2(𝑡)ℂ̇3(𝑡)⋮ℂ̇𝑁(𝑡)
ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϾϿ = 𝐴̃

Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
ℂ1(𝑡)ℂ2(𝑡)ℂ3(𝑡)⋮ℂ𝑁(𝑡)

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ , (5.181)

where

• for even𝑁,

𝐴̃ = 𝑖2
Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
−(𝑁 − 1)Δ Ω𝑅1,2 0 0 0 ⋯ 0Ω𝑅1,2 −(𝑁 − 3)Δ Ω𝑅2,3 0 0 ⋯ 00 ⋱ ⋱ ⋱ ⋯ ⋯ ⋮⋮ ⋯ Ω𝑅𝑘′−1,𝑘′ −(𝑁 + 1 − 2𝑘′)Δ Ω𝑅𝑘′,𝑘′+1 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮0 0 0 0 0 ⋯ (𝑁 − 1)Δ

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϿ ,
• for odd𝑁,

𝐴̃ = 𝑖2
Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ
−(𝑁 − 2)Δ Ω𝑅1,2 0 0 0 ⋯ 0Ω𝑅1,2 −(𝑁 − 4)Δ Ω𝑅2,3 0 0 ⋯ 00 ⋱ ⋱ ⋱ ⋯ ⋯ ⋮⋮ ⋯ Ω𝑅𝑘′−1,𝑘′ −(𝑁 − 2𝑘′)Δ Ω𝑅𝑘′,𝑘′+1 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮0 0 0 0 0 ⋯ 𝑁Δ

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϿ .
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In other words, in both cases, we arrive at a problem of the forṁ⃗𝑥(𝑡) = 𝐴̃𝑥⃗(𝑡) ∶= −𝑖A𝑥⃗(𝑡) (5.182)

We try solutions of the form𝑥⃗(𝑡) = 𝑢⃗𝑒𝜆̃𝑡, with 𝜆̃ = −𝑖𝜆. Thus, we conclude that,𝜆̃𝑢⃗%%𝑒𝜆̃𝑡 = 𝐴̃𝑢⃗%%𝑒𝜆̃𝑡 ⇒ −𝑖𝜆𝑢⃗ = −𝑖A𝑢⃗ ⇒
A𝑢⃗ = 𝜆𝑢⃗ .

Hence, for a given 𝑁, we arrive at an eigenvalue-eigenvector problem, the solution of which is feasible,
using the methods described in the previous Sections.
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CHAPTER 6

SEMICLASSICAL APPROXIMATION II

In this Chapter:
We continue studying Rabi oscillations with the semiclassical approach. However, here we focus on nu-
merical solutions. Also, we compare our numerical results with approximative methods like the Rotating
Wave Approximation (RWA), which we analyzed in the previous chapter, and the Averaging Method, of
1st and of 2nd order.We solve for various initial conditions either on resonance or off resonance. Relevant
references for further reading: [1, 3, 4, 5, 6, 7, 8, 9, 10, 2].
Prerequisite knowledge: Basic knowledge of Quantum Physics and Mathematics.

The purpose of this chapter is to solve the linear system of first-order differential equations (Eq. 5.30)
without the rotating wave approximation (RWA). The method we use to this end are the numerical so-
lution withmatlab (no RWA, NRWA) and the averaging method (AM). The linear system will be solved
for a 2LS, both in-resonance and out-of-resonance, with initial conditions

1. 𝐶1(0) = 1, 𝐶2(0) = 0, i.e., placing the electron, at time zero, at the lower level,

2. 𝐶1(0) = 0, 𝐶2(0) = 1, i.e., placing the electron, at time zero, at the higher level

3. 𝐶1(0) = 1√2𝑒𝑖𝜃, 𝐶2(0) = 1√2𝑒𝑖𝜙, i.e., placing the electron, at time zero, with equal probability|𝐶1(0)|2 = |𝐶2(0)|2 = 12 at both levels.

The linear system of first-order differential equation for the 2LS is

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖ℰ0 𝒫2ℏ 􏿯𝑒−𝑖(Ω−𝜔)𝑡 + 𝑒−𝑖(Ω+𝜔)𝑡􏿲
𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖ℰ0 𝒫2ℏ 􏿯𝑒𝑖(Ω+𝜔)𝑡 + 𝑒𝑖(Ω−𝜔)𝑡􏿲 (6.1)
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6.1 Rabi oscillations in a 2LS without Rotating Wave Approximation.

The significance of the full numerical solution (NRWA) is that it is the most accurate approach to obtain
the actual solution toourproblem.Therefore, thenumerical solutionprovides theopportunity to compare
it with the approximate ones (RWA - AM), in order to obtain a criterion for their range of successful
application.

The 2LS (6.1) is numerically solved utilizing matlab; specifically, we used an algorithm based on the
trapezoid and Runge-Kutta (4,5) methods (ode45). The algorithm ode45 selects a certain partition of
the chosen interval, in our case for time 𝑡, producing at each point in time a column vector 𝐶𝑘(𝑡), where𝑘 = 1, 2. It is important to notice that this particion can be controlled. Additionally, Two important
options of the algorithm are the relative and absolute tolerance,𝑅𝑒𝑙𝑇𝑜𝑙 and𝐴𝑏𝑠𝑇𝑜𝑙, respectively. At each
step of the ode45 algorithm, an error is approximated.. If 𝑦𝑘 is the approximation of 𝑦(𝑥𝑘) at step 𝑘 and 𝑒𝑘
is the approximate error at this step, thenmatlab chooses its partition to ensure that𝑒𝑘 ≤ max(𝑅𝑒𝑙𝑇𝑜𝑙 ⋅ 𝑦𝑘, 𝐴𝑏𝑠𝑇𝑜𝑙)
where the default values are𝑅𝑒𝑙𝑇𝑜𝑙 = 0.001 and𝐴𝑏𝑠𝑇𝑜𝑙 = 0.000001. In the following, we set𝑅𝑒𝑙𝑇𝑜𝑙 =10−10 and𝐴𝑏𝑠𝑇𝑜𝑙 = 10−10, since our tests have shown that these values give the optimal results.

6.2 The averaging method.

The Averaging Method (AM) in nonlinear dynamical systems belongs to asymptotic methods. The sim-
plest form of averaging is periodic averaging, which deals with solving a perturbation problem of the stan-
dard form

ẋ = 𝜖𝑓(x, 𝑡) + 𝜖2𝑔(x, 𝑡) + … (6.2)

where 𝜖 << 1 and 𝑓(x, 𝑡) , 𝑔(x, 𝑡) periodic functions with period 𝑇. We write the function 𝑓 as𝑓(x, 𝑡) = 𝑓(x) + ̃𝑓(x, 𝑡). (6.3)𝑓(x) is an idiotypic temporal average of 𝑓 in the regime [0, 𝑇]: We average over 𝑡, but assuming x(𝑡) con-
stant, hypothesizing that x(𝑡) is a slowly varying function.The functions y(𝑡) and z(𝑡) are confronted with
the same hypothesis, which are defined the Eqs. (6.7), (6.22) respectively. Therefore, for 𝑓(x)we have,

𝑓(x) = 1𝑇 􏾙𝑇
0 𝑓(x, 𝑡)𝑑𝑡. (6.4)

Similarlywith𝑓(x, 𝑡),we treat𝑔(x, 𝑡),… . Belowweuse similar separationof functions𝑓, 𝑔, ℎ… to𝑓, 𝑔, ℎ, …
and ̃𝑓, 𝑔̃, ℎ̃, … .

6.2.1 Averaging method of first and second order.

As above, we start by writing the periodic function 𝑓(x, 𝑡), i.e.,𝑓(x, 𝑡) ∶= ̄𝑓(x) + ̃𝑓(x, 𝑡), (6.5)

where ̄𝑓(x) = 1𝑇 􏾙𝑇
0 𝑓(x, 𝑡)𝑑𝑡. (6.6)

Furthermore, we define,
x(𝑡) = y(𝑡) + 𝜖 w (y(𝑡), 𝑡) (6.7)
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wherew is a function of y(𝑡) and the time, 𝑡, which defined below, in Eq. (6.17). The differential of x(𝑡) is𝑑x(𝑡) = 𝑑y(𝑡) + 𝜖 𝑑w(y(𝑡), 𝑡), (6.8)

𝑑w(y, 𝑡) = 𝜕w𝜕y 𝑑y + 𝜕w𝜕𝑡 𝑑𝑡, (6.9)

where 𝜕w𝜕𝑡 is the derivative ofwwith respect to 𝑡, keeping y(𝑡) constant, hypothesizing that y(𝑡) is a slowly
varying function. Hence,

ẋ = ẏ + 𝜖𝜕w𝜕y ẏ + 𝜖𝜕w𝜕𝑡 . (6.10)

Eq. (6.3), with Eq. (6.7), becomes𝑓(y + 𝜖w, 𝑡) = ̄𝑓(y + 𝜖w) + ̃𝑓(y + 𝜖w, 𝑡). (6.11)

Therefore, using Eqs. (6.7), (6.10), (6.11), Eq. (6.2) becomes

ẏ + 𝜖𝜕w𝜕y ẏ + 𝜖𝜕w𝜕𝑡 = 𝜖 􏿴 ̄𝑓(y + 𝜖w) + ̃𝑓(y + 𝜖w, 𝑡)􏿷 + 𝜖2𝑔(y + 𝜖w, 𝑡) (6.12)

Using a Taylor expansion vs. y, we obtain̄𝑓(y + 𝜖w) = ̄𝑓(y) + 𝜖𝜕 ̄𝑓(y)𝜕y w + 𝒪 (𝜖2w2) (6.13)

̃𝑓(y + 𝜖w, 𝑡) = ̃𝑓(y, 𝑡) + 𝜖𝜕 ̃𝑓(y, 𝑡)𝜕y w + 𝒪 (𝜖2w2) (6.14)

𝑔(y + 𝜖w, 𝑡) = 𝑔(y, 𝑡) + 𝜖𝜕𝑔(y, 𝑡)𝜕y w + 𝒪 (𝜖2w2) (6.15)

Thus, using Eqs. (6.13), (6.14), (6.15), Eq. (6.12) becomes

ẏ + 𝜖𝜕w𝜕y ẏ + 𝜖𝜕w𝜕𝑡 = 𝜖( ̄𝑓(y) + ̃𝑓(y, 𝑡)) + 𝜖2 􏿶𝜕 ̄𝑓(y)𝜕y w + 𝜕 ̃𝑓(y, 𝑡)𝜕y w + 𝑔(y, 𝑡)􏿹 + 𝒪 (𝜖3)
Rearranging, we have

􏿶𝐼 + 𝜖𝜕w𝜕y 􏿹 ẏ = 𝜖 􏿶 ̄𝑓(y) + ̃𝑓(y, 𝑡) − 𝜕w𝜕𝑡 􏿹 + 𝜖2 􏿶𝜕𝑓(y, 𝑡)𝜕y w + 𝑔(y, 𝑡)􏿹 + 𝒪 (𝜖3), (6.16)

where 𝐼 is the unit relevant to the nature of y. If y is a simple function of 𝑡, 𝐼 = 1. If y is a column matrix,

as in our case, 𝐼 = 􏿰1 00 1􏿳. We define the function w through the relationship

̃𝑓(y, 𝑡) = 𝜕w𝜕𝑡 . (6.17)

The use of Eq. (6.17) to simplify Eq. (6.16) is obvious. Therefore,

ẏ = 􏿶𝐼 + 𝜖𝜕w𝜕y 􏿹−1 􏿰𝜖 ̄𝑓(y) + 𝜖2 􏿶𝜕𝑓(y, 𝑡)𝜕y w + 𝑔(y, 𝑡)􏿹 + 𝒪 (𝜖3)􏿳
􏿶𝐼 + 𝜖𝜕w𝜕y 􏿹−1 = 𝐼 − 𝜖𝜕w𝜕y + 𝒪 (𝜖2)

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒
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ẏ = 𝜖 ̄𝑓(y) + 𝜖2 􏿶𝜕𝑓(y, 𝑡)𝜕y w + 𝑔(y, 𝑡) − 𝜕w𝜕y ̄𝑓(y)􏿹 + 𝒪 (𝜖3) (6.18)

If we ignore terms of order 𝜖2 and above in Eq. (6.18), we obtain the first-order AM of Eq. (6.2), i.e.,

ẏ = 𝜖 ̄𝑓(y) (6.19)

It is worth-noticing that the functions of the problem of Eq. (6.19) are independent of time. As a result,
this problem is easier to solve than the initial problem of Eq. (6.2).

Continuing towards the second-order AM, from Eq. (6.18), we have

ẏ = 𝜖 ̄𝑓(y) + 𝜖2 􏿶𝜕𝑓(y, 𝑡)𝜕y w + 𝑔(y, 𝑡) − 𝜕w𝜕y ̄𝑓(y)􏿹􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍ℎ(y,𝑡)
+𝒪 (𝜖3) ⇒

ẏ = 𝜖 ̄𝑓(y) + 𝜖2ℎ(y, 𝑡) + 𝒪 (𝜖3) (6.20)

Just as we did previously with the function 𝑓(x, 𝑡) of Eq. (6.3), we write the function ℎ(y, 𝑡) asℎ(y, 𝑡) = ℎ̄(y) + ℎ̃(y, 𝑡), (6.21)

where
y(𝑡) = z(𝑡) + 𝜖2u(z(𝑡), 𝑡). (6.22)

u is a function of z(𝑡) and the time, 𝑡, which defined below, in Eq. (6.33). The differential of y(𝑡) is𝑑y(𝑡) = 𝑑z(𝑡) + 𝜖2 𝑑u[z(𝑡), 𝑡], (6.23)

𝑑u[z(𝑡), 𝑡] = 𝜕u𝜕z 𝑑z + 𝜕u𝜕𝑡 𝑑𝑡, (6.24)

where 𝜕u𝜕𝑡 is the derivative of u with respect to 𝑡, keeping z(𝑡) constant, hypothesizing that z(𝑡) is a slowly
varying function. Hence,

ẏ = ż + 𝜖2𝜕u𝜕z ż + 𝜖2𝜕u𝜕𝑡 (6.25)

Eq. (6.21), with Eq. (6.22), becomesℎ(z + 𝜖2u, 𝑡) = ℎ̄(z + 𝜖2u) + ℎ̃(z + 𝜖2u, 𝑡) (6.26)

Therefore, using Eqs. (6.22), (6.25), (6.26), Eq. (6.20) becomes

ż + 𝜖2𝜕u𝜕z ż + 𝜖2𝜕u𝜕𝑡 = 𝜖 ̄𝑓(z + 𝜖2u) + 𝜖2 􏿴ℎ̄(z + 𝜖2u) + ℎ̃(z + 𝜖2u, 𝑡)􏿷 + 𝒪 (𝜖3) (6.27)

Using a Taylor expansion vs. z, we obtain

̄𝑓(z + 𝜖2u) = ̄𝑓(z) + 𝜖2𝜕 ̄𝑓(z)𝜕z u + 𝒪 (𝜖4u2), (6.28)

ℎ̄(z + 𝜖2u) = ℎ̄(z) + 𝜖2𝜕ℎ̄(z)𝜕z u + 𝒪 (𝜖4u2), (6.29)

ℎ̃(z + 𝜖2u, 𝑡) = ℎ̃(z, 𝑡) + 𝜖2𝜕ℎ̃(z, 𝑡)𝜕z u + 𝒪 (𝜖4u2) (6.30)
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Thus, using Eqs. (6.28), (6.29), (6.30), Eq. (6.27) becomes

ż + 𝜖2𝜕u𝜕z ż + 𝜖2𝜕u𝜕𝑡 = 𝜖 ̄𝑓(z) + 𝜖2 􏿴ℎ̄(z) + ℎ̃(z, 𝑡)􏿷 + 𝒪 (𝜖3) (6.31)

Rearranging, we have

􏿶𝐼 + 𝜖2𝜕u𝜕z 􏿹 ż = 𝜖 ̄𝑓(z) + 𝜖2 􏿶ℎ̄(z) + ℎ̃(z, 𝑡) − 𝜕u𝜕𝑡 􏿹 + 𝒪 (𝜖3) (6.32)

where 𝐼 is the unit relevant to the nature of z. If z is a simple function of 𝑡, 𝐼 = 1. If z is a column matrix,

as in our case, 𝐼 = 􏿰1 00 1􏿳. We define the function u through the relationship

ℎ̃(z, 𝑡) = 𝜕u𝜕𝑡 . (6.33)

The use of Eq. (6.33) to simplify Eq. (6.32) is obvious. Therefore,

ż = 􏿶𝐼 + 𝜖2𝜕u𝜕z 􏿹−1 􏿮𝜖 ̄𝑓(z) + 𝜖2ℎ̄(z) + 𝒪 (𝜖3)􏿱
􏿶𝐼 + 𝜖2𝜕u𝜕z 􏿹−1 = 𝐼 − 𝜖2𝜕u𝜕z + 𝒪 (𝜖4)

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒
ż = 𝜖 ̄𝑓(z) + 𝜖2 ℎ̄(z) + 𝒪 (𝜖3) (6.34)

If we ignore terms of order 𝜖3 and above in Eq. (6.34), we obtain the second-order AM of Eq. (6.2), i.e.,

ż = 𝜖 ̄𝑓(z) + 𝜖2 ℎ̄(z) (6.35)

We notice again that the functions of the problem of Eq. (6.35) are independent of time. As a result, this
problem is also easier to solve than the initial problem of Eq. (6.2).

6.2.2 Averaging method for Rabi oscillations in a 2LS.

labelsubsec:AMRabi The Rabi oscillations of electron probabilities of a 2LS interacting with an electro-
magnetic field, are described by Eq. (6.1)

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖ℰ0 𝒫2ℏ 􏿯𝑒−𝑖(Ω−𝜔)𝑡 + 𝑒−𝑖(Ω+𝜔)𝑡􏿲
𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖ℰ0 𝒫2ℏ 􏿯𝑒𝑖(Ω+𝜔)𝑡 + 𝑒𝑖(Ω−𝜔)𝑡􏿲 (6.36)

where we have already defined the detuning, in Eq. (5.49), asΔ ∶= 𝜔 − Ω (6.37)

and the Rabi¹ (angular) frequency, in Eq. (5.50), as

Ω𝑅 ∶= 𝒫ℰ0ℏ (6.38)

¹After Isidor Isaak Rabi (1898-1988).
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Our aim at this point is to apply the AM in Eq. (6.1). Before proceeding, it is important to remind the
reader of the solving process for the above equations within the RWA, where we assumed that the terms
containing (Ω − 𝜔) are slow, while the terms containing (Ω + 𝜔) are fast. Hence, in any remarkable
time scale, these fast terms are somehow expected to have negligible effect.The RWA is the claim that we
can ignore these fast terms. Afterwards, using the transformation of Eq. (5.51), we obtained a system of
differential equations with time-independent coefficients, i.e., manageable case of differential equations.
The AM arrives at this result via a different path. If we also define the sum of angular frequencies asΣ ∶= 𝜔 + Ω , (6.39)

Eq. (6.1) can be written in matrix form as

􏿰𝐶̇1(𝑡)𝐶̇2(𝑡)􏿳 = 𝑖Ω𝑅2 􏿰 0 𝑒+𝑖Δ𝑡 + 𝑒−𝑖Σ𝑡𝑒−𝑖Δ𝑡 + 𝑒+𝑖Σ𝑡 0 􏿳 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 (6.40)

Solution forΔ ≠ 0
We write Eq. (6.40) in the form

ẋ(𝑡) = 𝑖Ω𝑅2 􏿰 0 𝑒+𝑖Δ𝑡 + 𝑒−𝑖Σ𝑡𝑒−𝑖Δ𝑡 + 𝑒+𝑖Σ𝑡 0 􏿳 x(𝑡)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝜖𝑓(x,𝑡)
, (6.41)

where x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳, we define 𝜖𝑓(x, 𝑡) as the right-hand side of Eq. (6.40), and

𝑔(x, 𝑡) = 0. (6.42)

For the AM to be applicable, 𝑓must be periodic. Eq. (6.41) involves two periods, 𝑇1 = 2𝜋Δ and 𝑇2 = 2𝜋Σ .

If 𝑇1𝑇2 is a rational number, then the system is periodicwith a commonperiod,𝑇, which is the least common
multiple of 𝑇1 and 𝑇2. In other words,𝑇1𝑇2 = ΣΔ = 𝑁,where: 𝑁 = Rational𝑁 = 𝛼𝛽 , where: 𝛼, 𝛽 = Integers

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝑇 = 𝛼𝑇2 = 𝛽𝑇1.
On the contrary, if 𝑇1𝑇2 is not a rational number, then, we can choose any close rational and solve approx-
imately the problem. We notice that in numerical calculations, since 𝑇1 and 𝑇2 are represented as floats,𝑇1𝑇2 is always a rational number. For example, if 𝑇1𝑇2 = √2
in a computer, it will be approximated by√2 = 1.41..., with a finite number of decimal places. Moreover,
in this case, we would choose, for example,√2 = 1.41 = 141100 .

The average of 𝑓(x, 𝑡) is
𝜖 ̄𝑓(x) ∶= 1𝑇 􏾙𝑇

0 𝜖𝑓(x, 𝑡)𝑑𝑡 = 1𝑇
Ϻϻϻϻϻϻϻϼ 0 ∫𝑇0 (𝑒+𝑖Δ𝑡 + 𝑒−𝑖Σ𝑡)𝑑𝑡∫𝑇0 (𝑒−𝑖Δ𝑡 + 𝑒+𝑖Σ𝑡)𝑑𝑡 0

ϽϾϾϾϾϾϾϿ x(𝑡) = 􏿰0 00 0􏿳 x(𝑡),
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since

􏾙𝑇
0 𝑒±𝑖Σ𝑡𝑑𝑡 = ± 1𝑖Σ(𝑒±𝑖Σ𝑇 − 1) = 0, because𝑒±𝑖Σ𝑇 = 𝑒±𝑖Σ𝛼2𝜋Σ = 𝑒±𝑖2𝜋𝛼 = (𝑒𝑖2𝜋)±𝛼 = 1±𝛼 = 1, and􏾙𝑇
0 𝑒±𝑖Δ𝑡𝑑𝑡 = ± 1𝑖Δ(𝑒±𝑖Δ𝑇 − 1) = 0, because𝑒±𝑖Δ𝑇 = 𝑒±𝑖Δ𝛽2𝜋Δ = 𝑒±𝑖2𝜋𝛽 = (𝑒𝑖2𝜋)±𝛽 = 1±𝛽 = 1.

Therefore, ̄𝑓(x) = 􏿰0 00 0􏿳 (6.43)

Thus, from Eq. (6.3), we obtain 𝑓(x, 𝑡) =✚
✚✚❃
0̄𝑓(x) + ̃𝑓(x, 𝑡) ⇒

𝜖 ̃𝑓(x, 𝑡) = 𝑖Ω𝑅2 􏿰 0 𝑒+𝑖Δ𝑡 + 𝑒−𝑖Σ𝑡𝑒−𝑖Δ𝑡 + 𝑒+𝑖Σ𝑡 0 􏿳 x(𝑡) . (6.44)

For the first-order AM, from Eq. (6.19) we have

ẏ = 𝜖 ̄𝑓(y). (6.45)

However, in our case, ̄𝑓(y) = 0. Thus,
ẏ = 0 (6.46)

Therefore, y is a constant matrix, i.e.,

y = 􏿰𝑦10𝑦20􏿳 . (6.47)

𝑦10, 𝑦20 can be determined by applying the initial conditions. Finally, we obtain w by Eq. (6.17) as

𝜖𝜕w𝜕𝑡 = 𝜖 ̃𝑓(y, 𝑡) ⇒
𝜖w(y, 𝑡) = 𝑖Ω𝑅2

Ϻϻϻϻϻϻϼ 0 𝑒+𝑖Δ𝑡𝑖Δ − 𝑒−𝑖Σ𝑡𝑖Σ−𝑒−𝑖Δ𝑡𝑖Δ + 𝑒+𝑖Σ𝑡𝑖Σ 0
ϽϾϾϾϾϾϿ y(𝑡) . (6.48)

For the second-order AM, from Eq. (6.35) we have

ż = 𝜖 ̄𝑓(z) + 𝜖2 ℎ̄(z). (6.49)

In our case, ̄𝑓(z) = 0. From Eq. (6.20) where we have defined the function ℎ(y, 𝑡), we have

ℎ(z, 𝑡) = 𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡). (6.50)

Using Eq. (6.50), Eq. (6.35) becomes

ż = 𝜖2 𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡). (6.51)
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Substituting Eqs. (6.44) and (6.48), Eq. (6.50) becomes

𝜖2ℎ(z(𝑡), 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 􏿶 1Σ 􏿰1 00 −1􏿳 + 1Δ 􏿰−1 00 1􏿳􏿹 z(𝑡) (6.52)

+ 𝑖 􏿶Ω𝑅2 􏿹2 1Δ 􏿰−𝑒−𝑖(Δ+Σ)𝑡 00 𝑒𝑖(Δ+Σ)𝑡􏿳 z(𝑡) + 𝑖 􏿶Ω𝑅2 􏿹2 1Σ 􏿰𝑒𝑖(Δ+Σ)𝑡 00 −𝑒−𝑖(Δ+Σ)𝑡􏿳 z(𝑡).
The average of Eq. (6.52) is

𝜖2ℎ̄(z) = 𝜖2􏿯𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡)􏿲 = 𝑖 􏿶Ω𝑅2 􏿹2 􏿵 1Σ 􏿰1 00 −1􏿳 + 1Δ 􏿰−1 00 1􏿳 􏿸z(𝑡). (6.53)

From Eqs. (6.21), (6.52), (6.53), and sinceΔ + Σ = 2𝜔, we have

𝜖2ℎ̃(z, 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 􏿶 1Δ 􏿰−𝑒−𝑖2𝜔𝑡 00 𝑒𝑖2𝜔𝑡􏿳 + 1Σ 􏿰𝑒𝑖2𝜔𝑡 00 −𝑒−𝑖2𝜔𝑡􏿳􏿹 z(𝑡). (6.54)

Therefore, Eq. (6.51) becomes

ż = 𝑖𝐴 􏿰−1 00 1􏿳 z(𝑡), (6.55)

where 𝐴 = 􏿶Ω𝑅2 􏿹2 2Ω𝜔2 − Ω2 . (6.56)

The solution to Eq. (6.55) is

z(𝑡) = 􏿰𝑧1(𝑡)𝑧2(𝑡)􏿳 = 􏿰𝑧10𝑒−𝑖𝐴𝑡𝑧20𝑒𝑖𝐴𝑡.􏿳 (6.57)

The coefficients 𝑧10, 𝑧20 are determined by the initial conditions. Finally, from Eq. (6.33), we conclude
that

𝜖2u(z, 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 Ϻϻϻϻϻϻϼ 𝑒−𝑖2𝜔𝑡𝑖2𝜔Δ + 𝑒𝑖2𝜔𝑡𝑖2𝜔Σ 00 𝑒𝑖2𝜔𝑡𝑖2𝜔Δ + 𝑒−𝑖2𝜔𝑡𝑖2𝜔Σ
ϽϾϾϾϾϾϿ z(𝑡) . (6.58)

To sum up, we present the results for the first- and second-order AM.

• First order: ЀЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЂ

x(𝑡) = y + 𝜖 w(y, 𝑡)
y = 􏿰𝑦10𝑦20􏿳
𝜖w(y, 𝑡) = 𝑖Ω𝑅2

Ϻϻϻϻϻϻϼ 0 𝑒+𝑖Δ𝑡𝑖Δ − 𝑒−𝑖Σ𝑡𝑖Σ−𝑒−𝑖Δ𝑡𝑖Δ + 𝑒+𝑖Σ𝑡𝑖Σ 0
ϽϾϾϾϾϾϿ y

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
(6.59)



QUANTUM OPTICS 177

• Second order:ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

x(𝑡) = z(𝑡) + 𝜖w(z(𝑡), 𝑡) + 𝜖2u(z(𝑡), 𝑡)
z(𝑡) = 􏿰𝑧10𝑒−𝑖𝐴𝑡𝑧20𝑒𝑖𝐴𝑡 􏿳
𝜖w(z(𝑡), 𝑡) = 𝑖Ω𝑅2

Ϻϻϻϻϻϻϼ 0 𝑒+𝑖Δ𝑡𝑖Δ − 𝑒−𝑖Σ𝑡𝑖Σ−𝑒−𝑖Δ𝑡𝑖Δ + 𝑒+𝑖Σ𝑡𝑖Σ 0
ϽϾϾϾϾϾϿ z(𝑡)

𝜖2u(z(𝑡), 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 􏿯 1𝑖2𝜔Δ 􏿰𝑒−𝑖2𝜔𝑡 00 𝑒𝑖2𝜔𝑡􏿳 + 1𝑖2𝜔Σ 􏿰𝑒𝑖2𝜔𝑡 00 𝑒−𝑖2𝜔𝑡􏿳 􏿲z(𝑡)

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ
(6.60)

We observe that in Eqs. (6.59), (6.60) there are three types of 𝜖, i.e., ΩRΔ , ΩRΣ and ΩR𝜔 .These three distinct,
small, 𝜖 reflect the relative magnitude of the perturbation, which is described by the Rabi (angular) fre-
quency with respect to the detuningΔ = 𝜔 − Ω, the sum of frequenciesΣ = 𝜔 +Ω and the frequency𝜔, respectively. These considerations give us the opportunity to confront different numerical cases.

Solution forΔ = 0
The need to re-solve the problem forΔ = 0 stems from the fact that, unavoidably, asΔ becomes smaller,ΩRΔ gets so large that non-resonant AM is not successful anymore. Hence, we have to start again from the
initial problem, i.e., Eq. (6.40), and setΔ = 0. Therefore,

ẋ(𝑡) = 𝑖Ω𝑅2 􏿰 0 1 + 𝑒−𝑖2𝜔𝑡1 + 𝑒+𝑖2𝜔𝑡 0 􏿳 x(𝑡)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝜖𝑓(x,𝑡)
, (6.61)

where x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳, we define 𝜖𝑓(x, 𝑡) as the right-hand side of Eq. (6.40), and

𝑔(x, 𝑡) = 0. (6.62)

For the AM to be applicable, 𝑓must be periodic. We notice that, indeed, 𝜖𝑓(x, 𝑡) is periodic, with period𝑇 = 𝜋𝜔 .
The average value of 𝑓(x, 𝑡) is

𝜖 ̄𝑓(x) = 1𝑇 􏾙𝑇
0 𝜖𝑓(x, 𝑡)𝑑𝑡 = 1𝑇 𝑖Ω𝑅2 􏿰0 𝑇𝑇 0􏿳 x(𝑡) = 𝑖Ω𝑅2 􏿰0 11 0􏿳 x(𝑡)

Therefore, 𝜖 ̄𝑓(x) = 𝑖Ω𝑅2 􏿰0 11 0􏿳 x(𝑡) (6.63)

Thus, from Eq. (6.3), we obtain 𝑓(x, 𝑡) = ̄𝑓(x) + ̃𝑓(x, 𝑡) ⇒
𝜖 ̃𝑓(x, 𝑡) = 𝜖𝑓(x, 𝑡) − 𝜖 ̄𝑓(x) = 𝑖Ω𝑅2 􏿰 0 1 + 𝑒−𝑖2𝜔𝑡1 + 𝑒+𝑖2𝜔𝑡 0 􏿳 x(𝑡) − 𝑖Ω𝑅2 􏿰0 11 0􏿳 x(𝑡) ⇒
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𝜖 ̃𝑓(x, 𝑡) = 𝑖Ω𝑅2 􏿰 0 𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 x(𝑡) (6.64)

For the first-order AM, from Eq. (6.19) we have

ẏ = 𝜖 ̄𝑓(y). (6.65)

In our case, due to Eq. (6.63),

ẏ(𝑡) = 𝑖Ω𝑅2 􏿰0 11 0􏿳 y(𝑡) ⇒
ЀЃЃЃЃЁЃЃЃЃЂ
̇𝑦1(𝑡) = 𝑖Ω𝑅2 𝑦2(𝑡)̇𝑦2(𝑡) = 𝑖Ω𝑅2 𝑦1(𝑡)

ЄЃЃЃЃЅЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
̈𝑦1(𝑡) + 􏿶Ω𝑅2 􏿹2 𝑦1(𝑡) = 0
̈𝑦2(𝑡) + 􏿶Ω𝑅2 􏿹2 𝑦2(𝑡) = 0

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒
𝑦1(𝑡) = 𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝐵11 sin􏿶Ω𝑅2 𝑡􏿹
𝑦2(𝑡) = 𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝐵21 sin􏿶Ω𝑅2 𝑡􏿹 (6.66)

with

􏿼𝑦1(0) = 𝐴11𝑦2(0) = 𝐴21􏿿 and

ЀЃЃЃЃЁЃЃЃЃЂ
̇𝑦1(0) = Ω𝑅2 𝐵11 = 𝑖Ω𝑅2 𝑦2(0)̇𝑦2(0) = Ω𝑅2 𝐵21 = 𝑖Ω𝑅2 𝑦1(0)

ЄЃЃЃЃЅЃЃЃЃІ (6.67)

𝐴11, 𝐵11, 𝐴21, 𝐵21 are determined by applying the initial conditions. Finally, w is calculated from the
Eq. (6.17),

𝜖𝜕w𝜕𝑡 = 𝜖 ̃𝑓(y, 𝑡) ⇒
𝜖w(y, 𝑡) = Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 y(𝑡) (6.68)

For the second-order AM, from Eq. (6.35) we have

ż = 𝜖 ̄𝑓(z) + 𝜖2 ℎ̄(z). (6.69)

From Eq. (6.20) where we have defined the function ℎ(y, 𝑡), we have

ℎ(z, 𝑡) = 𝜕 ̄𝑓(z)𝜕z w(z, 𝑡) + 𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡) + 𝑔(z, 𝑡) − 𝜕w(z, 𝑡)𝜕z ̄𝑓(z). (6.70)

We want the average of ℎ(z, 𝑡), hence,
ℎ̄(z) = 􏿶𝜕 ̄𝑓(z)𝜕z w(z, 𝑡) + 𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡) + 𝑔(z, 𝑡) − 𝜕w(z, 𝑡)𝜕z ̄𝑓(z)􏿹. (6.71)
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We will calculate the above terms one-by-one.

1st term:
𝜕 ̄𝑓(z)𝜕z w(z, 𝑡) = 𝑖Ω𝑅2 􏿰0 11 0􏿳 Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 z(𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰𝑒𝑖2𝜔𝑡 00 −𝑒−𝑖2𝜔𝑡􏿳 z(𝑡)

2nd term:
𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡) = +𝑖Ω𝑅2 􏿰 0 𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 z(𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰1 00 −1􏿳 z(𝑡)3rd term: 𝑔(z, 𝑡) = 0

4th term:
𝜕w(z, 𝑡)𝜕z ̄𝑓(z) = Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 𝑖Ω𝑅2 􏿰0 11 0􏿳 z(𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰−𝑒−𝑖2𝜔𝑡 00 𝑒𝑖2𝜔𝑡􏿳 z(𝑡)

Thus, ℎ(z, 𝑡) in our case is

ℎ(z, 𝑡) =𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰𝑒𝑖2𝜔𝑡 00 −𝑒−𝑖2𝜔𝑡􏿳 z(𝑡) + 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰1 00 −1􏿳 z(𝑡)
−𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰−𝑒−𝑖2𝜔𝑡 00 𝑒𝑖2𝜔𝑡􏿳 z(𝑡) (6.72)

Therefore, the averages of the above terms are

1st term: 􏿶𝜕 ̄𝑓(z)𝜕z w(z, 𝑡)􏿹 = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰0 00 0􏿳 z(𝑡) = 􏿰0 00 0􏿳
2nd term: 􏿶𝜕 ̃𝑓(z, 𝑡)𝜕z w(z, 𝑡)􏿹 = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰1 00 −1􏿳 z(𝑡)3rd term: 𝑔̄(z, 𝑡) = 0
4th term: 􏿶𝜕w(z, 𝑡)𝜕z ̄𝑓(z)􏿹 = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰0 00 0􏿳 z(𝑡) = 􏿰0 00 0􏿳

We finally obtain that ℎ̄(z) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰1 00 −1􏿳 z(𝑡) (6.73)

ℎ̃(z, 𝑡) occurs from Eqs.. (6.21), (6.72), (6.73):

ℎ̃(z, 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰𝑒𝑖2𝜔𝑡 00 −𝑒−𝑖2𝜔𝑡􏿳 z(𝑡) − 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰−𝑒−𝑖2𝜔𝑡 00 𝑒𝑖2𝜔𝑡􏿳 z(𝑡) (6.74)

Using Eqs. (6.63), (6.73), Eq. (6.35) becomes

ż(𝑡) = 𝑖Ω𝑅2 􏿰0 11 0􏿳 z(𝑡) + 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔 􏿰1 00 −1􏿳 z(𝑡) ⇒
ż(𝑡) = 𝑖 Ϻϻϻϻϻϻϻϻϻϻϼ􏿵

Ω𝑅2 􏿸2 12𝜔 Ω𝑅2Ω𝑅2 − 􏿵Ω𝑅2 􏿸2 12𝜔
ϽϾϾϾϾϾϾϾϾϾϿ z(𝑡) (6.75)
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Setting 𝛼 ∶= 􏿵Ω𝑅2 􏿸2 12𝜔 and 𝛽 ∶= Ω𝑅2 , the system of differential equations of Eq. (6.75) becomeṡ𝑧1(𝑡) = 𝑖𝛼𝑧1(𝑡) + 𝑖𝛽𝑧2(𝑡)̇𝑧2(𝑡) = 𝑖𝛽𝑧1(𝑡) − 𝑖𝛼𝑧2(𝑡)􏿿 ⇒ 􏿼 ̈𝑧1(𝑡) = 𝑖𝛼 ̇𝑧1(𝑡) + 𝑖𝛽 ̇𝑧2(𝑡)̈𝑧2(𝑡) = 𝑖𝛽 ̇𝑧1(𝑡) − 𝑖𝛼 ̇𝑧2(𝑡)􏿿 ⇒􏿼 ̈𝑧1(𝑡) = 𝑖𝛼(𝑖𝛼𝑧1(𝑡) + 𝑖𝛽𝑧2(𝑡)) + 𝑖𝛽(𝑖𝛽𝑧1(𝑡) − 𝑖𝛼𝑧2(𝑡))̈𝑧2(𝑡) = 𝑖𝛽(𝑖𝛼𝑧1(𝑡) + 𝑖𝛽𝑧2(𝑡)) − 𝑖𝛼(𝑖𝛽𝑧1(𝑡) − 𝑖𝛼𝑧2(𝑡))􏿿 ⇒̈𝑧1(𝑡) + 𝐵2𝑧1(𝑡) = 0̈𝑧2(𝑡) + 𝐵2𝑧2(𝑡) = 0 , (6.76)

where 𝐵2 ∶= 𝛼2 + 𝛽2. The solutions to the above equations are known:

􏿼𝑧1(𝑡) = 𝐴12 cos(𝐵𝑡) + 𝐵12 sin(𝐵𝑡)𝑧2(𝑡) = 𝐴22 cos(𝐵𝑡) + 𝐵22 sin(𝐵𝑡)􏿿 (6.77)

with 􏿼𝑧1(0) = 𝐴12𝑧2(0) = 𝐴22􏿿 and 􏿼 ̇𝑧1(0) = 𝐵 ⋅ 𝐵12 = 𝑖𝛼𝑧1(0) + 𝑖𝛽𝑧2(0)̇𝑧2(0) = 𝐵 ⋅ 𝐵22 = 𝑖𝛽𝑧1(0) − 𝑖𝛼𝑧2(0)􏿿 (6.78)𝐴12, 𝐵12, 𝐴22, 𝐵22 are determined by applying the initial conditions. Finally, u is calculated from the
Eq. (6.33), 𝜖2u(z, 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin 2𝜔𝑡 􏿰1 00 −1􏿳 z(𝑡). (6.79)

To sum up, we present the results for the first- and second-order AM.

• First order: ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

x(𝑡) = y(𝑡) + 𝜖 w(y(𝑡), 𝑡)
y(𝑡) = Ϻϻϻϻϻϻϻϻϼ𝐴11 cos􏿵Ω𝑅2 𝑡􏿸 + 𝐵11 sin􏿵Ω𝑅2 𝑡􏿸𝐴21 cos􏿵Ω𝑅2 𝑡􏿸 + 𝐵21 sin􏿵Ω𝑅2 𝑡􏿸

ϽϾϾϾϾϾϾϾϿ
𝜖w(y, 𝑡) = Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 y(𝑡)

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ
(6.80)

• Second order: ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

x(𝑡) = z(𝑡) + 𝜖w(z(𝑡), 𝑡) + 𝜖2u(z(𝑡), 𝑡)
z(𝑡) = 􏿰𝐴12 cos(𝐵𝑡) + 𝐵12 sin(𝐵𝑡)𝐴22 cos(𝐵𝑡) + 𝐵22 sin(𝐵𝑡)􏿳
𝜖w(z(𝑡), 𝑡) = Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 z(𝑡)
𝜖2u(z(𝑡), 𝑡) = 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin 2𝜔𝑡 􏿰1 00 −1􏿳 z(𝑡)

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ

(6.81)
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Weobserve that in Eqs (6.80) and (6.81) the three distinct values of 𝜖 are reduced to one, Ω𝑅𝜔 .Thus, when
in-resonance (Δ = 0), this 𝜖 reflects the relativemagnitude of the perturbation, which is described by the
Rabi (angular) frequency with respect to the frequency𝜔. These considerations give us the opportunity
to confront different numerical cases.

6.2.3 Solutions for different initial conditions.

There is another step we have to take before we can arrive at some final equations which allow as to de-
scribe the behavior of Rabi oscillations in the 2LS; that is, to set the initial conditions. We will assume
the probability that the electron is located each energy level, at time zero. This allows as to calculate the
unknown factors obtained for each case of the AM, discussed above, and reach the final equations. The
initial conditions that will be used are

1. 𝐶1(0) = 1,𝐶2(0) = 0, i.e., initial placement of the electron at the lower level,

2. 𝐶1(0) = 0,𝐶2(0) = 1, i.e., initial placement of the electron at the higher level, and

3. 𝐶1(0) = 1√2𝑒𝑖𝜃, 𝐶2(0) = 1√2𝑒𝑖𝜙, i.e., initial placement of the electron at both levels with probability|𝐶1(0)|2 = |𝐶2(0)|2 = 12 .
1. Let the initial conditions be𝐶1(0) = 1,𝐶2(0) = 0.
Solution forΔ ≠ 0, 1st order AM

Using Eqs. (6.59) for x(0) = 􏿰10􏿳, we have

x(0) = 􏿰𝑦10𝑦20􏿳 + Ω𝑅2 Ϻϻϻϻϻϼ 0 1Δ − 1Σ1Σ − 1Δ 0
ϽϾϾϾϾϿ 􏿰𝑦10𝑦20􏿳 ⇒

ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1 = 𝑦10 + Ω𝑅2 􏿶 1Δ − 1Σ􏿹 𝑦200 = 𝑦20 + Ω𝑅2 􏿶 1Σ − 1Δ􏿹 𝑦10

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ЀЃЃЃЃЁЃЃЃЃЂ
1 = 𝑦10 + 2𝐴Ω𝑅𝑦200 = 𝑦20 − 2𝐴Ω𝑅𝑦10 ⇒ 𝑦20 = 2𝐴Ω𝑅𝑦10

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 1 = 𝑦10 + 􏿶 2𝐴Ω𝑅􏿹2 𝑦10 ⇒

𝑦10 = 11 + 􏿵 2𝐴Ω𝑅 􏿸2 , 𝑦20 = 2𝐴Ω𝑅1 + 􏿵 2𝐴Ω𝑅 􏿸2 , (6.82)

where 𝐴 = 􏿶Ω𝑅2 􏿹2 2Ω𝜔2 − Ω2 (6.83)

Therefore, the solution is,

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϼ 1 𝑖Ω𝑅2 􏿵𝑒+𝑖Δ𝑡𝑖Δ − 𝑒−𝑖Σ𝑡𝑖Σ 􏿸𝑖Ω𝑅2 􏿵−𝑒−𝑖Δ𝑡𝑖Δ + 𝑒+𝑖Σ𝑡𝑖Σ 􏿸 1

ϽϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ

11+􏿵 2𝐴Ω𝑅 􏿸22𝐴Ω𝑅1+􏿵 2𝐴Ω𝑅 􏿸2
ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ ⇒
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𝐶1(𝑡) = 11 + 􏿵 2𝐴Ω𝑅 􏿸2 􏿯1 + 𝐴 􏿶
𝑒+𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿹 􏿲

𝐶2(𝑡) = 11 + 􏿵 2𝐴Ω𝑅 􏿸2 􏿯
2𝐴Ω𝑅 + Ω𝑅2 􏿶−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿹 􏿲 , (6.84)

where |𝐶1(𝑡)|2 is the probability to find the electron at lower level and |𝐶2(𝑡)|2 is the probability to find
the electron at higher level.

Solution forΔ ≠ 0, 2nd order AM

Using Eqs. (6.60) for x(0) = 􏿰10􏿳, we have

x(0) = 􏿰𝑧10𝑧20􏿳 + Ω𝑅2
ЀЃЃЁЃЃЂϺϻϻϻϻϼ 0 1Δ − 1Σ1Σ − 1Δ 0

ϽϾϾϾϾϿЄЃЃЅЃЃІ 􏿰𝑧10𝑧20􏿳 + 𝑖 􏿶Ω𝑅2 􏿹2 􏿼 1𝑖2𝜔Δ 􏿰1 00 1􏿳 + 1𝑖2𝜔Σ 􏿰1 00 1􏿳􏿿 􏿰𝑧10𝑧20􏿳 ⇒ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1 = 𝑧10 + Ω𝑅2 􏿶 1Δ − 1Σ􏿹 𝑧20 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶 1Δ + 1Σ􏿹 𝑧10 ⇒ 1 = 􏿶1 + 𝐴2Ω􏿹 𝑧10 + 2𝐴Ω𝑅𝑧200 = 𝑧20 + Ω𝑅2 􏿶 1Σ − 1Δ􏿹 𝑧10 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶 1Δ + 1Σ􏿹 𝑧20 ⇒ 2𝐴Ω𝑅𝑧10 = 􏿶1 + 𝐴2Ω􏿹 𝑧20

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒ЀЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЂ
1 = 􏿶1 + 𝐴2Ω􏿹 𝑧10 + 􏿵 2𝐴Ω𝑅 􏿸2􏿵1 + 𝐴2Ω􏿸𝑧10
𝑧20 = 2𝐴Ω𝑅􏿵1 + 𝐴2Ω􏿸𝑧10

ЄЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃІ
⇒
ЀЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЂ

𝑧10 = 1 + 𝐴2Ω􏿵1 + 𝐴2Ω􏿸2 + 􏿵 2𝐴Ω𝑅 􏿸2
𝑧20 = 2𝐴Ω𝑅􏿵1 + 𝐴2Ω􏿸2 + 􏿵 2𝐴Ω𝑅 􏿸2

ЄЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃІ
Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϼ1 + 􏿵

Ω𝑅2 􏿸2 12𝜔 􏿵𝑒−𝑖2𝜔𝑡Δ + 𝑒𝑖2𝜔𝑡Σ 􏿸 Ω𝑅2 􏿵𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿸Ω𝑅2 􏿵−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿸 1 + 􏿵Ω𝑅2 􏿸2 12𝜔 􏿵𝑒𝑖2𝜔𝑡Δ + 𝑒−𝑖2𝜔𝑡Σ 􏿸
ϽϾϾϾϾϾϾϾϾϾϿ 􏿰𝑧10𝑒−𝑖𝐴𝑡𝑧20𝑒𝑖𝐴𝑡 􏿳 ⇒

𝐶1(𝑡) = 􏿯1 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶𝑒−𝑖2𝜔𝑡Δ + 𝑒𝑖2𝜔𝑡Σ 􏿹 􏿲𝑧10𝑒−𝑖𝐴𝑡 + 􏿯Ω𝑅2 􏿶𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿹 􏿲𝑧20𝑒𝑖𝐴𝑡
𝐶2(𝑡) = 􏿯Ω𝑅2 􏿶−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿹 􏿲𝑧10𝑒−𝑖𝐴𝑡 + 􏿯1 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶𝑒𝑖2𝜔𝑡Δ + 𝑒−𝑖2𝜔𝑡Σ 􏿹 􏿲𝑧20𝑒𝑖𝐴𝑡 . (6.85)
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Solution forΔ = 0, 1st order AM

Using Eqs. (6.80) for x(0) = 􏿰10􏿳, we have

x(0) = 􏿰𝐴11𝐴21􏿳 + Ω𝑅4𝜔 􏿰0 −11 0 􏿳 􏿰𝐴11𝐴21􏿳 ⇒
ЀЃЃЃЃЁЃЃЃЃЂ
1 = 𝐴11 − Ω𝑅4𝜔 𝐴210 = 𝐴21 + Ω𝑅4𝜔 𝐴11 ⇒ 𝐴21 = −Ω𝑅4𝜔 𝐴11

ЄЃЃЃЃЅЃЃЃЃІ ⇒ЀЃЃЃЃЁЃЃЃЃЂ
1 = 𝐴11 + (Ω𝑅4𝜔 )2𝐴11𝐴21 = −Ω𝑅4𝜔 𝐴11

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 𝐴11 = 11 + (Ω𝑅4𝜔 )2 , 𝐴21 = −Ω𝑅4𝜔1 + (Ω𝑅4𝜔 )2
Furthermore, through Eq. (6.67), we know thatЀЃЃЃЃЁЃЃЃЃЂ

̇𝑦1(0) = Ω𝑅2 𝐵11 = 𝑖Ω𝑅2 𝑦2(0)̇𝑦2(0) = Ω𝑅2 𝐵21 = 𝑖Ω𝑅2 𝑦1(0)
ЄЃЃЃЃЅЃЃЃЃІ ⇒

ЀЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЂ
𝐵11 = 𝑖𝐴21 = −𝑖Ω𝑅4𝜔1 + (Ω𝑅4𝜔 )2𝐵21 = 𝑖𝐴11 = 𝑖1 + (Ω𝑅4𝜔 )2

ЄЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃІ
Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 = 􏿰𝑦1𝑦2􏿳 + Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 􏿰𝑦1𝑦2􏿳 ⇒
𝐶1(𝑡) = 𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴21 sin􏿶Ω𝑅2 𝑡􏿹 − Ω𝑅4𝜔 𝑒−𝑖2𝜔𝑡 􏿰𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴11 sin􏿶Ω𝑅2 𝑡􏿹􏿳
𝐶2(𝑡) = 𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴11 sin􏿶Ω𝑅2 𝑡􏿹 + Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡 􏿰𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴21 sin􏿶Ω𝑅2 𝑡􏿹􏿳 . (6.86)

Solution forΔ = 0, 2nd order AM

Using Eqs. (6.81) for x(0) = 􏿰10􏿳, we have

x(0) = 􏿰𝐴12𝐴22􏿳 + Ω𝑅4𝜔 􏿰0 −11 0 􏿳 􏿰𝐴12𝐴22􏿳 ⇒
ЀЃЃЃЃЁЃЃЃЃЂ
1 = 𝐴12 − Ω𝑅4𝜔 𝐴220 = 𝐴22 + Ω𝑅4𝜔 𝐴12 ⇒ 𝐴22 = −Ω𝑅4𝜔 𝐴12

ЄЃЃЃЃЅЃЃЃЃІ ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1 = 𝐴12 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴12𝐴22 = −Ω𝑅4𝜔 𝐴12

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ 𝐴12 = 11 + 􏿵Ω𝑅4𝜔 􏿸2 , 𝐴22 = −Ω𝑅4𝜔1 + 􏿵Ω𝑅4𝜔 􏿸2
Furthermore, through Eq. (6.78), we know that

􏿼 ̇𝑧1(0) = 𝐵 ⋅ 𝐵12 = 𝑖𝛼𝑧1(0) + 𝑖𝛽𝑧2(0)̇𝑧2(0) = 𝐵 ⋅ 𝐵22 = 𝑖𝛽𝑧1(0) − 𝑖𝛼𝑧2(0)􏿿 ⇒
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𝐵12 = 𝑖𝛼𝐴12 + 𝑖𝐵𝐴22𝐵 = 𝑖􏿵

Ω𝑅2 􏿸2 12𝜔 11+􏿵Ω𝑅4𝜔 􏿸2 + Ω𝑅2 −Ω𝑅4𝜔1+􏿵Ω𝑅4𝜔 􏿸2𝐵 = 0
𝐵22 = 𝑖𝛽𝐴12 − 𝑖𝛼𝐴22𝐵 = 𝑖

Ω𝑅2 1+􏿵Ω𝑅4𝜔 􏿸21+􏿵Ω𝑅4𝜔 􏿸2𝐵 = 𝑖Ω𝑅2𝐵

ЄЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃІ
Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϼ1 + 𝑖 􏿵

Ω𝑅2 􏿸2 12𝜔2 sin(2𝜔𝑡) Ω𝑅4𝜔 (−𝑒−𝑖2𝜔𝑡)Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡 1 − 𝑖 􏿵Ω𝑅2 􏿸2 12𝜔2 sin(2𝜔𝑡)
ϽϾϾϾϾϾϾϾϾϾϿ 􏿰𝑧1(𝑡)𝑧2(𝑡)􏿳 ⇒

𝐶1(𝑡) = Ϻϻϻϻϻϼ1 + 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin(2𝜔𝑡)ϽϾϾϾϾϿ 𝑧1(𝑡) − Ω𝑅4𝜔 𝑒−𝑖2𝜔𝑡𝑧2(𝑡)
𝐶2(𝑡) = Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡𝑧1(𝑡) + Ϻϻϻϻϻϼ1 − 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin(2𝜔𝑡)ϽϾϾϾϾϿ 𝑧2(𝑡) , (6.87)

with

􏿼𝑧1(𝑡) = 𝐴12 cos(𝐵𝑡) + 𝐵12 sin(𝐵𝑡)𝑧2(𝑡) = 𝐴22 cos(𝐵𝑡) + 𝐵22 sin(𝐵𝑡)􏿿 and

ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

𝐴12 = 11 + 􏿵Ω𝑅4𝜔 􏿸2
𝐴22 = −Ω𝑅4𝜔1 + 􏿵Ω𝑅4𝜔 􏿸2Β12 = 0Β22 = 𝑖Ω𝑅2𝐵

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ
.

2. Let the initial conditions be𝐶1(0) = 0,𝐶2(0) = 1.
Solution forΔ ≠ 0, 1st order AM

Using Eqs. (6.59) for x(0) = 􏿰01􏿳, we have

x(0) = 􏿰𝑦10𝑦20􏿳 + Ω𝑅2 Ϻϻϻϻϻϼ 0 1Δ − 1Σ1Σ − 1Δ 0
ϽϾϾϾϾϿ 􏿰𝑦10𝑦20􏿳 ⇒

ЀЃЃЃЃЃЁЃЃЃЃЃЂ
0 = 𝑦10 + Ω𝑅2 􏿶 1Δ − 1Σ􏿹 𝑦201 = 𝑦20 + Ω𝑅2 􏿶 1Σ − 1Δ􏿹 𝑦10

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ЀЃЃЃЃЁЃЃЃЃЂ
0 = 𝑦10 + 2𝐴Ω𝑅𝑦20 ⇒ 𝑦10 = − 2𝐴Ω𝑅𝑦201 = 𝑦20 − 2𝐴Ω𝑅𝑦10

ЄЃЃЃЃЅЃЃЃЃІ ⇒ 1 = 𝑦20 + 􏿶 2𝐴Ω𝑅􏿹2 𝑦20 ⇒
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𝑦20 = 11 + 􏿵 2𝐴Ω𝑅 􏿸2 , 𝑦10 = − 2𝐴Ω𝑅1 + 􏿵 2𝐴Ω𝑅 􏿸2 , (6.88)

where 𝐴 = 􏿶Ω𝑅2 􏿹2 2Ω𝜔2 − Ω2 (6.89)

Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϼ 1 𝑖Ω𝑅2 􏿵𝑒+𝑖Δ𝑡𝑖Δ − 𝑒−𝑖Σ𝑡𝑖Σ 􏿸𝑖Ω𝑅2 􏿵−𝑒−𝑖Δ𝑡𝑖Δ + 𝑒+𝑖Σ𝑡𝑖Σ 􏿸 1

ϽϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ

− 2𝐴Ω𝑅1+􏿵 2𝐴Ω𝑅 􏿸211+􏿵 2𝐴Ω𝑅 􏿸2
ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϿ ⇒

𝐶1(𝑡) = 11 + 􏿵 2𝐴Ω𝑅 􏿸2 􏿯 −
2𝐴Ω𝑅 + Ω𝑅2 􏿶𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿹 􏿲

𝐶2(𝑡) = 11 + 􏿵 2𝐴Ω𝑅 􏿸2 􏿯1 − 𝐴 􏿶−
𝑒−𝑖Δ𝑡Δ + 𝑒𝑖Σ𝑡Σ 􏿹 􏿲 . (6.90)

Solution forΔ ≠ 0, 2nd order AM

Using Eqs. (6.60) for x(0) = 􏿰01􏿳, we have

x(0) = 􏿰𝑧10𝑧20􏿳 + Ω𝑅2
ЀЃЃЁЃЃЂϺϻϻϻϻϼ 0 1Δ − 1Σ1Σ − 1Δ 0

ϽϾϾϾϾϿЄЃЃЅЃЃІ 􏿰𝑧10𝑧20􏿳 + 𝑖 􏿶Ω𝑅2 􏿹2 􏿼 1𝑖2𝜔Δ 􏿰1 00 1􏿳 + 1𝑖2𝜔Σ 􏿰1 00 1􏿳􏿿 􏿰𝑧10𝑧20􏿳 ⇒ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
0 = 𝑧10 + Ω𝑅2 􏿶 1Δ − 1Σ􏿹 𝑧20 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶 1Δ + 1Σ􏿹 𝑧10 ⇒ − 2𝐴Ω𝑅𝑧20 = 􏿶1 + 𝐴2Ω􏿹 𝑧101 = 𝑧20 + Ω𝑅2 􏿶 1Σ − 1Δ􏿹 𝑧10 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶 1Δ + 1Σ􏿹 𝑧20 ⇒ 1 = 􏿶1 + 𝐴2Ω􏿹 𝑧20 − 2𝐴Ω𝑅𝑧10

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЂ
𝑧10 = − 2𝐴Ω𝑅􏿵1 + 𝐴2Ω􏿸𝑧20
1 = 􏿶1 + 𝐴2Ω􏿹 𝑧20 + 􏿵 2𝐴Ω𝑅 􏿸2􏿵1 + 𝐴2Ω􏿸𝑧20

ЄЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃІ
⇒
ЀЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЂ

𝑧10 = − 2𝐴Ω𝑅􏿵1 + 𝐴2Ω􏿸2 + 􏿵 2𝐴Ω𝑅 􏿸2
𝑧20 = 1 + 𝐴2Ω􏿵1 + 𝐴2Ω􏿸2 + 􏿵 2𝐴Ω𝑅 􏿸2

ЄЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃІ
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Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϼ1 + 􏿵

Ω𝑅2 􏿸2 12𝜔 􏿵𝑒−𝑖2𝜔𝑡Δ + 𝑒𝑖2𝜔𝑡Σ 􏿸 Ω𝑅2 􏿵𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿸Ω𝑅2 􏿵−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿸 1 + 􏿵Ω𝑅2 􏿸2 12𝜔 􏿵𝑒𝑖2𝜔𝑡Δ + 𝑒−𝑖2𝜔𝑡Σ 􏿸
ϽϾϾϾϾϾϾϾϾϾϿ 􏿰𝑧10𝑒−𝑖𝐴𝑡𝑧20𝑒𝑖𝐴𝑡 􏿳 ⇒

𝐶1(𝑡) = 􏿯1 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶𝑒−𝑖2𝜔𝑡Δ + 𝑒𝑖2𝜔𝑡Σ 􏿹 􏿲𝑧10𝑒−𝑖𝐴𝑡 + 􏿯Ω𝑅2 􏿶𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿹 􏿲𝑧20𝑒𝑖𝐴𝑡
𝐶2(𝑡) = 􏿯Ω𝑅2 􏿶−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿹 􏿲𝑧10𝑒−𝑖𝐴𝑡 + 􏿯1 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶𝑒𝑖2𝜔𝑡Δ + 𝑒−𝑖2𝜔𝑡Σ 􏿹 􏿲𝑧20𝑒𝑖𝐴𝑡 . (6.91)

Solution forΔ = 0, 1st order AM

Using Eqs. (6.80) for x(0) = 􏿰01􏿳, we have

x(0) = 􏿰𝐴11𝐴21􏿳 + Ω𝑅4𝜔 􏿰0 −11 0 􏿳 􏿰𝐴11𝐴21􏿳 ⇒
ЀЃЃЃЃЁЃЃЃЃЂ
0 = 𝐴11 − Ω𝑅4𝜔 𝐴21 ⇒ 𝐴11 = Ω𝑅4𝜔 𝐴211 = 𝐴21 + Ω𝑅4𝜔 𝐴11

ЄЃЃЃЃЅЃЃЃЃІ ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
𝐴11 = Ω𝑅4𝜔 𝐴211 = 𝐴21 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴21

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ 𝐴11 = Ω𝑅4𝜔1 + 􏿵Ω𝑅4𝜔 􏿸2 , 𝐴21 = 11 + 􏿵Ω𝑅4𝜔 􏿸2
Furthermore, through Eq. (6.67), we know that

ЀЃЃЃЃЁЃЃЃЃЂ
̇𝑦1(0) = Ω𝑅2 𝐵11 = 𝑖Ω𝑅2 𝑦2(0)̇𝑦2(0) = Ω𝑅2 𝐵21 = 𝑖Ω𝑅2 𝑦1(0)

ЄЃЃЃЃЅЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЂ
𝐵11 = 𝑖𝐴21 = 𝑖1 + 􏿵Ω𝑅4𝜔 􏿸2
𝐵21 = 𝑖𝐴11 = 𝑖Ω𝑅4𝜔1 + 􏿵Ω𝑅4𝜔 􏿸2

ЄЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃІ
Therefore, the solution is

𝑥(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 = 􏿰𝑦1𝑦2􏿳 + Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 􏿰𝑦1𝑦2􏿳 ⇒
𝐶1(𝑡) = 𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴21 sin􏿶Ω𝑅2 𝑡􏿹 − Ω𝑅4𝜔 𝑒−𝑖2𝜔𝑡 􏿰𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴11 sin􏿶Ω𝑅2 𝑡􏿹􏿳
𝐶2(𝑡) = 𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴11 sin􏿶Ω𝑅2 𝑡􏿹 + Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡 􏿰𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴21 sin􏿶Ω𝑅2 𝑡􏿹􏿳 . (6.92)

Solution forΔ = 0, 2nd order AM



QUANTUM OPTICS 187

Using Eqs. (6.81) for x(0) = 􏿰01􏿳, we have

x(0) = 􏿰𝐴12𝐴22􏿳 + Ω𝑅4𝜔 􏿰0 −11 0 􏿳 􏿰𝐴12𝐴22􏿳 ⇒
ЀЃЃЃЃЁЃЃЃЃЂ
0 = 𝐴12 − Ω𝑅4𝜔 𝐴22 ⇒ 𝐴12 = Ω𝑅4𝜔 𝐴221 = 𝐴22 + Ω𝑅4𝜔 𝐴12

ЄЃЃЃЃЅЃЃЃЃІ ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
𝐴12 = Ω𝑅4𝜔 𝐴221 = 𝐴22 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴22

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ 𝐴12 = Ω𝑅4𝜔1 + 􏿵Ω𝑅4𝜔 􏿸2 , 𝐴22 = 11 + 􏿵Ω𝑅4𝜔 􏿸2
Furthermore, through Eq. (6.78), we know that

􏿼 ̇𝑧1(0) = 𝐵 ⋅ 𝐵12 = 𝑖𝛼𝑧1(0) + 𝑖𝛽𝑧2(0)̇𝑧2(0) = 𝐵 ⋅ 𝐵22 = 𝑖𝛽𝑧1(0) − 𝑖𝛼𝑧2(0)􏿿 ⇒ЀЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЂ
𝐵12 = 𝑖𝛼𝐴12 + 𝑖𝛽𝐴22𝐵 = 𝑖

Ω𝑅2 1+􏿵Ω𝑅4𝜔 􏿸21+􏿵Ω𝑅4𝜔 􏿸2𝐵 = 𝑖Ω𝑅2𝐵
𝐵22 = 𝑖𝛽𝐴12 − 𝑖𝛼𝐴22𝐵 = 𝑖

Ω𝑅2 Ω𝑅4𝜔1+􏿵Ω𝑅4𝜔 􏿸2 − 􏿵Ω𝑅2 􏿸
2 12𝜔 11+􏿵Ω𝑅4𝜔 􏿸2𝐵 = 0

ЄЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃІ
Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϼ1 + 𝑖 􏿵

Ω𝑅2 􏿸2 12𝜔2 sin(2𝜔𝑡) Ω𝑅4𝜔 (−𝑒−𝑖2𝜔𝑡)Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡 1 − 𝑖 􏿵Ω𝑅2 􏿸2 12𝜔2 sin(2𝜔𝑡)
ϽϾϾϾϾϾϾϾϾϾϿ 􏿰𝑧1(𝑡)𝑧2(𝑡)􏿳 ⇒

𝐶1(𝑡) = Ϻϻϻϻϻϼ1 + 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin(2𝜔𝑡)ϽϾϾϾϾϿ 𝑧1(𝑡) − Ω𝑅4𝜔 𝑒−𝑖2𝜔𝑡𝑧2(𝑡)
𝐶2(𝑡) = Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡𝑧1(𝑡) + Ϻϻϻϻϻϼ1 − 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin(2𝜔𝑡)ϽϾϾϾϾϿ 𝑧2(𝑡) , (6.93)

with

􏿼𝑧1 = 𝐴12 cos(𝐵𝑡) + 𝐵12 sin(𝐵𝑡)𝑧2 = 𝐴22 cos(𝐵𝑡) + 𝐵22 sin(𝐵𝑡)􏿿 and

ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

𝐴12 = −Ω𝑅4𝜔1 + 􏿵Ω𝑅4𝜔 􏿸2𝐴22 = 11 + 􏿵Ω𝑅4𝜔 􏿸2Β12 = 𝑖Ω𝑅2𝐵Β22 = 0

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ
.
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3. Let the initial conditions be𝐶1(0) = 1√2𝑒𝑖𝜃,𝐶2(0) = 1√2𝑒𝑖𝜙, with probability |𝐶1(0)|2 = |𝐶2(0)|2 = 12 .
Solution forΔ ≠ 0, 1st order AM

Using Eqs. (6.59) for x(0) = Ϻϻϻϻϻϻϼ 1√2𝑒𝑖𝜃1√2𝑒𝑖𝜙
ϽϾϾϾϾϾϿ, we have

x(0) = 􏿰𝑦10𝑦20􏿳 + Ω𝑅2 Ϻϻϻϻϻϼ 0 1Δ − 1Σ1Σ − 1Δ 0
ϽϾϾϾϾϿ 􏿰𝑦10𝑦20􏿳 ⇒

ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝑦10 + Ω𝑅2 􏿶 1Δ − 1Σ􏿹 𝑦201√2𝑒𝑖𝜙 = 𝑦20 + Ω𝑅2 􏿶 1Σ − 1Δ􏿹 𝑦10

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝑦10 + 2𝐴Ω𝑅𝑦201√2𝑒𝑖𝜙 = − 2𝐴Ω𝑅𝑦10 + 𝑦20

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2 2𝐴Ω𝑅𝑒𝑖𝜃 = 2𝐴Ω𝑅𝑦10 + 􏿶 2𝐴Ω𝑅􏿹2 𝑦201√2𝑒𝑖𝜙 = − 2𝐴Ω𝑅𝑦10 + 𝑦20

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2 2𝐴Ω𝑅𝑒𝑖𝜃 + 1√2𝑒𝑖𝜙 = 𝑦20 + 􏿶 2𝐴Ω𝑅􏿹2 𝑦20 ⇒ 𝑦20 = 2𝐴Ω𝑅 𝑒𝑖𝜃 + 𝑒𝑖𝜙√2 􏿶1 + 􏿵 2𝐴Ω𝑅 􏿸2􏿹
ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝑦10 + 2𝐴Ω𝑅𝑦201√2𝑒𝑖𝜙 = − 2𝐴Ω𝑅𝑦10 + 𝑦20

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝑦10 + 2𝐴Ω𝑅𝑦201√2 􏿶− 2𝐴Ω𝑅􏿹 𝑒𝑖𝜙 = 􏿶 2𝐴Ω𝑅􏿹2 𝑦10 + 􏿶− 2𝐴Ω𝑅􏿹 𝑦20

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2𝑒𝑖𝜃 − 1√2 2𝐴Ω𝑅𝑒𝑖𝜙 = 𝑦10 + 􏿶 2𝐴Ω𝑅􏿹2 𝑦10 ⇒ 𝑦10 = 𝑒𝑖𝜃 − 2𝐴Ω𝑅 𝑒𝑖𝜙√2 􏿶1 + 􏿵 2𝐴Ω𝑅 􏿸2􏿹 ,
where 𝐴 = 􏿶Ω𝑅2 􏿹2 2Ω𝜔2 − Ω2 (6.94)

Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϼ 1 𝑖Ω𝑅2 􏿵𝑒+𝑖Δ𝑡𝑖Δ − 𝑒−𝑖Σ𝑡𝑖Σ 􏿸𝑖Ω𝑅2 􏿵−𝑒−𝑖Δ𝑡𝑖Δ + 𝑒+𝑖Σ𝑡𝑖Σ 􏿸 1

ϽϾϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϻϼ

𝑒𝑖𝜃− 2𝐴Ω𝑅 𝑒𝑖𝜙√2􏿶1+􏿵 2𝐴Ω𝑅 􏿸2􏿹2𝐴Ω𝑅 𝑒𝑖𝜃+𝑒𝑖𝜙√2􏿶1+􏿵 2𝐴Ω𝑅 􏿸2􏿹

ϽϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϾϿ ⇒



QUANTUM OPTICS 189

𝐶1(𝑡) = 1√2 􏿶1 + 􏿵 2𝐴Ω𝑅 􏿸2􏿹􏿯 􏿶𝑒𝑖𝜃 −
2𝐴Ω𝑅𝑒𝑖𝜙􏿹 + Ω𝑅2 􏿶𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿹 􏿶 2𝐴Ω𝑅𝑒𝑖𝜃 + 𝑒𝑖𝜙􏿹 􏿲

𝐶2(𝑡) = 1√2 􏿶1 + 􏿵 2𝐴Ω𝑅 􏿸2􏿹􏿯
Ω𝑅2 􏿶−𝑒−𝑖Δ𝑡Δ + 𝑒𝑖Σ𝑡Σ 􏿹 􏿶𝑒𝑖𝜃 − 2𝐴Ω𝑅𝑒𝑖𝜙􏿹 + 􏿶 2𝐴Ω𝑅𝑒𝑖𝜃 + 𝑒𝑖𝜙􏿹 􏿲 . (6.95)

Solution forΔ ≠ 0, 2nd order AM

Using Eqs. (6.60) for x(0) = Ϻϻϻϻϻϻϼ 1√2𝑒𝑖𝜃1√2𝑒𝑖𝜙
ϽϾϾϾϾϾϿ, we have

x(0) = 􏿰𝑧10𝑧20􏿳 + Ω𝑅2
ЀЃЃЁЃЃЂϺϻϻϻϻϼ 0 1Δ − 1Σ1Σ − 1Δ 0

ϽϾϾϾϾϿЄЃЃЅЃЃІ 􏿰𝑧10𝑧20􏿳 + 𝑖 􏿶Ω𝑅2 􏿹2 􏿼 1𝑖2𝜔Δ 􏿰1 00 1􏿳 + 1𝑖2𝜔Σ 􏿰1 00 1􏿳􏿿 􏿰𝑧10𝑧20􏿳 ⇒ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝑧10 + Ω𝑅2 􏿶 1Δ − 1Σ􏿹 𝑧20 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶 1Δ + 1Σ􏿹 𝑧101√2𝑒𝑖𝜙 = 𝑧20 + Ω𝑅2 􏿶 1Σ − 1Δ􏿹 𝑧10 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶 1Δ + 1Σ􏿹 𝑧20

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 􏿶1 + 𝐴2Ω􏿹 𝑧10 + 2𝐴Ω𝑅𝑧201√2𝑒𝑖𝜙 = − 2𝐴Ω𝑅𝑧10 + 􏿶1 + 𝐴2Ω􏿹 𝑧20

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2 2𝐴Ω𝑅𝑒𝑖𝜃 = 2𝐴Ω𝑅 􏿶1 + 𝐴2Ω􏿹 𝑧10 + 􏿶 2𝐴Ω𝑅􏿹2 𝑧201√2 􏿶1 + 𝐴2Ω􏿹 𝑒𝑖𝜙 = − 2𝐴Ω𝑅 􏿶1 + 𝐴2Ω􏿹 𝑧10 + 􏿶1 + 𝐴2Ω􏿹2 𝑧20

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2 2𝐴Ω𝑅𝑒𝑖𝜃 + 1√2 􏿶1 + 𝐴2Ω􏿹 𝑒𝑖𝜙 = 􏿯 􏿶 2𝐴Ω𝑅􏿹2 + 􏿶1 + 𝐴2Ω􏿹2 􏿲𝑧20 ⇒
𝑧20 = 2𝐴Ω𝑅 𝑒𝑖𝜃 + 􏿵1 + 𝐴2Ω􏿸 𝑒𝑖𝜙√2 􏿰􏿵 2𝐴Ω𝑅 􏿸2 + 􏿵1 + 𝐴2Ω􏿸2􏿳ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 􏿶1 + 𝐴2Ω􏿹 𝑧10 + 2𝐴Ω𝑅𝑧201√2𝑒𝑖𝜙 = − 2𝐴Ω𝑅𝑧10 + 􏿶1 + 𝐴2Ω􏿹 𝑧20

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2 􏿶1 + 𝐴2Ω􏿹 𝑒𝑖𝜃 = 􏿶1 + 𝐴2Ω􏿹2 𝑧10 + 􏿶1 + 𝐴2Ω􏿹 2𝐴Ω𝑅𝑧201√2 􏿶− 2𝐴Ω𝑅􏿹 𝑒𝑖𝜙 = 􏿶 2𝐴Ω𝑅􏿹2 𝑧10 + 􏿶1 + 𝐴2Ω􏿹 􏿶− 2𝐴Ω𝑅􏿹 𝑧20

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒
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1√2 􏿶1 + 𝐴2Ω􏿹 𝑒𝑖𝜃 − 1√2 2𝐴Ω𝑅𝑒𝑖𝜙 = 􏿯 􏿶 2𝐴Ω𝑅􏿹2 + 􏿶1 + 𝐴2Ω􏿹2 􏿲𝑧10 ⇒
𝑧10 = 􏿵1 + 𝐴2Ω􏿸 𝑒𝑖𝜃 − 2𝐴Ω𝑅 𝑒𝑖𝜙√2 􏿰􏿵 2𝐴Ω𝑅 􏿸2 + 􏿵1 + 𝐴2Ω􏿸2􏿳

Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϼ1 + 􏿵

Ω𝑅2 􏿸2 12𝜔 􏿵𝑒−𝑖2𝜔𝑡Δ + 𝑒𝑖2𝜔𝑡Σ 􏿸 Ω𝑅2 􏿵𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿸Ω𝑅2 􏿵−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿸 1 + 􏿵Ω𝑅2 􏿸2 12𝜔 􏿵𝑒𝑖2𝜔𝑡Δ + 𝑒−𝑖2𝜔𝑡Σ 􏿸
ϽϾϾϾϾϾϾϾϾϾϿ 􏿰𝑧10𝑒−𝑖𝐴𝑡𝑧20𝑒𝑖𝐴𝑡 􏿳 ⇒

𝐶1(𝑡) = 􏿯1 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶𝑒−𝑖2𝜔𝑡Δ + 𝑒𝑖2𝜔𝑡Σ 􏿹 􏿲𝑧10𝑒−𝑖𝐴𝑡 + 􏿯Ω𝑅2 􏿶𝑒𝑖Δ𝑡Δ − 𝑒−𝑖Σ𝑡Σ 􏿹 􏿲𝑧20𝑒𝑖𝐴𝑡
𝐶2(𝑡) = 􏿯Ω𝑅2 􏿶−𝑒−𝑖Δ𝑡Δ + 𝑒+𝑖Σ𝑡Σ 􏿹 􏿲𝑧10𝑒−𝑖𝐴𝑡 + 􏿯1 + 􏿶Ω𝑅2 􏿹2 12𝜔 􏿶𝑒𝑖2𝜔𝑡Δ + 𝑒−𝑖2𝜔𝑡Σ 􏿹 􏿲𝑧20𝑒𝑖𝐴𝑡 . (6.96)

Solution forΔ = 0, 1st order AM

Using Eqs. (6.80) for x(0) = Ϻϻϻϻϻϻϼ 1√2𝑒𝑖𝜃1√2𝑒𝑖𝜙
ϽϾϾϾϾϾϿ, we have

x(0) = 􏿰𝐴11𝐴21􏿳 + Ω𝑅4𝜔 􏿰0 −11 0 􏿳 􏿰𝐴11𝐴21􏿳 ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝐴11 − Ω𝑅4𝜔 𝐴211√2𝑒𝑖𝜙 = 𝐴21 + Ω𝑅4𝜔 𝐴11

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝐴11 − Ω𝑅4𝜔 𝐴211√2Ω𝑅4𝜔 𝑒𝑖𝜙 = Ω𝑅4𝜔 𝐴21 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴11

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2𝑒𝑖𝜃 + 1√2Ω𝑅4𝜔 𝑒𝑖𝜙 = ϴϵϵϵϵ϶1 + 􏿶Ω𝑅4𝜔 􏿹2ϷϸϸϸϸϹ𝐴11 ⇒ 𝐴11 = 𝑒𝑖𝜃 + Ω𝑅4𝜔 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹
ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝐴11 − Ω𝑅4𝜔 𝐴211√2𝑒𝑖𝜙 = 𝐴21 + Ω𝑅4𝜔 𝐴11

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2 􏿶−Ω𝑅4𝜔 􏿹 𝑒𝑖𝜃 = 􏿶−Ω𝑅4𝜔 􏿹𝐴11 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴211√2𝑒𝑖𝜙 = 𝐴21 + Ω𝑅4𝜔 𝐴11

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2 􏿶−Ω𝑅4𝜔 􏿹 𝑒𝑖𝜃 + 1√2𝑒𝑖𝜙 =
ϴϵϵϵϵ϶1 + 􏿶Ω𝑅4𝜔 􏿹2ϷϸϸϸϸϹ𝐴21 ⇒ 𝐴21 = −Ω𝑅4𝜔 𝑒𝑖𝜃 + 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹
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Furthermore, through Eq. (6.67), we know that

ЀЃЃЃЃЁЃЃЃЃЂ
̇𝑦1(0) = Ω𝑅2 𝐵11 = 𝑖Ω𝑅2 𝑦2(0)̇𝑦2(0) = Ω𝑅2 𝐵21 = 𝑖Ω𝑅2 𝑦1(0)

ЄЃЃЃЃЅЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЂ

𝐵11 = 𝑖𝐴21 = 𝑖 −Ω𝑅4𝜔 𝑒𝑖𝜃 + 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹
𝐵21 = 𝑖𝐴11 = 𝑖 𝑒𝑖𝜃 + Ω𝑅4𝜔 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹

ЄЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃІ
Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 = 􏿰𝑦1𝑦2􏿳 + Ω𝑅4𝜔 􏿰 0 −𝑒−𝑖2𝜔𝑡𝑒𝑖2𝜔𝑡 0 􏿳 􏿰𝑦1𝑦2􏿳 ⇒
𝐶1(𝑡) = 𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴21 sin􏿶Ω𝑅2 𝑡􏿹 − Ω𝑅4𝜔 𝑒−𝑖2𝜔𝑡 􏿰𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴11 sin􏿶Ω𝑅2 𝑡􏿹􏿳
𝐶2(𝑡) = 𝐴21 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴11 sin􏿶Ω𝑅2 𝑡􏿹 + Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡 􏿰𝐴11 cos􏿶Ω𝑅2 𝑡􏿹 + 𝑖𝐴21 sin􏿶Ω𝑅2 𝑡􏿹􏿳 . (6.97)

Solution forΔ = 0, 2nd order AM

Using Eqs. (6.81) for x(0) = Ϻϻϻϻϻϻϼ 1√2𝑒𝑖𝜃1√2𝑒𝑖𝜙
ϽϾϾϾϾϾϿ, we have

x(0) = 􏿰𝐴12𝐴22􏿳 + Ω𝑅4𝜔 􏿰0 −11 0 􏿳 􏿰𝐴12𝐴22􏿳 ⇒ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝐴12 − Ω𝑅4𝜔 𝐴221√2𝑒𝑖𝜙 = 𝐴22 + Ω𝑅4𝜔 𝐴12

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝐴12 − Ω𝑅4𝜔 𝐴221√2Ω𝑅4𝜔 𝑒𝑖𝜙 = Ω𝑅4𝜔 𝐴22 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴12

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2𝑒𝑖𝜃 + 1√2Ω𝑅4𝜔 𝑒𝑖𝜙 = ϴϵϵϵϵ϶1 + 􏿶Ω𝑅4𝜔 􏿹2ϷϸϸϸϸϹ𝐴12 ⇒ 𝐴12 = 𝑒𝑖𝜃 + Ω𝑅4𝜔 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹
ЀЃЃЃЃЃЁЃЃЃЃЃЂ
1√2𝑒𝑖𝜃 = 𝐴12 − Ω𝑅4𝜔 𝐴221√2𝑒𝑖𝜙 = 𝐴22 + Ω𝑅4𝜔 𝐴12

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒
ЀЃЃЃЃЃЃЁЃЃЃЃЃЃЂ
1√2 􏿶−Ω𝑅4𝜔 􏿹 𝑒𝑖𝜃 = 􏿶−Ω𝑅4𝜔 􏿹𝐴12 + 􏿶Ω𝑅4𝜔 􏿹2 𝐴221√2𝑒𝑖𝜙 = 𝐴22 + Ω𝑅4𝜔 𝐴12

ЄЃЃЃЃЃЃЅЃЃЃЃЃЃІ
(+)⇒

1√2 􏿶−Ω𝑅4𝜔 􏿹 𝑒𝑖𝜃 + 1√2𝑒𝑖𝜙 =
ϴϵϵϵϵ϶1 + 􏿶Ω𝑅4𝜔 􏿹2ϷϸϸϸϸϹ𝐴22 ⇒ 𝐴22 = −Ω𝑅4𝜔 𝑒𝑖𝜃 + 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹
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Furthermore, through Eq. (6.78), we know that

􏿼 ̇𝑧1(0) = 𝐵 ⋅ 𝐵12 = 𝑖𝛼𝑧1(0) + 𝑖𝛽𝑧2(0)̇𝑧2(0) = 𝐵 ⋅ 𝐵22 = 𝑖𝛽𝑧1(0) − 𝑖𝛼𝑧2(0)􏿿 ⇒ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

𝐵12 = 𝑖𝛼𝐴12 + 𝑖𝛽𝐴22𝐵 = 𝑖􏿵Ω𝑅2 􏿸2 12𝜔 (𝑒𝑖𝜃 + Ω𝑅4𝜔 𝑒𝑖𝜙) + Ω𝑅2 (−Ω𝑅4𝜔 𝑒𝑖𝜃 + 𝑒𝑖𝜙)√2𝐵 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹 =
= 𝑖✘✘✘✘✘✘✘✘✘✘✘✿0(􏿵Ω𝑅2 􏿸2 12𝜔 − Ω𝑅2 Ω𝑅4𝜔 )𝑒𝑖𝜃 + (􏿵Ω𝑅2 􏿸2 12𝜔 Ω𝑅4𝜔 + Ω𝑅2 )𝑒𝑖𝜙√2𝐵 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹 = 𝑖 Ω𝑅2 ✟✟✟✟✟✟(1 + 􏿵Ω𝑅4𝜔 􏿸2)𝑒𝑖𝜙√2𝐵

✟✟✟✟✟✟✟􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹 = 𝑖
Ω𝑅𝑒𝑖𝜙2√2𝐵

𝐵22 = 𝑖𝛽𝐴12 − 𝑖𝛼𝐴22𝐵 = 𝑖 Ω𝑅2 (𝑒𝑖𝜃 + Ω𝑅4𝜔 𝑒𝑖𝜙) − 􏿵Ω𝑅2 􏿸2 12𝜔 (−Ω𝑅4𝜔 𝑒𝑖𝜃 + 𝑒𝑖𝜙)√2𝐵 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹 =
= 𝑖(Ω𝑅2 + 􏿵Ω𝑅2 􏿸2 12𝜔 Ω𝑅4𝜔 )𝑒𝑖𝜃 +✘✘✘✘✘✘✘✘✘✘✘✿0(Ω𝑅2 Ω𝑅4𝜔 − 􏿵Ω𝑅2 􏿸2 12𝜔 )𝑒𝑖𝜙√2𝐵 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹 = 𝑖 Ω𝑅2 ✟✟✟✟✟✟(1 + 􏿵Ω𝑅4𝜔 􏿸2)𝑒𝑖𝜃√2𝐵

✟✟✟✟✟✟✟􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹 = 𝑖
Ω𝑅𝑒𝑖𝜃2√2𝐵

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ
Therefore, the solution is

x(𝑡) = 􏿰𝐶1(𝑡)𝐶2(𝑡)􏿳 =
Ϻϻϻϻϻϻϻϻϻϻϼ1 + 𝑖 􏿵

Ω𝑅2 􏿸2 12𝜔2 sin(2𝜔𝑡) Ω𝑅4𝜔 (−𝑒−𝑖2𝜔𝑡)Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡 1 − 𝑖 􏿵Ω𝑅2 􏿸2 12𝜔2 sin(2𝜔𝑡)
ϽϾϾϾϾϾϾϾϾϾϿ 􏿰𝑧1(𝑡)𝑧2(𝑡)􏿳 ⇒

𝐶1(𝑡) = Ϻϻϻϻϻϼ1 + 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin(2𝜔𝑡)ϽϾϾϾϾϿ 𝑧1(𝑡) − Ω𝑅4𝜔 𝑒−𝑖2𝜔𝑡𝑧2(𝑡)
𝐶2(𝑡) = Ω𝑅4𝜔 𝑒𝑖2𝜔𝑡𝑧1(𝑡) + Ϻϻϻϻϻϼ1 − 𝑖 􏿶Ω𝑅2 􏿹2 12𝜔2 sin(2𝜔𝑡)ϽϾϾϾϾϿ 𝑧2(𝑡) , (6.98)

with

􏿼𝑧1 = 𝐴12 cos(𝐵𝑡) + 𝐵12 sin(𝐵𝑡)𝑧2 = 𝐴22 cos(𝐵𝑡) + 𝐵22 sin(𝐵𝑡)􏿿 and

ЀЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЂ

𝐴12 = 𝑒𝑖𝜃 + Ω𝑅4𝜔 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹
𝐴22 = −Ω𝑅4𝜔 𝑒𝑖𝜃 + 𝑒𝑖𝜙√2 􏿶1 + 􏿵Ω𝑅4𝜔 􏿸2􏿹Β12 = 𝑖Ω𝑅𝑒𝑖𝜙2√2𝐵Β22 = 𝑖Ω𝑅𝑒𝑖𝜃2√2𝐵

ЄЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃЃІ

.
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6.3 Results with NRWA, RWA, first and second order AM.

In the following, we compare results for NRWA, RWA, first- and second-order AM, and focus the limits
of the approximate methods (RWA, AM). In all figures, the horizontal axes represent the dimensionless
quantity ΩR𝑡2𝜋 , i.e, time 𝑡 divided by 𝑇RWA,0, and the vertical axes represent the probability at the lower

level, 𝑃1. For non-resonance (Δ ≠ 0), we have defined three types of small quantities 𝜖, i.e., ΩRΔ , ΩRΣ andΩR𝜔 . Unavoidably, whenΔ becomes smaller, at some point, ΩRΔ gets so large that non-resonant AM is not

successful anymore and resonance must be treated via a different path, using just one type of 𝜖, i.e., ΩR𝜔 .

In general, the accuracy of second-order AM has a range between the outcomes, ΩRΔ ⋅ ΩR𝜔 = Ω2RΔ𝜔 andΩRΣ ⋅ ΩR𝜔 = Ω2RΣ𝜔 , due to the fact that the above terms appear in the final equations [see Eqs. (6.60)] and
they are the last terms that we do not ignore. First-order AM is frequently far from the numerical solution.
We include it in the figures below for comparison, and to demonstrate the real reason why we should use
second-order AM.

The values of 𝜖 were chosen with the purpose of introducing cases where AM approaches success.
Hence, the values are down to the order of magnitude 0.01. For smaller values, AM is successful. Fur-
thermore, very small values of 𝜖mean very small perturbation, i.e., these are trivial cases.

6.3.1 Results for electron initial placement at the lower level.

Let the initial conditions be 𝐶1(0) = 1, 𝐶2(0) = 0, i.e., we initially (at 𝑡 = 0) place the electron at the
lower level.

������� 1RQ�UHVRQDQFH�

In Fig. 6.1 we modify 𝜖2 = ΩRΣ , keeping 𝜖1 = ΩRΔ = −0.5 (𝜖1 = 0.5) on the left (right) column. For𝜖1 > 0, as 𝜖2 gets smaller, RWA becomes identical to NRWA. Second-order AM is very close to NRWA
in all cases. For 𝜖1 < 0, as 𝜖2 gets smaller, second-order AM and RWA become identical to NRWA. The
different behavior of AM for negative and positive 𝜖1 stems from 𝜖3 = ΩR𝜔 being different: for 𝜖1 > 0, 𝜖3 is
smaller than for 𝜖1 < 0. In Fig. 6.2 wemodify 𝜖1 = ΩRΔ and keep 𝜖2 = ΩRΣ = 0.01. On left (right) column𝜖1 < 0 (𝜖1 > 0). RWA gets identical to NRWA, but not with second order AM. As 𝜖1 gets smaller, AM
gradually approaches NRWA. Oscillations diminish as 𝜖1 becomes smaller. Oscillations at the same row
but in different columns are a little different due to the different value of 𝜖3. In Figs. 6.1, 6.2, the two panels
of the same line seem similar, because 𝜖3 = ΩR𝜔 are almost identical, except for the first line in Fig. 6.1.

For example, in Fig. 6.1, the two panels of the last line have 𝜖1 = −0.5, 𝜖2 = 0.01, 𝜖3 = 149 and 𝜖1 = 0.5,𝜖2 = 0.01, 𝜖3 = 151 , respectively, while the two panels of the first line have 𝜖1 = −0.5, 𝜖2 = 0.4, 𝜖3 = 4
and 𝜖1 = 0.5, 𝜖2 = 0.4, 𝜖3 = 49 , respectively. Hence, second-order AM is identical to NRWAwhen 𝜖1, 𝜖2
and 𝜖3 are sufficiently small.

������� 5HVRQDQFH�

In Fig. 6.3 we illustrate 𝑃1 vs. ΩR𝑡2𝜋 , modifying 𝜖 = ΩR𝜔 . As 𝜖 gets smaller, AM is identical to NRWA.
Additionally, since we are in resonance, oscillations are particularly strong, of the order of one.
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Figure 6.1: Δ ≠ 0. 𝑃1 vs. ΩR𝑡2𝜋 for 𝜖1 = ΩRΔ = −0.5 (left column) and 𝜖1 = ΩRΔ = 0.5 (right column),

varying 𝜖2 = ΩRΣ . (a), (b) 𝜖2 = 0.4. (c), (d) 𝜖2 = 0.1. (e), (f) 𝜖2 = 0.04. (g), (h) 𝜖2 = 0.01. Lines
correspond to NRWA (continuous —), RWA (dashed −−), second-order AM (dotted ⋯), first-order
AM (dash-dotted ⋅−).
6.3.2 Results for initial electron placement at both levels with equal probability, but with phase

difference.

Let the initial conditions be𝐶1(0) = 1√2𝑒𝑖𝜃,𝐶2(0) = 1√2𝑒𝑖𝜙, i.e., we initially (at 𝑡 = 0) place half electron
at each level, but with a phase difference 𝜃 − 𝜙.
������� 1RQ�UHVRQDQFH�

In Fig. 6.4 we vary 𝜖2 = ΩRΣ , keeping 𝜖1 = ΩRΔ = −0.5 (𝜖1 = 0.5) on the left (right) column, with𝜃 − 𝜙 = 𝜋3 . Although the initial probabilities at the two levels are equal, phase difference of the initial
wave functions leads to strong oscillations, a clear coherent phenomenon. Decreasing 𝜖2, second-order
AM approaches NRWA.

In Fig. 6.5 we modify 𝜖1 = ΩRΔ , keeping 𝜖2 = ΩRΣ = 0.01 with 𝜃 − 𝜙 = 𝜋3 . We observe strong
oscillations, depending of course on the magnitude of 𝜖1, although the initial probabilities are equal, a
pure coherent phenomenon, due to the initial phase difference of the wave functions. Decreasing |𝜖1|,
second order AM approaches NRWA.The discussion on the effect of the relative magnitude of 𝜖1, 𝜖2, 𝜖3,
applies here, too.

In Fig. 6.6 we keep 𝜖1 = 0.5 and 𝜖1 = 0.01, varying the initial phase difference of the wave functions,
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Figure 6.2: Δ ≠ 0. 𝑃1 vs. ΩR𝑡2𝜋 , for 𝜖2 = ΩRΣ = 0.01, varying 𝜖1 = ΩRΔ . (a) 𝜖1 = −0.9. (b) 𝜖1 = 0.9. (c)𝜖1 = −0.6. (d) 𝜖1 = 0.6. (e) 𝜖1 = −0.2. (f) 𝜖1 = 0.2. (g) 𝜖1 = −0.1. (h) 𝜖1 = 0.1. Lines correspond to
NRWA (continuous—), RWA (dashed −−), second order AM (dotted⋯), first order AM (dash-dotted⋅−).

Figure 6.3:Δ = 0. 𝑃1 vs. ΩR𝑡2𝜋 , varying 𝜖 = ΩR𝜔 . (a) 𝜖 = 0.9. (b) 𝜖 = 0.5. (c) 𝜖 = 0.1. (d) 𝜖 = 0.05. Lines
correspond toNRWA(continuous—), RWA(dashed−−), second order AM(dotted⋯), first order AM
(dash-dotted ⋅−).
𝜃−𝜙. We observe another aspect of coherence, a vertical and horizontal displacement of the oscillations.
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Figure 6.4: Δ ≠ 0. 𝑃1 vs. ΩR𝑡2𝜋 for 𝜖1 = ΩRΔ = −0.5 (left column) and 𝜖1 = ΩRΔ = 0.5 (right column),

varying 𝜖2 = ΩRΣ with 𝜃 − 𝜙 = 𝜋3 . (a), (b) 𝜖2 = 0.4. (c), (d) 𝜖2 = 0.1. (e), (f) 𝜖2 = 0.04. (g), (h)𝜖2 = 0.01. Lines correspond to NRWA (continuous —), RWA (dashed −−), second order AM (dotted⋯), first order AM (dash-dotted ⋅−).
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Figure 6.5:Δ ≠ 0. 𝑃1 vs. ΩR𝑡2𝜋 , for 𝜖2 = ΩRΣ = 0.01, varying 𝜖1 = ΩRΔ with 𝜃 − 𝜙 = 𝜋3 . (a) 𝜖1 = −0.9. (b)𝜖1 = 0.9. (c) 𝜖1 = −0.6. (d) 𝜖1 = 0.6. (e) 𝜖1 = −0.2. (f) 𝜖1 = 0.2. (g) 𝜖1 = −0.1. (h) 𝜖1 = 0.1. Lines
correspond toNRWA(continuous—), RWA(dashed−−), second order AM(dotted⋯), first order AM
(dash-dotted ⋅−).

Figure 6.6: Δ ≠ 0. 𝑃1 vs. ΩR𝑡2𝜋 for 𝜖1 = ΩRΔ = 0.5 and 𝜖2 = ΩRΣ = 0.01, varying 𝜃 − 𝜙. (a) 𝜃 − 𝜙 = 0.
(b) 𝜃 − 𝜙 = 𝜋3 . (c) 𝜃 − 𝜙 = 2𝜋3 . (d) 𝜃 − 𝜙 = 𝜋. (e) 𝜃 − 𝜙 = 4𝜋3 . (f) 𝜃 − 𝜙 = 5𝜋3 . Lines correspond to
NRWA (continuous—), RWA (dashed −−), second order AM (dotted⋯), first order AM (dash-dotted⋅−).
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������� 5HVRQDQFH�

In Fig. 6.7 we modify 𝜖 = ΩR𝜔 , for initial phase difference, 𝜃 − 𝜙 = 𝜋3 . As 𝜖 gets smaller, AM becomes
identical to NRWA.

Figure 6.7:Δ = 0. 𝑃1 vs. ΩR𝑡2𝜋 , varying 𝜖 = ΩR𝜔 with𝜃 − 𝜙 = 𝜋3 . (a) 𝜖 = 0.9. (b) 𝜖 = 0.5. (c) 𝜖 = 0.1. (d)𝜖 = 0.05. Lines correspond to NRWA (continuous —), RWA (dashed −−), second order AM (dotted⋯), first order AM (dash-dotted ⋅−).
In Fig. 6.8 we keep 𝜖 = 0.1, varying the initial phase difference, 𝜃 − 𝜙. We observe that the amplitude

of the oscillations can be readily manipulated this way.

6.3.3 Non-resonant AM vs. resonant AM.

Thereadermightwonderwhywehave introduced twodifferent versionsof theAM,one fornon-resonance
and another for resonance.We have already explained the reason above:WhenΔ becomes very small, ΩRΔ
gets very large, so that non-resonant AM is not successful anymore. Therefore, in resonance, the AM has
to be manipulated in a different way.

Here we give a few examples. In Fig. 6.9, we vary 𝜖1 = ΩRΔ and keep 𝜖2 = ΩRΣ = 0.01. We observe that
for 𝜖1 < 1, the second order AM for non-resonance is closer to the numerical solution (NRWA) than
the second-order AM for resonance. However, for 𝜖1 > 1, Δ is so small that the second-order AM for
resonance comes closer to NRWA than the second-order AM for non-resonance.
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Figure 6.8:Δ = 0.𝑃1 vs. ΩR𝑡2𝜋 , 𝜖 = ΩR𝜔 = 0.1, varying𝜃−𝜙. (a)𝜃−𝜙 = 0. (b)𝜃−𝜙 = 𝜋6 . (c)𝜃−𝜙 = 𝜋3 .
(d) 𝜃 − 𝜙 = 𝜋2 . (e) 𝜃 − 𝜙 = 2𝜋3 . (f) 𝜃 − 𝜙 = 5𝜋6 . (g) 𝜃 − 𝜙 = 𝜋. (h) 𝜃 − 𝜙 = 7𝜋6 . (i) 𝜃 − 𝜙 = 4𝜋3 . (j)𝜃 − 𝜙 = 3𝜋2 . (k) 𝜃 − 𝜙 = 5𝜋3 . (l) 𝜃 − 𝜙 = 11𝜋6 . Lines refer to NRWA (continuous —), RWA (dashed−−), second order AM (dotted⋯), first order AM (dash-dotted ⋅−).
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Figure 6.9:Δ ≠ 0. 𝑃1 vs. ΩR𝑡2𝜋 , keeping 𝜖2 = ΩRΣ = 0.01 and varying 𝜖1 = ΩRΔ . (a) 𝜖1 = 0.5. (b) 𝜖1 = 1.
(c) 𝜖 = 5. (d) 𝜖1 = 10. Lines correspond toNRWA (continuous—), RWA (dashed−−), non-resonance
second order AM (dashed −−), non-resonance first order AM (dash-dotted ⋅−), resonance second order
AM (dashed −−), resonance first order AM (dash-dotted ⋅−).
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CHAPTER 7

ALLOWED AND FORBIDDEN OPTICAL TRANSITIONS

In this Chapter:
We discuss the so-called allowed and forbidden optical transitions, within the dipole approximation. We
refer to historical atomic models (Rutherford, Bohr) and finally to the atomic orbitals model. We focus
on hydrogen atom as a didactic example. We discuss the shape and symmetry of atomic orbitals and we
calculate the dipolemomentmatrix elements.We explain the so-called allowed and forbidden transitions
within the dipole approximation. We include the relevant selection rules.
Prerequisite knowledge: Basic knowledge of Quantum Physics.

7.1 Allowed and forbidden optical transitions within the dipole approximation.

We remind the reader of the steps we have taken so far within the dipole approximation, which are men-
tioned in Section 5.3, considering the hydrogen atom as an example. 𝑅⃗ is the position of the nucleus (N)
and 𝑟⃗𝐻 is the position of the electron (E) with respect to the origin of the coordinate system O, while 𝑟⃗ is
the position of E with respect to N, i.e., 𝑟⃗ = N⃗E.ℰ⃗ = ℰ⃗𝑎 exp 􏿮𝑖(⃗𝑘 ⋅ 𝑟⃗𝐻 − 𝜔𝑡 + 𝜙)􏿱𝑟⃗𝐻 ≃ 𝑅⃗

ЄЃЃЅЃЃІ ⇒ (homogeneous, time-dependent ℰ⃗ ) ⇒
ℰ⃗ = ℰ⃗0 exp(−𝑖𝜔𝑡) = ℰ⃗ (𝑡)ℰ⃗ = −∇⃗𝑉𝑑𝑉 = ∇⃗𝑉 ⋅ 𝑑𝑟⃗

ЄЃЃЅЃЃІ 𝑑𝑉 = −ℰ⃗ ⋅ 𝑑𝑟⃗
ЄЃЃЃЃЃЅЃЃЃЃЃІ⋯ ⇒ 𝑉

potential
= −ℰ⃗ ⋅ 𝑟⃗ ⇒

potential energy𝑈
of electron

= 𝑒 ℰ⃗ ⋅ 𝑟⃗ = −𝒫 ⋅ ℰ⃗ (♣)
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i.e., Eq. 5.35. The matrix element of the potential energy of the perturbation,

𝑈ℰ𝑘′𝑘(𝑡) = 􏾙𝑑3𝑟Φ∗𝑘′ (⃗𝑟) 𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟),
can be written, given Eq. (♣), as

𝑈ℰ𝑘′𝑘(𝑡) = −ℰ⃗ ⋅ 􏾙𝑑3𝑟Φ∗𝑘′ (⃗𝑟)𝒫Φ𝑘(⃗𝑟)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
𝒫𝑘′𝑘

= −ℰ⃗ ⋅ 𝒫𝑘′𝑘,
where𝒫𝑘′𝑘 is the matrix element of the dipole moment or as

𝑈ℰ𝑘′𝑘(𝑡) = 𝑒 ℰ⃗ ⋅ 􏾙𝑑3𝑟Φ∗𝑘′ (⃗𝑟) 𝑟⃗ Φ𝑘(⃗𝑟)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑟⃗𝑘′𝑘
= 𝑒 ℰ⃗ ⋅ 𝑟⃗𝑘′𝑘,

where 𝑟⃗𝑘′𝑘 is thematrix element of the position of the negative charge with respect to the positive one, e.g.
of the electron’s position with respect to the nucleus. Of course,𝒫𝑘′𝑘 = −𝑒 𝑟⃗𝑘′𝑘. Finally, we can see that
everything is reduced to the symmetry of the eigenfunctions of the unperturbed problem, since which
of these are even or odd determines whether the matrix element 𝑟⃗𝑘′𝑘 becomes zero or not, given that the
function 𝑟⃗ is evidently odd.

If 𝑟⃗𝑘′𝑘 becomes zero, then 𝑈ℰ𝑘′𝑘(𝑡) becomes zero, as well. If 𝑈ℰ𝑘′𝑘(𝑡) = 0, then the perturbation
does not couple states 𝑘′ and 𝑘; hence, if the electron was at 𝑘, it will not transition to 𝑘′ and vice versa.
Therefore, if 𝑟⃗𝑘′𝑘 = 0 ⇔ 𝑈ℰ𝑘′𝑘(𝑡) = 0, we say that the transition 𝑘′ ⟷ 𝑘 is “forbidden”.Wenote that the
above hold within the dipole approximation, within which the wavelength is very much smaller than the
dimensions of the system. In other cases these rules about “allowed” and “forbidden” transitions do not
hold. Finally, the larger the magnitude of 𝑟⃗𝑘′𝑘, hence of𝑈ℰ𝑘′𝑘(𝑡) is, the stronger the “allowed” transitions
are.

7.2 Atomic models.

Thediscoveryof the electron in1897by J. J.Thomson [1], led scientists to realize that atoms are composed
of charged particles. In 1902, G. N. Lewis developed the model of the cubical atom (it was published
later [2]), according towhich electrons are placedon the corners of cubes. In 1904, again J. J.Thomson for-
mulated the so-called plumpuddingmodel [3], within which atoms aremade up of a positively charged
volume inside which there are tiny, negatively charged, electrons. In the same year, H. Nagaoka [4] pro-
posed an alternative model, the Saturnian model, according to which atoms are composed of a large,
positively charged, center, surrounded by a number of electrons revolving around it, just like the rings of
Saturn. 1911wasmarked by the discovery of the atomic nucleus by E. Rutherford [5].This discovery lead
again to the formulation of a planetary model, within which atoms are revolving around a small, dense,
positively charged nucleus. Many phenomena related to electrons in atoms and solids could not be ex-
plained though the classical theory. These insurmountable difficulties led to the development of the old
quantum theory (1900-1925) and subsequently of quantum mechanics (> 1925).

7.2.1 Rutherford's model.

Experiments byRutherford [5] led to the conclusion that electrons revolve around a tiny, dense, positively
charged, nucleus. Rutherford’s atomic model is an idiotypic, classical, “solar” or “planetary” system.
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Rutherford’s model (1911) is based on classical physics. The electron is in a circular orbit around the
nucleus, and the the centripetal force is the electrostatic attraction between the nucleus and the electron.
That is, 𝐹electric = 𝐹centripetal ⇒ 𝑚𝑒𝑣2𝑟 = 𝑍𝑒24𝜋𝜖0𝑟2 ⇒ (7.1)

𝑣 = √ 𝑍𝑒2𝑚𝑒4𝜋𝜖0𝑟 𝑣=2𝜋𝜈𝑟⟹ 𝜈 = √ 𝑍𝑒2𝑚𝑒16𝜋3𝜖0𝑟3 , (7.2)

where𝑚𝑒, 𝑒, 𝑣, 𝜈 is the electronmass, charge, (linear) velocity, and frequency, respectively, 𝑟 is the electron-
nucleus distance, and 𝑍 is the atomic number of the nucleus. Let us note that today we know that the
atomic center of mass essentially coincides with the center of the nucleus, sinnce the later is much smaller
(of the order of fm) than the whole atom (of the order of Å), i.e., it is 105 times smaller, while the masses
of the nuclear particles are𝑚p ≈ 1836𝑚e and𝑚n ≈ 1839𝑚e. p, n, e stand for proton, neutron, electron,
respectively. The reduced mass in the hydrogen atom is 𝜇 = 𝑚e𝑚p𝑚e+𝑚p

≈ 𝑚e. Therefore, the kinetic energy
of the electron is 𝐸K = 12𝑚𝑒𝑣2 = 𝑍𝑒28𝜋𝜖0𝑟 . (7.3)

Hence, given that its potential energy is

𝐸P = − 𝑍𝑒24𝜋𝜖0𝑟 , (7.4)

its total energy is given by the formula

𝐸T = 𝐸K + 𝐸P = 𝑍𝑒28𝜋𝜖0𝑟 − 𝑍𝑒24𝜋𝜖0𝑟 = − 𝑍𝑒28𝜋𝜖0𝑟 . (7.5)

Contradictions of the Rutherford’s model

1. According to the Rutherford’s model, since the electron is revolving around the nucleus, it will
have a centripetal acceleration. However, in classical electrodynamics, accelerating particles emit
electromagnetic waves. The power, 𝑃, emitted by an accelerating, non-relativistic (𝑣 ≪ 𝑐), point
charge is given by the Larmor equation as

𝑃 = 𝑞2𝑎26𝜋𝜖0𝑐3 , (7.6)

where 𝑞 is the particle’s charge (in our case, 𝑞 = −𝑒) and 𝑎 themagnitude of its acceleration (in our
case, centripetal). [We denote decrease by ↓ and increase by ↑.]Therefore, since the electron loses
energy as it accelerates, Eq. 7.5 yields𝐸T ↓ ⇒ |𝐸T| ↑ ⇒ 𝑟 ↓ ⇒ 𝑣 ↑ και 𝜈 ↑ . (7.7)

Thus, the electron loses energy by following a spiral orbit of increasingly smaller radius 𝑟 and larger
velocity 𝑣 and frequency 𝜈, until it eventually collapses in the nucleus. Therefore, Rutherford’s
model is a fatally flawedmodel.

2. According to Eq. 7.5, the electron-nucleus distance and the velocity (hence, the frequency) can
change in a continuous manner. This is in contradiction with experimental data, which, already by
the end of the 19th, suggested that atoms emit light in discrete, not in continuous, frequencies. See
Fig. 7.2 and Table 7.1.
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Figure 7.1: The Bohr’s model (1913) [6] is an evolved version of the Rutherford’s model (1911) [5]
and belongs to the old quantum theory. The electron revolves only in specific, allowed, circular orbits
characterized by a quantum number 𝑛 = 1, 2, 3, … . When it moves from an initial state to another final
state, it emits or absorbs electromagnetic radiation ℎ𝜈.
7.2.2 Bohr's model.

The Bohr’s model (1913) [6] is an evolved version of the Rutherford’s model (1911) [5] and belongs to
the old quantum theory. See Fig. 7.1. It is based on the following assumptions:

1. Electronsmove in circular orbits around the nucleus.The centripetal force comes from the electro-
static attraction between the nucleus and the electron and obeys to the laws of classical mechanics,
expressed by Eqs. (7.1), (7.2), (7.3), (7.4), (7.5) (mentioned previously in the context of Ruther-
ford’s model) for 𝐹electric, 𝐹centripetal, 𝐸K, 𝐸P, 𝐸T, 𝑣, 𝜈.

2. However, instead of the infinite orbits that would be possiblewithin classicalmechanics, within the
Bohr’s model the electron can only move in circular orbits in which the magnitude (|𝐿⃗| ∶= 𝐿) of
the angularmomentum, 𝐿⃗ = 𝑟⃗×𝑝⃗, is a naturalmultiple of the constant known today as “the Planck
constant”, i.e., 𝐿⃗ = 𝑟⃗ × 𝑝⃗ ⇒ 𝐿 = 𝑟𝑝 = 𝑚𝑒𝑣𝑟 = 𝑛ℏ, ∀𝑛 = 1, 2, 3, … .
In other words, Bohr introduced the hypothesis that the angular momentum is quantized, i.e., it
comes in discrete values.Thepositive integer number𝑛 is today called the principal quantumnum-
ber.

3. In these allowed stationary orbits, the electron does not radiate, i.e., the Larmor equation 7.6 does
not hold. In these orbits, which lie in specific distances from the nucleus, the electrons have a spe-
cific, constant energy.

4. EM radiation is emitted or absorbed only when the electron moves to another allowed orbit and
the frequency of the emitted or absorbed radiation follows the relationship ℎ𝜈 = |𝐸𝑖 − 𝐸𝑓|, where𝐸𝑖(𝑓) is the energy corresponding to the initial (final) orbit.

Since the angular momentum is quantized, it follows that𝑚𝑒𝑢𝑟 = 𝑛ℏ, (7.8)

therefore Eq. (7.2) yields 𝑟 = 𝑟𝑛 = 4𝜋𝜖0ℏ2𝑍𝑚𝑒𝑒2 𝑛2. (7.9)
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Thequantity 𝑎0 = 4𝜋𝜖0ℏ2𝑚𝑒𝑒2 ≃ 0.529⋅10−10mis called theBohr radius.Thus, in the hydrogen atom(𝑍 = 1),𝑟1 = 𝑎0, 𝑟2 = 4𝑎0, 𝑟3 = 9𝑎0, and so forth.
Given, Eq. 7.9, Eq. 7.5 for the total energy becomes

𝐸𝑇 = 𝐸𝑛 = − 𝑍𝑒28𝜋𝜖0𝑟𝑛 = − 𝑍2𝑚𝑒𝑒432𝜋2𝜖20ℏ2 1𝑛2 . (7.10)

The quantity𝑅𝐸 = 𝑚𝑒𝑒432𝜋2𝜖20ℏ2 ≃ 13.6 eV is called the Rydberg energy. Thus, in the hydrogen atom (𝑍 = 1),Ε1 ≃ −13.6 eV, 𝐸2 ≃ −3.4 eV, 𝐸3 ≃ −1.5 eV, and so forth. Compactly, in the hydrogen atom,

𝐸𝑛 = −𝑅𝐸𝑛2 ≃ −13.6𝑛2 eV. (7.11)

From the above, it follows that the photon energy is

ℎ𝜈 = |𝐸𝑓 − 𝐸𝑖| ⇒ ℎ 𝑐𝜆 = 􏵶−𝑅𝐸𝑛𝑓 + 𝑅𝐸𝑛𝑖 􏵶 ⇒ 1𝜆 = 𝑅𝐸ℎ𝑐 􏵶 1𝑛𝑖 − 1𝑛𝑓 􏵶, (7.12)

where 𝑅 ∶= 𝑅𝐸ℎ𝑐 ≈ 1.097 107m−1 is the Rydberg constant. In other words, the experimental Rydberg
formula occurs. Success! To sum up, Bohr’s atomic model:

• Managed to explain the experimental Rydberg formula for the hydrogen atom1𝜆 = 𝑅 ϴϵϵϵϵ϶ 1𝑛2𝑓 − 1𝑛2𝑖
ϷϸϸϸϸϹ , (7.13)

where 𝑛𝑖, 𝑛𝑓 ∈ ℕ∗, with 𝑛𝑓 < 𝑛𝑖. This formula predicts the wavelengths at which the hydrogen
atom emits EM radiation. The emission spectral lines of atomic hydrogen are presented in Fig-
ure 7.2 and are grouped in the so-called Lyman, Balmer, Paschen, etc, series, depending on the
values of 𝑛𝑓 and 𝑛𝑖, which are presented in Table 7.1.

Figure 7.2: Emission spectral lines of the hydrogen atom.

• Can also be applied to hydrogen-like atoms, such as He+, Li2+, Be3+, etc, through the form1𝜆 = 𝑅𝑍2 ϴϵϵϵϵ϶ 1𝑛2𝑓 − 1𝑛2𝑖
ϷϸϸϸϸϹ . (7.14)

• Can also be applied to describe distant electrons in multi-electron atoms, the effective nuclear
charge of which can be considered ≈ 𝑒 > 0, since all nuclear charges apart from one are screened
by the rest electrons.
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Table 7.1: Hydrogen spectral series.𝑛𝑓 𝑛𝑖 Name Converge towards1 2 → ∞ Lyman series 91.13 nm (UV)2 3 → ∞ Balmer series 364.51 nm (∼Visible)3 4 → ∞ Paschen series 820.14 nm (IR)4 5 → ∞ Brackett series 1458.03 nm (FIR)5 6 → ∞ Pfund series 2278.17 nm (FIR)6 7 → ∞ Humphreys series 3280.56 nm (FIR)

Figure 7.3: Zeeman effect: separation of the energy states of a subshell due to the presence of an external
magnetic field.

On the other hand, Bohr’s model also displays serious disadvantages [7].

• It can only be applied to H, single-electron ions such as He+, Li+2, Be+3, ... and outer electrons. It
is not sufficient to even explain the He atom.

• It cannot explain why some spectral lines are more intense than others, i.e., why some transitions
between energy levels are more probable to occur that others.

• It cannot explain whymany spectral lines are multiple, i.e. they are composed of distinct lines with
a very small wavelength difference. In other words, it cannot describe the fine structure of atomic
spectra.

• It cannot explain why, when a magnetic field is applied, the multiple lines are separated (Zeeman
effect). See Figure 7.3.

• It does not provide anunderstanding of how the atoms interact to formmolecules, solids, andother
clusters. In other words, it cannot be applied in Chemistry and Condensed Matter Physics.

Even though there where several efforts to improve the Bohr’smodes, e.g., byWilson [8] and Sommer-
feld [9], the above contradictions could only be solved in the context of modern quantum mechanics,
which was developed after 1925. Below, we discuss the atomic orbitals model, which belongs to modern
quantum mechanics.
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7.3 Schrödinger equation in spherical coordinates

The Schrödinger equation in spherical coordinates is1𝑟2 𝜕𝜕𝑟 􏿶𝑟2 𝜕𝜓𝜕𝑟 􏿹 + 1𝑟2 sin𝜃 𝜕𝜕𝜃 􏿶sin𝜃𝜕𝜓𝜕𝜃􏿹 + 1𝑟2 sin 2𝜃 𝜕2𝜓𝜕𝜙2 + 2𝑚ℏ2 􏿴𝐸 − 𝑈(⃗𝑟)􏿷 𝜓 = 0, (7.15)

where 1𝑟2 𝜕𝜕𝑟 􏿶𝑟2 𝜕𝜓𝜕𝑟 􏿹 + 1𝑟2 sin𝜃 𝜕𝜕𝜃 􏿶sin𝜃𝜕𝜓𝜕𝜃􏿹 + 1𝑟2 sin 2𝜃 𝜕2𝜓𝜕𝜙2 = ∇2𝜓(𝑟, 𝜃, 𝜙), (7.16)

is the Laplacian in spherical coordinates. In the hydrogen atom

𝑈(⃗𝑟) = − 𝑒24𝜋𝜖0𝑟 . (7.17)

Let us try to solve the problem by separating variables, i.e., by trying solutions of the form𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟) Θ(𝜃) Φ(𝜙). (7.18)

Thus,ΘΦ𝑟2 d
d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + 𝑅Φ𝑟2 sin𝜃 d

d𝜃 􏿶sin𝜃dΘ
d𝜃 􏿹 + 𝑅Θ𝑟2 sin 2𝜃 d2Φ

d𝜙2 + 2𝑚ℏ2 􏿴𝐸 − 𝑈(⃗𝑟)􏿷 𝑅ΘΦ = 0. (7.19)

If𝑅ΘΦ = 0, then the previous equation is trivially satisfied, whereas if𝑅ΘΦ ≠ 0, then we can divide by𝑅ΘΦ, so that1𝑅 1𝑟2 d
d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + 1Θ 1𝑟2 sin𝜃 d

d𝜃 􏿶sin𝜃dΘ
d𝜃 􏿹 + 1Φ 1𝑟2 sin 2𝜃 d2Φ

d𝜙2 + 2𝑚ℏ2 􏿴𝐸 − 𝑈(⃗𝑟)􏿷 = 0. (7.20)

We multiply by 𝑟2 sin 2𝜃 to obtain

sin 2𝜃𝑅 d
d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + sin𝜃Θ d

d𝜃 􏿶sin𝜃dΘ
d𝜃 􏿹 + 1Φ d2Φ

d𝜙2 + 2𝑚𝑟2 sin 2𝜃ℏ2 􏿴𝐸 − 𝑈(⃗𝑟)􏿷 = 0. (7.21)

The third addend of the above equation is a function of𝜙 only. We move it to the right-hand size and we
use Eq. (7.17), so that

sin 2𝜃𝑅 d
d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + sin𝜃Θ d

d𝜃 􏿶sin𝜃dΘ
d𝜃 􏿹 + 2𝑚𝑟2 sin 2𝜃ℏ2 􏿶𝐸 + 𝑒24𝜋𝜖0𝑟􏿹 = − 1Φ d2Φ

d𝜙2 . (7.22)

The left-hand side, Α, is a function of 𝑟 and 𝜃, while the right-hand side, Δ, is a function of𝜙. For the left-
hand side to be equal to the right-hand side ∀𝑟, 𝜃, 𝜙, it must hold that Α = Δ = constant. Let us call this
constant, without justification at this point,𝑚2ℓ , i.e., Α = Δ ∶= 𝑚2ℓ .

Thus, it occurs that − 1Φ d2Φ
d𝜙2 = 𝑚2ℓ (7.23)

which is an equation with respect to𝜙, as well as1𝑅 d
d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + 2𝑚𝑟2ℏ2 􏿶𝐸 + 𝑒24𝜋𝜖0𝑟􏿹 = 𝑚2ℓ

sin 2𝜃 − 1Θ sin𝜃 d
d𝜃 􏿶sin𝜃dΘ

d𝜃 􏿹 , (7.24)



210 ALLOWED AND FORBIDDEN OPTICAL TRANSITIONS

the left-hand side of which, Α΄, depends only on 𝑟 and the right-hand side, Δ΄, only on 𝜃. For the left-
hand side to be equal to the right-hand side ∀𝑟, 𝜃, it must hold that Α΄ = Δ΄ = constant. Let us call this
constant, without justification at this point ℓ(ℓ+1), i.e., Α΄ =Δ΄ ∶= ℓ(ℓ+1). Hence,moving on, we obtain
the equation 𝑚2ℓ

sin 2𝜃 − 1Θ sin𝜃 d
d𝜃 􏿶sin𝜃dΘ

d𝜃 􏿹 = ℓ(ℓ + 1) (7.25)

which is a function of 𝜃 only, and the equation1𝑅 d
d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + 2𝑚𝑟2ℏ2 􏿶𝐸 + 𝑒24𝜋𝜖0𝑟􏿹 = ℓ(ℓ + 1) (7.26)

which is a function of 𝑟 only. Eq. (7.26) is the only one containing the potential energy. It is going to give
us 𝐸, that is the energy eigenvalues or the “allowed energies”.

Let us solve Eq. (7.23) first, by trying solutions of the formΦ(𝜙) = 𝐴 𝑒𝑖𝑚ℓ𝜙, (7.27)

so that Φ′(𝜙) = 𝐴𝑖𝑚ℓ 𝑒𝑖𝑚ℓ𝜙, (7.28)

and Φ″(𝜙) = −𝐴𝑚2ℓ 𝑒𝑖𝑚ℓ𝜙. (7.29)

Thus, it can easily be shown that Eq. (7.23) is satisfied. Moreover, since it must hold thatΦ(𝜙+2𝜋) = Φ(𝜙) ⇒ 𝑒𝑖𝑚ℓ(𝜙+2𝜋) = 𝑒𝑖𝑚ℓ𝜙 ⇒ 𝑒𝑖𝑚ℓ2𝜋 = 1 = 𝑒𝑖2𝜋𝑚,𝑚 ∈ 𝒵 ⇒ 𝑚ℓ = 𝑚 ∈ 𝒵. (7.30)

Concisely, Φ𝑚ℓ(𝜙) = 𝐴 𝑒𝑖𝑚ℓ𝜙, 𝑚ℓ ∈ 𝒵 . (7.31)𝑚ℓ is called the magnetic quantum number, for reasons that will not be explained yet. Additionally, nor-
malizing over the interval [0, 2𝜋], we obtain

􏾙2𝜋
0 |𝐴 𝑒𝑖𝑚ℓ𝜙|2 = 1 ⇒ |𝐴|2 = 12𝜋, (7.32)

hence it would be convenient to chooseΑ = 1√2𝜋 , i.e.,
Φ𝑚ℓ(𝜙) = 1√2𝜋 𝑒𝑖𝑚ℓ𝜙, 𝑚ℓ ∈ 𝒵 (7.33)

Regarding Eq. (7.25), we mention (without proof) that it has solutions when𝑚ℓ = 0, ±1, ±2,… , ±ℓ. (7.34)ℓ is called the secondary quantum number or angular momentum quantum number. Therefore, we can
denote the solutions to Eq. (7.25) asΘℓ𝑚ℓ(𝜃).

Regarding Eq. (7.26), we mention (without proof) that it has solutions when 𝐸 > 0 or when

𝐸𝑛 = −𝑅𝐸𝑛2 = − 𝑚𝑒𝑒432𝜋2𝜖20ℏ2 1𝑛2 , (7.35)
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Figure 7.4: Comparison of energies and positions, at the ground state, between the Bohr’s model and the
atomic orbitals model.

and, at the same time, ℓ = 0, 1, 2, … , 𝑛 − 1. States with𝐸 = 𝐸𝑛 are called bound states. It is worth-noting
that these energies are the same with the ones of the simplistic

✿✿✿✿✿✿
Bohr’s

✿✿✿✿✿✿
model. 𝑛 is called the principal

quantum number. Thus, we can denote the solutions to Eq. (7.26) as 𝑅𝑛ℓ(𝑟). We also note that we can
bring Eq. (7.26) to the form1𝑟2 d

d𝑟 􏿶𝑟2d𝑅d𝑟 􏿹 + 2𝑚ℏ2 􏿶𝐸 + 𝑒24𝜋𝜖0𝑟 − ℏ2ℓ(ℓ + 1)2𝑚𝑟2 􏿹 𝑅 = 0. (7.36)

If we remember that the energy of a particle moving inside a central potential (such as𝑈(⃗𝑟) = − 𝑒24𝜋𝜖0𝑟)
contains the rotational term 𝐸𝑟𝑜𝑡 = 𝐿22𝑚𝑟2 , (7.37)

it follows that the magnitude of the angular momentum 𝐿 is given by𝐿 = ℏ√ℓ(ℓ + 1), ℓ = 0, 1, 2, … , 𝑛 − 1. (7.38)

In other words, the angular momentum is quantized. This is why the number ℓ is called this way.
Towrap this up, the solutions to the Schrödinger equation for the hydrogen atomhave the general formΨ𝑛ℓ𝑚ℓ = 𝒩 𝑅𝑛ℓ(𝑟)Θℓ𝑚ℓ(𝜃)Φ𝑚ℓ(𝜙), (7.39)

or Ψ𝑛ℓ𝑚ℓ = 𝒩 𝑅𝑛ℓ(𝑟)𝑌ℓ𝑚ℓ(𝜃, 𝜙), (7.40)

where the productΘℓ𝑚ℓΦ𝑚ℓ is represented by the spherical harmonics,𝑌ℓ𝑚ℓ .
7.3.1 Atomic orbitals model.

According to the atomic orbitals model, the state of the electrons inside an atom is determined by the
solutions to the Schrödinger equation, which gives its allowed energy levels,𝐸𝑛ℓ𝑚, and its eigenfunctions
(atomic orbitals),Ψ𝑛ℓ𝑚(⃗𝑟). For the hydrogen atom, this procedure was described above, and it leads to𝐸𝑛ℓ𝑚ℓ = 𝐸𝑛. In multi-electron atoms, 𝐸𝑛ℓ𝑚ℓ = 𝐸𝑛ℓ. However, as we will see below, the degeneracy
with respect to𝑚ℓ is lifted under a magnetic field. Generally, the electronic states are dependent on the
following quantum numbers:
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• 𝑛 = 1, 2, 3, … is the principal quantum number, which defines the shell and determines the
averagedistancebetween the electron and the nucleus (contrary toBohr’s atomicmodel, inwhich
it determined the radius of the circularmotion).

• ℓ = 0, 1, 2, … , 𝑛−1 is the secondaryquantumnumber or angularmomentumquantumnumber,
which determines the subshell and the shape of the probability density to find the electron some-
where in space. For example, for 𝑛 = 1, there is one subshell with ℓ = 0. For 𝑛 = 2, there are two
subshells with ℓ = 0, 1, and so forth.The number ℓ determines the form of the probability density
to find the electron somewhere in space. Subshells with 𝑙 = 0 are called 𝑠 orbitals, with ℓ = 1 𝑝
orbitals, with ℓ = 2 𝑑 orbitals, and so forth. 𝑠 orbitals display shperical symmetry, 𝑝 orbitals are
bilobed with directionality, and so forth.

• 𝑚 = −ℓ, −ℓ + 1,… , ℓ − 1, ℓ is the magnetic quantum number. It takes 2ℓ + 1 different values.
This number is the total number of energy states within a subshell. For example, for ℓ = 3,𝑚 =0, ±1, ±2, ±3. Hence, there 7 energy states within in an 𝑓-subshell. In the absence of magnetic
fields, the energy states of a subshell are degenerate, i.e., 𝐸𝑛ℓ𝑚 = 𝐸𝑛𝑙. This degeneracy is lifted
under a magnetic field (Zeeman effect, see Figure 7.3). Consider a magnetic field, 𝐵⃗, along the𝑧-direction. The magnitude of the electronic angular momentum is𝐿 = ℏ√ℓ(ℓ + 1), (7.41)

while the 𝑧-component of the electronic angular momentum is𝐿𝑧 = ℏ𝑚ℓ, 𝑚ℓ = 0, ±1, ±2,… , ±ℓ. (7.42)

However, since |𝑚ℓ| ≤ ℓ ⇒ 𝑚2ℓ ≤ ℓ2 < ℓ(ℓ + 1) ⇒ ℏ2𝑚2ℓ < ℏ2ℓ(ℓ + 1) ⇒ |𝐿𝑧| 2 < |𝐿| 2. This
means that that the angular momentum 𝐿⃗ cannot be directed exactly parallel or antiparallel to 𝐵⃗.
The components 𝐿𝑥, 𝐿𝑦 are not well defined, however, due to symmetry reasons, ⟨𝐿𝑥⟩ = ⟨𝐿𝑦⟩ =0. Therefore, we can imagine 𝐿⃗ as if it were rotating around the 𝑧-axis (Larmor precession). See
Figure 7.5, e.g. for ℓ = 2,𝑚ℓ = −2, −1, 0, 1, 2. We note that the magnetic field only provides an
experimentally well-defined direction. This analysis holds for any given direction. To sum up, the
magnitudeof the angularmomentum𝐿 = ℏ√ℓ(ℓ + 1) aswell as one of its components (whichever
we choose), e.g. 𝐿𝑧 = 𝑚̄ℓ, are quantized quantities. The rest components are not well defined. If
they were, i.e., if the angular momentum could be fully determined, e.g.. 𝐿⃗ = 𝐿𝑧𝑧̂, it would hold
that 𝐿⃗ = 𝑟⃗ × 𝑝⃗ ⇒ 𝑟⃗ ⋅ 𝐿⃗ = 𝑟⃗ ⋅ 𝑟⃗ × 𝑝⃗ = 𝑝⃗ ⋅ 𝑟⃗ × 𝑟⃗ = 𝑝⃗ ⋅ 0⃗ = 0⃗ ⇒ 𝑟⃗ ⟂ 𝐿⃗. (7.43)

In other words 𝑟⃗would lie on 𝑥𝑦-plane, which in turn means that the 𝑧-component of the electron
would be fully determined, i.e., Δ𝑧 = 0. This is absurd, since it contradicts the Heisenberg’s un-
certainty principle, according to which Δ𝑧Δ𝑝𝑧 ≥ ℏ2 . Thus, since only 𝐿, 𝐿𝑧 are well-defined and|𝐿| < |𝐿𝑧| , the electron can never be confined to a plane.

Under a magnetic field 𝐵⃗, there is a potential energy term added to the Hamiltonian which has the
form 𝑈 = −𝜇𝐵⃗, (7.44)

where 𝜇 is the magnetic moment of the system. For a magnetic field along the 𝑧-direction and
ignoring spin-related effects, we obtain

𝑈 = − −𝑒2𝑚𝑒 𝐿⃗𝐵⃗ = 𝑒2𝑚𝑒𝐿𝑧𝐵 = 𝑒ℏ2𝑚𝑒𝑚ℓ𝐵 = 𝜇𝑏𝑚ℓ𝐵, (7.45)
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Figure 7.5: The cones represent the possible directions of the angular momentum, e.g., for ℓ = 2
(𝑚ℓ = −2, −1, 0, 1, 2). For a magnetic field along the 𝑧-direction, the angular momentum cannot di-
rected exactly parallel or antiparallel to the field.The 𝑥- and 𝑦- components of the angular momentum are
not well defined.

where the quantity 𝜇𝐵 ≈ 9.274 ⋅ 10−24 J/T≈ 5.788 ⋅ 10−5 eV/T is called the Bohr’s magneton.
Therefore, under a magnetic field, the energy depends not only on the quantum number 𝑛, but
also on𝑚ℓ. This is the reason why this number is called the magnetic quantum number. Under a
magnetic field, the 2ℓ+1 degenerate energy states are separated.Therefore, under amagnetic field,
the spectral emission lines are separated. This is the normal Zeeman effect (see Figure 7.3).

• There is also the spinquantumnumber,𝑚𝑠, which for electrons takes the values𝑚𝑠 = ±1/2. Similar
to the angular momentum, the magnitude of the spin of a particle is𝑆 = ℏ√𝑠(𝑠 + 1), (7.46)

while its 𝑧-component is 𝑧 𝑆𝑧 = ℏ𝑚𝑠, 𝑚𝑠 = 0, ±1, ±2,… , ±𝑠. (7.47)

The quantum number 𝑠 takes positive integer values when the particle is a boson or positive half-
integer values when the particle is a fermion. Electrons are fermions with spin 𝑠 = 12 (half-integer).

Therefore,𝑚𝑠 = ±12 . Similar to the angular momentum, for a magnetic field along the 𝑧-axis, the
spin cannot be directed exactly parallel or antiparallel to the field.The 𝑥- and 𝑦- components of the
spin are not well-defined. Therefore we can imagine 𝑆 as if it were rotating around the 𝑧-axis. See
Figure 7.6.

Under a magnetic field 𝐵⃗, there is a potential energy term added to the Hamiltonian which has the
form 𝑈 = −𝜇𝐵⃗, (7.48)
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Figure 7.6:The cones represent the possible directions of the electron spin. For amagnetic field along the𝑧-direction, the spin cannot directed exactly parallel or antiparallel to the field.The 𝑥- and 𝑦- components
of the spin are not well defined.

where 𝜇 is the magnetic moment of the system. For a magnetic field along the 𝑧-direction
𝑈 = −𝜇𝐵⃗ = − −𝑒2𝑚𝑒 (𝐿⃗ + 𝑔𝑆)𝐵⃗ = 𝑒2𝑚𝑒 (𝐿𝑧 + 𝑔𝑆𝑧)𝐵 = 𝑒ℏ2𝑚𝑒𝑚ℓ𝐵 = 𝜇𝑏(𝑚ℓ + 𝑔𝑚𝑠)𝐵, (7.49)

where the constant 𝑔 ≈ 2 is called the Landé factor. Therefore, under a magnetic field, the energy
depends not only on the quantum number 𝑛, but also on𝑚ℓ,𝑚𝑠. Hence, under a magnetic field,
the 2ℓ + 1 degenerate energy states of angular momentum and the 2 spin-states are separated.
This is called the anomalous Zeeman effect. For degenerate spin, every state of each subshell can
be occupied by up to 2 electrons (with 𝑚𝑠 = +12 and 𝑚𝑠 = −12), due to the Pauli’s exclusion
principle, according to which two fermions cannot occupy the same quantum state. We note that,
apart from the Zeeman effect, there are other corrections to the eigenenergies of hydrogen, such as
the fine structure, which occurs from relativistic corrections to the Schrödinger equation and the
hyperfine structure, which occurs if we take into account interactions with the spin of the atomic
nucleus. These corrections are several orders of magnitude smaller.

In Table 7.2 the structure of the first four energy shells within the atomic orbitals model is presented.
Taking into account the Pauli’s exclusion principle, since in an 𝑠 (ℓ = 0) subshell there is 1 state (𝑚ℓ = 0),
this subshell can by occupied by2 electrons atmost, onewith spin up (𝑚𝑠 = +12) and onewith spin down

(𝑚𝑠 = −12). Similarly, in a 𝑝 (ℓ = 1) subshell there are 3 states (𝑚ℓ = 0, ±1), hence it can by occupied by
up to 6 electrons. In a 𝑑 (ℓ = 2) subshell there are 5 states (𝑚ℓ = 0, ±1, ±2), hence it can by occupied
by up to 10 electrons. In an 𝑓 (ℓ = 3) subshell there are 7 states (𝑚ℓ = 0, ±1, ±2, ±3), hence it can by
occupied by up to 14 electrons.

In Figure 7.7, an approximative schematic representation of the relative energies of various shells and
subshells is presented. We observe that:
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Table 7.2: Structure of the first four energy shells within the atomic orbitals model.

Shell (𝑛) Subshell (ℓ) States (𝑚ℓ) Maximum #F− in shell Maximum #F− in subshell1 (K) 0 (1𝑠) 0 2 22 (L) 0 (2𝑠) 0 2 81 (2𝑝) 0, ±1 63 (M)
0 (3𝑠) 0 2

181 (3𝑝) 0, ±1 62 (3𝑑) 0, ±1, ±2 10

4 (N)

0 (4𝑠) 0 2
321 (4𝑝) 0, ±1 62 (4𝑑) 0, ±1, ±2 103 (4𝑓) 0, ±1, ±2, ±3 14

Figure 7.7: Approximative schematic of the relative energies of shells and subshells.

• The more inner the shell (i.e., the less the value of the principal quantum number 𝑛), the less the
energy of the subshell of the same form, e.g., 𝐸1𝑠 < 𝐸2𝑠 < 𝐸3𝑠 < 𝐸4𝑠, … , 𝐸2𝑝 < 𝐸3𝑝 < 𝐸4𝑝 … ,
κ.ο.κ.

• For any given shell, i.e. for a given 𝑛, the energy of the subshell increases with the value of ℓ, e.g.𝐸3𝑠 < 𝐸3𝑝 < 𝐸3𝑑.
• It is possible that a subshellwith a smaller𝑛 (“amore inner shell”) has a larger energy than a subshell

of another form with larger 𝑛 (“a more outer shell”), e.g. 𝐸3𝑑 > 𝐸4𝑠. In other words, shells can
be overlapping with each other. This effect is mainly observed for large values of 𝑛 and especially
between 𝑓 and 𝑑 orbitals.

We characterized this representation as approximative, since, e.g., the 3𝑑 and 4𝑠 orbitals are very close
to each other energetically, and their specific arrangement depends on:

• the specific atom, i.e., the number of protons, neutrons, and electrons.

• the repulsion between electrons that occupy orbitals. For example the combinations 3𝑑1 4𝑠2 or3𝑑24𝑠1 are more favorable, since 𝑑 and 𝑠 orbital have different distributions of the electron cloud,
hence the repulsion between them is different,
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• the Pauli’s exclusion principle, etc.

Figure 7.8: Ground state configuration of the Sodium atom (Na).

Of course, not all of the possible energy states of an atom are occupied by electrons. The way in which
the energy states of an atomareoccupiedby electrons is called theelectronconfiguration. Inmost atoms,
electrons fill the states with the lowest energy, with two electrons with opposite spins occupying each
state. The ground state (i.e., the one with lowest energy) electron configuration of the Sodium atom is
schematically presented in Figure 7.8. Of course, there are many ways to excite electrons in atoms so that
electronic configurationswith larger energies occur.The conventional notation is that the number of elec-
trons in each subshell ismarked by an exponent next to the subshell symbol. For example, for Sodium:Na1𝑠22𝑠22𝑝63𝑠1, which means that, out of its 11 electrons, 2 belong to the 1𝑠 subshell, 2 to the 2𝑠 subshell,6 to the 2𝑝 subshell, and 1 to the 3𝑠 subshell.

The electrons that occupy the outer shell (i.e., the highest energetically shell which is partially or fully
occupied) are called valence electrons. For example, in Sodium there is one valence electron, the one
that belongs in shell 3, and specifically in subshell 3𝑠. These electrons are very important, since they par-
ticipate to bonding between atoms to form atomic and molecular clusters. Furthermore, many physical
and chemical properties mainly depend on the valence electrons.

We say that an atomhas a stable electronic configurationwhen the 𝑠 and𝑝 subshells of the outer shell
(or, for He, only the 𝑠 subshell) are filled.Therefore, the occupied outer shell has 2 + 6 = 8 electrons (or,
for He, 2 electrons). The elements He, Ne, Ar, Kr, Xe, Rn have a stable electronic configurations. These
elements are called noble gases or inert gases and have essentially no chemical reactivity. Some atomswith
no fully occupied valence shells can obtain a stable electronic configuration by adding or losing electrons,
i.e. by forming ions, or by sharing their valence electrons with other atoms. This is a general tendency,
not a strict rule. Some exceptions are, e.g., BF3 and PCl5. The electronic configuration of noble gases is
presented in Table 7.3.

Finally, it should be noticed that we cannot know a priori the relationship between the energies of the
subshells of two different atoms. For example, the electronic configuration of Na is [Ne]3𝑠1, with ioniza-
tion energy 5.1391 eV, i.e., ΕNa3�� = −5.1391 eV, while the electronic configuration of Cl is [Ne]3𝑠23𝑝5,
with ionization energy 12.9676 eV, i.e., ΕCl3𝑝 = −12.9676 eV . In other words, ΕNa3�� > ΕCl3𝑝. This is why
chlorine is said to be more electronegative than sodium.
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Table 7.3: Electronic configuration of noble gases.

Noble gas Electronic configuration Number of electrons in shells
Helium (He) 1𝑠2 2
Neon (Ne) [He]2𝑠22𝑝6 2, 8
Argon (Ar) [Ne]3𝑠23𝑝6 2, 8, 8
Krypton (Kr) [Ar]3𝑑104𝑠24𝑝6 2, 8, 18, 8
Xenon (Xe) [Kr]5𝑠24𝑑105𝑝6 2, 8, 18, 18, 8
Radon (Rn) [Xe]4𝑓145𝑑106𝑠26𝑝6 2, 8, 18, 32, 18, 8

7.4 Hydrogen Atom: Form of atomic orbitals.

In Fig. 7.9 we show the spherical coordinates (𝑟, 𝜃, 𝜑) as they are commonly used in physics: the distance𝑟 from the axes origin O, the polar angle 𝜃, and the azimuthal angle𝜑. The unit vectors 𝑒̂𝑟, 𝑒̂𝜃, 𝑒̂𝜑 are also
depicted.

Figure 7.9: The spherical coordinates (𝑟, 𝜃, 𝜑): the distance 𝑟 from the axes origin O, the polar angle 𝜃,
and the azimuthal angle𝜑. The unit vectors 𝑒̂𝑟, 𝑒̂𝜃, 𝑒̂𝜑 are also depicted.

We remind that the unit vectors 𝑒̂𝑟, 𝑒̂𝜃, 𝑒̂𝜑 of the spherical coordinate system can be transformed to the
unit vectors of the Cartesian coordinate system (𝑒̂𝑥, 𝑒̂𝑦, 𝑒̂𝑧) and vice versa according to the relationshipsϺϻϻϻϻϻϻϼ 𝑒̂𝑟𝑒̂𝜃𝑒̂𝜑

ϽϾϾϾϾϾϾϿ =
Ϻϻϻϻϻϻϻϼsin𝜃 cos𝜑 sin𝜃 sin𝜑 cos𝜃
cos𝜃 cos𝜑 cos𝜃 sin𝜑 − sin𝜃− sin𝜑 cos𝜑 0

ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ𝑒̂𝑥𝑒̂𝑦𝑒̂𝑧
ϽϾϾϾϾϾϾϿ ,

Ϻϻϻϻϻϻϻϼ𝑒̂𝑥𝑒̂𝑦𝑒̂𝑧
ϽϾϾϾϾϾϾϿ =

Ϻϻϻϻϻϻϻϼsin𝜃 cos𝜑 cos𝜃 cos𝜑 − sin𝜙
sin𝜃 sin𝜑 cos𝜃 sin𝜑 cos𝜑

cos𝜃 − sin𝜃 0
ϽϾϾϾϾϾϾϿ
Ϻϻϻϻϻϻϻϼ 𝑒̂𝑟𝑒̂𝜃𝑒̂𝜑
ϽϾϾϾϾϾϾϿ .

(7.50)
In spherical coordinates, the eigenfunctions of hydrogen have the formΨ𝑛ℓ𝑚(𝑟, 𝜃, 𝜑) = 𝑅𝑛ℓ(𝑟)Θℓ𝑚(𝜃)Φ𝑚(𝜑).

These are theΦ𝑘(⃗𝑟) of the general notation we have been using so far, where 𝑘 = {𝑛, ℓ,𝑚} is the collective
quantum number. To be more specific, below we list the atomic orbitals 1𝑠, 2𝑠, 2𝑝, 3𝑠, 3𝑝, 3𝑑 [10].

Ψ100(𝑟, 𝜃, 𝜑) = 􏿴𝜋𝑎30􏿷−12 𝑒− 𝑟𝑎0 Ψ100 ∶= 1𝑠Ψ200(𝑟, 𝜃, 𝜑) = 􏿴32𝜋𝑎30􏿷−12 􏿶2 − 𝑟𝑎0 􏿹 𝑒− 𝑟2𝑎0 Ψ200 ∶= 2𝑠
Ψ210(𝑟, 𝜃, 𝜑) = 􏿴32𝜋𝑎30􏿷−12 𝑟𝑎0 cos𝜃 𝑒− 𝑟2𝑎0 Ψ210 ∶= 2𝑝𝑧
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Ψ21±1(𝑟, 𝜃, 𝜑) = 􏿴64𝜋𝑎30􏿷−12 𝑟𝑎0 sin𝜃 𝑒±𝑖𝜑𝑒− 𝑟2𝑎0 (Ψ21+1 + Ψ21−1)/√2 ∶= 2𝑝𝑥(Ψ21+1 − Ψ21−1)/(𝑖√2) ∶= 2𝑝𝑦Ψ300(𝑟, 𝜃, 𝜑) = 􏿴19683𝜋𝑎30􏿷−12 􏿶27 − 18 𝑟𝑎0 + 2 𝑟2𝑎20 􏿹 𝑒− 𝑟3𝑎0 Ψ300 ∶= 3𝑠
Ψ310(𝑟, 𝜃, 𝜑) = 􏿴6561𝜋𝑎30/2􏿷−12 􏿶6 − 𝑟𝑎0 􏿹 𝑟𝑎0 𝑒− 𝑟3𝑎0 cos𝜃 Ψ310 ∶= 3𝑝𝑧
Ψ31±1(𝑟, 𝜃, 𝜑) = 􏿴6561𝜋𝑎30􏿷−12 􏿶6 − 𝑟𝑎0 􏿹 𝑟𝑎0 𝑒− 𝑟3𝑎0 sin𝜃 𝑒±𝑖𝜑 (Ψ31+1 + Ψ31−1)/√2 ∶= 3𝑝𝑥(Ψ31+1 − Ψ31−1)/(𝑖√2) ∶= 3𝑝𝑦Ψ320(𝑟, 𝜃, 𝜑) = 􏿴39366𝜋𝑎30􏿷−12 􏿶 𝑟𝑎0 􏿹2 𝑒− 𝑟3𝑎0 (3 cos2 𝜃 − 1) Ψ320 ∶= 3𝑑𝑧2
Ψ32±1(𝑟, 𝜃, 𝜑) = 􏿴6561𝜋𝑎30􏿷−12 􏿶 𝑟𝑎0 􏿹2 𝑒− 𝑟3𝑎0 sin𝜃 cos𝜃 𝑒±𝑖𝜑 (Ψ32+1 + Ψ32−1)/√2 ∶= 3𝑑𝑥𝑧(Ψ32+1 − Ψ32−1)/(𝑖√2) ∶= 3𝑑𝑦𝑧Ψ32±2(𝑟, 𝜃, 𝜑) = 􏿴26244𝜋𝑎30􏿷−12 􏿶 𝑟𝑎0 􏿹2 𝑒− 𝑟3𝑎0 sin2 𝜃 𝑒±2𝑖𝜑 (Ψ32+2 + Ψ32−2)/√2 ∶= 3𝑑𝑥2−𝑦2(Ψ32+2 − Ψ32−2)/(𝑖√2) ∶= 3𝑑𝑥𝑦
Of course, the eigenfunctions can be multiplied by a factor 𝑒𝑖𝑎, where 𝑎 is an arbitrary phase, still re-

maining eigenfunctions. As discussed above, the respective eigenenergies are 𝐸𝑘 = ℏΩ𝑘 = −𝑅𝐸𝑛2 = 𝐸𝑛,
i.e., there is degeneracy with respect to ℓ,𝑚. 𝑅𝐸 = 13.6 eV is the Rydberg of energy and 𝑎0 is the Bohr
radius. The first five atomic orbitals, i.e., 1𝑠, 2𝑠, 2𝑝𝑥, 2𝑝𝑦, 2𝑝𝑧, are depicted in Figure 7.10, the five 3𝑑 or-
bitals in Figure 7.11, while all the atomic orbitals of hydrogen-like wavefunctions up to 7𝑠 are presented
in Figure 7.12.

Figure 7.10:The first five atomic orbitals, i.e., 1𝑠, 2𝑠, 2𝑝𝑥, 2𝑝𝑦, 2𝑝𝑧 [11].The colors (orange, azure) corre-
spond to different signs; e.g., if the orange region is positive, then the azure region is negative. We set the
factor 𝑒𝑖𝑎 = 1. On the right we show the nodal surfaces of 2𝑝with detail.

7.5 Nodal surfaces.

In Figure 7.12 we can observe that, apart from 1𝑠, all orbitals have at least one nodal surface. A nodal
surface is a surface on which the wavefunction becomes zero; hence, the probability to find the electron
there becomes zero, as well. There are two types of nodal surfaces:

• Spherical nodal surfaces, which are called radial nodes, since they are fully described by their ra-
dius. The number of radial nodes in an orbital is determined by the quantum numbers 𝑛 and ℓ; in
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Figure 7.11: The five 3𝑑 orbitals [11]. The colors (orange, azure) correspond to different signs; e.g., if the
orange region is positive, then the azure region is negative. We set the factor 𝑒𝑖𝑎 = 1.

Figure 7.12: All the atomic orbitals of hydrogen-like wavefunctions up to 7𝑠. The colors correspond to
different signs; e.g., if the red region is positive, then the blue region is negative. We set the factor 𝑒𝑖𝑎 = 1.
Image from wikipedia [12].

specific, it is 𝑛− ℓ − 1. Radial nodes can be determined by obtaining these distances 𝑟 at which the
wavefunction becomes zero. Thus, 1𝑠 orbitals have no radial nodes„ 2𝑠 have one, 2𝑝 have none, 3𝑠
have two, 3𝑝 have one, and so forth.

• Planar or conical surfaces, which are called angular nodes, since they are fully described by the
angle they formwith one of the three axes.Thenumber of angular nodes in an orbital is determined
by the quantum number ℓ; in fact, it is equal to ℓ. Angular nodes can be determined by obtaining
these angles𝜃, 𝜙 at which the wavefunction becomes zero.Thus, 𝑠 orbitals have no angular nodes,𝑝 have one, 𝑑 have two, 𝑓 have three, and so forth. The angular nodes are the ones that essentially
determine the outer orbital shape.

Based on the above, the total number of nodal surfaces, both radial and angular, is 𝑛 − ℓ − 1 + ℓ = 𝑛 − 1.
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7.6 Parity, allowed and forbidden transitions, selection rules.

The fact that we know the analytical form of the wavefunctions of hydrogen allows us to use it as an exam-
ple in order to study its allowed and forbidden transitions within the dipole approximation. We remind
that, within this approximation, the potential energy of the perturbation is𝑈ℰ𝑘′𝑘(𝑡) = 𝑒 ℰ⃗ ⋅ 􏾙𝑑3𝑟Φ∗𝑘′ (⃗𝑟) 𝑟⃗ Φ𝑘(⃗𝑟)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝑟⃗𝑘′𝑘

.
If 𝑟⃗𝑘′𝑘 becomes zero, then𝑈ℰ𝑘′𝑘(𝑡) alsobecomes zero, hence states𝑘′ and𝑘 are not coupled.Therefore, the
electron cannotmove from state 𝑘 to 𝑘′ and vice versa.Thus, everything is reduced to the parity of the hy-
drogenwavefunctions, since 𝑟⃗ is of course an odd function. If two eigenfunctionsΦ𝑘(⃗𝑟) = Ψ𝑛ℓ𝑚ℓ(𝑟, 𝜃, 𝜙)
and Φ𝑘′ (⃗𝑟) = Ψ𝑛′ℓ′𝑚′ℓ(𝑟, 𝜃, 𝜙) have the same parity, then the integrand is an odd function, hence the
spatial integral becomes zero by identity. In this case, we say that this transition is “forbidden”. On the
contrary, if the two eigenfunctions have different parities, then the integrand is an even funtion and the
spatial integral is not zero by identity. In this case, we say that this transition is “allowed”. Of couse, in
the latter case, the value of the integral is different for different pairsΨ𝑛ℓ𝑚ℓ(𝑟, 𝜃, 𝜙) andΨ𝑛′ℓ′𝑚′ℓ(𝑟, 𝜃, 𝜙).
In other words, not all transitions have the same strength. In the case of hydrogen, the symmetry of the
eigenfunctions results in transitions withΔℓ = ±1,Δ𝑚ℓ = 0, ±1 being “allowed”.These are the so-called
selection rules. We will address all the above onmore detail below, using the hydrogen atom as an exam-
ple/exercise. Additional relevant exercises can be found in Appendix A.

7.7 Hydrogen Atom: Calculation of the dipole moment matrix elements. Allowed and forbidden
transitions. Selection rules.

Consider the eigenfunctions of the hydrogen atomΨ𝑛ℓ𝑚(𝑟, 𝜃, 𝜑) = 𝑅𝑛ℓ(𝑟)Θℓ𝑚(𝜃)Φ𝑚(𝜑) = Φ𝑘(⃗𝑟)
where 𝑘 = {𝑛, ℓ,𝑚} is the collective quantumnumber.𝑛 = 1, 2, 3, … is theprincipal quantumnumber,ℓ = 0, 1, 2, … , 𝑛 − 1 is the angular momentum quantum number, and𝑚 = −ℓ, −ℓ + 1,… , ℓ − 1, ℓ is
the magnetic quantum number. Specifically, consider the eigenfunctions

Ψ100(𝑟, 𝜃, 𝜑) = 􏿴𝜋𝑎30􏿷−12 𝑒− 𝑟𝑎0 Ψ100 ∶= 1𝑠Ψ200(𝑟, 𝜃, 𝜑) = 􏿴32𝜋𝑎30􏿷−12 􏿶2 − 𝑟𝑎0 􏿹 𝑒− 𝑟2𝑎0 Ψ200 ∶= 2𝑠
Ψ210(𝑟, 𝜃, 𝜑) = 􏿴32𝜋𝑎30􏿷−12 𝑟𝑎0 cos𝜃 𝑒− 𝑟2𝑎0 Ψ210 ∶= 2𝑝𝑧
Ψ21±1(𝑟, 𝜃, 𝜑) = 􏿴64𝜋𝑎30􏿷−12 𝑟𝑎0 sin𝜃 𝑒±𝑖𝜑𝑒− 𝑟2𝑎0 (Ψ21+1 + Ψ21−1)/√2 ∶= 2𝑝𝑥(Ψ21+1 − Ψ21−1)/(𝑖√2) ∶= 2𝑝𝑦Ψ300(𝑟, 𝜃, 𝜑) = 􏿴19683𝜋𝑎30􏿷−12 􏿶27 − 18 𝑟𝑎0 + 2 𝑟2𝑎20 􏿹 𝑒− 𝑟3𝑎0 Ψ300 ∶= 3𝑠

The corresponding eigenenergies are 𝐸𝑘 = ℏΩ𝑘 = −𝑅𝐸𝑛2 = 𝐸𝑛, thus there is degeneracy with respect toℓ,𝑚.𝑅𝐸 = 13.6 eV is the Rydberg energy and 𝑎0 is the Bohr radius.
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1. Check whether the above given eigenfunctions are normalized.

2. Check whether they are even or odd.

3. Determine whether the integrals𝑟⃗𝑘1𝑘2 ∶= 􏾙
everywhere

𝑑𝑉Φ∗𝑘1 (⃗𝑟) 𝑟⃗ Φ𝑘2 (⃗𝑟)
i.e., the matrix elements of the electron’s position with respect to the nucleus, become zero or not.
These integrals are proportional to the matrix elements of the dipole moment𝒫 = −𝑒𝑟, i.e.,𝒫𝑘1𝑘2 ∶= 􏾙

everywhere

𝑑𝑉Φ∗𝑘1 (⃗𝑟) (−𝑒)⃗𝑟 Φ𝑘2 (⃗𝑟)
We remind that if 𝑟⃗𝑘1𝑘2 = 0⃗, then the optical transition 𝑘1 ↔ 𝑘2 is “forbidden”.

4. Predictwhichof the transitionsbetween the abovegiveneigenstates are allowed, andcheckwhether
the “selection rules”Δℓ = ±1, Δ𝑚 = 0, ±1 hold.

5. Check whether the above givenΦ𝑘(⃗𝑟) are orthogonal.

6. Calculate the dipole moment matrix elements𝒫100 210 and𝒫100 21±1.
7. Compare the strengths of the optical transitions 1𝑠⟷ 2𝑝𝑧 and 1𝑠⟷ 2𝑝𝑥.

Consider the following as given:

A.
∞∫0 𝑒−𝛾𝑟 𝑟𝑛 𝑑𝑟 = 𝛾−(𝑛+1)𝑛! where 𝑛 = 1, 2, 3, … and 𝛾 > 0.

B. In spherical coordinates (𝑟, 𝜃, 𝜑), inversion through the origin of the reference system, i.e., the op-
eration 𝑟⃗ → 𝑟′ = −𝑟⃗, corresponds to the variable changes 𝑟′ = 𝑟, 𝜃′ = 𝜋 − 𝜃, and𝜑′ = 𝜑 + 𝜋.

C. The following expression for the position vector holds:𝑟⃗ = 𝑟2 sin𝜃[(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜑 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜑] + 𝑟 cos𝜃 𝑒̂𝑧.
Answer
In what follows, we will use the variable change 𝑞 = 𝑟𝑎0 and the notation:⟨𝑛′ℓ′𝑚′|𝑛ℓ𝑚⟩ ∶= ∫ 𝑑3𝑟 Ψ∗𝑛′ℓ′𝑚′ (⃗𝑟) Ψ𝑛ℓ𝑚(⃗𝑟) and ⟨𝑛′ℓ′𝑚′| 𝑟⃗ |𝑛ℓ𝑚⟩ ∶= ∫ 𝑑3𝑟 Ψ∗𝑛′ℓ′𝑚′ (⃗𝑟) 𝑟⃗ Ψ𝑛ℓ𝑚(⃗𝑟).

1. ForΨ100(⃗𝑟)we have:

⟨100|100⟩ ∶ = 􏾙𝑑3𝑟 Ψ∗100(⃗𝑟) Ψ100(⃗𝑟) = ∞􏾙0
𝜋􏾙0

2𝜋􏾙0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜑 1𝜋𝑎30 𝑒− 2𝑟𝑎0 =
= 1𝜋𝑎30 ∞􏾙0 𝑑𝑟 𝑟2 𝑒− 2𝑟𝑎0 𝜋􏾙0 sin𝜃𝑑𝜃 2𝜋􏾙0 𝑑𝜑 = 𝑎30𝜋𝑎30 ∞􏾙0 𝑑𝑞𝑞2𝑒−2𝑞[− cos𝜃]𝜋0 2𝜋
= 2 ∞􏾙0 𝑑𝑞𝑞2𝑒−2𝑞[− cos𝜋 + cos 0] = 4 ∞􏾙0 𝑑𝑞𝑞2𝑒−2𝑞 ∗= 4 2!22+1 = 1.
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∗WeusedΑ., for𝛾 = 2, 𝑛 = 2. In otherwords, |100⟩ is normalized, as expected. Similarly, the nor-
malizationof the rest functions canbechecked, by calculating ⟨200|200⟩, ⟨210|210⟩, ⟨21 ± 1|21 ± 1⟩,⟨300|300⟩.

2. We can check the parity using Β. We note that sin𝜃′ = sin(𝜋 − 𝜃) = sin𝜃, cos𝜃′ = cos(𝜋 − 𝜃)= − cos𝜃, while 𝑒±𝑖𝜑′ = 𝑒±𝑖(𝜑+𝜋) = 𝑒±𝑖𝜑𝑒±𝑖𝜋 = (−1)𝑒±𝑖𝜑. Thus,

Ψ100(−𝑟⃗) = Ψ100(⃗𝑟) ∗ evenΨ200(−𝑟⃗) = Ψ200(⃗𝑟) ∗ evenΨ300(−𝑟⃗) = Ψ300(⃗𝑟) ∗ evenΨ210(−𝑟⃗) = −Ψ210(⃗𝑟) ∗∗ oddΨ21±1(−𝑟⃗) = −Ψ21±1(⃗𝑟) ∗ ∗ ∗ odd

∗ Since it depends only on 𝑟 and the operation 𝑟⃗ → 𝑟′ = −𝑟⃗ has no effect.∗∗ Since it depends not only on 𝑟, which is unaffected by the operation 𝑟⃗ → 𝑟′ = −𝑟⃗, but also on
cos𝜃, which will become cos𝜃′ = cos(𝜋 − 𝜃) = − cos𝜃.∗ ∗ ∗ It depends on 𝑟, which is unaffected by the operation 𝑟⃗ → 𝑟′ = −𝑟⃗, on sin𝜃, which goes
to sin𝜃′ = sin(𝜋 − 𝜃) = sin𝜃, i.e., which is unaffected as well, but also on 𝑒±𝑖𝜑′ = 𝑒±𝑖(𝜑+𝜋) =𝑒±𝑖𝜑𝑒±𝑖𝜋 = (−1)𝑒±𝑖𝜑, i.e., it is odd due to𝜑.

In other words, we have shown that 1𝑠, 2𝑠, 3𝑠 are even, while 2𝑝𝑧 is odd. 2𝑝𝑥 and 2𝑝𝑦 are also odd,
since they are derived by the sum or difference of the odd functionsΨ21±1. Actually, it is “ency-
clopedic” knowledge that 𝑠-type functions are even and 𝑝-type functions are odd.

3.-4. In Table 7.4, the transitions within the fist two shells, i.e., for 𝑛 = 1, 2, are briefly described. (E)
means even and (O)means odd.We observe that the selection ruleΔℓ = ±1, Δ𝑚 = 0, ±1 holds,
i.e., when these relations are satisfied, then the transition is allowed.

Table 7.4: Allowed (AL.)and forbidden (FORB.) optical transitions within the first two shells of the hy-
drogen atom, using the dipole approximation.Thenotation⋆means that, in the hydrogen atom, the initial
and final states correspond to the same energy, i.e., they are degenerate, thus in fact such transitions do
not exist. 2𝑝𝑥 and 2𝑝𝑦 are derived by the sum or difference of the odd functionsΨ21±1.𝑘1 = {𝑛1, ℓ1, 𝑚1} 𝑘2 = {𝑛2, ℓ2, 𝑚2} Φ∗𝑘1 (⃗𝑟) Φ𝑘2 (⃗𝑟) Φ∗𝑘1 (⃗𝑟) 𝑟⃗ Φ𝑘2 (⃗𝑟) 𝑟⃗𝑘1𝑘2 Δℓ Δ𝑚100 1𝑠 200 2𝑠 (E) (E) (O) FORB. 0 0 0100 1𝑠 210 2𝑝𝑧 (E) (O) (E) AL. ≠ 0 1 0100 1𝑠 21 ± 1 2𝑝𝑥, 2𝑝𝑦 (E) (O) (E) AL. ≠ 0 1 ±1100 1𝑠 300 3𝑠 (E) (E) (O) FORB. 0 0 0200 2𝑠 210 2𝑝𝑧 (E) (O) (E) AL. ⋆ ≠ 0 1 0200 2𝑠 21 ± 1 2𝑝𝑥, 2𝑝𝑦 (E) (O) (E) AL. ⋆ ≠ 0 1 ±1200 2𝑠 300 3𝑠 (E) (E) (O) FORB. 0 0 0210 2𝑝𝑧 21 ± 1 2𝑝𝑥, 2𝑝𝑦 (O) (O) (O) FORB. 0 0 ±1210 2𝑝𝑧 300 3𝑠 (O) (E) (E) AL. ≠ 0 −1 021 ± 1 2𝑝𝑥, 2𝑝𝑦 300 3𝑠 (O) (E) (E) AL. ≠ 0 −1 ∓1



QUANTUM OPTICS 223

5. Let us check for orthogonality the eigenfunctionsΨ100 andΨ200:
⟨100|200⟩ ∶ = 􏾙𝑑3𝑟 (E)Ψ∗100 (E)Ψ200 = 1𝜋𝑎30√32

∞􏾙0
𝜋􏾙0

2𝜋􏾙0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜑 𝑒− 𝑟𝑎0 􏿵2 − 𝑟𝑎0 􏿸 𝑒− 𝑟2𝑎0 =
= 14𝜋𝑎30√2 4𝜋

∞􏾙0 𝑟2 𝑒− 𝑟𝑎0 􏿵2 − 𝑟𝑎0 􏿸𝑒− 𝑟2𝑎0 𝑑𝑟 we set=𝑞= 𝑟𝑎0
𝑎30𝑎30√2

∞􏾙0 𝑞2 ⋅ 𝑒−𝑞(2 − 𝑞)𝑒− 𝑞2 𝑑𝑞
= 2√2 ∞􏾙0 𝑒−3𝑞2 𝑞2𝑑𝑞 − 1√2 ∞􏾙0 𝑒−3𝑞2 𝑞3𝑑𝑞 ∗= √2 2!􏿵32􏿸2+1 −

1√2 3!􏿵32􏿸3+1 = 0
We used A., for 𝛾 = 32, 𝑛 = 2 and for 𝛾 = 32, 𝑛 = 3. Thus, he have shown that ⟨100|200⟩ =0, henceΨ100 andΨ200 are orthogonal, as expected. Similarly, the rest inner products between
different eigenfunctions can be calculated, which actually become zero, as well.

✿✿✿✿✿✿✿✿✿
Reminder:The spatial integral of an even function is not zero by identity.This does notmean that it
cannot become zero, see, e.g., Figure 7.13.On the other hand, the spatial integral of an odd function
is zero by identity, since, e.g.

+∞􏾙−∞𝑑𝑥𝑓(𝑥) =
0􏾙−∞𝑑𝑥𝑓(𝑥)+

+∞􏾙0 𝑑𝑥𝑓(𝑥)
we set 𝑦=−𝑥

= − 0􏾙+∞𝑑𝑦𝑓(−𝑦)+
+∞􏾙0 𝑑𝑥𝑓(𝑥) = −

+∞􏾙0 𝑑𝑦𝑓(𝑦)+
+∞􏾙0 𝑑𝑥𝑓(𝑥) = 0

Figure 7.13: The spatial integral of an even function is not zero by identity but it can become zero, as is
the case, e.g., with the depicted even function.

5. We know that𝒫𝑘′𝑘 = −𝑒𝑟𝑘′𝑘, hence the calculation of𝒫100210 and𝒫10021±1 is reduced to the
calculation of 𝑟⃗100210 and 𝑟⃗10021±1, respectively. For the first one:𝑟⃗100210 = ⟨100| 𝑟⃗ |210⟩ = 􏾙𝑑3𝑟 Ψ∗100 𝑟⃗ Ψ210

= 1𝜋𝑎30√32
∞􏾙0
𝜋􏾙0
2𝜋􏾙0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜑 𝑒−

𝑟𝑎0 𝑟⃗
see Γ.􏿄 𝑟𝑎0 cos𝜃 𝑒− 𝑟2𝑎0

= 14𝜋𝑎30√2
∞􏾙0
𝜋􏾙0
2𝜋􏾙0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜑 𝑒−

𝑟𝑎0 􏿻 𝑟2 sin𝜃􏿮(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜑 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜑􏿱 + 𝑟 cos𝜃𝑒̂𝑧􏿾⋅
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⋅ 𝑟𝑎0 cos𝜃 𝑒− 𝑟2𝑎0
= 14𝜋𝑎30√2

∞􏾙0 𝑟2 𝑑𝑟 𝑒−
𝑟𝑎0 𝑟 𝑟𝑎0 𝑒− 𝑟2𝑎0􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍𝐼(𝑟)

􏿻 𝜋􏾙0
2𝜋􏾙0 sin2 𝜃 𝑑𝜃𝑑𝜑12􏿮(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜑 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜑􏿱 cos𝜃+

+ 𝜋􏾙0
2𝜋􏾙0 sin𝜃𝑑𝜃𝑑𝜑 cos2 𝜃𝑒̂𝑧􏿾.

We will now use A., for 𝛾 = 32 and 𝑛 = 4.
𝐼(𝑟) = 𝑎40 ∞􏾙0 𝑞2 𝑑𝑞 𝑒−𝑞 𝑞 𝑞 𝑒− 𝑞2 = 𝑎40 ∞􏾙0 𝑞4 𝑑𝑞 𝑒−3𝑞2 = 𝑎40 4!􏿵32􏿸4+1 = 𝑎40

2 ⋅ 3 ⋅ 435 25 = 𝑎40 2834 .
Also,

2𝜋􏾙0 𝑒±𝑖𝜑 𝑑𝜑 = 􏿯𝑒±𝑖𝜑𝑖 􏿲2𝜋0 = 0,
2𝜋􏾙0 𝑑𝜑 𝜋􏾙0 sin𝜃 cos2 𝜃 𝑑𝜃 𝑒̂𝑧 = 2𝜋𝑒̂𝑧 −1􏾙1 𝑑(cos3 𝜃)3 ⋅ (−1) = 2𝜋𝑒̂𝑧3 􏾙− 11𝑑𝑦 = 2𝜋𝑒̂𝑧3 􏿮𝑦􏿱1−1 = 4𝜋𝑒̂𝑧3 ,
𝑑(cos3 𝜃)3 = 3 cos2 𝜃(−1) sin𝜃 ⇒ 𝑑(cos3 𝜃)−3 = cos2 𝜃 sin𝜃𝑑𝜃.
Thus,

𝑟⃗100210 = 1
✚✚4𝜋𝑎30√2 𝑎40 ⋅ 2834 ✚✚4𝜋𝑒̂𝑧3 = 𝑎0𝑒̂𝑧 215/235 ⇒ 𝑟⃗100210 = 100 𝑟⃗ 210 = 215/235 𝑎0𝑒̂𝑧 ⇒

𝒫100210 = −215/235 𝑒𝑎0𝑒̂𝑧 , |𝒫100210| = 215/235 𝑒𝑎0 .
For the second one:𝑟⃗10021±1 = ⟨100| 𝑟⃗ |21 ± 1⟩ = 􏾙𝑑3𝑟 Ψ∗100 𝑟⃗ Ψ21±1
= 1(𝜋𝑎30)1/2 18(𝜋𝑎30)1/2 ∞􏾙0

𝜋􏾙0
2𝜋􏾙0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜑 𝑒−

𝑟𝑎0 􏿻 𝑟2 sin𝜃􏿮(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜑 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜑􏿱+
+ 𝑟 cos𝜃𝑒̂𝑧􏿾 𝑟𝑎0 sin𝜃 𝑒±𝑖𝜑𝑒− 𝑟2𝑎0

= 18𝜋𝑎30 ∞􏾙0 𝑑𝑟 𝑟2 𝑒−
𝑟𝑎0 𝑟 𝑟𝑎0 𝑒− 𝑟2𝑎0 𝜋􏾙0

2𝜋􏾙0 sin2 𝜃𝑑𝜃𝑑𝜑􏿻sin𝜃2 􏿮(𝑒̂𝑥−𝑖𝑒̂𝑦)𝑒𝑖𝜑+(𝑒̂𝑥+𝑖𝑒̂𝑦)𝑒−𝑖𝜑􏿱+cos𝜃𝑒̂𝑧􏿾 𝑒±𝑖𝜑
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= 𝑎08𝜋 ∞􏾙0 𝑑𝑞 𝑞4 𝑒−3𝑞2 ⋅ angular dependence = 𝑎08𝜋 4!􏿵32􏿸4+1 ⋅ angular dependence= 𝑎0𝜋 2534 ⋅ angular dependence.
But2𝜋􏾙0 𝑒±2𝑖𝜑 𝑑𝜑 = 􏿯𝑒±2𝑖𝜑±2𝑖 􏿲2𝜋0 = 0 and

2𝜋􏾙0 𝑒±𝑖𝜑 𝑑𝜑 = 􏿯𝑒±𝑖𝜑±𝑖 􏿲2𝜋0 = 0,
angular dependence = 𝜋􏾙0 𝑑𝜃sin3 𝜃2 􏿯2𝜋(𝑒̂𝑥 ± 𝑖𝑒̂𝑦)􏿲 = 𝜋􏿮𝑒̂𝑥 ± 𝑖𝑒̂𝑦􏿱 𝜋􏾙0 𝑑𝜃 sin3 𝜃 = 4𝜋3 􏿮𝑒̂𝑥 ± 𝑖𝑒̂𝑦􏿱,
𝜋􏾙0 𝑑𝜃 sin3 𝜃 = 􏿯cos3 𝜃3 − cos𝜃􏿲𝜋0 = −13 + 1 − 13 + 1 = 43,

since
𝑑𝑑𝜃􏿵cos3 𝜃3 − cos𝜃􏿸 = − cos2 𝜃 ⋅ sin𝜃 + sin𝜃 = sin𝜃[1 − cos2 𝜃] = sin3 𝜃.

Thus,

𝑟⃗10021±1 = 𝑎0
✚𝜋 ⋅ 2534 4✚𝜋3 (𝑒̂𝑥 ± 𝑖𝑒̂𝑦) ⇒ 𝑟⃗10021±1 = 𝑎0 2735 (𝑒̂𝑥 ± 𝑖𝑒̂𝑦)

𝒫10021±1 = −2735 (𝑒̂𝑥 ± 𝑖𝑒̂𝑦)𝑒𝑎0 , |𝒫10021±1| = 215/235 𝑒𝑎0 .
7. From the previous question, it occurs that|𝒫100210||𝒫10021±1| = 1.

Thus, these two transitions have the same strength.

More indicative calculations can be found at the end of this Chapter’s exercises, in Appendix A.
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CHAPTER 8

QUANTUM MECHANICAL APPROACH I

In this Chapter:
We proceed to the full quantum mechanical approach of the photon - 2LS, 3LS, MLS interaction and to
the quantization of the EM field, which is performed in a somehow heuristic manner.Themain part here
are the Rabi oscillations of the number of photons and of the probability of electron presence in the levels
of a 2LS, which interacts with photons inside a cavity. Initially, we explain what the full quantummechan-
ical approach versus the semiclassical approach is: now we quantize the electromagnetic (EM) field, too.
We discuss the relation betweenwavevectors, angular frequencies and phases of the electric andmagnetic
field and how a standing wave inside a cavity is created. We continue by describing the Hamiltonian of
the EM field with photon creation and annihilation (or raising and lowering) operators, the Hamiltonian
of the two-level system with spinors and electron creation and annihilation (or raising and lowering) op-
erators [and generalize presenting the Hamiltonian of the three-level and multi-level system with spinors
and electron creation and annihilation (or raising and lowering) operators].Then, we discuss thoroughly
the two-level system - EM field interaction Hamiltonian and calculate the mean (expectation) values of
various quantities for the Jaynes-Cummings Hamiltonian, which is a simplified total Hamiltonian. With
this Hamiltonian we study the Rabi oscillations, i.e., the time-dependent probabilities of the two levels
occupation and of the number of photons in the cavity, for photon absorption and emission.
Prerequisite knowledge: Basic knowledge of Quantum Physics.

8.1 Fully quantum mechanical approach versus semiclassical approach.

In Chapters 5 and 6 we discussed the so-called Semiclassical Approach (two-level system: quantum me-
chanically - EM field: classically). To describe the EM field, we used the language of vectors 𝐸⃗, 𝐵⃗. We as-
sumed that the amplitude of the electric field is constant. The EM radiation had to be dense enough so
that the amplitude of the electric field is not significantly affected by photon absorption or emission.

In this Chapter, we move on to the Fully Quantum Mechanical Approach, i.e. we threat both the two-
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level system and the EM field quantummechanically. We could say that we are trying to describe the EM
field using the language of the number of photons.Therefore, we have to obtain an expression for theHamil-
tonian of the EM field that allows the translation from the language that uses the vectors 𝐸⃗ and 𝐵⃗ to the
language of the number of photons. This will be done in the example of an EM wave in a cavity, in Sec-
tion ??. Prior to this, in Section 8.2, we will examine the relationship between the wavevectors, angular
frequencies and initial phases of the electric and magnetic fields. Then, in Section 8.4, we will remember
the photon creation and annihilation operators, and, using these operators, we will quantize theHamilto-
nian that describes the EMfield, as well as the electric andmagnetic fields separately.Thus, we will obtain
aHamiltonian for the EMfield. Next, in Section 8.5, we will use spinors to describe two two-level system,
and specifically the raising and lowering of an electron between its two energy levels.Thus, we will obtain
a Hamiltonian for the two-level system. Afterwards, in Section 8.7, we will also construct the Hamilto-
nian describing the two-level system - EM field interaction. After all, we will be in position to define a
Total Hamiltonian which describes the EM field, the two-level system and the interaction between them
(Rabi and Jaynes-Cummings Hamiltonians). In Section 8.8, these Hamiltonians are summarized. In Sec-
tion 8.9, we calculate the average (expected) values of quantities related to the Jaynes-Cummings Hamil-
tonian, which are useful for the description of photon absorption and emission. Finally, we present two
applications of the Jaynes-Cummings Hamiltonian to the problems of photon absorption (Section 8.10)
and photon emission (Section 8.11), arriving at the description of oscillations for the photon population
and energy level occupations.

8.2 Relations between wavevectors, angular frequencies and initial phases of electric and mag-
netic fields.

Let us remember the Maxwell’s equations in terms of total charge and total current, and specifically in
their differential form ∇⃗ ⋅ 𝐸⃗ = 𝜌𝜀0 Gauss’s law for electricity (8.1a)∇⃗ ⋅ 𝐵⃗ = 0 Gauss’s law for magnetism (8.1b)∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 Faraday’s law (8.1c)

∇⃗ × 𝐵⃗ = 𝜇0𝐽⃗ + 𝜇0𝜖0𝜕𝐸⃗𝜕𝑡 Ampère’s law and Maxwell’s correction. (8.1d)

In vacuum, where 𝜌 = 0 and 𝐽⃗ = 0⃗ οι Eqs. 8.1a, 8.1b, 8.1c, 8.1d become∇⃗ ⋅ 𝐸⃗ = 0 (8.2a)∇⃗ ⋅ 𝐵⃗ = 0 (8.2b)∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 (8.2c)

∇⃗ × 𝐵⃗ = 𝜇0𝜖0𝜕𝐸⃗𝜕𝑡. (8.2d)

The following identities hold: ∇⃗ × (∇⃗ × Δ⃗) = ∇⃗ (∇⃗ ⋅ Δ⃗) − ∇2Δ⃗ (8.3)∇2Δ⃗ ∶= (∇⃗ ⋅ ∇⃗ )Δ⃗. (8.4)
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Thus, Eq. 8.2 implies ∇2𝐸⃗ = 𝜖0𝜇0𝜕2𝐸⃗𝜕𝑡2 (8.5)

Trying solutions of the form 𝐸⃗(⃗𝑟, 𝑡) = 𝐸⃗0𝑒𝑖(⃗𝑘⋅⃗𝑟−𝜔𝑡+𝛿) (8.6)

at Eq. 8.5, it follows that |⃗𝑘| ∶= 𝑘 = 𝜔𝑐 . (8.7)

Similarly, Eq. 8.2 implies ∇2𝐵⃗ = 𝜖0𝜇0𝜕2𝐵⃗𝜕𝑡2 . (8.8)

Trying solutions of the form 𝐵⃗(⃗𝑟, 𝑡) = 𝐵⃗0𝑒𝑖(⃗𝑘⋅⃗𝑟−𝜔𝑡+𝛿′) (8.9)

at Eq. 8.8, we again obtain Eq. 8.7. Since𝜔 = 2𝜋𝜈, 𝑐 = 𝜆𝜈, Eq. 8.7 yields 𝑘 = 2𝜋𝜆 . We notice that, given
that we differentiate over 𝑥, 𝑦, 𝑧, 𝑡, the “initial phases” 𝛿, 𝛿′ remain constant, i.e. they are not determined
by the calculations made so far.

Fromthe solutions8.6 and8.9, after somecalculations,we conclude that theoperator ∇⃗ canbe replaced
by 𝑖𝑘, i.e. schematically ∇⃗ → 𝑖𝑘 , (8.10)

since, if we assume a field of the form

Δ⃗ = Δ⃗0 𝑒𝑖(⃗𝑘⋅⃗𝑟−𝜔𝑡+𝛿) ∶= (Δ0𝑥, Δ0𝑦, Δ0𝑧) 𝑒 /⃝, (8.11)

then

∇⃗ ⋅ Δ⃗ = 􏿶 𝜕𝜕𝑥, 𝜕𝜕𝑦, 𝜕𝜕𝑧􏿹 ⋅ (Δ𝑥, Δ𝑦, Δ𝑧) = 𝜕Δ𝑥𝜕𝑥 + 𝜕Δ𝑦𝜕𝑦 + 𝜕Δ𝑧𝜕𝑧 =Δ0𝑥 𝑒 /⃝𝑖𝑘𝑥 + Δ0𝑦 𝑒 /⃝𝑖𝑘𝑦 + Δ0𝑧 𝑒 /⃝𝑖𝑘𝑧 = 𝑖(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ⋅ (Δ0𝑥, Δ0𝑦, Δ0𝑧) 𝑒 /⃝ = 𝑖𝑘 ⋅ Δ⃗,
and also

∇⃗ × Δ⃗ = ||
̂𝑖 𝑗̂ 𝑘̂𝜕𝜕𝑥 𝜕𝜕𝑦 𝜕𝜕𝑧Δ0𝑥𝑒 /⃝ Δ0𝑦𝑒 /⃝ Δ0𝑧𝑒 /⃝

||
= ̂𝑖􏿵𝜕Δ0𝑧𝑒 /⃝𝜕𝑦 − 𝜕Δ0𝑦𝑒 /⃝𝜕𝑧 􏿸 − 𝑗̂􏿵𝜕Δ0𝑧𝑒 /⃝𝜕𝑥 − 𝜕Δ0𝑥𝑒 /⃝𝜕𝑧 􏿸 + 𝑘̂􏿵𝜕Δ0𝑥𝑒 /⃝𝜕𝑦 − 𝜕Δ0𝑦𝑒 /⃝𝜕𝑥 􏿸
= ̂𝑖􏿵𝑖𝑘𝑦Δ𝑧 − 𝑖𝑘𝑧Δ𝑦􏿸 − 𝑗̂􏿵𝑖𝑘𝑥Δ𝑧 − 𝑖𝑘𝑧Δ𝑥􏿸 + 𝑘̂􏿵𝑖𝑘𝑦Δ𝑥 − 𝑖𝑘𝑥Δ𝑦􏿸
= 𝑖 || ̂𝑖 𝑗̂ 𝑘̂𝑘𝑥 𝑘𝑦 𝑘𝑧Δ𝑥 Δ𝑦 Δ𝑧|| = 𝑖𝑘 × Δ⃗.
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Therefore,

Eqs. 8.2a, 8.6 ⇒ 𝑖𝑘 ⋅ 𝐸⃗ = 0 ⇒ 𝑘⃗ ⋅ 𝐸⃗ = 0 (8.12a)

Eqs. 8.2b, 8.9 ⇒ 𝑖𝑘 ⋅ 𝐵⃗ = 0 ⇒ 𝑘⃗ ⋅ 𝐵⃗ = 0 (8.12b)

Eqs. 8.2c, 8.6, 8.9 ⇒ 𝑖𝑘 × 𝐸⃗ = 𝑖𝜔𝐵⃗ ⇒ 𝑘⃗ × 𝐸⃗ = 𝜔𝐵⃗ (8.12c)

Eqs. 8.2d, 8.6, 8.9 ⇒ 𝑖𝑘 × 𝐵⃗ = 𝜇0𝜖0(−𝑖𝜔)𝐸⃗ ⇒ 𝑘⃗ × 𝐵⃗ = −𝜇0𝜖0𝜔𝐸⃗ (8.12d)

It is a brief mind game to obtain the direction of the vectors 𝐸⃗, 𝐵⃗, 𝑘⃗ by Eqs. 8.12a, 8.12b, 8.12c, 8.12d;
more precisely, it can be found that the inner product between 𝐸⃗ με Ͼο 𝐵⃗ has the same direction as 𝑘⃗, i.e.𝐸⃗ × 𝐵⃗ ↑↑ 𝑘⃗ . (8.13)

Actually, 𝐸⃗, 𝐵⃗, 𝑘⃗ obey to the directional and the perpendicularity relations depicted in Figure 8.1. The
relationship of Eq. 8.13 can mathematically be shown using the identity𝑎 × (𝑏⃗ × 𝑐⃗) = (𝑎 ⋅ 𝑐⃗)𝑏⃗ − (𝑎 ⋅ 𝑏⃗)⃗𝑐. (8.14)

For example, starting from Eq. 8.12c, we have 𝐸⃗ × (⃗𝑘 × 𝐸⃗) = 𝜔𝐸⃗ × 𝐵⃗ ⇒ (𝐸⃗ ⋅ 𝐸⃗)⃗𝑘 − (𝐸⃗ ⋅ 𝑘⃗)𝐸⃗ = 𝜔𝐸⃗ × 𝐵⃗.

Figure 8.1: 𝐸⃗ × 𝐵⃗ ↑↑ 𝑘⃗.
But, given Eq. 8.12a, it follows that 𝐸⃗ × 𝐵⃗ = |𝐸⃗|2𝜔 𝑘⃗ . (8.15)

Taking the above perpendicularity conditions for 𝐸⃗, 𝐵⃗, 𝑘⃗ into account, Eqs. 8.12c-8.12d imply that|𝐸⃗||𝐵⃗| = 𝑐 . (8.16)

Now, instead of Eqs. 8.6 and 8.9, let us try solutions of the form𝐸⃗(⃗𝑟, 𝑡) = 𝐸⃗0𝑒𝑖(⃗𝑘𝑒⋅⃗𝑟−𝜔𝑒𝑡+𝛿𝑒) = 𝐸⃗0𝑒 2⃝ (8.17)𝐵⃗(⃗𝑟, 𝑡) = 𝐵⃗0𝑒𝑖(⃗𝑘𝑏⋅⃗𝑟−𝜔𝑏𝑡+𝛿𝑏) = 𝐵⃗0𝑒 #⃝ (8.18)

to Eqs. 8.5 and 8.8. In other words, let us assume that 𝐸⃗(⃗𝑟, 𝑡) and 𝐵⃗(⃗𝑟, 𝑡) do not necessarily have the
samewave vectors, 𝑘⃗𝑒 and 𝑘⃗𝑏, angular frequencies,𝜔𝑒 and𝜔𝑏, and “initial phases”, 𝛿𝑒 and 𝛿𝑏. Then,

Eqs. 8.2a, 8.17 ⇒ 𝑘⃗𝑒 ⋅ 𝐸⃗ = 0 (8.19a)

Eqs. 8.2b, 8.18 ⇒ 𝑘⃗𝑏 ⋅ 𝐵⃗ = 0 (8.19b)

Eqs. 8.2c, 8.17, 8.18 ⇒ 𝑘⃗𝑒 × 𝐸⃗ = 𝜔𝑏𝐵⃗ (8.19c)

Eqs. 8.2d, 8.17, 8.18 ⇒ 𝑘⃗𝑏 × 𝐵⃗ = −𝜇0𝜖0𝜔𝑒𝐸⃗ (8.19d)
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and no relationship between 𝛿𝑒 and 𝛿𝑏 occurs. From Eq. 8.19c, it follows that

|| ̂𝑖 𝑗̂ 𝑘̂𝑘𝑒𝑥 𝑘𝑒𝑦 𝑘𝑒𝑧𝐸0𝑥𝑒 2⃝ 𝐸0𝑦𝑒 2⃝ 𝐸0𝑧𝑒 2⃝
|| = (𝜔𝑏𝐵0𝑥𝑒 #⃝, 𝜔𝑏𝐵0𝑦𝑒 #⃝, 𝜔𝑏𝐵0𝑧𝑒 #⃝) ⇒ (8.20a)ЀЃЃЃЁЃЃЃЂ 𝑘𝑒𝑦𝐸0𝑧𝑒 2⃝ −𝑘𝑒𝑧𝐸0𝑦𝑒 2⃝ = 𝜔𝑏𝐵0𝑥𝑒 #⃝𝑘𝑒𝑧𝐸0𝑥𝑒 2⃝ −𝑘𝑒𝑥𝐸0𝑧𝑒 2⃝ = 𝜔𝑏𝐵0𝑦𝑒 #⃝𝑘𝑒𝑥𝐸0𝑦𝑒 2⃝ −𝑘𝑒𝑦𝐸0𝑥𝑒 2⃝ = 𝜔𝑏𝐵0𝑧𝑒 #⃝

ЄЃЃЃЅЃЃЃІ ⇒ (8.20b)ЀЃЃЃЃЃЃЃЃЁЃЃЃЃЃЃЃЃЂ
𝑘𝑒𝑦𝐸0𝑧−𝑘𝑒𝑧𝐸0𝑦𝜔𝑏𝐵0𝑥 = 𝑒 #⃝𝑒 2⃝∗ = 𝑒𝑖[(⃗𝑘𝑏−𝑘⃗𝑒)⋅⃗𝑟−(𝜔𝑏−𝜔𝑒)𝑡+(𝛿𝑏−𝛿𝑒)]𝑘𝑒𝑧𝐸0𝑥−𝑘𝑒𝑥𝐸0𝑧𝜔𝑏𝐵0𝑦 = 𝑒 #⃝𝑒 2⃝∗ = same𝑘𝑒𝑥𝐸0𝑦−𝑘𝑒𝑦𝐸0𝑥𝜔𝑏𝐵0𝑧 = 𝑒 #⃝𝑒 2⃝∗ = same
constants functions of 𝑟⃗, 𝑡

ЄЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃІ
(8.20c)

Assuming some specific time 𝑡, given that the left-hand sides are constants (i.e. independent of 𝑟⃗), then
the right-hand sides must be constants, as well. Thus,𝑘⃗𝑏 = 𝑘⃗𝑒. (8.21)

If we assume some specific position 𝑟⃗, given that the left-hand sides are constants (i.e. independent of 𝑟⃗),
then the right hand-sides must be constants, as well. Thus,𝜔𝑏 = 𝜔𝑒. (8.22)

Finally, from Eqs. 8.21-8.22 it follows that the right-hand sides will be equal to 𝑒𝑖(𝛿𝑏−𝛿𝑒) = cos(𝛿𝑏 − 𝛿𝑒) +𝑖 sin(𝛿𝑏 − 𝛿𝑒). If the left-hand sides were real, then sin(𝛿𝑏 − 𝛿𝑒) = 0 ⇒ 𝛿𝑏 − 𝛿𝑒 = 𝑛𝜋, 𝑛 ∈ 𝒵 , hence
there is a partial solution 𝛿𝑏 = 𝛿𝑒. However, 𝐸⃗0, 𝐵⃗0 are generally complex, hence we arrive at the relations

𝑘𝑒𝑦𝐸0𝑧−𝑘𝑒𝑧𝐸0𝑦𝜔𝑏𝐵0𝑥 = 𝑒𝑖(𝛿𝑏−𝛿𝑒)𝑘𝑒𝑧𝐸0𝑥−𝑘𝑒𝑥𝐸0𝑧𝜔𝑏𝐵0𝑦 = 𝑒𝑖(𝛿𝑏−𝛿𝑒)𝑘𝑒𝑥𝐸0𝑦−𝑘𝑒𝑦𝐸0𝑥𝜔𝑏𝐵0𝑧 = 𝑒𝑖(𝛿𝑏−𝛿𝑒) (8.23)

8.3 Standing EM wave in a cavity.

In this Section, we will construct an expression for the Hamiltonian of the EM field that allows to trans-
lated from the language of the vectors 𝐸⃗, 𝐵⃗ to the language of the number of photons. This will be done
using the example of a standing EM wave in a cavity.

But before this, let us remember that for traveling waves, given the conditions of Section 8.2, we have

∇2𝐸⃗ = 1𝑐2 𝜕2𝐸⃗𝜕𝑡2 𝐸⃗(⃗𝑟, 𝑡) = 𝐸⃗0𝑒𝑖(⃗𝑘⋅⃗𝑟−𝜔𝑡+𝛿) (8.24)

∇2𝐵⃗ = 1𝑐2 𝜕2𝐵⃗𝜕𝑡2 𝐵⃗(⃗𝑟, 𝑡) = 𝐵⃗0𝑒𝑖(⃗𝑘⋅⃗𝑟−𝜔𝑡+𝛿) (8.25)

and 𝐸⃗ × 𝐵⃗ ↑↑ 𝑘⃗, as it can be seen in Figure 8.2(left). These are the wave equations for the electric and
magnetic field, respectively, in three dimensions, together with their solutions.
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Figure 8.2: [Left] For traveling waves, it holds that 𝐸⃗ × 𝐵⃗ ↑↑ 𝑘⃗. [Right] We assume that 𝐸⃗ × 𝐵⃗ ↑↑ 𝑘⃗,
along the axis directions depicted.

.

If the axis directions are the ones shown in Figure 8.2(right), then

∇2𝐸⃗𝑥 = 1𝑐2 𝜕2𝐸⃗𝑥𝜕𝑡2 (8.26)𝐸⃗(⃗𝑟, 𝑡) = 𝐸⃗𝑥0𝑒𝑖(𝑘𝑧𝑧−𝜔𝑡+𝛿) = 𝐸⃗𝑥(𝑧, 𝑡) (8.27)

∇2𝐵⃗𝑦 = 1𝑐2 𝜕2𝐵⃗𝑦𝜕𝑡2 (8.28)𝐵⃗(⃗𝑟, 𝑡) = 𝐵⃗0𝑦𝑒𝑖(𝑘𝑧𝑧−𝜔𝑡+𝛿) = 𝐵⃗𝑦(𝑧, 𝑡) (8.29)

therefore 𝜕2𝐸𝑥𝜕𝑧2 = 1𝑐2 𝜕2𝐸𝑥𝜕𝑡2 (8.30)𝜕2𝐵𝑦𝜕𝑧2 = 1𝑐2 𝜕2𝐵𝑦𝜕𝑡2 (8.31)

These are wave equations for the electric and magnetic field, respectively, in one dimension. Let us now
see we can draw any conclusions from the Maxwell’s equations in vacuum.

∇⃗ ⋅ 𝐸⃗ = 0 (Eq. 8.2a) ⇒ 𝜕𝐸𝑥𝜕𝑥 +
✓
✓
✓
✓✼
0𝜕𝐸𝑦𝜕𝑦 +
✓
✓
✓✓✼
0𝜕𝐸𝑧𝜕𝑧 = 0 ⇒ 𝜕𝐸𝑥𝜕𝑥 + 0 + 0 = 0 ⇒

𝜕𝐸𝑥𝜕𝑥 = 0,which is expected. (8.32)

∇⃗ ⋅ 𝐵⃗ = 0 (Eq. 8.2b) ⇒
✓
✓
✓✓✼
0𝜕𝐵𝑥𝜕𝑥 + 𝜕𝐵𝑦𝜕𝑦 +

✓
✓
✓✓✼
0𝜕𝐵𝑧𝜕𝑧 = 0 ⇒ 0 + 𝜕𝐵𝑦𝜕𝑦 + 0 = 0 ⇒𝜕𝐵𝑦𝜕𝑦 = 0,which is expected. (8.33)

∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 (Εξ. 8.2c) ⇒ ||
̂𝑖 𝑗̂ 𝑘̂𝜕𝜕𝑥 𝜕𝜕𝑦 𝜕𝜕𝑧𝐸𝑥 0 0

|| = −𝑗̂𝜕𝐵𝑦𝜕𝑡 ⇒ 𝑗̂𝜕𝐸𝑥𝜕𝑧 = −𝑗̂𝜕𝐵𝑦𝜕𝑡 ⇒
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𝜕𝐸𝑥𝜕𝑧 = −𝜕𝐵𝑦𝜕𝑡 . (8.34)

∇⃗ × 𝐵⃗ = 𝜖0𝜇0𝜕𝐸⃗𝜕𝑡 (Εξ. 8.2d) ⇒ ||
̂𝑖 𝑗̂ 𝑘̂𝜕𝜕𝑥 𝜕𝜕𝑦 𝜕𝜕𝑧

0 𝐵𝑦 0

|| = 1𝑐2 𝜕𝐸𝑥𝜕𝑡 ̂𝑖 ⇒ 𝑖 􏿶−𝜕𝐵𝑦𝜕𝑧 􏿹 = 𝑖 1𝑐2 𝜕𝐸𝑥𝜕𝑡 ⇒
𝜕𝐵𝑦𝜕𝑧 = − 1𝑐2 𝜕𝐸𝑥𝜕𝑡 . (8.35)♠Now let us place ideally conducting mirrors at positions 𝑧 = 0 and 𝑧 = 𝐿 (Figure 8.3). The incident

wave at each mirror will interfere with the reflected one, hence standing waves will be created.

Figure 8.3: We place flat, ideally conducting mirrors at positions 𝑧 = 0 and 𝑧 = 𝐿.
Eqs. 8.30 and 8.34, i.e. 𝜕2𝐸𝑥𝜕𝑧2 = 1𝑐2 𝜕2𝐸𝑥𝜕𝑡2 𝜕𝐸𝑥𝜕𝑧 = −𝜕𝐵𝑦𝜕𝑡 ,

as well as Eqs. 8.31 and 8.35, i.e.𝜕2𝐵𝑦𝜕𝑧2 = 1𝑐2 𝜕2𝐵𝑦𝜕𝑡2 𝜕𝐵𝑦𝜕𝑧 = − 1𝑐2 𝜕𝐸𝑥𝜕𝑡
continue to hold for the linear combination of incident and reflected waves.

We are looking for solutions using separation of variables, assuming that𝐸𝑥(𝑧, 𝑡) = 𝒩 𝑍(𝑧)𝑇(𝑡) (8.36)

Let us remember the boundary conditions at the interface between an ideal conductor and vacuum
or, in approximation, air (Figure 2.10). The parallel component of 𝐸⃗ becomes zero at this interface. Since𝐸⃗ has only a 𝑥-component (Eq. 8.27) and the flat, perfectly conducting mirrors are placed at 𝑧 = 0 and𝑧 = 𝐿 so that 𝐸⃗ is parallel to them, it follows that𝐸𝑥(0, 𝑡) = 0 = 𝐸𝑥(𝐿, 𝑡), ∀𝑡. (8.37)

From Eqs. 8.30 and 8.36, it follows

✚✚𝒩𝑇(𝑡)𝑑2𝑍𝑑𝑧2 =✚✚𝒩 1𝑐2𝑍(𝑧)𝑑2𝑇𝑑𝑡2 ⇔
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Figure 8.4: Conducting mirrors before 𝑧 = 0 and after 𝑧 = 𝐿.
⇔ 1𝑍(𝑧) 𝑑2𝑍𝑑𝑧2􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍𝑓(𝑧)

= 1𝑇(𝑡) 1𝑐2 𝑑2𝑇𝑑𝑡2􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍𝑔(𝑡)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍∀𝑧, ∀𝑡

hence= constant ∶= −𝑘2,

given that𝑍(𝑧) ≠ 0 and 𝑇(𝑡) ≠ 0, while for𝑍(𝑧) = 0 and 𝑇(𝑡) = 0 the trivial solution holds. Therefore,

𝑑2𝑍𝑑𝑧2 + 𝑘2𝑍(𝑧) = 0 (8.38)

and 𝑑2𝑇𝑑𝑡2 + 𝑘2𝑐2𝑇(𝑡) = 0 . (8.39)

• Let us begin by solving Eq. 8.38, trying solutions of the form 𝑒𝜆̃𝑧. Then, we obtain the characteristic
polynomial 𝜆̃2 + 𝑘2 = 0 ⇒ 𝜆̃2 = −𝑘2 ⇒ 𝜆̃ = ±𝑖𝑘, e.g. let us choose 𝑘 ∈ ℝ+
Thus, the solution will essentially have the form𝑍(𝑧) = 𝐴𝑒𝑖𝑘𝑧 + 𝐵𝑒−𝑖𝑘𝑧 (8.40)𝑍(0) = 0 boundary condition 1 (8.41)𝑍(𝐿) = 0 boundary condition 2 (8.42)

where we have taken into account the boundary conditions of Eq. 8.37. FromEqs. 8.40 and 8.41 it follows
that𝐴 + 𝐵 = 0 ⇒ 𝐵 = −𝐴, hence Eq. 8.40 becomes𝑍(𝑧) = 𝐴𝑒𝑖𝑘𝑧 − 𝐴𝑒−𝑖𝑘𝑧 = 2𝑖𝐴 sin(𝑘𝑧) (8.43)

and, applying Eq. 8.42,
sin(𝑘𝐿) = 0 ⇒ 𝑘𝐿 = 𝑚𝜋,𝑚 ∈ 𝒵. (8.44)

However, given that above we chose 𝑘 ∈ ℝ+, it must hold that𝑚 ∈ ℕ, while, for a non-trivial solution, it
must hold that𝑚 ∈ ℕ∗. Thus, 𝑘 ∈ ℜ∗+. Concisely, 𝑘 depends on a natural, non-zero index, i.e.

𝑘𝑚 = 𝑚𝜋𝐿 ,𝑚 ∈ ℕ∗ (8.45)
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Hence, 𝑍𝑚(𝑧) = 2𝐴𝑖 sin 􏿵𝑚𝜋𝑧𝐿 􏿸.
Additionally, if we demand that𝑍𝑚 are orthonormal,

􏾙𝐿
0 𝑑𝑧𝑍∗𝑚(𝑧)𝑍𝑙(𝑧) = 𝛿𝑚𝑙 ⇒ 􏾙𝐿

0 𝑑𝑧2𝑖𝐴2 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 sin 􏿵𝑙𝜋𝑧𝐿 􏿸 = 𝛿𝑚𝑙.
Defining𝜓 = 𝜋𝑧𝐿 , so that 𝑑𝜓 = 𝜋𝐿𝑑𝑧, we obtain

􏾙𝜋
0 𝐿𝜋𝑑𝜓2𝑖𝐴2 sin􏿴𝑚𝜓􏿷 sin􏿴𝑙𝜓􏿷 = 𝛿𝑚𝑙 ⇒ 𝐿𝜋 4𝐴2􏾙𝜋

0 𝑑𝜓 sin􏿴𝑚𝜓􏿷 sin􏿴𝑙𝜓􏿷 = 𝛿𝑚𝑙.
But, 􏾙𝜋

0 𝑑𝜓 sin􏿴𝑚𝜓􏿷 sin􏿴𝑙𝜓􏿷 = 𝜋2 𝛿𝑚𝑙, (8.46)

while it also holds that 􏾙𝜋
0 𝑑𝜓 cos􏿴𝑚𝜓􏿷 cos􏿴𝑙𝜓􏿷 = 𝜋2 𝛿𝑚𝑙. (8.47)

Hence, 𝐿𝜋 4𝐴2𝜋2 𝛿𝑚𝑙 = 𝛿𝑚𝑙 ⇒ 𝐴2 = 12𝐿.
Let us choose something convenient, e.g.,𝐴 = 1√2𝐿(−𝑖). Therefore,

𝑍𝑚(𝑧) = √2𝐿 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 (8.48)

• Let us continue by solving Eq. 8.39. We set 𝜔 ∶= 𝑘𝑐 > 0, (8.49)

so that𝜔2 = 𝑘2𝑐2. Using Eq. 8.45 𝜔𝑚 = 𝑚𝜋𝑐𝐿 ,𝑚 ∈ ℕ∗ (8.50)

Trying solutions of the form 𝑒𝜆̃𝑡 yields the characteristic polynomial𝜆̃2 + 𝜔2𝑚 = 0 ⇒ 𝜆̃ = ±𝑖𝜔𝑚, 𝜔𝑚 ∈ ℝ∗+. (8.51)

Thus, the solution will essentially have the form𝑇(𝑡) = Γ𝑒𝑖𝜔𝑚𝑡 + Δ𝑒−𝑖𝜔𝑚𝑡, (8.52)

and if we impose the initial condition 𝑇(0) = 0, (8.53)

if follows that Γ + Δ = 0 ⇒ Δ = −Γ, hence𝑇(𝑡) = Γ𝑒𝑖𝜔𝑚𝑡 − Γ𝑒−𝑖𝜔𝑚𝑡 = 2𝑖Γ sin(𝜔𝑚𝑡) ⇒ (8.54)

𝑇𝑚(𝑡) = 2𝑖Γ sin 􏿵𝑚𝜋𝑐𝐿 𝑡􏿸. (8.55)
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Additionally, if we demand that 𝑇𝑚 are orthonormal at a time interval from 0 to some value 𝑡𝜅, i.e.
􏾙𝑡𝜅0 𝑑𝑡𝑇∗𝑚(𝑡)𝑇𝑙(𝑡) = 𝛿𝑚𝑙 ⇒ 􏾙𝑡𝜅0 𝑑𝑡2𝑖Γ2 sin 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 sin 􏿵𝑙𝜋𝑐𝑡𝐿 􏿸 = 𝛿𝑚𝑙 ⇒

⇒ 4Γ2􏾙𝑡𝜅0 𝑑𝑡 sin 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 sin 􏿵𝑙𝜋𝑐𝑡𝐿 􏿸 = 𝛿𝑚𝑙.
Defining 𝜒 = 𝜋𝑐𝑡𝐿 , so that 𝑑𝜒 = 𝜋𝑐𝐿 𝑑𝑡, we obtain

4Γ2 𝐿𝜋𝑐 􏾙𝜋𝑐𝐿 ⋅𝑡𝜅0 𝑑𝜒 sin(𝑚𝜒) sin(𝑙𝜒) = 𝛿𝑚𝑙 (8.56)

Hence, having Eq. 8.46 in mind, it is convenient to set 𝜋𝑐𝐿 ⋅ 𝑡𝜅 = 𝜋 ⇒
𝑡𝜅 = 𝐿𝑐 ∶= 𝜏 (8.57)

Defining the quantity 𝜏 this way gives the time of photon flight through the cavity, hence this was not
an unreasonable choice. Finally, the orthonoramalization is

􏾙𝜏
0 𝑑𝑡𝑇∗𝑚(𝑡)𝑇𝑙(𝑡) = 𝛿𝑚𝑙. (8.58)

We end up obtaining

4Γ2 𝐿𝜋𝑐 􏾙𝜋
0 𝑑𝜒 sin(𝑚𝜒) sin(𝑙𝜒) = 𝛿𝑚𝑙 ⇒ |Γ|2 = 𝑐2𝐿.

Let us choose something convenient, e.g., Γ = (−𝑖)√ 𝑐2𝐿 . Then,

𝑇𝑚(𝑡) = √2𝑐𝐿 sin 􏿵𝑚𝜋𝑐𝐿 𝑡􏿸 (8.59)

Hence, to sum up, using Eqs. 8.36, 8.48, 8.59, we obtain

𝐸𝑚𝑥 (𝑧, 𝑡) = 2√𝑐𝐿 𝒩 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 sin 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 (8.60)

Regarding units, it must hold that 􏿯2√𝑐𝐿 𝒩 􏿲 = V
m
= N

C
⇒

[𝒩 ] = V√m/s
. (8.61)

In order to determine the magnetic field, we will use Eq. 8.35 combined with Eq. 8.60:𝜕𝐵𝑚𝑦𝜕𝑧 = − 1𝑐2 2√𝑐𝐿 𝒩 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑚𝜋𝑐𝐿 cos 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 ⇒ (8.62)

􏾙𝑧′
0 𝑑𝑧𝜕𝐵𝑚𝑦𝜕𝑧 = − 2𝑚𝜋√𝑐𝐿2𝒩 cos 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸􏾙𝑧′

0 𝑑𝑧 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 ⇒ (8.63)
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𝐵𝑚𝑦 (𝑧′, 𝑡) − 𝐵𝑚𝑦 (0, 𝑡) = − 2𝑚𝜋√𝑐𝐿2𝒩 cos 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 𝐿𝑚𝜋􏿯 − cos 􏿵𝑚𝜋𝑧𝐿 􏿸 􏿲𝑧′0 ⇒ (8.64)

𝐵𝑚𝑦 (𝑧′, 𝑡) − 𝐵𝑚𝑦 (0, 𝑡) = 2𝒩√𝑐𝐿 cos 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 􏿯 cos 􏿶𝑚𝜋𝑧′𝐿 􏿹 −✘✘✘✿1
cos 0􏿲. (8.65)

Therefore, by properly imposing the value of 𝐵𝑚𝑦 (0, 𝑡) and performing the change of variables 𝑧′ → 𝑧, it
occurs that 𝐵𝑚𝑦 (𝑧, 𝑡) = 2𝒩√𝑐𝐿 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 cos 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 (8.66)

For the energy density, it holds that

𝑈 = 𝜖02 𝐸2 + 12𝜇0𝐵2 = 𝜖02 [𝐸2 + 𝑐2𝐵2]. (8.67)

We note that the units of the energy density are [𝑈] = J
m3 . For example, 􏿮𝜖02 𝐸2􏿱 = F

m
V2
m2 = CV2

Vm3 = J
m3 and􏿯 𝐵22𝜇0 􏿲 = T2A

Tm
= TA

m
= N

m2 = Nm
m3 = J

m3 , e.g., given the known relations 𝐵 = 𝜇0𝐻 , 𝐹 = 𝐵𝐼𝑙 and 𝑐2 = 1𝜖0𝜇0 .
Hence, from Eqs. 8.60, 8.66, 8.67, we obtain the energy density of mode𝑚 as

𝑈𝑚 = 𝜖02 4𝑐𝒩 2𝐿2 􏿯sin2 􏿵𝑚𝜋𝑧𝐿 􏿸 sin2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 + cos2 􏿵𝑚𝜋𝑧𝐿 􏿸 cos2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸􏿲 . (8.68)

Thus, the energy of mode𝑚, which is obtained by integrating the energy density of mode𝑚 over the
volume of the cavity𝑉 = 𝐿𝑆, is

E𝑚 = 􏾙𝑉=𝐿𝑆𝑑3𝑟 𝑈𝑚. (8.69)

Therefore,

E𝑚 = 2𝜖0𝑐𝒩 2𝑆𝐿2 􏿰sin2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸􏾙𝐿
0 𝑑𝑧 sin2 􏿵𝑚𝜋𝑧𝐿 􏿸 + cos2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸􏾙𝐿

0 𝑑𝑧 cos2 􏿵𝑚𝜋𝑧𝐿 􏿸􏿳 .
Weset𝜓 = 𝜋𝑧𝐿 ⇒ 𝑑𝜓 = 𝜋𝐿𝑑𝑧, so that, givenEqs. 8.46-8.47, the integrals over𝑧become 𝐿𝜋 ∫𝜋0 𝑑𝜓 sin2(𝑚𝜓) =𝐿𝜋 𝜋2 = 𝐿2 and 𝐿𝜋 ∫𝜋0 𝑑𝜓 cos2(𝑚𝜓) = 𝐿𝜋 𝜋2 = 𝐿2 . Then, we substitute in the above equation and, finally, hav-
ing followed this classical approach, we obtain

E𝑚 = 𝜖0𝑐𝒩 2𝑆𝐿 􏿯sin2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 + cos2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸􏿲 = 𝜖0𝑐𝒩 2𝑆𝐿 (8.70)

Let us now view E𝑚 in a somewhat different manner:

E𝑚 = 𝜖0𝑐𝒩 2𝑆𝐿3 􏿯𝐿2 sin2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 + 𝐿2 cos2 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸􏿲 , (8.71)

We will define a “generalized position” and a “generalized momentum”. So, we call the quantity

𝑞𝑚(𝑡) ∶= 𝐿 sin 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 (8.72)

“generalized position”, and the quantity

𝑞̇𝑚(𝑡) ∶= 𝑚𝜋𝑐 cos 􏿵𝑚𝜋𝑐𝑡𝐿 􏿸 (8.73)
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“generalized momentum”, so that [𝑞𝑚(𝑡)] = m and [𝑞̇𝑚(𝑡)]= m/s. Then, Eq. 8.71 is written as

E𝑚 = 𝜖0𝑐𝒩 2𝑆𝐿3 􏿼[𝑞𝑚(𝑡)]2 + 𝐿2𝑚2𝜋2𝑐2 [𝑞̇𝑚(𝑡)]2􏿿 , (8.74)

At this point,we could see an analogy betweenEq. 8.74 an the SimpleHarmonicOscillator (SHO),whose
energy is

E = 𝐾2 𝑥2 + 𝑀2 𝑣2 = 𝐾2 􏿰𝑥2 + 𝑀𝐾 𝑣2􏿳 . (8.75)

Therefore, 𝜖0𝑐𝒩 2𝑆𝐿3 = 𝐾2 , (8.76)𝐿2𝑚2𝜋2𝑐2 = 𝑀𝐾 . (8.77)

In other words, we obtain a “spring constant”

𝐾 = 2𝜖0𝑐𝒩 2𝑆𝐿3 , (8.78)

and a “mass” 𝑀𝑚 = 2𝜖0𝒩 2𝑆𝑐𝐿𝑚2𝜋2 . (8.79)

We note that the “mass” is dependent on 𝑚, which means that it is different for each mode of the EM
field. We can easily verify that 𝑀𝑚 has units of mass (we will need Eq. 8.61) and that the relationship𝐾 = 𝑀𝑚𝜔2𝑚 is satisfied. Hence, classically, there is a typical similarity between our problem and a SHO
with angular frequency𝜔𝑚 (Εq. 8.50) and “mass”𝑀𝑚 (Eq. 8.79). In other words, Eq. 8.71 or 8.74 can be
written as

E𝑚 = 𝑀𝑚𝜔2𝑚2 𝑞2𝑚 + 𝑀𝑚2 𝑞̇2𝑚 (8.80)

Therefore, we can deduce that the quantum analogue for amode𝑚 of an EMfield, i.e. theHamiltonian
of the EM field for a mode𝑚, is

𝐻̂EM, 𝑚 = 𝑀𝑚𝜔2𝑚2 𝑞̂2𝑚 + 𝑀𝑚2 ̂𝑞̇2𝑚 , (8.81)

with energy eigenvalues 𝐸𝑚,𝑛𝑚 = ℏ𝜔𝑚 􏿶𝑛𝑚 + 12􏿹 , (8.82)

where𝑚 ∈ ℕ∗ refers to the mode of the EM field and 𝑛𝑚 ∈ ℕ refers to the number of photons at mode𝑚. Consequently, the Hamiltonian of all the modes of the EM field will be

𝐻̂EM =􏾜𝑚 𝐻̂EM, 𝑚 (8.83)

Next, we notice that from Eqs. 8.60 and 8.72 it follows that

𝐸𝑚𝑥 (𝑧, 𝑡) = 2√𝑐𝐿2 𝒩 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑞𝑚(𝑡), (8.84)
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hence, the quantum analogue is

𝐸̂𝑚𝑥 (𝑧, 𝑡) = 2√𝑐𝐿2 𝒩 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑞̂𝑚(𝑡). (8.85)

Additionally, from Eqs. 8.66 and 8.73 it follows that

𝐵𝑚𝑦 (𝑧, 𝑡) = 2𝒩𝐿√𝑐 1𝑚𝜋𝑐 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑞̇𝑚(𝑡), (8.86)

hence, the quantum analogue is

𝐵̂𝑚𝑦 (𝑧, 𝑡) = 2𝒩𝐿√𝑐 1𝑚𝜋𝑐 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 ̂𝑞̇𝑚(𝑡). (8.87)

From Eqs. 8.84, 8.79 and 8.50 it follows that

𝐸𝑚𝑥 (𝑧, 𝑡) = 􏿶2𝑀𝑚𝜔𝑚2𝜖0𝑉 􏿹1/2 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑞𝑚(𝑡) , (8.88)

hence, the quantum analogue is

𝐸̂𝑚𝑥 (𝑧, 𝑡) = 􏿶2𝑀𝑚𝜔𝑚2𝜖0𝑉 􏿹1/2 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑞̂𝑚(𝑡) (8.89)

From Eqs. 8.86, 8.79 and 8.50 it follows that

𝐵𝑚𝑦 (𝑧, 𝑡) = 1𝑐 􏿶2𝑀𝑚𝜖0𝑉 􏿹1/2 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑞̇𝑚(𝑡) , (8.90)

hence, the quantum analogue is

𝐵̂𝑚𝑦 (𝑧, 𝑡) = 1𝑐 􏿶2𝑀𝑚𝜖0𝑉 􏿹1/2 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 ̂𝑞̇𝑚(𝑡) . (8.91)

Finally, from the above equations, it follows, as expected, that 􏿯𝐸𝑥𝐵𝑦 􏿲 = [𝑐].
8.4 Hamiltonian of the EM field using photon creation and annihilation (or raising and lowering)

operators.

Let us now discuss photon creation and annihilation operators. Having reached this point, it is now easy
to quantize the Hamiltonian that describes the EM field by introducing the operators𝑞̂𝑚 = 𝑞𝑚 (8.92)𝑝̂𝑚 = −𝑖ℏ 𝜕𝜕𝑞𝑚 (8.93)
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We also introduce the operators:

𝑎̂𝑚 = 1√2𝑀𝑚ℏ𝜔𝑚 (𝑀𝑚𝜔𝑚𝑞̂𝑚 + 𝑖𝑝̂𝑚) “annihilation” (8.94)

𝑎̂†𝑚 = 1√2𝑀𝑚ℏ𝜔𝑚 (𝑀𝑚𝜔𝑚𝑞̂𝑚 − 𝑖𝑝̂𝑚) “creation” (8.95)

The following property holds: [𝑞̂𝑚, 𝑝̂𝑚]􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
commutator

= 𝑞̂𝑚𝑝̂𝑚 − 𝑝̂𝑚𝑞̂𝑚 = 𝑖ℏ. (8.96)

Hence, [𝑎̂𝑚, 𝑎̂†𝑚]􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
commutator

= 𝑎̂𝑚𝑎̂†𝑚 − 𝑎̂†𝑚𝑎̂𝑚 = 1. (8.97)

Therefore, the operators 𝑞̂𝑚 and 𝑝̂𝑚 can now be written as

𝑞̂𝑚 = 􏿶 ℏ2𝑀𝑚𝜔𝑚􏿹1/2 (𝑎̂†𝑚 + 𝑎̂𝑚), (8.98)

𝑝̂𝑚 = 𝑖 􏿶𝑀𝑚ℏ𝜔𝑚2 􏿹1/2 (𝑎̂†𝑚 − 𝑎̂𝑚). (8.99)

Thus, the Hamiltonian of mode𝑚 of the EM field is

𝐻̂EM, 𝑚 = ℏ𝜔𝑚 􏿶𝑎̂†𝑚𝑎̂𝑚 + 12􏿹 . (8.100)

Let us denote the state of the𝑚mode of the EM field with 𝑛𝑚 photons by |𝑛𝑚⟩. We call this a “photon
number state”. |𝑛𝑚⟩ form a complete set, i.e. it holds that ⟨𝑛𝑚|𝑙𝑚⟩ = 𝛿𝑛𝑙.

The operators 𝑎̂†𝑚 and 𝑎̂𝑚 have the properties𝑎̂†𝑚 |𝑛𝑚⟩ = √𝑛𝑚 + 1 |𝑛𝑚 + 1⟩ , (8.101)𝑎̂𝑚 |𝑛𝑚⟩ = √𝑛𝑚 |𝑛𝑚 − 1⟩ , (8.102)𝑎̂𝑚 |0⟩ = 0. (8.103)

From Eqs. 8.101 and 8.102, it follows that𝑎̂†𝑚𝑎̂𝑚 |𝑛𝑚⟩ = 𝑛𝑚 |𝑛𝑚⟩ , (8.104)

i.e. the operator 𝑁̂𝑚 = 𝑎̂†𝑚𝑎̂𝑚 counts the photon number of EM mode𝑚, hence we can refer to it as the
photon number operator of EM mode𝑚. Furthermore, it occurs inductively that

|𝑛𝑚⟩ = 1√𝑛𝑚!(𝑎̂†𝑚)𝑛𝑚 |0⟩ . (8.105)

Due to Eqs. 8.100 and 8.104, it follows that

𝐻̂EM, 𝑚 |𝑛𝑚⟩ = ℏ𝜔𝑚 􏿶𝑛𝑚 + 12􏿹 |𝑛𝑚⟩ , (8.106)
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i.e. the Hamiltonian 𝐻̂EM, 𝑚 yields the energy eigenvalues

𝐸𝑚,𝑛𝑚 = ℏ𝜔𝑚 􏿶𝑛𝑚 + 12􏿹 . (8.107)

The ground state of the SHO, |0⟩, with eigenenergy 12ℏ𝜔𝑚 corresponds to vacuum, i.e. without any parti-

cles, the first excited state of the SHO, |1⟩, with eigenenergy 32ℏ𝜔𝑚 corresponds to one particle, the second

excited state of the SHO, |1⟩, with eigenenergy 52ℏ𝜔𝑚 corresponds to two particles, and so forth. In this
occasion, these particles are called photons. They are created or destroyed by the creation and annihila-
tion operators, starting from a reference point, which here is vacuum. (see Figure 8.5). They obey to the
bosonic commutation relations (see Section 9.3). This representation is also known as second quantiza-
tion.

Figure 8.5: Particles (here photons, represented by green dots) are created and destroyed though the ac-
tion of the creation and annihilation operators, respectively. They obey to the bosonic commutation re-
lations (see Section 9.3). This representation is also known as second quantization. The photon number
is equal to the number of nodes in the eigenfunction.

The Hamiltonian of mode𝑚 of the EM field is

𝐻̂EM, 𝑚 = ℏ𝜔𝑚 􏿶𝑎̂†𝑚𝑎̂𝑚 + 12􏿹 = ℏ𝜔𝑚 􏿶𝑁̂𝑚 + 12􏿹 . (8.108)

Ignoring the term ℏ𝜔𝑚2 , it can be written as𝐻̂EM, 𝑚 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 = ℏ𝜔𝑚𝑁̂𝑚. (8.109)

We can have any number of photons in the quantum state ℏ𝜔𝑚, since photons are bosons. 𝑎̂†𝑚 is a raising
operator, since it raises the energy by creating a photon with energy ℏ𝜔𝑚; this is why it is also called the
creation operator. 𝑎̂𝑚 is a lowering operator, since it lowers the energy by destroying a photonwith energyℏ𝜔𝑚; this is why it is also called the annihilation operator.

Finally, let us note that from Eqs. 8.89 and 8.98 it follows that

𝐸̂𝑚𝑥 (𝑧, 𝑡) = 􏿶ℏ𝜔𝑚𝜖0𝑉 􏿹1/2 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 (𝑎̂†𝑚 + 𝑎̂𝑚) , (8.110)

while, from Eqs. 8.91 and 8.99 it follows that

𝐵̂𝑚𝑦 (𝑧, 𝑡) = 𝑖𝑐 􏿶ℏ𝜔𝑚𝜖0𝑉 􏿹1/2 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 (𝑎̂†𝑚 − 𝑎̂𝑚) (8.111)
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8.5 Hamiltonian of a two-level system using spinors and creation and annihilation (or raising and
lowering) operators.

Let us consider theHamiltonian of a two-level systemwith spinors and electron creation and annihilation
(or raising and lowering) operators. In other words, we will now describe the raising and lowering of an
electron between the energy levels of a two-level system, e.g., of an atom, using spinors. A spinor is a
column vector with two components. Let us start with some definitions (e.g. [1]):

|⟩ = 􏿶∘∘􏿹 = 􏿶00􏿹 = |0⟩ , |↓⟩ = 􏿶∘•􏿹 = 􏿶01􏿹 = |1⟩ , |↑⟩ = 􏿶•∘􏿹 = 􏿶10􏿹 = |2⟩ (8.112)

The first one represents an empty two-level system, the second one a two-level system with the electron
lying at the lower level, with energy 𝐸1, and the third one a two level system lying at the upper level, with
energy 𝐸2. Now, let us define the operators

𝑆̂+ = 􏿶0 10 0􏿹 , 𝑆̂− = 􏿶0 01 0􏿹 , (8.113)

for which it actually holds that 𝑆̂†+ = 􏿶0 10 0􏿹† = 􏿶0 01 0􏿹 = 𝑆̂−. Let us find out what the result of their

action is on the spinors we defined right above:

𝑆̂+ |0⟩ = 􏿶0 10 0􏿹 􏿶00􏿹 = 􏿶00􏿹 = |0⟩ no action

𝑆̂+ |↓⟩ = 􏿶0 10 0􏿹 􏿶01􏿹 = 􏿶10􏿹 = |↑⟩ raises it

𝑆̂+ |↑⟩ = 􏿶0 10 0􏿹 􏿶10􏿹 = 􏿶00􏿹 = |0⟩ throws it out

(8.114)

𝑆̂− |0⟩ = 􏿶0 01 0􏿹 􏿶00􏿹 = 􏿶00􏿹 = |0⟩ no action

𝑆̂− |↓⟩ = 􏿶0 01 0􏿹 􏿶01􏿹 = 􏿶00􏿹 = |0⟩ throws it out

𝑆̂− |↑⟩ = 􏿶0 01 0􏿹 􏿶10􏿹 = 􏿶01􏿹 = |↓⟩ lowers it

(8.115)

Thus, 𝑆̂+ is called the raising operator, while ο 𝑆̂− is called the lowering operator of the electron. Let us
examine some more properties. It holds that

𝑆̂+𝑆̂− = 􏿶0 10 0􏿹 􏿶0 01 0􏿹 = 􏿶1 00 0􏿹 , (8.116)

𝑆̂−𝑆̂+ = 􏿶0 01 0􏿹 􏿶0 10 0􏿹 = 􏿶0 00 1􏿹 . (8.117)

Thus, 𝑆̂+𝑆̂− + 𝑆̂−𝑆̂+ = 􏿶1 00 1􏿹 = Î (8.118)

which is the identity matrix. The above can also be written in the form{𝑆̂+, 𝑆̂−} = Î. (8.119)
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{𝐴, 𝐵} or [𝐴, 𝐵]+ is the Poisson bracket or the anticommutator, defined as{𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴, (8.120)

while [𝐴, 𝐵] or [𝐴, 𝐵]− is the commutator, defined as[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. (8.121)

When {𝐴, 𝐵} = 0 ⇒ 𝐴𝐵 + 𝐵𝐴 = 0 ⇒ 𝐴𝐵 = −𝐵𝐴, i.e. the quantities 𝐴, 𝐴 anticommute with
each other, while when [𝐴, 𝐵] = 0 ⇒ 𝐴𝐵 − 𝐵𝐴 = 0 ⇒ 𝐴𝐵 = 𝐵𝐴, i.e. the quantities commute with
each other; this is where the names come from. As we will see below, the Poisson bracket or anticommu-
tator is used in the anticommutation relationships that hold for electrons, which are fermions, while the
commutator is used in the commutation relationships that hold for photons, which are bosons.. Sadly,
it is common in Greek textbooks for secondary education that the commutative property is mistitled as
“anticommutative” property; it seems we have been lost in translation...

Now, let us remember the Pauli matrices 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧 and see how they are related to the raising and
lowering operators, 𝑆̂+ and 𝑆̂−, respectively.

𝜎̂𝑥 = 􏿶0 11 0􏿹 , 𝜎̂𝑦 = 􏿶0 −𝑖𝑖 0 􏿹 , 𝜎̂𝑧 = 􏿶1 00 −1􏿹 . (8.122)

We can show that it holds that [𝜎̂𝑥, 𝜎̂𝑦] = 2𝑖𝜎̂𝑧, (8.123)

as well as its cyclic permutations. Moreover,

𝜎̂2𝑥 = 𝜎̂2𝑦 = 𝜎̂2𝑧 = 􏿶1 00 1􏿹 = Î, (8.124)

and {𝜎̂𝑥, 𝜎̂𝑦} = 𝜎̂𝑥𝜎̂𝑦 + 𝜎̂𝑦𝜎̂𝑥 = 0̂, (8.125){𝜎̂𝑦, 𝜎̂𝑧} = 𝜎̂𝑦𝜎̂𝑧 + 𝜎̂𝑧𝜎̂𝑦 = 0̂,{𝜎̂𝑧, 𝜎̂𝑥} = 𝜎̂𝑧𝜎̂𝑥 + 𝜎̂𝑥𝜎̂𝑧 = 0̂,
i.e. the Pauli matrices anticommute with each other. For example,{𝜎̂𝑥, 𝜎̂𝑦} = 𝜎̂𝑥𝜎̂𝑦 + 𝜎̂𝑦𝜎̂𝑥 =􏿶0 11 0􏿹 􏿶0 −𝑖𝑖 0 􏿹 + 􏿶0 −𝑖𝑖 0 􏿹 􏿶0 11 0􏿹 = 􏿶𝑖 00 −𝑖􏿹 + 􏿶−𝑖 00 𝑖􏿹 = 􏿶0 00 0􏿹 = 0̂
Additionally, we can easily show that 𝑆̂+ + 𝑆̂− = 𝜎̂𝑥,𝑆̂+ − 𝑆̂− = 𝑖𝜎̂𝑦,
and, using Eqs. 8.116 and 8.116, that𝑆̂+𝑆̂− − 𝑆̂−𝑆̂+ = [𝑆̂+, 𝑆̂−] = ̂𝜎𝑧. (8.126)

The Hamiltonian of the two-level system, 𝐻̂2LS, is

𝐸2𝑆̂+𝑆̂− + 𝐸1𝑆̂−𝑆̂+ = 𝐸2 􏿶1 00 0􏿹 + 𝐸1 􏿶0 00 1􏿹 = 􏿶𝐸2 00 𝐸1􏿹 , (8.127)
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since 􏿶𝐸2 00 𝐸1􏿹 􏿶10􏿹 = 􏿶𝐸20 􏿹 = 𝐸2 􏿶10􏿹 , (8.128)

􏿶𝐸2 00 𝐸1􏿹 􏿶01􏿹 = 􏿶 0𝐸1􏿹 = 𝐸1 􏿶01􏿹 . (8.129)

Hence, concisely, we have shown that𝐻̂2LS = 𝐸2𝑆̂+𝑆̂− + 𝐸1𝑆̂−𝑆̂+ . (8.130)

Now, if we set 𝐸1 = 0 ⇒ 𝐸2 = ℏΩ (remember Eq. 5.44 and Eq. 5.14), then𝐻̂2LS = ℏΩ𝑆̂+𝑆̂− (8.131)

The operator 𝑆̂+𝑆̂− counts the number of electrons in the upper level, since

𝑆̂+𝑆̂− |1⟩ = 􏿶1 00 0􏿹 􏿶01􏿹 = 􏿶00􏿹 = |0⟩ ⇒ 𝑆̂+𝑆̂− |1⟩ = 0 |1⟩ , (8.132)

𝑆̂+𝑆̂− |2⟩ = 􏿶1 00 0􏿹 􏿶10􏿹 = 􏿶10􏿹 = |2⟩ ⇒ 𝑆̂+𝑆̂− |2⟩ = 1 |2⟩ . (8.133)

The operator 𝑆̂−𝑆̂+ counts the number of electrons in the lower level, since

𝑆̂−𝑆̂+ |1⟩ = 􏿶0 00 1􏿹 􏿶01􏿹 = 􏿶01􏿹 = |1⟩ ⇒ 𝑆̂−𝑆̂+ |1⟩ = 1 |1⟩ , (8.134)

𝑆̂−𝑆̂+ |2⟩ = 􏿶0 00 1􏿹 􏿶10􏿹 = 􏿶00􏿹 = |0⟩ ⇒ 𝑆̂−𝑆̂+ |2⟩ = 0 |2⟩ . (8.135)

Concisely, for the operators 𝑆̂+ and 𝑆̂− we can show that (𝑆̂+)† = 𝑆̂− as well as that{𝑆̂+, 𝑆̂†+} = {𝑆̂+, 𝑆̂−} = 𝑆̂+𝑆̂− + 𝑆̂−𝑆̂+ = Î{𝑆̂−, 𝑆̂†−} = {𝑆̂−, 𝑆̂+} = 𝑆̂−𝑆̂+ + 𝑆̂+𝑆̂− = Î{𝑆̂+, 𝑆̂+} = {𝑆̂†−, 𝑆̂†−} = 𝑆̂+𝑆̂+ + 𝑆̂+𝑆̂+ = 0̂{𝑆̂−, 𝑆̂−} = {𝑆̂†+, 𝑆̂†+} = 𝑆̂−𝑆̂− + 𝑆̂−𝑆̂− = 0̂

(8.136)

where Î is the 2 × 2 identity matrix and 0̂ is the 2 × 2 zero matrix. Eqs. 8.136 show that the operators𝑆̂+ and 𝑆̂− obey to the fermion anticommutation relations which are discussed in Section 9.3. 𝑆̂+ is a
raising operator, since it raises the energy by creating an electronwith ℏΩ; this is where the name creation
operator comes from. 𝑆̂− is a lowering operator, since it lowers the energy by annihilating an electronwith
energy ℏΩ; this is where the name annihilation operator comes from. We can only have a single electron
with energy ℏΩ, since electrons are fermions.

Let us also notice that, as the notation in Eq. 8.112 suggests, there are several ways to denote the
(fermion) creation and annihilation operators in the literature, such as𝑆̂− = |↓⟩ ⟨↑| = |1⟩ ⟨2| = â12 = 𝑐̂2𝑆̂+ = |↑⟩ ⟨↓| = |2⟩ ⟨1| = â†12 = 𝑐̂†2,
which are totally equivalent. Therefore, some equivalent ways to write the Hamiltonian of the two-level
system (Eq. 8.131) are𝐻̂2LS = ℏΩ𝑆̂+𝑆̂− = ℏΩ |↑⟩ ⟨↑| = ℏΩ |2⟩ ⟨2| = ℏΩâ†12â12 = ℏΩ𝑐̂†2𝑐̂2
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8.6 Hamiltonian of three- and multi-level systems using spinors and creation and annihilation (or
raising and lowering) operators.

In accordance with the above, for a three level system with eigenenergies Ε1 = 0 < Ε2 < Ε3, we can
define the column vectors

|0⟩ = ϴϵϵϵϵϵϵ϶000
ϷϸϸϸϸϸϸϹ , |1⟩ = ϴϵϵϵϵϵϵ϶100

ϷϸϸϸϸϸϸϹ , |2⟩ = ϴϵϵϵϵϵϵ϶010
ϷϸϸϸϸϸϸϹ , |3⟩ = ϴϵϵϵϵϵϵ϶001

ϷϸϸϸϸϸϸϹ . (8.137)

The first one represents an empty three-level system, and the rest a three-level system with the electron
lying at level 𝑛, with energy 𝐸𝑛. In order to describe its elementary excitations from the ground state, we
can define the creation and annihilation operators

â12 = |1⟩ ⟨2| = ϴϵϵϵϵϵϵ϶100
ϷϸϸϸϸϸϸϹ 􏿴0 1 0􏿷 = ϴϵϵϵϵϵϵ϶0 1 00 0 00 0 0

ϷϸϸϸϸϸϸϹ = â†21
â21 = |2⟩ ⟨1| = ϴϵϵϵϵϵϵ϶010

ϷϸϸϸϸϸϸϹ 􏿴1 0 0􏿷 = ϴϵϵϵϵϵϵ϶0 0 01 0 00 0 0
ϷϸϸϸϸϸϸϹ = â†12

â13 = |1⟩ ⟨3| = ϴϵϵϵϵϵϵ϶100
ϷϸϸϸϸϸϸϹ 􏿴0 0 1􏿷 = ϴϵϵϵϵϵϵ϶0 0 10 0 00 0 0

ϷϸϸϸϸϸϸϹ = â†31
â31 = |3⟩ ⟨1| = ϴϵϵϵϵϵϵ϶001

ϷϸϸϸϸϸϸϹ 􏿴1 0 0􏿷 = ϴϵϵϵϵϵϵ϶0 0 00 0 01 0 0
ϷϸϸϸϸϸϸϹ = â†13,

whose action is

â12 |1⟩ = â†21 |1⟩ = |1⟩ ⟨2|1⟩ = |0⟩
â21 |1⟩ = â†12 |1⟩ = |2⟩ ⟨1|1⟩ = |2⟩
â13 |1⟩ = â†31 |1⟩ = |1⟩ ⟨3|1⟩ = |0⟩
â31 |1⟩ = â†13 |1⟩ = |3⟩ ⟨1|1⟩ = |3⟩
â12 |2⟩ = â†21 |2⟩ = |1⟩ ⟨2|2⟩ = |1⟩
â21 |2⟩ = â†12 |2⟩ = |2⟩ ⟨1|2⟩ = |0⟩
â13 |2⟩ = â†31 |2⟩ = |1⟩ ⟨3|2⟩ = |0⟩
â31 |2⟩ = â†13 |2⟩ = |3⟩ ⟨1|2⟩ = |0⟩
â12 |3⟩ = â†21 |3⟩ = |1⟩ ⟨2|3⟩ = |0⟩
â21 |3⟩ = â†12 |3⟩ = |2⟩ ⟨1|3⟩ = |0⟩
â13 |3⟩ = â†31 |3⟩ = |1⟩ ⟨3|3⟩ = |1⟩
â31 |3⟩ = â†13 |3⟩ = |3⟩ ⟨1|3⟩ = |0⟩ .

Using these operators, theHamiltonian describing the elementary excitations of a three-level system from
its ground state |1⟩ (with 𝐸1 = 0) can be written in the equivalent forms:𝐻̂3LS = 𝐸2â†12â12 + 𝐸3â†13â13 = 𝐸2 |2⟩ ⟨2| + 𝐸3 |3⟩ ⟨3| = 𝐸2𝑐̂†2𝑐̂2 + 𝐸3𝑐̂†3𝑐̂3. (8.138)
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In a completely analogous manner, for a multi-level system with𝑁 levels and eigenenergies Ε1 = 0 <Ε2 < …Ε𝑁 , we can define 𝑁 + 1 column vectors, 1 for the vacuum state and 𝑁 describing the state|𝑛⟩ of an electron lying at level 𝑛, with energy 𝐸𝑛. Using these operators, the Hamiltonian describing the
elementary excitations of a multi-level system from its ground state |1⟩ (with 𝐸1 = 0) can be written in
the equivalent forms:

𝐻̂MLS = 𝑁􏾜𝑛=2 𝐸𝑛â†1𝑛â1𝑛 = 𝑁􏾜𝑛=2 𝐸𝑛 |𝑛⟩ ⟨𝑛| = 𝑁􏾜𝑛=2 𝐸𝑛𝑐̂†𝑛𝑐̂𝑛. (8.139)

8.7 Interaction Hamiltonian between two-level system and EM field.

Let 𝑞 > 0 be −𝑞 < 0 be two opposite electric charges, placed at points P and M, respectively. If 𝑑 = 􏹏MP
is the position vector of the positive charge with respect to the negative one, then the electric dipole
moment is defined as 𝒫 = 𝑞𝑑. (8.140)
For example, in the hydrogen atom, if N represents the nucleus and E the electron and, as usually, we
define 𝑟⃗ = 􏹎PE, then𝒫 = 𝑞𝑑 = 𝑒(−𝑟⃗) ⇒ 𝒫 = −𝑒𝑟. (8.141)
This is depicted in the upper panel of Figure 8.6.

Figure 8.6: Left. Electric dipole moment. Right. Transition (electric) dipole moment.

The potential energy,𝑈ℰ , of an electric dipole subject to an electric field ℰ⃗ is𝑈ℰ = −𝒫 ⋅ ℰ⃗ . (8.142)

In accordance with the above, we can analogously define a dipole moment when a part of the electron
cloud is transitioned from an initial to a final area. This is how the transition (electric) dipole moment¹ is
defined. This is depicted in the lower panel of Figure 8.6. If the charge of the transitioning charge is −𝑒,
then, again, 𝑝⃗ = 𝑞𝑑 = 𝑒(−𝑟⃗) ⇒ 𝑝⃗ = −𝑒𝑟. In other words, this means that, for region 2, the difference
between the final and the initial state is equivalent to the transition of charge −𝑒, while, for region 1, the
difference between the final and the initial state is equivalent to the transition of charge+𝑒.

The transition (electric) dipolemoment operator is alternatively denoted by ̂⃗𝑑 or ̂⃗𝑝. Written on the
basis of the energy eigenstates of the unperturbed atom (or system), it is defined aŝ⃗𝑑 = ̂⃗𝑝 ∶= 𝑁􏾜𝑖=1 𝑁􏾜𝑗=1 𝑑𝑖𝑗 |Φ𝑖⟩ ⟨Φ𝑗| , (8.143)

¹The word “electric” has been put in parenthesis because it is commonly implied.
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again, with the alternative notations 𝑑𝑖𝑗 = 𝑝⃗𝑖𝑗 ∶= −𝑒 ⟨Φ𝑖| ̂⃗𝑟 |Φ𝑗⟩ (8.144)

for the matrix element of the transition (electric) dipole moment between states |Φ𝑖⟩ and |Φ𝑗⟩. We recall
that the position operator ̂⃗𝑟 is such that ̂⃗𝑟 |⃗𝑟⟩ = 𝑟⃗ |⃗𝑟⟩ . (8.145)

We also recall that⟨Φ𝑖| ̂⃗𝑟 |Φ𝑗⟩ = 􏾜|𝑟′⟩,|𝑟″⟩ ⟨Φ𝑖|𝑟′⟩ ⟨𝑟′| ̂⃗𝑟 |𝑟″⟩ ⟨𝑟″|Φ𝑗⟩ = 􏾜|𝑟′⟩ ⟨Φ𝑖|𝑟′⟩ 𝑟′ ⟨𝑟′|Φ𝑗⟩= 􏾜|⃗𝑟⟩ ⟨Φ𝑖|⃗𝑟⟩ 𝑟⃗ ⟨⃗𝑟|Φ𝑗⟩ = 􏾙𝑑𝑉Φ𝑖(⃗𝑟)∗𝑟⃗ Φ𝑗(⃗𝑟),
since ⟨𝑟′| ̂⃗𝑟 |𝑟″⟩ = 𝑟″ ⟨𝑟′|𝑟″⟩ = 𝑟″𝛿𝑟′,𝑟″ . (8.146)

Therefore, 𝑑11 = −𝑒 ⟨Φ1| ̂⃗𝑟 |Φ1⟩ = −𝑒􏾙𝑑𝑉 Φ1(⃗𝑟)∗𝑟⃗ Φ1(⃗𝑟)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
odd

= 0, ⋆ (8.147)

𝑑12 = −𝑒 ⟨Φ1| ̂⃗𝑟 |Φ2⟩ = −𝑒􏾙𝑑𝑉Φ1(⃗𝑟)∗𝑟⃗ Φ2(⃗𝑟) ≠ 0, (8.148)

𝑑21 = −𝑒 ⟨Φ1| ̂⃗𝑟 |Φ1⟩ = −𝑒􏾙𝑑𝑉Φ2(⃗𝑟)∗𝑟⃗ Φ1(⃗𝑟) ≠ 0, (8.149)

𝑑22 = −𝑒 ⟨Φ2| ̂⃗𝑟 |Φ2⟩ = −𝑒􏾙𝑑𝑉 Φ2(⃗𝑟)∗𝑟⃗ Φ2(⃗𝑟)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
odd

= 0. ⋆ (8.150)

In other words, while the diagonal elements become zero, 𝑑12 and 𝑑21 are not zero (“by identity”). Let us
now find out what ̂⃗𝑝 does at a two-level system.̂⃗𝑝 = 𝑑11 |Φ1⟩ ⟨Φ1| + 𝑑12 |Φ1⟩ ⟨Φ2| + 𝑑21 |Φ2⟩ ⟨Φ1| + 𝑑22 |Φ2⟩ ⟨Φ2|= 𝑑11 􏿶01􏿹 􏿴0 1􏿷 + 𝑑12 􏿶01􏿹 􏿴1 0􏿷 + 𝑑21 􏿶10􏿹 􏿴0 1􏿷 + 𝑑22 􏿶10􏿹 􏿴1 0􏿷

= %
%✒
0 ⋆𝑑11⏟

diagonal element

􏿶0 00 1􏿹􏿋􏻰􏻰􏿌􏻰􏻰􏿍
part of diagonal matrix

+ 𝑑12⏟
off-diagonal element

􏿶0 01 0􏿹􏿋􏻰􏻰􏿌􏻰􏻰􏿍
part of antidiagonal matrix

+ 𝑑21⏟
off-diagonal element

􏿶0 10 0􏿹􏿋􏻰􏻰􏿌􏻰􏻰􏿍
part of antidiagonal matrix

+ %
%✒
0 ⋆𝑑22⏟

diagonal element

􏿶1 00 0􏿹􏿋􏻰􏻰􏿌􏻰􏻰􏿍
part of diagonal matrix

From Eqs. (8.148)-(8.149) we conclude that 𝑑12 = 𝑑21, given thatΦ𝑖(⃗𝑟) are real, thus

̂⃗𝑝 = 𝑑12 􏿶0 11 0􏿹 . (8.151)
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Question: And what does the operator 􏿶0 11 0􏿹do?
Answer: 􏿶0 11 0􏿹 􏿶01􏿹 = 􏿶10􏿹 , 􏿶0 11 0􏿹 􏿶10􏿹 = 􏿶01􏿹
In other words, it transitions from one energy level to the other, as it should!

At this point, we can define the potential energy operator. We assume that the EM field - 2LS in-
teraction has the form of an electric dipole mechanism. We ignore other interactions, such as electric
quadrupole or magnetic dipole. Since𝑈ℰ = −𝒫 ⋅ ℰ⃗ , it is implied that𝑈𝑚ℰ = −𝒫 ⋅ ℰ⃗ 𝑚, (8.152)

where the index𝑚 denotes the𝑚mode of the EM field. The respective operator can be defined ass

𝑈̂𝑚ℰ = − ̂⃗𝑝 ⋅ ̂⃗ℰ 𝑚. (8.153)

Therefore, 𝑈̂𝑚ℰ = − 𝑁􏾜𝑖=1 𝑁􏾜𝑗=1 𝑑𝑖𝑗 |Φ𝑖⟩ ⟨Φ𝑗| ⋅ 𝐸̂𝑚𝑥 (𝑧, 𝑡) ̂𝑖.̂𝑖 is the unit vector of the 𝑥-axis, since we have assumed this direction for the electric field (see Figure 8.2).
Alternatively, due to Eq. 8.151, 𝑈̂𝑚ℰ = −𝑑12 􏿶0 11 0􏿹 ⋅ 𝐸̂𝑚𝑥 (𝑧, 𝑡) ̂𝑖. (8.154)

But 𝑑12 ⋅ ̂𝑖 = −𝑒􏾙𝑑𝑉Φ1(⃗𝑟)∗(⃗𝑟 ⋅ ̂𝑖)Φ2(⃗𝑟) = −𝑒𝑥12 = 𝒫𝑥12 ∶= 𝒫. (8.155)

Thus, 𝑈̂𝑚ℰ = 𝑒𝑥12 􏿶0 11 0􏿹 𝐸̂𝑚𝑥 (𝑧, 𝑡). (8.156)

We recall Eqs. 8.110 and 8.111

𝐸̂𝑚𝑥 (𝑧, 𝑡) = 􏿶ℏ𝜔𝑚𝜀0𝑉 􏿹
12
sin 􏿵𝑚𝜋𝑧𝐿 􏿸 (𝑎̂†𝑚 + 𝑎̂𝑚)

𝐵̂𝑚𝑦 (𝑧, 𝑡) = 􏿶ℏ𝜔𝑚𝜀0𝑉 􏿹
12 1𝑐 cos 􏿵𝑚𝜋𝑧𝐿 􏿸 𝑖(𝑎̂†𝑚 − 𝑎̂𝑚).

out of which, however, only the first one is needed in the context of our assumptions.Moreover, we recall
that 𝑆̂+ + 𝑆̂− = 􏿶0 10 0􏿹 + 􏿶0 01 0􏿹 = 􏿶0 11 0􏿹 .
Thus, finally,

𝑈̂𝑚ℰ = 𝑒𝑥12 􏿶ℏ𝜔𝑚𝜀0𝑉 􏿹
12
sin 􏿵𝑚𝜋𝑧𝐿 􏿸 (𝑆̂+ + 𝑆̂−)(𝑎̂†𝑚 + 𝑎̂𝑚). (8.157)
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We can alternatively write

ℏ𝑔𝑚 = 𝑒𝑥12 􏿶ℏ𝜔𝑚𝜀0𝑉 􏿹
12
sin 􏿵𝑚𝜋𝑧𝐿 􏿸 (8.158)

𝑈̂𝑚ℰ = ℏ𝑔𝑚(𝑆̂+ + 𝑆̂−)(𝑎̂†𝑚 + 𝑎̂𝑚) (8.159)

So, this is the interactionHamiltonian between the 2LS and themode𝑚 of the EM field. In the context
of atomic physics, this is also denoted as 𝐻̂𝑚

AF, where AF stands for Atom-Field.
From Eq. 8.158 it follows that

ℏ|𝑔𝑚| = |𝒫 || 􏿶ℏ𝜔𝑚𝜀0𝑉 􏿹
12
sin 􏿵𝑚𝜋𝑧𝐿 􏿸 |. (8.160)

We can also define, for reasons that will be explained below, the Rabi frequency asΩ𝑚𝑅 ∶= 2√𝑛𝑔𝑚. (8.161)

Thus, Ω𝑚𝑅 = |𝒫 |ℏ | 􏿶4ℏ𝜔𝑚𝑛𝜀0𝑉 􏿹12 sin 􏿵𝑚𝜋𝑧𝐿 􏿸 | ∶= |𝒫 |𝐸𝑚0ℏ , (8.162)

where, however, the “amplitude” 𝐸𝑚0 is spatially configured, i.e. it depends on the position 𝑧 of the atom
inside the cavity. In other words, 𝐸𝑚0 = 𝐸𝑚0 (𝑧). If the EM mode𝑚 we refer to is implied, we can use the
simpler notation |𝑔| orΩ𝑅. Additionally, to avoid vector norms we can choose the phase of the wavefunc-
tions to be such that 𝑔 is real and positive [2]. Concisely,

Ω𝑅 = 𝑔2√𝑛 ∶= |𝒫 |𝐸𝑚0ℏ (8.163)

Let us examine the EM field-2LS interaction Hamiltonian (Eq. 8.159) a bit more. For a single, unique
mode𝑚, this Hamiltonian is analyzed into four terms𝑈̂𝑚ℰ = ℏ𝑔𝑚(𝑆̂+ + 𝑆̂−)(𝑎̂†𝑚 + 𝑎̂𝑚) == ℏ𝑔𝑚{𝑆̂+𝑎̂†𝑚􏿅

1st

+ 𝑆̂+𝑎̂𝑚􏿅
2nd

+ 𝑆̂−𝑎̂†𝑚􏿅
3rd

+ 𝑆̂−𝑎̂𝑚􏿅
4th

}.
• 1stTERM.Theelectron is raised an aphoton is created/emitted.Therefore, the energy difference isΔ𝐸 > 0.Hence, this termdoes not conserve the energy by itself and seemsunreasonable. Schemat-

ically: 􏿶∘•􏿹􏿄
before

􏿶•∘􏿹 ∼∼≻􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
after

However, it is possible that such terms are kept if multiple modes (𝑚) hence multiple frequencies
(Eq. 8.50), are supported, i.e. if the EM field - 2LS Hamiltonian is a sum of terms, as in Eq. 8.159.
In such a case, it is possible that the 2LS absorbs a high frequency photon and is raised, and, at the
same time, a lower frequency photon is created/emitted. Schematically:

𝑓𝑖 𝑤𝑤𝑤≻ 􏿶∘•􏿹􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
before

􏿶•∘􏿹 ∼∼≻ 𝑓𝑓 < 𝑓𝑖􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
after
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• 2nd TERM. The electron is raised and a photon is destroyed/absorbed. This term conserves the
energy even for a single mode (𝑚). Schematically:

∼∼≻ 􏿶∘•􏿹􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
before

􏿶•∘􏿹􏿄
after

• 3rd TERM. The electron is lowered and a photon is created/emitted. This term conserves the en-
ergy even for a single mode (𝑚), as well. Schematically:

􏿶•∘􏿹􏿄
before

􏿶∘•􏿹 ∼∼≻􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍
after

• 4th TERM. The electron is lowered and a photon is destroyed/absorbed. Therefore, the energy
difference is Δ𝐸 < 0. Hence, this term does not conserve the energy by itself, just like the 1st
TERM. Schematically: ∼∼≻ 􏿶•∘􏿹􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍

before

􏿶∘•􏿹􏿄
after

However, it is possible that such termsarekept ifmultiplemodes (𝑚)hencemultiple frequencies (Eq. 8.50),
are supported, i.e. if the EM field - 2LS Hamiltonian is a sum of terms, as in Eq. 8.159. In such a case, it
is possible that the 2LS absorbs a low frequency photon and is lowered, and, at the same time, a higher
frequency photon is created/emitted. Schematically:

𝑓𝑖 ∼∼≻ 􏿶•∘􏿹􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍
before

􏿶∘•􏿹 𝑤𝑤𝑤≻ 𝑓𝑓 > 𝑓𝑖􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
after

If we ignore the 1st and the 4th term, which to not themselves conserve the energy, then𝑈̂𝑚ℰ = ℏ𝑔𝑚 􏿴𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚􏿷 . (8.164)

This approximation is somehow analogous to the RWA,whichwas discussed inChapter 5.There, we kept
only the slower term of the Rabi equations, in which the EM field and the two-level system are approxi-
mately at resonance, i.e.,Ω ≃ 𝜔. In other words, we kept the slow terms containing 𝑒±𝑖(Ω−𝜔)𝑡 and ignored
the fast terms containing 𝑒±𝑖(Ω+𝜔)𝑡.
8.8 Synopsis of Hamiltonians.

Let us summarize what we have done so far.
In Section 8.4, we arrived at Eq. 8.100, which describes an EM mode𝑚, i.e.

𝐻̂EM, 𝑚 = ℏ𝜔𝑚 􏿶𝑎̂†𝑚𝑎̂𝑚 + 12􏿹 .
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Ignoring the term ℏ𝜔𝑚2 , the above equation becomes Eq. 8.109

𝐻̂EM, 𝑚 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 = ℏ𝜔𝑚𝑁̂𝑚 .
8.4, we arrived at Eq. 8.100, which describes an EMmode𝑚, i.e. In Section 8.5, we arrived at Eq. 8.130,

which describes a 2LS, i.e. 𝐻̂2LS = 𝐸2𝑆̂+𝑆̂− + 𝐸1𝑆̂−𝑆̂+ .
Setting 𝐸1 = 0 ⇒ 𝐸2 = ℏΩ (remember Eq. 5.44 and Eq. 5.14), the above equation becomes Eq. 8.131𝐻̂2LS = ℏΩ𝑆̂+𝑆̂− .

The picture is competed in Section 8.7, where the interaction between a mode𝑚 of the EM field and
the 2LS is described, i.e., 𝑈̂𝑚ℰ = ℏ𝑔𝑚(𝑆̂+ + 𝑆̂−)(𝑎̂†𝑚 + 𝑎̂𝑚) .

Therefore, the Hamiltonian that describes an EM mode 𝑚, a 2LS, and the interaction between them
(which is often called the Rabi Hamiltonian) can be written as𝐻̂𝑚𝑅 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+ + 𝑆̂−)(𝑎̂†𝑚 + 𝑎̂𝑚) , (8.165)

while the states (of the electron and the EM mode𝑚, without the interaction between them) is|↑, 𝑛𝑚⟩ , (8.166)|↓, 𝑛𝑚⟩ . (8.167)

Concisely, while for the total Hamiltonian for an EM mode𝑚we obtain the Rabi Hamiltonian𝐻̂𝑚𝑅 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+𝑎̂†𝑚 + 𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚 + 𝑆̂−𝑎̂𝑚), (8.168)

according to the discussion of Section 8.7, we can ignore, in first approximation, the so-called counter-
rotating terms 𝐻̂counter-rotating = ℏ𝑔𝑚(𝑆̂+𝑎̂†𝑚 + 𝑆̂−𝑎̂𝑚) , (8.169)

so that we arrive at the so-called Jaynes-Cummings Hamiltonian [3]𝐻̂𝑚𝐽𝐶 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚) . (8.170)

We note that in paper [3] the authors take the average energy between the two levels as a reference
point. In such a case, i.e. if we set 𝐸1 = −ℏΩ2 and 𝐸2 = ℏΩ2 , the second term, initially given by Eq. 8.130,𝐻̂2LS = 𝐸2𝑆̂+𝑆̂− + 𝐸1𝑆̂−𝑆̂+,
would become (see Eq. 8.126) 𝐻̂2LS = ℏΩ2 𝜎̂𝑧. (8.171)

However, we will continue to use 𝐸1 as a reference point, so that our second term is𝐻̂2LS = ℏΩ𝑆̂+𝑆̂−.
In exercise 1 of this chapter we neglect for simplicity the index 𝑚. (A) We find what terms 𝑎̂†𝑎̂, 𝑎̂𝑎̂†,𝑆̂+𝑆̂−, 𝑆̂−𝑆̂+, 𝑆̂+𝑎̂†, 𝑆̂+𝑎̂, 𝑆̂−𝑎̂†, 𝑆̂−𝑎̂, doon states |↓, 𝑛⟩ and |↑, 𝑛⟩. (B)Wecalculate ⟨𝑎̂†𝑎̂⟩, ⟨𝑎̂𝑎̂†⟩, ⟨𝑆̂+𝑆̂−⟩,⟨𝑆̂−𝑆̂+⟩, ⟨𝑆̂+𝑎̂†⟩, ⟨𝑆̂+𝑎̂⟩, ⟨𝑆̂−𝑎̂†⟩, ⟨𝑆̂−𝑎̂⟩, for states |↓, 𝑛⟩ and |↑, 𝑛⟩.
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8.9 Mean (expected) values of quantities related to the Jaynes-Cummings Hamiltonian.

Letusnot calculate the average (i.e. the expected)valuesof theoperators involved in the Jaynes-Cummings
Hamiltonian 𝐻̂𝑚𝐽𝐶 = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚),
i.e. ⟨𝑎̂†𝑚𝑎̂𝑚⟩, ⟨𝑆̂+𝑆̂−⟩, ⟨𝑆̂+𝑎̂𝑚⟩, ⟨𝑆̂−𝑎̂†𝑚⟩ for the states:

• (A) |Ψ𝐴(𝑡)⟩ = 𝑐1(𝑡) |↓, 𝑛⟩ + 𝑐2(𝑡) |↑, 𝑛 − 1⟩
• (E) |Ψ𝐸(𝑡)⟩ = 𝑐1(𝑡) |↓, 𝑛 + 1⟩ + 𝑐2(𝑡) |↑, 𝑛⟩

Case (A)⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐴) = ⟨𝜓𝐴(𝑡)|𝑎̂†𝑚|𝜓𝐴(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛| + 𝑐∗2 ⟨↑, 𝑛 − 1| 􏿽𝑎̂†𝑚𝑎̂𝑚􏿺𝑐1 |↓, 𝑛⟩ + 𝑐2 |↑, 𝑛 − 1⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛|𝑎̂†𝑚𝑎̂𝑚|↓, 𝑛⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛|𝑎̂†𝑚𝑎̂𝑚|↑, 𝑛 − 1⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛 − 1|𝑎̂†𝑚𝑎̂𝑚|↓, 𝑛⟩ + |𝑐2|2 ⟨↑, 𝑛 − 1|𝑎̂†𝑚𝑎̂𝑚|↑, 𝑛 − 1⟩= |𝑐1|2√𝑛√𝑛 ⟨↓, 𝑛|↓, 𝑛⟩ + 𝑐∗1𝑐2√𝑛 − 1√𝑛 − 1 ⟨↓, 𝑛|↑, 𝑛 − 1⟩+ 𝑐∗2𝑐1√𝑛√𝑛 ⟨↑, 𝑛 − 1|↓, 𝑛⟩ + |𝑐2|2√𝑛 − 1√𝑛 − 1 ⟨↑, 𝑛 − 1|↑, 𝑛 − 1⟩= 𝑛|𝑐1|2 ⋅ 1 + 𝑐∗1𝑐2(𝑛 − 1) ⋅ 0 + 𝑐∗2𝑐1𝑛 ⋅ 0 + (𝑛 − 1)|𝑐2|2 ⋅ 1= 𝑛|𝑐1|2 + 𝑛|𝑐2|2 − |𝑐2|2 = 𝑛􏿴|𝑐1|2 + |𝑐2|2􏿷 − |𝑐2|2 = 𝑛 − |𝑐2|2 ⇒⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐴) = 𝑛 − |𝑐2(𝑡)|2 (8.172)

⟨𝑆̂+𝑆̂−⟩(𝐴) = ⟨𝜓𝐴(𝑡)|𝑆̂+𝑆̂−|𝜓𝐴(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛| + 𝑐∗2 ⟨↑, 𝑛 − 1| 􏿽𝑆̂+𝑆̂−􏿺𝑐1 |↓, 𝑛⟩ + 𝑐2 |↑, 𝑛 − 1⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛|𝑆̂+𝑆̂−|↓, 𝑛⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛|𝑆̂+𝑆̂−|↑, 𝑛 − 1⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛 − 1|𝑆̂+𝑆̂−|↓, 𝑛⟩ + |𝑐2|2 ⟨↑, 𝑛 − 1|𝑆̂+𝑆̂−|↑, 𝑛 − 1⟩= |𝑐1|2 ⋅ 0 + 𝑐∗1𝑐2✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛|↑, 𝑛 − 1⟩ + 𝑐∗2𝑐1 ⋅ 0 + |𝑐2|2 ⟨↑, 𝑛 − 1|↑, 𝑛 − 1⟩ ⇒⟨𝑆̂+𝑆̂−⟩(𝐴) = |𝑐2(𝑡)|2 (8.173)

Hence, ⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐴) + ⟨𝑆̂+𝑆̂−⟩(𝐴) = 𝑛 (8.174)

⟨𝑆̂+𝑎̂𝑚⟩(𝐴) = ⟨𝜓𝐴(𝑡)|𝑆̂+𝑎̂𝑚|𝜓𝐴(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛| + 𝑐∗2 ⟨↑, 𝑛 − 1| 􏿽𝑆̂+𝑎̂𝑚􏿺𝑐1 |↓, 𝑛⟩ + 𝑐2 |↑, 𝑛 − 1⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛|𝑆̂+𝑎̂𝑚|↓, 𝑛⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛|𝑆̂+𝑎̂𝑚|↑, 𝑛 − 1⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛 − 1|𝑆̂+𝑎̂𝑚|↓, 𝑛⟩ + |𝑐2|2 ⟨↑, 𝑛 − 1|𝑆̂+𝑎̂𝑚|↑, 𝑛 − 1⟩= |𝑐1|2√𝑛✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛|↑, 𝑛 − 1⟩ + 𝑐∗1𝑐2√𝑛 − 1✘✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛|𝑆̂+|↑, 𝑛 − 2⟩
+ 𝑐∗2𝑐1√𝑛 ⟨↑, 𝑛 − 1|↑, 𝑛 − 1⟩ + |𝑐2|2√𝑛 − 1✘✘✘✘✘✘✘✘✘✘✘✿0⟨↑, 𝑛 − 1|𝑆̂+|↑, 𝑛 − 2⟩ ⇒⟨𝑆̂+𝑎̂𝑚⟩(𝐴) = 𝑐∗2(𝑡)𝑐1(𝑡)√𝑛 (8.175)
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⟨𝑆̂−𝑎̂†𝑚⟩(𝐴) = ⟨𝜓𝐴(𝑡)|𝑆̂−𝑎̂†𝑚|𝜓𝐴(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛| + 𝑐∗2 ⟨↑, 𝑛 − 1| 􏿽𝑆̂−𝑎̂†𝑚􏿺𝑐1 |↓, 𝑛⟩ + 𝑐2 |↑, 𝑛 − 1⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛|𝑆̂−𝑎̂†𝑚|↓, 𝑛⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛|𝑆̂−𝑎̂†𝑚|↑, 𝑛 − 1⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛 − 1|𝑆̂−𝑎̂†𝑚|↓, 𝑛⟩ + |𝑐2|2 ⟨↑, 𝑛 − 1|𝑆̂−𝑎̂†𝑚|↑, 𝑛 − 1⟩= |𝑐1|2√𝑛 + 1✘✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛|𝑆̂−|↓, 𝑛 + 1⟩ + 𝑐∗1𝑐2√𝑛 ⟨↓, 𝑛|↓, 𝑛⟩
+ 𝑐∗2𝑐1✘✘✘✘✘✘✘✘✘✘✘✿0⟨↑, 𝑛 − 1|𝑆̂−|↓, 𝑛 + 1⟩√𝑛 + 1 + |𝑐2|2✘✘✘✘✘✘✘✘✿0⟨↑, 𝑛 − 1|↓, 𝑛⟩√𝑛 ⇒

⟨𝑆̂−𝑎̂†𝑚⟩(𝐴) = 𝑐∗1(𝑡)𝑐2(𝑡)√𝑛 (8.176)

Case (E)⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐸) = ⟨𝜓𝐸(𝑡)|𝑎̂†𝑚𝑎̂𝑚|𝜓𝐸(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛 + 1| + 𝑐∗2 ⟨↑, 𝑛| 􏿽𝑎̂†𝑚𝑎̂𝑚􏿺𝑐1 |↓, 𝑛 + 1⟩ + 𝑐2 |↑, 𝑛⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛 + 1|𝑎̂†𝑚𝑎̂𝑚|↓, 𝑛 + 1⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛 + 1|𝑎̂†𝑚𝑎̂𝑚|↑, 𝑛⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛|𝑎̂†𝑚𝑎̂𝑚|↓, 𝑛 + 1⟩ + |𝑐2|2 ⟨↑, 𝑛|𝑎̂†𝑚𝑎̂𝑚|↑, 𝑛⟩= |𝑐1|2√𝑛 + 1√𝑛 + 1 ⟨↓, 𝑛 + 1|↓, 𝑛 + 1⟩ + 𝑐∗1𝑐2𝑛✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛 + 1|↑, 𝑛⟩+ 𝑐∗2𝑐1(𝑛 + 1)✘✘✘✘✘✘✘✘✿0⟨↑, 𝑛|↓, 𝑛 + 1⟩ + |𝑐2|2𝑛 ⟨↑, 𝑛|↑, 𝑛⟩= |𝑐1|2(𝑛 + 1) + 𝑛|𝑐2|2 = 𝑛􏿴|𝑐1|2 + |𝑐2|2􏿷 + |𝑐1|2 ⇒
⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐸) = 𝑛 + |𝑐1(𝑡)|2 (8.177)

⟨𝑆̂+𝑆̂−⟩(𝐸) = ⟨𝜓𝐸(𝑡)|𝑆̂+𝑆̂−|𝜓𝐸(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛 + 1| + 𝑐∗2 ⟨↑, 𝑛| 􏿽𝑆̂+𝑆̂−􏿺𝑐1 |↓, 𝑛 + 1⟩ + 𝑐2 |↑, 𝑛⟩ 􏿽= |𝑐1|2 ⋅ 0 + 𝑐∗1𝑐2✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛 + 1|↑, 𝑛⟩ + 𝑐∗2𝑐1 ⋅ 0 + |𝑐2|2 ⟨↑, 𝑛|↑, 𝑛⟩ ⇒
⟨𝑆̂+𝑆̂−⟩(𝐸) = |𝑐2(𝑡)|2 (8.178)

Hence, ⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐸) + ⟨𝑆̂+𝑆̂−⟩(𝐸) = 𝑛 + 1 (8.179)

⟨𝑆̂+𝑎̂𝑚⟩(𝐸) = ⟨𝜓𝐸(𝑡)|𝑆̂+𝑎̂𝑚|𝜓𝐸(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛 + 1| + 𝑐∗2 ⟨↑, 𝑛| 􏿽𝑆̂+𝑎̂𝑚􏿺𝑐1 |↓, 𝑛 + 1⟩ + 𝑐2 |↑, 𝑛⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛 + 1|𝑆̂+𝑎̂𝑚|↓, 𝑛 + 1⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛 + 1|𝑆̂+𝑎̂𝑚|↑, 𝑛⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛|𝑆̂+𝑎̂𝑚|↓, 𝑛 + 1⟩ + |𝑐2|2 ⟨↑, 𝑛|𝑆̂+𝑎̂𝑚|↑, 𝑛⟩= |𝑐1|2√𝑛 + 1✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛 + 1|↑, 𝑛⟩ + 𝑐∗1𝑐2 ⋅ 0 + 𝑐∗2𝑐1√𝑛 + 1 ⟨↑, 𝑛|↑, 𝑛⟩ + |𝑐2|2 ⋅ 0 ⇒
⟨𝑆̂+𝑎̂𝑚⟩(𝐸) = 𝑐∗2(𝑡)𝑐1(𝑡)√𝑛 + 1 (8.180)
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⟨𝑆̂−𝑎̂†𝑚⟩(𝐸) = ⟨𝜓𝐸(𝑡)|𝑆̂−𝑎̂†𝑚|𝜓𝐸(𝑡)⟩ = 􏿺𝑐∗1 ⟨↓, 𝑛 + 1| + 𝑐∗2 ⟨↑, 𝑛| 􏿽𝑆̂−𝑎̂†𝑚􏿺𝑐1 |↓, 𝑛 + 1⟩ + 𝑐2 |↑, 𝑛⟩ 􏿽= |𝑐1|2 ⟨↓, 𝑛 + 1|𝑆̂−𝑎̂†𝑚|↓, 𝑛 + 1⟩ + 𝑐∗1𝑐2 ⟨↓, 𝑛 + 1|𝑆̂−𝑎̂†𝑚|↑, 𝑛⟩+ 𝑐∗2𝑐1 ⟨↑, 𝑛|𝑆̂−𝑎̂†𝑚|↓, 𝑛 + 1⟩ + |𝑐2|2 ⟨↑, 𝑛|𝑆̂−𝑎̂†𝑚|↑, 𝑛⟩= |𝑐1|2√𝑛 + 2✘✘✘✘✘✘✘✘✘✘✿0⟨↓, 𝑛 + 1|↑, 𝑛 + 2⟩ + 𝑐∗1𝑐2√𝑛 + 1 ⟨↓, 𝑛 + 1|↓, 𝑛 + 1⟩+ 𝑐∗2𝑐1 ⋅ 0 + |𝑐2|2✘✘✘✘✘✘✘✘✿0⟨↑, 𝑛|↓, 𝑛 + 1⟩√𝑛 + 1 ⇒
⟨𝑆̂−𝑎̂†𝑚⟩(𝐸) = 𝑐∗1(𝑡)𝑐2(𝑡)√𝑛 + 1 (8.181)

The relationships we have shown above will be useful in what follows, in Sections 8.10-8.11.

8.10 Photon absorption.

Let us focus on the problem of photon absorption, which is described by the equations|Ψ𝐴(𝑡)⟩ = 𝑐1(𝑡) |↓, 𝑛𝑚⟩ + 𝑐2(𝑡) |↑, 𝑛𝑚 − 1⟩ , (8.182)

𝑖ℏ 𝜕𝜕𝑡 |Ψ𝐴(𝑡)⟩ = 𝐻̂ |Ψ𝐴(𝑡)⟩ , (8.183)𝐻̂ = 𝐻̂𝑚
JC = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚), (8.184)

and the initial conditions 𝑐1(0) = 1, 𝑐2(0) = 0. (8.185)

The left-hand side of the time-dependent Schrödinger equation 8.183 becomes

𝑖ℏ 𝜕𝜕𝑡 |Ψ𝐴(𝑡)⟩ = 𝑖ℏ𝑐̇1 |↓, 𝑛𝑚⟩ + 𝑖ℏ𝑐̇2 |↑, 𝑛𝑚 − 1⟩ , (8.186)

while the right-hand side becomes𝐻̂ |Ψ𝐴(𝑡)⟩ = (ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚𝑆̂+𝑎̂𝑚 + ℏ𝑔𝑚𝑆̂−𝑎̂†𝑚)(𝑐1 |↓, 𝑛𝑚⟩ + 𝑐2 |↑, 𝑛𝑚 − 1⟩)= 𝑐1ℏ𝜔𝑚𝑛𝑚 |↓, 𝑛𝑚⟩ + 𝑐1ℏΩ |0, 𝑛𝑚⟩ + 𝑐1ℏ𝑔𝑚 |↑, 𝑛𝑚 − 1⟩√𝑛𝑚 + 𝑐1ℏ𝑔𝑚√𝑛𝑚 + 1 |0, 𝑛𝑚 + 1⟩+ 𝑐2ℏ𝜔𝑚(𝑛𝑚 − 1) |↑, 𝑛𝑚 − 1⟩ + 𝑐2ℏΩ |↑, 𝑛𝑚 − 1⟩ +𝑐2ℏ𝑔𝑚√𝑛𝑚 − 1 |0, 𝑛𝑚 − 2⟩ + ℏ𝑔𝑚 |↓, 𝑛𝑚⟩√𝑛𝑚𝑐2= 𝑐1ℏ𝜔𝑚𝑛𝑚 |↓, 𝑛𝑚⟩ + 𝑐1ℏ𝑔𝑚 |↑, 𝑛𝑚 − 1⟩√𝑛𝑚+ 𝑐2ℏ𝜔𝑚(𝑛𝑚 − 1) |↑, 𝑛𝑚 − 1⟩ + 𝑐2ℏΩ |↑, 𝑛𝑚 − 1⟩ + ℏ𝑔𝑚 |↓, 𝑛𝑚⟩√𝑛𝑚𝑐2
Acting with ⟨↓, 𝑛| on both sides,

the left-hand side becomes 𝑖ℏ𝑐̇1
the right-hand side becomes ℏ𝜔𝑚𝑛𝑚𝑐1 + ℏ𝑔𝑚√𝑛𝑚𝑐2􏿿 ⇒𝑖𝑐̇1 = 𝑛𝑚𝜔𝑚𝑐1 + 𝑔𝑚√𝑛𝑚𝑐2. (8.187)
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Accordingly, acting with ⟨↑, 𝑛 − 1| on both sides,

the left-hand side becomes 𝑖ℏ𝑐̇2
the right-hand side becomes ℏ𝑔𝑚√𝑛𝑚𝑐1 + ℏ𝜔𝑚(𝑛𝑚 − 1)𝑐2 + ℏΩ𝑐2􏿿 ⇒𝑖𝑐̇2 = 𝑔𝑚√𝑛𝑚𝑐1 + [Ω + (𝑛𝑚 − 1)𝜔𝑚]𝑐2 (8.188)

Thus, we obtain the System of Differential equations

𝑖 􏿶𝑐̇1𝑐̇2􏿹 = 􏿶 𝑛𝑚𝜔𝑚 𝑔𝑚√𝑛𝑚𝑔𝑚√𝑛𝑚 Ω + (𝑛𝑚 − 1)𝜔𝑚􏿹 􏿶𝑐1𝑐2􏿹 (8.189)

Now, we define the generalized Rabi frequency

Ω𝑛𝑚 ∶= Ϻϻϻϻϻϼ􏿶𝜔𝑚 − Ω2 􏿹2 + 𝑔2𝑚𝑛𝑚ϽϾϾϾϾϿ1/2 . (8.190)

or, omitting, for simplicity, the index𝑚 denoting the EM mode,

Ω𝑛 ∶= Ϻϻϻϻϻϼ􏿶𝜔 − Ω2 􏿹2 + 𝑔2𝑛ϽϾϾϾϾϿ1/2 . (8.191)

The above System of Differential Equations (8.189) can be solved, e.g., with the eigenvalue method (see
Appendix B.7), i.e. the same way we saw in Chapter 5. Performing the calculations for the problem of
photon absorption [i.e. for initial conditions 𝑐1(0) = 1, 𝑐2(0) = 0] yields

|𝑐2(𝑡)|2 = 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡) (8.192)

and |𝑐1(𝑡)|2 = 1 − |𝑐2(𝑡)|2 = 1 − 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡) . (8.193)

Hence, from Equation 8.172 it follows that

⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐴) = 𝑛 − 𝑛𝑔2 sin2(Ω𝑛𝑡)Ω2𝑛 , (8.194)

i.e. the average (expected) value of the photon number in the cavity as a function of time will perform
oscillations. The index (𝐴) denotes absorption. Moreover, from Eq 8.173 it follows that

⟨𝑆̂+𝑆̂−⟩(𝐴) = 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡) , (8.195)

i.e. the average (expected) value of the number of electrons at the upper level 𝐸2 as a function of time
will perform oscillations. Those oscillations are commonly called the Rabi oscillations. Two examples
of Rabi oscillations during photon absorption can be seen in Figure 8.7.
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Since sin2(Ω𝑛𝑡) = 12 − 12 cos(2Ω𝑛𝑡), the period of these oscillations is

𝑇 = 2𝜋2Ω𝑛 = 𝜋Ω𝑛 = 𝜋
􏿰􏿵𝜔−Ω2 􏿸2 + 𝑔2𝑛􏿳1/2 (8.196)

Hence, when𝜔 = Ω, i.e. at resonance, the period reaches its maximum at

𝑇 = 𝜋𝑔√𝑛. (8.197)

Figure 8.7: Two examples of Rabi oscillations during photon absorption, i.e., the initial condition is 4
photons in the cavity and 1 electron at the lower level. We use some arbitrary values of the parameters
to make an indicative figure. On the right, the two levels are tangled more strongly (the parameter 𝑔 is
larger). We present the temporal evolution of the expected value of the number of photons in the cavity,⟨𝑎̂†𝑚𝑎̂𝑚⟩ = 𝑛 − 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡), both on resonance (Δ = 0) and out of resonance (Δ ≠ 0), as well as of

the expected value of the number of electrons at the upper level, 𝑃2(𝑡) = ⟨𝑆̂+𝑆̂−⟩ = 𝑛𝑔2Ω2𝑛 sin2(Ω𝑛𝑡) and
at the lower level, 𝑃1(𝑡).

Themaximum transfer percentage between the two levels,𝒜 , is, as evident fromEqs. 8.195 and 8.190,

𝒜 = 𝑔2𝑛Ω2𝑛 = 𝑔2𝑛􏿵𝜔−Ω2 􏿸2 + 𝑔2𝑛 (8.198)

Therefore,

• forΩ = 𝜔 (resonance)⇒𝒜 = 1, while

• forΩ ≠ 𝜔 (out of resonance)⇒𝒜 < 1.
To conclude, the number of photons in the cavity, 𝑛, the quantity 𝑔 (Eq. 8.158) and the detuning,

defined in Eq. 5.49 asΔ ∶= 𝜔 − Ω, determine the maximum transfer percentage and the period of oscil-
lations.



QUANTUM OPTICS 257

8.11 Photon emission.

Let us focus on the problem of photon emission, which is described by the equations|Ψ𝐸(𝑡)⟩ = 𝑐1(𝑡) |↓, 𝑛𝑚 + 1⟩ + 𝑐2 |↑, 𝑛𝑚⟩ (8.199)

𝑖ℏ 𝜕𝜕𝑡 |Ψ𝐸(𝑡)⟩ = 𝐻̂ |Ψ𝐸(𝑡)⟩ (8.200)𝐻̂ = 𝐻̂𝑚
JC = ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚(𝑆̂+𝑎̂𝑚 + 𝑆̂−𝑎̂†𝑚), (8.201)

and the initial conditions 𝑐1(0) = 0, 𝑐2(0) = 1. (8.202)

The left-hand side of the time-dependent Schrödinger equation 8.200 becomes

𝑖ℏ 𝜕𝜕𝑡 |Ψ𝐸(𝑡)⟩ = 𝑖ℏ𝑐̇1 |↓, 𝑛𝑚 + 1⟩ + 𝑖ℏ𝑐̇2 |↑, 𝑛𝑚⟩ (8.203)

while the right-hand side becomes𝐻̂ |Ψ𝐸(𝑡)⟩ = (ℏ𝜔𝑚𝑎̂†𝑚𝑎̂𝑚 + ℏΩ𝑆̂+𝑆̂− + ℏ𝑔𝑚𝑆̂+𝑎̂𝑚 + ℏ𝑔𝑚𝑆̂−𝑎̂†𝑚) (𝑐1 |↓, 𝑛𝑚 + 1⟩ + 𝑐2 |↑, 𝑛𝑚⟩)= ℏ𝜔𝑚𝑐1(𝑛𝑚 + 1) |↓, 𝑛𝑚 + 1⟩ + ℏΩ𝑐1 ⋅ 0 + ℏ𝑔𝑚𝑐1 |↑, 𝑛𝑚⟩√𝑛𝑚 + 1 + ℏ𝑔𝑚𝑐1 ⋅ 0+ ℏ𝜔𝑚𝑐2𝑛𝑚 |↑, 𝑛𝑚⟩ + ℏΩ𝑐2 |↑, 𝑛𝑚⟩ + ℏ𝑔𝑚𝑐2 ⋅ 0 + ℏ𝑔𝑚𝑐2 |↓, 𝑛𝑚 + 1⟩√𝑛𝑚 + 1= ℏ𝜔𝑚𝑐1(𝑛𝑚 + 1) |↓, 𝑛𝑚 + 1⟩ + ℏ𝑔𝑚𝑐1√𝑛𝑚 + 1 |↑, 𝑛𝑚⟩+ ℏ𝜔𝑚𝑐2𝑛𝑚 |↑, 𝑛𝑚⟩ + ℏΩ𝑐2 |↑, 𝑛𝑚⟩ + ℏ𝑔𝑚𝑐2√𝑛𝑚 + 1 |↓, 𝑛𝑚 + 1⟩
(8.204)

Acting with ⟨↓, 𝑛 + 1| on both sides,

the left-hand side becomes 𝑖ℏ𝑐̇1
the right-hand side becomes ℏ𝜔𝑚𝑐1(𝑛𝑚 + 1) + ℏ𝑔𝑚𝑐2√𝑛𝑚 + 1

ЄЃЅЃІ ⇒
𝑖𝑐̇1 = 𝜔𝑚(𝑛𝑚 + 1)𝑐1 + 𝑔𝑚√𝑛𝑚 + 1𝑐2 (8.205)

Accordingly, acting with ⟨↑, 𝑛| on both sides,

the left-hand side becomes 𝑖ℏ𝑐̇2
the right-hand side becomes ℏ𝑔𝑚𝑐1√𝑛𝑚 + 1 + ℏ𝜔𝑚𝑐2𝑛𝑚 + ℏΩ𝑐2

ЄЃЅЃІ ⇒
𝑖𝑐̇2 = 𝑔𝑚√𝑛𝑚 + 1𝑐1 + (𝑛𝑚𝜔𝑚 + Ω)𝑐2 (8.206)

Thus, we obtain the System of Differential equations

𝑖 􏿶𝑐̇1𝑐̇2􏿹 = 􏿶(𝑛𝑚 + 1)𝜔𝑚 𝑔𝑚√𝑛𝑚 + 1𝑔𝑚√𝑛𝑚 + 1 Ω + 𝑛𝑚𝜔𝑚􏿹 􏿶𝑐1𝑐2􏿹 (8.207)

Now, we define the generalized Rabi frequency

Ω𝑛𝑚+1 ∶= Ϻϻϻϻϻϼ􏿶𝜔𝑚 − Ω2 􏿹2 + 𝑔2𝑚(𝑛𝑚 + 1)ϽϾϾϾϾϿ1/2 . (8.208)
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or, omitting, for simplicity, the index𝑚 denoting the EM mode,

Ω𝑛+1 ∶= Ϻϻϻϻϻϼ􏿶𝜔 − Ω2 􏿹2 + 𝑔2(𝑛 + 1)ϽϾϾϾϾϿ1/2 . (8.209)

The above System of Differential Equations (8.207) can be solved, e.g., with the eigenvalue method (see
Appendix B.7), i.e. the same way we saw in Chapter 5. Performing the calculations for the problem of
photon emission [i.e. for initial conditions 𝑐1(0) = 0, 𝑐2(0) = 1] yields

|𝑐1(𝑡)|2 = (𝑛 + 1)𝑔2Ω2𝑛+1 sin2(Ω𝑛+1𝑡) (8.210)

and |𝑐2(𝑡)|2 = 1 − |𝑐1(𝑡)|2 = 1 − (𝑛 + 1)𝑔2Ω2𝑛+1 sin2(Ω𝑛+1𝑡) . (8.211)

Hence, from Equation 8.177 it follows that

⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐸) = 𝑛 + 𝑔2(𝑛 + 1)Ω2𝑛+1 sin2(Ω𝑛+1𝑡) (8.212)

i.e. the average (expected) value of the photon number in the cavity as a function of time will perform
oscillations. The index (𝐸) denotes emission. Moreover, from Eq 8.178 it follows that

⟨𝑆̂+𝑆̂−⟩(𝐸) = 1 − 𝑔2(𝑛 + 1)Ω2𝑛+1 sin2(Ω𝑛+1𝑡) (8.213)

i.e. the average (expected) value of the number of electrons at the upper level 𝐸2 as a function of time
will perform oscillations. Two examples of Rabi oscillations during photon absorption can be seen in
Figure 8.8.

Since sin2(Ω𝑛+1𝑡) = 12 − 12 cos(2Ω𝑛+1𝑡), the period of these oscillations is

𝑇 = 2𝜋2Ω𝑛+1 = 𝜋Ω𝑛+1 = 𝜋
􏿰􏿵𝜔−Ω2 􏿸2 + 𝑔2(𝑛 + 1)􏿳1/2 (8.214)

Hence, when𝜔 = Ω, i.e. at resonance, the period reaches its maximum at𝑇 = 𝜋𝑔√𝑛 + 1. (8.215)

Themaximum transfer percentage between the two levels,𝒜 , is, as evident fromEqs. 8.213 and 8.208,𝒜 = 𝑔2(𝑛 + 1)Ω2𝑛+1 = 𝑔2(𝑛 + 1)􏿵𝜔−Ω2 􏿸2 + 𝑔2(𝑛 + 1) (8.216)

Therefore,
• forΩ = 𝜔 (resonance)⇒𝒜 = 1
• forΩ ≠ 𝜔 (out of resonance)⇒𝒜 < 1

To conclude, just like in the case of photon absorption, the number of photons in the cavity, 𝑛, the
quantity 𝑔 (Eq. 8.158) and the detuning, defined in Eq. 5.49 as Δ ∶= 𝜔 − Ω, determine the maximum
transfer percentage and the period of oscillations.
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Figure 8.8: Two examples of Rabi oscillations during photon emission, i.e., the initial condition is 4 pho-
tons in the cavity and 1 electron at the upper level.We use some arbitrary values of the parameters tomake
an indicative figure. On the right, the two levels are tangled more strongly (the parameter 𝑔 is larger). We
present the temporal evolutionof the expected value of the number of photons in the cavity , ⟨𝑎̂†𝑚𝑎̂𝑚⟩(𝐸) =𝑛 + 𝑔2(𝑛+1)Ω2𝑛+1 sin2(Ω𝑛+1𝑡), both on resonance (Δ = 0) and out of resonance (Δ ≠ 0), as well as of the ex-

pected value of the number of electrons at the lower level, 𝑃1(𝑡) = ⟨𝑆̂+𝑆̂−⟩ = 𝑔2(𝑛+1)Ω2𝑛+1 sin2(Ω𝑛+1𝑡), and
at the upper level, 𝑃2(𝑡).
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CHAPTER 9

QUANTUM MECHANICAL APPROACH II

In this Chapter:
We continue with the quantum mechanical treatment. We discuss the analogy between the quantities,
which describe Rabi oscillations in the semiclassical and in the full quantum mechanical approach. We
describe the solution of the relevant differential equations with the general eigenvalue method for one
and for many photons in the cavity. We continue by analyzing the boson (as photons are) commutation
relations and the fermion (as electrons are) anticommutation relations and we clarify what commutation
and anticommutation is. Also, we discuss somehow the ladder operators and the second quantization.
Finally, we describe encyclopaedically the fifth state of matter, i.e., the Bose-Einstein condensate.
Prerequisite knowledge: Basic knowledge of Quantum Physics.

9.1 Photon absorption: analogy between the semiclassical and the quantummechanical approach
for quantities describing Rabi oscillations.

Let us recall the case of photon absorption within the quantum mechanical approach. We found that the
expected value of both the number of electrons at each level and the number of photons inside the cavity
perform Rabi oscillations with period (Eq. 8.196)

𝑇 = 2𝜋√4𝑔2𝑛 + (𝜔 − Ω)2 ,
while, the maximum transfer percentage between the levels is (Eq. 8.198)

𝒜 = 𝑔2𝑛Ω2𝑛 = 𝑔2𝑛􏿵𝜔−Ω2 􏿸2 + 𝑔2𝑛.
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Additionally, if we recall that in Eq. 8.163 we defined the Rabi frequency asΩ𝑅 = 𝑔2√𝑛,
we can easily realize that

𝑇 = 2𝜋√4𝑔2𝑛 + (𝜔 − Ω)2 = 2𝜋
√Ω2𝑅 + Δ2 , 𝒜 = 4𝑔2𝑛4𝑔2𝑛 + Δ2 = Ω2𝑅Ω2𝑅 + Δ2 . (9.1)

These are the Equations 5.78 and 5.80, at whichwe arrivedwithin the semiclassical approximation.Hence,
there is a complete analogy between the semiclassical and quantum approximations.

9.2 Photon absorption: solution of the relevant differential equations with the eigenvalue method
for one or many photons inside the cavity.

In Chapter 8 we presented the solutions of the problems of photon absorption and emission without per-
forming the calculation.Here,we present some indicative calculations for photon absorption, considering
two cases: the presence of a single photon inside the cavity and the presence of𝑛photons inside the cavity.

As we have already seen, the problem is reduced to finding the eigenvalues and eigenvectors of the
matrix (see Eq. 8.189) 𝐴 = 􏿶 𝑛𝜔 𝑔√𝑛𝑔√𝑛 Ω + (𝑛 − 1)𝜔􏿹 , (9.2)

where we have omitted, for simplicity, the index𝑚 denoting the EM mode.

9.2.1 One photon inside the cavity.

In the case of a single photon inside the cavity, the form of the matrix is simplified, i.e.

𝐴 = 􏿶𝜔 𝑔𝑔 Ω􏿹 . (9.3)

Its eigenvalues are found by the roots of the determinant

det(𝐴 − 𝜆I),
where I is the unit 2 × 2matrix. Thus,(𝜔 − 𝜆)(Ω − 𝜆) − 𝑔2 = 0 ⇒ 𝜆2 − (𝜔 + Ω)𝜆 + 𝜔Ω − 𝑔2 = 0.
Therefore, the eigenvalues are

𝜆2,1 = 𝜔 + Ω2 ±√􏿶𝜔 − Ω2 􏿹2 + 𝑔2 ∶= 𝐻1 ± Ω1 . (9.4)

Let us now find the eigenvectors corresponding to these eigenvalues.

• For the eigenvalue 𝜆1 = 𝐻1 − Ω1, we have

𝐴𝑣⃗1 = 𝜆1𝑣⃗1 ⇒ 􏿶𝜔 𝑔𝑔 Ω􏿹 􏿶𝑣11𝑣21􏿹 = (𝐻1 − Ω1) 􏿶𝑣11𝑣21􏿹 ⇒ 𝑔𝑣21 = (𝐻1 − Ω1 − 𝜔)𝑣11𝑔𝑣11 = (𝐻1 − Ω1 − Ω)𝑣21􏿿 .
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Substituting the second equation to the first one, it follows that

𝑣21 = (𝐻1 − Ω1 − 𝜔)(𝐻1 − Ω1 − Ω)𝑔2 𝑣21.
To obtain a non-trivial solution, the fraction that appears in the above equation must be equal to
unity. Replacing the definitions of 𝐻1 andΩ1, we can easily find out that this is indeed the case.
Hence, the choice of 𝑣21 is arbitrary (apart from zero) Let us choose 𝑣21 = 1. Then,

𝑔𝑣11 = (𝐻1 − Ω1 − Ω) ⇒ 𝑣11 = 𝜔 − Ω − 2Ω12𝑔
Hence, finally, 𝑣⃗1 = ϴϵϵϵϵ϶𝜔−Ω−2Ω12𝑔1

ϷϸϸϸϸϹ . (9.5)

• For the eigenvalue 𝜆2 = 𝐻1 + Ω1, using completely similar considerations, it follows that

𝑣⃗2 = ϴϵϵϵϵ϶𝜔−Ω+2Ω12𝑔1
ϷϸϸϸϸϹ . (9.6)

We recall that the general solution has the form

𝑥⃗(𝑡) ∶= 􏿶𝑐1(𝑡)𝑐2(𝑡)􏿹 = 𝜎1𝑣⃗1𝑒−𝑖𝜆1𝑡 + 𝜎2𝑣⃗2𝑒−𝑖𝜆2𝑡,
where the coefficients 𝜎1, 𝜎2 are determined by the initial conditions. For photon absorption, these are𝑐1(0) = 1, 𝑐2(0) = 0. Hence,1 = 𝜎1𝜔−Ω−2Ω12𝑔 + 𝜎2𝜔−Ω+2Ω12𝑔0 = 𝜎1 + 𝜎2 ⇒ 𝜎2 = −𝜎1

ЄЃЃЅЃЃІ ⇒ 2𝑔 = 𝜎1(𝜔 − Ω − 2Ω1) − 𝜎1(𝜔 − Ω + 2Ω1) ⇒
𝜎1 = − 𝑔2Ω1 = −𝜎2. (9.7)

Therefore, 𝑐2(𝑡) = − 𝑔2Ω1 𝑒−𝑖(𝐻1−Ω1)𝑡 + 𝑔2Ω1 𝑒−𝑖(𝐻1+Ω1)𝑡= − 𝑔2Ω1 𝑒−𝑖𝐻1𝑡 􏿴𝑒𝑖Ω1𝑡 − 𝑒−𝑖Ω1𝑡􏿷 = − 𝑔Ω1 𝑒−𝑖𝐻1𝑡𝑖 sin(Ω1𝑡)
⇒ 𝑐2(𝑡) = 𝑒−𝑖𝜔+Ω2 𝑡 􏿰−𝑖 𝑔Ω1 sin(Ω1𝑡)􏿳 .

Thus, it follows that |𝑐2(𝑡)|2 = 𝑔2Ω21 sin2(Ω1𝑡) (9.8)

and |𝑐1(𝑡)|2 = 1 − |𝑐2(𝑡)|2 = 1 − 𝑔2Ω21 cos2(Ω1𝑡) . (9.9)

The above relationships are Eqs. 8.192 and 8.193, studied in Chapter 8 for the problem of photon absorp-
tion, in the case 𝑛 = 1.
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9.2.2 Mamy photons inside the cavity.

In the case of multiple (𝑛) photons inside the cavity, we need to find the eigenvalues and eigenvectors of
the matrix 𝐴 = 􏿶 𝑛𝜔 𝑔√𝑛𝑔√𝑛 Ω + (𝑛 − 1)𝜔􏿹 .
Its eigenvalues are found by the roots of the determinant

det(𝐴 − 𝜆I),
where I is the unit 2 × 2matrix. Thus, (𝑛𝜔 − 𝜆)[Ω + (𝑛 − 1)𝜔 − 𝜆] − 𝑛𝑔2 = 0⇒ 𝜆2 − [Ω + (2𝑛 − 1)𝜔]𝜆 + 𝑛𝜔[Ω + (𝑛 − 1)𝜔] − 𝑛𝑔2 = 0.
Therefore, the eigenvalues are

𝜆2,1 = Ω + (2𝑛 − 1)𝜔2 ±√􏿶𝜔 − Ω2 􏿹2 + 𝑛𝑔2 ∶= 𝐻𝑛 ± Ω𝑛 . (9.10)

Let us now find the eigenvectors corresponding to these eigenvalues.

• For the eigenvalue 𝜆1 = 𝐻𝑛 − Ω𝑛, we have

𝐴𝑣⃗1 = 𝜆1𝑣⃗1 ⇒􏿶 𝑛𝜔 𝑔√𝑛𝑔√𝑛 Ω + (𝑛 − 1)𝜔􏿹 􏿶𝑣11𝑣21􏿹 = (𝐻𝑛 − Ω𝑛) 􏿶𝑣11𝑣21􏿹⇒ 𝑔√𝑛𝑣21 = (𝐻𝑛 − Ω𝑛 − 𝑛𝜔)𝑣11𝑔√𝑛𝑣11 = {𝐻𝑛 − Ω𝑛 − [Ω + (𝑛 − 1)𝜔]} 𝑣21
ЄЃЅЃІ .

Substituting the second equation to the first one, it follows that

𝑣21 = (𝐻𝑛 − Ω𝑛 − 𝑛𝜔) {𝐻𝑛 − Ω𝑛 − [Ω + (𝑛 − 1)𝜔]}𝑛𝑔2 𝑣21.
To obtain a non-trivial solution, the fraction that appears in the above equation must be equal to
unity. Replacing the definitions of𝐻𝑛 andΩ𝑛, we can easily find out that this is indeed the case.
Hence, the choice of 𝑣21 is arbitrary (apart from zero) Let us choose 𝑣21 = 1. Then,

𝑔√𝑛𝑣11 = (𝐻𝑛 − Ω𝑛 − [Ω + (𝑛 − 1)𝜔] ⇒ 𝑣11 = 𝜔 − Ω − 2Ω𝑛2𝑔√𝑛
Hence, finally, 𝑣⃗1 = ϴϵϵϵϵ϶𝜔−Ω−2Ω𝑛2𝑔√𝑛1

ϷϸϸϸϸϹ . (9.11)

• For the eigenvalue 𝜆2 = 𝐻𝑛 + Ω𝑛, using completely similar considerations, it follows that

𝑣⃗2 = ϴϵϵϵϵ϶𝜔−Ω+2Ω𝑛2𝑔√𝑛1
ϷϸϸϸϸϹ . (9.12)
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We recall that the general solution has the form𝑥⃗(𝑡) ∶= 􏿶𝑐1(𝑡)𝑐2(𝑡)􏿹 = 𝜎1𝑣⃗1𝑒−𝑖𝜆1𝑡 + 𝜎2𝑣⃗2𝑒−𝑖𝜆2𝑡,
where the coefficients 𝜎1, 𝜎2 are determined by the initial conditions. For photon absorption, these are𝑐1(0) = 1, 𝑐2(0) = 0. Hence,1 = 𝜎1𝜔−Ω−2Ω𝑛2√𝑛𝑔 + 𝜎2𝜔−Ω+2Ω𝑛2√𝑛𝑔0 = 𝜎1 + 𝜎2 ⇒ 𝜎2 = −𝜎1

ЄЃЃЅЃЃІ ⇒ 𝜎1−4Ω𝑛2√𝑛𝑔 = 1 ⇒ 𝜎1 = −𝑔√𝑛2Ω𝑛 = −𝜎2.
Therefore, 𝑐2(𝑡) = −𝑔√𝑛2Ω𝑛 𝑒−𝑖(𝐻𝑛−Ω𝑛)𝑡 + 𝑔√𝑛2Ω𝑛 𝑒−𝑖(𝐻𝑛+Ω𝑛)𝑡= −𝑔√𝑛2Ω𝑛 𝑒−𝑖𝐻𝑛𝑡 􏿴𝑒𝑖Ω𝑛𝑡 − 𝑒−𝑖Ω𝑛𝑡􏿷 = −𝑔√𝑛Ω𝑛 𝑒−𝑖𝐻𝑛𝑡𝑖 sin(Ω𝑛𝑡)

⇒ 𝑐2(𝑡) = 𝑒−𝑖Ω+(2𝑛−1)𝜔2 𝑡 􏿰−𝑖𝑔√𝑛Ω𝑛 sin(Ω𝑛𝑡)􏿳 .
Thus, it follows that |𝑐2(𝑡)|2 = 𝑛𝑔2Ω2𝑛 sin2(Ω1𝑡) (9.13)

and |𝑐1(𝑡)|2 = 1 − |𝑐2(𝑡)|2 = 1 − 𝑛𝑔2Ω2𝑛 cos2(Ω𝑛𝑡) . (9.14)

The above relationships are Eqs. 8.192 and 8.193, studied in Chapter 8 for the problem of photon absorp-
tion.

9.3 Commutation relations for bosons and anticommutation relations for fermions.

Let us call 𝑎̂𝑚 the boson annihilation operator and 𝑎̂†𝑚 the boson creation operator at the state or mode𝑚. For bosons, the following commutation relations hold:[𝑎̂𝑚, 𝑎̂†ℓ] = 𝛿𝑚𝑙[𝑎̂𝑚, 𝑎̂ℓ] = 0[𝑎̂†𝑚, 𝑎̂†ℓ] = 0 (9.15)

[𝐴, 𝐵] or [𝐴, 𝐵]− is the commutator, defined as[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴, (9.16)

hence, when [𝐴, 𝐵] = 0 ⇒ 𝐴𝐵 − 𝐵𝐴 = 0 ⇒ 𝐴𝐵 = 𝐵𝐴, i.e., the quantities𝐴 and 𝐵 commute, which
shows the name origin.

Let us call â𝑖 the fermion annihilation operator and â†𝑖 the fermion creation operator at state 𝑖. Then,
for fermions, the following anticommutation relations hold:{â𝑖, â†𝑗 } = 𝛿𝑖𝑗{â𝑖, â𝑗} = 0{â†𝑖 , â†𝑗 } = 0 (9.17)
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{𝐴, 𝐵} or [𝐴, 𝐵]+ is the Poisson bracket or anticommutator, defined as

{𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴, (9.18)

hence, when {𝐴, 𝐵} = 0 ⇒ 𝐴𝐵 + 𝐵𝐴 = 0 ⇒ 𝐴𝐵 = −𝐵𝐴, i.e., the quantities𝐴 and 𝐵 anticommute,
which shows the name origin. If we apply the relation {â†𝑖 , â†𝑗 } = 0 for the same state, e.g. putting 𝑖 = 𝑗 = 𝑟,
we obtain {â†𝑟 , â†𝑟 } = 0 ⇒ â†𝑟 â†𝑟 = 0, which means that

✿✿✿
we

✿✿✿✿✿✿✿
cannot put two fermions at the same state,

which is the Pauli exclusion principle.

9.4 Ladder operators.

In linear algebra as well as in its applications in quantummechanics, we define the raising operator, which
increases the eigenvalue of another operator, and the lowering operator, which decreases the eigenvalue
of another operator. These are collectively called ladder operators. In quantum mechanics, the raising
operator is frequently called creation operator, and the lowering operator is frequently called annihila-
tion operator. Well-known applications of ladder operators are in the simple harmonic oscillator and in
angular momentum. In quite a few areas of physics and chemistry, the use of these operators instead of
wavefunctions is known as second quantization.

9.5 Bose-Einstein condensate.

TheBose - Einstein condensate (BEC) is a state of a boson gas cooled to temperatures close to absolute
zero (0 K or −273.15 ∘C). Under such conditions, many bosons occupy the same quantum state. Then,
quantum phenomena are reflected at themacroscopic scale.This state ofmatter was predicted by Satyen-
dra Nath Bose [1] and Albert Einstein [2, 3]. Bose, not being able to publish his paper regarding the
statistics of light quanta (which are now called photons), sent the work to Einstein, who understood its
value and helped him publish it by submitting it on behalf of Bose [1]. Let us note that the photon has
spin 𝑠 = ℏ. In the following years, Einstein worked on the subject as well [2, 3], and extended Bose’s ideas
to other, more complex particles with mass, whose spin 𝑠 is a natural multiple (0, 1, 2, … ) of ℏ.

The result of the efforts by Bose and Einstein is the concept of the Bose gas, which is governed by
the so-called Bose-Einstein statistics that describe the distribution of identical particles whose spin is a
natural multiple (0, 1, 2, … ) of ℏ. Today, these particles are called bosons. Bosons do not obey to any
exclusion principles such as the Pauli’s exclusion principle that holds for fermions. Hence, two or more
bosons can occupy the same quantum state or, stated otherwise, any number of bosons can be described
by the same wavefunction; this is called boson condensation. Cooling bosons at very low temperatures
causes them to drop into the lowest available quantum state, i.e., they are “condensed”, which leads to a
new state of matter. Thus, in the case of bosons, coherent waves with macroscopic amplitudes can be
constructed. Such waves can be described classically. For example, photons are bosons and the respective
classical field is our familiar electromagnetic field which satisfies the Maxwell equations. This is how any
number of photons can occupy the same quantum state, as it happens inside lasers.

Thecarriersof interactions, theHiggsboson, the -more complex-mesons, and even largerparticles
whose total angular momentum is a natural multiple of ℏ, all fall into the category of bosons. This is the
case even for whole atoms.

For example, 42Hehas a nucleus consisting of twoprotons and twoneutrons. Bothprotons andneutrons
are baryons are composite fermions, with spin ℏ2 . However, they are configured in a way such that the
total nuclear angular momentum is Ι = 0. Hence, the 42He nucleus is a boson. Moreover, 42He has also
two electrons, which are fermions with spin ℏ2 . However, these two electrons are placed in the 1s subshell
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(which corresponds to angular momentum 𝐿 = 0) with opposite spins, so that the total electron angular
momentum is 𝐽 = 0. Therefore, since 𝐼 = 0 and 𝐽 = 0, it follows that the atomic spin of 42He is 𝐹 =𝐼 + 𝐽 = 0. In other words, the neutral 42He atom is a boson. Hence, many 42He atoms can occupy the same
quantum state at very low temperatures (BEC).

Thus, some atoms like 42He have a total atomic angular momentum that is a natural multiple of ℏ, i.e.
are bosons and follow the Bose-Einstein statistics, hence they can occupy the same quantum state (con-
densate) and create coherent waves withmacroscopic amplitudes!Moreover, in analogy with the laser, in
which multiple photons can occupy the same state, an “atom laser” can be constructed [4]. The first one
was developed at MIT by W. Ketterle’s group in 1996. We might also add all the “atomic spins” to obtain
a ”molecular spin” or even add all the ”molecular spins” and so on.

Maybe the most impressive demonstration of BEC is the condensation of alkali atomic gases (e.g. ru-
bidium [5] and sodium [6]) whose spin is a natural multiple of ℏ. Previously, demonstrations of BEC
appeared in more complex systems, in low temperatures. On the contrary, when BEC was discovered in
cooled alkali vapors in 1995 (Figure 9.1), the experimental evidence was very strong. Additionally, the
interference between two atomic Na Bose-Einstein condensates, with distance 40 μm was observed for
the first time [7]; in specific, interference fringes with period 15 μm occurs, which showed that Na atoms
behave just like photons in lasers, i.e. they are coherent. Images of interference patterns for beams of atoms
in BEC state can be found at thewebpages of AtomicQuantumGases@MIT¹.Thefirst pulsed atom laser
was constructed in 1997, while, in 2010, BEC of photons in a cavity was demonstrated [8].

Figure 9.1: (Left). Interference pattern of beams of atoms in BEC state. More images like this can
be found at the webpages of Atomic Quantum Gases @ MIT. This image (https://www.rle.mit.
edu/cua_pub/ketterle_group/Projects_1997/Interference/Straight_Int.jpg) belongs to
the MIT group and is a courtesy of Professor Wolfgang Ketterle. (Right). Colored representation of the
velocity distribution of a 8737Rb atomic vapor BEC as the temperature decreases. From left to right: just
before BEC has occurred, just after BEC has occurred and an almost pure BEC [5]. Image from [9].
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CHAPTER 10

DENSITY MATRIX AND OPERATOR

In this Chapter:
We are introduced to the discussion about the density matrix and the density operator. We discrimi-
nate between pure states and mixed states. We focus on the density matrix and the density operator of 
a two-level system. We continue by analyzing the temporal evolution of the density matrix with the von 
Neumann equation. Finally, we discuss the form of the temporal evolution of the density matrix in the 
presence of decay mechanisms 
Prerequisite knowledge: Basic knowledge of Quantum Physics.

10.1 Pure state and mixed state.

Maybe in all quantummechanics studiedby the reader so far, the examined cases involved awavefunction,
sayΨ(⃗𝑟, 𝑡), that describes the systemunder study.Then, |Ψ(⃗𝑟, 𝑡)|2 is theprobability that the coordinates lie
close to the position 𝑟⃗ at time 𝑡.Thiswavefunction canbeobtained, at least in principle, by the Schrödinger
equation. Since the wavefunction is known, we can calculate the expected value of any given operator 𝐴̂,
as ⟨𝐴̂⟩ = ⟨Ψ|𝐴̂|Ψ⟩. This is commonly done by finding a complete basis, say {Φ𝑘(⃗𝑟)}, where 𝑘 is some
collective quantum number able to describe the system. We usually study finite systems, hence 𝑘 can be
considered as discrete, and we can use sums∑𝑘; however, in other cases 𝑘 could be continuous, hence
we would use integrals ∫𝑑𝑘. If our basis is complete, then the wavefunction can be written as a linear
combination of the form Ψ(⃗𝑟, 𝑡) = 􏾜𝑘 𝑐𝑘(𝑡)Φ𝑘(⃗𝑟). (10.1)

Therefore, the problem is reduced to obtaining the coefficients 𝑐𝑘(𝑡). When they have been obtained, the
expected value of the operator 𝐴̂ is (for calculations, see Appendix B.6)⟨𝐴̂⟩ = ⟨Ψ(𝑡)| 𝐴̂ |Ψ(𝑡)⟩ = 􏾜𝑘,𝑘′ 𝑐𝑘(𝑡)𝑐∗𝑘′(𝑡)𝐴𝑘′𝑘 ⇒ (10.2)
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⟨𝐴̂⟩ = 􏾜𝑘,𝑘′ 𝜌𝑘𝑘′(𝑡)𝐴𝑘′𝑘 , (10.3)

where𝐴𝑘𝑘′ is the matrix element of the operator 𝐴̂ between states |Φ𝑘⟩ and |Φ′𝑘⟩, and we have defined

𝜌𝑘𝑘′(𝑡) = 𝑐𝑘(𝑡)𝑐∗𝑘′(𝑡) . (10.4)

Hence, in principle, everything can be calculated. Such a scenario, in which the system is described by one
wavefunction is called a pure state [1].

However, it is not always possible to describe a system by a single wavefunction. In many cases . . . .the
. . . . . . . .system. . . .of . . . . . . . . . .interest is coupled to a reservoir (R) with which it exchanges heat, particles, etc. If the total
(T) system, i.e. the system of interest plus the reservoir, is isolated, then we can define a wavefunction
for the total system, sayΨT(⃗𝑟, 𝑟⃗R, 𝑡). In the absence of interactions, this wavefunction could be separated
into a productΨ(⃗𝑟, 𝑡)ΨR(⃗𝑟R, 𝑡), which shows that what the system of interest is doing is independent to
what the reservoir is doing, since the two do not interact with each other. Then, we can isolateΨ(⃗𝑟, 𝑡)
as the wavefunction of the system of interest. On the other hand, if the system of interest interacts with
the reservoir, then we cannot separate its wavefunction from the one of the reservoir. However, we might
not want to work withΨT(⃗𝑟, 𝑟⃗R, 𝑡), since it contains all the information about what the reservoir is doing;
this may not interest us or we may not need it or it may be extremely complex. This raises the following
question: How can we address such cases, in which there is no well-defined wavefunction for the system
of interest? Such a scenario, in which there is no well-defined wavefunction for the system of interest is
called a mixed state [1].

However, even in such scenarios, there is a route to follow.We will assume that the system of interest it
at the state described by the wavefunctionΨ𝑖(⃗𝑟, 𝑡) with probability𝑤𝑖. In other words, instead of saying
that the system of interest is certainly in a specific state, described by a specific wavefunction, we allow it
to lie in different states, described by different wavefunctions, with different probabilities. Of course, the
total probability must be equal to unity, i.e. 􏾜𝑖 𝑤𝑖 = 1. (10.5)

In this mixed state, the expected value of an operator 𝐴̂ is⟨𝐴̂⟩ = 􏾜𝑖 𝑤𝑖 ⟨𝐴̂⟩𝑖 , (10.6)

since the system has a probability𝑤𝑖 to be in stateΨ𝑖(⃗𝑟, 𝑡), in which the expected value of the operator 𝐴̂
is ⟨𝐴̂⟩𝑖 = ⟨Ψ𝑖(𝑡)|𝐴̂|Ψ𝑖(𝑡)⟩ = 􏾙𝑑3𝑟Ψ∗𝑖 (⃗𝑟, 𝑡)𝐴̂Ψ𝑖(⃗𝑟, 𝑡). (10.7)

More detailed calculations can be found in Appendix B.6. However, each of the possible wavefunctionsΨ𝑖(⃗𝑟, 𝑡) can be expanded using a complete basis {Φ𝑘(⃗𝑟)} asΨ𝑖(⃗𝑟, 𝑡) = 􏾜𝑘 𝑐𝑖𝑘(𝑡)Φ𝑘(⃗𝑟), (10.8)

with 􏾜𝑘 |𝑐𝑖𝑘(𝑡)|2 = 1. (10.9)
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Hence, if we know the coefficients 𝑐𝑖𝑘(𝑡) and probabilities𝑤𝑖, we can write

⟨𝐴̂⟩ = 􏾜𝑖 𝑤𝑖􏾙𝑑3𝑟􏾜𝑘′ 𝑐𝑖∗𝑘′(𝑡)Φ∗𝑘′ (⃗𝑟)𝐴̂􏾜𝑘 𝑐𝑖𝑘(𝑡)Φ𝑘(⃗𝑟)= 􏾜𝑖 𝑤𝑖􏾜𝑘,𝑘′ 𝑐𝑖∗𝑘′(𝑡)𝑐𝑖𝑘(𝑡)􏾙𝑑3𝑟Φ∗𝑘′ (⃗𝑟)𝐴̂Φ𝑘(⃗𝑟)
= 􏾜𝑖 𝑤𝑖􏾜𝑘,𝑘′ 𝑐𝑖∗𝑘′(𝑡)𝑐𝑖𝑘(𝑡)𝐴𝑘′𝑘 = 􏾜𝑘,𝑘′

Ϻϻϻϻϻϻϼ􏾜𝑖 𝑤𝑖𝑐𝑖𝑘(𝑡)𝑐𝑖∗𝑘′(𝑡)
ϽϾϾϾϾϾϿ𝐴𝑘′𝑘 ⇒

⟨𝐴̂⟩ = 􏾜𝑘,𝑘′ 𝜌𝑘𝑘′(𝑡)𝐴𝑘′𝑘 , (10.10)

where we have defined 𝜌𝑘𝑘′(𝑡) = 􏾜𝑖 𝑤𝑖𝑐𝑖𝑘(𝑡)𝑐𝑖∗𝑘′(𝑡) . (10.11)

We observe that Eq. 10.4, which holds for a pure state, is a partial case of Eq. 10.11, which holds for a
mixed state. In other words, when we are at a pure state, then there is only one possible 𝑖 with 𝑤𝑖 = 1,
so that Eq. 10.11 becomes identical to Eq. 10.4. With this in mind, the expression of Eqs. 10.3, 10.10,
which give the expected value of 𝐴̂, become identical, as well. The matrix 𝜌, whose elements are given
by Eqs. 10.4, 10.11 is called the density matrix. So, we can see that both pure and mixed states can be
described with the help of the density matrix.

10.2 Density matrix and density operator.

Thedensitymatrix 𝜌, which is a representation of thedensity operator 𝜌̂, constitutes amore general de-
scription of a quantum system than the description we commonly use with the help of the wavefunctionsΨ(⃗𝑟, 𝑡) or the state vectors |Ψ(𝑡)⟩. The terms density matrix and density operators are often used inter-
changeably, in a loose sense. The density matrix and density operator, as a formalism, were introduced
independently by John vonNeumann [2] and Lev Landau [3] in 1927. Both the matrix and the operator
are Hermitian and have a unit trace [4].

While awavefunction or a state vector is enough to describe a quantum system in a pure quantum state,
the density matrix can also describe a quantum system in a mixed quantum state. For example, it is also
useful in cases of decoherence due to the interactions between the system of interest and a reservoir with
which it exchanges energy or particles.

Eqs. 10.3, 10.10 show that, to calculate expected values of operators, we only need the quantities𝜌𝑘𝑘′(𝑡)
of Eqs. 10.4, 10.11 instead of all possibleΨ𝑖 and 𝑤𝑖. Since expected values is, in final analysis, all we are
looking for, all the useful information about the systemof interest is encoded in the elements of thedensity
matrix, 𝜌𝑘𝑘′(𝑡). Therefore, the density operator 𝜌̂ can be defined in a way such that⟨Φ𝑘(⃗𝑟)|𝜌̂(𝑡)|Φ𝑘′ (⃗𝑟)⟩ = 𝜌𝑘𝑘′(𝑡) . (10.12)

Using this definition, Eqs. 10.3, 10.10 are written as

⟨𝐴̂⟩ = 􏾜𝑘,𝑘′ 𝜌𝑘𝑘′(𝑡)𝐴𝑘′𝑘 = Tr(𝜌(𝑡) ⋅ 𝐴) . (10.13)
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We denote by Tr the sum of the diagonal elements of a square matrix. This is called the trace of a matrix.
Eq. 10.13 holds because∑𝑘′ 𝜌𝑘𝑘′(𝑡)𝐴𝑘′𝑘 is the diagonal, 𝑘𝑘, element of the matrix that occurs by multi-
plying the matrices 𝜌(𝑡) and𝐴. Thus, if we add up these diagonal elements, i.e. if we take the sum over 𝑘,
we obtain the trace of 𝜌(𝑡) ⋅ 𝐴, which is denoted by Tr(𝜌(𝑡) ⋅ 𝐴).The trace of a matrix is equal to the sum
of its eigenvalues and remains unchanged if we choose another basis. Let us see some properties of the
density operator.

1. We can give an alternative definition of the density matrix for a pure state, i.e. Eq. 10.4 can also be
written as 𝜌̂ = |Ψ⟩ ⟨Ψ| , (10.14)

since, the representation |Ψ⟩ = Ϻϻϻϻϻϻϻϼ𝑐1(𝑡)𝑐2(𝑡)⋮
ϽϾϾϾϾϾϾϿ ,

which implies ⟨Ψ| = 􏿮𝑐∗1(𝑡) 𝑐∗2(𝑡) ⋯ 􏿱,
yields

|Ψ⟩ ⟨Ψ| = Ϻϻϻϻϻϻϻϼ𝑐1(𝑡)𝑐2(𝑡)⋮
ϽϾϾϾϾϾϾϿ 􏿮𝑐∗1(𝑡) 𝑐∗2(𝑡)⋯ 􏿱 = Ϻϻϻϻϻϻϻϼ𝑐1(𝑡)𝑐∗1(𝑡) 𝑐1(𝑡)𝑐∗2(𝑡) ⋯𝑐2(𝑡)𝑐∗1(𝑡) 𝑐2(𝑡)𝑐∗2(𝑡) ⋯⋮ ⋮

ϽϾϾϾϾϾϾϿ = 𝜌 (10.15)

2. The probability to find the system at the state ℓ of the basis {Φ𝑘(𝑟)} is 𝜌ℓℓ(𝑡). This follows by the
definition of Eq. 10.11 for 𝑘 = 𝑘′ = ℓ. That is,𝜌ℓℓ(𝑡) = 􏾜𝑖 𝑤𝑖𝑐𝑖ℓ(𝑡)𝑐𝑖∗ℓ (𝑡) = 􏾜𝑖 𝑤𝑖|𝑐𝑖ℓ(𝑡)|2. (10.16)

Each term in this some is the probability to find the system at state 𝑖 times the probability, being in𝑖, to find it at the state ℓ of the basis {Φ𝑘(𝑟)}. Therefore, the sum is the total probability to find the
system at the state ℓ of the basis {Φ𝑘(𝑟)}.

3. The trace of the density matrix is equal to unity, i.e.

Tr(𝜌(𝑡)) = 1. (10.17)

This follows from Eq. 10.16 by summing over ℓ, i.e.􏾜ℓ 𝜌ℓℓ(𝑡) = 􏾜ℓ 􏾜𝑖 𝑤𝑖|𝑐𝑖ℓ(𝑡)|2 = 􏾜𝑖 𝑤𝑖􏾜ℓ |𝑐𝑖ℓ(𝑡)|2 = 􏾜𝑖 𝑤𝑖 = 1, (10.18)

since∑ℓ |𝑐𝑖ℓ(𝑡)|2 = 1 (Eq. 10.9) and∑𝑖 𝑤𝑖 = 1 (Eq. 10.5). Alternatively, we can consider Eq. 10.13
for 𝐴̂ = 1̂, where 1̂ is the unit operator, hence⟨1̂⟩ = Tr(𝜌(𝑡) ⋅ 1) = Tr(𝜌(𝑡)) (10.19)

and observe that the expected value of the unit operator is 1. This property essentially replaces the
normalization condition for the wavefunction of a system at a pure state.

4. The density operator is Hermitian, 𝜌̂ = 𝜌̂†, i.e. for the elements of the density matrix it holds that𝜌𝑘𝑘′ = 𝜌∗𝑘′𝑘. This can occur directly, by obtaining the complex conjugate of Eqs.. 10.4, 10.11.
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5. Thedensityoperator 𝜌̂ is positive semidefinite, i.e. the eigenvaluesof𝜚 are≥ 0.This canbeobtained
as follows: Since the operator 𝜌̂ is Hermitian, there is a complete basis {Φ𝑛(⃗𝑟)} such that thematrix𝜌 is diagonal. Since the operator 𝜌̂ is Hermitian, its eigenvalues must be real. From property 2.,
we know that these eigenvalues, which are the diagonal elements of 𝜌 using the basis, represent
probabilities, hence they are not only real, but also positive or zero. Since the matrix 𝜌 is diagonal
in this basis, 𝜌𝑛,𝑛′ = 𝛿𝑛,𝑛′𝜚𝑛, 𝜚𝑛 is the respective eigenvalue, which, using property 2., is also the
probability to find the system at state 𝑛.

6. Tr(𝜌2) ≤ 1. This can be shown as follows: Since the trace does not depend on the basis we use,
let us calculate it in the basis that makes 𝜌 diagonal, i.e. in {Φ𝑛(⃗𝑟)}. Therefore, Tr(𝜌2) = ∑𝑛 𝜚2𝑛 .
However, 𝜚𝑛 are probabilities, hence 0 ≤ 𝜚𝑛 ≤ 1. Thus,∑𝑛 𝜚2𝑛 ≤ (∑𝑛 𝜚𝑛)2 = Tr2(𝜌) = 12 = 1.

7. If the system is at a pure state, then Tr(𝜌2) = 1. This is due to property 1. That is, for a pure state
Eq. 10.14, 𝜌̂ = |Ψ⟩ ⟨Ψ| ,
holds, thus, 𝜌̂2 = |Ψ⟩ ⟨Ψ|Ψ⟩ ⟨Ψ| = |Ψ⟩ ⟨Ψ| = 𝜌̂.
Hence, Tr(𝜌2) = Tr(𝜌) = 1, due to property 3.Therefore, the value of Tr(𝜌2) tells us whether the
system is at a pure state (Tr(𝜌2) = 1) or a mixed state (Tr(𝜌2) < 1).

Finally, we need something analogous to the Schrödinger equation. When we are at a pure state, the
Schrödinger equation allows us to find the wavefunction at any given time, since we know it at the initial
time. We would like to have a similar equation which yields 𝜌̂(𝑡), given that we know 𝜌̂(0). This equation
exists, is called the Liouville-von Neumann equation, and has the form

𝑖ℏ𝜕𝜌̂(𝑡)𝜕𝑡 = [𝐻̂, 𝜌̂(𝑡)] , (10.20)

where [ , ] denotes the commutator and 𝐻̂ is the Hamiltonian of the system. See Eqs. 10.31 or 10.39
below. We have to notice that this equation can be used only as long as the Hamiltonian of the system
exists (i.e. the system is isolated). If the system interacts with a reservoir, then we have to include the
result of the interaction within the evolution of the density operator. See, for example Eq. 10.53.

10.3 Density matrix and density operator for a two-level system at a pure state.

Following the notation we used in previous chapters, the state of a two-level system can be described by
the equation |Ψ(𝑡)⟩ = 𝑐1(𝑡) |↓⟩ + 𝑐2(𝑡) |↑⟩ = 𝑐1(𝑡) |Φ1⟩ + 𝑐2(𝑡) |Φ2⟩ . (10.21)

Multiplying by ⟨⃗𝑟|,⟨⃗𝑟|Ψ(𝑡)⟩ = 𝑐1(𝑡) ⟨⃗𝑟|↓⟩ + 𝑐2(𝑡) ⟨⃗𝑟|↑⟩ = 𝑐1(𝑡) ⟨⃗𝑟|Φ1⟩ + 𝑐2(𝑡) ⟨⃗𝑟|Φ2⟩ ,
we obtain the spatial representationΨ(⃗𝑟, 𝑡) = 𝑐1(𝑡)Φ1(⃗𝑟) + 𝑐2(𝑡)Φ2(⃗𝑟). (10.22)

Thus, the probability to find the electron at the ground or the excited level is expressed by|𝑐1(𝑡)|2 = 𝑐1(𝑡) 𝑐1(𝑡)∗ and |𝑐2(𝑡)|2 = 𝑐2(𝑡) 𝑐2(𝑡)∗ (10.23)
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Let us calculate the average value of the dipole moment at state 10.22. Since ̂⃗𝑝 = −𝑒 ̂⃗𝑟 = −𝑒𝑟, we have

⟨ ̂⃗𝑝⟩ = 􏾙𝑑𝑉 􏿴𝑐∗1(𝑡)Φ∗1(⃗𝑟) + 𝑐∗2(𝑡)Φ∗2(⃗𝑟)􏿷 (−𝑒𝑟) 􏿴𝑐1(𝑡)Φ1(⃗𝑟) + 𝑐2(𝑡)Φ2(⃗𝑟)􏿷= |𝑐1(𝑡)|2 􏾙𝑑𝑉Φ∗1(⃗𝑟)(−𝑒𝑟)Φ1(⃗𝑟) + 𝑐∗1(𝑡)𝑐2(𝑡)􏾙𝑑𝑉Φ∗1(⃗𝑟)(−𝑒𝑟)Φ2(⃗𝑟)+ 𝑐∗2(𝑡)𝑐1(𝑡)􏾙𝑑𝑉Φ∗2(⃗𝑟)(−𝑒𝑟)Φ1(⃗𝑟) + |𝑐2(𝑡)|2 􏾙𝑑𝑉Φ∗2(⃗𝑟)(−𝑒𝑟)Φ2(⃗𝑟).
Therefore, ⟨ ̂⃗𝑝 ⟩ = 𝑐∗1(𝑡)𝑐2(𝑡) 𝑝⃗12 + 𝑐∗2(𝑡)𝑐1(𝑡) 𝑝⃗21, (10.24)

since 􏾙𝑑𝑉Φ∗1(⃗𝑟)(−𝑒𝑟)Φ1(⃗𝑟) = 0 and 􏾙𝑑𝑉Φ∗2(⃗𝑟)(−𝑒𝑟)Φ2(⃗𝑟) = 0,
while 𝑝⃗12 = 􏾙𝑑𝑉Φ∗1(⃗𝑟)(−𝑒𝑟)Φ2(⃗𝑟)𝑝⃗21 = 􏾙𝑑𝑉Φ∗2(⃗𝑟)(−𝑒𝑟)Φ1(⃗𝑟).
And, since 𝑝⃗21 = 𝑝⃗∗12,
the average value of the dipole moment, ⟨ ̂⃗𝑝 ⟩, is a real number, as a sum of two complex conjugate num-
bers.

Eq. 10.24 contains the quantities 𝑐1(𝑡)∗𝑐2(𝑡) and 𝑐2(𝑡)∗𝑐1(𝑡) . (10.25)

Eq. 10.23 contains the “diagonal elements” and Eq. 10.25 contains the “off-diagonal elements” of the2 × 2 (in this case) density matrix, which has the form

𝜌 = 􏿰𝑐1𝑐∗1 𝑐1𝑐∗2𝑐2𝑐∗1 𝑐2𝑐∗2􏿳 = 􏿰𝜌11 𝜌12𝜌21 𝜌22􏿳 , (10.26)

where we have omitted time-dependence, which is implied. In other words the density matrix element is𝜌𝑛𝑚 ∶= 𝑐𝑛𝑐∗𝑚 . (10.27)

And, since we can use the representation |Ψ⟩ = 􏿰𝑐1𝑐2􏿳 (10.28)

and ⟨Ψ| = 􏿮𝑐∗1 𝑐∗2􏿱, (10.29)

it follows that

|Ψ⟩ ⟨Ψ| = 􏿰𝑐1𝑐2􏿳 􏿮𝑐∗1 𝑐∗2􏿱 = 􏿰𝑐1𝑐∗1 𝑐1𝑐∗2𝑐2𝑐∗1 𝑐2𝑐∗2􏿳 = 𝜌. (10.30)



QUANTUM OPTICS 275

10.4 Time evolution of the density matrix: the von Neumann equation.

The von Neumann or Liouville-von Neumann equation describes the time-evolution of the density ma-
trix. It has the form 𝑖ℏ𝜕𝜌̂𝜕𝑡 = [𝐻̂, 𝜌̂] , (10.31)

where [ , ] denotes the commutator.
Let us now prove Eq. 10.31. From Eq. 10.27 it follows that the rate of change for a density matrix ele-

ment is 𝜌̇𝑛𝑚 = 𝑐̇𝑛𝑐∗𝑚 + 𝑐𝑛𝑐̇∗𝑚. (10.32)

Of course ∗ and ̇can be performed in any order, since e.g., if 𝑧 = 𝛼+𝑖𝛽, 𝑧 ∈ ℂ,𝛼, 𝛽 ∈ ℝ, then 𝑧∗ = 𝛼−𝑖𝛽,𝑧̇ = 𝛼̇ + 𝑖𝛽̇, and ̇(𝑧∗) = 𝛼̇ − 𝑖𝛽̇ = (𝑧̇)∗. From the Schrödinger equation

𝑖ℏ𝜕Ψ(⃗𝑟, 𝑡)𝜕𝑡 = 𝐻̂Ψ(⃗𝑟, 𝑡)
and Eq. 10.22, it follows that 𝑖ℏ𝑐̇𝑛 = 􏾜𝑘 𝑐𝑘𝐻𝑛𝑘. (10.33)

We used the definition of the matrix element of an operator (Eq. 5.29) and the orthonormality ofΦ𝑘(⃗𝑟),
i.e.∫𝑑𝑉Φ𝑛(⃗𝑟)∗Φ𝑘(⃗𝑟) = 𝛿𝑛𝑘. Thus, −𝑖ℏ𝑐̇∗𝑛 = 􏾜𝑘 𝑐∗𝑘𝐻∗𝑛𝑘. (10.34)

But𝐻∗𝑛𝑘 = 𝐻𝑘𝑛, since theHamiltonian is aHermitian operator. Combining the above, the time evolution
of the density matrix element occurs as𝑖ℏ𝜌̇𝑛𝑚 = 􏾜𝑘 (𝐻𝑛𝑘𝜌𝑘𝑚 − 𝜌𝑛𝑘𝐻𝑘𝑚) . (10.35)

In a somewhat different formulation, if we consider the temporal evolution of the general definition
(Eq. 10.14), it follows that ̇𝜌̂ = ̇|Ψ⟩ ⟨Ψ| + |Ψ⟩ ̇⟨Ψ|, (10.36)

while, from the Schrödinger equation 𝑖ℏ ̇|Ψ⟩ = 𝐻̂ |Ψ⟩ (10.37)

it follows that −𝑖ℏ ̇⟨Ψ| = ⟨Ψ| 𝐻̂†. (10.38)

But 𝐻̂† = 𝐻̂, since theHamiltonian is a Hermitian operator. Combining the above, the time evolution of
the density matrix occurs as 𝑖ℏ ̇𝜌̂ = 𝐻̂ |Ψ⟩ ⟨Ψ| − |Ψ⟩ ⟨Ψ| 𝐻̂ = 𝐻̂𝜌̂ − 𝜌̂𝐻̂,
or, more concisely, 𝑖ℏ ̇𝜌̂ = [𝐻̂, 𝜌̂] , (10.39)

which is Eq. 10.31.
We notice that, according to the definition of the matrix element of an operator (Eq. 5.29),

𝐻𝑛𝑘 = 􏾙𝑑𝑉Φ𝑛(⃗𝑟)∗𝐻̂Φ𝑘(⃗𝑟). (10.40)
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Consider the Hamiltonian of a perturbed two-level sytem, as in Eq. 5.18,𝐻̂ = 𝐻̂0 + 𝑈ℰ (⃗𝑟, 𝑡),
where𝑈ℰ (⃗𝑟, 𝑡) is the potential energy of the perturbation and 𝐻̂0 is the Hamiltonian of the unperturbed
two-level system. Then, Eqs. 10.40 and. 5.18 yield

𝐻𝑛𝑘 = 􏾙𝑑𝑉Φ𝑛(⃗𝑟)∗𝐻̂0Φ𝑘(⃗𝑟) +􏾙𝑑𝑉Φ𝑛(⃗𝑟)∗𝑈ℰ (⃗𝑟, 𝑡)Φ𝑘(⃗𝑟) ⇒𝐻𝑛𝑘 = 𝐸𝑘𝛿𝑛𝑘 + 𝑈ℰ𝑛𝑘(𝑡). (10.41)

Combining Eqs. 10.33 and 10.41, we obtain𝑖ℏ𝑐̇𝑛 = 𝑐𝑛𝐸𝑛 +􏾜𝑘 𝑐𝑘𝑈ℰ𝑛𝑘(𝑡) (10.42)

In a two-level system within the dipole approximation, which leads to the diagonal elements 𝑈ℰ𝑘𝑘(𝑡)
becoming zero (Section 5.3, Eq. 5.43), it follows that𝑖ℏ𝑐̇1 = 𝐸1𝑐1 + 𝑈ℰ12(𝑡)𝑐2, (10.43)𝑖ℏ𝑐̇2 = 𝐸2𝑐2 + 𝑈ℰ21(𝑡)𝑐1. (10.44)

For realΦ𝑘(⃗𝑟),𝑈ℰ21(𝑡) = 𝑈ℰ12(𝑡).
10.5 Time evolution of the density matrix in the presence of decay mechanisms.

Eqs. 10.43 and 10.44 that we just obtained in Section 10.4 can bemodified so that the decay of the energy
levels 1 and 2 can be included.This decay can be due to spontaneous emission or other mechanisms, e.g.,
collisions of the atoms of the gasmixture inside a gas laser. As wewill see in Chapter 11, a fast decay of the
lower level (1) contributes to the achievement of population inversion.Moreover, we will see (Eq. 11.42)
that, for a laser to operate, the lifetime of the upper level (2) must be larger than the lifetime of the lower
level (1), i.e. 𝑡2 > 𝑡1. The decay of energy levels 1 and 2 can be achieved by including the term

−𝑖ℏ2 Γ̂, (10.45)

to the Hamiltonian of the perturbed two-level system, i.e. to Eq. 5.18. The operator Γ̂ has the propertyΓ̂Φ𝑘(⃗𝑟) = 𝛾𝑘Φ𝑘(⃗𝑟), 𝛾𝑘 ∈ ℝ. In other words, Γ𝑛𝑘 = 𝛾𝑘𝛿𝑛𝑘 (10.46)

or, in matrix form, Γ̂ = 􏿰𝛾1 00 𝛾2􏿳 . (10.47)

Thus, the Hamiltonian becomes 𝐻̂ = 𝐻̂0 − 𝑖ℏ2 Γ̂ + 𝑈ℰ (⃗𝑟, 𝑡). (10.48)

In this case, Eq. 10.41 is modified to

𝐻𝑛𝑘 = 𝐸𝑘𝛿𝑛𝑘 + 𝑈ℰ𝑛𝑘(𝑡) − 𝑖ℏ2 𝛾𝑘𝛿𝑛𝑘. (10.49)
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Therefore, using Eqs. 10.33 and 10.49, we obtain

𝑖ℏ𝑐̇𝑛 = 𝑐𝑛𝐸𝑛 +􏾜𝑘 𝑐𝑘𝑈ℰ𝑛𝑘(𝑡) − 𝑖ℏ2 𝑐𝑛𝛾𝑛 (10.50)

Hence, if we take the decay mechanisms into account in a two-level system, Eqs. 10.43 and 10.44 are
replaced by

𝑖ℏ𝑐̇1 = 𝐸1𝑐1 + 𝑈ℰ12(𝑡)𝑐2 − 𝑖ℏ2 𝛾1𝑐1, (10.51)𝑖ℏ𝑐̇2 = 𝐸2𝑐2 + 𝑈ℰ21(𝑡)𝑐1 − 𝑖ℏ2 𝛾2𝑐2. (10.52)

Using Eqs. 10.51 and 10.52, and assuming that𝑈ℰ21(𝑡) = 𝑈ℰ12(𝑡), it can be shown that the time evolu-
tion of the density matrix with decay mechanisms is given by the equation

𝑖ℏ ̇𝜌̂ = [𝐻̂, 𝜌̂] − 𝑖ℏ2 {Γ̂, 𝜌̂} . (10.53)

We recall that [ , ] denotes the commutator and { , } the anticommutator.
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CHAPTER 11

LASER

In this Chapter:
Initially, we analyze the basic parts of a LASER. As an example, we examine theHe-NeLASER.Wederive
the rate equations for the populations of the levels, participating in the emission of coherent EMradiation,
and for the EM radiation density inside the cavity. We evaluate the number of longitudinal modes of the
cavity inside the line width of emission of coherent EM radiation. We find the populations of the levels
and the density of EM radiation in the steady state. We explain what critical pumping and population in-
version are. We continue by explaining how we solve numerically the rate equations in the general case,
i.e., at every instance. Here we include a simulation laboratory: practice at solving rate equations numer-
ically. Then, we discuss the generation of standing EM waves inside a cavity. We discriminate between
longitudinal and transverse EM modes. Afterwards, we discuss the shape of transverse modes within a
rectangular parallelepiped and within a cylindrical cavity. Also, we list LASER types and indicative appli-
cations, andwe say a fewwords about p-n junctionLASERor alternatively diodeLASERand for quantum
dots LASER. Finally, we refer to transverse mode isolation techniques.
Prerequisite knowledge: Basic knowledge of Electromagnetism and Quantum Physics.

The LASER (Light Amplification by Stimulated Emission of Radiation) is based on ideas by Einstein,
published in 1916-1917 [1, 2]. Decades later (1950-1960), and after international efforts bymany promi-
nent or non-prominent researchers, the first MASERs and LASERs were developed. In 1964, Charles
Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics “for fundamental
work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers
based on themaser–laser principle”.The first LASERS were even characterized as a solution looking for a
problem; however, today, LASERS are used in medicine, communications, everyday life, military, indus-
try, cosmetics, etc. A LASER is a device that converts other forms of energy into coherent EM radiation.
The incident energy can be EM energy, solar energy, chemical energy, etc, while the outgoing energy is
coherent EM radiation. Apart from the acronymLASER, todaywe have derivative terms, such as “to lase”,
“lasing”, etc. In what follows, we will use the terms LASER and laser interchangeably.
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Figure 11.1: A LASER device.

A LASER device is depicted in Figure 11.1. The active medium is a collection of building blocks
(atoms, molecules, ...). The cavity is the space in which the active medium is confined, e.g., a glass tube.
There are standingwaves along the direction of themirrors, i.e. parallel to the “optical axis”, e.g., the 𝑧-axis.
The distance between the mirrors, 𝐿, determines the allowed modes of EM radiation, i.e. it determines𝜔𝑚.These are the so-called longitudinalmodes.The transversemodes, which are created by the width
of the cavity, determine the energy distribution along the cross-section, i.e., normal to the “optical axis”,
i.e., the 𝑥𝑦-plane.
11.1 He-Ne LASER.

The excitation - pumping mechanism in a He-Ne LASER is presented in Figure 11.2. The active medium
is amixture of gas phaseNeon (Ne) andHelium (He) in approximately 1:10 ratio.TheNeon atoms play a
central role, while theHelium atoms help with the excitation of Neon atoms, as it will be explained below.
The excitationmechanism contains the following steps: Initially, an electric discharge creates accelerating
electronswhich excite theHe andNe atoms.Next, theHe atoms excite theNe atoms. In this LASER type,
the most important processes take place between four (4) energy levels, as shown in Figure 11.2. Two
meta-stable energy levels,𝐸5 and𝐸3, act as upperLASER levels,while the less stable levels𝐸4 and𝐸2 act as
lowerLASER levels. Ameta-stable energy level is a “semi-stable” energy level, in the sense that it has a non-
negligible, yet finite, lifetime. Thus, the main allowed transitions are: the main visible transition between
levels 𝐸5 and 𝐸2, which is the classic characteristic red of the He-Ne LASER in 632.8 nm, the infrared
transition between levels 𝐸3 and 𝐸2 in 1.152 𝜇m = 1152 nm, and the infrared transition between levels𝐸5 and 𝐸4 in 3.391 𝜇m = 3391 nm. The energy levels have a fine structure, i.e., they are in fact complex.
Therefore, the resulting energy transitions are not delta functions; instead they have some distribution
around a central wavelength. Although the most important, “trademark” transition of the He-Ne LASER
corresponds to a wavelength 𝜆1 = 632.8 nm (red, slightly to orange), there are more transitions, such as𝜆2 = 1152 nm and 𝜆′2 = 1523 nm (infrared), 𝜆3 = 3391 nm (infrared), 𝜆4 = 543.5 nm (green), 𝜆5 =
594.1 nm (yellow), 𝜆6 = 604.6 nm and 𝜆′6 = 611.9 nm (orange)). Which of the above prevails depends
on the construction of the LASER device, e.g., on the distance between the twomirrors. We can enhance
a particular color by using a special coating on the mirrors that mainly reflects the desired photons. For
example, if we want to enhance the red light, we use a coating that reflects only the red light. By doing so,
the red light is reflected inside the cavity and its photons are multiplied via stimulated emission between
levels𝐸5 and 𝐸2, while the photons with other wavelengths are forced to always pass through the active
medium. Other wavelengths can be enhanced in a similar way. Thus, there are today orange, yellow, and
greenHe-Ne LASERS, which take advantage of transitions that are not depicted in Figure 11.2. However,
the red light 632.8 nm is themost efficient one in aHe-Ne. Finally, let us note that in someLASERdevices
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there is the possibility of tuning, i.e., we can choose the desired wavelength or even emit two or more
wavelengths simultaneously.

Figure 11.2: Energy diagram of the He-Ne LASER. Only the main levels and transitions are presented.

Although the transitions on which emission of coherent EM radiation depends have to do with Ne
atoms, the He has is used in the He-Ne LASER to increase efficiency. This is due to the following two
reasons: First, a direct excitation of Ne atoms thought the electric discharge is inefficient, while the exci-
tation of He atoms is efficient. Second, one of the excited levels of the He atom (the one denoted as 𝐸5)
has almost the same energy as one of the excited levels of the Ne atom (the one denoted as 𝐸5, too). This
is also the case for the excited levels denoted as 𝐸3. The excitation of the Ne atoms occurs in three stages:
1. A high voltage accelerates electrons from the cathode to the anode.
2. These electrons collide with He atoms and transfer to them their kinetic energy, so that the He atoms
are excited and transfer energy to higher levels.
3. The excited He atoms collide with Ne atoms and transfer to them the excitation energy.
Thus, the He atoms do not participate in lasing, but increase the efficiency of Ne atoms excitation to the
upper levels that participate in lasing. This results in a large increase in efficiency.

In most He-Ne LASER applications, the transitions between levels 𝐸5 and 𝐸2, which yield red light
with wavelength 𝜆 = 632.8 nm, are used. This is the strongest line in the visible region. A problem in the
creation of these photons is that the energy level 𝐸5 can also emit to the infrared region with 𝜆 = 3391
nm, which corresponds to the transition between𝐸5 and𝐸4.This leads to a decrease in the population of
the energy level 𝐸5, without emitting visible radiation.

Theamplificationof coherentEMradiationoccursby stimulatedemission. In a commonHe-NeLASER,
the amplification of the active medium is about 2%. In other words, in a single passage through the active
medium, from the one mirror to the other, the amount of radiation increases from 1 to 1.02. Losses are
owing to collisions of excited He atoms with the walls of the tube containing the gas, absorption by other
molecules, etc. Thus, it must be below 2%. For a LASER to be operational, the lifetime of the lower en-
ergy levels that participate in lasing must, as we explain below, be very small, so that population inversion
can be achieved. In the Ne has, which is the active medium, the transition from the lower energy level
that participates in lasing is not very fast, but it is accelerated thought collisions with the walls of the tube.
Since the number of collisions with the tube’s walls increases as the tube becomes smaller, amplification
of LASER radiation is inversely proportional to the radius of the tube. Thus, the radius of the tube must
be as small as possible.The output power of He-Ne LASER commonly varies between 0.1-100 mW. One
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of the two mirrors is totally reflective, while the other is about 99% reflective. Since the latter mirror lets
only 1% of the radiation through, the power inside the cavity is 100 times larger than the emitted power.
In He-Ne LASERS, the length of the cavity is of the order of some tens of cm and the thickness of the
cavity is of the order of some mm.

11.2 Rate equations for the populations of the levels participating in emission of coherent EM ra-
diation and for the radiation density.

We will derive the rate equations, i.e., the equations that describe the time-evolution of the population
of two levels that participate to emission of coherent EM radiation and the equation that describes the
time-evolution of EM radiation density inside the cavity. In Figure 11.3, we present a system with four
levels, in which electrons are pumped from the ground level (g) to the upper LASER level (2).Thus, here
“two-level system” means that there are two levels, (1) and (2), between which coherent EM radiation is
emitted, but there are also auxiliary levels such as (h) and (g). The help energy level (h) is needed so that
electrons do not stay in (1), i.e., so that population inversion between (1) and (2) can be achieved. Thus,
we assume that the spontaneous transition (1)→ (h) is relatively faster than the spontaneous transition
(2)→ (1).Additionally, the transition (1)→ (h) is eithernon-radiative, i.e., the energy is loweredwithout
phonon emission, e.g., through phonons, or, even if it is radiative, the emitted phonons are not supported
by the cavity’s mirrors. A transition from one level to another is called non-radiative if it occurs without
absorbing or emitting photons, e.g., by phonons, while it is called radiative if it occurs by absorbing or
emitting photons.

Figure11.3:Representationof a systemwith twoLASER levels and twoauxiliary levels, inwhich electrons
are pumped from the ground level to the upper LASER level.

We start by defining pumping, 𝑅2 ≡ 𝑅, as the rate at which we raise electrons from the ground level
(g) to the upper LASER level (2).That is, pumping is the number of electrons that we raise divided by the
corresponding time. Thus, its units are [𝑅] = 1/s. Below, we will define several rates that have the same
units, [1/s].

• For an atom, the probability for spontaneous emission from level (1) to the help level (h), in time𝑑𝑡, is 𝑑𝑊sp. em.1→ℎ = 𝐴1ℎ𝑑𝑡. (11.1)
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We define the “lifetime” of level (1), 𝑡1, through the relationship

1 = 𝐴1ℎ𝑡1 ⇒ 𝑡1 = 1𝐴1ℎ , (11.2)

that is, 𝑡1 is the time needed for 𝑑𝑊sp. em.1→ℎ to become equal to 1. Therefore, we can write

𝑑𝑊sp. em.1→ℎ = 𝑑𝑡𝑡1 . (11.3)

Thenumberof atoms that transition from level (1) to level (h) in time𝑑𝑡, via spontaneous emission,
is 𝑑𝑁sp. em.1→ℎ = 𝑁1𝐴1ℎ𝑑𝑡 = 𝑁1𝑡1 𝑑𝑡. (11.4)

Therefore, the transition rate from level (1) to level (h) via spontaneous emission is𝑑𝑁sp. em.1→ℎ𝑑𝑡 = 𝑁1𝐴1ℎ = 𝑁1𝑡1 . (11.5)

• For an atom, the probability for spontaneous emission from level (2) to the level (1), in time 𝑑𝑡, is𝑑𝑊sp. em.2→1 = 𝐴21𝑑𝑡. (11.6)

We define the “lifetime” of level (2), 𝑡2, through the relationship

1 = 𝐴21𝑡2 ⇒ 𝑡2 = 1𝐴21 , (11.7)

that is, 𝑡1 is the time needed for 𝑑𝑊sp. em.2→1 to become equal to 1. Therefore, we can write

𝑑𝑊sp. em.2→1 = 𝑑𝑡𝑡2 . (11.8)

Thenumberof atoms that transition from level (2) to level (1) in time𝑑𝑡, via spontaneous emission,
is 𝑑𝑁sp. em.2→1 = 𝑁2𝐴21𝑑𝑡 = 𝑁2𝑡2 𝑑𝑡. (11.9)

Therefore, the transition rate from level (2) to level (1) via spontaneous emission is𝑑𝑁sp. em.2→1𝑑𝑡 = 𝑁2𝐴21 = 𝑁2𝑡2 . (11.10)

• For an atom, the probability for stimulated emission from level (2) to the level (1), in time 𝑑𝑡, is𝑑𝑊st. em.2→1 = 𝐵21𝜌(𝜈)𝑑𝑡. (11.11)

The number of atoms that transition from level (2) to level (1) in time 𝑑𝑡, via stimulated emission,
is 𝑑𝑁st. em.2→1 = 𝑁2𝐵21𝜌(𝜈)𝑑𝑡. (11.12)

Therefore, the transition rate from level (2) to level (1) via stimulated emission is𝑑𝑁st. em.2→1𝑑𝑡 = 𝑁2𝐵21𝜌(𝜈). (11.13)
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• For an atom, the probability for stimulated absorption from level (1) to the level (2), in time 𝑑𝑡, is𝑑𝑊st. ab.1→2 = 𝐵12𝜌(𝜈)𝑑𝑡. (11.14)

Thenumberof atoms that transition from level (1) to level (2) in time𝑑𝑡, via stimulated absorption,
is 𝑑𝑁st. ab.1→2 = 𝑁1𝐵12𝜌(𝜈)𝑑𝑡. (11.15)

Therefore, the transition rate from level (1) to level (2) via stimulated absorption is𝑑𝑁st. ab.1→2𝑑𝑡 = 𝑁1𝐵12𝜌(𝜈). (11.16)

• If we were in thermodynamic equilibrium, i.e., there were no losses and no pumping, we would
write, as we already know, 𝑑𝑁1→2 = 𝑑𝑁2→1 ⇔𝑁1𝑑𝑊st. ab.1→2 = 𝑁2[𝑑𝑊sp. em.2→1 + 𝑑𝑊st. em.2→1 ] ⇔𝑁1𝐵12𝜌(𝜈, 𝑇)𝑑𝑡 = 𝑁2[𝐴21𝑑𝑡 + 𝐵21𝜌(𝜈, 𝑇)𝑑𝑡]
and then, by denoting𝐴21 = 𝐴, 𝐵21 = 𝐵12 = 𝐵 and comparing with the Planck’s law, we would
arrive at the relationship 𝐴𝐵 = 8𝜋ℎ𝜈3𝑐3 . This has been done in Section 3.2, e.g. see Eqs. 3.7 and 3.10.

• However, now we have both losses, expressed by 𝑡0, and pumping𝑅. Additionally, 𝜌 does not cor-
respond to a black body with a specific temperature at thermodynamic equilibrium, so we do not
have 𝜌(𝜈, 𝑇) but rather 𝜌(𝜈). Thus, we expect to see𝑁1 = 𝑁1(𝑅, 𝑡0)𝑁2 = 𝑁2(𝑅, 𝑡0)𝜌 = 𝜌(𝑅, 𝑡0)

Let us construct the differential equations for the rates, setting𝐴21 = 𝐴,𝐵21 = 𝐵12 = 𝐵.We consider the
positive and negative contributions to the populations of levels (1) and (2) as well as the energy density
of EM radiation in an infinitesimal frequency interval.

For the rate of change in the population of level (1), we have𝑑𝑁1𝑑𝑡 = −𝑁1𝑡1 − 𝑁1𝐵12𝜌 + 𝑁2𝐵21𝜌 + 𝑁2𝑡2 . (11.17)

In the left hand-side of the above equation, the first term corresponds to losses towards level (h), the
second one to losses towards level (2), while the third and fourth ones correspond to gains from level (2).
Therefore, simplifying the notation (𝐴21 = 𝐴, 𝐵21 = 𝐵12 = 𝐵),𝑑𝑁1𝑑𝑡 = −𝑁1𝑡1 + 𝐵𝜌(𝑁2 − 𝑁1) + 𝐴𝑁2 (11.18)

For the rate of change in the population of level (2), we have𝑑𝑁2𝑑𝑡 = 𝑅 + 𝑁1𝐵12𝜌 − 𝑁2𝐵21𝜌 − 𝑁2𝑡2 . (11.19)
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In the left hand-side of the above equation, the first term corresponds to gains from pumping, the sec-
ond one to gains from level (1), while the third and fourth ones correspond to losses towards level (1).
Therefore, simplifying the notation (𝐴21 = 𝐴, 𝐵21 = 𝐵12 = 𝐵),𝑑𝑁2𝑑𝑡 = 𝑅 + 𝐵𝜌(𝑁1 − 𝑁2) − 𝐴𝑁2 (11.20)

For the rate of change in the energy density of EM radiation in an infinitesimal frequency interval, we
have 𝑑𝜌𝑑𝑡 = − 𝜌𝑡0 + 􏿮−𝑁1𝐵12𝜌 + 𝑁2𝐵21𝜌 + 𝐴′21𝑁2􏿱 ℎ𝜈𝑉 𝐹(𝜈). (11.21)

In the left hand-side of the above equation, the first term describes losses towards the mirrors in a phe-
nomenological manner, the second one corresponds to losses due to stimulated absorption, the third one
to gains due to stimulated emission, and and the fourth one to gains due to spontaneous emission. We
have to pay attention to the fact that spontaneous emission occurs towards any direction, hence we do
not take advantage of the whole term𝐴21𝑁2 to increase EM radiation in the cavity. We only take advan-
tage of those photons that are emitted towards a direction approximately parallel to the axis defined by
the mirrors. Therefore, since only a small portion of the total solid angle is of interest, the coefficient𝐴′21
occurs, which is much smaller than𝐴21, e.g.,𝐴′21 = 10−9𝐴21. Again, simplifying the notation (𝐴21 = 𝐴,𝐵21 = 𝐵12 = 𝐵), 𝑑𝜌𝑑𝑡 = − 𝜌𝑡0 + 􏿮𝐵𝜌(𝑁2 − 𝑁1) + 𝐴′𝑁2􏿱 ℎ𝜈𝑉 𝐹(𝜈) (11.22)

Eqs. 11.18 and 11.20 are sometimes referred to as “matter equations”, while Eq. 11.22 as “field equation”.
Let us comment a bit on the units. For the Einstein coefficients, [𝐴] = 1/s and [𝐵] = m3

Js2 , while for the

energy density of EMradiation in an infinitesimal frequency interval, [𝜌] = J
m3Hz

= Js
m3 .Thus, 􏿯𝑑𝜌𝑑𝑡 􏿲 = J

m3 .
As seen in Eq. 11.22, we express the radiation losses to themirrorswith a phenomenological term − 𝜌𝑡0 .
That is, we introduce a quantity 𝑡0 with units of time. Thus, losses are expressed in units [− 𝜌𝑡0 ] = J

m3 . The
parameter 𝑡0 characterizes the time needed to empty the cavity of 𝜌 due to losses to the mirrors, in the
absence of an active material. The smaller the reflectance of the mirrors, i.e., the larger the losses, the less
the time 𝑡0.𝑁1 and𝑁2 are populations with units [𝑁1] = [𝑁2] = 1. Based on the above,[𝑁1𝐵12𝜌] =[𝑁2𝐵21𝜌] = [𝐴21𝑁2] = [𝐴′21𝑁2] = 1/s. 𝐹(𝜈) is the shape of the transmission line, which, as we have
already mentioned, is not a delta function; rather, it has some width. This is schematically depicted in
Figure 11.4. 𝐹(𝜈) is called spectral line shape function and has units [𝐹(𝜈)] = 1/Hz. FWHM means
Full Width at Half Maximum. The shape of this line can be approximated in some cases by a Gaussian
or a Lorentzian, but this subject exceeds the scope of this book.𝑉 is the volume of the cavity, with units[𝑉] = m3. Thus, 􏿯ℎ𝜈𝑉 𝐹(𝜈)􏿲 = J

m3Hz
. Therefore, the right-hand side of Eq. 11.22 has units J

m3 .
Eqs. 11.18, 11.20, 11.22 can alternatively be written as𝑑𝑛1𝑑𝑡 = −𝑛1𝑡1 + 𝐵𝜌(𝑛2 − 𝑛1) + 𝐴𝑛2 (11.23)

𝑑𝑛2𝑑𝑡 = 𝑟 + 𝐵𝜌(𝑛1 − 𝑛2) − 𝐴𝑛2 (11.24)

𝑑𝜌𝑑𝑡 = − 𝜌𝑡0 + 􏿮𝐵𝜌(𝑛2 − 𝑛1) + 𝐴′𝑛2􏿱 ℎ𝜈𝐹(𝜈) (11.25)
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Figure 11.4:The spectral line shape function,𝐹(𝜈), expresses the shape of an emission line. FWHMstands
for Full Width at Half Maximum. The central frequency, 𝜈0, its FWHM, Δ𝜈FWHM0 , two consecutive fre-
quencies of longitudinal modes, 𝜈𝑚, 𝜈𝑚+1, and the distance between themΔ𝜈𝑚,𝑚+1 = 𝑐2𝐿 , are noted. As
an example, typical values for the red line of a He-Ne LASER are presented. In this specific example, the
FWHM contains 4 longitudinal modes.

where we have set 𝑛𝑖 = 𝑁𝑖𝑉 , (11.26)

and 𝑟 = 𝑅𝑉 . (11.27)

11.3 Number of longitudinal modes within emission line width.

In Chapter 8 (Eq. 8.50) we saw that inside the cavity only EM modes𝑚 such that the circular frequency
is 𝜔𝑚 = 𝑚𝜋𝑐𝐿 ,𝑚 ∈ 𝒩 ∗
are supported. 𝐿 is the distance between the mirrors along the 𝑧-axis. Therefore, the frequency is

𝜈𝑚 = 𝑚𝑐2𝐿 ,𝑚 ∈ 𝒩 ∗. (11.28)
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These EM modes were derived by imposing boundary conditions along the 𝑧-axis connecting the two
mirrors. Since this dimension of the cavity on the 𝑧-axis has usually much larger size than the other two
ones on the 𝑥𝑦-plane, these modes are called longitudinal modes.

The red line has a central wavelength 𝜆0 ≈ 632.8 nm,
hence, the corresponding central frequency is 𝜈0 = 𝑐𝜆0 ≈ 0.474 × 1015Hz ⇒𝜈0 = 0.474 PHz.
The FWHM of the red line isΔ𝜈FWHM0 ≈ 1.7 GHz.Thus,Δ𝜈FWHM0𝜈0 ≈ 3.6 × 10−6,
i.e., the red line is fairly thin; see Figure 11.4. Let us try to answer the followingquestion: Are theremodes𝑚 supported by the cavity in the frequency region of 𝜈0 with width Δ𝜈FWHM0 ? From Eq. 11.28, we con-
clude that the frequency distance between longitudinal EM modes is

Δ𝜈𝑚,𝑚+1 = 𝑐2𝐿. (11.29)

Let as assume that the length of the cavity is𝐿 = 0.4 m.Then,Δ𝜈𝑚,𝑚+1 = 375 MHz.Within the FWHM
of the spectral line there will be 􏿰Δ𝜈FWHM0Δ𝜈𝑚,𝑚+1 􏿳 EM modes. (11.30)

Here, [...] denotes the integer part. In this specific example, 􏿯Δ𝜈FWHM0Δ𝜈𝑚,𝑚+1 􏿲 = 􏿯 1.7 GHz375 MHz􏿲 = 􏿮4.533􏿱 = 4.
Therefore, we see that there are several longitudinal modes inside the linewidth (there are also transverse
modes, see Section 11.7). The width of each longitudinal (and transverse, as well, , see Section 11.7) EM
mode is of the order of Δ𝜈FWHM𝑚 ≈ 1 με 10 MHz and is related to the loss rate of the cavity through the
mirrors, 𝑡0 [3].

11.4 Finding level populations and EM radiation density in the steady state. Critical pumping. Pop-
ulation inversion.

In the steady state, we have 𝑑𝑁1𝑑𝑡 = 𝑑𝑁2𝑑𝑡 = 0 = 𝑑𝜌𝑑𝑡 . (11.31)

Thus, Eqs. 11.18 and 11.20 become

−𝑁1𝑡1 + 𝐵𝜌(𝑁2 − 𝑁1) + 𝐴𝑁2 = 0 (11.32)

𝑅 + 𝐵𝜌(𝑁1 − 𝑁2) − 𝐴𝑁2 = 0 (11.33)

while, if we ignore𝐴′ as much smaller than𝐴, then Eq. 11.22 becomes

− 𝜌𝑡0 + 𝐵𝜌(𝑁2 − 𝑁1) + ℎ𝜈𝑉 𝐹(𝜈) = 0 ⇔ (11.34)
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𝐵𝜌(𝑁2 − 𝑁1) = 𝜌𝑡0 ℎ𝜈𝑉 𝐹(𝜈) (11.35)

Adding Eqs. 11.32 and 11.33 by parts, we obtain𝑅 = 𝑁1𝑡1 ⇔𝑁1 = 𝑡1𝑅 (11.36)

Adding Eqs. 11.33 and 11.35by parts, we obtain

𝑅 − 𝐴𝑁2 = 𝜌𝑡0 ℎ𝜈𝑉 𝐹(𝜈) ⇔ (11.37)

𝑁2 = 𝑅𝐴 − 𝜌𝐴𝑡0 ℎ𝜈𝑉 𝐹(𝜈) (11.38)

There are two cases for 𝜌, either (C1) 𝜌 > 0 or (C2) 𝜌 = 0.
✿✿✿
Let

✿✿✿✿
the

✿✿✿✿
case

✿✿✿
be

✿✿✿✿✿
(C1),

✿✿✿✿
i.e.,

✿✿✿✿✿✿
𝜌 > 0. Then, Eq. 11.37 yields 𝑅 > 𝐴𝑁2. Given Eq. 11.36 and the definition

(Eq. 11.7) of the lifetime of level (2)𝐴 = 𝐴21 = 1𝑡2 , we obtain 𝑁1𝑡1 > 𝑁2𝑡2 ⇔𝑡2𝑁2 > 𝑡1𝑁1 (11.39)

Now, from Eqs. 11.35, 11.36, 11.38, since 𝜌 ≠ 0, it follows that

𝐵 ϴϵϵϵϵϵ϶𝑅𝐴 − 𝜌𝐴𝑡0 ℎ𝜈𝑉 𝐹(𝜈)
ϷϸϸϸϸϸϹ − 𝐵𝑡1𝑅 = 1𝑡0 ℎ𝜈𝑉 𝐹(𝜈) ⇔ (11.40)

𝜌 = 𝑅𝑡0 ℎ𝜈𝑉 𝐹(𝜈)𝑡2 − 𝑡1𝑡2 − 1𝐵𝑡2 (11.41)

Let us note that if 𝑡2 < 𝑡1, then from the above equation it follows that 𝜌 < 0. Thus, it must hold that𝑡2 > 𝑡1 . (11.42)

In other words, the lifetime of the upper level (2) must be larger than the lifetime of the lower level (1).
However, in the case we are currently examining it holds that 𝜌 > 0, hence

𝑅 > 1𝐵𝑡0(𝑡2 − 𝑡1)ℎ𝜈𝑉 𝐹(𝜈) ∶= 𝑅𝑐 (11.43)

The quantity 𝑅𝑐 is called critical pumping. Apparently, for 𝑅𝑐 > 0 ⇔ Eq. 11.42. Thus, 𝜌 can be written
as 𝜌 = 𝐴𝑅𝐵𝑅𝑐 − 𝐴𝐵 (11.44)

From Eqs. 11.38, 11.43, 11.44, it occurs that𝑁2 = 𝑡1𝑅 + (𝑡2 − 𝑡1)𝑅𝑐 (11.45)
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✿✿✿
Let

✿✿✿
the

✿✿✿✿✿
case

✿✿
be

✿✿✿✿✿✿
(C2),

✿✿✿
i.e.,

✿✿✿✿✿✿
𝜌 = 0. Then, Eq. 11.37 yields𝑅 = 𝐴𝑁2. Therefore,𝑁2 = 𝑡2𝑅 (11.46)

To wrap this up, in the steady state, the solutions to Eqs. 11.32, 11.33, 11.35 are𝑁1 = 𝑡1𝑅, ∀ 𝑅 (11.47)

𝑁2 = 􏿼𝑡2𝑅, ∀ 𝑅 ≤ 𝑅𝑐𝑡1𝑅 + (𝑡2 − 𝑡1)𝑅𝑐, ∀ 𝑅 ≥ 𝑅𝑐 (11.48)

𝜌 = ЀЃЃЃЁЃЃЃЂ0, ∀ 𝑅 ≤ 𝑅𝑐𝐴𝑅𝐵𝑅𝑐 − 𝐴𝐵 = 1𝐵𝑡2𝑅𝑐𝑅 − 1𝐵𝑡2 , ∀ 𝑅 ≥ 𝑅𝑐 (11.49)

Next, let us make some remarks.

✿✿✿✿✿✿✿
Remark

✿✿
1. The population inversion is defined asΔ𝑁 ∶= 𝑁2 − 𝑁1 , (11.50)

hence, from Eqs. 11.47 and 11.48 we conclude that

Δ𝑁 = 􏿼(𝑡2 − 𝑡1)𝑅, ∀ 𝑅 ≤ 𝑅𝑐(𝑡2 − 𝑡1)𝑅𝑐, ∀ 𝑅 ≥ 𝑅𝑐 (11.51)

This way it becomes apparent that Δ𝑁 > 0 ⇔ 𝑡2 > 𝑡1, i.e., in order for population inversion to occur,
Eq. 11.42 must hold.

In Figure 11.5 a representation of Eqs. Εξ. 11.47, 11.48, 11.49, 11.51 is presented, which was realized
using theMatlab programN1N2DNrho.m, which can be found in Appendix C.The parameter values are
here purposely dimensionless and do not correspond to actual values. The reader may play withe these
parameter values to obtain an understanding of Eqs. 11.47, 11.48, 11.49, 11.51.

✿✿✿✿✿✿✿
Remark

✿✿
2. According to Eq. 11.43, the critical pumping is defined as

𝑅𝑐 ∶= 1𝐵𝑡0(𝑡2 − 𝑡1)ℎ𝜈𝑉 𝐹(𝜈) .
Thus, increasing 𝑡0 implies a decrease in 𝑅𝑐, which is reasonable, since, if we increase 𝑡0, this means that
the losses, i.e. 𝜌/𝑡0, are mitigated. Additionally, we remind that in order to get 𝑅𝑐 > 0, Eq. 11.42 must
hold, that is 𝑡2 > 𝑡1. Furthermore, if 𝑡2 >> 𝑡1, a very small𝑅𝑐 is obtained.
✿✿✿✿✿✿✿
Remark

✿✿
3. The relationship 𝐴𝐵 = 8𝜋ℎ𝜈3𝑐3 ⇔ 1𝐵 = 8𝜋ℎ𝑡2𝜈3𝑐3 , (11.52)

thus, Eq. 11.43 becomes 𝑅𝑐 = 8𝜋ℎ𝑡2𝜈3𝑐3𝑡0(𝑡2 − 𝑡1)ℎ𝜈𝑉 𝐹(𝜈) ∝ 𝜈2. (11.53)
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Figure 11.5: A representation of Eqs. 11.47, 11.48, 11.49, 11.51, realized using the Matlab program
N1N2DNrho.m, which can be found in Appendix C.

Thus, e.g.,𝑅𝑐(microwaves) < 𝑅𝑐(visible), i.e., it is easier to create a coherent beam in themicrowaves than
in the visible.

✿✿✿✿✿✿✿
Remark

✿✿
4. All the above make sense only if the transition from the upper level (2) to the lower level

(1) with photon emission is allowed. In other words, as we discussed in Chapter 7, it must hold that𝑟⃗12 ∶= ∫ 𝑑𝑉Φ∗1(⃗𝑟) 𝑟⃗ Φ2(⃗𝑟) ≠ 0, i.e.,𝒫12 ∶= ∫ 𝑑𝑉Φ∗1(⃗𝑟) (−𝑒)⃗𝑟 Φ2(⃗𝑟) ≠ 0.
Aiming to solve the rate equations numerically in the general case, we will make, initially, Eqs. 11.47,

11.48, 11.49, 11.51 dimensionless.

• First of all, let us complete the changes of variables we performed in Eqs. 11.26 and 11.27, i.e.,𝑛𝑖 = 𝑁𝑖𝑉 , (11.54)

and 𝑟 = 𝑅𝑉 , (11.55)

by defining 𝑟𝑐 = 𝑅𝑐𝑉 . (11.56)

Then, Eqs. 11.47, 11.48, 11.49, 11.51 become𝑛1 = 𝑡1𝑟, ∀ 𝑟 (11.57)

𝑛2 = 􏿼𝑡2𝑟, ∀ 𝑟 ≤ 𝑟𝑐𝑡1𝑟 + (𝑡2 − 𝑡1)𝑟𝑐, ∀ 𝑟 ≥ 𝑟𝑐 (11.58)

𝜌 = ЀЃЃЃЁЃЃЃЂ0, ∀ 𝑟 ≤ 𝑟𝑐𝐴𝑟𝐵𝑟𝑐 − 𝐴𝐵 = 1𝐵𝑡2𝑟𝑐 𝑟 − 1𝐵𝑡2 , ∀ 𝑟 ≥ 𝑟𝑐 (11.59)
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Δ𝑛 ∶= 𝑛2 − 𝑛1 = 􏿼(𝑡2 − 𝑡1)𝑟, ∀ 𝑟 ≤ 𝑟𝑐(𝑡2 − 𝑡1)𝑟𝑐, ∀ 𝑟 ≥ 𝑟𝑐 (11.60)

• Next, we make Eqs. 11.57, 11.58, 11.59, 11.60 dimensionless. To this end, we define the following
quantities: 𝑛0 ∶= 𝑡2𝑟𝑐 (11.61)

with units [𝑛0] = s
sm3 = 1/m3. 𝜏 ∶= 𝑡𝑡2 . (11.62)

In other words, we are counting time in units of the upper level’s (2) lifetime, 𝑡2, so that 𝜏 is dimen-
sionless, [𝜏] = 1. 𝜏0 ∶= 𝑡0𝑡2 (11.63)

and 𝜏1 ∶= 𝑡1𝑡2 (11.64)

which are dimensionless, as well ([𝜏0] = [𝜏1] = 1). We continue by defining𝑟𝑁 ∶= 𝑟𝑟𝑐 , (11.65)

which is the “dimensionless pumping”, [𝑟𝑁] = 1. Moreover,𝜚 ∶= 𝐵𝑡2𝜌, (11.66)

is the “dimensionless EM radiation density”, [𝜚] = 􏿯m3
Js2 s Js

m3 􏿲 = 1. We also define the “dimension-
less populations for the levels (1) and (2)” as𝜈1 ∶= 𝑛1𝑛0 , (11.67)

𝜈2 ∶= 𝑛2𝑛0 , (11.68)

since [𝜈1] = [𝑡1𝑟][𝑛0] = sm3
sm3 = 1 and, e.g., [𝜈2] = [𝑡2𝑟][𝑛0] = sm3

sm3 = 1.
Based on the above definitions, Eqs. 11.57, 11.58, 11.59, 11.60 become𝜈1 = 𝜏1𝑟𝑁, ∀ 𝑟𝑁 (11.69)

𝜈2 = 􏿼𝑟𝑁, ∀ 𝑟𝑁 ≤ 1𝜏1𝑟𝑁 + (1 − 𝜏1), ∀ 𝑟𝑁 ≥ 1 (11.70)

𝜚 = 􏿼0, ∀ 𝑟𝑁 ≤ 1𝑟𝑁 − 1, ∀ 𝑟𝑁 ≥ 1 (11.71)

Δ𝜈 ∶= 𝜈2 − 𝜈1 = 􏿼(1 − 𝜏1)𝑟𝑁, ∀ 𝑟𝑁 ≤ 1(1 − 𝜏1), ∀ 𝑟𝑁 ≥ 1 (11.72)

✿✿✿✿✿✿✿✿
Remarks
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• In Eqs. 11.69, 11.70, 11.71, 11.72, all quantities are dimensionless.

• 𝜈1, 𝜈2,Δ𝜈 depend only on 𝜏1 and 𝑟𝑁 .

• 𝜚 depends only on 𝑟𝑁 .
For example, for 𝜏1 = 0.5 and 𝑟𝑁 = 1.5, it occurs that𝜈1 = 0.5 ⋅ 1.5 = 0.75𝜈2 = 0.5 ⋅ 1.5 + (1 − 0.5) = 0.75 + 0.5 = 1.25Δ𝜈 = 0.5𝜚 = 1.5 − 1 = 0.5,
while, for 𝜏1 = 0.5 and 𝑟𝑁 = 0.5, it occurs that𝜈1 = 0.5 ⋅ 0.5 = 0.25𝜈2 = 0.5Δ𝜈 = 0.25𝜚 = 0.

11.5 Numerical solution of rate equations in general case, i.e., at every instance.

We have already shown that the rate equations, i.e., Eqs. 11.18, 11.20, 11.22, can be written in the form of
Eqs. 11.23, 11.24, 11.25 𝑑𝑛1𝑑𝑡 = −𝑛1𝑡1 + 𝐵𝜌(𝑛2 − 𝑛1) + 𝐴𝑛2𝑑𝑛2𝑑𝑡 = 𝑟 + 𝐵𝜌(𝑛1 − 𝑛2) − 𝐴𝑛2𝑑𝜌𝑑𝑡 = − 𝜌𝑡0 + 􏿮𝐵𝜌(𝑛2 − 𝑛1) + 𝐴′𝑛2􏿱 ℎ𝜈𝐹(𝜈)
where 𝑛𝑖 = 𝑁𝑖𝑉 ,

𝑟 = 𝑅𝑉 ,
while, above, we also defined 𝑟𝑐 = 𝑅𝑐𝑉 .

Let us nowmake the rate equations dimensionless, using, as we did above, the definitions of Eqs. 11.61,
11.62, 11.63, 11.64, 11.65, 11.66, 11.67, 11.68. This way, the dimensionless Eqs. Εξ. 11.73, 11.74, 11.75
occur. For the latter, we also used Eq. 11.43, together with Eq. 11.56.𝑑𝜈1𝑑𝜏 = −𝜈1𝜏1 + 𝜚(𝜈2 − 𝜈1) + 𝜈2 (11.73)

𝑑𝜈2𝑑𝜏 = 𝑟𝑁 + 𝜚(𝜈1 − 𝜈2) − 𝜈2 (11.74)

𝑑𝜚𝑑𝜏 = − 𝜚𝜏0 + 􏿰𝜚(𝜈2 − 𝜈1) + 𝐴′𝐴 𝜈2􏿳 1𝜏0(1 − 𝜏1) (11.75)

✿✿✿✿✿✿✿✿
Remarks
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• In Eqs. 11.73, 11.74, 11.75, all quantities are dimensionless.

• The solution of the differential equations 11.73, 11.74, 11.75 to obtain 𝜈1, 𝜈2, 𝜚 , depends only on𝜏0, 𝜏1, 𝑟𝑁 and 𝐴′𝐴 .

• In the following Section we will solve them on Matlab using the programs laser.m and calllaser-
commands.m.

11.6 Simulation lab: practice on numerical solution of rate equations.

Eqs. 11.73, 11.74, 11.75, can be numerically solved with different ways and software. In this Section we
solve themusingMatlab, with the help of the two files presented below, inCodes 11.1 and 11.2.The result
of running the program is presented in Figure 11.6.

Code 11.1: Το αρχείο matlab calllasercommands.m.
1 global tau1 tau0 arn AptoA
2 x0=[0 0 0];
3 tspan=[0,500];
4 [t,x]=ode45(@laser,tspan,x0)
5 plot(t,x)
6

7 %figure;
8 %plot(t,x(1),'k',t,x(2),'r',t,x(3),'g')
9 xlabel('\tau','FontSize',16)

10 ylabel('\nu_1, \nu_2, \rho','FontSize',16)
11 set(gca,'fontsize',16)
12 title('\nu_1, \nu_2, \rho vs. \tau','FontSize',16)
13 text(100,1.10,'\nu_1','Color','b','FontSize',16)
14 text(150,1.10,'\nu_2','Color','r','FontSize',16)
15 text(200,1.10,'\rho','Color',[1,0.5,0],'FontSize',16)
16 annotation('textbox',...
17 [0.6 0.54 0.25 0.22],...
18 'String',{['\tau_1 = ' num2str(tau1)],...
19 ['\tau_0 = ' num2str(tau0)], ['r_N = ' num2str(

arn)],...
20 ['AptoA = ' num2str(AptoA)]},...
21 'FontSize',12,...
22 'FontName','Arial',...
23 'LineStyle','‐‐',...
24 'EdgeColor',[1 1 0],...
25 'LineWidth',2,...
26 'BackgroundColor',[0.9 0.9 0.9],...
27 'Color',[0.84 0.16 0]);

Code 11.2: Το αρχείο matlab laser.m.
1 function xprime = laser(t,x);
2 global tau1 tau0 arn AptoA
3 %LASER: Computes the derivatives involved in solving the

laser equations.
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4 % nu1=x(1), nu2=x(2), rho=x(3)
5 tau1=0.5;
6 tau0=10;
7 arn=1.5; % normalized pumping
8 AptoA=10^(‐9);
9 tautau=tau0*(1‐tau1);

10 xprime=[x(2)+x(3)*(x(2)‐x(1))‐x(1)/tau1; arn+x(3)*(x(1)‐x
(2))‐x(2);‐x(3)/tau0+(AptoA*x(2)+x(3)*(x(2)‐x(1)))*(1/
tautau)];

11

12 % Observe that x is stored as x(1), y is stored as x(2),
and z as stored as x(3).

13 % Additionally, xprime is a column vector,
14 % as is evident from the semicolon following the first

appearance of x(2).
15 % If in the Command Window, we type
16 % >> x0=[‐8 8 27];
17 % >> tspan=[0,20];
18 % >> [t,x]=ode45(@lorenz,tspan,x0)

Figure 11.6: Graphical representation of 𝜈1, 𝜈2, 𝜚 as functions of 𝜏, as it is obtained by the Matlab code.
Note that the notation 𝜌 in the panel is in fact the dimensionless 𝜚 of Eq. 11.75.

As an example, let us suppose that we want to determine the effect of changing 𝑟𝑁 on the functions of𝜈1, 𝜈2, 𝜚 versus 𝜏. Let us keep 𝜏0 = 10, 𝐴′𝐴 = 10−9 and 𝜏1 = 0.5 constant, while we change 𝑟𝑁 setting the
values 0.5, 1.5, 2.0, 2.5. The results of the solution to our rate equations using our programs is presented
in Figure 11.7. We initially observe that when the values of 𝜈1, 𝜈2, 𝜚 have finally stabilized, which means
that we have reached the steady state, they coincide with the predictions of Eqs. 11.69, 11.70, 11.71. Fur-
thermore, we should point out the reason why there is a difference in the time it takes for 𝜚 to become
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Figure 11.7:The effect of changing 𝑟𝑁 on the functions of 𝜈1, 𝜈2, 𝜚 versus 𝜏. We keep 𝜏0 = 10, 𝐴′𝐴 = 10−9
and 𝜏1 = 0.5 constant, while we change 𝑟𝑁 setting the values 0.5, 1.5, 2.0, 2.5. Note that the notation 𝜌
in the panels is in fact the dimensionless 𝜚 of Eq. 11.75.

perceivable. The reason is that when we increase the dimensionless pumping 𝑟𝑁 , the term 𝜈2 is also in-
creased due to Eq. 11.74, thus, in Eq. 11.75, the term 𝐴′𝐴 𝜈2, which is the only one that leads to 𝑑𝜚𝑑𝜏 > 0
when 𝜚 is negligible, increases as well.

11.7 Standing EM waves inside a 3D cavity: Longitudinal modes and transverse modes.

Let us inspect standing electromagnetic waves in a 3D cavity more carefully. There are the so-called lon-
gitudinal and the so-called transversemodes. Let us beginwith some general nomenclature. EMmodes
without an electric field in the direction of propagation are called TE (Transverse Electric). EM modes
without a magnetic field in the direction of propagation are called TM (Transverse Magnetic). Finally,
EMmodeswithout an electric andamagnetic field in thedirectionof propagation are calledTEM (Trans-
verse ElectroMagnetic). Here, we will focus on TEM, considering the longest dimension of the cavity
as the direction of propagation, i.e., using the choice we have made so far, the dimension parallel to the𝑧-axis.

The longitudinalmodes appeared when we solved the essentially one-dimensional (1D) problem, by
puttingmirrors in positions 𝑧 = 0 and 𝑧 = 𝐿, and assuming that the lateral component of 𝐸⃗ becomes zero
on the mirrors (just like the perpendicular component of 𝐵⃗). So, we found that (Eq. 8.45)𝑘𝑚 = 𝑚𝜋𝐿 ,𝑚 ∈ 𝒩 ∗.
We also found that (Eq. 8.50) 𝜔𝑚 = 𝑚𝜋𝑐𝐿 ,𝑚 ∈ 𝒩 ∗.
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Thus (Eq. 11.28), 𝜈𝑚 = 𝑚𝑐2𝐿 ,𝑚 ∈ 𝒩 ∗,
and 𝐿 = 𝑚𝜆𝑚2 , (11.76)

as expected for standingwaves between twomirrors in distance𝐿 (length). FromEq. 11.28, we concluded
(Eq. 11.29) that the frequency distance of the longitudinal EM modes is

Δ𝜈𝑚,𝑚+1 = 𝑐2𝐿.
In this 1D problem, the solutions contain (Eq. 8.48)

𝑍𝑚(𝑧) = √2𝐿 sin 􏿵𝑚𝜋𝑧𝐿 􏿸,
𝑚 = 1, 2, 3, .... Thus, the number of nodes, i.e., where𝑍𝑚(𝑧) is constantly zero, is𝑚′ = 𝑚 − 1. We could
also solve the following 1Dproblems: in height (ℎ)with 𝑝 = 1, 2, 3, ... and 𝑝′ = 𝑝−1 = number of nodes
in the 𝑥-axis, or in width (𝑤) with 𝑞 = 1, 2, 3, ... and 𝑞′ = 𝑞 − 1 = number of nodes in the 𝑦-axis.

However, a cavity is three-dimensional (3D), e.g. rectangular parallelepiped or cylindrical, as shown in
Figure 11.8. In a rectangular parallelepiped cavity, commonly 𝐿 >> ℎ,𝑤, where 𝐿 = length, ℎ = height,

Figure 11.8: A rectangular parallelepiped and a cylindrical cavity.

and 𝑤 = width. In a cylindrical cavity, commonly 𝐿 >> 𝑟, 𝐿 = length, and 𝑟 = radius. The transverse
modes occur during solving the 3D problem and depend on the geometry of the cavity, e.g. whether it is
rectangular parallelepiped or cylindrical. This subject has been discussed in Section 2.10. Let us assume
that we examine an empty rectangular parallelepiped cavity with perfectly conducting walls and edges
with height ℎ = 𝑎𝑥, width𝑤 = 𝑎𝑦, and length𝐿 = 𝑎𝑧, along the 𝑥, 𝑦 and 𝑧 axes, respectively. Additionally,
let us assume that the cavity lies on the first octant of theCartesian coordinate system𝑂𝑥𝑦𝑧, with a vertex
on𝑂. For the electric field, Eqs. 2.66, 2.67, 2.68 occur, i.e.,

𝐸𝑥 = 𝐸𝑥0 cos(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑦 = 0 and 𝑧 = 0 (11.77)𝐸𝑦 = 𝐸𝑦0 sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑥 = 0 and 𝑧 = 0 (11.78)𝐸𝑧 = 𝐸𝑧0 sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑥 = 0 and 𝑦 = 0 (11.79)
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For the magnetic field, Eqs. 2.72, 2.73, 2.74 occur, i.e.,

𝐵𝑥 = 𝑖𝜔 􏿵𝐸𝑦0𝑘𝑧 − 𝐸𝑧0𝑘𝑦􏿸 sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 (11.80)

𝐵𝑦 = 𝑖𝜔 􏿵𝐸𝑧0𝑘𝑥 − 𝐸𝑥0𝑘𝑧􏿸 cos(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 (11.81)

𝐵𝑧 = 𝑖𝜔 􏿵𝐸𝑥0𝑘𝑦 − 𝐸𝑦0𝑘𝑥􏿸 cos(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 (11.82)

Eq. 2.69 holds, as well:

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 = 𝜔2𝑐2
So does Eq. 2.70 𝑘𝑥 = 𝑚𝑥𝜋𝑎𝑥 , 𝑘𝑦 = 𝑚𝑦𝜋𝑎𝑦 , 𝑘𝑧 = 𝑚𝑧𝜋𝑎𝑧 ,
where 𝑚𝑥,𝑚𝑦,𝑚𝑧 ∈ ℤ. We can alternatively consider 𝑚𝑥,𝑚𝑦,𝑚𝑧 ∈ ℕ, absorbing the sign change in𝐸𝑥0, 𝐸𝑦0, 𝐸𝑧0, i.e., allowing 𝐸𝑥0, 𝐸𝑦0, 𝐸𝑧0 to take positive or negative values, such that they agree with the
boundary conditions.𝑚𝑥 = 𝑝,𝑚𝑦 = 𝑞,𝑚𝑧 = 𝑚, which are calledmode numbers, are thus independent
non-negative integers which obey to the constraint that no more than one of them can simultaneously
become zero [4].This constraint occurs since if twoor three of𝑚𝑥,𝑚𝑦,𝑚𝑧 become zero, then theEMfield
in the cavity becomes zero as well, according to Eqs. 2.66, 2.67, 2.68 and Eqs. 2.72, 2.73, 2.74. Combining
the above, we can write that the angular frequency and the frequency obey to the rule𝜔𝑝𝑞𝑚 = 2𝜋𝜈𝑝𝑞𝑚 = 𝑘𝑝𝑞𝑚𝑐, (11.83)

where𝑘𝑝𝑞𝑚 is the norm of the vector with components 𝑘𝑥, 𝑘𝑦, 𝑘𝑧.
For a rectangular parallelepiped cavity, we have shown Eq. 2.76

𝜔𝑚𝑥,𝑚𝑦,𝑚𝑧 = 𝜋𝑐√􏿵𝑚𝑥𝑎𝑥 􏿸2 + 􏿵𝑚𝑦𝑎𝑦 􏿸2 + 􏿵𝑚𝑧𝑎𝑧 􏿸2, hence

𝜈𝑚𝑥,𝑚𝑦,𝑚𝑧 = 𝑐2√􏿵𝑚𝑥𝑎𝑥 􏿸2 + 􏿵𝑚𝑦𝑎𝑦 􏿸2 + 􏿵𝑚𝑧𝑎𝑧 􏿸2
or

𝜔𝑝𝑞𝑚 = 𝜋𝑐√􏿵𝑝ℎ􏿸2 + 􏿵 𝑞𝑤􏿸2 + 􏿵𝑚𝐿 􏿸2, hence

𝜈𝑝𝑞𝑚 = 𝑐2√􏿵𝑝ℎ􏿸2 + 􏿵 𝑞𝑤􏿸2 + 􏿵𝑚𝐿 􏿸2
If, however, we have a triagonal. cavity, with ℎ = 𝑤 = 𝑎, then

𝜔𝑝𝑞𝑚 = 𝜋𝑐√𝑝2 + 𝑞2𝑎2 + 𝑚2𝐿2 ,𝜈𝑝𝑞𝑚 = 𝑐2√𝑝2 + 𝑞2𝑎2 + 𝑚2𝐿2 .
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while, for a cubic cavity, with ℎ = 𝑤 = 𝐿 = 𝑎,
𝜔𝑝𝑞𝑚 = 𝜋𝑐𝑎 √𝑝2 + 𝑞2 + 𝑚2,𝜈𝑝𝑞𝑚 = 𝑐2𝑎√𝑝2 + 𝑞2 + 𝑚2.

From Eqs. 2.66,2.67,2.68, 2.72,2.73,2.74, we obtain Table 11.1 (Table 2.2)

Table 11.1: Modes for a cubic cavity. The numbers of modes𝑚𝑥 = 𝑝,𝑚𝑦 = 𝑞,𝑚𝑧 = 𝑚 are independent,
non-negative integers, subject to the constraint that no more than one of them can become zero simulta-
neously, or else the EM field in the cavity becomes zero.𝑚𝑥 = 𝑝 𝑚𝑦 = 𝑞 𝑚𝑧 = 𝑚 2𝑎/𝑐𝜈 EM field

0 0 0 0 0
0 0 1 1 0
0 1 1 √2 ≠ 0
1 1 1 √3 ≠ 0
2 0 0 2 0
2 1 0 √5 ≠ 0

For the tetragonal cavity,

𝜈𝑝𝑞𝑚 = 𝑐2√𝑝2 + 𝑞2𝑎2 + 𝑚2𝐿2 == 𝑐2 𝑚𝐿√1 + 𝐿2𝑎2 𝑝2 + 𝑞2𝑚2 = 𝑚𝑐2𝐿√1 + 𝑥, (11.84)

where 𝑥 = 𝐿2𝑎2 𝑝2 + 𝑞2𝑚2 . (11.85)

This 𝑥 is very small in practice. For example, suppose a He-Ne LASER, with central wavelength 𝜆0 ≈
632.8 nm, 𝜈0 ≈ 0.474 PHz, and 𝐿 = 0.4 m. Let us try to estimate the order of magnitude of𝑚. If we had
only longitudinal modes (1D problem),𝜔𝑚 = 𝑚𝜋𝑐𝐿 ⇒ 𝜈𝑚 = 𝑚𝑐2𝐿 ∼ 𝜈0 = 𝑐𝜆0 ⇒ 𝑚 ∼ 2𝐿𝜆0 = 0.8 m632.8 nm

⇒𝑚 ≈ 1.264 × 106, hence𝑚2 ≈ 1.6 × 1012. For 𝑎 ≈ 1mm, (𝐿/𝑎)2 ≈ 160000, for 𝑎 ≈ 2mm, (𝐿/𝑎)2 ≈ 40000,
for 𝑎 ≈ 4 mm, (𝐿/𝑎)2 ≈ 10000, for 𝑎 ≈ 10 mm, (𝐿/𝑎)2 ≈ 1600. Thus, for small 𝑝, 𝑞 ≈ 0, 1, 2, . . . , 𝑥 is small,
so we can get, e.g., a Taylor expansion

√1 + 𝑥 ≈ 1 + 𝑥2 − 𝑥28 +⋯ ≈ 1 + 𝑥2, (11.86)

which yields 𝜈𝑝𝑞𝑚 ≈ 𝑚𝑐2𝐿 + 𝑐𝐿4𝑎2 𝑝2 + 𝑞2𝑚 . (11.87)

Thus 𝜈00𝑚 ≈ 𝑚𝑐2𝐿 = 𝜈𝑚, (11.88)

which are the frequencies of the longitudinalmodes for the 1D problem (Eq. 11.28). Of course, in the 3D
problem, if two of the numbers of modes become zero, the EM field in the cavity becomes zero, as well.
The modes with 𝑝 ≠ 0 or 𝑞 ≠ 0 are called transverse modes. Thus, the frequency distance between two
consecutive transverse modes, e.g., by changing 𝑝 only for given 𝑞 and𝑚 is

Δ𝜈𝑝,𝑝+1 ≈ 𝑐𝐿4𝑎2 (𝑝 + 1)2 + 𝑞2𝑚 − 𝑐𝐿4𝑎2 𝑝2 + 𝑞2𝑚 = 𝑐𝐿4𝑎2 2𝑝 + 1𝑚 . (11.89)
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For example, for 𝐿 = 0.4 m and 𝑎 = 4 mm,Δ𝜈𝑝,𝑝+1 ≈ 1.5 (2𝑝 + 1)MHz, where we have estimated𝑚 ≈1.264× 106. Let us remember, for comparison, that for 𝐿 = 0.4m, the frequency distance of longitudinal
modes isΔ𝜈𝑚,𝑚+1 = 𝑐2𝐿 = 375MHz. For 𝑝 = 1, it occurs thatΔ𝜈𝑝,𝑝+1 ≈ 4.5MHz, hence the frequency
distance of the transverse modes is rather smaller than the frequency distance of the longitudinal modes.
Given this, the longitudinal and transverse modes in a rectangular parallelepiped cavity are qualitatively
depicted [5] in Figure 11.9. We also took into account that, for the same𝑚,𝑝 = 1, 𝑞 = 0 or 𝑝 = 0, 𝑞 = 1 ⇒ 𝑝2 + 𝑞2 = 1𝑝 = 1, 𝑞 = 1 ⇒ 𝑝2 + 𝑞2 = 2𝑝 = 2, 𝑞 = 0 or 𝑝 = 0, 𝑞 = 2 ⇒ 𝑝2 + 𝑞2 = 4𝑝 = 2, 𝑞 = 1 or 𝑝 = 1, 𝑞 = 2 ⇒ 𝑝2 + 𝑞2 = 5

Figure 11.9: Longitudinal and transverse modes 𝜈𝑝𝑞𝑚 in a rectangular parallelepiped cavity.

11.8 Shape of TEM00 and TEMp'q' of higher order in rectangular parallelepiped and cylindrical
cavities.

Usually, in nomenclature, the indices 𝑝′, 𝑞′ are used instead of 𝑝, 𝑞. These are defined as follows:
In a rectangular parallelepiped cavity, the indices in TEM𝑝′𝑞′ mean:𝑝′ = the number of nodes along the 𝑥-axis.𝑞′ = the number of nodes along the 𝑦-axis.

For example, TEM02means there there are no nodes along the 𝑥-axis and two nodes along the 𝑦-axis.The
EM radiation intensity of the mode ΤΕΜ𝑝′𝑞′ is, in Cartesian coordinates, [6]

𝐼𝑝′𝑞′(𝑥, 𝑦) = 𝐼0 Ϻϻϻϻϻϼ𝐻𝑝′
ϴϵϵϵϵ϶√2𝑥𝑤 ϷϸϸϸϸϹ 𝑒− 𝑥2𝑤2 ϽϾϾϾϾϿ2 Ϻϻϻϻϻϼ𝐻𝑞′

ϴϵϵϵϵ϶√2𝑦𝑤 ϷϸϸϸϸϹ 𝑒− 𝑦2𝑤2 ϽϾϾϾϾϿ2 (11.90)

On the left-hand side of Table 11.2, theHermite polynomials,𝐻𝑛(𝑥), involved in Eq. 11.90, are presented,
while𝑤 is the spot size FWHMof the fundamental TEM00mode.The shape of theTEMmode, as occurs
fromEq. 11.90 is presented in Figure 11.10, left. Higher ordermodes have larger spatial extent.Therefore,
by interposing an aperture the laser output we can prune thesemodes that havemore extent than desired.
Generally, the total form of the radiation intensity occurs as a superposition of all themodes in the cavity,
although it is often desired to operate solely with the fundamental mode.

In a cylindrical cavity, the indices in TEM𝑝′𝑞′ mean:𝑝′ = the number of radial nodes.
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Table 11.2: The first Hermite polynomials, which are related to the rectangular parallelepiped cavity, and
the first Laguerre polynomials, which are related to the cylindrical cavity.

Hermite polynomials Laguerre polynomials𝐻0(𝑥) = 1 𝐿0(𝑥) = 1𝐻1(𝑥) = 2𝑥 𝐿1(𝑥) = −𝑥 + 1𝐻2(𝑥) = 4𝑥2 − 2 𝐿2(𝑥) = 12(𝑥2 − 4𝑥 + 2)𝐻3(𝑥) = 8𝑥3 − 12𝑥 𝐿3(𝑥) = 16(−𝑥3 + 9𝑥2 − 18𝑥 + 6)𝐻4(𝑥) = 16𝑥4 − 48𝑥2 + 12 𝐿4(𝑥) = 124(𝑥4 − 16𝑥3 + 72𝑥2 − 96𝑥 + 24)… …

Figure 11.10: Left: Transverse ΤΕΜ𝑝′𝑞′ modes in a rectangular parallelepiped cavity [7]. Right: Trans-
verse ΤΕΜ𝑝′𝑞′ modes in a cylindrical cavity [8]. TEM00 is more concentrated close to the 𝑧-axis than
higher order ΤΕΜ𝑝′𝑞′ : as the values of the indices increase, the modes occupy a larger portion of the 𝑥𝑦-
plane.

𝑞′ = the number of nodes along half a periphery, i.e., in angular terms, within a𝜋 angle.
For example, TEM02 means there there are no radial nodes and two nodes along half a periphery, i.e.,
within a𝜋 angle. The EM radiation intensity of the mode ΤΕΜ𝑝′𝑞′ is, in polar coordinates (𝑟, 𝜑), [6]

𝐼𝑝′𝑞′(𝜌, 𝜑) = 𝐼0𝜌𝑞′ 􏿯𝐿𝑞′𝑝′(𝜌)􏿲2 cos2(𝑞′𝜑)𝑒−𝜌 (11.91)

where 𝜌 = 2𝑟2/𝑤2, 𝑤 is the spot size FWHM of the fundamental mode, TEM00, which coincides with
theTEM00 of the rectangular parallelepiped cavity, and𝐿𝑞′𝑝′ is the associatedLaguerre polynomial of order𝑝′ and index 𝑞′. On the right-hand side of Table 11.2, the Laguerre polynomials,

𝐿𝑛(𝑥) = 𝑒𝑥𝑛! 𝑑𝑛𝑑𝑥𝑛 (𝑒−𝑥𝑥𝑛) , (11.92)

are presented. These are used to construct the associated (or generalized) Laguerre polynomials, 𝐿𝑎𝑛(𝑥),
which are involved in Eq. 11.91. Specifically, the Laguerre polynomials are the special, 𝑎 = 0, case of the
associated (or generalized) Laguerre polynomials, that is,𝐿0𝑛(𝑥) = 𝐿𝑛(𝑥). (11.93)

𝐿𝑎𝑛(𝑥) = 𝑥−𝑎𝑒𝑥𝑛! 𝑑𝑛𝑑𝑥𝑛 (𝑒−𝑥𝑥𝑛+𝑎) . (11.94)

The shape of the TEM mode, as occurs from Eq. 11.91 is presented in Figure 11.10, right.
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In summary, the shape of the EM radiation intensity 𝐼, of the ΤΕΜ𝑝′𝑞′ in a rectangular parallelepiped
cavity (left) and in a cylindrical cavity (right) is presented in Figure 11.10. In Table 11.2, we present the
first Hermite polynomials, associated with the rectangular parallelepiped cavity (left), and the first La-
guerre polynomials, associated with the cylindrical cavity (right).

11.9 Laser types - indicative applications.

The first LASER that produced visible light was the Ruby LASER, constructed in 1960 [9]. Today, there
are really many types of LASER; most of these are used only for specialized research purposes. Their
wavelengths vary from the ultraviolet, to the visible, the near infrared, themid infrared, and the far infrared
[10].Wewill not go intomuch detail. As amatter of fact, this book focuses on quantumoptics and not on
the technical aspects of LASER, for which there is a vast literature in Greek, either translated or not [11,
12, 13, 14, 15, 16].Therefore, wewill not go into these subjects. In Table 11.3 themost important LASER
types are presented, together with some representative members of each type. They are mainly classified
with respect to the active medium and the pumping mechanism.

Today, LASER applications cover a very broad spectrum. Let us name some, indicatively: research
(pumping for other LASER, interferometry, LASER cooling, various spectroscopies, lithography, con-
focal microscopy, etc), medicine (surgery, dentistry, tissue ablation, kinda stone treatment, dermatol-
ogy, retinal phototherapy, etc), cosmetics (tattoo removal, wrinkle removal, etc), telecommunications,
holography,military, industry (soldering, cutting, automotive lighting, lithography, engraving, etc), ev-
eryday life (printers, writing and reading Blu-ray discs, DVDs,CDs etc, projectors, pointers, optical scan-
ners, detection of pollution, etc).

11.10 p-n junction LASER or diode LASER.

Most lasers are not tiny objects. For example, in He-Ne lasers, the length of the cavity is some dm and
its thickness is some mm. However, we use lasers in portable audio and video reproduction devices (e.g.,
DVDplayers), to read product prices in shopswith small barcode readers, in printers, in optical fiber com-
munications andmanymore daily use items.Those tiny lasers are usually laser diodes - they are also called𝑝 − 𝑛 junction lasers. These are devices similar to LEDs (light-emitting diodes), the tiny light indicators
used in various devices.The laser diodes were first constructed by Robert N.Hall in the 1960s [17].Their
tiny size and cheap price makes them the most widespread lasers today.

We have basically a bilayer semiconductor device, with one layer being a 𝑝-type semiconductor (with
excess holes) and the other one being a 𝑛-type semiconductor (with excess electrons). A common 𝑝 − 𝑛
diode conducts only in one direction, i.e., then the applied voltage has a forward bias.The inverse voltage
is called reverse bias; the diode does not conduct in this case. In a LED or a laser diode there is electron-
hole recombination, which takes place through the band gap and produces photons (phonons may par-
ticipate in the process, as well).Themost common semiconductors used in laser diodes are alloys such as
Al𝑥Ga1−𝑥As, In𝑥Ga1−𝑥As𝑦P1−𝑦. Depending on the size of the band gap, photons can have various visible
colors or even ultraviolet or infrared wavelengths.

In laser diodes, pumpingoccurs by forwardbias.Thenumber of impurities (donors) in the𝑛-type semi-
conductor and the number of impurities (acceptors) in the 𝑝-type semiconductor are large enough (of the
order of 1018cm−3) that the Fermi level of the 𝑛-type semiconductor, 𝐹𝑛 lies within the conduction band
and the Fermi level of the𝑝-type semiconductor lieswithin the valence band (Figure 11.12, top).Then the
two layers contact, the large hole concentration in the 𝑝-type semiconductor and the large concentration
of electron in the 𝑛-type semiconductor create flows from the side with large concentration to the side
with small concentration: electrons are injected in the 𝑝-type layer and holes are injected in the 𝑛-type
layer, hence, in the vicinity of the junction, the 𝑝-type layer is negatively charged and the 𝑛-type layer is
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Table 11.3: Types of LASER and some members of each type. In the first column the active media are
presented, and in the right column the wavelengths in nm.

Gas LASER pumping: electric discharge
He-Ne 543.5, 593.9, 611.8, 632.8, 1152.3, 1520, 3391.3

Ar 351, 363.8, 454.6, 457.9, 465.8, 476.5, 472.7, 488.0, 514.5, 528.7
Kr 416, 530.9, 568.2, 647.1, 676.4, 752.5, 799.3
N 337.1

CO2 9400, 10600
Chemical LASER pumping: chemical reaction

HF 2700 - 2900
DF 3600 - 4200
O, I 1315

Dye LASER pumping: other lasers or flashlamps
stilbene 390-435
coumarin 460-515
rhodamine 570-640

Metal vapor LASER pumping: electric discharge
HeCd 441.6, 325
HeHg 567, 615
HeSe red to UV
HeAg 224.3
Sr 430.5

Solid state LASER pumping: other lasers or flashlamps
Ruby 694.3

Nd:YAG 1064, 1320
NdCrYAG 1064, 1320
Er:YAG 2940

Yb 1030
Ho:YAG 2100

Semiconductor LASER pumping: voltage or light
GaN 400

InGaN 400-500
AlGaInP, AlGaAs 630-900

InGaAsP 1000-2100

positively charged; this causes thermodynamic equilibrium. Therefore, the Fermi levels coincide and the
is no longer electron or hole flow from the 𝑝-type layer to the 𝑛-type layer and vice versa.This means that
a potential energy barrier is created, of the order of 0.1 eV (Figure 11.12, middle). If an external voltage𝑉 is applied, then the Fermi levels are separated so thatΔ𝐹 = 𝐹𝑛 − 𝐹𝑝 = 𝑒𝑉. (11.95)

The operating voltage of a laser diode is small, of the order of𝑉, sinceΔ𝐹 is of the order of the semicon-
ductor’s band gap, 𝐸𝑔, which is close to eV. This is how population inversion is achieved in the vicinity of
the junction (orange arrow in Figure 11.12, bottom). This means that there are enough electrons in the
conduction band and enough holes in the valence band for lasing. Some of the electrons spontaneously
drop from the conduction band to the available states of the valence band; in other words, we have spon-
taneous emission. These electrons are not, of course, coherent. The have a random phase. However, they
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Figure 11.11: A laser diode device with two electrodes (+) and (−) in forward bias.The upper and lower
surfaces, which are normal to the plane of the figure, have dimensions of the order of mm2. The junction
region, i.e. the “medium” layer is of the order of 100 nm, while the sides are of the order of 10-100 𝜇m. In
other words, this device is small enough to be used in various small everyday devices.

force other electrons in the conduction band to drop to the valence band by emitting photons; in other
words, we have stimulated emission: emission of photons with the same energy, momentum, polariza-
tion, and phase. However, since these electrons do not drop from a level with small enough width (as it
is the case, e.g., in a He-Ne laser), but rather from the occupied energy region of the conduction band to
the empty energy region of the valence band, the emission line of the laser diode is broader than, e.g., the
one of the He-Ne laser, of the order of 100 times [3].

Photons are forced to be reflected in the narrow region of the contact between the 𝑝- and𝑛-type layers,
thus creating standing waves. Therefore, photons are traveling inside the junction for a time long enough
to achieve many stimulated emissions. Part of the amplified light comes out of a surface of the structure
that has been flattened out, while the rest surfaces remain rough so that light is confined. This flattened
surfacemust be exactly parallel to its opposite, for standingwaves to occur in the cavity.These two surfaces
may be also covered by mirrors or metallic coatings to amplify the generation of standing waves. In other
words, a LED device can emit a laser beam if it has a resonance cavity [3].

11.11 Quantum dot LASER.

Another type of semiconductor laser is the quantum dot laser (Figure 11.13). It is a device the active
medium of which is a collection of quantum dots (see Section 4.3). Due to the strong quantum confine-
ment of the carriers in quantum dots, their electronic structure is similar the one of atoms. Actually, as we
also mentioned in Section 4.3, this is the reason why quantum dots are also sometimes referred to as arti-
ficial atoms when they are single and as artificial molecules when they are coupled. Lasers constructed by
such active media display properties similar to gas lasers and are superior to other semiconductor lasers,
e.g., in terms of emission lines. Since the electronic structure of quantumdots is dependent on their size as
well as of the type of -usually- semiconducting alloys used [18, 19], the active region can be constructed
in a way such that the device can operate in several wavelengths, even in regions that were not possi-
ble for common semiconductor lasers. Quantum dot laser devices are used in commercial applications,
medicine, screens, spectroscopy, telecommunications, etc. Some years ago, a quantum dot laser for use in
optical telecommunication systems [20] in 10 Gbps = Giga bits per second, with operating wavelength
1.3 𝜇m and operating temperatures 20 - 70 𝑜C. Since then, this performance has been further improved.
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Figure 11.12:Operation principle of the 𝑝-𝑛 as a laser. Top: the 𝑝- and𝑛-type semiconductors, separately.
Middle: The structure without polarization, i.e., without external bias, in thermodynamic equilibrium.
Bottom: The structure with forward bias, an external voltage 𝑉. When the structure has been formed,
there are “three layers”, since there is also the junction region (where the bands appear inclined). During
forward bias, we have population inversion in the vicinity of the junction, which is denoted by an orange
arrow. This means that in this region there are many electrons that, as they drop from the conduction
band to the valence band through the band gap 𝐸𝑔, emit photons and are recombined with holes. These
photons, in turn, force stimulated emission to other electrons of the junction region.

11.12 Isolation techniques for the TEM00 and of higher order TEMp'q'.

In Figure 11.10, theTEM𝑝′𝑞′ were presented.Here, let us consider the case of a rectangular parallelepiped
cavity [7], which is presented again, for the facilitation of the readership, in Figure 11.14.We observe that
TEM00 mode is more concentrated close to the 𝑧-axis (centered at the point 𝑥 = 𝑦 = 0) than higher
order ΤΕΜ𝑝′𝑞′ : as the values of the indices increase, the modes occupy a larger portion of the 𝑥𝑦-plane.
The polarization of the light beam on the laser output depends on the mixture of polarizations of the
TEM𝑝′𝑞′ modes it contains [21].The polarization of the outgoing beam can be corrected using a window
positioned at Brewster’s angle, see, e.g., Sections 12.1 and 12.3. TEM𝑝′𝑞′ modes of higher order can be
pruned by inserting an aperture in the way of the outgoing beam.This aperture (“iris” = hole of adjustable
width) closes as much as it is needed so that higher order TEM𝑝′𝑞′ , which have a larger spatial extent than
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Figure 11.13:Thebody of a quantumdot laser device that transmits data in 25Gbps.Modified image from
the press conference by Fujitsu, 2010.

Figure 11.14: Transverse ΤΕΜ𝑝′𝑞′ modes in a rectangular parallelepiped cavity [7]. TEM00 is more con-
centrated close to the 𝑧-axis than higher order ΤΕΜ𝑝′𝑞′ : as the values of the indices increase, the modes
occupy a larger portion of the 𝑥𝑦-plane.
the hole width, are not allowed to pass. Thus, we can even isolate a single dot, i.e., TEM00 mode. On the
other hand, as the aperture width gets larger, higher order TEM𝑝′𝑞′ modes are also allowed to pass.

If the vertical thread is shifted a bit more, it will reach a position in which the field o 02 becomes zero.
Similarly, if the horizontal thread is shifted a bit more, it will reach a position in which the field o 20 be-
comes zero. This new position will allow 02 (or, similarly, 20) to survive, since in this new position it will
have zero intensity and thus will not have losses due to diffraction by the thin thread. On the other hand,
01 and 00 (or, similarly, 10 and 00)will be destroyed. TEM𝑝′𝑞′ modes of even higher order can be isolated
in a similar fashion.
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CHAPTER 12

VARIOUS

In this Chapter:
We lay down some useful properties and elements. We analyze Fresnel equations and explain what the
Brewster is and the total internal reflection.Wediscuss thepolarizedbeamemission.We refer to thePoynt-
ing vector.
Prerequisite knowledge: Basic knowledge of Electromagnetism.

12.1 Fresnel equations. Brewster angle.

We recall (Section 2.4) that theMaxwell’s equations in terms of total charge and current are, in differential
form and integral form,

differential form integral form∇⃗ ⋅ 𝐸⃗ = 𝜌𝜀0 ⇒ Φ𝐸,𝑆=𝜕𝑉 = 􏽤𝑆=𝜕𝑉𝐸⃗ ⋅ 𝑑a⃗ = 𝑞enclosed in𝑉𝜀0∇⃗ ⋅ 𝐵⃗ = 0 ⇒ Φ𝐵,𝑆=𝜕𝑉 = 􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 0
∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 ⇒ ℰEMF = 􏽤𝐿=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = −𝜕Φ𝐵,𝑆𝜕𝑡

∇⃗ × 𝐵⃗ = 𝜇0𝐽⃗ + 𝜇0𝜀0𝜕𝐸⃗𝜕𝑡 ⇒ 􏽤𝐿=𝜕𝑆𝐵⃗ ⋅ 𝑑ℓ⃗ = 𝜇0𝐼passing through 𝑆 + 𝜇0𝜀0𝜕Φ𝐸,𝑆𝜕𝑡
Creative Commons Attribution – Non Commercial – ShareAlike 4.0 International
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We moved from one formulation to the other using the Gauss’s theorem and the Stokes’ theorem

Gauss’s theorem 􏽤𝑆=𝜕𝑉Δ⃗ ⋅ 𝑑a⃗ = 􏾙𝑉 ∇⃗ ⋅ Δ⃗ 𝑑𝑉
Stokes’ theorem 􏽤𝐿=𝜕𝑆Δ⃗ ⋅ 𝑑ℓ⃗ = 􏾙𝑆 ∇⃗ × Δ⃗ ⋅ 𝑑a⃗

We also recall that vectors 𝐷⃗ and 𝐻⃗ are connectedwith vectors 𝐸⃗ and 𝐵⃗, respectively, through the relations𝐷⃗ = 𝜀0𝜀𝐸⃗, (12.1)𝐵⃗ = 𝜇0𝜇𝐻⃗. (12.2)

Let us assume (
✿✿✿✿✿✿✿✿✿✿✿
Assumption

✿✿
1) that 𝜀, 𝜇 are constant values and not tensors.

Additionally, the Maxwell’s equations in terms of free (𝑓) charge and current are, in differential form
and integral form,

differential form integral form∇⃗ ⋅ 𝐷⃗ = 𝜌𝑓 ⇒ 􏽤𝑆=𝜕𝑉𝐷⃗ ⋅ 𝑑a⃗ = 𝑞𝑓, enclosed in𝑉 (12.3)

∇⃗ ⋅ 𝐵⃗ = 0 ⇒ 􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 0 (12.4)

∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 ⇒ ℰEMF = 􏽤𝐿=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = −𝜕Φ𝐵,𝑆𝜕𝑡 (12.5)

∇⃗ × 𝐻⃗ = 𝐽⃗𝑓 + 𝜕𝐷⃗𝜕𝑡 ⇒ 􏽤𝐿=𝜕𝑆𝐻⃗ ⋅ 𝑑ℓ⃗ = 𝐼𝑓,passing through 𝑆 + 𝜕Φ𝐷,𝑆𝜕𝑡 (12.6)

In the absence of free charges and currents, these equations become∇⃗ ⋅ 𝐷⃗ = 0 􏽤𝑆=𝜕𝑉𝐷⃗ ⋅ 𝑑a⃗ = 0 (12.7)∇⃗ ⋅ 𝐵⃗ = 0 􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 0 (12.8)

∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 􏽤𝑅=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = −𝜕Φ𝐵,𝑆𝜕𝑡 (12.9)

∇⃗ × 𝐻⃗ = 𝜕𝐷⃗𝜕𝑡 􏽤𝑅=𝜕𝑆𝐻⃗ ⋅ 𝑑ℓ⃗ = 𝜕Φ𝐷,𝑆𝜕𝑡 (12.10)

In the case of an interface between two media, say 1 and 2, repeating the procedure we followed in
Section 2.5, i.e. applying the Gauss’s theorem in an elementary 𝑆 = 𝜕𝑉,

􏽤𝑆=𝜕𝑉𝐷⃗ ⋅ 𝑑a⃗ = 0 ⇒ ⋯⇒
𝐷1⟂ = 𝐷2⟂ (12.11)􏽤𝑆=𝜕𝑉𝐵⃗ ⋅ 𝑑a⃗ = 0 ⇒ ⋯⇒𝐵1⟂ = 𝐵2⟂ (12.12)
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𝐷1⟂,𝐷2⟂, 𝐵1⟂, 𝐵2⟂ are the algebraic values of the components of 𝐷⃗ or 𝐵⃗ that are normal to the interface,
on the side of medium 1 or 2. In other words, it occurs that𝐷⟂ and 𝐵⟂ are continuous on the interface.

Applying the Stokes’ theorem in an elementary 𝐿 = 𝜕𝑆
􏽤𝐿=𝜕𝑆𝐸⃗ ⋅ 𝑑ℓ⃗ = −𝜕Φ𝐵,𝑆𝜕𝑡 ⇒ ⋯⇒

𝐸1∥ = 𝐸2∥ (12.13)

􏽤𝐿=𝜕𝑆𝐻⃗ ⋅ 𝑑ℓ⃗ = 𝜕Φ𝐷,𝑆𝜕𝑡 ⇒ ⋯⇒
𝐻1∥ = 𝐻2∥ (12.14)𝐸1∥, 𝐸2∥,𝐻1∥,𝐻2∥ are the algebraic values of the components of 𝐸⃗ or 𝐻⃗ that are parallel to the interface,

on the side of medium 1 or 2. In other words, it occurs that 𝐸∥ and𝐻∥ are continuous on the interface.

Figure 12.1: Incidence of EMwave at an interface between twomedia 1 and 2. Plane of incidence 𝑞 is the
plane defined by the incident wave vector 𝑘⃗𝑖 and the normal to the interface, at the point of incidence, unit
vector 𝑛̂, that is here plane 𝑥𝑦. We observe the angles of incidence, reflection, refraction or transmission,𝜃𝑖, 𝜃𝑟, 𝜃𝑡, respectively, as well as the 𝑠 (perpendicular to 𝑞) and 𝑝 (belonging to 𝑞) components of the
incident, reflected, refracted or transmitted electric field 𝐸⃗𝑠𝑖, 𝐸⃗𝑝𝑖, 𝐸⃗𝑠𝑟, 𝐸⃗𝑝𝑟, 𝐸⃗𝑠𝑡, 𝐸⃗𝑝𝑡, respectively.

Let us now consider the incidence of an EM wave at an interface between two media, 1 and 2 (Fig-
ure12.1), in the absenceof free chargesor currents, so thatEqs. 12.7, 12.8, 12.9, 12.10, aswell asEqs. 12.11,
12.12, 12.13, 12.14 hold. Furthermore, let us denote by 𝑞 the plane of incidence, i.e. the plane defined
by the incident wavevector 𝑘⃗𝑖 and the normal to the interface, at the point of incidence, unit vector 𝑛̂,
that is here plane 𝑥𝑦. By the way, let us denote by 𝑘⃗𝑟 the reflected wavevector, and by 𝑘⃗𝑡 the transmitted
or refracted wavevector. The polarization of an EM wave incident to an interface is characterized by the
direction of 𝐸⃗ with respect to 𝑞. Specifically, the polarization is named s or p, after the German words
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senkrecht=perpendicular or parallel, respectively, depending on whether 𝐸⃗ is perpendicular or parallel to
the plane 𝑞. Schematically, if we identify the plane of incidence with the plane of this page, then,⊙ 𝐸⃗ 𝑠 polarization (𝐸⃗ ⟂ 𝑞) TE (transverse electric) polarization↗ 𝐸⃗ 𝑝 polarization (𝐸⃗ ∈ 𝑞) TM (transverse magnetic) polarization

Below, we will separately examine the incidence of EM wave in an interface between two materials for𝑠 or TE polarization and for 𝑝 or TM polarization. Before we move on, we recall that 𝐸⃗ × 𝐵⃗ ∥ 𝑘⃗. Also,
the index ⟂ denotes a field component perpendicular to the interface, while the index ∥ denotes a field
component parallel to the interface.

Figure 12.2: Left: TE or s polarization (𝐸⃗ ⟂ 𝑞). We observe 𝐸⃗𝑖, 𝐸⃗𝑟, 𝐸⃗𝑡, 𝐵⃗𝑖, 𝐵⃗𝑖⟂, 𝐵⃗𝑖∥, 𝐵⃗𝑟, 𝐵⃗𝑟⟂, 𝐵⃗𝑟∥,𝐵⃗𝑡, 𝐵⃗𝑡⟂, 𝐵⃗𝑡∥. Right: TM or p polarization (𝐸⃗ ∈ 𝑞). We observe 𝐵⃗𝑖, 𝐵⃗𝑟, 𝐵⃗𝑡, 𝐸⃗𝑖, 𝐸⃗𝑖⟂, 𝐸⃗𝑖∥, 𝐸⃗𝑟, 𝐸⃗𝑟⟂, 𝐸⃗𝑟∥,𝐸⃗𝑡, 𝐸⃗𝑡⟂, 𝐸⃗𝑡∥. The index ⟂ denotes a field component perpendicular to the interface, while the index ∥
denotes a field component parallel to the interface. Colored dots denote equal angles.

In the left panel of Figure 12.2, we present the TE or 𝑠 polarization, i.e. the situation in which 𝐸⃗ ⟂ 𝑞.
From Eq. 12.1, since 𝐸⃗ ⟂ 𝑞 ⇒ 𝐷⃗ ⟂ 𝑞. Then,

Continuity condition for𝐷⟂ (Eq. 12.11) ⇒ nothing (∄ such components for 𝑠 polarization)
Continuity condition for 𝐵⟂ (Eq. 12.12) ⇒ −𝐵𝑖 sin𝜃𝑖 − 𝐵𝑟 sin𝜃𝑟 = −𝐵𝑡 sin𝜃𝑡
Continuity condition for 𝐸∥ (Eq. 12.13) ⇒ 𝐸𝑟 + 𝐸𝑖 = 𝐸𝑡
Continuity condition for𝐻∥ (Eq. 12.14) ⇒ −𝐵𝑖 cos𝜃𝑖𝜇0𝜇1 + 𝐵𝑟 cos𝜃𝑟𝜇0𝜇1 = −𝐵𝑡 cos𝜃𝑡𝜇0𝜇2

In the right panel of Figure 12.2, we present theTMor𝑝polarization, i.e. the situation inwhich 𝐵⃗ ⟂ 𝑞.
Continuity condition for𝐷⟂ (Eq. 12.11) ⇒ 𝜀1(𝐸𝑖 sin𝜃𝑖 + 𝐸𝑟 sin𝜃𝑟) = 𝜀2𝐸𝑡 sin𝜃𝑡
Continuity condition for 𝐵⟂ (Eq. 12.12) ⇒ nothing (∄ such components for 𝑝 polarization)
Continuity condition for 𝐸∥ (Eq. 12.13) ⇒ 𝐸𝑖 cos𝜃𝑖 − 𝐸𝑟 cos𝜃𝑟 = 𝐸𝑡 cos𝜃𝑡
Continuity condition for𝐻∥ (Eq. 12.14) ⇒ 𝐵𝑖𝜇0𝜇1 + 𝐵𝑟𝜇0𝜇1 = 𝐵𝑡𝜇0𝜇2
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Let 𝑐0 be the speed of light in vacuum, 𝑐 the speed of light inside some material, and 𝑛 the refraction
index of this material. Then, 𝐸𝐵 = 𝑐𝑛 = 𝑐0𝑐

ЄЃЃЃЅЃЃЃІ ⇒ 𝐵 = 𝑛 𝐸𝑐0 . (12.15)

Let us assume that (
✿✿✿✿✿✿✿✿✿✿✿
Assumption

✿
2) the frequency 𝜈 of the EMwave remains unchanged during chang-

ingmaterials and during transmitting through thematerial. Due to the fundamental law of wave me-
chanics, 𝑐 = 𝜆𝜈 = 2𝜋𝑘 𝜈, (12.16)

𝑛 = 𝑐0𝑐 = 2𝜋𝜈|⃗𝑘||⃗𝑘0|2𝜋𝜈 ⇒
|⃗𝑘𝑖| = 𝑛𝑖|⃗𝑘0||⃗𝑘𝑟| = 𝑛𝑟|⃗𝑘0||⃗𝑘𝑡| = 𝑛𝑡|⃗𝑘0|𝑛1 = 𝑛𝑖 = 𝑛𝑟𝑛2 = 𝑛𝑡

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
⇒ |⃗𝑘𝑖| = 𝑛1|⃗𝑘0||⃗𝑘𝑟| = 𝑛1|⃗𝑘0||⃗𝑘𝑡| = 𝑛2|⃗𝑘0| (12.17)

If the amplitudes are constant then, in TE polarization, the continuity of 𝐸∥, i.e. the relationship 𝐸𝑟 +𝐸𝑖 = 𝐸𝑡, implies that

𝐸0𝑟𝑒𝑖(⃗𝑘𝑟⋅⃗𝑟−𝜔𝑟𝑡) + 𝐸0𝑖𝑒𝑖(⃗𝑘𝑖⋅⃗𝑟−𝜔𝑖𝑡) = 𝐸0𝑡𝑒𝑖(⃗𝑘𝑡⋅⃗𝑟−𝜔𝑡𝑡)∀ 𝑡, ∀ 𝑟⃗ on the interface

ЄЃЅЃІ ⇒𝑘⃗𝑟 ⋅ 𝑟⃗ − 𝜔𝑟𝑡 = 𝑘⃗𝑖 ⋅ 𝑟⃗ − 𝜔𝑖𝑡 = 𝑘⃗𝑡 ⋅ 𝑟⃗ − 𝜔𝑡𝑡 (12.18)

i.e. we arrive at a phasematching condition. Similarly, if the amplitudes are constant, then, inTMpolariza-

tion, the continuity of𝐻∥, i.e. the relationship
𝐵𝑖𝜇0𝜇1 + 𝐵𝑟𝜇0𝜇1 = 𝐵𝑡𝜇0𝜇2 implies Eq. 12.18, as well. Taking

✿✿✿✿✿✿✿✿✿✿✿
Assumption

✿✿
2 into account, if follows that𝜔𝑟 = 𝜔𝑖 = 𝜔𝑡, hence,

𝑘⃗𝑟 ⋅ 𝑟⃗ = 𝑘⃗𝑖 ⋅ 𝑟⃗ = 𝑘⃗𝑡 ⋅ 𝑟⃗ (12.19)

Let us look into Eq 12.2, and remember Eq. 12.17. Then, 𝑘⃗𝑖 ⋅ 𝑟⃗ = 𝑘⃗𝑟 ⋅ 𝑟⃗ ⇒|⃗𝑘𝑖||⃗𝑟| cos 􏿴𝜋2 − 𝜃𝑖􏿷 = |⃗𝑘𝑟| ⋅ |⃗𝑟| cos 􏿴𝜋2 − 𝜃𝑟􏿷 ⇒ 𝑛1|⃗𝑘0| sin𝜃𝑖 = 𝑛1|⃗𝑘0| sin𝜃𝑟 ⇒
𝜃𝑟 = 𝜃𝑖 , (12.20)

which is the reflection law. Furthermore,

𝑘⃗𝑖 ⋅ 𝑟⃗ = 𝑘⃗𝑡 ⋅ 𝑟⃗ ⇒ |⃗𝑘𝑖||⃗𝑟| cos 􏿵𝜋2 − 𝜃𝑖􏿸 = |⃗𝑘𝑡||⃗𝑟| cos 􏿵𝜋2 − 𝜃𝑡􏿸 ⇒ 𝑛1|⃗𝑘0| sin𝜃𝑖 = 𝑛2|⃗𝑘0| sin𝜃𝑡 ⇒
𝑛𝑖 sin𝜃𝑖 = 𝑛𝑡 sin𝜃𝑡 , (12.21)

which is the refraction law.
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Let us examine TE polarization in more detail, using the equations we obtained above. We will as-
sume that our materials are non-magnetic, i.e. that 𝜇1 = 𝜇2 = 1.𝐸𝑟 + 𝐸𝑖 = 𝐸𝑡𝐵𝑖 cos𝜃𝑖𝜇0𝜇1 − 𝐵𝑟 cos𝜃𝑟𝜇0𝜇1 = 𝐵𝑡 cos𝜃𝑡𝜇0𝜇2𝜇1 = 𝜇2 = 1𝐵 = 𝑛 𝐸𝑐0

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
⇒ 𝐸𝑟 + 𝐸𝑖 = 𝐸𝑡𝑛1𝐸𝑖 cos𝜃𝑖 − 𝑛1𝐸𝑟 cos𝜃𝑟 = 𝑛2𝐸𝑡 cos𝜃𝑡𝑛 ∶= 𝑛2𝑛1 (the relative refraction index)

ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒

𝐸𝑟 + 𝐸𝑖 = 𝐸𝑡𝐸𝑖 cos𝜃𝑖 − 𝐸𝑟 cos𝜃𝑟 = 𝑛𝐸𝑡 cos𝜃𝑡􏿿 𝜃𝑖=𝜃𝑟⇒ 𝐸𝑟 + 𝐸𝑖 = 𝐸𝑡𝐸𝑖 − 𝐸𝑟 = 𝑛𝐸𝑡 cos𝜃𝑡
cos𝜃𝑖

ЄЃЃЃЅЃЃЃІ ⇒
( adding by parts ) 2𝐸𝑖 = 𝐸𝑡􏿵1 + 𝑛 cos𝜃𝑡

cos𝜃𝑖 􏿸
𝑡𝑇𝐸 ∶= 𝐸𝑡𝐸𝑖 = 2 cos𝜃𝑖

cos𝜃𝑖 + 𝑛 cos𝜃𝑡 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑖 cos𝜃𝑖 + 𝑛𝑡 cos𝜃𝑡 . (12.22)

However, 𝑛𝑖 sin𝜃𝑖 = 𝑛𝑡 sin𝜃𝑡 ή sin𝜃𝑖 = 𝑛 sin𝜃𝑡
while cos𝜃𝑡 = √1 − sin2 𝜃𝑡 = √1 − sin2 𝜃𝑖𝑛2 ,
thus, 𝑡𝑇𝐸 = 2 cos𝜃𝑖

cos𝜃𝑖 + 𝑛√1 − sin2 𝜃𝑖𝑛2 .
Hence,

𝑡𝑇𝐸 = 2 cos𝜃𝑖
cos𝜃𝑖 + √𝑛2 − sin2 𝜃𝑖 . (12.23)

Moreover,

𝐸𝑡 = 𝐸𝑖 + 𝐸𝑟 = (𝐸𝑖 − 𝐸𝑟) cos𝜃𝑖𝑛 cos𝜃𝑡𝐸𝑟􏿵1 + cos𝜃𝑖𝑛 cos𝜃𝑡 􏿸 = 𝐸𝑖􏿵 cos𝜃𝑖𝑛 cos𝜃𝑡 − 1􏿸
ЄЃЃЃЃЅЃЃЃЃІ ⇒

𝑟𝑇𝐸 ∶= 𝐸𝑟𝐸𝑖 = cos𝜃𝑖 − 𝑛 cos𝜃𝑡
cos𝜃𝑖 + 𝑛 cos𝜃𝑡 = 𝑛𝑖 cos𝜃𝑖 − 𝑛𝑡 cos𝜃𝑡𝑛𝑖 cos𝜃𝑖 + 𝑛𝑡 cos𝜃𝑡 . (12.24)
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Hence,

𝑟𝑇𝐸 = cos𝜃𝑖 − √𝑛2 − sin2 𝜃𝑖
cos𝜃𝑖 + √𝑛2 − sin2 𝜃𝑖 . (12.25)

Therefore, Eqs. 12.23 and 12.25 lead to the conclusion that

𝑡𝑇𝐸 = 𝑟𝑇𝐸 + 1 (12.26)

Thequantities 𝑡𝑇𝐸 and 𝑟𝑇𝐸, defined inEqs. 12.22, 12.24 are just ratios of amplitudes andnot transmittance
(𝑇) and reflectance (𝑅). The latter two quantities are defined below, in Eqs. 12.53.

✿✿
If

✿✿✿
we

✿✿✿✿✿
want

✿✿
no

✿✿✿✿
TE

✿✿✿✿✿✿✿✿✿
reflection, it must hold that 𝑟𝑇𝐸 = 0, hence, due to Eq. 12.24,

𝑛𝑖 cos𝜃𝑖 = 𝑛𝑡 cos𝜃𝑡
however (Eq. 12.21), 𝑛𝑖 sin𝜃𝑖 = 𝑛𝑡 sin𝜃𝑡􏿿 ⇒ tan𝜃𝑖 = tan𝜃𝑡𝜃𝑖, 𝜃𝑡 are acute angles􏿿 ⇒ (12.27)

𝜃𝑡 = 𝜃𝑖 (12.28)

therefore, due to Eqs. 12.27, it follows that 𝑛𝑡 = 𝑛𝑖 . (12.29)

Eqs. 12.28 and 12.29mean that
✿✿✿
the

✿✿✿✿
EM

✿✿✿✿
wave

✿✿✿✿✿
does

✿✿✿
not

✿✿✿✿✿✿✿
change

✿✿✿✿✿✿✿✿✿✿✿
propagation

✿✿✿✿✿✿✿✿
medium. In otherwords, this is

a trivial solution, since in this case there is no interface. To conclude, it is not possible not to have reflected𝑠 polarization. Due to the above, Eq. 12.22 yields 𝑡𝑇𝐸 = 1. The values 𝑟𝑇𝐸 = 0, 𝑡𝑇𝐸 = 1 satisfy Eq. 12.26.
See Figure 12.3.

Figure 12.3: If we want no TE reflection (no reflected 𝑠 polarization), then the EMwave does not change
propagationmedium. In other words, this is a trivial solution, since in this case there is no interface.Con-
clusion: It is not possible not to have reflected 𝑠 polarization.

Let us examine TM polarization in more detail, using the equations we obtained above. We will
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assume that our materials are non-magnetic, i.e. that 𝜇1 = 𝜇2 = 1.𝐸𝑖 cos𝜃𝑖 − 𝐸𝑟 cos𝜃𝑟 = 𝐸𝑡 cos𝜃𝑡𝐵𝑖𝜇0𝜇1 + 𝐵𝑟𝜇0𝜇1 = 𝐵𝑡𝜇0𝜇2𝜇1 = 𝜇2 = 1𝐵 = 𝑛 𝐸𝑐0

ЄЃЃЃЃЃЃЃЃЃЅЃЃЃЃЃЃЃЃЃІ
⇒ 𝐸𝑖 cos𝜃𝑖 − 𝐸𝑟 cos𝜃𝑟 = 𝐸𝑡 cos𝜃𝑡𝑛1𝐸𝑖 + 𝑛1𝐸𝑟 = 𝑛2𝐸𝑡𝑛 ∶= 𝑛2𝑛1 (the relative refraction index)

ЄЃЃЃЃЃЅЃЃЃЃЃІ 𝜃𝑖=𝜃𝑟⇒

𝐸𝑖 − 𝐸𝑟 = 𝐸𝑡 cos𝜃𝑡cos𝜃𝑖𝐸𝑖 + 𝐸𝑟 = 𝑛𝐸𝑡
ЄЃЃЃЅЃЃЃІ ⇒ ( adding by parts ) 2𝐸𝑖 = 𝐸𝑡􏿵𝑛 + cos𝜃𝑡

cos𝜃𝑖 􏿸 ⇒
𝑡𝑇𝑀 ∶= 𝐸𝑡𝐸𝑖 = 2 cos𝜃𝑖𝑛 cos𝜃𝑖 + cos𝜃𝑡 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 . (12.30)

Alternatively,

𝑡𝑇𝑀 = 2 cos𝜃𝑖𝑛 cos𝜃𝑖 +√1 − sin2 𝜃𝑖𝑛2 ⇒
𝑡𝑇𝑀 = 2𝑛 cos𝜃𝑖𝑛2 cos𝜃𝑖 + √𝑛2 − sin2 𝜃𝑖 . (12.31)

Moreover,

𝐸𝑡 = 𝑛 cos𝜃𝑖
cos𝜃𝑡 (𝐸𝑖 − 𝐸𝑟) = (𝐸𝑖 + 𝐸𝑟)𝐸𝑖􏿵𝑛 cos𝜃𝑖

cos𝜃𝑡 − 1􏿸 = 𝐸𝑟􏿵𝑛 cos𝜃𝑖
cos𝜃𝑡 + 1􏿸

ЄЃЃЃЃЅЃЃЃЃІ ⇒
𝑟𝑇𝑀 ∶= 𝐸𝑟𝐸𝑖 = 𝑛 cos𝜃𝑖 − cos𝜃𝑡𝑛 cos𝜃𝑖 + cos𝜃𝑡 = 𝑛𝑡 cos𝜃𝑖 − 𝑛𝑖 cos𝜃𝑡𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 (12.32)

or

𝑟𝑇𝑀 = 𝑛2 cos𝜃𝑖 − √𝑛2 − sin2 𝜃𝑖𝑛2 cos𝜃𝑖 + √𝑛2 − sin2 𝜃𝑖 . (12.33)

Hence, 𝑟𝑇𝑀 − 𝑛𝑡𝑇𝑀 = −1 (12.34)

The quantities 𝑡𝑇𝑀 and 𝑟𝑇𝑀, defined in Eqs. 12.30, 12.32 are just ratios of amplitudes and not transmit-
tance (𝑇) and reflectance (𝑅). The latter two quantities are defined below, in Eqs. 12.53.
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✿✿
If

✿✿✿
we

✿✿✿✿✿
want

✿✿
no

✿✿✿✿
TM

✿✿✿✿✿✿✿✿✿
reflection, it must hold that 𝑟𝑇𝑀 = 0, hence, due to Eq. Εξ. 12.32,𝑛𝑡 cos𝜃𝑖 = 𝑛𝑖 cos𝜃𝑡

however (Eq. 12.21), 𝑛𝑡 sin𝜃𝑡 = 𝑛𝑖 sin𝜃𝑖􏿿 ⇒ cos𝜃𝑖
sin𝜃𝑡 = cos𝜃𝑡

sin𝜃𝑖 􏿿 ⇒ sin 2𝜃𝑡 = sin 2𝜃𝑖 (12.35)

Hence, (1) 2𝜃𝑡 = 2𝜃𝑖 or (2) 2𝜃𝑡 = 𝜋 − 2𝜃𝑖
Choice (1) yields 𝜃𝑡 = 𝜃𝑖 (12.36)

and, due to Eq. 12.21, 𝑛𝑡 = 𝑛𝑖 . (12.37)
Eqs. 12.36 and 12.37mean that

✿✿✿
the

✿✿✿✿
EM

✿✿✿✿
wave

✿✿✿✿✿
does

✿✿✿
not

✿✿✿✿✿✿✿
change

✿✿✿✿✿✿✿✿✿✿✿
propagation

✿✿✿✿✿✿✿✿
medium. In otherwords, this is

a trivial solution, since in this case there is no interface. To conclude, it is not possible not to have reflected𝑠polarization.Due to the above, Eq. 12.30 yields 𝑡𝑇𝑀 = 1.Thevalues 𝑟𝑇𝑀 = 0, 𝑡𝑇𝑀 = 1, due toEq. 12.37,
satisfy Eq. 12.34. See Figure 12.4, left.

Figure 12.4: Left: If we want no TE reflection (no reflected 𝑝 polarization), one case (choice (1)) is
that the EM wave does not change propagation medium. In other words, this is a trivial solution, since
in this case there is no interface. The values 𝑟𝑇𝑀 = 0, 𝑡𝑇𝑀 = 1, due to Eq. 12.37, satisfy Eq. 12.34,
i.e. 𝑟𝑇𝑀 − 𝑛𝑡𝑇𝑀 = −1. Right: If we want no TE reflection (no reflected 𝑝 polarization), the other case
(choice (2)) is that the reflected beam is perpendicular to the refracted beam. However, the reflected
beam, denoted here by the orange line, refers to TE polarization. It holds that 𝑛 = 𝑛𝑡/𝑛𝑖 = tan𝜃𝑖, and the
angle 𝜃𝑖 which satisfies this relationship is called the Brewster angle, 𝜃𝐵. That is, tan𝜃𝐵 = 𝑛𝑡/𝑛𝑖 = 𝑛.
The values 𝑟𝑇𝑀 = 0, 𝑡𝑇𝑀 = 1/𝑛 satisfy Eq. 12.34, i.e. 𝑟𝑇𝑀 − 𝑛𝑡𝑇𝑀 = −1. Conclusion: It is possible not
to have reflected 𝑝 polarization, and this happens when 𝜃𝑖 = 𝜃𝐵.

Choice (2) yields 𝜃𝑡 = 𝜋2 − 𝜃𝑖 or 𝜃𝑖 + 𝜃𝑡 = 𝜋2 , which, due to the reflection law (Eq. 12.20), leads

to 𝜃𝑟 + 𝜃𝑡 = 𝜋2 . If we denote by ϡ the angle between the reflected and refracted beams, it holds that𝜃𝑟 + ϡ + 𝜃𝑡 = 𝜋. Therefore, ϡ = 𝜋2 , i.e. the reflected beam is perpendicular to the refracted beam. See
Figure 12.4, right.

Due to the refraction law (Eq. 12.21), 𝑛𝑡 sin𝜃𝑡 = 𝑛𝑖 sin𝜃𝑖
and choice (2), 𝜃𝑡 = 𝜋2 − 𝜃𝑖

ЄЃЃЅЃЃІ ⇒
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𝑛𝑡 sin 􏿵𝜋2 − 𝜃𝑖􏿸 = 𝑛𝑖 sin𝜃𝑖 ⇒ 𝑛𝑡𝑛𝑖 = sin𝜃𝑖
cos𝜃𝑖 ⇒

𝑛 = 𝑛𝑡𝑛𝑖 = tan𝜃𝑖 (12.38)

The angle 𝜃𝑖 which satisfies Eq. 12.38 is called the Brewster angle, 𝜃𝐵. (The same conclusions can be
drawn from 𝑛𝑡 cos𝜃𝑖 = 𝑛𝑖 cos𝜃𝑡 of Eqs. 12.35, as well). Then, Eq. 12.30 becomes

𝑡𝑇𝑀 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 sin𝜃𝑖 = 2𝑛 + tan𝜃𝑖 = 22𝑛 ⇒
𝑡𝑇𝑀 = 1𝑛 (12.39)

The values 𝑟𝑇𝑀 = 0, 𝑡𝑇𝑀 = 1𝑛 satisfy Eq. 12.34. See Figure 12.4, right. To conclude, it is possible not to
have reflected 𝑝 polarization, and this happens when 𝜃𝑖 = 𝜃𝐵.

Eqs. 12.22, 12.24, 12.30, 12.32, as well as their equivalents, are called the Fresnel equations. They are
summarized below:

𝑡𝑇𝐸 ∶= 𝐸𝑡𝐸𝑖 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑖 cos𝜃𝑖 + 𝑛𝑡 cos𝜃𝑡 (12.40)

𝑟𝑇𝐸 ∶= 𝐸𝑟𝐸𝑖 = 𝑛𝑖 cos𝜃𝑖 − 𝑛𝑡 cos𝜃𝑡𝑛𝑖 cos𝜃𝑖 + 𝑛𝑡 cos𝜃𝑡 (12.41)

𝑡𝑇𝑀 ∶= 𝐸𝑡𝐸𝑖 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 (12.42)

𝑟𝑇𝑀 ∶= 𝐸𝑟𝐸𝑖 = 𝑛𝑡 cos𝜃𝑖 − 𝑛𝑖 cos𝜃𝑡𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 (12.43)

12.2 Total internal reflection.

Let us assume that 𝑛𝑖 > 𝑛𝑡 and use the refraction law (Eq. 12.21).

refraction law 𝑛𝑖 sin𝜃𝑖 = 𝑛𝑡 sin𝜃𝑡𝑛𝑖 > 𝑛𝑡 ⇒ 𝑛 = 𝑛𝑡𝑛𝑖 < 1
ЄЃЃЅЃЃІ ⇒ sin𝜃𝑖 < sin𝜃𝑡𝜃𝑖, 𝜃𝑡 are acute angles􏿿 ⇒ 𝜃𝑖 < 𝜃𝑡 (12.44)

However, increasing 𝜃𝑖 increases 𝜃𝑡 as well, since, due to the refraction law (Eq. 12.21), ↗ 𝜃𝑖 ⇒↗
sin𝜃𝑖 ⇒↗ sin𝜃𝑡 ⇒↗ 𝜃𝑡. This, increasing 𝜃𝑖, 𝜃𝑡 is also increasing, remaining at the same time larger
than𝜃𝑖 (Eq. 12.44). Hence, when𝜃𝑡 reaches the value

𝜋2 , the value of𝜃𝑖 in called critical angle, i.e.𝜃𝑐𝑟𝑖 =𝜃𝑖. Then, it holds that 𝑛𝑖 sin𝜃𝑐𝑟𝑖 = 𝑛𝑡 sin(𝜋/2). Hence,

sin𝜃𝑐𝑟𝑖 = 𝑛𝑡𝑛𝑖 = 𝑛 , (12.45)
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Figure 12.5: Total internal reflection: the refracted ray is tangent to the interface, i.e. it essentially does
not get into the other material, 𝜃𝑡 = 𝜋2 . The value of 𝜃𝑖 at which this happens is called critical angle, i.e.𝜃𝑐𝑟𝑖 = 𝜃𝑖. Then, it holds that sin𝜃𝑐𝑟𝑖 = 𝑛𝑡𝑛𝑖 = 𝑛.
This situation, in which the refracted ray is tangent to the interface, i.e. it essentially does not get into the
other material is called total internal reflection (see Figure 12.5). Then,

𝑡𝑇𝐸 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑖 cos𝜃𝑖 + 𝑛𝑡 cos𝜃𝑡 = 2𝑛𝑖 cos𝜃𝑐𝑟𝑖𝑛𝑖 cos𝜃𝑐𝑟𝑖 + 𝑛𝑡 cos 􏿵𝜋2 􏿸 = 2
𝑟𝑇𝐸 = 𝑛𝑖 cos𝜃𝑖 − 𝑛𝑡 cos𝜃𝑡𝑛𝑖 cos𝜃𝑖 + 𝑛𝑡 cos𝜃𝑡 = 𝑛𝑖 cos𝜃𝑐𝑟𝑖 − 𝑛𝑡 cos 􏿵𝜋2 􏿸𝑛𝑖 cos𝜃𝑐𝑟𝑖 + 𝑛𝑡 cos 􏿵𝜋2 􏿸 = 1
We observe that Eq. 12.26, 𝑡𝑇𝐸 = 𝑟𝑇𝐸 + 1, holds, since 2 = 1 + 1.𝑡𝑇𝑀 = 2𝑛𝑖 cos𝜃𝑖𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 = 2𝑛𝑖 cos𝜃𝑐𝑟𝑖𝑛𝑡 cos𝜃𝑐𝑟𝑖 + 𝑛𝑖 cos 􏿵𝜋2 􏿸 =

2𝑛
𝑟𝑇𝑀 = 𝑛𝑡 cos𝜃𝑖 − 𝑛𝑖 cos𝜃𝑡𝑛𝑡 cos𝜃𝑖 + 𝑛𝑖 cos𝜃𝑡 = 𝑛𝑡 cos𝜃𝑐𝑟𝑖 − 𝑛𝑖 cos 􏿵𝜋2 􏿸𝑛𝑡 cos𝜃𝑐𝑟𝑖 + 𝑛𝑖 cos 􏿵𝜋2 􏿸 = 1
We observe that Eq. 12.34, 𝑟𝑇𝑀 − 𝑛𝑡𝑇𝑀 = −1, holds, since 1 − 𝑛2𝑛 = −1.

12.3 Emission of polarized beam.

According to what we saw in Section 12.1, When the angle of incidence is equal to the Brewster angle
(𝜃𝑖 = 𝜃𝐵), then an unpolarized incident beam results in a fully polarized reflected beam and a partially
polarized refractedbeam.These aredepicted inFigure 12.6.Hence, ifweput on theoutput of a laser device
amaterial such that the outgoing beam is incident to it at an angle𝜃𝑖 = 𝜃𝐵, then we can exploit either the
fully polarized reflected beam or the partially polarized refracted beam. Technical details vary in different
kinds of lasers [1], [2], [3].
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Figure 12.6: When the angle of incidence is equal to the Brewster angle (𝜃𝑖 = 𝜃𝐵), then an unpolarized
incident beam results in a fully polarized reflected beam and a partially polarized refracted beam.

12.4 Poynting vector.

The Poynting vector is defined as 𝑆 ∶= 𝐸⃗ × 𝐻⃗ , (12.46)

and, in terms of units, [𝑆] = [𝐸⃗][𝐻⃗] = VA
mm

= VC
m2s = J

m2s = W
m2 .

Therefore, the Poynting vector describes power per unit surface. Its norm is

|𝑆| = |𝐸⃗||𝐻⃗| = |𝐸⃗||𝐵⃗|𝜇𝜇0 = |𝐸⃗|2𝑛𝜇𝜇0𝑐0 = |𝐸⃗|2√𝜀✓✓𝜇𝜀0✚✚𝜇0𝜇✁2𝜇✁20 ⇒
|𝑆| = |𝐸⃗|2√ 𝜀𝜀0𝜇𝜇0 , (12.47)

where we have used the relation |𝐸⃗||𝐵⃗| = 𝑐𝑛 = 𝑐0𝑐
ЄЃЃЃЃЅЃЃЃЃІ ⇒ |𝐵⃗| = |𝐸⃗|𝑛𝑐0 .

Additionally, as we might remember,𝑐0 = 1√𝜀0𝜇0𝑐 = 1√𝜀𝜀0𝜇𝜇0
ЄЃЃЃЃЃЅЃЃЃЃЃІ ⇒ 𝑛 ∶= 𝑐0𝑐 = √𝜀𝜀0𝜇𝜇0𝜀0𝜇0 ⇒ 𝑛 = √𝜀𝜇 .
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Let us now calculate the norms of the Poynting vectors for the incident, reflected and refracted beams,
using Eq. 12.47:

|𝑆𝑖| = |𝐸⃗𝑖|2√ 𝜀𝑖𝜀0𝜇𝑖𝜇0 = |𝐸⃗𝑖|2√ 𝜀1𝜀0𝜇1𝜇0 (12.48)

|𝑆𝑟| = |𝐸⃗𝑟|2√ 𝜀𝑟𝜀0𝜇𝑟𝜇0 = |𝐸⃗𝑟|2√ 𝜀1𝜀0𝜇1𝜇0 (12.49)

|𝑆𝑡| = |𝐸⃗𝑡|2√ 𝜀𝑡𝜀0𝜇𝑡𝜇0 = |𝐸⃗𝑡|2√ 𝜀2𝜀0𝜇2𝜇0 (12.50)

Figure 12.7: The Poynting vector of the incident beam, 𝑆𝑖, a part of the interface, 𝐴, and its projection,𝐴⊥𝑖, normal to 𝑆𝑖.𝐴⊥𝑖 = 𝐴 cos𝜃𝑖.
In Figure 12.7we observe the Poynting vector of the incident beam,𝑆𝑖, a part of the interface,𝐴, and its

projection,𝐴⊥𝑖, normal to 𝑆𝑖. From this Figure, it is evident that𝐴⊥𝑖 = 𝐴 cos𝜃𝑖. The situation is similar
for the reflected and refracted beams. Concisely,𝐴⊥𝑖 = 𝐴 cos𝜃𝑖,𝐴⊥𝑟 = 𝐴 cos𝜃𝑟,𝐴⊥𝑡 = 𝐴 cos𝜃𝑡.
Let us denote by 𝑃𝑖(𝐴⊥𝑖) the power incident to surface 𝐴⊥𝑖 and so forth, and recall that the Poynting
vector describes power per unit surface. Then,

|𝑆𝑖| = 𝑃𝑖(𝐴⊥𝑖)𝐴⊥𝑖 ⇒ 𝑃𝑖(𝐴⊥𝑖) = |𝑆𝑖|𝐴⊥𝑖 ⇒𝑃𝑖𝐴⊥𝑖 = |𝑆𝑖|𝐴 cos𝜃𝑖,
similarly, ⇒𝑃𝑟𝐴⊥𝑟 = |𝑆𝑟|𝐴 cos𝜃𝑟,
similarly, ⇒𝑃𝑡𝐴⊥𝑡 = |𝑆𝑡|𝐴 cos𝜃𝑡.

However, if the materials do not absorb energy, then the incident power is equal to the reflected power
plus the refracted power. That is, 𝑃𝑖(𝐴⊥𝑖) = 𝑃𝑟(𝐴⊥𝑟) + 𝑃𝑡(𝐴⊥𝑡). (12.51)
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Hence,

|𝑆𝑖|𝐴 cos𝜃𝑖 = |𝑆𝑟|𝐴 cos𝜃𝑟 + |𝑆𝑡|𝐴 cos𝜃𝑡 ⇒ 1 = |𝑆𝑟||𝑆𝑖| + |𝑆𝑡| cos𝜃𝑡|𝑆𝑖| cos𝜃𝑖 ⇒1 = |𝐸⃗𝑟|2|𝐸⃗𝑖|2 + |𝐸⃗𝑡|2|𝐸⃗𝑖|2√𝜀2𝜇1𝜀1𝜇2 cos𝜃𝑡
cos𝜃𝑖 ,

where we have used Eqs. 12.48, 12.49, 12.50. In other words,1 = 𝑅 + 𝑇 , (12.52)

where we have defined

𝑅 ∶= |𝐸⃗𝑟|2|𝐸⃗𝑖|2 (reflectance)

𝑇 ∶= |𝐸⃗𝑡|2|𝐸⃗𝑖|2√𝜀2𝜇1𝜀1𝜇2 cos𝜃𝑡
cos𝜃𝑖 (transmittance)

(12.53)

The quantities 𝑟 and 𝑡 (e.g. Eqs. 12.40, 12.41, 12.42, 12.43) have been defined as ratios of amplitudes.
Therefore, we can write

1 = 𝑟2 + 𝑡2√𝜀2𝜇1𝜀1𝜇2 cos𝜃𝑡
cos𝜃𝑖 (12.54)𝑅 = 𝑟2 (12.55)𝑇 = 𝑡2√𝜀2𝜇1𝜀1𝜇2 cos𝜃𝑡

cos𝜃𝑖 (12.56)

For non-magnetic materials, i.e. when 𝜇1 = 𝜇2 = 1, if follows that 𝑇 = |𝐸⃗𝑡|2|𝐸⃗𝑖|2 𝑛2𝑛1 cos𝜃𝑡
cos𝜃𝑖 = 𝑡2 𝑛 cos𝜃𝑡

cos𝜃𝑖 .
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APPENDIX A

EXERCISES

A.1 Exercises for Chapter 1: Overview.

There are no exercises in this chapter.

A.2 Exercises for Chapter 2: The quantum nature of light.

• Exercise 1. Conventionally, the far infrared (FIR) part of the electromagnetic spectrum corre-
sponds to wavelengths 25𝜇m< 𝜆 < 1000𝜇m. Find the 𝑥 (Eq. 2.8) to which FIR corresponds for
temperature (a) 300 K, i.e., approximately the temperature of an animal, (b) 6000 K, i.e., approxi-
mately the effective temperature of the Sun’s photosphere, and (c) 6 K.

• Exercise2.Conventionally, theultraviolet (UV)part of the electromagnetic spectrumcorresponds
to wavelengths 10 nm < 𝜆 < 400 nm. Find the 𝑥 (Eq. 2.8) to which UV corresponds for temper-
ature (a) 300 K, i.e., approximately the temperature of an animal, (b) 6000 K, i.e., approximately
the effective temperature of the Sun’s photosphere, and (c) 6 K.

• Exercise 3. Conventionally, the far infrared (FIR) part of the electromagnetic spectrum corre-
sponds to wavelengths 25 𝜇m < 𝜆 < 1000 𝜇m. For the upper and the lower limit of the FIR
region, find the temperature of a black body at which the Wien’s prediction, 𝜌W becomes half the
experimental value 𝜌, which is also predicted by the Planck’s law. In other words, we are looking
for the temperature regime at which we have problem at lower frequencies.

Solution of Exercise 3.
We demand that the relationship 𝜌W = 0.5𝜌 is satisfied.Thus, according to Eqs. 2.11 and 2.12, we
have 𝜌0𝑥3𝑒𝑥 = 0.5𝜌0 𝑥3𝑒𝑥 − 1 ⇒ 𝑒𝑥 − 1 = 0.5𝑒𝑥 ⇒ 𝑒𝑥 = 2 ⇒ 𝑥 = ln 2 ≈ 0.693.
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𝑥 = ℎ𝜈𝑘B𝑇 𝑐=𝜆𝜈⇐=⇒ 𝜆 = ℎ𝑐𝑥𝑘B𝑇 . (A.1)

The ratio ℎ𝑐𝑘B ≈ 14.404 × 10−3mK. (A.2)

Hence, between the upper and lower limits of the FIR region, the following inequality holds:

25 𝜇m < ℎ𝑐𝑥𝑘B𝑇 < 1000 𝜇m ⇒ℎ𝑐𝑥𝑘B 1000 𝜇m < 𝑇 < ℎ𝑐𝑥𝑘B 25 𝜇m ⇒21K ≲ 𝑇 ≲ 831K.
• Exercise 4. Find when the Rayleigh-Jeans law prediction, 𝜌RJ, becomes exactly equal to the exper-

imental value, 𝜌, which is also predicted by the Planck’s law.

Solution of Exercise 4.
We demand that equality 𝜌RJ = 𝜌 holds. Using Eqs. 2.10 and 2.12, it occurs that

𝜌0𝑥2 = 𝜌0 𝑥3𝑒𝑥 − 1.
Hence, for 𝑥 ≠ 0, 𝑥 = 𝑒𝑥 − 1 ⇒ 𝑒𝑥 = 1 + 𝑥 ⇒ 𝑥 = 0, which is absurd. Therefore, the Rayleigh-
Jeans law never coincides with the Planck’s law.

• Exercise 5 Find the temperature 𝑇Δ at which, in the UV limit, i.e., for 𝜆 = 400 nm, the prediction
of the Rayleigh-Jeans law, 𝜌RJ, becomes twice the experimental value, 𝜌, which is also predicted by
the Planck’s law.

Solution of Exercise 5.
We demand that the condition 𝜌RJ = 2𝜌 holds. From Eqs. 2.10 and 2.12, it occurs that

𝜌0𝑥2 = 2𝜌0 𝑥3𝑒𝑥 − 1.
Hence, for 𝑥 ≠ 0, 2𝑥 = 𝑒𝑥 − 1 ⇒ 𝑒𝑥 = 1 + 2𝑥. From a graphical solution of the above equation,
we have 𝑥Δ = 1.25645 ≈ 54 . From Eq. 2.8, we have

𝑥Δ = ℎ𝜈𝑘B𝑇Δ 𝑐=𝜆𝜈⇐==⇒ 𝑇Δ = ℎ𝑐𝑘B𝜆𝑥Δ . (A.3)

Substitution of numerical values leads to 𝑇Δ ≈ 28800 K. This temperature only corresponds to
surface temperature of stars with very large mass (e.g. 30 times the mass of Sun). Hence, we realize
that the term “UV catastrophe” is misleading.

• Exercise 6. Examine the behavior of Planck’s law in the following limits: (a) zero frequency, and
(b) infinite frequency. Also, prove that (c) at very low frequencies, Planck’s law is identical to the
Rayleigh-Jeans law, while, (d) at very high frequencies, it is identical to Wien’s law.
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Solution of Exercise 6.
For 𝜈 → 0 ⇒ 𝑥 → 0 :

lim𝑥→0 𝜌 = 𝜌0 lim𝑥→0 􏿶 𝑥3𝑒𝑥 − 1􏿹 = 𝜌0 lim𝑥→0 􏿶3𝑥2𝑒𝑥 􏿹 = 0
For 𝜈 → ∞ ⇒ 𝑥 → ∞ :

lim𝑥→∞𝜌 = 𝜌0 lim𝑥→∞ 􏿶 𝑥3𝑒𝑥 − 1􏿹 Ͼελικά==== 𝜌0 lim𝑥→∞ 􏿶 6𝑒𝑥 􏿹 = 0
For low frequencies, i.e., for small 𝑥 (𝑥 ↓↓):

𝑓(𝑥) = 𝑓(0) + 𝑓′(0) 𝑥1! + 𝑓″(0)𝑥22! + … (A.4)

thus 𝑒𝑥 − 1 = 1 + 1 𝑥1! + 1𝑥22! +⋯ − 1 ≈ 𝑥 (1st order approximation). (A.5)

Hence, 𝜌 = 𝜌0 𝑥3𝑒𝑥 − 1 ≃ 𝜌0𝑥3𝑥 = 𝜌0𝑥2 = 𝜌RJ. (A.6)

For high frequencies, i.e., for large 𝑥 (𝑥 ↑↑):
𝑒𝑥 − 1 ≃ 𝑒𝑥 ⇒ 𝜌 = 𝜌0 𝑥3𝑒𝑥 − 1 ≃ 𝜌0𝑥3𝑒𝑥 = 𝜌W (A.7)

• Exercise 7. Prove that 𝜌W ≠ 𝜌RJ for small and large 𝑥.
Solution of Exercise 7.
For large 𝑥 (𝑥 ↑↑):

lim𝑥→∞𝜌RJ = 𝜌0 lim𝑥→∞ 𝑥2 = ∞ ≠ lim𝑥→∞𝜌W = 𝜌0 lim𝑥→∞ 𝑥3𝑒𝑥 = 0. (A.8)

For small 𝑥 (𝑥 ↓↓), although for 𝑥 → 0 both vanish:

lim𝑥→0 𝜌RJ = 𝜌0 lim𝑥→0 𝑥2 = 0 = lim𝑥→0 𝜌W = 𝜌0 lim𝑥→0 𝑥3𝑒𝑥 = 0, (A.9)

they still remain unequal. Indeed, using the expansion

𝑓(𝑥) = 𝑓(0) + 𝑓′(0) 𝑥1! + 𝑓″(0)𝑥22! + … (A.10)

we realize that

𝑒𝑥 = 1 + 1 𝑥1! + 1𝑥22! +⋯ ≈ 1 + 𝑥 (1st order approximation), (A.11)

hence, 𝜌W = 𝜌0𝑥3𝑒𝑥 ≈ 𝜌0 𝑥31 + 𝑥 ≠ 𝜌0𝑥2 = 𝜌RJ. (A.12)
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• Exercise 8. For temperatures (a) 300Κ, (b) 6000Κ, and (c) 6 Κ: Calculate the wavelength,𝜆𝑡𝑤, at
which the prediction of the Rayleigh-Jeans law, 𝜌RJ, becomes twice the value of the experimental
value, 𝜌, also predicted by Planck’s law. In which region of the EM spectrum does𝜆𝑡𝑤 belong each
time?

• Exercise 9. Prove that the following substitution of a position vector𝑟⃗ → 𝑟′ = −𝑟⃗ (A.13)

is equivalent, in spherical coordinates, with the substitutions𝑟 → 𝑟′ = 𝑟 (A.14)𝜃 → 𝜃′ = 𝜋 − 𝜃𝜙 → 𝜙′ = 𝜋 + 𝜙
Exercise 10.The Γ function [1] is an extension of the factorial function to real and complex num-
bers with its argument shifted by −1. It can be finally proven thatΓ(𝑛) = (𝑛 − 1)! for 𝑛 = 1, 2, 3, ... factorial form (A.15)

TheΓ function is defined for all complexnumbers except fornegative integers andzero (0, −1, −2, ...).
If the complex number 𝑧 has a positive real part, i.e., if𝑅𝑒𝑎𝑙(𝑧) > 0, then it is defined by the relationΓ(𝑧) ∶= 􏾙∞

0 𝑒−𝑡𝑡𝑧−1𝑑𝑡 Euler form (A.16)

This definition can be extended to all complex numbers, except non-positive integers, in a manner
that does not concern us here. The Γ function is mainly used in probabilities and statistics. The
notation Γ(𝑧) is attributed to Legendre. There are also other formsΓ(𝑧) = 2􏾙∞

0 𝑒−𝑡2𝑡2𝑧−1𝑑𝑡 (A.17)

Γ(𝑧) = 􏾙1
0 [ln(1/𝑡)]𝑧−1𝑑𝑡. (A.18)

(a) Starting from the Euler form, prove thatΓ(𝑧 + 1) = 𝑧Γ(𝑧) (A.19)Γ(1) = 1 (A.20)Γ(𝑛) = (𝑛 − 1)! (A.21)Γ(1/2) = √𝜋 (A.22)

The Gaussian integral is given: 􏾙∞
0 𝑒−𝑎𝑥2𝑑𝑥 = 12√𝜋𝑎 . (A.23)

(b) Prove that 𝐼 = 􏾙∞
0 𝑒−𝛾𝑟𝑟𝑛𝑑𝑟 = 𝛾−(𝑛+1)𝑛! (A.24)

where 𝑛 = 1, 2, 3, ... and 𝛾 > 0.
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• Exercise 11. Check the following [2, 1]:

(a) Assuming as known that∫∞0 sin2(𝑎𝑥)𝑥2 𝑑𝑥 = 𝜋2 |𝑎|, prove that for 𝑡 > 0,∫∞−∞ sin2(𝑥𝑡/2)𝑥2 𝑑𝑥 = 𝜋𝑡2 .
(b) 𝑒±𝑖(𝜙+𝜋) = −𝑒±𝑖𝜙.
(c)∫2𝜋0 𝑒𝑖𝜙𝑑𝜙 = 0.
(d) In the first order approximation,√𝑐 + 𝑥 ≈ √𝑐 + 𝑥2√𝑐 .
Solution of Exercise 11.
The first three questions are simple. The Taylor expansion of a real or complex function, 𝑓(𝑥), of
a real or complex variable, 𝑥, that is infinitely differentiable at a real or complex number, 𝑎, is the
power series

𝑓(𝑥) = 𝑓(𝑎)+ 𝑓′(𝑎)1! (𝑥−𝑎)+ 𝑓″(𝑎)2! (𝑥−𝑎)2+ 𝑓(3)(𝑎)3! (𝑥−𝑎)3+⋯ = ∞􏾜𝑛=0 𝑓(𝑛)(𝑎)𝑛! (𝑥−𝑎)𝑛, (A.25)

where, 𝑛! is the factorial of 𝑛 and 𝑓(𝑛)(𝑎) is the 𝑛-th derivative of 𝑓 at the point 𝑎.The zeroth order
derivative of 𝑓 is, by definition, 𝑓 itself, (𝑥 − 𝑎)0 ∶= 1 and 0! ∶= 1. For 𝑎 = 0, this power series is
also called Maclaurin series, i.e.,

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)1! 𝑥 + 𝑓″(0)2! 𝑥2 + 𝑓(3)(0)3! 𝑥3 +⋯ = ∞􏾜𝑛=0 𝑓(𝑛)(0)𝑛! 𝑥𝑛. (A.26)

In the first order approximation,

𝑓(𝑥) ≈ 𝑓(0) + 𝑓′(0)1! 𝑥. (A.27)

Thus, for 𝑓(𝑥) = √𝑐 + 𝑥, it is implied that 𝑓′(𝑥) = 12√𝑐+𝑥 ⇒ 𝑓′(0) = 12√𝑐 , while 𝑓(0) = √𝑐.
Hence, 𝑓(𝑥) ≈ √𝑐 + 𝑥2√𝑐 .

• Exercise12.Assume that theEMenergy of a resonatorwith frequency𝜈 inside a black-body cavity
can only take discrete values (i.e., it is “quantized”) and, specifically, has the form

𝐸𝑛 = ℎ𝜈 􏿶𝑛 + 12􏿹 , 𝑛 = 0, 1, 2, 3, … (A.28)

instead of the form 𝐸𝑛 = ℎ𝜈𝑛, 𝑛 = 0, 1, 2, 3, … that Planck assumed. Find how is the energy den-
sity per unit frequency of EM black-body radiation at thermal equilibrium, 𝜌(𝜈, 𝑇) (units J

m3Hz
),

is modified relative to the Planck’s law (Eq. 2.7).

• Exercise 13. Calculate the wavelength, 𝜆0, at which the Planck’s law in the form 𝜌(𝜆, 𝑇) displays
amaximum, assuming that we can approximate as black bodies: (1) the human body with temper-
ature 𝜃 ≈ 36.6 oC, (2) the Sun’s photosphere, with “effective temperature” 𝑇 ≈ 5800 K, and (3)
the photosphere of the Altair star, with “effective temperature” 𝑇 ≈ 7000 - 8500 K.
Solution of Exercise 13.
(1) 𝜆0 ≈ 9355.2 nm≈ 9.3552 𝜇m, i.e., in the infrared (IR).
(2) 𝜆0 ≈ 500 nm, i.e., in green, while yellow is in≈ 570-590 nm.
(3) 𝜆0 ≈ 414 έως 341 nm, i.e., in the violet - ultraviolet.
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• Exercise 14. Assume that instead of Planck’s law in the form 𝜌(𝜆, 𝑇) of Eq. 2.18, the −1 in the
denominator was missing, i.e., we had the respectiveWien’s law. Prove that in such case, theWien’s
displacement law would be 𝜆0𝑇 = ℎ𝑐5𝑘𝐵 .

• Exercise 15. For the𝜆0 and 𝜈0 or Eqs. 2.101 and 2.98, prove that𝜆0𝜈0 ≈ 0.568𝑐, while, if instead
of the Planck’s law in the forms 𝜌(𝜈, 𝑇) and 𝜌(𝜆, 𝑇), the Wien’s expressions held, i.e., if −1 in the
denominator was missing, we would have 𝜆0𝜈0 = 35𝑐.

• Exercise 16. From the distribution of Planck’s law,𝜌(𝜈, 𝑇), derive the distribution𝜌(𝜔, 𝑇), where𝜔 = 2𝜋𝜈 is the angular frequency, i.e., prove that

𝜌(𝜔, 𝑇) = ℏ𝜋2𝑐3 𝜔3𝑒 ℏ𝜔𝑘B𝑇 − 1. (A.29)

• Exercise 17.Prove Eqs. 2.66, 2.67, 2.68, as well as Eq. 2.69, which result by separating the variables𝑥, 𝑦, 𝑧, of 𝑟⃗. These proofs were omitted in the main text, for brevity.
Solution of Exercise 17. We separate the variables 𝑥, 𝑦, 𝑧, of 𝑟⃗. In Eq. 2.65

∇2𝐸⃗𝑟⃗ + 𝜔2𝑐2 𝐸⃗𝑟⃗ = 0⃗
we look for solutions of the form 𝐸⃗𝑟⃗(𝑥, 𝑦, 𝑧) = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)𝑒̂,
where 𝑒̂ defines the polarization, i.e., the orientation of 𝐸⃗. Thus,

𝑌𝑍𝑑2𝑋𝑑𝑥2 + 𝑋𝑍𝑑2𝑌𝑑𝑦2 + 𝑋𝑌𝑑2𝑍𝑑𝑧2 + 𝜔2𝑐2 𝑋𝑌𝑍 = 0 ⇒
1𝑋 𝑑2𝑋𝑑𝑥2􏿋􏻰􏻰􏿌􏻰􏻰􏿍𝑓(𝑥)

+ 1𝑌 𝑑2𝑌𝑑𝑦2􏿋􏻰􏻰􏿌􏻰􏻰􏿍𝑔(𝑦)
+ 1𝑍 𝑑2𝑍𝑑𝑧2􏿋􏻰􏿌􏻰􏿍ℎ(𝑧)

+𝜔2𝑐2 = 0
We find that three functions which depend on different variables have a constant sum. Hence, we
can assume that each one of them is equal to a constant. We denote these constants by −𝑘2𝑥, −𝑘2𝑦,−𝑘2𝑧 , respectively. Thus, Eq. 2.69 occurs

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 = 𝜔2𝑐2 ,
but also 1𝑋 𝑑2𝑋𝑑𝑥2 we set= −𝑘2𝑥 1𝑌 𝑑2𝑌𝑑𝑦2 we set= −𝑘2𝑦 1𝑍 𝑑2𝑍𝑑𝑧2 we set= −𝑘2𝑧 ⇒

𝑑2𝑋𝑑𝑥2 + 𝑘2𝑥𝑋 = 0 𝑑2𝑌𝑑𝑦2 + 𝑘2𝑦𝑌 = 0 𝑑2𝑍𝑑𝑧2 + 𝑘2𝑧𝑍 = 0
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Hence, we have solutions of the form𝑋(𝑥) = 𝐴1 sin(𝑘𝑥𝑥) + 𝐵1 cos(𝑘𝑥𝑥) 1𝑌(𝑦) = 𝐴2 sin􏿴𝑘𝑦𝑦􏿷 + 𝐵2 cos􏿴𝑘𝑦𝑦􏿷 2𝑍(𝑧) = 𝐴3 sin(𝑘𝑧𝑧) + 𝐵3 cos(𝑘𝑧𝑧) 3
Consequently,𝐸⃗𝑟⃗(𝑥, 𝑦, 𝑧) = (𝑒̂𝑥 + 𝑒̂𝑦 + 𝑒̂𝑧)[𝐴1 sin(𝑘𝑥𝑥) + 𝐵1 cos(𝑘𝑥𝑥)][𝐴2 sin􏿴𝑘𝑦𝑦􏿷 + 𝐵2 cos􏿴𝑘𝑦𝑦􏿷][𝐴3 sin(𝑘𝑧𝑧) + 𝐵3 cos(𝑘𝑧𝑧)].𝑒̂ has generally a random orientation, so we analyze its componentis in the 𝑥, 𝑦, 𝑧 axes, i.e., 𝑒̂ =𝑒̂𝑥 + 𝑒̂𝑦 + 𝑒̂𝑧. Thus,𝐸𝑥 will be some first combination of the sin and cos contained in 1 , 2 , 3𝐸𝑦 will be some second combination of the sin and cos contained in 1 , 2 , 3 , and𝐸𝑧 will be some third combination of the sin and cos contained in 1 , 2 , 3
These combinations must be such, that𝐸𝑥 becomes zero for 𝑦 = 0 and 𝑧 = 0𝐸𝑦 becomes zero for 𝑥 = 0 and 𝑧 = 0𝐸𝑧 becomes zero for 𝑥 = 0 and 𝑦 = 0.
So, Eqs. 2.66, 2.67, and 2.68 occur.𝐸𝑥 = 𝐸𝑥0 cos(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑦 = 0 and 𝑧 = 0𝐸𝑦 = 𝐸𝑦0 sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑥 = 0 and 𝑧 = 0𝐸𝑧 = 𝐸𝑧0 sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒ becomes zero for 𝑥 = 0 and 𝑦 = 0

• Exercise 18. Prove Eq. 2.71 as well as Eqs. 2.72, 2.73, 2.74.These proofs were omitted in the main
text, for brevity.
Solution of Exercise 18. From the (1st’) Maxwell’s equation, we have∇⃗ ⋅ 𝐸⃗ = 0 ⇒ 􏿶 𝜕𝜕𝑥, 𝜕𝜕𝑦, 𝜕𝜕𝑧􏿹 ⋅ (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) = 0 ⇒ 𝜕𝐸𝑥𝜕𝑥 + 𝜕𝐸𝑦𝜕𝑦 + 𝜕𝐸𝑧𝜕𝑧 = 0 ⇒− 𝐸𝑥0𝑘𝑥 sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡+− 𝐸𝑦0𝑘𝑦 sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡+− 𝐸𝑧0𝑘𝑧 sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 = 0 ⇒𝑘𝑥𝐸𝑥0 + 𝑘𝑦𝐸𝑦0 + 𝑘𝑧𝐸𝑧0 = 0,which is Eq. 2.71.
From the (3rd’) Maxwell’s equation, ∇⃗ × 𝐸⃗ = −𝜕𝐵⃗𝜕𝑡 ⇒|||

̂𝑖 𝑗̂ 𝑘̂𝜕𝜕𝑥 𝜕𝜕𝑦 𝜕𝜕𝑧[𝐸𝑥0 cos(𝑘𝑥𝑥) [𝐸𝑦0 cos􏿴𝑘𝑦𝑦􏿷 [𝐸𝑧0 cos(𝑘𝑧𝑧)
sin􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑧𝑧)] sin(𝑘𝑥𝑥) sin(𝑘𝑧𝑧)] sin(𝑘𝑥𝑥) sin􏿴𝑘𝑦𝑦􏿷]

||| 𝑒−𝑖𝜔𝑡 = − 􏿶𝜕𝐵𝑥𝜕𝑡 ,
𝜕𝐵𝑦𝜕𝑡 , 𝜕𝐵𝑧𝜕𝑡 􏿹 ⇒
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−𝜕𝐵𝑥𝜕𝑡 = [𝑘𝑦𝐸𝑧0 cos(𝑘𝑧𝑧) sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 − 𝑘𝑧𝐸𝑦0 cos􏿴𝑘𝑦𝑦􏿷 sin(𝑘𝑥𝑥) cos(𝑘𝑧𝑧)]𝑒−𝑖𝜔𝑡 ⇒−𝜕𝐵𝑥𝜕𝑡 = [𝑘𝑦𝐸𝑧0 − 𝑘𝑧𝐸𝑦0] sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒𝐵𝑥 = [𝑘𝑦𝐸𝑧0 − 𝑘𝑧𝐸𝑦0]𝑖𝜔 sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 ⇒𝐵𝑥 = 𝑖𝜔 [𝑘𝑧𝐸𝑦0 − 𝑘𝑦𝐸𝑧0] sin(𝑘𝑥𝑥) cos􏿴𝑘𝑦𝑦􏿷 cos(𝑘𝑧𝑧)𝑒−𝑖𝜔𝑡 which is Eq. 2.72.

Similar considerations hold to obtain Eqs. 2.73 and 2.74. Being somewhat “creative”, in the tempo-
ral integration, for 𝑡 = 0, we set 𝐵⃗(0) = 0⃗.

• Exercise 19.Checkwhether 𝐵⃗ (Eq. 2.72, 2.73, 2.74) satisfies the SBC* on thewalls, as well as what
does occur from the (2nd’) Maxwell’s equation, ∇⃗ ⋅ 𝐵⃗ = 0, and the (4th’) Maxwell’s equation,∇⃗ × 𝐵⃗ = 𝜀0𝜇0𝜕𝐸⃗𝜕𝑡 .

• Exercise 20 (Essentially this is a review of the theory) Assuming the Plank’s law as known

𝜌(𝜈, 𝑇) = 8𝜋ℎ𝑐3 𝜈3𝑒 ℎ𝜈𝑘B𝑇 − 1,
prove the two formulations of the Stefan-Boltzmann law
(a) for the energy density, 𝜚(𝑇), and
(b) for the intensity of radiation, 𝐼.
(c) Prove Planck’s law in the form 𝜌(𝜆, 𝑇).
(d) What are the SI units of 𝜌(𝜈, 𝑇), 𝜌(𝜆, 𝑇), 𝜚(𝑇), 𝐼?
It is given that

∞∫0 𝑥3𝑒𝑥−1𝑑𝑥 = 𝜋415 .
A.3 Exercises for Chapter 3:Interaction mechanisms between a photon and a two-levelsystem (2LS)

• Exercise 1. Let us consider the (Stimulated) Absorption and focus on the consumption of en-
ergy and momentum. Additionally, let us suppose that the atom is initially motionless. In which
wavelength𝜆 region does the kinetic energy of the atom, after absorbing the photon, become large
enough (let us say, equal to 0.05 of the absorbed photon energy) so that it could not be ignored in
the energy balance? Consider as given: the proton mass𝑚𝑝 = 1.672621777(74) × 10−27 kg, the
Planck’s constant ℎ = 6.62606957(29)× 10−34 Js, the speed of light in vacuum 𝑐 = 2.99792458×
108 m/s. Assume, for simplicity, that the atomic mass𝑚at ≈ 𝑍𝑚𝑝 + 𝑁𝑚𝑛 + 𝑍𝑚𝑒 ≈ 𝐴𝑚𝑝.

• Exercise2.Let us compare the probabilites for spontaneous emission and stimulated emission.Do
we need small or large frequencies, small or large temperatures, if increased coherence is desired?
Judging by the comparison of the above, is it easier to create a coherent beam in the radiowaves or
in the infrared?

• Exercise 3. We want the probability for spontaneous emission to be equal to the probability for
stimulated emission. In what temperature is this possible in the FM radiowaves (e.g., in frequency
100 MHz) and in the ultraviolet (e.g., in wavlength 200 nm)?
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• Exercise 4. The dalton (Da) or unified atomic mass unit, 𝑢 = 1.660538921 (073) ×10−27 kg, is
defined as the 1/12 of the atomicmass of themost common carbon isotope (126C). Let us consider
the 126C atom, which contains 6 protons, 6 neutrons and 6 electrons. Consider as given: 𝑚𝑝 =1.007276466812(90) 𝑢, 𝑚𝑛 = 1.00866491600(43) 𝑢, 𝑚𝑒 = 5.4857990946(22) × 10−4 𝑢. If
we add 6 𝑚𝑝 + 6 𝑚𝑛 + 6 𝑚𝑒, we find approximately 12.099 𝑢, and not 12 𝑢. This is due to the
“mass defect”, i.e., the fact that a part of the resting mass is used to bind the protons, neutrons and
electrons together to form the atom. Let us consider the (Stimulated) Absorption and focus on
the conservation of energy and momentum. Additionally, let us suppose that the atom is initially
motionless. In which wavelength 𝜆 region does the kinetic energy of the atom, after absorbing the
photon, become large enough (let us say, a tenth of the absorbed photon energy) so that it could
not be ignored in the energy balance? ℎ = 6.62606957(29) × 10−34 Js, 𝑐 = 2.99792458 × 108
m/s are also given.

• Exercise 5. Suppose an ensemble of hydrogen atoms in thermodynamic equilibrium and that the
eigenenergies of each atom are given by the well-knownBohr’s relationship𝐸𝑛 ≈ −13.6 eV𝑛2 . Assume
that the temperature is (a) 4.2 K and (b) 300K.TheBoltzmann constant is 𝑘𝐵 = 1.3806488(13)×10−23 J/K = 8.6173324(78)×10−5 eV/K.
(A)Compare the number of atoms in the 1st Bohr orbit with the number of atoms in the 2nd orbit.
Continue in pairs up to the 5th orbit (the pairs are 1st-2nd, 2nd-3rd, 3rd-4th, 4th-5th).
(B) Compare the number of atoms that jump from the 1st to the 2nd orbit in time 𝑑𝑡 with a stim-
ulated process, 𝑑𝑁st1→2, with the number of atoms the drop from the 2nd to the 1st orbit in time𝑑𝑡 with a stimulated process, 𝑑𝑁st2→1. Continue in pairs up to the 5th orbit (the pairs are 1st-2nd,
2nd-3rd, 3rd-4th, 4th-5th). Suppose that 𝐵12 = 𝐵21.

• Exercise 6. Consider a quantum dot of rectangular parallelepiped shape with a core of GaAs with
dimensions 8 × 4 × 4 nm and a shell of Al𝑥Ga1−𝑥As, where the molar fraction of Al, 𝑥, is such that
the discontinuity of the conduction bands between the two materials is𝑉𝑏 = 224 meV. Consider
the conduction band effectivemass as approximately equal to the one ofGaAs, i.e.,𝑚∗ ≈ 0.067𝑚𝑒.
(A) How many energy levels does this quantum dot possess? If you cannot prove the above, con-

sider as known that a quantum well of width 𝐿 contains 𝑛 = 1 + Int 􏿰√2𝑚∗𝑉𝑏𝐿2𝜋2ℏ2 􏿳 bound energy

states [3]. Int[𝜉] is the integer part of 𝜉.
(B) What is the wavelength to which the jump from the ground to the first excited level of this
quantum dot corresponds?
(C) Furthermore, assume a large ensemble of such quantum dots with one electron at each, and
that the Boltzmann statistics with equal statistical weights is adequate to describe the energy level
populations.The temperature is (a) 4.2 K and (b) 300K. Compare the number of quantum dots at
which the electron is on the ground level with the number of quantum dots at which the electron
is on the first excited level.
(D) Now, consider that all this ensemble of quantum dots is subject to an appropriate external
EM field. Compare the number of quantum dots with electrons that jump from the ground to the
first excited level in time 𝑑𝑡 with a stimulated process, 𝑑𝑁st1→2, with the number of quantum dots
with electrons that drop from the first excited level to the ground level with a stimulated process,𝑑𝑁st2→1. The reduced Planck’s constant Planck ℏ = 1.054571726(47) × 10−34 Js, the elementary
charge 𝑒 = 1.602176565(35) × 10−19 C, the electron mass 𝑚𝑒 = 9.10938291(40) × 10−31 kg,
the Boltzmann constant 𝑘𝐵 = 1.3806488(13) × 10−23 J/K= 8.6173324(78) × 10−5 eV/K, and,
generally, any physical constant you might need, are given.

• Exercise 7. Vindicate Figure 3.7, where the Maxwell - Boltzmann (ΜΒ), Fermi - Dirac (FD), and
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Bose -Einstein (BE) statistics are compared. Inotherwords, draw the conciseEquation 3.20. Study
the functions, their important points, their limits 𝑥 → ±∞ and 𝑥 → 0± etc. We have defined the
continuous variable 𝑥 = 𝛽(𝐸 − 𝜇) and we are interested in the average number of particles 𝑛 as a
function of 𝑥.

• Exercise 8. (α΄) Show that in room temperature, 𝑇 = 300 K, the quantum concentration, 𝑛𝑄, is≈ 1000 nm−3 for protons and≈ 0.015 nm−3 for electron. (β΄)Thedensity of copper is≈ 9 g cm−3,
its atomicmass is≈ 63.5, and in its solid form, each copper atom has one “free electron”. Show that
the copper atoms cannot be described classically, since their concentration, 𝑛, is much larger than
the quantum concentration, 𝑛𝑄.

A.4 Exercises for Chapter 4: Continuous and discrete spectrum.

• Exercise 1. Prove that in the case of quasi-one-dimensional electron gas, with free states along
the direction 𝑥 and bound states along the directions 𝑦, 𝑧, the envelope functions are given by the
expression 𝜑𝑖,𝑗,𝑘𝑥 (⃗𝑟) = 1√𝐿𝑥 𝑒𝑖𝑘𝑥𝑥𝜐𝑗(𝑦)𝜁𝑖(𝑧) (A.30)

and the relevant eigenenergies by the expression

𝐸𝑖,𝑗,𝑘𝑥 = 𝐸𝑖 + 𝐸𝑗 + ℏ2𝑘2𝑥2𝑚∗ , (A.31)

where 𝑘𝑥 is «continuous» and 𝑖, 𝑗 are discrete indices.

• Exercise 2.Prove that in the case of three-dimensional electron gas, with free states along all direc-
tions 𝑥, 𝑦, 𝑧, the envelope functions are given by the expression

𝜑𝑖,𝑗,𝑘𝑥 (⃗𝑟) = 1√𝑉 𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑦𝑦𝑒𝑖𝑘𝑧𝑧, (A.32)

where𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧, and the relevant eigenenergies by the expression

𝐸𝑘𝑥,𝑘𝑦,𝑘𝑧 = ℏ2(𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧)2𝑚∗ = ℏ2𝑘22𝑚∗ , (A.33)

where 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are «continuous» indices.

A.5 Exercises for Chapter 5: Semiclassical approximation I.

• Exercise 1. Consider the equations occurring by the Rabi equations after the Rotating Wave Ap-
proximation (RWA), i.e., 𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖𝐸0𝒫2ℏ 𝑒−𝑖(Ω−𝜔)𝑡

𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖𝐸0𝒫2ℏ 𝑒𝑖(Ω−𝜔)𝑡
We want to solve them under the initial conditions𝐶1(0) = 1, 𝐶2(0) = 0.
(a’) Perform the transformation

𝐶1(𝑡) = 𝒞1(𝑡)𝑒− 𝑖(Ω−𝜔)𝑡2
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𝐶2(𝑡) = 𝒞2(𝑡)𝑒 𝑖(Ω−𝜔)𝑡2
and prove that the following system of differential equations occurs:

􏿰 ̇𝒞1(𝑡)̇𝒞2(𝑡)􏿳 =
Ϻϻϻϻϻϼ−𝑖Δ2 𝑖ΩR2𝑖ΩR2 𝑖Δ2

ϽϾϾϾϾϿ 􏿰𝒞1(𝑡)𝒞2(𝑡)􏿳 .
We have defined the detuning asΔ ∶= 𝜔 − Ω and the Rabi frequency asΩR ∶= 𝐸0𝒫ℏ .
(b’) Define the vector 𝑥⃗(𝑡) = 􏿰𝒞1(𝑡)𝒞2(𝑡)􏿳
and the matrix ̃𝒜 = Ϻϻϻϻϻϼ−𝑖Δ2 𝑖ΩR2𝑖ΩR2 𝑖Δ2

ϽϾϾϾϾϿ = −𝑖A = −𝑖 Ϻϻϻϻϻϼ Δ2 −ΩR2−ΩR2 −Δ2
ϽϾϾϾϾϿ

so that the system of differential equations becomeṡ⃗𝑥(𝑡) = ̃𝒜 𝑥⃗(𝑡)
Try solutions of the form 𝑥⃗(𝑡) = 𝑣⃗𝑒𝜆̃𝑡,
and show that, after all, we have to solve the eigenvalue problem

A𝑣⃗ = 𝜆𝑣⃗
όποϿ 𝜆̃ = −𝑖𝜆.
(c’) Solve the problem forΔ = 0.
(d’) Solve the problem forΔ ≠ 0.
(e’) Compare the maximum transfer percentage and the period of the oscillations that occur forΔ = 0 andΔ ≠ 0.

• Exercise 2.Consider the case in which Eq. 5.103 holds, and specifically that the probability to find
the electron at the upper level is

𝑃2(𝑡) = |𝐶2(𝑡)|2 = Ω2
R4 sin2 􏿴Δ𝑡2 􏿷􏿴Δ𝑡2 􏿷2 𝑡2.

Given the definition of the Rabi frequency,ΩR = 𝒫ℰ0ℏ (see Eq. 5.50) and assuming we are at
resonance, estimate the time needed so that 𝑃2(𝑡) = 1. The magnitude of the dipole moment,𝒫 ,
is of the order of 𝑒𝑎0, where 𝑒 is the elementary charge≈ 1.602× 10−19 C and 𝑎0 ≈ 0.529 Å is the
Bohr radius. Consider three cases for the magnitude of the electric field; in specific, 103, 105 and108 V/m. The reduced Planck’s constant is known: ℏ ≈ 1.054 × 10−34 Js.

Solution of Exercise 2.
If we are at resonance, when Δ ∶= 𝜔 − Ω = 0, and we want the probability to become equal to
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unity, then, if we set 𝑥 ∶= Δ𝑡2 ⇒ 𝑥 = 0 ⇒ sin2 𝑥𝑥2 → 1. Thus, it is implied that 𝑡 = 2ℏ𝒫ℰ0 . In
particular,

Ε0 = 103 V/m ⇒ 𝑡 = 2 × 1.054 × 10−34 Js1.6 × 10−19 C 0.529 × 10−10 m 103 V/m
≈ 2.5 × 10−8 s = 25 ns

Ε0 = 105 V/m ⇒ 𝑡 = 2 × 1.054 × 10−34 Js1.6 × 10−19 C 0.529 × 10−10 m 105 V/m
≈ 2.5 × 10−10 s = 0.25 ns

Ε0 = 108 V/m ⇒ 𝑡 = 2 × 1.054 × 10−34 Js1.6 × 10−19 C 0.529 × 10−10 m 108 V/m
≈ 2.5 × 10−13 s = 0.25 ps

• Exercise 3. Using the program Oscillations.m (Code C.8 in Appendix C), create a graphical rep-
resentation of oscillations for a two-level system for which it holds that |Δ| = 3ΩR.

• Exercise 4. Create a program analogous to Oscillations.m (Code C.8 in Appendix C) for a three-
level system, and create a graphical representation of oscillations within it in the caseΩR = Ω′

R =1,Δ = 0.
• Exercise 5.Two-level system in the semiclassical approach and dipole approximation.The follow-

ing equations, before the rotating wave approximation, are given

𝐶̇1(𝑡) = 𝐶2(𝑡) 𝑖ΩR2 􏿮𝑒𝑖Δ𝑡 + 𝑒−𝑖Σ𝑡􏿱 , (A.34)

𝐶̇2(𝑡) = 𝐶1(𝑡) 𝑖ΩR2 􏿮𝑒−𝑖Δ𝑡 + 𝑒𝑖Σ𝑡􏿱 . (A.35)

(a) Explain and define the symbols,ΩR,Δ,Σ,𝐶1(𝑡),𝐶2(𝑡).
(b) Let’s suppose that the magnitude of the perturbation is large so that Δ and Σ are negligible
compared toΩR. How will Eqs. (A.34)-(A.35) be simplified?
For the simplified equations:
(c) Find𝐶1(𝑡),𝐶2(𝑡)with initial conditions𝐶1(0) = 1, 𝐶2(0) = 0.
(d) Calculate the probabilities of electron presence at the levels, 𝑃1(𝑡) and 𝑃2(𝑡), as well as the
period, 𝑇R, and the maximum transfer percentage,𝐴R, of the Rabi oscillations.
(e) Calculate the mean transfer rate, 𝑘 = ⟨𝑃2(𝑡)⟩𝑡2,mean

, where ⟨𝑃2(𝑡)⟩ is the mean value of the electron
presence probability at level 2, and 𝑡2,mean is the required time so that𝑃2(𝑡) reaches for the first time
its mean value, having initially placed the electron at level 1.

• Exercise 6. Quantum dot and the variables are separable. Along axes 𝑥 and 𝑦 we have quantum
wells which hold only one level, whereas, along the 𝑧 axis we have a simple harmonic oscillator,
whose levels are energetically equidistant at separation ℏΩ. We focus on the lower three levels,
let’s call them 𝑘 = 1, 2, 3 (𝑛 = 0, 1, 2). Thus, we have a three-level system. Suppose semiclassical
approach with electric field along the 𝑧 axis. The eigenfunctions along the 𝑧 axis are

𝑍𝑛(𝑧) = 𝑢𝑛(𝑧) exp 􏿶− 𝑧22𝑎2 􏿹 , (A.36)
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where 𝑎 = 􏿵 ℏ𝑚Ω􏿸1/2 and the following are given

𝑢0(𝑧) = 􏿶 1𝑎√𝜋􏿹1/2 , (A.37)

𝑢1(𝑧) = 􏿶 1𝑎√𝜋􏿹1/2 􏿯2 􏿵𝑧𝑎􏿸􏿲 , (A.38)

𝑢2(𝑧) = 􏿶 18𝑎√𝜋􏿹1/2 􏿰2 − 4 􏿵𝑧𝑎􏿸2􏿳 . (A.39)

Prove that the (cyclic) Rabi frequencis,ΩR andΩ′
R as well as the off-diagonal dipole moment ma-

trix elements𝒫 and𝒫′, between levels 12 and 23, respectively, satisfy
(a) 𝒫 = −2𝑒𝑎√𝜋 􏾙∞

−∞ 𝑑𝜇 𝜇2 𝑒−𝜇2, (A.40)

(b) 𝒫′ = −√2𝑒𝑎√𝜋 􏾙∞
−∞ 𝑑𝜇 𝜇2 𝑒−𝜇2 + √2𝑒𝑎√𝜋 2􏾙∞

−∞ 𝑑𝜇 𝜇4 𝑒−𝜇2, (A.41)

and because it is given that 􏾙∞
−∞ 𝑑𝜇 𝜇2 𝑒−𝜇2 = √𝜋2 (A.42)

􏾙∞
−∞ 𝑑𝜇 𝜇4 𝑒−𝜇2 = 3√𝜋4 (A.43)

we have finally
(c) |ΩRΩ′

R
| = | 𝒫𝒫′ | = 1√2. (A.44)

A.6 Exercises for Chapter 6: Semiclassical approximation II.

There are no exercises in this chapter.

A.7 Exercises for Chapter 7: Allowed and forbidden optical transitions.

• Exercise 1. Prove that, e.g. at the Hydrogen atom, the electric force is much larger than the gravi-
tational force. Find, actually, how many orders of magnitude larger it is.

• Exercise 2. Find the quantum number 𝑛 that characterizes the movement of the Earth around the
Sun, within the Bohr’s model. Consider as known: Earth’s mass,𝑀 = 6 ⋅ 1024 kg, orbital radius of
Earth,𝑅 = 1.5 ⋅ 1011 m, linear velocity of Earth, 𝑣 = 3 ⋅ 104 m/s.

• Exercise 3. Show that the constant𝐴 in the azimuthal functionΦ𝑚ℓ(𝜙) = 𝐴𝑒𝑖𝑚ℓ𝜙 can be chosen
as 1√2𝜋 so that the function is normalized.Moreover, show that for𝑚′ℓ ≠ 𝑚ℓ, the functionsΦ𝑚ℓ(𝜙)
andΦ𝑚′ℓ(𝜙) are orthogonal.
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• Exercise 4. Show that Θ20(𝜃) = √104 (3 cos2 𝜃 − 1) solves the polar equation 7.25 and that it is
normalized.

• Exercise 5. Consider as given the function 𝑅10(𝑟) = 2𝑎3/20 𝑒− 𝑟𝑎0 and Eq. 7.26 and find the energy 𝐸1
of hydrogen.

• Exercise6. Show that𝑅10(𝑟) = 2𝑎3/20 𝑒−𝑟𝑎0 and𝑅21 = 12√6𝑎3/20 𝑟𝑎0 𝑒− 𝑟2𝑎0 solve the radial equation (7.26)

and that they are normalized. Consider as known:􏾙∞
0 d𝜌𝜌𝑛𝑒−𝛾𝜌 = 𝛾−(𝑛+1)𝑛!, 𝑛 = 1, 2, 3, … , 𝛾 > 0.

• Exercise 7.Compare the probability densities to find the electron in the 1𝑠 orbital of the hydrogen
atom at distances 3𝑎00 , 𝑎0 and 𝑎02 .

• Exercise 8. Find the distance at which the probability density to find the electron at the 1𝑠 orbital
of the hydrogen atom becomes maximum.

• Exercise 9. Find the average distance of the electron in the 1𝑠 orbital of hydrogen. Consider as
known: 􏾙∞

0 d𝜌𝜌𝑛𝑒−𝛾𝜌 = 𝛾−(𝑛+1)𝑛!, 𝑛 = 1, 2, 3, … , 𝛾 > 0.
• Exercise 10. Show that the substitution 𝑟⃗ → −𝑟⃗ of a position vector is equivalent, in spherical

coordinates, to the substitutions 𝑟 → 𝑟,𝜃 → 𝜋−𝜃,𝜑 → 𝜋+𝜑, which were used in Section 7.7.
Solution of Exercise 10:
Let us consider, without any loss of generality, the point marked in Figure 7.9, which lies on the
first octant. Thus, 𝜃 ∈ [0, 𝜋/2],𝜑 ∈ [0, 𝜋/2].
The substitution 𝑟⃗ → −𝑟⃗ ≡ 𝑟′ is equivalent to𝑥′ = −𝑥 ⇔ 𝑟′ sin𝜃′ cos𝜑′ = −𝑟 sin𝜃 cos𝜑,𝑦′ = −𝑦 ⇔ 𝑟′ sin𝜃′ sin𝜑′ = −𝑟 sin𝜃 sin𝜑,𝑧′ = −𝑧 ⇔ 𝑟′ cos𝜃′ = −𝑟 cos𝜃.
However, 𝑟′ = √𝑥′2 + 𝑦′2 + 𝑧′2 = √(−𝑥)2 + (−𝑦)2 + (−𝑧)2 = √𝑥2 + 𝑦2 + 𝑧2
Thus, 𝑟′ = 𝑟 , and the above relations become

sin𝜃′ cos𝜑′ = − sin𝜃 cos𝜑,
sin𝜃′ sin𝜑′ = − sin𝜃 sin𝜑,

cos𝜃′ = − cos𝜃.
From the third relation, given that𝜃, 𝜃′ ∈ [0, 𝜋], it follows that 𝜃′ = 𝜋 − 𝜃 . Additionally, divid-
ing the first two relations by parts yields

tan𝜑′ = tan𝜑
Hence, given that𝜑,𝜑′ ∈ [0, 2𝜋], the twopossible solutions are𝜑′ = 𝜑 and𝜑′ = 𝜋+𝜑.However,
substituting the former solution to any of the first two relations, it follows that sin𝜃′ = − sin𝜃,
which, for 𝜃, 𝜃′ ∈ [0, 𝜋] is absurd. Therefore, 𝜑′ = 𝜋 + 𝜑 .
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• Exercise 11. Show that the below expression for the position vector,𝑟⃗ = 𝑟2 sin𝜃[(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜑 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜑] + 𝑟 cos𝜃 𝑒̂𝑧,
which was used in Section 7.7, holds.

Solution of Exercise 11:

(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜑 = (𝑒̂𝑥 − 𝑖𝑒̂𝑦)(cos𝜑 + 𝑖 sin𝜑) = 𝑒̂𝑥 cos𝜑 +✘✘✘✘𝑒̂𝑥𝑖 sin𝜑 −✘✘✘✘✘𝑖𝑒̂𝑦 cos𝜑 + 𝑒̂𝑦 sin𝜑(𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜑 = (𝑒̂𝑥 + 𝑖𝑒̂𝑦)(cos𝜑 − 𝑖 sin𝜑) = 𝑒̂𝑥 cos𝜑 −✘✘✘✘𝑒̂𝑥𝑖 sin𝜑 +✘✘✘✘✘𝑖𝑒̂𝑦 cos𝜑 + 𝑒̂𝑦 sin𝜑⇒ [… ] = 2𝑒̂𝑥 cos𝜑 + 2𝑒̂𝑦 sin𝜑 ⇒ 𝑟2 sin𝜃[… ] + 𝑟 cos𝜃𝑒̂𝑧 == 𝑟 cos𝜑 sin𝜃𝑒̂𝑥 + 𝑟 sin𝜑 sin𝜃𝑒̂𝑦 + 𝑟 cos𝜃𝑒̂𝑧 = 𝑥𝑒̂𝑥 + 𝑦𝑒̂𝑦 + 𝑧𝑒̂𝑧 = 𝑟⃗
• Exercise 12. Given that the Einstein coefficients are given by Eqs. 5.99, 5.100, 5.101

𝐵12 = 𝒫2𝜋6ℏ2𝜀0 ,𝐴21𝐵21 = 8𝜋 ℎ 𝜈3𝑐3 ,𝐵12 = 𝐵21,
calculate them for the atomic transitions 100 → 210 and 100 → 21 ± 1 of the hydrogen atom.
Assume that we are at resonance.

Solution of Exercise 12:
Calculations in Section 7.7 show that

𝒫100210 = −215/235 𝑒𝑎0𝑒̂𝑧 ⇒ |𝒫100210| = 215/235 𝑒𝑎0𝒫10021±1 = −2735 (𝑒̂𝑥 ± 𝑖𝑒̂𝑦)𝑒𝑎0 ⇒ |𝒫10021±1| = 215/235 𝑒𝑎0
Hence, we can compactly write 𝒫 = 215/235 𝑒𝑎0.
Therefore, 𝒫 ≈ 215/235 1.602 × 10−19C ⋅ 0.529 × 10−10 m ≈ 0.6313 × 10−29 Cm, since the

elementary charge 𝑒 ≈ 1.602× 10−19 C and the Bohr radius 𝑎0 ≈ 0.529 Å. Hence,

𝐵 = 𝐵12 = 𝐵21 ≈ 0.02121 × 1022m3
Js2

The vacuum permittivity is 𝜀0 ≈ 8.854 × 10−12 F/m and the reduced Planck constant is ℏ ≈1.054 × 10−34 Js.
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Since we are at resonance, Δ ∶= 𝜔 − Ω = 0 ⇒ 𝜔 = Ω. So, let us calculateΩ. For the hydrogen
energy levels, we have 𝐸𝑛 = −13.6 𝑒𝑉/𝑛2. Thus, 𝐸1 = −13.6 eV, 𝐸2 = −3.4 eV ⇒ 𝐸2 − 𝐸1 =10.2 eV ⇒ Ω = 𝐸2 − 𝐸1ℏ ≈ 15.5 × 1015 Hz = 15.5 PHz

𝐴21 = 8𝜋 ℎ 𝜈3𝑐3 𝐵 = 8𝜋 ℏ3 𝜔3ℎ2𝑐3 𝐵 = 2 ℏΩ3𝜋𝑐3 𝐵 ≈ Ω3𝒫23𝑐3ℏ𝜀0 ≈ 1.963 × 109 Hz

• Exercise13.Calculate thematrix elements and simpleoverlaps ⟨100| 𝑟⃗ |100⟩ and ⟨100|100⟩, ⟨100| 𝑟⃗ |200⟩
and ⟨100|200⟩, ⟨200| 𝑟⃗ |200⟩ and ⟨200|200⟩, of Section 7.7.

Solution of Exercise 13:

⟨100| 𝑟⃗ |100⟩ = (𝜋𝑎30)−1/2(𝜋𝑎30)−1/2 􏾙∞
0 􏾙𝜋

0 􏾙2𝜋
0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜙 𝑒− 2𝑟𝑎0 𝑟􏿻sin𝜃2 􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜙+ (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜙􏿲 + 𝑒̂𝑧 cos𝜃􏿾

= 𝑎40𝜋𝑎30 􏾙∞
0 􏿵 𝑟𝑎0 􏿸3 𝑒− 2𝑟𝑎0 𝑑􏿵 𝑟𝑎0 􏿸􏾙𝜋

0 􏾙2𝜋
0 sin𝜃𝑑𝜃𝑑𝜙􏿻sin𝜃2 􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜙

+ (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜙􏿲 + 𝑒̂𝑧 cos𝜃􏿾
= 𝑎0𝜋 􏾙∞

0 𝑞3𝑒−2𝑞𝑑𝑞􏿻􏾙𝜋
0 𝑑𝜃sin2 𝜃2 􏾙2𝜋

0 𝑑𝜙􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜙 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜙􏿲
+􏾙𝜋

0 𝑑𝜃 sin𝜃 cos𝜃 𝑒̂𝑧 􏾙2𝜋
0 𝑑𝜙􏿾

􏾙∞
0 𝑞3𝑒−2𝑞􏿅𝛾=2,𝑛=3 𝑑𝑞 = 2−(3+1)3! =

2 ⋅ 324 = 323 = 38
􏾙2𝜋
0 𝑑𝜙[… ] = (𝑒̂𝑥 − 𝑖𝑒̂𝑦)􏾙2𝜋

0 𝑑𝜙 𝑒𝑖𝜙 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)􏾙2𝜋
0 𝑑𝜙 𝑒−𝑖𝜙

􏾙2𝜋
0 𝑑𝜙 𝑒±𝑖𝜙 = 􏾙2𝜋

0 𝑑𝜙 cos􏿴±𝜙􏿷 + 𝑖􏾙2𝜋
0 𝑑𝜙 sin􏿴±𝜙􏿷 =

✟✟✟✟✟✟✟✟✯0􏾙2𝜋
0 𝑑𝜙 cos𝜙 ± 𝑖

✟✟✟✟✟✟✟✯0􏾙2𝜋
0 𝑑𝜙 sin𝜙 = 0

􏾙𝜋
0 𝑑𝜃sin2 𝜃2 = 12 􏾙𝜋

0 1 − cos 2𝜃2 𝑑𝜃 = 14􏿻𝜋 −􏾙𝜋
0 cos 2𝜃􏿾 = 𝜋4􏾙𝜋

0 𝑑𝜃 sin𝜃 cos𝜃 = 12 􏾙𝜋
0 𝑑𝜃 sin 2𝜃 = 12􏿯− cos 2𝜃2 |𝜋0 = 0

Thus, ⟨100| 𝑟⃗ |100⟩ = 𝑎0𝜋 323 􏿻𝜋4 ⋅ 0 + 0 ⋅ 2𝜋􏿾 = 0, expected, since⟨100| 𝑟⃗ |100⟩ = 􏾙 (even)(odd)(even) = 0.
While, ⟨100|100⟩ = (𝜋𝑎30)−1 􏾙∞

0 􏾙𝜋
0 􏾙2𝜋

0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜙 𝑒− 2𝑟𝑎0
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= 𝑎30𝜋𝑎30 􏾙∞
0 𝑑􏿵 𝑟𝑎0 􏿸􏿵 𝑟𝑎0 􏿸2 𝑒− 2𝑟𝑎0 􏾙𝜋

0 𝑑𝜃 sin𝜃􏾙2𝜋
0 𝑑𝜙

= 1𝜋 􏾙∞
0 𝑑𝑞 𝑞2 𝑒−2𝑞􏿋􏻰􏿌􏻰􏿍𝛾=2,𝑛=2 􏿯 − cos𝜃􏿲𝜋0 ⋅ 2𝜋 = 1𝜋2−(2+1)2!(1 + 1) ⋅ 2𝜋 = 2323 = 1

This is expected, sinceΦ100(⃗𝑟) is normalized.

⟨100| 𝑟⃗ |200⟩ = (𝜋𝑎30)−1/2(32𝜋𝑎30)−1/2 􏾙∞
0 􏾙𝜋

0 􏾙2𝜋
0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜙 𝑒− 𝑟𝑎0 􏿵2 − 𝑟𝑎0 􏿸 𝑒− 𝑟2𝑎0 𝑟
􏿻sin𝜃2 􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜙 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜙􏿲 + 𝑒̂𝑧 cos𝜃􏿾

= 𝑎40𝜋𝑎304√2 􏾙∞
0 𝑑􏿵 𝑟𝑎0 􏿸􏿵 𝑟𝑎0 􏿸3 𝑒− 3𝑟2𝑎0 􏿵2 − 𝑟𝑎0 􏿸􏾙𝜋

0 􏾙2𝜋
0 sin𝜃𝑑𝜃𝑑𝜙􏿻sin𝜃2 􏿯… 􏿲 + 𝑒̂𝑧 cos𝜃􏿾

􏾙∞
0 𝑑𝑞 𝑞3 𝑒−3𝑞2 􏿵2 − 𝑞􏿸 = 2􏾙∞

0 𝑑𝑞 𝑞3 𝑒−3𝑞2􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝛾=32 ,𝑛=3

−􏾙∞
0 𝑑𝑞 𝑞4 𝑒−3𝑞2􏿋􏻰􏻰􏿌􏻰􏻰􏿍

𝛾=32 ,𝑛=4
= 2􏿵32􏿸−(3+1)3! − 􏿵32􏿸−(4+1)4!

= 2 ⋅ 2434 2 ⋅ 3 − 2535 2 ⋅ 3 ⋅ 22 = 2633 − 2834 = 􏿵43􏿸3 − 􏿵43􏿸4
􏾙𝜋
0 𝑑𝜃 sin2 𝜃2 􏾙2𝜋

0 𝑑𝜙􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜙 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜙􏿲 +􏾙𝜋
0 𝑑𝜃 sin𝜃 cos𝜃 𝑒̂𝑧 􏾙2𝜋

0 𝑑𝜙= 𝜋4 ⋅ 0 + 0 ⋅ 2𝜋 = 0
Thus, ⟨100| 𝑟⃗ |200⟩ = 𝑎0𝜋4√2􏿵􏿵43􏿸3 − 􏿵43􏿸4􏿸 ⋅ 0 = 0, expected, since⟨100| 𝑟⃗ |200⟩ = 􏾙 (even)(odd)(even) = 0.

While, ⟨100|200⟩ = (𝜋𝑎30)−1/2(32𝜋𝑎30)−1/2 􏾙∞
0 􏾙𝜋

0 􏾙2𝜋
0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜙 𝑒− 𝑟𝑎0 􏿵2 − 𝑟𝑎0 􏿸 𝑒− 𝑟2𝑎0

= 𝑎30𝜋𝑎304√2 􏾙∞
0 𝑑􏿵 𝑟𝑎0 􏿸􏿵 𝑟𝑎0 􏿸2 𝑒− 3𝑟2𝑎0 􏿵2 − 𝑟𝑎0 􏿸􏾙𝜋

0 𝑑𝜃 sin𝜃􏾙2𝜋
0 𝑑𝜙

= 1
✚✚4𝜋√2 􏾙∞

0 𝑑𝑞 𝑞2 𝑒−3𝑞2 􏿵2 − 𝑞􏿸✚✚4𝜋
= 1√2􏿻2􏾙∞

0 𝑑𝑞 𝑞2 𝑒−3𝑞2􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝛾=32 ,𝑛=2

−􏾙∞
0 𝑑𝑞 𝑞3 𝑒−3𝑞2􏿋􏻰􏻰􏿌􏻰􏻰􏿍

𝛾=32 𝑛=3
􏿾 = 1√2􏿻2􏿵32􏿸−(2+1)2! − 􏿵32􏿸−(3+1)3!􏿾
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= 1√2􏿻2533 − 2533 􏿾 = 0
This is expected, sinceΦ100(⃗𝑟) andΦ200(⃗𝑟) are orthogonal.

⟨200| 𝑟⃗ |200⟩ = (32𝜋𝑎30)−1/2(32𝜋𝑎30)−1/2 􏾙∞
0 􏾙𝜋

0 􏾙2𝜋
0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜙 𝑒− 𝑟𝑎0 􏿵2 − 𝑟𝑎0 􏿸2 𝑟􏿻sin𝜃2 􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)𝑒𝑖𝜙 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)𝑒−𝑖𝜙􏿲 + 𝑒̂𝑧 cos𝜃􏿾

= 𝑎4032𝜋𝑎30 􏾙∞
0 𝑑􏿵 𝑟𝑎0 􏿸􏿵 𝑟𝑎0 􏿸3 𝑒− 𝑟𝑎0 􏿵2 − 𝑟𝑎0 􏿸2􏾙𝜋

0 􏾙2𝜋
0 sin𝜃𝑑𝜃𝑑𝜙

􏿻sin𝜃2 􏿯… 􏿲 + 𝑒̂𝑧 cos𝜃􏿾
􏾙∞
0 𝑑𝑞 𝑞3 (2 − 𝑞)2 𝑒−𝑞 = 􏾙∞

0 𝑑𝑞 𝑞3 (4 + 𝑞2 − 4𝑞) 𝑒−𝑞 =
= 4􏾙∞

0 𝑑𝑞 𝑞3 𝑒−𝑞􏿅𝛾=1,𝑛=3 +􏾙
∞
0 𝑑𝑞 𝑞5 𝑒−𝑞􏿅𝛾=1,𝑛=5 −4􏾙

∞
0 𝑑𝑞 𝑞4 𝑒−𝑞􏿅𝛾=1,𝑛=4= 4 ⋅ 1−(3+1)3! + 1−(5+1)5! − 4 ⋅ 1−(4+1)4! = 4! + 4!5 − 4!4 == 4!(1 + 5 − 4) = 2 ⋅ 4!

12 􏾙𝜋
0 𝑑𝜃 sin2 𝜃􏾙2𝜋

0 𝑑𝜙 􏿯(𝑒̂𝑥 − 𝑖𝑒̂𝑦)%%✒0𝑒𝑖𝜙 + (𝑒̂𝑥 + 𝑖𝑒̂𝑦)✟✟✟✯
0𝑒−𝑖𝜙􏿲 +􏾙𝜋

0 𝑑𝜃 sin𝜃 cos𝜃 𝑒̂𝑧 􏾙2𝜋
0 𝑑𝜙

􏾙𝜋
0 𝑑𝜃 sin2 𝜃 = 􏾙𝜋

0 1 − cos 2𝜃2 𝑑𝜃 = 𝜋2 − 􏿯𝑠𝑖𝑛2𝜃2 ⋅ 2 􏿲𝜋0 = 𝜋2􏾙𝜋
0 𝑑𝜃 sin𝜃 cos𝜃 = 􏾙𝜋

0 sin𝜃𝑑(sin𝜃) = 0
Thus, ⟨200| 𝑟⃗ |200⟩ = 𝑎032𝜋2 ⋅ 4!􏿻𝜋2 ⋅ 0 + 0 ⋅ 2𝜋􏿾 = 0. This is expected, since

⟨200| 𝑟⃗ |200⟩ = 􏾙 (even)(odd)(even) = 0.
Thus, ⟨200|200⟩ = 132𝜋𝑎30 􏾙∞

0 􏾙𝜋
0 􏾙2𝜋

0 𝑟2 sin𝜃𝑑𝑟𝑑𝜃𝑑𝜙 􏿵2 − 𝑟𝑎0 􏿸2 𝑒− 𝑟𝑎0
= ✓✓𝑎3032𝜋✓✓𝑎30 􏾙∞

0 𝑑􏿵 𝑟𝑎0 􏿸􏿵 𝑟𝑎0 􏿸2 􏿵2 − 𝑟𝑎0 􏿸2 𝑒− 𝑟𝑎0 􏾙𝜋
0 􏾙2𝜋

0 sin𝜃𝑑𝜃𝑑𝜙􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍4𝜋 (total solid angle)= 18􏿻􏾙∞
0 𝑑𝑞 𝑞2 􏿵4 + 𝑞2 − 4𝑞􏿸 𝑒−𝑞􏿾
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= 18􏿻4􏾙∞
0 𝑑𝑞 𝑞2 𝑒−𝑞􏿅𝛾=1,𝑛=2 +􏾙

∞
0 𝑑𝑞 𝑞4 𝑒−𝑞􏿅𝛾=1,𝑛=4 −4􏾙

∞
0 𝑑𝑞 𝑞3 𝑒−𝑞􏿅𝛾=1,𝑛=3 􏿾= 18􏿻4 ⋅ 1−(2+1)2! + 1−(4+1)4! − 4 ⋅ 1−(3+1)3!􏿾 = 8 + 4! − 4!8 = 1

This is expected, sinceΦ200(⃗𝑟) is normalized.

• Exercise 14. For the hydrogen atom:

1. Check the parity of 2𝑠, 2𝑝𝑧, 3𝑑𝑥𝑧.
2. Find how many and which nodal surfaces each of the above functions has.

3. Check whether the transitions 1𝑠 ↔ 2𝑝𝑧, 1𝑠 ↔ 3𝑝𝑧, 2𝑠 ↔ 3𝑝𝑧 are allowed or fobidden
within the dipole approximation and whether the selection rules Δℓ = ±1, Δ𝑚ℓ = 0, ±1
hold.

4. Compare the strengths of transitions 1𝑠 ↔ 2𝑝𝑧, 1𝑠 ↔ 3𝑝𝑧 within the dipole approximation.

5. The dipole moment matrix elements are

𝒫𝑘1𝑘2 ∶= 􏾙
everywhere

𝑑𝑉Φ∗𝑘1 (⃗𝑟) (−𝑒)⃗𝑟 Φ𝑘2 (⃗𝑟)
Explain why there is no such optical transition if this matrix element becomes zero.

6. Find the energy, frequency, and wavelength at which the transitions 1𝑠 ↔ 2𝑝𝑧, 1𝑠 ↔ 3𝑝𝑧,2𝑠 ↔ 3𝑝𝑧 correspond. Which of these transitions could be used for a visible laser?

• Exercise 15. Consider a 1D infinite quantum well of width 𝐿, with walls places at positions 𝑥 =−𝐿/2 and 𝑥 = 𝐿/2. Its eigenfunctions are
Ψ𝑛(𝑥) =

ЀЃЃЃЃЃЁЃЃЃЃЃЂ
√2𝐿 cos􏿴𝑛𝜋𝑥𝐿 􏿷, 𝑛 = 1, 3, 5, …√2𝐿 sin􏿴𝑛𝜋𝑥𝐿 􏿷, 𝑛 = 2, 4, 6, …0, outside .

The identities cos2 𝜃 = 1+cos(2𝜃)2 , sin2 𝜃 = 1−cos(2𝜃)2 can be used. Show that the optical transitions3 ↔ 1 and 2 ↔ 4 are forbidden, while 1 ↔ 2 and 2 ↔ 3 are allowed.

Show the same thing, this time considering a 1D infinite quantumwellwithwalls at positions𝑥 = 0
and 𝑥 = 𝐿, i.e., with eigenfunctions

Ψ𝑛(𝑥) = √2𝐿 sin􏿵𝑛𝜋𝑥𝐿 􏿸, 𝑛 = 1, 2, 3, … .
• Exercise 16. We give the atomic orbitals (notation 𝑛ℓ𝑚) of the hydrogen atom 210 (2𝑝𝑧) and

32±2 (with proper sum and difference of which 3𝑑𝑥2−𝑦2 and 3𝑑𝑥𝑦 are constructed)

𝜓210(𝑟, 𝜃, 𝜑) = 􏿴32𝜋𝑎30􏿷−1/2 𝑟𝑎0 cos𝜃 exp 􏿶− 𝑟2𝑎0 􏿹 , (A.45)
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𝜓32±2(𝑟, 𝜃, 𝜑) = 􏿴26244𝜋𝑎30􏿷−1/2 􏿶 𝑟𝑎0 􏿹2 sin2 𝜃 exp􏿴±2𝑖𝜑􏿷 exp 􏿶− 𝑟3𝑎0 􏿹 . (A.46)

(a) Find and justify the parity and the number of nodal surfaces of these atomic orbitals.
(b) Is the transition 210↔ 32±2 allowedwithin the dipole approximation?Are the rulesΔℓ = ±1
andΔ𝑚 = 0, ±1 satisfied?
We give that (r → r′ = −r)⇔ (𝑟′ = 𝑟, 𝜃′ = 𝜋 − 𝜃,𝜑′ = 𝜑 + 𝜋).

A.8 Exercises for Chapter 8: Quantum mechanical approach I.

• Exercise 1. The index𝑚 of the EM mode is omitted for simplicity.
(A) Determine the action of the terms 𝑎̂†𝑎̂, 𝑎̂𝑎̂†, 𝑆̂+𝑆̂−, 𝑆̂−𝑆̂+, 𝑆̂+𝑎̂†, 𝑆̂+𝑎̂, 𝑆̂−𝑎̂†, 𝑆̂−𝑎̂, act on the
states |↓, 𝑛⟩ and |↑, 𝑛⟩.
(B)Calculate ⟨𝑎̂†𝑎̂⟩, ⟨𝑎̂𝑎̂†⟩, ⟨𝑆̂+𝑆̂−⟩, ⟨𝑆̂−𝑆̂+⟩, ⟨𝑆̂+𝑎̂†⟩, ⟨𝑆̂+𝑎̂⟩, ⟨𝑆̂−𝑎̂†⟩, ⟨𝑆̂−𝑎̂⟩, for the states |↓, 𝑛⟩
and |↑, 𝑛⟩.
Solution of Exercise 1:
(A)𝑎̂†𝑎̂ |↑, 𝑛⟩ = 𝑎̂†√𝑛 |↑, 𝑛 − 1⟩ = √𝑛√𝑛 |↑, 𝑛⟩ = 𝑛 |↑, 𝑛⟩ ,𝑎̂†𝑎̂ |↓, 𝑛⟩ = 𝑎̂†√𝑛 |↓, 𝑛 − 1⟩ = √𝑛√𝑛 |↓, 𝑛⟩ = 𝑛 |↓, 𝑛⟩ .
𝑎̂𝑎̂† |↑, 𝑛⟩ = 𝑎̂√𝑛 + 1 |↑, 𝑛 + 1⟩ = √𝑛 + 1√𝑛 + 1 |↑, 𝑛⟩ = (𝑛 + 1) |↑, 𝑛⟩ ,𝑎̂𝑎̂† |↓, 𝑛⟩ = 𝑎̂√𝑛 + 1 |↓, 𝑛 + 1⟩ = √𝑛 + 1√𝑛 + 1 |↓, 𝑛⟩ = (𝑛 + 1) |↓, 𝑛⟩ .
𝑆̂+𝑆̂− |↑, 𝑛⟩ = 𝑆̂+ |↓, 𝑛⟩ = |↑, 𝑛⟩ = 1 |↑, 𝑛⟩ , eigenstate with eigenvalue 1𝑆̂+𝑆̂− |↓, 𝑛⟩ = 𝑆̂+ |0, 𝑛⟩ = |0, 𝑛⟩ = 0 |↓, 𝑛⟩, eigenstate with eigenvalue 0¹.

𝑆̂−𝑆̂+ |↑, 𝑛⟩ = 𝑆̂− |0, 𝑛⟩ = |0, 𝑛⟩ = 0 |↑, 𝑛⟩, eigenstate with eigenvalue 0².𝑆̂−𝑆̂+ |↓, 𝑛⟩ = 𝑆̂− |↑, 𝑛⟩ = |↓, 𝑛⟩ = 1 |↓, 𝑛⟩, eigenstate with eigenvalue 1.

𝑆̂+𝑎̂† |↑, 𝑛⟩ = √𝑛 + 1 |0, 𝑛 + 1⟩,𝑆̂+𝑎̂† |↓, 𝑛⟩ = √𝑛 + 1 |↑, 𝑛 + 1⟩.
𝑆̂+𝑎̂ |↑, 𝑛⟩ = √𝑛 |0, 𝑛 − 1⟩,𝑆̂+𝑎̂ |↓, 𝑛⟩ = √𝑛 |↑, 𝑛 − 1⟩.
𝑆̂−𝑎̂† |↑, 𝑛⟩ = √𝑛 + 1 |↓, 𝑛 + 1⟩,𝑆̂−𝑎̂† |↓, 𝑛⟩ = √𝑛 + 1 |0, 𝑛 + 1⟩.
𝑆̂−𝑎̂ |↑, 𝑛⟩ = √𝑛 |↓, 𝑛 − 1⟩,𝑆̂−𝑎̂ |↓, 𝑛⟩ = √𝑛 |0, 𝑛 − 1⟩.

¹since 0 􏿰01􏿳 = 􏿰00􏿳.
²since 0 􏿰10􏿳 = 􏿰00􏿳
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(B)⟨𝑎̂†𝑎̂⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑎̂†𝑎̂|↑, 𝑛⟩ = 𝑛 ⟨↑, 𝑛|↑, 𝑛⟩ = 𝑛,⟨𝑎̂†𝑎̂⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑎̂†𝑎̂|↓, 𝑛⟩ = 𝑛 ⟨↓, 𝑛|↓, 𝑛⟩ = 𝑛.
⟨𝑎̂𝑎̂†⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑎̂𝑎̂†|↑, 𝑛⟩ = (𝑛 + 1) ⟨↑, 𝑛|↑, 𝑛⟩ = 𝑛 + 1,⟨𝑎̂𝑎̂†⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑎̂𝑎̂†|↓, 𝑛⟩ = (𝑛 + 1) ⟨↓, 𝑛|↓, 𝑛⟩ = 𝑛 + 1.
⟨𝑆̂+𝑆̂−⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑆̂+𝑆̂−|↑, 𝑛⟩ = ⟨↑, 𝑛|↑, 𝑛⟩ = 1,⟨𝑆̂+𝑆̂−⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑆̂+𝑆̂−|↓, 𝑛⟩ = ⟨↓, 𝑛|0, 𝑛⟩ = 0.

⟨𝑆̂−𝑆̂+⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑆̂−𝑆̂+|↑, 𝑛⟩ = ⟨↑, 𝑛|0, 𝑛⟩ = 0,⟨𝑆̂−𝑆̂+⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑆̂−𝑆̂+|↓, 𝑛⟩ = ⟨↓, 𝑛|↓, 𝑛⟩ = 1.

⟨𝑆̂+𝑎̂†⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑆̂+𝑎̂†|↑, 𝑛⟩ = √𝑛 + 1 ⟨↑, 𝑛|0, 𝑛 + 1⟩ = 0,⟨𝑆̂+𝑎̂†⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑆̂+𝑎̂†|↓, 𝑛⟩ = √𝑛 + 1 ⟨↓, 𝑛|↑, 𝑛 + 1⟩ = 0.
⟨𝑆̂+𝑎̂⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑆̂+𝑎̂|↑, 𝑛⟩ = √𝑛 ⟨↑, 𝑛|0, 𝑛 − 1⟩ = 0,⟨𝑆̂+𝑎̂⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑆̂+𝑎̂|↓, 𝑛⟩ = √𝑛 ⟨↓, 𝑛|↑, 𝑛 − 1⟩ = 0.
⟨𝑆̂−𝑎̂†⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑆̂−𝑎̂†|↑, 𝑛⟩ = √𝑛 + 1 ⟨↑, 𝑛|↓, 𝑛 + 1⟩ = 0,⟨𝑆̂−𝑎̂†⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑆̂−𝑎̂†|↓, 𝑛⟩ = √𝑛 + 1 ⟨↓, 𝑛|0, 𝑛 + 1⟩ = 0.
⟨𝑆̂−𝑎̂⟩|↑,𝑛⟩ = ⟨↑, 𝑛|𝑆̂−𝑎̂|↑, 𝑛⟩ = √𝑛 ⟨↑, 𝑛|↓, 𝑛 − 1⟩ = 0,⟨𝑆̂−𝑎̂⟩|↓,𝑛⟩ = ⟨↓, 𝑛|𝑆̂−𝑎̂|↓, 𝑛⟩ = √𝑛 ⟨↓, 𝑛|0, 𝑛 − 1⟩ = 0.
♣Electronsobey to anticommutation relations (Eq. 9.17).Amongothers,wehave shown(Eq. 8.119)
that {􏾦𝑆+, 􏾦𝑆−} = 􏾦𝑆+ 􏾦𝑆− + 􏾦𝑆− 􏾦𝑆+ = Î ⇒ 􏾦𝑆− 􏾦𝑆+ = Î − 􏾦𝑆+ 􏾦𝑆− ⇒ ⟨􏾦𝑆− 􏾦𝑆+⟩ = ⟨Î⟩ − ⟨􏾦𝑆+ 􏾦𝑆−⟩
If a state |𝜅⟩ = 􏿰𝑎𝑏􏿳 is normalized, then ⟨Î⟩|𝜅⟩ = ⟨𝜅|Î|𝜅⟩ = ⟨𝜅|𝜅⟩ = 􏿮𝑎∗ 𝑏∗􏿱 􏿰𝑎𝑏􏿳 = |𝑎|2 + |𝑏|2 = 1.
Hence, ⟨􏾦𝑆− 􏾦𝑆+⟩ = 1 − ⟨􏾦𝑆+ 􏾦𝑆−⟩, which is in agreement with the above.

♠Photonsobey tocommutation relations (Eq. 9.15).Amongothers,wehave shown that [𝑎̂𝑚, 𝑎̂†ℓ] =𝛿𝑚ℓ ⇒ [𝑎̂𝑚, 𝑎̂†𝑚] = 1 ⇒ 𝑎̂𝑚𝑎̂†𝑚 − 𝑎̂†𝑚𝑎̂𝑚 = 1 ⇒ 𝑎̂𝑚𝑎̂†𝑚 = 1 + 𝑎̂†𝑚𝑎̂𝑚 ⇒ ⟨𝑎̂𝑚𝑎̂†𝑚⟩ = 1 + ⟨𝑎̂†𝑚𝑎̂𝑚⟩,
which is in agreement with the above.

• Exercise 2. Prove the following relationships:(I) [𝑁̂, 𝑎̂] = −𝑎̂(II) [𝑁̂, 𝑎̂†] = 𝑎̂†(III) 𝑁̂(𝑎̂ |𝑛⟩) = (𝑛 − 1)(𝑎̂ |𝑛⟩)(IV) 𝑁̂(𝑎̂† |𝑛⟩) = (𝑛 + 1)(𝑎̂† |𝑛⟩)
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where 𝑁̂ = 𝑎̂†𝑎̂ is the photon number operator, 𝑎̂† is the photon creation operator, and 𝑎̂ is the
photon annihilation operator.

• Exercise 3. Starting from Eq. 8.81, and using Eqs. 8.97, 8.98 and 8.99, prove Eq. 8.100.

• Exercise 4.Consider electron raising and lowering between the energy levels of a two-level system
(2LS).
(a) Define the spinors that describe the electron at each of the two levels of the 2LS as well as the
vacuum, in the form of column vectors.
(b) Define the raising and lowering operators, 𝑆̂+ και 𝑆̂−, in matrix form. Show the result of their
action on the spinors.
(c) Find 𝑆̂+ + 𝑆̂− and 𝑆̂+𝑆̂− + 𝑆̂−𝑆̂+.
(d) Show that the Hamiltonian describing the 2LS is 𝐻̂2LS = 𝐸2𝑆̂+𝑆̂− + 𝐸1𝑆̂−𝑆̂+ and show how
the relationship𝐻2LS = ℏΩ𝑆̂+𝑆̂− occurs.
(e) Show that {𝑆̂+, 𝑆̂†+} = Î {𝑆̂−, 𝑆̂†−} = Î {𝑆̂+, 𝑆̂+} = 0̂ {𝑆̂−, 𝑆̂−} = 0̂

Î is the identity 2 × 2matrix, and 0̂ is the zero 2 × 2matrix.

(f) Let us now remember the Pauli matrices 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧:
𝜎̂𝑥 = 􏿶0 11 0􏿹 , 𝜎̂𝑦 = 􏿶0 −𝑖𝑖 0 􏿹 , 𝜎̂𝑧 = 􏿶1 00 −1􏿹 .

Show that [𝜎̂𝑥, 𝜎̂𝑦] = 2𝑖𝜎̂𝑧.
an so on, cyclically.
(g) Also show that the Pauli matrices anticommute.
(h) Finally, show that 𝑆̂+ + 𝑆̂− = 𝜎̂𝑥𝑆̂+ − 𝑆̂− = 𝑖𝜎̂𝑦.

• Exercise 5.
(a) For the Jaynes-Cummings Hamiltonian of one EM mode, calculate ⟨𝛼̂†𝛼̂⟩, ⟨𝛼̂𝛼̂†⟩, ⟨𝑆̂+𝑆̂−⟩,⟨𝑆̂−𝑆̂+⟩, ⟨𝑆̂+𝛼̂⟩, ⟨𝑆̂+𝛼̂†⟩, ⟨𝑆̂−𝛼̂†⟩, ⟨𝑆̂−𝛼̂⟩, for the state

|𝜓A(𝑡)􏽼 = 𝑒𝑖𝜙√2 |↓, 2⟩ + 𝑒𝑖𝜃√2 |↑, 1⟩ , (A.47)

where𝜙 and 𝜃 are arbitrary angles.
(b)Find towhich systemofdifferential equations is thenequivalent the time-dependentSchrödinger
equation.

A.9 Exercises for Chapter 9: Quantum mechanical approach II.

Thre are no exercises in this chapter.
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A.10 Exercises for Chapter 10: Density matrix and operator.

• Exercise 1. Prove that, if the Hamiltonian is time-independent, then Eq. 10.31 has a solution of
the form 𝜌̂(𝑡) = 𝑒−𝑖𝐻̂𝑡/ℏ𝜌̂(0)𝑒𝑖𝐻̂𝑡/ℏ.

• Exercise 2. Starting from Eq. 10.39, prove Eq. 10.35.

Solution of Exercise 2: From Eq. 10.39 we have𝑖ℏ ̇𝜌̂𝑛𝑚 = [𝐻̂, 𝜌̂]𝑛𝑚 = ⟨𝑛| 𝐻̂𝜌̂ |𝑚⟩ − ⟨𝑛| 𝜌̂𝐻̂ |𝑚⟩= 􏾜ℓ ⟨𝑛| 𝐻̂ |ℓ⟩ ⟨ℓ| 𝜌̂ |𝑚⟩ −􏾜ℓ ⟨𝑛| 𝜌̂ |ℓ⟩ ⟨ℓ| 𝐻̂ |𝑚⟩= 􏾜ℓ (𝐻𝑛ℓ𝜌ℓ𝑚 − 𝜌𝑛ℓ𝐻ℓ𝑚),
which is Eq. 10.35.

• Άσκηση 3. Defining the Matrix 10.47, using Eqs. 10.51 and 10.52, and assuming that𝑈ℰ21(𝑡) =𝑈ℰ12(𝑡), prove that the time evolution of the density matrix with decay mechanisms is given by
Eq. 10.53.

A.11 Exercises for Chapter 11: Laser.

• Exercise 1. Create graphical representations of 𝜈1, 𝜈2, 𝜚 versus 𝜏, changing 𝜏1 = 0.25 or 0.5 or0.75 or 1.0 or 1.5 and keeping 𝑟𝑁 = 1.5,𝐴′/𝐴 = 10−9, 𝜏0 = 10 constant, and explain them using
Eqs. 11.73, 11.74, 11.75.

• Exercise 2. Consider the dimensionless form of the laser rate equations𝑑𝜈1𝑑𝜏 = 𝜈2 + 𝜚(𝜈2 − 𝜈1) − 𝜈1𝜏1𝑑𝜈2𝑑𝜏 = 𝑟𝑁 + 𝜚(𝜈1 − 𝜈2) − 𝜈2𝑑𝜚𝑑𝜏 = − 𝜚𝜏0 + 􏿼𝐴′𝐴 𝜈2 + 𝜚(𝜈2 − 𝜈1)􏿿 1𝜏0(1 − 𝜏1) .
Prove that when 𝐴′𝐴 << 1, then in the steady state, the following equations hold:𝜈1 = 𝜏1𝑟𝑁, ∀ 𝑟𝑁𝜈2 = 􏿼 𝑟𝑁, ∀ 𝑟𝑁 < 1𝜏1𝑟𝑁 + (1 − 𝜏1), ∀ 𝑟𝑁 > 1𝜚 = 􏿼 0, ∀ 𝑟𝑁 < 1𝑟𝑁 − 1, ∀ 𝑟𝑁 > 1

• Exercise 3. The panels of Figure A.1 represent the solution of Eqs. 11.73, 11.74, 11.75, for chang-
ing 𝜏0 = 10 or 5.0 or 1.0, and keeping 𝜏1 = 0.5, 𝑟𝑁 = 1.5,𝐴′/𝐴 = 10−9 constant.
(a’) What is the ratio of the lifetimes between levels 1 and 2?
(b’) Why is there a difference in the time it takes for 𝜚 to become perceivable?
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Figure A.1: The solution of Eqs. 11.73, 11.74, 11.75, for 𝜏0 = 10 or 5.0 or 1.0, and 𝜏1 = 0.5, 𝑟𝑁 = 1.5,𝐴′/𝐴 = 10−9 constant. Note that the notation 𝜌 in the panel is in fact the dimensionless 𝜚 of Eq. 11.75.

• Exercise4.Create graphical representationsof𝜈1,𝜈2,𝜚 versus𝜏, changing𝐴′/𝐴 = 10−9 or 10−4 or10−1 andkeeping𝜏1 = 0.5,𝜏0 = 10, 𝑟𝑁 = 1.5 constant, andexplain themusingEqs. 11.73, 11.74, 11.75.

• Exercise 5. Think of the LASER rate differential equations in the dimensionless form𝑑𝜈1𝑑𝜏 = 𝜈2 + 𝜚(𝜈2 − 𝜈1) − 𝜈1𝜏1 , (A.48)

𝑑𝜈2𝑑𝜏 = 𝑟𝑁 + 𝜚(𝜈1 − 𝜈2) − 𝜈2, (A.49)𝑑𝜚𝑑𝜏 = − 𝜚𝜏0 + 􏿼𝐴′𝐴 𝜈2 + 𝜚(𝜈2 − 𝜈1)􏿿 1𝜏0(1 − 𝜏1) . (A.50)

At the steady state, ignoring 𝐴′𝐴 ≪ 1, the following equations hold𝜈1 = 𝜏1𝑟𝑁, ∀ 𝑟𝑁 (A.51)

𝜈2 = 􏿼 𝑟𝑁, ∀ 𝑟𝑁 ≤ 1𝜏1𝑟𝑁 + (1 − 𝜏1), ∀ 𝑟𝑁 ≥ 1 (A.52)

𝜚 = 􏿼 0, ∀ 𝑟𝑁 ≤ 1𝑟𝑁 − 1, ∀ 𝑟𝑁 ≥ 1 (A.53)
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The numerical solution of Eqs. (A.48), (A.49), (A.50) is shown in Figure A.2, where we modify
only one of the parameters 𝑟𝑁 , 𝜏1, 𝜏0, 𝐴′𝐴 .

(a) What is the fraction of the levels’ lifetime, 𝑡1𝑡2 ;
(b) Which parameter is modified and what is the value of the modified parameter at each subfig-
ure?
(c) Why is there a difference in the time required to appreciate (i.e. clearly see) the modification
of 𝜚 in the lower subfigures?
(d) Why before 𝜚 becomes appreciatable, i.e. clearly seen, in all subfigures it holds 𝜈2𝜈1 = 2?

FigureA.2: Wemodifyonlyoneparameter andobserve the timeevolutionofEqs. (A.48), (A.49), (A.50).

A.12 Exercises for Chapter 12: Various.

There are no exercises in this chapter.
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APPENDIX B

AUXILIARY MATHEMATICS AND CALCULATION
DETAILS

B.1 Arithmetic Progression.

We recall the definition of the geometric progression (𝑎𝑛) and some relevant relationships.𝑎𝑛+1 − 𝑎𝑛 = 𝜛, 𝑛 = (0), 1, 2, 3, … 𝜛 ∶ difference𝑎𝑛 = 𝑎1 + (𝑛 − 1)𝜛 recursive formula𝛽 = 𝛼 + 𝛾2 𝛽 ∶ arithmetic mean𝑆𝑛 = 𝑛2(𝑎1 + 𝑎𝑛) sum of the first 𝑛 terms

(B.1)

B.2 Geometric Progression.

We recall the definition of the geometric progression (𝑎𝑛) and some relevant relationships.𝑎𝑛+1𝑎𝑛 = ϡ ≠ 0, 𝑛 = (0), 1, 2, 3, … ϡ ∶ ratio𝑎𝑛 = 𝑎1ϡ𝑛−1 recursive formula𝛼𝛽 = 𝛽𝛾 ⇔ 𝛽2 = 𝛼𝛾 𝛽 ∶ geometric mean

𝑆𝑛 = ЀЃЃЃЁЃЃЃЂ𝑎1ϡ
𝑛 − 1
ϡ − 1 , ϡ ≠ 1𝑎1𝑛, ϡ = 1 sum of the first 𝑛 terms

𝑆∞ = 𝑎11 − ϡ
sum of infinite terms (|ϡ| < 1)

(B.2)
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B.3 A representation of the delta function.

We will show that the function 𝛿𝑎(𝑥) = 1𝜋|𝑎| sin2(𝑎𝑥)𝑥2 , where 𝑎 ≠ 0, is an approximation to 𝛿(𝑥). For
example:

⋆ lim𝑥→0 𝛿𝑎(𝑥) = lim𝑥→0 1𝜋|𝑎| sin2(𝑎𝑥)𝑎2𝑥2 𝑎2 = |𝑎|𝜋 lim𝑥→0 sin2(𝑎𝑥)𝑎2𝑥2 = |𝑎|𝜋 􏿵 lim𝑥→0 sin 𝑎𝑥𝑎𝑥 􏿸2
= |𝑎|𝜋 􏿵 lim𝑎𝑥→0 sin 𝑎𝑥𝑎𝑥 􏿸2 = |𝑎|𝜋 12 = |𝑎|𝜋 ⇒
lim𝑥→0 𝛿𝑎(𝑥) = |𝑎|𝜋 ⇒ lim𝑎→∞ 􏿵 lim𝑥→0 𝛿𝑎(𝑥)􏿸 = ∞

⋆ 􏾙+∞
−∞ 𝛿𝑎(𝑥)𝑑𝑥 = 􏾙+∞

−∞ 1𝜋|𝑎| sin2 𝑎𝑥𝑥2 𝑑𝑥 = 1𝜋|𝑎| 𝜋|𝑎| = 1 ⇒􏾙+∞
−∞ 𝛿𝑎(𝑥)𝑑𝑥 = 1

We just used the definite integral [1]

􏾙∞
0 sin2 𝑎𝑥𝑥2 𝑑𝑥 = 𝜋2 |𝑎|,

for 𝑎 ≠ 0. In other words, in the limit 𝑎 → ∞, the function 𝛿𝑎(𝑥) represents 𝛿(𝑥), i.e.
lim𝑎→∞ 𝛿𝑎(𝑥) = 𝛿(𝑥) .

In Figure B.1, 𝛿𝑎(𝑥) is depicted for 𝑎 = 3, 6.

Figure B.1: 𝛿𝑎(𝑥) for 𝑎 = 3, 6.
Therefore, in a completely approximate manner, we could write

𝛿(𝑥) ∼ 1𝜋|𝑎| sin2(𝑎𝑥)𝑥2 . (B.3)

Let us play a little bit more with the function

𝑓(𝑥) ≡ sin2 𝑥𝑥2 . (B.4)
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lim𝑥→0 sin2 𝑥𝑥2 = 􏿵 lim𝑥→0 sin 𝑥𝑥 􏿸2 = 􏿵 lim𝑥→0 cos 𝑥1 􏿸2 = 1, (B.5)

i.e., for 𝑥 = 0, there is a global maximum with value 1.𝑓(𝑥) = 0𝑥 ≠ 0􏿿 ⇒ sin 𝑥 = 0 ⇒ for 𝑥 = 𝑛𝜋, 𝑛 ∈ ℤ∗, there are global minima with value 0. (B.6)

Let us search for local maxima end minima:

𝑓′(𝑥) = 2 sin 𝑥 cos 𝑥 𝑥2 − sin2 𝑥 2𝑥𝑥4 ⇒ 𝑓′(𝑥) = 0 ⇒ 2 𝑥 sin 𝑥(𝑥 cos 𝑥 − sin 𝑥) = 0 ⇒𝑥 = 0􏿅
global maximum

or sin 𝑥 = 0􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍𝑥=𝑛𝜋, 𝑛∈ℤ∗
global minima

or 𝑥 = tan 𝑥􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍𝑥≃±4.49,±7.72,…
inspection leads to local maxima

A graphical representation of 𝑓(𝑥) is presented in Figure B.2.

Figure B.2: 𝑓(𝑥) = sin2 𝑥𝑥2 .

B.4 Some trigonometric relations.

We will show the relation marked by★ in Section 5.5, i.e.

𝑒𝑖𝑥 − 1 = 2𝑖 sin 􏿵𝑥2􏿸𝑒𝑖 𝑥2 .
cos 𝑥 + 𝑖 sin 𝑥 − 1 = 2𝑖 sin 􏿵𝑥2􏿸 cos 􏿵𝑥2􏿸 + 2𝑖 sin 􏿵𝑥2􏿸𝑖 sin 􏿵𝑥2􏿸 ⇔
cos 𝑥 +✘✘✘𝑖 sin 𝑥 − 1 =✘✘✘𝑖 sin 𝑥 − 2 sin2 􏿵𝑥2􏿸 ⇔
cos 𝑥 − cos2 􏿵𝑥2􏿸 − sin2 􏿵𝑥2􏿸 = −2 sin2 􏿵𝑥2􏿸 ⇔
cos 𝑥 − cos2 􏿵𝑥2􏿸 = − sin2 􏿵𝑥2􏿸 ⇔
cos 𝑥 = cos2 􏿵𝑥2􏿸 − sin2 􏿵𝑥2􏿸,
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which holds, since
cos􏿴𝑎 ± 𝛽􏿷 = cos 𝑎 cos 𝛽 ∓ sin 𝑎 sin 𝛽.

Accordingly, we also mention the relation

sin􏿴𝑎 ± 𝛽􏿷 = sin 𝑎 cos 𝛽 ± sin 𝛽 cos 𝑎.
B.5 Rotating waves.

Consider an electric field of the form ℰ⃗ (𝑡) = ℰ0 𝑧̂ cos𝜔𝑡. It is sometimes convenient to decompose it
into its positively and negatively rotating components, ℰ⃗ (𝑡)(+) and ℰ⃗ (𝑡)(−), respectively. That is,

ℰ⃗ (𝑡) = ℰ02 𝑧̂􏿴𝑒−𝑖𝜔𝑡 + 𝑒𝑖𝜔𝑡􏿷 = ℰ02 𝑧̂ 𝑒−𝑖𝜔𝑡 + ℰ02 𝑧̂ 𝑒𝑖𝜔𝑡 ∶= ℰ⃗ (𝑡)(+) + ℰ⃗ (𝑡)(−)

Figure B.3: Rotating Waves.

B.6 Matrix elements of operators.

⟨𝜓| 𝑀̂ |𝜙⟩ = 􏾙𝑑𝑥″􏾙𝑑𝑥′⟨𝜓|𝑥″⟩ ⟨𝑥″| 𝑀̂ |𝑥′⟩ ⟨𝑥′|𝜙⟩ = 􏾙𝑑𝑥″􏾙𝑑𝑥′𝜓∗(𝑥″) ⟨𝑥″| 𝑀̂ |𝑥′⟩ 𝜙(𝑥′)
⟨𝑥″| 𝑥̂ |𝑥′⟩ = ⟨𝑥″| 𝑥′ |𝑥′⟩ = 𝑥′⟨𝑥″|𝑥′⟩ = 𝑥′𝛿(𝑥″ − 𝑥′) = 𝑥″𝛿(𝑥″ − 𝑥′)⟨𝑥″| 𝑝̂ |𝑥′⟩ =⏟

it is shown below ▾ −𝑖ℏ 𝜕𝜕𝑥″𝛿(𝑥″ − 𝑥′)
ЄЃЃЃЃЅЃЃЃЃІ ⇒⇒ expanding in powers of 𝑥̂ and 𝑝̂

⟨𝑥″| 𝑀̂(𝑥̂, 𝑝̂) |𝑥′⟩ = 𝑀􏿵𝑥″, −𝑖ℏ 𝜕𝜕𝑥″ 􏿸𝛿(𝑥″ − 𝑥′) 1D⟨𝑟″| 𝑀̂( ̂⃗𝑟, ̂⃗𝑝) |𝑟′⟩ = 𝑀(𝑟″, −𝑖ℏ∇⃗″)𝛿(𝑟″ − 𝑟′) 3D

thus, e.g., ⟨Φℓ| 𝑀̂ |Φ𝑘⟩ = 􏾙𝑑3𝑟′ 􏾙𝑑3𝑟⟨Φℓ|𝑟′⟩⟨𝑟′|𝑀̂|⃗𝑟⟩⟨⃗𝑟|Φ𝑘⟩= 􏾙𝑑3𝑟′ 􏾙𝑑3𝑟Φ∗ℓ(𝑟′)𝑀̂(⃗𝑟, −𝑖ℏ∇⃗ )𝛿(𝑟′ − 𝑟⃗)Φ𝑘(⃗𝑟)
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= 􏾙𝑑3𝑟Φ∗ℓ(⃗𝑟)𝑀̂(⃗𝑟, −𝑖ℏ∇⃗ )Φ𝑘(⃗𝑟)
which is Eq. 5.29. [𝑥̂, 𝑝̂] = 𝑖ℏ ⇔ 𝑥̂𝑝̂ − 𝑝̂𝑥̂ = 𝑖ℏ ⇒⟨𝑥″| 𝑥̂𝑝̂ |𝑥′⟩ − ⟨𝑥″| 𝑝̂𝑥̂ |𝑥′⟩ = 𝑖ℏ⟨𝑥″|𝑥′⟩ ⇒⟨𝑥″| 𝑥″𝑝̂ |𝑥′⟩ − ⟨𝑥″| 𝑝̂𝑥′ |𝑥′⟩ = 𝑖ℏ𝛿(𝑥″ − 𝑥′) ⇒(𝑥″ − 𝑥′) ⟨𝑥″| 𝑝̂ |𝑥′⟩ = 𝑖ℏ𝛿(𝑥″ − 𝑥′) ⇒𝛿(𝑥″ − 𝑥′)􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍

it is shown below ▾ = −(𝑥″ − 𝑥′) 𝜕𝜕𝑥″𝛿(𝑥″ − 𝑥′) ⇒
✘✘✘✘✘(𝑥″ − 𝑥′) ⟨𝑥″| 𝑝̂ |𝑥′⟩ = −𝑖ℏ✘✘✘✘✘(𝑥″ − 𝑥′) 𝜕𝜕𝑥″𝛿(𝑥″ − 𝑥′) ⇒⟨𝑥″| 𝑝̂ |𝑥′⟩ = −𝑖ℏ 𝜕𝜕𝑥″𝛿(𝑥″ − 𝑥′)

Similarly, for Eq. 10.2, we have

⟨𝐴̂⟩ = ⟨Ψ(𝑡)| 𝐴̂ |Ψ(𝑡)⟩ = 􏾙𝑑3𝑟′ 􏾙𝑑3𝑟⟨Ψ(𝑡)|⃗𝑟⟩⟨⃗𝑟|𝐴̂|𝑟′⟩⟨𝑟′|Ψ(𝑡)⟩= 􏾙𝑑3𝑟′ 􏾙𝑑3𝑟Ψ∗(⃗𝑟, 𝑡)𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )𝛿(⃗𝑟 − 𝑟′)Ψ(𝑟′, 𝑡)= 􏾙𝑑3𝑟Ψ∗(⃗𝑟, 𝑡)𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )Ψ(⃗𝑟, 𝑡)= 􏾙𝑑3𝑟􏾜𝑘′ 𝑐∗𝑘′(𝑡)Φ∗𝑘′ (⃗𝑟)𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )􏾜𝑘 𝑐𝑘(𝑡)Φ𝑘(⃗𝑟)= 􏾜𝑘′ 𝑐∗𝑘′(𝑡)􏾜𝑘 𝑐𝑘(𝑡)􏾙𝑑3𝑟Φ∗𝑘′ (⃗𝑟)𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )Φ𝑘(⃗𝑟)= 􏾜𝑘,𝑘′ 𝑐𝑘(𝑡)𝑐∗𝑘′(𝑡)𝐴𝑘′𝑘
where we have used Eq. 10.1.

Similarly, for Eq. 10.7, we have

⟨𝐴̂⟩𝑖 = ⟨Ψ𝑖(𝑡)|𝐴̂|Ψ𝑖(𝑡)⟩ = 􏾙𝑑3𝑟􏾙𝑑3𝑟′⟨Ψ𝑖(𝑡)|⃗𝑟⟩⟨⃗𝑟|𝐴̂|𝑟′⟩⟨𝑟′|Ψ𝑖(𝑡)⟩= 􏾙𝑑3𝑟􏾙𝑑3𝑟′⟨Ψ𝑖(𝑡)|⃗𝑟⟩𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )𝛿(⃗𝑟 − 𝑟′)⟨𝑟′|Ψ𝑖(𝑡)⟩= 􏾙𝑑3𝑟⟨Ψ𝑖(𝑡)|⃗𝑟⟩𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )⟨⃗𝑟|Ψ𝑖(𝑡)⟩= 􏾙𝑑3𝑟Ψ∗𝑖 (⃗𝑟, 𝑡)𝐴̂(⃗𝑟, −𝑖ℏ∇⃗ )Ψ𝑖(⃗𝑟, 𝑡)⟩
or, simpler,= 􏾙𝑑3𝑟Ψ∗𝑖 (⃗𝑟, 𝑡)𝐴̂Ψ𝑖(⃗𝑟, 𝑡).
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▾ Let us prove the relation we mentioned above. We will first show that𝑥𝛿′(𝑥) = −𝛿(𝑥) (B.7)

To this end, we will integrate both hand-sides after we multiply them by a function 𝑓(𝑥).
Left hand-side:+∞􏾙−∞ 𝑥𝛿′(𝑥)𝑓(𝑥)𝑑𝑥 = 􏿯𝑥𝛿(𝑥)𝑓(𝑥)􏿲+∞−∞ − +∞􏾙−∞ 𝛿(𝑥)􏿵𝑓(𝑥) − 𝑥𝑓′(𝑥)􏿸𝑑𝑥 =

− +∞􏾙−∞ 𝛿(𝑥)𝑓(𝑥)𝑑𝑥 + +∞􏾙−∞ 𝛿(𝑥)𝑥𝑓′(𝑥)𝑑𝑥 = −𝑓(0) + 0 ⋅ 𝑓′(0) = −𝑓(0)
Right hand-side:

− +∞􏾙−∞ 𝛿(𝑥)𝑓(𝑥)𝑑𝑥 = −𝑓(0)
Combining the two sides, the desired property B.7 occurs. Hence,

𝑥𝛿′(𝑥) = −𝛿(𝑥) ή 𝑥 𝜕𝜕𝑥𝛿(𝑥) = −𝛿(𝑥) ή 𝑥″ 𝜕𝜕𝑥″𝛿(𝑥″) = −𝛿(𝑥″)(𝑥″ − 𝑥′) 𝜕𝜕𝑥″𝛿(𝑥″ − 𝑥′) = −𝛿(𝑥″ − 𝑥′)
B.7 Solution of differential equations with the eigenvalue method.

In Chapters 5 and 8 we arrive at some systems of differential equations. For example, the System of Dif-
ferential Equations 8.189 can be written as (if we omit, for simplicity, the index𝑚 that denotes the EM
mode) 􏿶𝑐̇1𝑐̇2􏿹 = (−𝑖) 􏿶 𝑛𝜔 𝑔√𝑛𝑔√𝑛 Ω + (𝑛 − 1)𝜔􏿹 􏿶𝑐1𝑐2􏿹 (B.8)

i.e. it is of the form ̇⃗𝑥(𝑡) = ⃖⃗𝐴 𝑥⃗(𝑡) (B.9)
with ̇⃗𝑥(𝑡) = 􏿶𝑐̇1(𝑡)𝑐̇2(𝑡)􏿹 , 𝑥⃗(𝑡) = 􏿶𝑐1(𝑡)𝑐2(𝑡)􏿹 , ⃖⃗𝐴 = (−𝑖) 􏿶 𝑛𝜔 𝑔√𝑛𝑔√𝑛 Ω + (𝑛 − 1)𝜔􏿹 (B.10)

Similarly, the System of Differential Equations 8.207 can be written as (if we omit, for simplicity, the
index𝑚 that denotes the EM mode)

􏿶𝑐̇1𝑐̇2􏿹 = (−𝑖) 􏿶(𝑛 + 1)𝜔 𝑔√𝑛 + 1𝑔√𝑛 + 1 Ω + 𝑛𝜔􏿹 􏿶𝑐1𝑐2􏿹 (B.11)

i.e. it is of the form ̇⃗𝑥(𝑡) = ⃖⃗𝐴 𝑥⃗(𝑡) (B.12)
with ̇⃗𝑥(𝑡) = 􏿶𝑐̇1(𝑡)𝑐̇2(𝑡)􏿹 , 𝑥⃗(𝑡) = 􏿶𝑐1(𝑡)𝑐2(𝑡)􏿹 , ⃖⃗𝐴 = (−𝑖) 􏿶(𝑛 + 1)𝜔 𝑔√𝑛 + 1𝑔√𝑛 + 1 Ω + 𝑛𝜔􏿹 (B.13)

Therefore, these problems can be solved using the eigenvalue method, as it was done in Chapter 5.
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APPENDIX C

MATLAB PROGRAMS

C.1 fornu0ofT.m

Code C.1: The matlab code that produces Fig. 2.14, fornu0ofT.m.
1 tic
2 xl=‐5;
3 xr=+5;
4 step=(xr‐xl)/100;
5 for i=1:101
6 x(i)=xl+step*(i‐1);
7 f(i)=3*(exp(x(i))‐1) ‐ x(i)*exp(x(i));
8 end
9 createfigurefornu0ofT(x,f);

10 toc

Code C.2: The function createfigurefornu0ofT.m called by Code C.1.
1 function createfigurefornu0ofT(X1, Y1)
2 %CREATEFIGURE2(X1, Y1)
3 % X1: vector of x data
4 % Y1: vector of y data
5

6 % Create figure
7 figure1 = figure;
8

9 % Create axes
10 axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on');
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11 %% Uncomment the following line to preserve the Y‐limits of the
axes

12 % ylim(axes1,[‐5 5]);
13 box(axes1,'on');
14 hold(axes1,'on');
15

16 % Create plot
17 plot(X1,Y1,'DisplayName','f(x)')
18 axis([‐5,5,‐5,5])
19 title('$$f(x)=3(e^x‐1)‐xe^x$$','interpreter','latex')
20 xlabel('$$x$$','interpreter','latex')
21 ylabel('$$f(x)$$','interpreter','latex')
22

23 % Create legend
24 legend1 = legend(axes1,'show');
25 set(legend1,'FontSize',9);

C.2 forlambda0ofT.m

Code C.3: The matlab code that produces Fig. 2.15, forlambda0ofT.m.
1 tic
2 xl=‐10;
3 xr=+10;
4 step=(xr‐xl)/100;
5 for i=1:101
6 x(i)=xl+step*(i‐1);
7 f(i)=5*(exp(x(i))‐1) ‐ x(i)*exp(x(i));
8 end
9 createfigureforlambda0ofT(x,f);

10 toc

Code C.4: The function createfigureforlambda0ofT.m called by Code C.3.
1 function createfigurefornu0ofT(X1, Y1)
2 %CREATEFIGURE2(X1, Y1)
3 % X1: vector of x data
4 % Y1: vector of y data
5

6 % Create figure
7 figure1 = figure;
8

9 % Create axes
10 axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on');
11 %% Uncomment the following line to preserve the Y‐limits of the

axes
12 % ylim(axes1,[‐5 5]);
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13 box(axes1,'on');
14 hold(axes1,'on');
15

16 % Create plot
17 plot(X1,Y1,'DisplayName','f(\psi)')
18 axis([‐10,10,‐10,50])
19 title('$$f(\psi)=5(e^\psi‐1)‐\psi e^\psi$$', 'interpreter','latex

')
20 xlabel('$$\psi$$','interpreter','latex')
21 ylabel('$$f(\psi)$$','interpreter','latex')
22

23

24 % Create legend
25 legend1 = legend(axes1,'show');
26 set(legend1,'FontSize',9);

C.3 WienDisplacementANDPlanckofLambda.m

Code C.5: The matlab code that produces Fig. 2.16, WienDisplacementANDPlanckofLambda.m.
1 clear all
2 clc
3 tic
4 xl=0; % nm
5 xr=8000; % nm
6 T = 1595 % K black body temperature
7 nop=2001;
8 step=(xr‐xl)/(nop‐1); % nm
9 for i=1:nop;

10 x(i)=xl+step*(i‐1); % nm
11 x(i)=x(i)*1e‐9;
12 c1 = 499.24825e‐26; %8\pi hc = 499.24825322511997970335670474955

x 10^{‐26} J m
13 c2 = 14.38777e‐3; %hc/k_B = 14.387769599838156234952726573188 x

10^{‐3} m K
14 rho(i) = c1/(x(i)^5);
15 rho(i)=rho(i)/(exp(c2/(x(i)*T))‐1);
16 x(i)=x(i)*1e9;
17 end
18 %plot(x,rho); figure(gcf);
19

20 lambda0= 2897772/T % nm (Wien Displacement Law)
21 createfigureforPlanckLambdaofT(x,rho,T,lambda0);
22 toc

Code C.6: The function createfigureforPlanckLambdaofT.m called by Code C.5.
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1 function createfigureforPlanckLambdaofT(X1, Y1, T, lambda0)
2 %CREATEFIGURE2(X1, Y1)
3 % X1: vector of x data
4 % Y1: vector of y data
5

6

7 % Create figure
8 figure1 = figure;
9

10 % Create axes
11 axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on');
12 %% Uncomment to preserve the Y‐limits of the axes
13 % ylim(axes1,[‐5 5]);
14 box(axes1,'on');
15 hold(axes1,'on');
16

17 % Create plot
18 plot(X1,Y1,'DisplayName','\rho(\lambda,T)');
19 axis([0,8000,0,2000])
20 %title('Planck`s Law in terms of Wavelength and Temperature')
21 title(['\rho(\lambda,T) for T = ', num2str(T),' K',' \

lambda_0=',num2str(lambda0),' nm'])
22 xlabel('\lambda(nm)')
23 ylabel('\rho(J/m^4)')
24

25 % Create legend
26 legend1 = legend(axes1,'show');
27 set(legend1,'FontSize',9);

C.4 WienDisplacementANDPlanckofLambdaMultipleT.m

Code C.7: The matlab code that produces Fig. 2.17, WienDisplacementANDPlanckofLambdaMulti-
pleT.m.

1 clear all
2 clc
3 tic
4 xl=0; % nm
5 xr=5000; % nm
6 nop=2001;
7 step=(xr‐xl)/(nop‐1); % nm
8 for j=1:5
9 T(j)=3000+j*500 % K black body temperature

10 lambda0(j)= 2897772/T(j) % nm (Wien Displacement Law)
11 for i=1:nop;
12 x(i)=xl+step*(i‐1); % nm
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13 x(i)=x(i)*1e‐9;
14 c1 = 499.24825e‐26; %8\pi hc = 499.24825322511997970335670474955

x 10^{‐26} J m
15 c2 = 14.38777e‐3; %hc/k_B = 14.387769599838156234952726573188 x

10^{‐3} m K
16 rho(i,j) = c1/(x(i)^5);
17 rho(i,j)=rho(i,j)/(exp(c2/(x(i)*T(j)))‐1);
18 x(i)=x(i)*1e9;
19 end
20 end
21

22 colorspec = {[1 0 0]; [1 0.5 0]; [0 1 0]; [0 0 1]; [0.4 0 1]};
23 figure(1);
24 title({'\rho(\lambda,T)',[' \lambda_0=',num2str(lambda0,4),' nm'

]})
25 xlabel('\lambda(nm)')
26 ylabel('\rho(J/m^4)')
27 hold on
28 for i = 1:5
29 plot(x,rho(:, i), 'Color', colorspec{i})
30 end
31 %legend(num2str(T(:)))
32 legend([num2str(T(1)),' K'], [num2str(T(2)),' K'], [num2str(T(3))

, ' K'], [num2str(T(4)),' K'], [num2str(T(5)),' K'])
33 hold off
34

35 toc

C.5 Oscillations.m

Code C.8: The matlab code Oscillations.m that produces Fig. 5.8, which discribes oscillations of a 2LS
both in-resonance (Δ = 0) and out-of-resonance (Δ ≠ 0).

1 clear all
2 clc
3 tic
4 OmegaR=1
5 Delta=3*OmegaR
6 lambda = (sqrt(OmegaR^2+Delta^2))/2
7 TRonR =(2*pi)/(OmegaR)
8 TRoffR=(2*pi)/sqrt(OmegaR^2+Delta^2)
9 pi/lambda‐TRoffR

10 nop=501;
11 tl= 0;
12 tr= TRonR;
13 step=(tr‐tl)/(nop‐1); % nm
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14 for i=1:nop;
15 t(i)=tl+step*(i‐1);
16 P1onR(i)=cos((OmegaR/2)*t(i))^2;
17 P2onR(i)=sin((OmegaR/2)*t(i))^2;
18 P1offR(i)= 1 + (OmegaR^2*(cos(2*lambda*t(i))‐1))/(2*(OmegaR^2+

Delta^2));
19 P2offR(i)=(OmegaR^2)/(OmegaR^2+Delta^2)*sin(lambda*t(i))^2;
20 end
21 %plot(x,c,'k',x,y1,'b',x,y2,'r'); figure(gcf);
22 plot(t,P1onR,'k',t,P2onR,'b','LineWidth',2,'LineStyle','‐'); hold

on;
23 %legend('P_1(t)','P2(t)')
24 plot(t,P1offR,'r',t,P2offR,'g','LineWidth',2,'LineStyle','‐‐')
25 h = legend('$P_1(t)$ on Resonance','$P_2(t)$ on Resonance','$P_1(

t)$ off Resonance','$P_2(t)$ off Resonance');
26 set(h,'Interpreter','latex','FontSize',10)
27 title({'Oscillations in a two‐level system';'(On Resonance and

Off Resonance)'})
28 xlabel('$t$(s)','Interpreter','latex','FontSize',16)
29 ylabel('probabilities','FontSize',16)
30 annotation('textbox',...
31 [0.7 0.45 0.17 0.15],...
32 'String',{'plotting with',['\Omega_R = ' num2str(OmegaR),' s^{‐1}

'],['\Delta = ' num2str(Delta),' s^{‐1}']},...
33 'FontSize',10,...
34 'FontName','Arial',...
35 'LineStyle','‐‐',...
36 'EdgeColor',[1 1 0],...
37 'LineWidth',2,...
38 'BackgroundColor',[0.9 0.9 0.9],...
39 'Color',[0.84 0.16 0]);
40

41 hold off;
42 toc

C.6 N1N2DNrho.m

Code C.9: The matlab code N1N2DNrho.m creates a representation of Eqs. 11.47, 11.48, 11.49, 11.51,
which describe the level populations, the EM radiation density, and the population inversion in the sta-
tionary state.

1 clear all
2 clc
3 tic
4 OmegaR=1
5 Delta=3*OmegaR
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6 lambda = (sqrt(OmegaR^2+Delta^2))/2
7 TRonR =(2*pi)/(OmegaR)
8 TRoffR=(2*pi)/sqrt(OmegaR^2+Delta^2)
9 pi/lambda‐TRoffR

10 nop=501;
11 tl= 0;
12 tr= TRonR;
13 step=(tr‐tl)/(nop‐1); % nm
14 for i=1:nop;
15 t(i)=tl+step*(i‐1);
16 P1onR(i)=cos((OmegaR/2)*t(i))^2;
17 P2onR(i)=sin((OmegaR/2)*t(i))^2;
18 P1offR(i)= 1 + (OmegaR^2*(cos(2*lambda*t(i))‐1))/(2*(OmegaR^2+

Delta^2));
19 P2offR(i)=(OmegaR^2)/(OmegaR^2+Delta^2)*sin(lambda*t(i))^2;
20 end
21 %plot(x,c,'k',x,y1,'b',x,y2,'r'); figure(gcf);
22 plot(t,P1onR,'k',t,P2onR,'b','LineWidth',2,'LineStyle','‐'); hold

on;
23 %legend('P_1(t)','P2(t)')
24 plot(t,P1offR,'r',t,P2offR,'g','LineWidth',2,'LineStyle','‐‐')
25 h = legend('$P_1(t)$ on Resonance','$P_2(t)$ on Resonance','$P_1(

t)$ off Resonance','$P_2(t)$ off Resonance');
26 set(h,'Interpreter','latex','FontSize',10)
27 title({'Oscillations in a two‐level system';'(On Resonance and

Off Resonance)'})
28 xlabel('$t$(s)','Interpreter','latex','FontSize',16)
29 ylabel('probabilities','FontSize',16)
30 annotation('textbox',...
31 [0.7 0.45 0.17 0.15],...
32 'String',{'plotting with',['\Omega_R = ' num2str(OmegaR),' s^{‐1}

'],['\Delta = ' num2str(Delta),' s^{‐1}']},...
33 'FontSize',10,...
34 'FontName','Arial',...
35 'LineStyle','‐‐',...
36 'EdgeColor',[1 1 0],...
37 'LineWidth',2,...
38 'BackgroundColor',[0.9 0.9 0.9],...
39 'Color',[0.84 0.16 0]);
40

41 hold off;
42 toc



 

The book is an introduction and overview, at the undergraduate level, to quantum optics. We analyze the quantum nature of light. We 
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