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3D quantum well created inside the vacancy. . . . . .. .. ... ... . oL
4.3  Eigenfunctions, eigenerergies, and energy dispersion (k,, = nm/L,n = 1,2,3,...) of
the particle in the simplistic model of the infinite well. In the panel depicting the energy
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44  (Left) Color-center absorption spectra obtained on air, in 298 K, at the UV-visible, by
NaCl, KCl, and KBr crystals radiated using a Tesla coil. [ 1]. The color depends on the size
of the space left by the defect, i.e., by the lattice parameter or lattice constant, a. The peak
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Dependence of the absorption peak on 4 in alkaline halide crystals [1]. The increase in
a creates larger vacancies when an ion is missing; thus there is a wider potential energy
well. This leads to a decrease in the energy distance between the ground and first excited
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smaller (larger). . . . . . . . ..
4.5  Left: In a large system as e.g. in a crystal, the environment of each absorber or emitter
is rarely identical, in other words, the quantum wells are not exactly the same. Right:
Vibrational and spatial levels. The spectra, mirroring this situation, will be broad.
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ABBREVIATIONS

Abbreviation Name
1D one-dimensional
2D two-dimensional
3D three-dimensional
1LS single-level system
2LS two-level system
3LS three-level system
MLS multi-level system
AF atom - field
EM electromagnetic
S.IL Systéme International
FWHM Full Width at Half Maximum
HOMO Highest Occupied Molecular Orbital
IR infrared
LASER Light Amplification by Stimulated Emission of Radiation
LED Light-Emitting Diode
LUMO Lowest Unoccupied Molecular Orbital
RWA Rotating Wave Approximation
TB Tight Binding
TE Transverse Electric
TEM Transverse ElectroMagnetic
™ Transverse Magnetic
uv ultraviolet
AB = -BA anticommutation
{A,B} = AB+ BA anticommutator
AB = BA commutation
[A,B] = AB-BA commutator
AEc- conduction band offset
0 delta function
T Gamma function
AEy, valence band offset
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Table 1: Mathematical Symbols.

Symbol

Meaning

SN W N BN o

defined as equal

equal by definition
equivalent

the set of natural numbers
the set of integers

the set of real numbers

the set of complex numbers
exists, exist

does not exist, do not exist
denotes increase

denotes decrease
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Table 2: Physical constants (data from NIST: CODATA [1]).

Symbol Name Value

e elementary charge 1.602176565(35) x 107 C

6.62606957(29) X 10734 s
4.135667516(91) x 10715 eV s
h reduced Planck constant 1.054571726(47) x 10734 s
1.3806488(13) x 10723 J/K

h Planck constant

kg Boltzmann constant 8.6173324(78) X 105 eV/K

c speed of light in vacuum 2.99792458 X 108 m/s
m, proton mass 1.672621777(74) x 107% kg
m, neutron mass 1.674927351(74) x 1077 kg
m, electron mass 9.10938291(40) x 1073 kg
o electrical permittivity of vacuum 8.854187817... X 1072 F/m
to magnetic permeability of vacuum 41 X 1077 N/A?

The units of a physical magnitude M will be denoted as [M].
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CHAPTER 1

OVERVIEW

In this Chapter:

A panoramic overview of the book contents is presented. I explain concepts that are developed further
below.

Prerequisite knowledge: Some knowledge of Quantum Mechanics, Electromagnetism and Statistical
Physics is necessary, although we will explain what we need.

This book is an evolution of the book [ 1] and of newer university lectures [2]. Other sources that the
readers could consult are the following textbooks and university lectures [ 3, 4, 5, 6].

Let us start with a panoramic overview of the contents. Let us explain the basic notions, which will
be further expanded below, and sketch the structure of this book. The book also includes tables with ab-
breviations, a glossary, that is, a dictionary of terminology, as well as a symbolotheque, which includes
physical constants and symbols. Before starting, the author would like to formulate an axiom: “There is
always an error.” Hence, generally, in all human activities, errors exist. During the process of finding these
errors we learn more and understand deeper. It is not a sin to make an error, but to think that you never
make errors. Let us hope that this formulation will motivate readers to think, find and communicate to
me errors and omissions in order to make the book, hopefully in a later edition, better. To the Chinese
philosopher Confucius, 551 - 479 BCE, who died in the year of the Battle of Plataea, is attributed, among
other things, the saying “I hear and forget, I see and I remember, I do and I understand”; a saying that
should accompany the learning process in general. In particular, attending a university course, one should
use lectures, notes, an organized e-class, an e-book, solved old exam problems, exercises, video lectures
and experiment, if possible. Above all, a lively interaction between teacher and students should exist. The
joy of interaction cannot be replaced by anything. Let us keep in mind that the purpose is not evaluation,
but evolution. Finally, in a playful mood, instead of bullets, the following initial comment for commutation
and anticommutation and comments on chapters are marked in Linear B.

TEFEH-TTTEEH At first, for the notation: To simplify the notation A (operation) B, we

will write AB. Here the “operation” can be in the simpler cases addition or multiplication of numbers or of

Constantinos Simserides (2023). «Quantum Optics».
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matrices, but it can also be any other exotic operation. Although we will discuss this issue in detail below,
let us say a few words about commutation and anticommutation. The following objects are defined, the
commutator

[A,B] := AB - BA,

and the anticommutator

[A,B) := AB + BA.

If the commutator vanishes, i.e.,, [A, B] = 0, then AB = BA, that is, objects A and B commute, in other
words, AB does not differ from BA. This is called commutative property. If the anticommutator vanishes,
ie, {A,B} = 0, then AB = —BA, that s, objects A and B anticommute, in other words, AB is opposite
to BA. This is called anticommutative property (from Greek anti which signifies opposition). The repre-
sentation with operators, annihilation or lowering and creation or raising, that is, with ladder operators, is
called second quantization in physics. Hence, bosons (like photons) commute, i.e., the operators which
describe annihilation (lowering) an creation (raising) of bosons follow commutation relations, with ob-
jects [, ], while, fermions (like electrons) anticommute, i.e., the operators, which describe annihilation
(lowering) an creation (raising) of fermions follow anticommutation relations with objects {, }.
AFTH m Chapter 2 we proceed to an introduction to the quantum nature oflight. We present the
idealization called the “black body” and relevant notions. In short, a black body is an object which absorbs
all EM (electromagnetic) waves that fall onto it, regardless of frequency and angle of incidence, that s,
something “pitch-black’, if we can express ourselves in this vulgar way. We define one of the most central
physical quantities in this book, namely, the energy density of EM radiation in an infinitesimal frequency
range, initially, of a black body, in thermodynamic equilibrium, p(v, T'). The units of measurement in S.I.
are [p(v, T)] = ﬁ , hence, the units of measurement of [p(v, T)dv] = % , thatis, p(v, T)dv is energy
density. We present the important laws for black body radiation in thermodynamic equilibrium, that s, for
the quantity p(v, T): Rayleigh-Jeans (classical, theoretical, in absolute discrepancy with the experiment),
Wien (empirical, fitting with experiment at high frequencies), Planck (quantum mechanical, theoretical,
in agreement with the experiment for all frequencies) laws. We also state the Stefan-Boltzmann law (again,
for the black body) in two forms: the first formulation refers to energy density, 0(T'), with units [o(T)] =

# , and the second formulation refers to radiation intensity, I, with units [I] = Lz = —.

We remind the readers of the Maxwell equations in differential and in integral form, of the boundary
conditions at an interface between two media, as well as of EM fields in cavities. Then, we define an-
other important quantity, g(v) = Z—Ij , that is, the infinitesimal number of EM field normal modes in an
infinitesimal frequency range. Normal modes means frequencies and forms (shapes). The quantity g(v)
and classical physics, that is, the equipartition of energy theorem, lead to the Rayleigh-Jeans law, which
is in absolute discrepancy with the experiment. Whereas, the quantity g(v) and some (paleo)quantum
hypotheses lead to the Planck’s law, which agrees with the experiment for all frequencies. However, the
Planck’s law, “proven” via this route, reminds us of a student who, not knowing how to solve the exam
problem, tries strange tricks, to find the correct result without remorse of wrong intermediate paths. A
robust proof of Planck’s law was given by Einstein; we will discuss it in Chapter 3. Next, we present the
Wien’s displacement law in the form Ay T = constant (which gives the wavelength A where we have max-
imum EM radiation of a black body at temperature T') and in the form /T = constant’ (which gives the
frequency vy where we have maximum EM radiation of a black body at temperature T). Finally, we de-
scribe the photoelectric effect, which, together with black body radiation, convinced us of the quantum
nature of light. All these happened at the end of 19th century - beginning of 20th century, already far in
the past.

A+TH Chapter 3 is devoted to the interaction mechanisms (or processes) between the EM radi-
ation and the 2LS. Necessary abbreviations here are: 1LS = single-level system, 2LS = two-level system,
3LS = three-level system, MLS = multi-level system. Exampli gratia, a 2LS might be the two consecutive
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levels of an atom, molecule, quantum dot or alternatively nanoparticle. This is schematically shown in
Figure 1.1. We will see how we construct a 2LS from two 1LSs, approaching each other, later, in Chapter

(XX

Es
Ea |2Ls) yefe
E1 " oneelectron

Figure 1.1: Schematically, a two-level system (2LS).

4. Anyway, schematically, the explanation is given in Figure 1.2. Let as assume, for the sake of simplicity,
that each isolated 1LS has an energy level €. Then, the unified system, that is, the 2LS, has, within a simple
Tight-Binding approach, energy levels E; and E;, which have an energetic separation 2|t|, where £ is the
transfer integral, = ((PLlI:I |r), which shows how strongly the two 1LSs interact to build the 2LS. [If
the isolated 1LSs are not identical, their levels will not have the same energy, but the result is qualitatively
similar. |

L OO R

distance €

Ey1 =€ 1] = g == E,—E; =2t

Figure 1.2: Schematically, how, approaching two single-level systems (1LSs), which are separated by infi-
nite distance, one left (L) and one right (R), we construct a two-level system (2LS). The energetic separa-
tion of the two levels is determined by the transfer integral ¢ = (¢L|H | ), that is, from how strongly the
once (upper panel) separated 1LSs interact to build the unified system, i.e., the 2LS (lower panel). For the
sake of simplicity, we assume that each isolated 1LS has an energy level ¢, while, the unified system, that
is, the 2LS, has energy levels E1 and E,, which, within a simple Tight-Binding approach, are energetically
separated by 2|f|.

In summary, the mechanisms or processes of EM radiation - 2LS interaction are: (Stimulated) Absorp-
tion, Spontaneous Emission, Stimulated Emission. A process is characterized as stimulated when it exists
due to the existence of energy density of EM radiation, p, whereas it is characterized as spontaneous when
it is not due to the existence of p. The reason why we put parentheses in “(Stimulated) Absorption” is
exactly that there is no other way: absorption will necessarily be forced, that is, it will owe its existence
to p. Of these three processes, Stimulated Emission, which was introduced by Einstein, is fundamental to
the operation of LASERs. Actually, the acronym means exactly this: Light Amplification by Stimulated
Emission of Radiation. Let us notice that within this book, we mainly focus on one electron in a 2LS or
3LS or MLS and on its electric dipole interaction, due to its electric charge, with the EM field. However,
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similarly, we could, if we had space and time, extend to phenomena which require magnetic dipole mo-
ment and interaction due to electron spin. This will maybe be done in a next edition. The probability of
(Stimulated) Absorption is

dwslt)s = Blzp(V, T)dt,

al

that is, proportional to time dt and to p(v, T), with proportionality factor By,. The index 12 means that
with the photon absorption, the electron will be transferred from level 1 to level 2. The probability of
Spontaneous Emission is

degq = A21dt,

that is, proportional to time df, with proportionality factor Ay;. The index 21 means that with the photon
emission, the electron will be transferred from level 2 to level 1. Since this process is spontaneous, dWen
does not depend on p(v, T). The probability of Stimulated Emission is

AWe, = Barp(v, T)dt,

that is, proportional to time dt and to p(v, T), with proportionality constant By;. The index 21 means
that with the photon emission, the electron will be transferred from level 2 to level 1. These are shown
schematically in Figure 1.3. In (Stimulated) Absorption, a photon is absorbed, leading to an electron be-
ing transferred from the lower level to the upper level. In Spontaneous Emission, an electron, which was
in the upper level, falls spontaneously at the lower level, which happens to be empty, and as a result, a
photon is emitted, which however, has random direction, phase, polarization. In Stimulated Emission, a
stimulating or driving photon (i.e., thisis a stimulated or driven oscillation), let us call it stimulating photon,
with energy E¢ = hv, momentum Py = EfP/C’ obliges the electron, which initially was at the upper level,
to fall at the empty lower level, leading to another photon being emitted. This second photon is identical
to the stimulating photon, i.e, they have same energy, momentum (direction), phase, polarization. The
properties of LASER are due to this process: same energy = monochromaticity, ssme momentum =
directionality, same phase = coherence, same polarization = polarized light. It is implied that we must
have conservation of energy and momentum; we will discuss all these thoroughly in Chapter 3.

initial final initial final initial final
stimulating \ﬂ
—.— e photon — =—i)— two identical photons:
; : s e . Lo same energy,
(Stimulated) Absorption ||Spontaneous Emission Stimulated Emission same momentum (direction),
phase, polarization

Figure 1.3: Schematically, (Stimulated) Absorption, Spontaneous Emission and Stimulated Emission.

AETH Chapter 4 is devoted to the continuous and the discrete spectrum. The discrete energy
spectrum is a feature of atoms and molecules as well as of artificial atoms and molecules, i.e., quantum
dots or nanoparticles, which are mainly human-made, either via physical or via chemical paths, as well
as of color centers, which usually appear as defects in crystals. Some other human-made objects or arti-
facts have discrete-continuous energy spectrum, meaning that they have discrete spectrum in one or two
dimensions and continuous spectrum in the rest dimensions. Such systems are quantum wires, with dis-
crete spectrum in two dimensions and continuous in one dimension, and quantum wells, with discrete
spectrum in one dimension and continuous in two dimensions. The continuous spectrum is a feature of
solids, either crystalline or amorphous (with important differences). We also devote space to color centers
and quantum dots, which have discrete spectrum. Moreover, in Chapter 4 we study the transition from
two 1LSs to one coupled system, the 2LS, which is done with three variants of the Tight-Binding method,
with graded simplicity. For quantum wells, wires and dots, we mainly describe their electronic states and
their corresponding density of states.
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AETH Chapter 5 we deal with the so-called semiclassical approximation of the EM field - 2LS,
3LS, MLS interaction. Semiclasical means that, while we treat the EM field classically, we treat 2LS, 3LS,
MLS quantum mechanically, that is, as a system of eigenstates. Here, we introduce the reader to the dipole
approximation. The electric dipole moment between two charges, one positive (plus, P), 4 > 0, and one
negative (minus, M), —g < 0, is defined as ,7_‘} = q(Z where we define d = MP (Figure 1.4). Usually,
when studying an atom, we consider the position vector of the electron (E) relative to the nucleus (N),

NE=7=-d. Then, j} = qtj = —e¥, if we refer to e.g. the hydrogen atom.

PN) 7 _ g

M (E)

Figure 1.4: (Upper panel) The axes origin O, the positive charge P (plus), which can be represented by the
nucleus N in an atom, the negative charge M (minus), which can be represented by one electron E moving

5
around the nucleus. We define d := MP. Usually, when studying an atom, we consider the position vector

- - -

of the electron relative to the nucleus NE = 7 = —d. The electric dipole moment is defined as & := qd
-

something that we can therefore write 7° = —e7, if we refer to e.g. the hydrogen atom. For the latter

case, we notice the vectors OP := Rand OF := 7E. (Lower panel) Very schematically: Under these
conditions, the wave length is much larger than the spatial extent of the system, something like A >> a;
thus, the electric field is practically homogeneous. For example, for optical wavelengths, A ~ 500 nm,
and for the hydrogen atom a ~ a (Bohr radius), hence, A/ay ~ 10%. The triangle OPM (ONE), which
is shown in the upper panel, is shown in the lower panel smaller than the wavelength, but in fact it is much
(~ 10* times) smaller.

We will use time-dependent perturbation theory. Here, by the term unperturbed system we mean the
eigenstate system without EM field, while, by the term perturbed system we mean that the potential energy
of interaction with the EM field, which is time-dependent, has been added. Let us call the Hamiltonian
of the unperturbed system Hy, the potential energy of the perturbation U (7, t) and the Hamiltonian of
the perturbed system F. Then,

H = I:IO + Ugﬁ, t)

The potential energy of the perturbation, that is, of the interaction with the electric field &£ , has the form
Uy =-P - &.

Almost everywhere in this book we neglect the electron spin and hence the potential energy of interaction
with the magnetic field, which has a similar form, that is,

Ug:—ﬁu@_),

-
where [] is the magnetic dipole moment and .% is the magnetic induction. Nice analogies exist between
electric dipole moment inside an electric field and magnetic dipole moment inside magnetic field. We re-
mind these analogies to the reader below, as we list the electric dipole moment, magnetic dipole moment,
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potential energy of electric dipole, potential energy of magnetic dipole and the respective torques. Lis

5
the orbital momentum, S is the spin, ¢ a dimensionless factor, and g, 1 are the particle charge and mass,
respectively.

Analogies Reminder

&z (Electric Field) B (Magnetic Field)

Figure 1.5: Electric and magnetic dipole.

r_@ = C]d electric dlpole moment ‘[j = IE magnetic dlpole moment
or I = (1bm)(L + g5)

Uy = - -& potential energy Up=—1- B potential energy

?zjxg torque ?:ﬁxﬁ torque
[ﬁ]:Cm [ﬁ]:Amz
N T
[Ug]:CmE:Nm:J [uB]_AmA_m_Nm_J
N 2 N
[7] = Cmz =Nm [7] = Am"-— = Nm

The essence of the approach we use is shown in Figure 1.4. The wavelength is much larger than the
spatial dimensions of the system under study, i.e.,

A >> a.

If, for example, we study the hydrogen atom, @ = a is, let’s say, the Bohr radius. If we examine optical
wavelengths,ie.,, A ~500nm,since g = 0.529 A~ 0.5x107! nm, then Y, ~ 10% i.e., the approximation
holds for optical transitions and atomic physics. If indeed this happens, i.e., if the wavelength is much
larger than the system’s spatial extent, then, in a good approximation, the electric field has only temporal
dependence but it is spatially homogeneous. In physics, homogeneous means the same everywhere, i.e., in
every point of space, while, isotropic means the same towards all directions.

Under these conditions, in Chapter S we study and analytically solve the temporal evolution of 2LS
and 3LS, with one electron somehow placed initially (e.g. at the lower level) and finally we obtain the
so-called Rabi oscillations, i.e., how do the probabilities to find the electron at each level oscillate as func-
tions of time. For this purpose, we make the so-called Rotating Wave Approximation (RWA). Practically,
this means that if we denote by w the cyclic frequency of the EM field and by /iQ) the energetic sepa-
ration between e.g. the two levels of a 2LS and solve the problem, then we obtain fast terms containing
+(w + Q) and slow terms containing +(w — €2), but we only keep the slow terms. These oscillations the
electron performs between the two levels are called Rabi oscillations and we meet them here for the first
time, within the semiclassical approximation. Such an example of oscillations of the probability to find an
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Oscillations in a two-level system Oscillations in a two-level system
; (On Resonance and Off Resonance) ; (On Resonance and Off Resonance)
= 7 = - < < = =
—— P, (t) on Resonance = Rk - ~ = [——P;(t) on Resonance
09 —— P,(t) on Resonance 09 —— P, () on Resonance
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Figure 1.6: We present the oscillations of the probability to find the electron at the two levels of a two-level
system (2LS) at resonance (A = 0, continuous lines) and out of resonance (A # 0, dashed lines). The
period of the oscillations is T = 27\/Q3 + 2%, while, the maximum transfer percentage is %7/ = Q¥/(Q3 + A?).
To make a graphical representation, we have assigned some values to Q and A. A = @ — Q) is the so-
called detuning and Qy, is the Rabi frequency, which shows how much the two levels are tangled by the
electric field.

-
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Figure 1.7: A comparison between the Rotating Wave Approximation (RWA) and the full numerical solu-
tion (noRWA), for some arbitrary values of Qg, (3, @, A. We present the probabilities to find the electron
at the two levels as functions of time, for initial placement at level 1. The RWA curves are smoother, since
they lack the high-frequency terms +(€2 + w) and only low-frequency terms £({) — @) have been kept.
Also, we observe a slight dephasing, i.e., the RWA curves are little by little left behind the full numerical
solution curves.

electron at the two levels of a 2LS, within RWA, is shown in Figure 1.6. A comparison of RWA with the
full numerical solution, i.e., without ignoring the fast terms, is shown in Figure 1.7. Finally, in Chapter S
we examine the MLS within RWA, under the assumption that levels are equidistant.

AT Chapter 6 is also devoted to the semiclassical approximation. Here, we focus on full nu-
merical solutions, but we also compare with approximate methods, such as the popular RWA and the first
and second order averaging method [7]. Hence, also in Chapter 6, we study again Rabi oscillations in a
2LS and MLS, at the semiclassical approximation. The solution of the —perturbed by the electric compo-
nent of the EM field- 2LS is approached in three ways: (a) via the rotating wave approximation (RWA),
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(b) via the averaging method, (AM), and (c) numerically, by solving the original differential equations
without approximation (noRWA). Ways (a) and (b) give approximate solutions. Indicatively, we test the
following initial conditions:

1. C1(0) =1,C(0) =0 (initial placement of the electron at the lower level),

2. C1(0) =0,C5(0) =1 (initial placement of the electron at the upper level),

3. C1(0) = %eie, C,(0) = %eiqﬁ (initial equiprobable placement of the electron at the two levels,
but generally with different initial phase).

We compare the results of the approximate methods (a) and (b) with the results of the numerical solution
of the relevant differential equations (c) [with matlab, via the trapezoid, Runge-Kutta (2,3) and Runge-
Kutta (4,5) methods]. This study includes resonance (A = 0), as well as out-of-resonance (A # 0) cases.

AETH Chapter 7 is devoted to the so-called allowed and forbidden optical transitions, mainly
within the dipole approximation, and to the so-called selection rules, which, in brief;, tell us “what is al-
lowed and what is forbidden”. A model system which is often used to explain these concepts is the hydro-
gen atom. We will use it here, too. Given the chance, we also analyze the atomic orbitals of the hydrogen
atom, i.e., their parity (whether they are even or odd) and nodal surfaces (surfaces where the wave function
vanishes). We explain the so-called allowed and forbidden transitions within the dipole approximation as
well as the relevant selection rules. Within the dipole approximation, everything is finally reduced to the
integral

7k/k=fd31’ CI)]*(,(?) 7 (Dk(?),

which expresses the matrix element of the position of the negative charge with respect to the positive
charge e.g. the position of the electron relative to the nucleus. k and k’ are the states between which we ask
whether an optical transition can take place. If this integral is zero, then the optical transition is “forbidden”,
while, if it is not zero, the optical transition is “allowed”; the larger this integral is the stronger the optical
transition. The reason is that the matrix element of the potential energy of the perturbation, which tries

to tangle states k and k’ via the electric field, &£ ,is
Ug’k/k(t) =e& .?k’k'

We observe that, everything reduces to the symmetry of the eigenfunctions of the unperturbed system,
since whether the matrix element 7/ is zero or not is determined by which of them are even or odd, given
that the function 7'is obviously odd. Moreover, in Chapter 7 we discuss hybrid sp, sp2 ,and sp3 orbitals.
AEYH m chapter 8 we advance to the full quantum mechanical treatment of photon - 2LS, 3LS,
MLS interaction and to the EM field quantization inside a cavity, which is performed with a somehow
heuristic manner. We mainly focus here on Rabi oscillations of the number of photons within a cavity and
of the probability to find the electron at the levels of a 2LS (or 3LS, MLS) as the electron interacts with the
photons inside the cavity. Hence, here many photons and a single electron are tangled, an electron which
descends and ascends between the two levels. Many-fermion phenomena are out of the subject of this
book. A photon is a boson, i.e., it is benign, in the sense that many bosons can occupy the same quantum
state. But an electron is a fermion, i.e., it is snob, in the sense that two fermions cannot occupy the same
quantum state. This way, while we can condense bosons, we cannot condense (pure) fermions (although
for example, Cooper pairs can be condensed). The Hamiltonian of the 77 mode of the EM field, HEMm )
is expressed via photon (boson) annihilation and creation operators. The EM field Hamiltonian is the
sum of all the I:IEM,m terms. The 2LS Hamiltonian, HZLS , (or 3LS, MLS), which is described via spinors,
is expressed via electron (fermion) annihilation and creation operators. We also need a Hamiltonian, to
express the interaction of the 77 mode of the EM field with the 2LS (or 3LS, MLS), let us call it I:IEM‘m_ZLs.
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This has alternative notations as U ,,, H AF,m; AF has its roots in good old atomic physics, it means atom-
field. U reminds us that it is the perturbing potential energy, which emanates from the electric field &
Hence, finally, we have to add all these individual Hamiltonians.

A popular full Hamiltonian of this kind is the Rabi Hamiltonian. It describes an EM field mode, 11, a
2LS, and the interaction between them. After some initial simplifications, it can be written in the form

Hy p = hawydhdy, + HQS,S_ + 1ig, (S, + S_)(@h, + d,,)-

The first term expresses the mode 11 of the EM field, the second term expresses the 2LS and the third term
expresses their interaction. w,, is the (cyclic) frequency of mode 1 of the EM field and &}, (4,,) is the
photon creation (annihilation) operator of such a photon. /i) is the energy separation of the two levels
and S, (5_) is the electron raising (lowering) operator between the upper and the lower level. Finally, g,
expresses the strength and permissibility of the interaction of mode 11 of the EM field with the 2LS. The
third term of the Rabi Hamiltonian can be expanded into four addends. From these, the first addend ex-
presses raising of the electron and creation of a photon (§ a5, the second addend raising of the electron
and annihilation of a photon (g +d,,), the third addend lowering of the electron and creation of a photon
(S8_4t)), and the fourth addend lowering of the electron and annihilation of a photon (5_4,,). If there is
only one type of photons in the cavity, that is, only one mode 711, then the first and the fourth addends
seem energetically unreasonable. If we dismiss them, we arrive at the Jaynes-Cummings Hamiltonian [ 8],
a form of which is
Hicm = hawydlydy, + 1QS,S_ + 18,,(5 48y, + S_dh).

Using the Jaynes-Cummings Hamiltonian, we study photon absorption and emission and the relevant
Rabi oscillations of the probability to find the electron at each level (at the lower level (§_§+>, at the
upper level (5,5_)) and of the number of photons of mode 1 in the cavity ( (4},4,,)). Two examples are
shown in Figure 1.8. We calculate, among other things, the average (expected) values (ﬁfnﬁm ), (§+§_),

Oscillations in a two-level system
(On Resonance and Off Resonance) ©n

Oscillations in a two-level system
and Off R )

plotting with
g=01s 1

N
o

25 plotting with

g=001s"

probabilities
=2

probabilities

o

N

A=-01s"
n=4

3
\J
\
\

0.5

Figure 1.8: Two examples of Rabi oscillations during a photon absorption, i.e., the initial condition is 4
photons in the cavity and 1 electron at the lower level. We use some arbitrary values of the parameters
to make an indicative figure. On the right, the two levels are tangled more strongly (the parameter g is
larger). We present, the temporal evolution of the expected value of the number of photons in the cavity,

2
@ta,) =n- z}% sin?(Q,,t) (dashed cyan line), both on resonance (A = 0) and out of resonance (A #

. A 2
0), as well as of the expected value of the number of electrons at the upper level, (5,5_) = % sin’ (Q,1)

and at the lower level, (5_5.,).Q,, = \/(A/z)2 + ng2.

(§ A, (S _ﬁ; ), for I:chlm. Finally, we notice that the eigenstates of the electron in the 2LS and the EM
mode 11, without the interaction between them, are usually expressed as |T, 11,,,), ||, 1,,,), where 11,,, is the
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number of photons of EM mode 7 and [T) (||)) means that the electron resides at the upper (lower)
level.

AEYH Chapter 9 is also devoted to the full quantum mechanical approach. We discuss bosons,
fermions, commutations, anticommutations, ladder operators and second quantization. We are interested
in:

the commutator, [A, B] = AB — BA, and

the anticommutator, {A, B} = AB + BA.

*

If the commutator vanishes, AB = BA, we have the commutative property.

*

If the anticommutator vanishes, AB = —B A, we have the anticommutative property.

Boson (e.g. photon) commutation relations: Let us call 4,,, the boson annihilation operator and Al the
boson creation operator at the state or mode 11, where fiw,,, is the energy of the created or annihilated
boson, then, for bosons, the following commutation relations hold:

When [A,B] =0 = AB-BA =0 = AB = BA, i.e, the quantities A and B commute, which shows
the name origin. Simultaneously, 41, can be called raising operator because it raises the energy by ficw,,,, 4y,
can be called lowering operator because it lowers the energy by fiw,,, and therefore, since this is a ladder
of raisings and lowerings, the operators 4,,, a, are called ladder operators.

Fermion (e.g. electron) anticommutation relations: Let us call 3; the fermion annihilation operator and

?1? the fermion creation operator at state 7, where /i(); is the energy of the created or annihilated fermion,
then, for fermions, the following anticommutation relations hold:

4,4/} =06
{ai/ a]} =0

AT AT
{ai/aj} =0

ij

When {A,B} = 0 = AB+ BA = 0 = AB = -BA, ie, the quantities A, B anticommute, which
shows the name origin. Simultaneously, ﬁ:-r can be called raising operator because it raises the energy by
7€)}, 3; can be called lowering operator because it lowers the energy by 7€), and therefore, since this is
a ladder or raisings and lowerings, operators a;, ﬁ;r are called ladder operators, too. Alternatively, we use
the notation: S, for the raising operator at the upper 2LS level from the lower 2LS level and S_ for the
lowering operator to the lower 2LS level from the upper 2LS level. Simultaneously, S could be called
electron creation operator at the upper level and destruction operator at the lower level, while S_ could

be called electron destruction operator at the upper level and creation at the lower level. If we apply the

} = O for the same state, e.g. putting i = j = 7, we obtain {&I, ﬁ:} =0= ﬁ:ﬁ: = 0, which

af

relation { ﬁ:-r, c
means that we cannot put two fermions at the same state, which is the Pauli exclusion principle.

In linear algebra as well as in its applications in quantum mechanics, we define the raising operator,
which increases the eigenvalue of another operator, and the lowering operator, which decreases the eigen-
value of another operator. These are collectively called ladder operators. In quantum mechanics, the rais-
ing operator is frequently called creation operator, and the lowering operator is frequently called annihi-
lation operator. Well-known applications of ladder operators are in the simple harmonic oscillator and in
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angular momentum. In quite a few areas of physics and chemistry, the use of these operators instead of
wavefunctions is known as second quantization.

AFTH m Chapter 10 we discuss the density operator and matrix. We clarify what a pure state is
(the system is described by a wave function), what a mixed state is (the system cannot be described by
a well-defined wave function, e.g., because it is coupled to a reservoir with which it can exchange heat,
particles etc.). We also discuss the relation of the density operator and matrix with the temporal evolution
of the system and the von Neumann equation. The density operator for a pure state can be written as

c1(t)
~ CH(t
p=twyw, wy=|20|
cn(t)
Thatis, [V) = X, ci(t) |Dx), where |Dy) is our basis. Hence, (V| = [C’i (t) c(t) - C;V(t)], hence,
the representation of the density operator in matrix form is
c1(t) ci(B)ei(t) cr(b)ey(t)

W) (Wl = |e®[60) GO ]=|aba® abo®

The temporal evolution of the density operator is given by the Liouville - von Neumann equation

dp .
0 — 111, po),

where H = Hy + U= (7, t) is the system Hamiltonian. If we include energy level relaxations due to spon-
taneous emission or de-excitations, collisions with gas atoms etc, then

odo) . 17
; % = [, p(o)] - S, (),

where f(I)k(7) = VD (7), Yk € R and the Hamiltonian is written H = HO + Uz (7 t) - %f

AEY[H Chapter 11 is devoted to LASERS; specifically, to the operation principles, rate equations
for the level populations and for the energy density of the EM waves in the cavity, longitudinal and trans-
verse modes, and types of LASERs. As a prototype system, we examine the He - Ne LASER, while we also
mention other LASER types, such as the p-n junction LASER, the quantum dot LASER etc. We focus on
the rate equations for the level populations N7 and N, for the levels which participate in the emission of
coherent EM waves and for the energy density of EM waves in the cavity p, that is, on Ni/it, Nafit, 4pfas.
We explain what the longitudinal and transverse modes are. We discuss the optical transition line widths.
Apart from the temporal evolution of N1, Ny, p, generally, we also focus on the values of Ny, Ny, p, at the
steady state, i.e., when a dynamical equilibrium between the statistical set of 2LSs (we have a large number
of 2LSs in the cavity) and the energy density of EM waves in the cavity has been established. We explain
what pumping;, critical pumping and population inversion is. The differential equations, which tangle N,
Ny, p, generally, cannot be solved analytically, but numerically. Here we solve them by matlab; an exam-
ple is shown in Figure 1.9. We notice, finally, that even though the emission of coherent EM waves (aka
lasing) is usually between two tangled levels (2LS), other levels are also involved in the whole process
with auxiliary role.

The LASER rate differential equations in dimensionless form have the form

dvy 121
— =vy 4+ 0(Vy —Vq) — —,
i 2 +0(vp —v1) T
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Figure 1.9: We modify only one parameter (from the set ry, 71, Tg, 4/4) and we observe the temporal
evolution of the dimensionless level populations (11, ,) as well as of the dimensionless energy density
of EM waves inside the cavity (¢) as functions of the dimensionless time (7).

dv
d_T2 =1y +o(vi —vy) — vy,
do 0 A’
I R )

Here 11, 15, 0, T are dimensionless Ny, Ny, p, f (time), while, 7y, 71, 7o, 4/4 dimensionless parameters,
whose meaning is explained in Chapter 11. At the steady state, ignoring 4/4 < 1, the following equations
hold

vy =11y, Y1y

Vo = N, VTNS1
2 T17N+(1—T1), Vry21

_ 0, VT'Nﬁl
T Y ry-1, Vg1

An example of numerical solution of the rate equations is shown in Figure 1.9, where we modify only one
of the parameters 1, 71, Tg, 4/4; Details in Chapter 11. Finally, in Chapter 11 we touch upon the isolation
of the fundamental mode TEMy as well as of higher order modes TEM,/s (here TEM means transverse
electromagnetic).

AETH I Chapter 12 we lay down various other useful elements. Among these, we examine the
Fresnel equations, which concern the incidence of an EM wave at an interface between two media, 1
and 2 (Figure 1.10). The plane of incidence g is the plane defined by the incident wave vector E and
the normal to the interface, at the point of incidence, unit vector 1, that is, in Figure 1.10, the xy-plane.
The reader can see the angles of incidence, reflection, refraction or transmission, 0;, 0,, 0;, respectively,
as well as the components of the electric field E, the so-denoted s from the German senkrecht or TE

(transverse electric) with Es 1 g and the so-denoted p from parallel or TM (transverse magnetic) with
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Figure 1.10: Incidence of EM wave at an interface between two media 1 and 2. Plane of incidence g is the
plane defined by the incident wave vector Ei and the normal to the interface, at the point of incidence, unit
vector 71, that is here plane x1. We observe the angles of incidence, reflection, refraction or transmission,
0;, 0,, 0,, respectively, as well as the s (perpendicular to q) and I3 (belonglng to ) components of the

incident, reflected, refracted or transmitted electric field E, sis Epl, Esr, Epr, Est, Ept! respectively.

= .
E, € g, thatis, the components of the incident (7), reflected (7), refracted or transmitted () electric

ﬁeld Esz, Epz, Esr, Epr, Est, Epf , respectively. The angle of incidence for which there is no reflected p polar-
ization, is called the Brewster angle. We will also define reflectance, R := |Er|2/ |§i|2, and transmittance,

T := (|Et|2/|Ez|2) Ve p1/€q o (cos O/cos 0;), which are connected via R + T' = 1, the Poynting vector,

— — —
S := E X H which has units of power per unit area, as well as other relevant quantities and properties.

After this overview, it is time to take things from the start ...
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CHAPTER 2

THE QUANTUM NATURE OF LIGHT

In this Chapter:

We discuss the quantum nature of light. The chapter is devoted to phenomena and concepts that histor-
ically led to our perception of the quantum nature of light. Specifically: Initially, we refer to the concept
black body and relevant concepts. Then, we describe the energy density of EM radiation in an infinitesi-
mal frequency interval, of a black body in thermodynamic equilibrium. We refer to Planck’s law and com-
pare it with Rayleigh-Jeans and Wien approximations. Later, we delineate two formulations of the Stefan-
Boltzmann law, the first with energy density and the second with intensity of radiation. We continue by
discussing the Maxwell equations in total charge and current formulation as well as the boundary con-
ditions at an interface. Also, we discuss the existence of EM waves in the absence of current and charge
density, fields inside an ideal conductor, fields at the boundary of an ideal conductor, fields inside cavities.
Then, we discuss the normal EM modes inside a rectangular parallelepiped cavity, and we calculate the
infinitesimal number of EM field normal modes per infinitesimal frequency interval. At this point we are
in the position to prove the classical Rayleigh-Jeans law, using the equipartition of energy theorem and the
infinitesimal number of EM field normal modes per infinitesimal frequency interval. This law is a colossal
failure of classical physics. Next, we present the proof of Planck’s law as Planck proved it. Then, we prove
the Wien displacement law in several variations. Finally, we describe the photoelectric effect.
Prerequisite knowledge: Basic knowledge of Physics and Mathematics plus a little bit of Electromag-
netism and Statistical Physics.

2.1 Black body and related concepts.

Let us start by some definitions. Let us assume that electromagnetic (EM) waves or, in other words, elec-
tromagnetic radiation impinges on a body, as schematically depicted in Figure 2.1. Then, we define the
following physical quantities:

Constantinos Simserides (2023). «Quantum Optics>.
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Creative Commons Attribution — Non Commercial — ShareAlike 4.0 International


https://dx.doi.org/10.57713/kallipos-186

16 THE QUANTUM NATURE OF LIGHT

. absorption coeflicient, a, is the fraction of EM radiation the body absorbs.
« transmission coefficient, 7, is the fraction of EM radiation that passes through the body.
« reflection coefficient, p, is the fraction of EM radiation the body reflects.

These three quantities are connected through the relation

a+t+p=1 (2.1)

'\P

EM waves

a+p+T=1

Figure 2.1: Electromagnetic waves impinge on a body. We show schematically the absorption («), trans-
mission (7), and reflection (p) coefficients, obeying the relationa + 7 + p = 1.

But what does the term “black” exactly mean? The scientific definition is rather strict... A black body
is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency
and regardless of angle of incidence. A black body lets all incident radiation pass inside it, reflecting no
incident radiation (p = 0), absorbing all incident radiation (& = 1) and letting no radiation pass through
it (t = 0); all these hold for all frequencies and for all angles of incidence. Thus, a black body is a
perfect absorber of incident EM radiation.

Of course, if this was the case (@ = 1, p = T = 0), then, due to constantly absorbing energy, the
black body would continuously increase its temperature. Hence, a black body that is in thermodynamic
equilibrium and consequently in constant temperature, should re-emit electromagnetic radiation.
This radiation is called black body radiation and conserves the equilibrium of energy. Black body radia-
tion obeys the Planck’s law (§2.2, §2.13, Figure 2.2) so that its spectrum depends only on temperature,
regardless of the shape and composition of the body, the angle of emission, etc. A black body in thermo-

dynamic equilibrium has the following remarkable properties [1]:

« (P1).1tis anideal emitter, i.e., it emits at each frequency at least as much energy as any other body
at the same temperature.

« (P2).1Itis an isotropic emitter, i.e., the energy is radiated isotropically, independent of direction.

Real bodies emit only a fraction of the black body radiation. The emission coefficient or emissivity,
€, is the fraction of EM radiation that is re-emitted by a body. By definition, for a black body in thermo-
dynamic equilibrium, € is equal to one,

in thermodynamic equilibrium | _
€black body =1 (22)

In summary, for the black body it holds that

a=1l,p=1t=0e=1 (2.3)
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Figure 2.2: Black body radiation according to Planck’s law (see §2.2 and §2.13). It depends only on tem-
perature and not on the shape, body composition, angle of emission, etc..

Abodywithe < 1iscalled agraybody. Abody that reflects all incident radiation is called a white body
(p =1),thusa = T = 0. All these supposedly hold regardless of frequency, direction or temperature. A
body that transmits none of the EM radiation that reaches it (7 = 0), thusa + p = 1, is called an opaque
body. A body that transmits all of the EM radiation that reaches it (7 = 1), thusa@ = p = Ois called a
transparent body. The above definitions are summarized in Table 2.1.

Table 2.1: Definition of bodies..

black body a=1,p=1t=0,e=1

gray body a,p,t,e<l1
white body p=lLa=1t=0
opaque body T=0,a+p=1

transparent body t=l,a=p=0

Radiation from stars, planets and other bodies is commonly characterized by an effective temperature,
i.e., by the temperature of a black body that would emit the same total (meaning integrated over all
frequencies) intensity of radiation, I (units [I] = W/m?, §2.3).

minimal
hole

opaque
enclosure

Figure 2.3: Cavity with a hole: an approximate realization of the black body by opening a minimal hole
on the wall of an opaque enclosure.

An approximate realization of the black body can be seen in Figure 2.3. An approximate black body
can be constructed by opening a small hole on the wall of an opaque enclosure, e.g., on a wall of a com-
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mon box, thus creating a cavity with a hole [2]. In photonics, we sometimes refer to the term cavity
implying the presence of this minimal hole. Due to the minimal size of the hole compared to the cav-
ity, the light that enters the cavity is (almost) reflected for ever or absorbed and it is improbable that
it will escape from the cavity, making our system an almost ideal absorber. Whether this system is in
thermodynamic equilibrium and thus the radiation it emits is black body radiation that follows the
Planck’s law depends on the nature of the wall and the other contents of the enclosure [3]. Let us now
assume that the cavity is kept at constant temperature T and that the trapped radiation is in ther-
modynamic equilibrium with the enclosure. Generally, the hole will let a fraction of radiation escape.
If the hole is small enough, the incoming and outgoing radiations have negligible effect on the equilibrium
of radiation inside the cavity. The radiation that escapes will approximately be black body radiation,
distributed according to the Planck’s law characterized by its temperature T, and it will not depend
on the properties of the cavity with a hole, atleast for wavelengths adequately smaller than the size
of the hole. The cavity with a hole has been used at least since 1898, when it was described by Otto Lum-
mer and Ferdinand Kurlbaum. Their design was a hole on a platinum box, with its interior blackened with
iron oxide [4] or later with a mixture of chromium, nickel, and cobalt oxides [ 5 ]. Below, we mention some
additional approximate realizations of the black body.

There is an interest in near-black bodies or materials for applications such as camouflage (mainly from
radars), solar energy collectors, and infrared thermal detectors. As a perfect emitter of radiation, a hot ma-
terial with nearly-black-body behavior would create an efficient infrared heater, particularly in space or in
a vacuum, where conductive heat transport is impossible. Near-black bodies are also useful in telescopes
and cameras as anti-reflection surfaces to reduce stray light, and in information-gathering about objects in
areas with high optical contrast, e.g. to observe planets orbiting around their stars, where near-black ma-
terials absorb light that comes from the irrelevant sources. A first approximation of a black body is carbon
black. It has been shown in recent years that nearly perfect black bodies (& = 0.99) can be constructed
using carbon nanotubes [ 6, 7], while the simple color black has & < 0.975. The material “super black” has
a = (0.996 and p = 0.004. A few years ago it has been announced by Surrey NanoSystems that a material
called Vantablack has been developed by carbon nanotubes, absorbing, according to the manufacturers,
99.96% of the incident light. An image of Vantablack on an aluminum foil can be seen in Figure 2.4. The
name originates from vertically aligned nanotube arrays (VANTA) [8] and the word “black”. Vertically
aligned carbon nanotubes (CNTs) like a fuzzy forest of tiny trees has been recently used to develop a ma-
terial that is one order of magnitude darker than other very black materials [9]. According to the authors
[9], “the CNT-metal hierarchical architectures demonstrate omnidirectional blackbody photoabsorption
with the reflectance of 1 X 107> over the range from ultraviolet to terahertz region, which is one order of
magnitude lower than that of any previously reported broadband absorber material.”

£

Figure 2.4: The material Vantablack composed by carbon nanotubes (Surrey NanoSystems) which, ac-
cording to its manufacturers, absorbs 99.96% of incident light, on an aluminum foil.

Planck’s law, formulated in 1900, describes the energy density of EM radiation, in an infinitesimal fre-
quency interval, of a black body in thermodynamic equilibrium, p(v, T)dv. Specifically,

8mth 3
3w
eksT —1

p(v, T)dv = dv. (2.4)
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The units of p(v, T) are [p(v, T)] = ﬁ This is a formulation of Planck’s law as a function of frequency.
There are other formulations, too, which will be described later, e.g., as a function of the wavelength, A, of
the angular frequency, @, and of the wavenumber, k.

2.2 Energy density of EM radiation in an infinitesimal frequency interval, of a black body in ther-
modynamic equilibrium: Planck's law and comparison with Rayleigh-Jeans and Wien approx-
imations.

The energy density of EM radiation, in an infinitesimal frequency interval, of a black body in thermody-
namic equilibrium, p(v, T)dv, was meant to become one of the issues that revealed the quantization
of EM radiation. Below, we mention three equations that were introduced in search of an explanation for
the experimental behavior; the Rayleigh-Jeans expression (theory, classical physics, 1900), the Wien’s ex-
pression (fitting with experimental data of that era, at high frequencies, 1896), and eventually, the Planck’s
expression (theory, old quantum mechanics, 1900) that coincides with the experimental behavior in the
whole frequency range. Hence, we have the Rayleigh-Jeans law (theory, classical physics, 1900),

8mv2ky T

pR_](V/ T) = 3 = pR]/ (25)

c

the Wien’s law (fitting with experimental data of that era, at high frequencies, 1896),

3 3
V™ constants from 8nth v
pwlv 1) = o S——— 5 JwlieT = PW’ (2.6)

ebv/ T Planck’s law
where the notes above and below the “=" sign mean that before the sign we present the original expression
that Wien proposed and after the sign we present the constants predicted by Planck’s law in the asymptotic
limit of high frequencies, in which Wien’s law approximates Planck’s law. Finally, the Planck’s law (theory,
old quantum mechanics, 1900) that coincides with the experimental behavior for all frequencies,

_8mh v
p(V/ T) - c_3€hV/kBT _ 1 - p (27)
Let us change the variables, defining
hv
= — 2.8
XE T (2.8)
Then,
kgT kgT
V= BTx =dv = Bde. (2.9)
Then, the essential difference of the above laws is revealed:
pry(x) = pox? (2.10)
x3
pw(x) = Pox (2.11)
x3
= 2.12
pO) = por—7 (2.12)

hZ

3
0y = o8 ("B_T) (2.13)
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The units are [pg] = % = ﬁ Of course, 0 does not belong to the domain of Eq. 2.12, i.e., we do not

refer to zero frequency or infinite temperature. An alternative notation found in the literature for p(v, T')
isu(v,T).
As mentioned above, the Planck’s law can alternatively be stated as a function, e.g., of the wavelength,

A, ie,, in the form p(A, T). This can be done by demanding

f p(A, T)dA = f o, Tdv = (2.14)
0 0
© g h 3
fmem f = W (2.15)
kBT —
However,
C=/\v<:>v:£:>ﬂ=—i. (2.16)
AT dd T A2
Hence,
o0 01 1 ® dA
J‘MLTMA:$wa-?—W——dA:&maf——mf——: (2.17)
0 o A T 1 O A5(e™eT —1)

the Planck’s law as a function of the wavelength and the temperature is

81th
p(A,T) = 7; ‘ (2.18)
A5(eksT — 1)
Defining
_ e (2.19)
v= AT '
and
(ksT)°
(= 8m 2.20
pO (l’l )4 ( )
Eq. 2.18 is written as
¢5
= pHh———— 2.21
p) = Pt — (1)
The units of p() are [pg] = —5-- Hence, the units of p(A, T) are [p(A, T)] = —)as well. These differ
from the units of p(v, T), whlch are[p(v, T)] = L .In other words, although we use the same symbol

(p), it is not the same physical quantity. Of course, in Eq 2.21, 0 does not belong to the domain of p(¢),
i.e.,, the wavelength and the temperature cannot become infinite.

The three above expressions are compared in Figure 2.5. The once so-called ultraviolet (UV) catastro-
phe, i.e, the divergence of the classical Rayleigh-Jeans approximation increasing frequency, is more than
evident. Hence, the classical approximation is satisfactory only in the regime of very small frequencies;
then, as the frequency increases, it predicts an infinite p, in disastrous contradiction with the experimen-
tal data. The Wien’s approximation has a problem on the opposite limit, i.e., for small frequencies, where
it deviates from the experimental behavior, a fact once called far-infrared (FIR) problem. These characteri-
zations are related to the available experimental data around the 1900s and are, in this sense, deceptive. In fact,
the region where deviations begin to be significant obviously depends on the temperature of the black
body: the expressions 2.10, 2.11, 2.12 differ only in the function of x, which according to Eq. 2.8 depends
not only on frequency, v, but also on temperature, T
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Figure 2.5: Comparison of the Rayleigh-Jeans (Eq. 2.10), Wien (Eq. 2.11), and Planck (Eq. 2.12) laws.
We have set py = 1 (Eq. 2.13), for simplicity, to make the plot. We observe the deviation of the clas-

sical Rayleigh-Jeans theory from Planck’s law (which agrees with the experiment) very soon increasing
h
= ﬁ , as well as the deviation of the Wien fitting from Planck’s law at low enough x. x includes both
B

frequency, v, and temperature, T

2.3 Two formulations of the Stefan-Boltzmann law: (1) Energy density. (2) Intensity of radiation.

We present two common formulations of the Stefan-Boltzmann law, which refers to a black body at tem-
perature T.

’ enerqgy emitted
per unit area
o(T) = aT? per unit time
J W

m2s ~  m2

energy density
J

m?

black body cavity black body cavity

at temperature T at temperature T
1st formulation of the 2nd formulation of the
Stefan-Boltzmann law Stefan-Boltzmann law

Figure 2.6: [Left] The 1st formulation of the Stefan-Boltzmann law refers to the energy density ¢ (units

Jm®) inside a black body in thermodynamic equilibrium at temperature T and has the form o(T) = aT*.
514
= f;z 3;,, ~ 7.5657 X 10_16%1(‘*' [Right] The 2nd formulation of the Stefan-Boltzmann law refers to
m
the energy emitted per unit area per unit time, i.e., to the power emitted per unit area or to the intensity of

54
radiation I (units i = %), and has the form [ = 0T% 0 = 223 5.67 x 1078 —

T 15¢213 m2kt’

In its first form, the Stefan-Boltzmann law defines the energy density (units J*) inside a black body
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at temperature T'. To calculate it, we have to integrate Eq. 2.7, i.e., p(v, T), over all frequencies. Let us use
Eq. 2.8. Briefly,

0 0 3 [
8mh 18 Eq28 8mh (kgT\ kgT x3
e [t =[BT, e [
o(T) p(v, T)dv B3 gt _q v 3 ( h I a1
0 0 0
——— —
A
/15
8ok
T)= ——=T% 2.22
Thus
o(T) = aT* (2.23)
which is the Stefan-Boltzmann law in its 1st formulation. Here,
8ok} J
= ——— ~ 7.5657 x 10716 ——.. 2.24
“= 1503 m3K* (224)

Of course, the units of o(T) are [o(T)] = Jm® (energy density). The 1st formulation of the Stefan-Boltzmann
law is depicted in Figure 2.6 (left). An alternative symbolism for g(T) is ii(T).

In its 2nd form, the Stefan-Boltzmann law defines the energy emitted per unit area per unit time, i.e.,

the power emitted per unit area or the intensity of radiation I (units =~ = — ). Let as take for granted
me=s m

from the kinetic theory of gases [ 10, 11, 12] that the number of particle collisions (here, photons) onto a

wall per unit area and per unit time (units %) or the flux of particles (here, photons) is
n
P, = 1(0), (2.25)

where 71 is the particle density (units 1/m?) and (v) is the mean velocity of the particles (here, photons).
Thus, for photons,

n
CD]/ = ZC. (226)
But
I =)D, (2.27)
where
vy =2 (2.28)
n
is the average value of energy each photon carries. From Egs. 2.26, 2.27, 2.28 it follows that
c
I=-o. 2.29
2¢ (229)
Hence, due to Eq. 2.23,
21k
I= T 2.30
(15czh3 ) (2:30)

or
(231)

which is the 2nd and most common formulation of the Stefan-Boltzmann law. Here,

_2KS e o108
T 15¢2k3 T T % m2Kk’

o (2.32)
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The 2nd formulation of the Stefan-Boltzmann law is depicted in Figure 2.6 (right). In other words, the
2nd formulation of the Stefan-Boltzmann law states that the total intensity of radiation emitted by a black
body at temperature T'is proportional to the 4th power of temperature.

Some electromagnetic issues...

In order to prove Planck’s law, but also to prove the classical Rayleigh-Jeans law, we need to know, among

dN
other things, the normal modes of EM field in a cavity and, more specifically, g(v) = - that is, the
infinitesimal number of EM field normal modes in an infinitesimal frequency range. Hence, we will need
to address some electomagnetic issues...

2.4 Maxwell's equations. Formulation in terms of total charge and total current.

We know the Gauss’s theorem

A-da= | V-AdV, (2.33)
S=0V 1%
and the Stokes’ theorem
A-dé = V XA - da, (2.34)
L=0S

Here, K denotes a vector field, such as the electric field, magnetic induction, etc., S = dV denotes the
surface S containing a volume V, L = dS denotes the line L containing the surface S. Also, d?, da,dV de-
note infinitesimal length, infinitesimal area, and infinitesimal volume, respectively. These theorems allow
us to pass from the differential form of Maxwell’s equations

V-E-= 4 Gauss’s law for electrism (1st) (2.35a)

€0
V-B=0| Gaussslaw for magnetism (2nd) (2.35b)

- - JB
V XE= e Faraday’s law of induction (3rd) (2.35¢)

oo o JE
V X B = o] + HOEOE Ampére’s law and Maxwell’s correction (4th) (2.35d)

after some calculations,
§ e [9Bav= [ Ly - tmmar 360
S= aV Ve €0

B-da= V BdV=0> (2.36b)

5=0V

SQLEan? fv X E.da = f— f_——fB i = (2.36¢)
fLBanf fVXB da = f(y0]+y0€03 ] da = /Jof] d_’+y0€0f£ dd =

(2.36d)
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to their integral form

Qrg_yy = E-da= Jendlosedin v Gauss’s law for electrism (1st) (2.37a)
' §=9V €0
Dps_gy = B-d2=0| Gauss’slaw for magnetism (2nd) (2.37b)
S5=0V
5 o D
Eemr = Q@ E-dl = - 5s Faraday’s law of induction (3rd) (2.37¢)
1=95 Jat
- 8CDE S
B - dl = poliassing through 5 + Ho€0 Bt, Ampére’s law and Maxwell’s correction (4th)
L=4S

(2.37d)

In 2.37d, I assing through s i the current passing through the surface S.
In vacuum, where p = 0 andT = 6, Egs. 2.35a-2.35d become

V-E=0 (2.38a)
V-B=0 (2.38b)
V xE = 9B (2.38¢)
BT oo

. JE
V XB= uOEOE (238d)

2.5 Boundary conditions at interfaces.

We will now describe the boundary conditions at an interface. This information can also be found in a

electromagnetism textbook [ 13, 14].

A oA material (1)
e = n21 above the interface

thin
T disk
- A ~ )
t@O— g / \ —
h small material (1) interface h small ‘\\ - .
3 material (2) v : L
— R /
- — /
A
2| material (2)
. below the interface
AZ — _Aé

Figure 2.7: Boundary conditions for the 1st Maxwell’s equation. The direction of vectors ﬁl and Ez has
been chosen arbitrarily on purpose. Similarly we treat the 2nd Maxwell’s equation, where E should be

replaced by B.

& Let us apply the 1st Maxwell’s equation 2.37a on Figure 2.7, where an arbitrary direction of vectors El
and E, has been drawn on purpose.

E . dz — q enclosedin V .

Op sy =
S=9V €o
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_ 4 enclosedin V
€0

- — - —
(DE, upper circle — Eq- Al = ElJ_Al and q)E,lowercircle =E;- AZ = EZJ_AZ! where ElJ_/ EZJ_’AII AZ are

algebraic values. Thus

AE;| — AE,, + fE-dz:

Butwhenh — 0 = A — 0

= ff-da’—>0

Alateral

Alateral

o
Eyy —Ep =—
€o

= and

We denoted |A_>1| = |A)2| = |A)| = A. Hence, if, e.g., we have spread positive surface charge density o

- -
on the interface, then E1 | and E, | point outside of the interface. Concisely, we can write the alternative

forms

o
Ei, -Ep = .

0

or (El—ﬁz)'ézi

€o

or |(E;—Ep)-fiyy = —

o

€o

— - N o
or |(E;—Ejq)-figp = -

>

21 (from 2 towards 1)

fl1o (from 1 towards 2)

(2.39a)

(2.39b)

(2.39¢)

(2.39d)

¢ Similarly, let us now apply the 2nd Maxwell’s equation 2.37b on Figure 2.7, by switching EtoB.

Dp gy =

B-da=0.
S=0V

In accordance with the above, we arrive at the following alternative expressions

By, =By

or

(Bi-By)-2=0

or

(B1 —By) - fiy1 =0

or

(B, - By) - f11, = 0

é = f1p1 (from 2 towards 1)

f115 (from 1 towards 2)

Q Let us now apply the 3rd Maxwell’s equation 2.37c on Figure 2.8.

(2.40a)
(2.40b)
(2.40¢)

(2.40d)
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—_— A — N\
El € = Nyq
- direction of -

E loop ~ ~
- t®O—— g

O A material (1) interface
L
- t

E material (2)
L 2_1__) J
S=Lh Ejy L, =+Lg

Z
<

Figure 2.8: Boundary conditions for the 3rd Maxwell’s equation. The direction of vectors El and Ez has
been chosen arbitrarily on purpose. Here, the loop is on the plane (¢, ).

h interval h interval 9
El'z1+ ﬁdz +Ez'f2+ ﬁ_f)d?:—ﬁf_B)d?
small left small right 5
but when h—>0:>S:hL—>0:>f§~d5’—>O =
S
h interval h interval
butwhen i — 0= ﬁ-da —0= ﬁs-d?
small left small right

E1 'Ll +E2 'Lz =0= E1||L1 + E2||L2 =0= —E1||L+E2||L =0= E1|| = EZII‘

Above, we denoted |f1| = |f2| = |f| = L, while Eq, Ey);, L1, L, are algebraic values. Since

Ey - I1+E, I,=0=(E,-E})-§=0.
Hence, when the loop is on the plane (2, §) = the difference (E; — E;) L 3.
Similarly, when the loop is on the plane (&, ) = the difference (Ez - El) 17
Thatis, the difference (Ez - El) 1 interface

which can be written as (Ez - E)l) X8 =0.

Hence, concisely, we arrive at the alternative forms

E2|| == E1|| (2.413.)

(Ez - 1__:31) X e = 6 (24lb)

# Let us now apply the 4th Maxwell’s equation 2.37d on Figure 2.9.

B-df = pol + IPes =
. = . &£
Loas Ho passing through S Ho€o at
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B € =Nz
- A A = direction of
Ll — —Lg TBll loop R R
=< - tO—Jg

h (small) Bl

I
=

]linear A material (1) interface
Ot
L2

N 3

S=Lh By L,=+L§

material (2)

27

Figure 2.9: Boundary conditions for the 4th Maxwell’s equation. The direction of vectors §1 and E)z has

been chosen arbitrarily on purpose.

h interval h interval
- - — - —
Bl'L1+ 'df+B2'L2+ B-dt =
small left small right

J 5
yojlinear, passing through S L+ Ho€o E f E-dd
S=Lh

h interval h interval
butwhen K — 0= ﬁ’-d?:(): ﬁ-d?

small left small right

butwhen h—o0=S=Lh—0= fﬁ-dz—m
S=Lh

_Bl||L + B2||L = HO]linear, passing through SL'

Hence, concisely, we can write the following alternative forms

(BZ - Bl) xXe= {JOIHnear, passing through S (2423)

B, = B, = FOI linear, passing through S (2.42b)

If Jinear, passing through S = 0 = By = By By, By are algebraic values. We denoted |L;| = |L,| = |L| =
L. The units of lineqr, passing through § are A/m. Thus, in Eq. 2.42a or 2.42b the units are T = (N/A?)(A/m).

2.6 Existence of EM waves in the absence of charge density and charge current.

V-E= 8% (Lst) V.-E=0 (st)
V-B=0  (@nd)| V-B=0  (2nd)

L. oB S 9. B Ly (2.43)
VxE=-=" G| XE=-= (3ud)
= = - &E) o D _ E /
VXB=pof + oo (4th) VXB=poton, ()
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We will now use the identity

-

Vx(VxA)=V(V-A)-V2A,

where V2 is the Laplacian, for E and for B.

e For E):

wave equation

e For ﬁ:

wave equation

Vx(VxE)=V({V -E)-V2E =
(3rd’)
_ JB -
V x ( - —) -V o
ot
Jd 4th’
_ 2 (¥ xB)=-V2E =)
ot
J ( 8E) ~V2E =
gr\Hoc0 5y | =
g 9°E 1 -
e , Vy = =c
oo 912 ¢ Eotlo
= 19°E
E=2w >
, 12} -
V2 agp =0 or
OF = 6 where [ is the so-called D’ Alembertian.
- e A 3 - (2I1d,)
Vx(VxB)=V(V-B)-V?B =
(4th)
o JE )
V X (80[.10—1_) =-V-B =
- - (3d)
80[.100.)—(V X E) = —VZB =
J( JB -
orogy = 5r) =V =
\Y § 92§ ! c =
Eollg—, V= =
oo 012 ¢ Eollo
= 19%B
B 237 or
2 1 (92 &R
[V - C—Za—tz B = 0 or

where [ is the so-called D’ Alembertian.

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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2.7 Fields inside an ideal conductor.

A good conductor is a material that reflects most of the energy of an EM wave that impinges on it [ 14]. We
define as an ideal conductor a material that reflects all the energy of an EM wave that impinges onit [ 14].
Since the energy density of an EM wave is

50 1 80
U=—F*+_—B%= —[EZ + ZBZ], 2.55
27 Ton, T2lF T (2:55)
with units [U] = is , it follows that
m
inside an ideal conductor, E= 6 and E = 6 (2.56)

2.8 Fields at the boundary of an ideal conductor.

Let us remember the boundary conditions at an interface between two materials and further assume that
materal (1) is an ideal conductor while material (2) is vacuum or, in approximation, air.

o

Ey, -E =— GBC
€o

B, =By,

E1|| = E2|| = (2.57)

linear

B2|| - Bl” = Ho passing through S

units [A/m]

if
material (1) is an ideal conductor (B)l =0 and E)l = 6) = (2.58)

material (2) is vacuum or air

o
~E,, =—  SBC

€0
Bay =0 (2.59)
E2|| = O

linear

B 2| = Ho passing through S

GBC stands for general boundary conditions and SBC means specific boundary conditions. Also, let us
denote SBC* the subset of boundary conditions we will use more often.

E2|| = 0

(2.60)

2.9 Fields inside cavities.

We learned above that the largest fraction of the energy of an EM wave that impinges on the surface of
a good conductor is reflected; actually, if the conductor is ideal, then all the energy is reflected. Hence,
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-
T
vacuum

or
~ air

——

ideal
conductor

@B

Figure 2.10: On the surface of an ideal conductor, the component of B that is perpendicular to its surface

>
and the component of E that is parallel to its surface vanish, so the fields can only have some of the orien-
tations presented in this figure.

we can store EM energy in the form of standing waves inside a cavity with walls made of an ideal (or, in
approximation, good) conductor.
We also saw the SBC and focused on the SBC*

BZJ_ = O
Ez =0,

- -
i.e., for anideal conductor, the component of B that is perpendicular to its surface and the component of E
that is parallel to its surface vanish, as shown in Figure 2.10. Thus, the possible patterns and frequencies of

the standing waves that are preserved inside a cavity are determined by the shape of that cavity. Schemat-

ically,

patterns
(normal) modes { and

frequencies

2.10 Normal EM modes inside rectangular parallelepiped cavity.

Let us assume a rectangular parallelepiped cavity such as the one shown in Figure 2.11.

Inside the cavity p = 0, T: 0=

= 1 0%
V<4E = Er WEE (2.61)
and
,» 10%B

WEE means wave equation for E and WEB means wave equation for B. Since the walls of the cavity are

perfectly (ideally) conducting, in each one of its faces, the perpendicular component of the magnetic field
and the parallel component of the electric field must vanish (conditions SBC¥), i.e.,

)
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X .
A perfectly (ideally)
conducting walls
Ay
0 B aZ P

Y
vacuum inside

y

Figure 2.11: Arectangular parallelepiped cavity with perfectly (ideally) conducting walls. Inside the cavity
there is vacuum or, in approximation, air. To make a clear picture, only the lower (x = 0) and upper
(x = a,) faces have been colored, but all six faces are made of perfectly (ideally) conducting walls.

Plane waves in free space do not satisfy these boundary conditions. We can, however, search for solutions

by separating the variables 7, £, i.e., of the form

Space time

E(x,y,2,1) = Ex(x,y,2)e"" (2.64)

Due to Eq. 2.64, the WEE becomes

MV2E7 = —2(—1'0))2&'4}?7 =
c

- (L)2—> —
V2E; + C—2E7 =0 (2.65)

Then, we separate the variables x, , z, of 7. After several calculations [ 14] that will be omitted here, we

have:
E, = E, cos(k,x) sin(kyy) sin(k,z)e” ! = becomes zero for y = Oandz = 0 (2.66)
E, = E g sin(k,x) cos(kyy) sin(k,z)e ™! = becomes zero for x = 0andz = 0 (2.67)
E, = E,gsin(k,x) sin(kyy) cos(k,z)e®* = becomes zero for x = Oandy = 0 (2.68)
where
a)z
K+k+k=— (2.69)
C

In Figure 2.11, the lower and upper faces (where x = 0 and x = a,, respectively) have been colored, but
all six faces are made of perfectly (ideally) conducting walls. As it is evident from Egs. 2.66, 2.67, 2.68,
in the lower face, the electric field has only x-component, i.e., it is perpendicular to this face. Similarly,
the electric field has only y-component in the back face and only z-component in the left face; it is thus
perpendicular to these faces. In the same manner, the electric field, must have only x-component in the
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upper face, y-component in the front face, and z-component in the right face, i.e., it must be perpendicular
to these faces, as well.
Since E, must vanish forbothy = 4, andz = a, =

Y
sin(k,a,) =0 = k,a, = m,

sin(k,a,) =0 = k,a, = m,n
(yy) vty

Since E, must vanish for both x = 4, andz = a, =

sin(k,a,) =0 = k.a, = m,7
sin(k,a,) = 0= k,a, = m,m

Since E, must vanish forbothx = a,andy = a, =

sin(k,a,) =0 = k,a, = m,7

sin(kyay) =0= kya, =m,n
Concisely, in the upper and lower faces the electric field has only x-component, i.e,, it is perpendicular to
these faces, in the back and front faces the electric field has only y-component, i.e., it is perpendicular to
these faces, and in the left and right faces the electric field has only z-component, i.e., it is perpendicular
to these faces.

Additionally, it occurs that

k, = , k,=——, k,= , (2.70)

where m,, m,, m, € Z.

y/
Furthermore, from the (1st’) Maxwell’s equation, V - E = 0 =

kyExo +kyEyo +k.E-o =0, (2.71)
L , 0B
while, from the (3rd”) Maxwell’s equation, V X E = T =

l' .
B, = Z(EyokZ - Ezoky) sin(k,x) cos(kyy) cos(k,z)e '@t (2.72)

i .
By = Z(EZka - Exokz) cos(k,x) sin(kyy) Cos(kZZ)e_lwt (2.73)

l' .
B, = ;(Exoky - Eyokx) cos(k,x) cos(kyy) sin(k,z)e™ '@t (2.74)

Checking whether B satisfies the SBC* on the walls as well as the (2nd’), V-B= 0,and (4th’), V xB =

Eolo = Maxwell’s equations is left for the reader.

From Egs. 2.69 and 2.70 we can write

2
m,m m, Tt m,Tt
Wiy my,my = C\/( - ) + ( y_) + ( = ) . (2.75)
Y Ay a a,
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For a rectangular parallelepiped cavity,

T2 A2 2
Oty g m, = TIC (—x) + (—y) + (—Z) , (2.76)
a, a a,

for a tetragonal parallelepiped cavity (a, = ay=da’ ),

2
mﬁ + m§ mg
Oy, = MO\ ——5— + —, (2.77)
a a

and, for a cubic cavity (a, = ay =a, = a),

TIC
Dy = 4 |m2 + m3 + m2. (2.78)

Table 2.2: The values of ““/nc occurring from Eq. 2.78 in the case of cubic cavity, for several values of the
natural numbers 71, my, M. Whether zero electric and magnetic field occurs from Egs. 2.66, 2.67, 2.68
and 2.72,2.73, 2.74, respectively, is also noted, in column “amplitude”

My My, M, "““fzc “amplitude”
0 0 0 0 0
o o0 1 1 0
0 1 1 42 £0
1 1 1 43 #0
2 0 0 2 0
2 1 0 45 £0

We canalso choose 1y, 1, m, € IN (natural numbers) thus absorbing the sign changein E , Eyo, Ezo,
ie, allowing E,q, E,, E.p to take positive or negative values such that they agree with the boundary con-

ditions. In Table 2.2 we present some — ~ occurring from Eq. 2.78 for the cubic cavity for several values
of my, m,;, . Whether zero electric and magnetic field occurs from Egs. 2.66, 2.67, 2.68 and 2.72, 2.73,
2.74, respectively, is also noted, in column “amplitude”.

2.11 Infinitesimal number of EM field normal modes per infinitesimal frequency interval.

Below, we will prove that

dN 812V
gw) = m

(2.79)

v c3

where dN is the infinitesimal number of modes in an infinitesimal frequency interval dv and V is the
volume of the cavity, which is a 3D box. In other words, we are interested in the quantity

dN _ d(number of normal modes)

8w) = F d(frequency)

8001 =

The proof will be provided for periodic boundary conditions and for the rectangular parallelepiped cavity
of the previous Section 2.10.
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2.11.1 1st case: Periodic boundary conditions.

Let us suppose that the electric field is subject to periodic boundary conditions, i.e., that
E(?, £ = E’Oei(ﬁ?—wtm)
E(0,t) = Eyel-t+e) = ek =1 & ka, =2nn,, n,€Z

E((ﬂx, 0,0),t) = Eoei(kxax—wmp)

Thus
2mn
k,=—=, n,eZ
ax
2nn,
similarly, k, = , nyeZ (2.80)
y
21n
k,=—=, n,eZ
aZ

As seen in Eq. 2.80, the possible values of k are discrete. The step defining the discreteness in k-space is
2 2 2
Ak, = Z in the x-axis, Ak, = =" in the y-axis, and Ak, = = in the z-axis. These points in k-space are
X g, Yy a, Z g,
drawn in Figure 2.12. Note that in Figure 2.12 only one octant of the k-space is shown; however, k coversall

8 3
eight octants, i.e., the whole k-space. From Eq. 2.80 it occurs that the infinitesimal k-volume is % , where

r 3 kZ
Ak 21
P i I N z =~
/// a,
7 K
9 S >y
- = R . = 2
kx ) /// x a,
Ak'/ _ 2T
Y a,

8 3
Figure 2.12: The possible values of k are discrete and the infinitesimal k-volume is % , where V is the

volume of the cavity (Eq.2.80). In each of the 8 vertices of this infinitesimal volume lies one k-state which
belongs to it by 1/8, since it is shared by 8 similar adjoining infinitesimal rectangular parallelepipeds.

V is the volume of the cavity. In each of the 8 vertices of this infinitesimal volume lies one k-state which
belongs to it by 1/8, since it is shared by 8 similar adjoining infinitesimal rectangular parallelepipeds. Let
us also consider the infinitesimal volume from k to k + dk; i.e. the spherical shell of radius k and thickness
dk, which is equal to 47tk?dk, and denote by N the number of k-states inside this spherical shell. Hence,

2n)* 87 1
in k-space @) =T 3 8= =1 k-state
Ay 0, v 8 =

in k-space k — k +dk ie. 4k®dk 3 dN; k-states
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Ank2dkV 1
_ 2
Ny = —¢ 53— =5 K°dkV 1 4n2v2ndvV  4nV
2 2 2 AN, =5 5 =5 v
CZAV:TVSk:TVSdk:TdV

5
However, there are two possible polarizations of the electric field perpendicular to k, as shown in Figure
2.13. Therefore, the number of states is

8V
AN = ——v?dv, (2.81)
C
hence,
) dN  8mAV
V = — == ,
3 dv c3
which is Eq. 2.79 that was to be proven.
E
2 possible

polarizations

Figure 2.13: There are two possible polarizations of the electric field perpendicular to E

2.11.2 2nd case: Rectangular parallelepiped cavity.

From Eq. 2.66, if we suppose that, for symmetry reasons, the electric field should point towards the same

side of the upper and lower faces of the rectangular parallelepiped, i.e., if E,(x = 0) = —E,(x = a,), it

is implied that1 = —cos(k,a,) = cos(k,a,) = -1 = k, = (me+1)7'(’ m, € Z. Thus, the step that

Ay

2
defines the discreteness in k-space in the x-axis is Ak, = a—n (similar considerations hold also for the y-
X

8 3
and z-axes.). Hence, the infinitesimal k-volume is = , where V is the volume of the cavity. Hence, just as
in the previous Subsection 2.11.1, Eq. 2.79, which was to be proven, occurs.

2.12 Proof of the classical Rayleigh-Jeans law using the equipartition theorem and the infinitesimal
number of EM field normal modes per infinitesimal frequency interval.

As shown below, p(v, T') is the energy density per unit volume per unit frequency, while ‘% is the density

of normal modes per unit volume per unit frequency. Hence, for a given g(7v) , we have to multiply it by the

average energy of each normal mode, E to obtain p(v, T).

AN  8m2V 1
g =—=—73—= 8] = — =5
gw) _ 812 gm|_ 1 s
vV 3 V | Hzm® m3
plv,T) = pEY) (o, T)] = —— = 35

vV m3Hz md
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According to the classical equipartition theorem [ 10, 11, 12], in thermal equilibrium, we attribute to each

degree of freedom of the building block of the system the average energy E(T) = %kBT. Thus, e.g., in

a system of N building blocks, each having M degrees of freedom, the energy is #kB T. The average
energy of each normal mode is

—_— 1
E(T) =M X EkBT. (2.82)
Hence,
. . - 3 - 3
ina 3D ideal gas Exin = EkBT = E= EkBT
_ 1 -1
ina 1D ideal gas Exiny = EkBT =E= EkBT
- - 1 -

in a 1D simple harmonic oscillator (SHO) Evor = Exin = EkBT = E=kgT

Epor (Exin) is the average potential (kinetic) energy. Therefore, supposing an ensemble of SHOs with
E = kg T, we conclude that

8m1?
p(v,T) = 3 kgT Rayleigh-Jeans law (2.83)

Hence, forv — 00 = p(v, T) — oo, that is, we have great problem increasing frequency, because this
behaviour contradicts emphatically experimental data: The limit to infinity disagrees with experimental
data, i.e., we have “catastrophic” disagreement with the experiment at higher frequencies. This behaviour
was named in the past “ultraviolet catastrophy” because it was first observed in the ultraviolet regime. This
issue was addressed in Section 2.2. Let us notice that if we did not assume two degrees of freedom so that

to obtain E = ;kBT = kgT but M degrees of freedom, then the only thing that would change would

812 M
C3 ?kBT. The

extremely problematic behavior 12 that increasing v leads to infinite p(v, T)) would not change at all.

= M
be a constant, because we would obtain E = ?kBT and we would arrive to p(v, T) =

2.13 Proof of the Planck's law the way Planck did it.

We will follow here the assumptions Planck was forced to make in 1900 in order to prove the equation
known today as the “Planck’s law” [ 15 ], which agrees with experimental data on black body radiation. The
problem of black body radiation had been opened at least since 1859 by Kirchhoft. Planck was involved
with the problem of black body radiation from 1894. The Wien’s law, which provides an equation that just
happens to fit the experimental data at high frequencies, was proposed in 1896. The Rayleigh-Jeans law,
which emerges from classical physics, can describe the black body radiation only at very low frequencies,
i.e., it fails miserably, as we have just seen above. Thus, a consistent theoretical explanation covering all
frequencies was missing.

After several failed attempts, Planck proposed in 1900 a proof involving the assumption that EM en-
ergy can only be a discrete, “quantized”, multiple of the quantity /v, where /1 is what we now call “the
Planck’s constant” and v is the radiation frequency. Furthermore, he utilized the statistical Boltzmann dis-
tribution. He was definitely not happy with these assumptions; however they were imposed to him by the
need to explain the experimental data. Soon, in 1905, Einstein [ 16] explained the photoelectric effect by
assuming that such quanta of light exist. The term “photon” was written for the first time in 1926 by G. N.
Lewis [17].

Planck was essentially forced to introduce the notion of the resonator, which has discrete, that is, not
continuous but depending on a natural number, 71, in other words, “quantized”, allowed values of its energy,
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E,, for a given frequency, v. Then he had to assume that the energy corresponding to a given frequency,

v, and temperature, T, is in reality an average value, E(v, T), of the energies of a large number of identical
resonators, each of which is at a different energy level, E,;, while the occupation probability of the levels,
P, is given by Boltzmann statistics.

So, we will assume that the EM energy of a resonator with frequency v inside a black body cavity can
only take discrete values, i.e., it is “quantized” and, actually, that it takes the form

E,=hvwn, n=0,1,23,.. (2.84)

1
We underline that if, instead of this relation, we set E,, = hv(n + 5)’ as we know today for the quantum
simple harmonic oscillator, we do not obtain the Planck’s law... We notice that classically, according to

the equipartition theorem, in thermal equilibrium we attribute an average energy E(T) = %kBT to each
degree of freedom of the building block of the system. Hence, e.g., in a system with N building blocks,

NM
each having M degrees of freedom, the energy s TkB T'.In contrast, here we will assume that the average
energy of a normal mode depends not only on temperature, but also on frequency

Ew,T) = Y, Epy (2.85)

and that the probability that the building block has energy E,, is p,,, given by Boltzmann statistics, i.e.,

_Eﬂ
ksT

pn = 7, (286)

3}

Z = e, (2.87)

Xi=—. (2.88)

From Egs. 2.84, 2.85, 2.86, 2.87, 2.88, it follows that

e kgTx
zZ  Z

EW,T) = Z nxkgT Z ne—"x, (2.89)
n n

1
Z = = , 2.90
D= (2.90)

n

since we have an infinite sum of terms of the geometric progression a4,, = ¢™* with initial value ay =
— . a — . . “« 2 .
e~0% = 1 and ratio 3= Z—H = ¢ < 1. [Here, we used the archaic Greek letter sampi (“san pi”, which

n
means “like a 71”).] Let us now also try to express .2/ as a function of x. From Eq. 2.90 it occurs that

27 Cur e
il zn: ne ™ = =y = (2.91)

A = (2.92)
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Consequently, from Egs. 2.89, 2.90, 2.92 we obtain

e 1
Ew,T) = kBTx1 = kBTx — (2.93)
And, if we remember how x was defined (Eq. 2.88), we arrive at
h
Ew,T) = — - (2.94)
eksT —1
In analogy with what we did in Section 2.12,
dN  8m2V 1
s =—r=—73—= [gW)] = - =s
gv)  8mv? sm]_ 1 s
Vv h C3 \%4 B Hz m3 B m3
= 80) J Js
T . T)] = =
pv, T) = E(v, )= (v, DI = =3

Now E(v, T') depends not only on temperature T but also on frequency v. Actually, it is given by Eq. 2.94,
therefore,

hv  8m/?
pv,T) = — > (2.95)
eksT —1

Consequently, the energy density per unit frequency of the EM radiation of a black body in thermody-

namic equilibrium, p(v, T), with units S is
m VA

8nth 13
p(V/ T) = C_S Ty (296)
eksT — 1

In other words, we have obtained the Planck’s law (Eq. 2.7).

2.14 Proof of the Wien's displacement law.

For Planck’s law in the form p(v, T), proven above, we will find the —as a function of temperature- fre-
quency, Vo(T), where we have maximum of p(v, T), i.e,, Eq. 2.98. Let us remember the form of the Planck’s
law after the change of variables (Eq. 2.8), i.e., after we have set

h kgT kgT
x:—V:>v:B—x:>d =2 dx.
kgT h h
Then, Eq. 2.12 occurs,
x3
P= Py
where, according to Eq. 2.13,
81 (kgT :
po h2\ ¢
with units ]
[Po]
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Of course, x = 0 does not belong to the domain of the function p(x), i.e., we do not refer to zero frequency
of infinite temperature. Therefore,

d 3x%(e¥ - 1) — x3¢* 3(e* - 1) — xe*
P _ o €-1) = poxz—( ) . (2.97)
dx (e -1) (ex-1)
Since we are looking for extrema, the derivative Z—Z should become zero, thus,
dp
o =0=3("-1)—xe* =0= (since x #0) xg~ 3.
X
X is the desired root and v the respective frequency, i.e. xy = :L;. More precisely, a graphical or numer-
B

ical solution gives x = 2.821439. The graphical solution is presented in Figure 2.14. Finally,

_ ksTxg _ kpT 2.821439
T n h

Vo ~ (58.789 GHz/K) T =

Vo
- = 58.789 GHz/K (2.98)

Eq. 2.98 shows how the frequency at which we have a maximum of p(v, T) is shifted as a function of tem-
perature T, it is thus a “displacement law”, although it is expressed in terms of frequency and not wave-
length, as the usual “Wien’s displacement law”, of Eq. 2.101, which is proven below.

f(z) = 3((5": — 1? - :zrl(f"‘

Figure 2.14: Graphical solution of equation 3(e* — 1) — xe* = 0. The first root is xq = 0, which does not
belong to the domain of p(x). The other root is xy = 2.821439.

Next, using Planck’s law as a function of wavelength, p(A, T), in the form of Eq. 2.21, we will find the
—as a function of temperature— wavelength, Ao(T'), where we have maximum of p(A, T), that is Eq. 2.101
below. Taking the derivative of Eq. 2.21, we obtain

dp 5%V -1) -V 5(e¥ —1) - pe?
A ) R N

(2.99)

. . . .4
Since we are looking for extrema, the derivative ﬁ should become zero, thus,

Z_IPP:0:5(6¢_1)_¢e¢:O:}(sincel,bio) Yo ~ 5.
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g is the desired root and A the respective wavelength, i.e. g = /\}llc_CT More precisely, a graphical
oks
solution gives Yy = 4.965114. The graphical solution is presented in Figure 2.15. Finally,
hc hc
1= ~ N 2.100
07 YoksT ~ 4.965114kyT (2100)
AoT = 2.897772 x 1073 m K (2.101)
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Figure 2.15: Graphical solution of equation 5(¢¥ — 1) — ¥ = 0. The first root is /g = 0, which does
not belong to the domain of p(1)). The other root is ¢y = 4.965114.

Eq. 2.98 shows how the wavelength at which there is maximum of p(A, T) is shifted as a function of
temperature T it is thus a “displacement law”, the so-called “Wien’s displacement law”. This is the “con-
temporary form” of Wien’s displacement law; it was derived by W. Wien in 1893 with the phraseology
that the black body radiation for different temperatures peaks at a wavelength inversely proportional to
its temperature, i.e.:

AT = constant (2.102)

This behavior, although it can be derived by Planck’s law, as shown above, leading to Eq. 2.101, it was
discovered by W. Wien some years before Planck’s proof of his law (Eq. 2.12 1} Eq. 2.18). Planck’s law in
the form p(A, T) for T = 1595 K as well as A of Wien’s displacement law are depicted in Figure 2.16.
We chose this value of T with reference to Figure 2 of the historic article by W. W. Coblentz [ 18], which
contains experimental data and comparison with Planck’s law at this temperature.

Planck’s law for several black body temperatures is depicted in Figure 2.17. We notice a shift of the
spectrum towards smaller wavelengths, as the temperature increases, which is expressed by Wien’s dis-
placement law. For these temperatures, the corresponding A, at which there is a peak of p(A, T') is also
shown. Furthermore, the visible region of the EM spectrum is depicted, which will be useful in some ex-
ercises on bodies emitting EM radiation, where we assume that they can be approximated by black bodies
of some “effective temperature”. The effective temperature of a body is the temperature of the black body
that would emit the same total amount of EM radiation. However, this does not mean that the distribution
of radiation as a function of wavelength or frequency essentially follows Planck’s law. Planck’s law, p(v, T),
for some black body temperatures is shown in Figure 2.18. We observe the shift of the spectrum to higher
frequencies, as we increase the black body absolute temperature, T, which is what Wien’s displacement
law expresses. We also observe that generally the whole distribution p(v, T) is increased, as we increase
the temperature T.
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p(AT) forT=1595K X =1816.785 nm
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Figure 2.16: Planck’s law in the form p(A, T) for T = 1595 K as well as Ay of Wien’s displacement law.
This value of T was chosen with reference to Figure 2 of the historic article by W. W. Coblentz [ 18].
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Figure 2.17: [ Top] Planck’s law p(A, T') for several black body temperatures. We notice a shift of the spec-
trum towards smaller wavelengths, as the temperature increases, which is expressed by Wien’s displace-
ment law. The corresponding A, at which there is a peak of p(A, T) is also included. We observe that
generally the whole distribution p(A, T') is increased, as we increase the temperature, T. [Bottom] The
visible part of the EM spectrum.
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Figure 2.18: Planck’s law, p(v, T'), for some characteristic black body temperatures. We observe the shift
of the spectrum to higher frequencies, as the black body absolute temperature T is increased, which is

what Wien’s displacement law expresses. We also observe that generally the whole distribution p(v, T) is
increased, as we increase the temperature T.
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2.15 Photoelectric effect.

The photoelectric effect (PEE) is the emission of electrons from a material that has absorbed energy from
EM radiation, usually in the visible or ultraviolet regime. It was observed by H. Hertz [ 19] in 1887, who
showed that it is easier to create electric sparks when ultraviolet light shines on the electrodes. To occur,
the photoelectric effect needs photons with energies of the order of 1 €V to 1 MeV (in materials with large
atomic number). The study of the photoelectric effect led to the acceptance of the quantum nature of
light and of the wave-particle duality. In 1905, A. Einstein explained the PEE by hypothesizing that light
is composed of discrete packets (“quanta”) instead of continuous waves [ 16]. Those discrete packets are
now called photons, a term attributed to G. N. Lewis [ 17] that came to common use much later.

) ) [

®
oo / /
= ®e®e

=

Figure 2.19: A schematic representation of the photoelectric effect.

Einstein used Planck’s theory of black body radiation and assumed that the energy of each photon,
E, is proportional to its frequency, v, with the proportionality constant being what was later named “the
Planck’s constant”, , i.e., he assumed that E = hv. This is how he explained the PEE: a photon with
frequency larger than a threshold value contains the necessary energy to eject a single electron from the
material. For his explanation of the PEE, which lead to the quantum revolution, Einstein was honored
with the 1921 Nobel Prize in Physics. He proposed that, under certain conditions, light is equivalent to a
flow of particles (light quanta, today called photons). He discovered this result by analyzing the thermo-
dynamics of black body radiation in the Wien’s regime. Among the consequences of his proposition was
the explanation of several puzzling characteristics of the photoelectric effect.

So, when visible or UV radiation hits a metallic surface, electrons begin to be ejected, if the frequency
of EM radiation is high enough. For example, when monochromatic light impinges on the cathode of a
discharge tube, current between the anode and the cathode is created, due to the displacement of ejected
electrons from the cathode towards the anode. In the setup of Figure 2.20, the voltage between the an-
ode and the cathode can be either positive or negative. When it is positive, electrons accelerate, thus the
current is increased, while, when it is negative, electrons decelerate, thus the current is decreased. For an
adequately negative voltage, —V/, the current vanishes. Vj is called threshold voltage or potential differ-
ence.

One of the puzzling aspects of the PEE was that, irrespective of the intensity of the incident monochro-
matic radiation, the threshold voltage always remains the same. The existence of a voltage that can stop
electric current implies a maximum kinetic energy that electrons ejected from the cathode can gain. This
maximum kinetic energy is equal to the threshold voltage Vy multiplied by the elementary charge, e. Thus,

2
myu
——buax = Vo, (2.103)
In other words, the kinetic energy the electrons obtain when ejected from the metallic surface has a max-
imum value which always remains the same, regardless the intensity of monochromatic EM radiation.
Every metal has a work function W, which means an electron inside a metal has to obtain energy at least
equal to W to be removed. Ifit obtains exactly W), then it “goes out” with zero velocity, while, if it obtains
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Figure 2.20: (a) The setup needed to study the energy of electrons emitted during the photoelectric effect
(PEE). (b) The shape of the characteristic current-voltage curve, I(V), for two different intensities of inci-
dent EM radiation. In case ii, the intensity of EM radiation is larger than in case i. We observe that there is
avoltage, —V/, at which the current, I, vanishes at both cases, i.e., V) does not depend on the intensity of
incident radiation. (c) The relation Vj(v). (d) The setup used to demonstrate the frequency dependence
within the PEE.

E > WO, it uses the excess amount as kinetic energy. Hence,

m,u?

2

E=W,+ (2.104)
So, Einstein [ 16] hypothesized that light is composed of “packets” or otherwise “particles” or otherwise
“quanta’, each of which carries energy equal to hv. Thus, if we assume that an electron absorbs the energy
of the photon, the previous equation can be written as

2
hv = Wy + mezu . (2.105)

Hence, applying the previous relationship to the maximum kinetic energy, we have

hv = Wy + eV, (2.106)
Therefore,
h W,
Vo=-v-—2 (2.107)
e e

Thus, if we plot the threshold voltage, V), as a function of frequency, v, we will obtain a straight line;
see Figure 2.20(c). According to Einstein, the increase of monochromatic EM radiation intensity means
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2
an increase in the number of electrons with kinetic energy —62 but not an increase in this kinetic energy.

In Figure 2.20(d), the setup used to demonstrate the frequency dependence within the PEE is presented.
The light source is a mercury vapor lamp emitting 5 intense lines from yellow to the UV regime, as seen
in Table 2.3.

Table 2.3: The photoelectric effect using a mercury vapor lamp as a light source.

Emission line Frequency v (x10'* Hz) Threshold voltage V; (V)

ultraviolet 2 8.22 1.807
ultraviolet 1 7.41 1.546
bright blue 6.88 1.359
green 5.49 0.738
yellow 5.19 0.624

This setup ensures the separation of emission lines, and a photoelectric detector counts the energies of
ejected electrons. The results of a typical experiment, plotted in Figure 2.20(c) are shown in Table 2.3.

h h
According to Eq. 2.107, the line’s slope is - So, according to the aforementioned data, we have - =

(0.400 + 0.016) x 107 Js/C, while, today we know that this ratio is approximately g =0.414 x 10714
Js/C. The predictions of Einstein’s theory were verified later, with the most important moment being the
experiments by R. Millikan [20, 21]. The second one [21] is far more detailed.
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CHAPTER 3

INTERACTION PROCESSES BETWEEN A PHOTON
AND A TWO-LEVEL SYSTEM

In this Chapter:

We describe the interaction mechanisms or processes between a photon and a two-level system (2LS).
These processes are usually called Einstein mechanisms or processes: spontaneous emission, stimulated
emission, (stimulated) absorption. This way we also introduce the relevant Einstein coefficients A and
B. Of course, from them, only stimulated emission was introduced by Einstein. The other two processes
were already known, but nobody had up to then seen them as an integral whole, if I am not mistaken.
Here the Planck law is proven, with a proof almost identical to that of Einstein himself, with the help of
these processes and the Boltzmann statistics. A comparison between Maxwell-Boltzmann, Fermi-Dirac,
and Bose-Einstein statistics, which is followed by classical particles, fermions, and bosons, respectively,
is included. We also compare spontaneous with stimulated emission as well as the stimulated processes
between them.

Prerequisite knowledge: Basic knowledge of Physics and Mathematics as well as a little bit of Statistical
Physics.

3.1 Interaction processes between a photon and a two-level system (2LS). (Stimulated) Absorp-
tion. Spontaneous Emission. Stimulated Emission. Einstein coefficients A and B.

LASER is an acronym that means Light Amplification by Stimulated Emission of Radiation. Einstein set
the theoretical foundations of the LASER in 1916-1917, through a re-derivation, that is a new proof, of
the Planck’s law for black body radiation. His proof was based on the so-called today “Einstein processes
or mechanisms”, which describe the probabilities of (Stimulated) Absorption, Spontaneous Emission and
Stimulated Emission. These are the processes involved in the interaction between EM radiation and matter

or, more precisely, between a photon and a two-level system, e.g., within an atom, molecule, quantum dot,
nonoparticle etc.

Constantinos Simserides (2023). «Quantum Optics>.
Kallipos, Open Academic Editions. https://dx.doiorg/10.57713/kallipos-186
Creative Commons Attribution — Non Commercial — ShareAlike 4.0 International


https://dx.doi.org/10.57713/kallipos-186

48 INTERACTION PROCESSES BETWEEN A PHOTON AND A TWO-LEVEL SYSTEM

Hence, we will deal with the interaction of EM radiation or, better, light quanta (photons) with a two-
level system, e.g., focusing on two energy levels of an atom, E; and E, > E;. We will suppose that this
two-level system has a sole electron. According to Einstein [ 1, 2], there are three processes that affect this
interaction: Spontaneous Emission, Stimulated Absorption and, finally, Stimulated Emission. The latter
was introduced by Einstein [ 1, 2]. A process is called “stimulated” when it needs the influence of EM ra-
diation, i.e., of photons, on the 2LS to occur. A process is called “spontaneous” when it does not need the
influence of EM radiation, i.e., of photons, on the 2LS to occur. The word “stimulated” is often omitted in
the term Stimulated Absorption, since it is implied; any absorption is stimulated, needing EM radiation
to happen. Below we will examine in detail what exactly Stimulated Emission and the rest two processes
(i.e, Spontaneous Emission and Stimulated Absorption) are. The mechanisms or processes of interaction
between EM radiation and a two-level system are analyzed in articles [ 1, 2], which were published dur-
ing 1916-1917. In the same articles, together with the definition of these processes, the derivation of the
Planck’s law using them is included. So, concisely

Stimulated Emission dueto p(v, T)
Stimulated Absorption dueto p(v, T)
Spontaneous Emission

A. Einstein had already (1905) explained the photoelectric effect [3] assuming that there exist light
quanta with energy E = hv, these would later be termed photons. [Probably the word was introduced in
1926 by G.N. Lewis [4].] It is worth noting here that it was only several decades later —mainly in the 1950s
and 1960s— and after international efforts by many prominent or not physicists that it became possible to
construct the first MASERs (“M” stands for Microwaves) and LASERs. In 1964, Charles Townes, Nikolay
Basov and Aleksandr Prokhorov shared the Nobel Prize in Physics “for (their) fundamental work in the
field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the
maser-laser principle”.

We will suppose that we are inside a black body in thermodynamic equilibrium. The mechanisms or
processes of interaction between photons and a two-level system are explained below. As it will become
clear later, for the so-called Einstein coeflicients Ayq, B1y, Bo1 we use A for the spontaneous process and
B for the stimulated processes.

In Sections 3.1.1, 3.1.2, 3.1.3, as an example of a two-level system, we focus on two energy levels, Eq
and E,, of an atom.

3.1.1 (Stimulated) Absorption.

The Stimulated Absorption of a photon with energy E, and momentum p,p,, between two energy levels
Eq and E; of an atom where we focus on, is illustrated in Figure 3.1. Let us suppose that initially the atom
is motionless. Additionally, let us assume that the probability, dW?;, that the atom absorbs a photon in
time dt is given by

dW:t = BlZp(V/ T)dt (31)

i.e, it is proportional to the time interval df and the EM energy density in an infinitesimal frequency in-
terval, p(v, T'), with a constant of proportionality By, where the index 12 means that after the absorption
the electron will jump from level 1 to level 2.

We apply the laws of Conservation of Energy and Momentum.

supposedly negligible

Conservation of Energy Ei+hv=E,+ P E,—-E;=hv
at

) hv hc h h2n
Conservation of Momentum Pph = Pat = Pat = ~ = o = 3 =—=hk=>p,= T = hk
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(Stimulated) Absorption

ATOM ATOM
lectr )
Eph = hy electron Iut
ANNS> photon -
pph: Eph, ¢
L 1 . E 1
electron
INITIALLY FINALLY

we suppose atom initially motionless

Figure 3.1: Stimulated Absorption of a photon with energy E,;, and momentum py,, accompanied with
an electron transfer between two energy levels E; and E; of an atom.

2
Let us now check whether the kinetic energy of the atom after the absorption, 2% , is indeed negligible
compared to the photon energy, E, by calculating their ratio, A. ’

Pa
_2my W2 A h
"~ E,  A2muhe 2Acmy

A

For A to increase, 11, must decrease. Hence, let us set 717, equal to the mass of the smallest possible atom,
hydrogen.

My = M, + M,

p
my, ~1.673-10" kgt = m, ~1.673-10% kg
m, = 9.109 - 10731 kg
We wrote 111, = 11,+1, instead of 1, = 111,,+111, because thereisa (small) “mass defect”, i.e., the binding
energy of the electron and the proton in the hydrogen atom. Let us consider a typical green photon with

A = 500 nm. Then,

6.626-10734s s
A=
2-500-10°m 3-108m 1.673 - 10‘27kg

Hence, in our example, the kinetic energy of the atom is indeed negligible compared to the photon energy.

~1.320-107°.

Question: For which wavelength A, does the ratio A become equal to 0.05 in the hydrogen atom?
Answer:

=0.05=

- 2Acm g,
1o h 6.626-10734s - s
- 2omg A 2-3-108m-1.673-1027 kg - 0.05

~13.2-107° m = 13.2fm.

This is an extremely tiny wavelength. Even y-rays have typical wavelengths below pm (10 X1 0712 m), but,
here we are at the fm regime, that is at the 107 m regime. Even the diameter of the atomic nuclei varies
from 1.75 fm = 1.75 X107> m for hydrogen (the diameter of a proton) to ~ 15 fm for some of the heaviest
atoms like uranium. Thus, our assumption that the kinetic energy of the atom is negligible compared to
the photon energy is valid nearly across the whole EM spectrum.
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3.1.2 Spontaneous Emission.

The Spontaneous Emission is illustrated in Figure 3.2. Let us assume that the probability, d Wem, that the

Spontaneous Emission

ATOM ATOM

photon t\/\/\ﬁ

P :Eph c

ph

electron

1)t the atom will move to
a

’ the opposite direction
1 E, ®

electron

INITIALLY FINALLY
we suppose atom initially motionless

Figure 3.2: Spontaneous Emission of a photon with energy E ., and momentum p,,, accompanied with
an electron transfer between two energy levels E; and E; of an atom.

atom spontaneously emits a photon at time d# is given by

AWeh = Ayydt (3.2)

i.e, it is proportional to the time interval, df, with a constant of proportionality A1, where the index 21
means that with the emission of the photon, the electron will fall from level 2 to level 1. We note that
since this process is spontaneous, dWem does not depend on the EM energy density in an infinitesimal
frequency interval, p(v, T). We can define the lifetime of level 2 as the time it takes for the photon to

be emitted spontaneously with certainty (hence the electron is transferred from level 2 to level 1). If we
denote it by 7, = 7, then, from Eq. (3.2), we obtain 1 = Ay; 7. Thus,

Ty =T=—. (3.3)

motionless. Hence, when a photon is emitted, it will move towards the opposite direction.

2
Pat

at

Conservation of Energy Ey=E1+En+
Conservation of Momentum Pat + Pph = 0

Since this process is spontaneous, photons are emitted towards a random direction, i.e., without direc-
tionality, and with a random phase, i.e., without coherence. In other words, they are incoherent photons.
Directionality means that EM radiation is emitted towards a certain direction. Coherence is a constant
relationship between the phase of waves with the same frequency. For example, two light beams are
coherent when the phase difference between them remains constant, while they are incoherent when
there is a random or varying phase difference between them. Stable forms of interference are created
only by coherent beams. In fact, they usually come from a single beam which is separated into two or
more beams. A LASER, unlike an incandescent light source, produces a light beam the components of
which have constant relationship between their phases. Similarly, two photons with a constant phase re-
lationship are coherent.
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3.1.3 Stimulated Emission.

The Stimulated Emission is illustrated in Figure 3.3. In this process, before the electron falls spontaneously
from level 2 to level 1, a stimulating photon causes it to fall. Let us suppose that the atom is initially mo-
tionless. Let us consider as positive the initial direction of the stimulating photon. Let us further suppose
that the probability, dWZ, that the atom emits a photon in time d# via this process is given by

WS, = By p(v, T)dt (34)

ie., it is proportional to the time interval dt and the EM energy density in an infinitesimal frequency
interval, p(v, T'), with a constant of proportionality B,;, where the index 21 means that after the emission
of the photon, the electron will fall from level 2 to level 1.

before the electron falls spontaneously, Stimulated Emission

it is forced to fall by the stimulating photon

ATOM ATOM Eph =hy
=FEon/r
E, . E, pph ph/c
stimulating electron two identical photons, with same AANL>
photon 1{\t energy, nu)nlf‘nt'um (direction), AN
ANN> phase, polarization
Eph:waEIZh\' —— Epn=hv
» —Eo/n
pphz Eph C pph ph/c
o
electron
INITTIALLY FINALLY
we suppose atom initially motionless ~ We assume positive .-

the initial direction of the stimulating photon

Figure 3.3: Stimulated Emission of a photon with energy E.;, and momentum p;,, accompanied with an
electron transfer between two energy levels E, and E; of an atom. An initial stimulating photon causes
the creation of another photon with identical characteristics (energy, momentum, phase, polarization).

The two photons, i.e., the initial stimulating photon and the photon that is emitted by the atom, are

monochromaticity

directionality

are properties of a LASER
coherence

polarization

Although the two photons involved in the process of Stimulated Emission have the same polarization,
i.e., the electric field of these photons is in the same direction, the rest two processes, Spontaneous Emis-
sion and (Stimulated) Absorption, are still present in the effective medium of a LASER device. However,
in Spontaneous Emission, the emitted photons have random direction, phase, and polarization (while
their energy, in a strictly two-level system is the same). Thus, overall, the photons present inside the ef-
fective medium of a LASER device, do not have a specific polarization. On the other hand, the light of
a LASER device can become polarized by attaching a polarizer (a material that lets only light of specific
polarization pass) or a “Brewster window” at the exit of the LASER device.

When a light beam impinges on the interface between two media, its reflected part and its transmitted
(in other words, refracted) part are described by the Fresnel Equations and depend on the polarization of
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the incident light and the angle of incidence. Thus, p-polarized light (electric field polarized in the plane
defined by the incident beam and the normal to the interface) will not be reflected if the angle of inci-
dence is Oy = arctan(1,/n7), where 711, 11, are the refraction indices of the initial and the other medium.
This equation is known as the Brewster’s law and the angle Oy, is referred to as the Brewster’s angle. We

incident beam reflected beam
(unpolarized) . (polarized)

refracted beam
(partially polarized)

Figure 3.4: The Brewster angle.

discuss the Fresnel Equations and the Brewster’s angle in detail in Section 12.1, and the emission of a
polarized beam in Section 12.3. In practice, the light of some LASER devices is largely polarized (e.g., in
gas LASERs), while the light of some other LASER devices is polarized to a lesser extent (e.g,, in diode
LASERs). LASER devices have a cavity that confines the effective medium and creates a competition be-
tween the EM modes and between polarizations. In the end, the mode and polarization with the smallest
losses dominate. However, there are also LASERs with many modes or polarizations.

Let us notice that:

« What is mentioned above about same phase and polarization is not discussed in Einstein articles
[1,2] nor they do play any role in the derivation of Planck’s law therein, derivation presented below,
too.

« Photons are bosons, thus two or more photons can have the same energy, momentum (hence,
direction), and phase.

+ We need to assume that the initial stimulating photon, with energy E,;, = E; — E; = hv, is not at
all affected during Stimulated Emission.

« We could state that the initial stimulating photon determines the phase and the polarization of the
emitted photon just as the stimulating force determines the phase and the polarization of a forced
or stimulated oscillation.

We now apply the laws of Conservation of Energy and Momentum, supposing that the atom is initially

motionless. According to what we have discussed up to now
small

Conservation of energy Ey +Ey, =2E,+E; +

—

Conservation of momentum Pph = 2i_9)ph + Dot
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We could, of course, attempt to consider that the two photons might have different energy and momen-
tum, e.g., to write

small
2
Conservation of energy E, + % =E; + % + E;h + 4 =
Myt
El,)h :EZ_El = Eph

the photons have the same energy

Let us assume the initial direction of the stimulating photon as positive, that is p;, > 0.

— — = — - —
Conservation of momentum % = % +p’ oh + Py = p’ph = —Pa
If we assume that the stimulating photon determines the direction of the new photon, then

En _ Epn
Pon >0 pp, = — = —— = ppn = the photons have the same momentum
c C T

In brief, because the photons have same energy, the outgoing light will have monochromaticity and be-

3.2 Derivation of Planck's law via emission and absorption processes and Boltzmann statistics.
Relationship between Einstein coefficients A and B.

Let us consider the interaction between the EM field and matter in thermodynamic equilibrium, so that
the temperature T = constant. Let us denote by N; the population of the level j, i.e., the average number of
atoms with the electron at level i, for which we assume that it follows the Boltzmann distribution, which
is

(1) with same statistical weights (2) with different statistical weights
(simpler form) (general form)
Ei Ei
e kT gie kgT
N; = Nyt 7 N; :NtotT
—_——— —_————
Pi pi
or
Ei Ei
Z — Zie kBT Z= Elgle kBT

Here, p; is the occupation probability for level i. The Boltzmann distribution is defined using the partition
function, Z, which plays a central role in the description of the statistical properties of a system in thermo-
dynamic equilibrium (see a statistical physics textbook, e.g., [ 5]). Since we have assumed thermodynamic
equilibrium, the variations of the level populations in time df will be equal, i.e., the number of atoms where
electrons jump from 1 to 2 will be equal to the number of atoms where electrons drop from 2 to 1, i.e.,

ANy = dNj_,;1. (3.5)

dN7_,, will be equal to the population N7 multiplied by the transition probability from 1 to 2 in time dt.
This probability is associated with (Stimulated) Absorption, and is given by Eq. 3.1. dN,_,1 will be equal
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to the population N, multiplied by the transition probability from 2 to 1 in time dt. This probability is
associated with Spontaneous Emission, given by Eq. 3.2, and Stimulated Emission, given by Eq. 3.4. Thus,

NidWS = Np(dWem + dWE). (3.6)

(1) To begin with, let us make calculations with same statistical weights. Due to Egs. 3.1, 3.2, 3.4, Eq. 3.6
becomes

Eq _B
kpT kgT

e e
Ntot7B12p(Vl T)dt = NtotT(A21dt + B21p(1/, T)dt) =
_E _E _E
Biye T p(v, T) — Byre T p(v,T) = Ayje 7 =
_E
A21€ kgT
p(V/ T)= = “E
Bize *3T — Byje T

However, we already know (cf. e.g. Figure 2.18) that

Jim p(v, T) = c0 =

Lzm:BlzzB21 :=B
Bi2 = By
AZl = A.
Hence,
A
B
P (v, T)= HE)
e kBT -1
Comparing with Planck’s law (or even, dimensionally, with Wien’s law), we have
A
B 8rh 13
uptonow | p(v,T) = ﬁ Planckslaw | p(v,T) = ———
e kBT -1 ekB_T -1
Thus,
A 8rhv’
E - 3 (37)

55

(2) Let us now make calculations with different statistical weights. Due to Egs. 3.1, 3.2, 3.4, Eq. 3.6 be-
comes

_h _E
kT kT
NS Biap(v, Tht = N2 (Aandt + Bayp(v, Tdt) =
5B _E _E
(81 e TBp —gye kBTle)P(V/ T)=goe "1 Ay =
_E
A 1€ kpT
ply, T) = —52.2 R

g1 Bige 8T — g5 Byje foT
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However, we already know that

Tlim p(v,T) =0 =

A
_ &M
81B12 — g2 Ba1
g1B12 =82 Ba (3.9)
Hence, comparing with Planck’s law
An
le 5 87Tl’l V3
uptonow |p(v,T) = P Planckslaw | p(v, T) = —- 3
e kBT — 1 ekBT _ 1
Thus,
An _ 8t (3.10)
B21 C3 '
o)
3.3 Comparison between emissions.
Let us compare Spontaneous Emission with Stimulated Emission.
incoherent process 87'[h1/3
dWer% _ Azldt _ CS _ ekI;_VT _1
dWst, Byip(v, T)dt 8mh 13
coherent process C_3 m

Since Spontaneous Emission is an incoherent process, i.e., the produced photons are not coherent (they
do not have a constant phase relation), and Stimulated Emission is a coherent process, i.e., the produced
photons are coherent (they have the same phase), seeking COHERENCE implies that we need as much
as possible (1) larger T, (2) smaller v (or larger A). [See Figure 3.5, where the function f(x) = ¢* —11is
depicted. Here, x = hv/kyT.] Thus, in this sense, it seems easier to create a coherent beam, for example, in

Figure 3.5: Graphical representation of f(x) = ¢* — 1. Here, x = hv/kgT.
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microwaves than in the visible regime. Maybe this is why some of the first attempts to create a device that
produces coherent EM waves were focused on microwaves and led to the creation of the MASER [Mi-
crowave Amplification by Stimulated Emission of Radiation] as a predecessor of LASER [Light Amplifi-
cation by Stimulated Emission of Radiation]. However, today, the acronym LASER is used even for the
invisible parts of the EM spectrum. For example, the terms infrared laser, ultraviolet laser, X-ray laser, etc,
are used. Today, the term atom-laser is used, too, to describe a device which produces coherent beams of
atoms that are bosons, such as g;Rb [6]. Because the MASER was developed prior to the LASER, devices
functioning in the microwaves are still commonly referred to as MASERSs instead of microwave lasers or
radio lasers. The first MASER was created in 1953 by Charles Townes, James Gordon and Herbert Zeiger.
Schematically,

MASER (A ~ 1 cm) LASER (A ~ 500 nm)

easier to achieve coherence harder to achieve coherence

Sp
em

AWt
is possible, (a) in the visible region, e.g., for A ~ 700 nm, and (b) in the microwaves, e.g., for A ~ 1 cm.
We have

Let us assume, for example, that we want the ratio = 1, and examine at which temperatures this

dWeh, A s hv
=l=eT-1=1=2eBT =2 —=h2=>
dWst kT
T - hv . hc
“ksln2| 1|7 T Akpln2

6.626-10734s 3-108m K 6.626 - 3107343048 K

= =~ ~ 29687 K.
700-10°m 1.38-107%%Js In2  7-1.38 In2

Hence, in thermodynamic equilibrium, this is practically unachievable. For example, the Sun’s photo-
sphere has an effective temperature of ~ 6000 K, while temperatures ~ 30000 K can only be found
in the surface of stars with 20 times the Sun’s mass (Figure 3.6). This practical impossibility has lead
researchers to seek for solutions outside thermodynamic equilibrium, such as the population inversion
through pumping. These will be addressed in Chapter 11.

(b) For A =1 cm (microwaves).

Similarly, we find T ~ 2.078 K, i.e., although low, an experimentally achievable temperature.

3.4 Comparison between stimulated processes.

Let us now compare the two stimulated processes.

AW, _ Bropl i _
AW, ~ Buple Pt

for a system with equal statistical weights (g7 = £).

However, in thermodynamic equilibrium, N, << Ny
dN3 ;= Ny - dWE, = dN3',; << dNj,,.
AN = Ny - dW
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Figure 3.6: The Hertzsprung-Russell diagram, showing the relation between a stars’ luminosity and sur-
face temperature [7].

Hence, through the stimulated processes, the population of level 2 increases, therefore, the EM radiation
density decreases. Then, spontaneous emission, which is accompanied by an electron dropping from level
2 to level 1, increases the incoherent EM radiation. This problem (caused by the fact that, in thermody-
namic equilibrium, N, << Nj) can be solved by population inversion through pumping, which will be
addressed in Chapter 11. There are many kinds of pumping. Pumping means that one somehow uploads
electrons in level 2 so that N, > Nj.

Now, let as check, from a quantitative point of view, what does exactly N, << Ny in thermodynamic
equilibrium mean (see also Exercise S of the present Chapter in Appendix A). Let us consider an ensemble
of hydrogen atoms in thermodynamic equilibrium. The eigenenergies of each atom are given by the well-
known Bohr relation, E,;, = ~Ryi2, where Ry = —13.6 €V is the Rydberg energy. We will examine the
population ratio of the first two levels. Given that

N,.ePFi
N; = % (3.12)
this ratio will be o
N2 e Pt2 _
N, = o eP(E1=F2), (3.13)

At room temperature (T = 300 K), this ratio yields e%*> ~ 4.7 - 107172, It is thus evident that, in
thermal equilibrium, the population of the next level is overwhelmingly smaller than the population of
the previous level.
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3.5 Comparison between Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Previously, in Sec. 3.2, we derived the Planck’s law via the emission and absorption processes, assuming
that the populations of the electroniclevels obey the Maxwell-Boltzmann statistics. It would be reasonable
to wonder why this distribution was used instead of the Fermi-Dirac distribution, given that electrons
are fermions. Well, this happened because in 1916-1917, when Einstein formulated his theory on the
interaction processes between EM radiation and a two-level system, the Fermi-Dirac distribution was not
known, it was only introduced in 1926. Additionally, as we will see below, at large temperatures or at low
concentrations, the Fermi-Dirac distribution converges to the Maxwell-Boltzmann distribution. Let us
compare with somehow higher detail [8] the Maxwell-Boltzmann [9, 14, 15, 16, 17, 18, 19, 20, 21, 10,

, 12, 13], Fermi-Dirac [22, 23, 24] and Bose-Einstein [25, 26, 27] distributions, which are obeyed by
classical particles, fermions and bosons, respectively.

In what follows, we denote the average number of particles at state 7, with energy E;, by 71;, while, we
denote the total number of particles by N. We assume that #i >> N, in other words, the number of
energy levels is much greater than the total number of particles. Moreover, u is the chemical potential,

while B = U,T.

« The Maxwell-Boltzmann (MB) statistics describes classical particles for which we consider no quan-
tized energy levels, such as the building blocks of the classical ideal gas. It has the form

1

We notice that  is determined by the relation

Y7 =N. (3.15)

Thus,

Y e Plieft = N = oft = (3.16)
i

N
Z e_ﬁEz‘ )
i

Hence,

Ne‘ﬁEi

i

1 (3.17)

+ The Fermi-Dirac (FD) statistics describes quantum particles which obey the Pauli exclusion prin-

ciple that a quantum state cannot be occupied by more than one particle. These particles are called
fermions and their spin is a half-integer (half-natural) multiple (%4, 3k, 55, ...) of the quantity 7.
Such particles are, e.g., electrons, protons, and neutrons. For the FD statistics, it holds that

1

n,=—=———. 3.18
! eﬁ(Ei_H) +1 ( )

« The Bose-Einstein (BE) statistics describes quantum particles with the property that a quantum

state can be occupied by any number of particles. These particles are called bosons and their spin

is an integer (natural) multiple (0, 1,2, ...) of the quantity /1. Such particles are, e.g., photons, %He
atoms, and %He atomic nuclei. For the BE statistics, it holds that

1
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In FD and BE systems with a constant N, (1 is also determined by the requirement of Eq. 3.15. Overall,
we can concisely write

1

n; = FEB 1 (ED) and the relationship 211 fj = N | determines . (3.20)
-1 (BE)
or0) (MB)

The MB, FD and BE distributions are illustrated in Figure 3.7.

0
B(E; — 1)

Figure 3.7: Representation of the Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distributions.

The FD and BE distributions converge to the MB distribution in each of the following cases:

(a) The concentration of particles 1 is small compared to the quantum concentration

3

ng = (kaT)E, (3.21)

27th?

ie, when n < ng. For example, at room temperature (T = 300 K), and for protons, ng =
1000 nm™3, while for electrons, ng = 0.015 nm . Convergence in low concentrations occurs
since

Nverysmall = #n;<<1,Vi = PE >> 1 Vi,

(b) The temperatures are high enough, since then, the distribution covers energetically a broader range,
with smaller occupation probabilities. Hence, e#Fi"#) >> 1, V¥ i. Many levels with higher energy,
even with E; > 1, are partially occupied.

In both cases, since
ePEW >> 1, Vi, (322)
_ 1 1
M= BEW 1] PE
i.e,, both the FD and the BE distribution converge to the MB distribution.

(3.23)
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CHAPTER 4

CONTINUOUS AND DISCRETE SPECTRUM

In this Chapter:

We deal with continuous and discrete energy spectrum. The discrete energy spectrum refers, crudely, to
atoms, molecules, quantum dots (which are, in a way, artificial atoms and molecules), color centers etc.,
the discrete-continuous spectrum refers to quantum wires and wells, and finally, the continuous spectrum
refers to solids. We focus on color centers and use a simplistic three-dimensional infinite quantum well
model to describe them, hence, we present a complete solution of the infinite quantum well. We refer to
quantum dots and use, exempli gratia, a simple three-dimensional finite square quantum well to describe
them, hence, we present a complete solution of the finite square quantum well. Moreover, we describe
the transition from single-level systems to one two-level or three level or four-level system, with three
gradual variations of the tight-binding method. The discrete-continuous energy spectrum refers to cases
with free motion in 2 (or 1) dimensions and bound states in 1 (or 2) dimensions, i.e., quantum wells (or
quantum wires): From the free motion we have continuous energy spectrum with subbands, while, from
the bound states we have levels. We utilize the Slater theorem, the Envelope Function Approach and the
Effective Mass Approximation.

Prerequisite knowledge: Basic knowledge of Quantum Physics and Mathematics.

4.1 Continuous spectrum: solids. Discrete spectrum: atoms and molecules, color centers, artifi-
cial atoms and molecules.

Atoms and molecules have discrete energy spectrum. In other words, there exist some allowed energy
levels, separated by energy gaps, where the presence of electrons is forbidden. On the other hand, solids
have continuous energy spectrum, composed of allowed bands, separated by energy gaps inside which the
presence of electrons is forbidden. These are depicted simplistically in Figure 4.1. In a discrete, e.g. molec-
ular, system, the highest occupied level is called HOMO (highest occupied molecular orbital), while the
lowest empty level is called LUMO (lowest unoccupied molecular orbital). In a continuous system, e.g. a
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solid, the respective quantities are the top of the valence band, Ey;, and the bottom of the conduction
band, E. The difference E¢ — Ey := E, defines the fundamental band gap. Materials for which E, = 0
are metals. For relatively small values of E, we have semiconductors, while for large values of E, we have
insulators.

Atoms, Molecules, Color Centers, Solids
Artificial Atoms and Molecules (continuous spectrum, bands)
(discrete spectrum, levels)
empty
empty
Conduction
empty
band
. LUMO g 2
an -
= 5] E
g Eg g g
=] & £
H O0—o0O HOMO Valence v ied
band occupie
0—0 occupied
o0—&
o—o0 occupied
O—0

Figure 4.1: Simplistic representation of the energy structure. Left: Discrete spectrum. Right: Continuous
spectrum.

We could assume that an approximation of a two-level system (2LS) could be a simple atom (and what
is simpler than the hydrogen atom) for which we restrict ourselves to the lowest two levels. However, there
are also cases where there may exist a discrete energy spectrum inside a solid. This happens when there are
perturbations in the order of the solid (in periodicity, when a periodic crystal is concerned) either due to
impurities, defects, etc, or by construction, for example in heterostructures. [Heterostructures are struc-
tures made up of different materials, so that there is partial order (or when periodic crystals are concerned,
partial periodicity). Such changes in order or periodicity are commonly of the order of, very roughly, 1
nm - 1000 nm.]. Color centers are characteristic examples of the former category, while quantum dots,
which are also commonly called nanoparticles, since these are particles of the order of some nanometers,
are examples of the latter category. Therefore, we could assume, as an approximation of a 2LS, a color
center or a quantum dot for which we restrict ourselves to the lowest two energy levels.

In Section 4.2 we discuss color centers, in a somewhat simplistic manner. In this discussion, it is useful
to know the full solution of the infinite square well; this is done in § 4.2.1. Similarly, in Section 4.3 we
discuss quantum dots. In this discussion, it is useful to know the full solution of the finite square well; this
isdonein § 4.3.1.

4.2 Color centers.

An ideal crystal extends to infinity. [Here, when we refer to crystals, we mean periodic crystals. There
are also quasicrystals etc.] As known, just as solid = lattice + motif, crystal = crystal lattice + motif. The
crystal lattice, i.e., a collection of mathematical points with spatial periodicity, is created by an integer
linear combination of the primitive lattice vectors. The crystal is created by placing the motif (a collection
of atoms, molecules, ions with well-defined orientation) at each crystal lattice point. A monocrystal is the
simplest approximation of an ideal crystal. It differs from the latter in that periodicity is terminated on
the crystal surfaces. However, even in such a crystal, there are deviations from periodicity. Each deviation
from the perfect crystalline structure is a defect. Some common defects include impurities, vacancies,
interstitial atoms, etc. In the case of impurities, the crystal within which these occur is called the host
crystal. The properties of the material depend on both the host crystal and the defects.
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Here, we will focus on a type of defect called color center of F-center (from the German word Farbe =
color), which is a light-absorbing defect. These defects have taken their name from the characteristic color
they give to alkaline halide crystals. Every defect in the crystal structure related to a “trapped” electron
can be characterized as a color center if it absorbs approximately in the visible region of the EM spectrum.
Color centers can easily be formed inside ionic crystals of alkaline halides (e.g. KCl) using ionizing radi-
ation, such as X-rays (e.g. from a powder diffractometer or a synchrotron; a Tesla coil can be also used).
A powerful source of y-rays, such as ®°*Co, could also be an appropriate ionizing radiation source. Ioniz-
ing radiation can release an electron from a halide anion (e.g. CI”). The now “free” electron can wander
inside the crystal until it is finally trapped in a position of a missing halide anion, i.e., in an anion vacancy.
In a KCl crystal, a vacancy has 6 K* cations as is first neighbors [Figure 4.2(left)]. In a rather simplistic

6
approximation, the potential energy at a color center is & — 1 < 0, where r = a/2 is the neighboring

meeqr
anion-cation distance, 4 is the lattice constant or lattice parameter, and ¢ is the dielectric constant. A
simple model that can describe the situation is a particle in a 3D potential well, since there is trapping in
three dimensions. A 2D representation of a color center in a KCl crystal is shown in Figure 4.2(right).

Apart from electron centers, hole centers, impurity centers, etc, can also occur.

EERER@E®
@@@®@®@

@@@@@@@
@)

center : e

Figure 4.2: (Left) A potassium chloride crystal (KCI). Its structure can be described by a face-centered
cubic (fcc) lattice with a diatomic basis (a cation-anion pair). For example, we place (i) a cation exactly
on alattice point and (i7) an anion on a point at a distance (#/2)(X + i + 2), where a is the lattice constant.
For example, on the lattice point at the origin [(0, 0, 0)] there is a cation and the corresponding anion is
placed at the center of the conventional cubic cell. For example, any occurrent vacancy of chloride anion
has 6 potassium cations as its first neighbors. (Right) A two-dimensional representation of a color center
with a trapped electron in a CI™ vacancy. An electron has left a CI™ anion, e.g., due to irradiation. The
distribution of the electron’s wavefunction is determined by the shape of the 3D quantum well created
inside the vacancy.

The color depends on the size of the vacancy, i.e., finally, on the type of the missing halogen atom, since
the narrower the quantum well, the more separated become the allowed energy states inside it, while, the
wider the quantum well, the more they approach each other. In a very rough approximation of the color
center, let us remember the infinite quantum well. In a 1D —along the x-axis— infinite potential energy well
of width L, with potential energy

u(x):{o, O<x<lL (4.1)

0o, elsewhere
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the discrete energy spectrum is
H2m?n?
E,=——,
" 2ml2

wheren =1, 2,3, ... and m is the particle mass (in our case, the particle is an electron). Since the electron

(4.2)

does not move in free space but inside a crystal, the mass 71 should be replaced by the so-called effective
mass 171", The effective mass is a useful approximation relative to the dispersion relation of electrons inside
a crystal, e.g,, close to the bottom of its conduction band. Schematically,

1i%k?

E(k) = ——  (free electrons) (4.3)
2m
1i%k?

E(k) = T (electrons in a crystal ) (4.4)

where k is the wavenumber. This approximation is based on the fact that, for small k (e.g,, close to the
bottom of the conduction band, where there is a minimum), the dispersion relation of electrons inside
the crystal can be approximated by the parabolic form of the dispersion relation of free electrons, since

am:am+pmw+5%m§+m. (4.5)
=

Thus, choosing the origin such that E(0) = 0 and ignoring higher-order terms,

E” 12 fi?
E(k) = 2(0)k2 = o K= m = E70) (4.6)
Hence, returning to our square well, we have
n= % (4.7)
Thus, the distance between consecutive energy levels is
27_(2
E,.i1-E,= W(Zn +1) n=1,273,.. (4.8)

i.e. inversely proportional to the square of the width of the well.
Let us now remember that the wavefunction for the energy level 11 is

\/E_ nmx 0 L
U, (x) = ZS‘“(T)' Sxs (4.9)

0, elsewhere

thus, the respective probability density to find the particle positioned at x is

2 gin? (nnx) O<x<L
—_— — , x

Px)=4L"" \'L (4.10)
0, elsewhere

In color centers, the coloring is due to photon absorption by the trapped electron and the consequent
excitation of the latter from the ground state to an excited state. The energy difference between these
states is given by Eq. 4.8. Hence, using this simple 1D model, we predict that an increase (decrease) in
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Figure 4.3: Eigenfunctions, eigenerergies, and energy dispersion (k, = nm/L,n = 1,2,3,..) of the
particle in the simplistic model of the infinite well. In the panel depicting the energy dispersion, the con-
tinuous gray line represents a particle moving freely inside the crystal.

L leads to absorption of photons with smaller (larger) energy. In other words, the spectrum is shifted
towards red (blue). This is called redshift(blueshift).

The problem is somewhat more complex in 3D. However, an increase in the lattice constant a increases
the space around the vacancy, where the color center is created. If we assume, reasonably, that L o 4, then,
as evident from the above equations, the absorption spectrum is shifted towards lower energies, that is,
larger wavelengths. For example, since dy,c; < dgc) < gy, their absorption spectra are ordered in the
manner depicted in Figure 4.4(left). The dependence of the absorption peak on the lattice constant, 4, in
alkaline halide crystals is presented in Figure 4.4(right).
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Figure 4.4: (Left) Color-center absorption spectra obtained on air, in 298 X, at the UV-visible, by NaCl,
KCl, and KBr crystals radiated using a Tesla coil. [ 1 ]. The color depends on the size of the space left by the
defect, i.e., by the lattice parameter or lattice constant, 4. The peak of the absorption spectrum is shifted
this way because ay,c; < dgxcl < kg, (Right) Dependence of the absorption peak on 4 in alkaline
halide crystals [ 1]. The increase in 4 creates larger vacancies when an ion is missing; thus there is a wider
potential energy well. This leads to a decrease in the energy distance between the ground and first excited
level, hence the energy (wavelength) of the photon that corresponds to this transition is smaller (larger).

Several theoretical models have been proposed to explain the optical properties of color centers [2].
All of them consider that, in the region of the vacancy, the potential energy is represented by a 3D well
responsible for the electron binding, which in turn leads to a change in optical properties, e.g., in absorp-
tion or emission. Below, we will describe a simplistic 3D infinite well model. We assume that the color
center of an alkaline halide crystal is a 3D infinite potential energy well along the x, i/, z axes, respectively,
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U, (x), Uy (y), Us(z), such that
U®@) = Uy (x) + Up(y) + Us(2), (4.11)

where all U; are infinite wells. We further assume that the width of the well in each axis, L;, should be or the
order of the lattice constant a. Let us investigate the energy of the photons corresponding to a transition
from the ground level to the 1st excited level, for example, in LiF and NaCl crystals. Due to the form of
the potential energy, the variables can be fully separated and the energy spectrum of such an infinite well

1S
mrln?  WPrnd  W2rtnd
Eningns = > *L21 +3 *LZZ 5 *L23' (4.12)
MLy myLy maLz

If we also assume that L, = L, = L, = Land m} = my = mj3 = m”, then

hznz
Enynpny = 2 (nF + 15 + 13). (4.13)

Thus, the ground level (GL, n; = 1, = 13 = 1) and the 1st excited level (1stEL, one of 1; is equal to 2
and the two rest are equal to 1) have, respectively, eigenenergy

3 31272

G o2
3 6h272
1stEL — W

(4.14)

Hence, the photon energy which is, e.g., absorbed in order for the electron to jump from GL to 1stEL is

3?2
= . (4.15)
a
If we now suppose that L = >
61212
hy = e (416)

In NaCl, where a = 0.565 nm, m* = 1.13 m,, the energy is hv = 12.498 eV. If we used L = a, we would
find

3h2
hy = ——, 4.17
YT o (417)
thus v = 3.1245 eV. The experimental value for the absorption peak of NaCl is hv,, = 2.7 €V. This

means that the deviation of our simple model’s prediction from the experimental value is = 16%, not
very far. This 2.7 eV corresponds to A = 460 nm, i.e., to the blue. It is obvious that all these are very
approximative. However, apart from numerical factors, it occurs that

1
h o« — (4.18)

a?’
hence /v decreases when 4 increases. This is a qualitative explanation of Figure 4.4. For LiF, the effective
mass can be assumed, in a fair approximation (Equation 2.72 of Reference [2]), m* = 1.5 m,. Thus, from
Eq.4.17, for LiF it holds that hv = 4.62 €V, a value deviating from the experimental value by just 12%. On
the other hand, of course, the value of the effective mass can be rather different; for example, according to
Reference [3], for LiF it holds that m" = m,.Itis of no use to try to fit our simplistic theoretical approach
exactly to the experiment by playing with the value of the effective mass. We will restrict ourselves to
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noting that something that simple can come so close to experimental results, and can actually predict the
approximate a2 dependence. This model, which was employed here as an effortless guess, has actually
been used in roughly the same form to study color centers [ 2], giving satisfactory results. Specifically, the
formula

0.97

v 4.19
(@ in nm)L772 € (4.19)

hv =

can be used to fit all the experimental data for alkaline halides [2] (see Figure 4.4).

A careful eye might have noticed that, even though we refer to transitions between discrete levels the
spectra of Figure 4.4 are not delta functions; on the contrary, they have a rather large width. The rea-
son for this is that, up to now, we have taken into account only the discrete levels stemming from spatial
localization. Generally, we distinguish two types of broadening: homogeneous broadening and inho-
mogeneous broadening. If the physical cause of broadening is the same for every absorber or emitter
(here, for every 2LS) then it is called homogeneous. An example of homogeneous broadening is the one
related to the lifetime of the energy level (lifetime broadening). In particular, the lifetime, 7, of an excited
level, corresponding to Spontaneous Emission to a lower level, is related to the uncertainty in the energy
of the excited level, AE, i.e., T AE o« h. [We remind the reader of the definition of lifetime, for Spon-
taneous Emission from level 2 to level 1, according to the relation 3.2, AWeh = Aypdt = 1 = Ay,
for a dilute gas of identical atoms. ] A small lifetime means large uncertainty in energy, hence broad emis-
sion. This type of broadening leads to a Lorentzian profile of the spectrum. Usually, in condensed matter
physics, we have a large set of absorbers or emitters and the fluctuation AE is different for each absorber or
emitter. The reason is that in a large system, such as a crystal, the environment of each absorber or emitter
is rarely identical, due to the random presence of impurities, defects, etc. In other words, the quantum
wells are not exactly the same (Figure 4.5, left). Inhomogeneous broadening commonly leads to a Gaus-
sian profile. It should also be noted that broadening can be attributed to several causes, hence its shape
is varying. There are additional causes that shape the energy spectrum, such as the vibrational degrees
of freedom (Figure 4.5, right). Therefore, the spectra, mirroring this situation, will be broad. Moreover,
all these are found inside a solid, hence the whole background of the latter will be also present. In prac-
tice (cf. upper Fig. 4.6), by absorbing a photon, an electron can be transferred, e.g., from the ground level
to a higher level than the first excited level (let’s say to a higher vibrational level), then relax at the first
excited level by emitting one or more phonons (quanta of lattice vibrations), and finally fall back to the
ground level by emitting a photon, this time, with energy smaller than the one of the initially absorbed
photon by the energy of the phonon(s). The wavelength or frequency of energy difference between the
position of the absorption and emission peak is called Stokes shift (Figure 4.6). If the emitted photon
has a larger energy, this energy difference is called anti-Stokes shift. These differences are mostly due to
lattice vibrations (phonons) [4].

vibrational
degrees of spatial
freedom confinement

==l ===

Figure 4.5: Left: In a large system as e.g. in a crystal, the environment of each absorber or emitter is rarely
identical, in other words, the quantum wells are not exactly the same. Right: Vibrational and spatial levels.

The spectra, mirroring this situation, will be broad.
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Figure 4.6: Upper: Explanation of the Stokes shift between absorption and emission. Lower: Stokes shifts
of color centers in KCl, KBr and KI; figure adapted from Reference [ 5]. In accordance with Reference [6],
the Stokes shift in KClis = 1.1 V.

4.2.1 Full solution to the infinite square well.

We will try to give a a detailed solution of the infinite square quantum well. Let us think of the infinite
square quantum well of potential energy shown in Figure 4.7. The one-dimensional —along the x-axis—
infinite quantum well, of width L, is symmetrically extended from —L/2 to L/2. We distinguish the spatial
regions I (left), IT (medium) and III (right). Its potential energy is

00, x <-L/2 regionl
U(x) =30, -L/2< x< L/2 regionll (4.20)
00, x> L/2 regionIIl

The particle cannot be found in regions I and III, because there the potential energy is infinite, hence,



QUANTUM OPTICS 71

O Ulx) O
(-L/2,0) 0,00 (L/2,0) x
Left Middle Right
spatial region (1) spatial region (Il) spatial region (I11)

Figure 4.7: Schematic representation of an infinite square quantum well of potential energy.

its wavefunction will be 1(x) = 0. In region II, the time-independent Schrédinger equation is

H2
() = () (421)
Let us try solutions of the form
U(x) = Ae*™ + Be7**, k> 0. (4.22)

However, for k = 0, we obtain 1)(x) = A + B. Due to the demand that the wavefunction is continuous
at the points x = —L/2 and x = L/2, since Y(-L/2) = 0 = ¢(L/2), it follows that A + B = 0, therefore
Y (x) = 0 everywhere, i.e., the particle is found nowhere. Therefore, we will assume below that k > 0.

Hence, ' .
P(x) = Ae*® 4 Bekx k> Q. (4.23)
Therefore, from Egs. (4.21) and (4.23), it follows that
2
—2—[Aikikeikx + B(—ik)(=ik)e ] = E[Ae™* + Be7*], (4.24)
m
/) CE 12k? , , ,
5 [Ae™] + o [Be™**] = EAe’™ + EBe™**, (4.25)
%k? , 1%k? ,
— —E|Aeé®™ + | — —E[Be ™ = 0. (4.26)
2m 2m
Consequently, since this holds Y x, we obtain
1i%k?
E=—. (4.27)
2m
Let us now use the boundary conditions.
‘ ) A .
Y(=L/2) =0 = Ae */2 + Bell2 = 0 = -5 = ekl (4.28)
. ) A .
U(L/2) = 0= Aekt2 4+ B2 = 0 = -5 = —elkL., (4.29)

Consequently,
okl — _pikL —y p2kL _ | — pi2mn e o (4.30)
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Hence,

Moreover, due to Eq. (4.27), it follows that

. hzTCZ 2
" 2ml2
Now, due to Eq. (4.32) and because of
A .
I €ZkL,
B
A .
It _esz’
B
we are led to A
_ einn — e—inn_
B
Then, however,
A
3 = -1, ifn even,
A
3 =41, ifn odd.
Well, therefore,
innx _imnx Tinx
Py(x)=Ae L +Ae L =2A cos (—), if n odd,

fnnx _imnx nx
Y,(x)=Ae L —Ae L =2Ai sin (RT), if n even.

Let us now proceed to normalization

L/2 nx
4| AJ? cos? (NT) dx =1, if n odd,
)
/2
fL 4| AP sin? (nTnx) dx =1, if  even.
Y

However, it holds that
77/2 e
f cos(mz) cos(€z)dz = =0,,¢,
—n)2 2

77/2 e
f sin(mz) sin(£2)dz = 6,.
o 2

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)



Hence, with a change of variable, z = %x , the following must hold
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1
AP =—. 4.45
AR = o (445)
We can, therefore, choose,
A 1 if 7 odd (4.46)
= —, if n odd, .
V2L
—i
A=—, if n even. (4.47)
V2L
After all this manipulation, we obtain
2 TInx
P, (x) = 4/ = cos (—) if n odd (4.48)
L L
2 TInx
Yu(x) = \/;sin (T) if n even (4.49)

The first four eigenfunctions of an infinite square quantum well are shown in Figure 4.8.

Infinite Quantum Well eigenfunctions

1.5 - + - + +
-L/2 0

L/2

Figure 4.8: The first four eigenfunctions, 1,,(x), of an infinite square quantum well. The number of nodes

isn—1.

Whereas, if we assumed the well in the region x € [0, L], the boundary conditions would be

0=¢0)=A+B=B=-A, (4.50)
0 = (L) = Ael — AeikL, (4.51)
Hence,
2L =1 = 21 = | = T[Tn,n e (4.52)
Therefore,
Uux) = Ae T —Ae T =2Ai sin (%) (4.53)
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However, similarly, it holds that

Tt

7T
f cos(mz) cos(€z)dz = E(Smg, (4.54)
0 N -
f sin(nz)sin(€2)dz = . (4.55)
0
Normalizing again, the following must hold
Lo o (TMX
f 41AP sin (T)dx -1, (4.56)
0

According to the above, with a change of variable, z = % , the following must hold

1
Al = —. 57
|Al oL (4.57)

We can, therefore, choose,

A= (4.58)

i
V2L’

Py(x) = \/%sin (nTnx) (4.59)

In other words, we obtain Eq. (4.9). We notice that moving the variable by /2 and using trigonometric
identities, we can, naturally, be transferred from Eq. (4.59) to Egs. (4.48)-(4.49) and vice versa. We note
that for y # 0, AU = av & A(uv) = a(uv), and specifically, naturally it holds for i + 1.

Hence,

4.3 Quantum Dots.

A typical, square, finite quantum well formed by a semiconductor heterostructure is presented in Fig-
ure 4.9 where we can see the well width L, the bottom of the conduction band E, the top of the valence
band Ey;, the conduction band offset AE, and the valence band offset AEy;. Depending on the materi-
als that constitute the heterostructure, the quantum well has commonly AE: and AEy; of the order of
0.01-10 eV and L is commonly in the range 0.1-100 nm.

Quantum confinement can occur in one dimension (1D), for which we use the expression quantum
well, in two dimensions (2D), for which we use the expression quantum wire, or in three dimensions
(3D), for which we use the expression quantum dot. See also Figure 4.10, where, in the case of quantum
dots, the profile of the density of states (DOS) becomes discrete. Quantum dots are also referred to as
artificial atoms, when they are single, or artificial molecules, when they are coupled.

In a square, finite 1D quantum well, there is at least one bound state [ 7]. In Figure 4.9 we have assumed
that the well of the conduction band has two levels, while the well of the valence band has one. A quantum

well of width L contains [7]
2m*U,L2
n=1+Int W

bound energy states or “levels”. Int(&) is the integer part of &, U, is the discontinuity of the conduction
or valence band (AE or AEy, respectively) between the two materials, and 7" is the electron or hole

(4.60)

effective mass. Hence, in a quantum dot we can choose as a two-level system one level of the conduction
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AlAs GaAs AlAs

Ec

Figure 4.9: A square, finite quantum well, e.g. in an AlAs/GaAs/AlAs heterostructure. The well width L,
the bottom of the conduction band E, the top of the valence band Ey;, the conduction band offset AE,
and the valence band offset AEy;, are shown. The wells have been drawn, schematically, as square; in fact,
their shape depends on several factors, factors beyond the scope of this book.

3D Bulk (quasi) 2D quantum well (quasi) 1D quantum wire (quasi) 0D quantum dot

— — <

density of states (DOS)

DOs
DOs

Energy Energy Energy Energy

Figure 4.10: Quantum confinement in 0D, 1D, 2D and 3D (top) and the respective densities of states
(bottom).

band and one level of the valence band, two levels of the conduction band, or two levels of the valence
band. In the two latter cases there is, of course, the restriction of Eq. 4.60; i.e., there might be only one level
in the valence or conduction band. In the following, we will prove Eq. 4.60 by fully solving the problem
of the finite square well.

4.3.1 Full solution to the finite square well.

We will try to give a detailed solution of the finite square quantum well [ 8]. Let us assume the finite square
quantum well of Figure 4.11.
H Let us examine the regions with E < 0 [regions (m) and (1) ], where bound states may exist.

« Spatial regions I and III. In these regions, the time-independent Schrédinger equation is

12 2mE
——W"(x) = E¥(x) & V" (x)+ —Y(x)=0. (4.61)
2m 2
Since E < 0, we can assume that 2’;—5 dof —q2 ; also, let g > 0. Hence, the above equation takes the

form

W’ (x) - ¢?W(x) = 0. (4.62)
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U(x)

Upper
energy region (u)
(-L/2, 0) (L/2, 0)
(0,0) x
Middle
energy region (m)
©, -U,) Lower
energy region (l)
Left Middle Right
spatial region (1) spatial region (I1) spatial region (Ill)
e.g. AlLGa, As e.g. GaAs e.g. Al,Ga, As

Figure 4.11: Schematic representation of a finite square quantum well of potential energy.

Let us now try solutions of the form
W(x) = Ae™™ + Be™ =
W'(x) = —Age™™ + Bge™ =
W (x) = Ag?e™™ + Bg®e®,

(4.63)
(4.64)
(4.65)

which, as it can be easily verified, satisfy the Schrodinger equation. Additionally, since W(x) must

be square-integrable, it should hold that
lim \Il(x) =0= \IIIH(X) = Ae_qx

X—00
lim W(x) = 0= W;(x) = Be™.
X——00
Consequently,
Wi(x) = Bet*

‘ Wi(x) = Ae™®

« Spatial region II. There are two cases.

- Energy region l. In this region, the time-independent Schrédinger equation is

2

2m(E+Uy

Since E < —U, < E + U, < 0, we can assume that =

Hence, the above equation takes the form
W (x) - Q*W(x) = 0.
We try solutions of the form
W(x) = Te™ + A =
W'(x) = -TQe ¥ + AQe?* =
W7 (x) = TQ% ¥ + AQ%eY,

which, as it can be easily verified, satisfy the Schrodinger equation. Thus,

Wi (x) = Tem Q¥ + Aex

- U = By e Wi + 2R E + U)W = 0.
2m f2

(4.66)

(4.67)

(4.68)
(4.69)

(4.70)

) gt —Q?; also, let Q > 0.

(4.71)

(4.72)
(4.73)
(4.74)

(4.75)
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- Energy region m. In this region, the time-independent Schrodinger equation is

2

- U = By e W)+ 2 E S U)W = 0. (476)
2m 2

2m(E+Up) def

Since0 > E > -U, < E + U, > 0, we can assume that k2; also, let k > 0.

h2
Hence, the above equation takes the form
W (x) + k*>W(x) = 0. (4.77)
We try solutions of the form
W(x) = Tek + Ae ™ = (4.78)
W' (x) = ikTe?™ — ikAe ™ = (4.79)
W7 (x) = —k?Tekx — k2 Ae~kx, (4.80)
or of the form
W(x) = I cos(kx) + Asin(kx) = (4.81)
W’ (x) = -Tksin(kx) + Ak cos(kx) = (4.82)
W (x) = kT cos(kx) — k2A sin(kx), (4.83)
which, as it can be easily verified, both satisfy the Schrodinger equation. Thus, we can choose
either
Wi (x) = Telk™ + Ae~ikx (4.84)
or
| Wy(x) =T cos(kx) + Asin(kx) | (4.85)

To sum up, in spatial region II there are two different solutions: Eq. 4.84 or Eq. 4.85 for energy
region m, and Eq. 4.75 for energy region L.

© To find the full solution, we must, as we know, equate the wave functions and their first derivatives

L
at the borders of the spatial regions, i.e., for x = + 5

© Let us try to equate the solutions of Egs. 4.68, 4.69, and 4.75, i.e., in energy region |, for x = i%.
L
*+ Forx = —5,wehave
L gt
¥ (‘E) =Be'™2 b ob ok
| . L= Be 2 =Te~2 + Ae 2 (4.86)
W, (—5) —Te% 1+ Ae %
and
’ L qé
¥ (‘E) = Bge 2 L ot ot
. L= Bge "2 = -TQe~2 + AQe <2 (4.87)
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Dividing the above relations by parts, it occurs that
L

L
—TQe%2 + AQe %2
q= T T =
Te¥z + Ae 92
L ok L ot
quQE + Age Q7 = TQe?7 + AQe %2 =
L

M(g+Qe% = AQ-q)e % =

L. 9,a (4.88)
A Q+ ‘1
L
* Forx = E,wehave
L L
\I]III(E) = Ae’2 L AL L
= Ae 2 =Te 92 + A2 (4.89)

L L

v, (%) =Te 92 + Ae%2
and

, (L gt
Yin (_) = -Age ™ e ok ot
) ol = —Age "2 = -TQe ~2 + AQe™~2 (4.90)
A (5) = T0e % + AQe%

Dividing the above relations by parts, it occurs that

L L
—TQe 92 + AQe?2

4= L L

Te 97 + Ae2

—ok ot
—qu 2 —Aqe =-T'Qe ~2 + AQe~2 =

oL

[(Q- ) = AQ+ e

L_Q+g eQL (4.91)

ATQ-q

Combining Egs. 4.88 and 4.91, we conclude that

0L = Eg i Z;z (4.92)

e

(Q+9)?
(Q-9)?

which is absurd, since for Q, g > 0, it holds that e~ 2QL < 1, while === > 1.In other words, there is no

solutions in the lower energy region 1.

L
© Let us now try to equate the solutions of Eqs. 4.68, 4.69, and 4.84, i.e. in energy region m, forx = + 5
* Forx = —%,we have
L 4L
P (_5) =Bz g% —ikE ik
= Be 2 =Te "2 + A2 (4.93)
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and
’ L —IJE
Wr(=3) = Bage 2 L ik L
¢ = Bge "2 =Tike ™2 - Aike"2

. L
Wi (~5) = Tike ™ - Aike'

Dividing the above relations by parts, it occurs that

. L .
Tike ™2 — Aike'*2
q= oL

=

r —ikk ikl o kk ik
ge "2 +Age 2 =Tike "2 — Aike™2 =

. L . L
AGik + ™2 = T(ik - g)e ™2 =

A ik _qe—ikL

I ik+gq

L
* Forx = E,wehave

L

L g%
Y (5) =de gE _ ks A ik
= Ae 12 =Te"2 + Ae™2

L . E . E
\IIH (E) == Felkz + Ae lk2

and
/ L — —fIE
Wi () = —Age ™2 L
L

. L .
Wi (5) = Tike™s - aike ™2

Dividing the above relations by parts, it occurs that

ikL —ikk
Tike" 2 — Aike ™2
—] = =
1 ik~ —iks
Te™2 +Ae 2

2 L . L . L . L
—Tge™2 — Age ™2 =Tike™2 - Aike ™2 =

. L . L
Ak — q)e™™2 = T(ik + q)¢"z =

A ik+qe

I ik-g

ikL

Combining Egs. 4.95 and 4.98, we conclude that

2L _ (ik — g)? _ —k? + ¢* — 2ikq
(ik +9)? -k + g% + 2ikg

At this point, it would be useful to introduce the dimensionless quantities

E=—| and q:%

4t L oikk o ik
= —Age "2 =Tike" 2 — Aike ™2

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)
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as well as the quantity

a? &2 42 (4.101)
Therefore,
12 2 2m
= —(k2 +q%) = P (E +Up) - =
) mu,,L2
o= (4.102)

Hence, v is constant, independent of E, and expresses the efficiency of the quantum well. It is proportional

to the mass m or the effective mass m” of the particle, the depth of the well U}, and the squared width of

the well L2. In other words, the quantity a® expresses the lack of freedom of the particle, since when its

mass or the depth of the well or the width of the well increase, the particle becomes more bound.
Additionally, if we define the quantity

B -2+ 1P (4.103)
Eq. 4.99 becomes
i _ ~&+ P -2ikn  BA-2iEn (8% - 2i&n)? _ Bt-4ignp® - 4%
&2 424280 PP +2iEn (B +2iEn)(B? - 2ikn) B+ 4&2n2
e (B + 4E202) = Bt — 4idnp? — 4E% . (4.104)
However, from the definitions of ,82 and a?, we have
B+ 4817 = &+t - 28212 + 4827 = (2 + )% = o (4.105)
and
Bt —4&P = B +4E%? - 887 = a* - 8% (4.106)

Thus, Eq. 4.104 becomes
atet = ot — 8&%n? — 4iEnp? =
at cos(48) + iat sin(48) = (at — 8&21?) + i(-4&np?) =
at cos(48) = a* — 88212 —4&np?
ot sin(48) = —4&np? } 48822’

which seems rather complex. However, it could be somewhat simplified if we notice that, by adding Eqs. 4.105
and 4.106, it occurs that

4 4 1_pa
22 = 2a* - 8827 = 2P = % = &n = —Wzﬁ

The condition a* — B* > 0 is true, since, performing the relevant substitutions, it is reduced to the con-
dition E + U}, > 0, which is true, given that we are in energy region m. Substituting the above relation to
Eq. 4.107, we conclude that the bound states in region m are given by the condition

4 _ p4p2
tan(de) = VP

at —2B4

= tan(4é) = (4.107)

(4.108)

(4.109)

Let us examine if we can derive alternative, simpler forms than the one of Eq.4.109, by equating this
time Eqs. 4.68, 4.69 and 4.85 (i.e., the alternative forms of the solutions in spatial region II) in energy
regionm, forx = + % We will exploit the fact that we know that since the potential energy of the system
is even, its eigenfunctions will be alternately even and odd.



« For even wavefunctions, [W(—x) = W(x)]:

— In spatial regions I and III we have
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- In spatial region II we have

Wi(x) = Wy(—x) = T cos(kx) + Asin(kx) = I cos(kx) — Asin(kx) = A =0 (4.111)

Hence, to sum up,

Wi (x) = Ae™
Wi (x) =T cos(kx)
Wi (x) = Ae™™

Yi(x) = Age™ (4.112)
Wi (x) = —Tksin(kx) (4.113)
Wi(x) = —Age ™. (4.114)

By demanding the continuity of W(x) and W'(x) at x = —% , it occurs that

L

Wi(—5) = Wy(-3) = A2 = r(%) (4.115)
L

\Pf(_g) = \yﬁ(—g) = Aqe_qi =Tk sin(%) (4.116)

Dividing the above equations by parts, we conclude that

or, alternatively,

tan(¢) =

I

kL\| q
tan(?) —E (4.117)

=

tan(&) = —‘0‘25_52 . (4.118)

L
It can be easily be shown that demanding the continuity of W(x) and W’ (x) at x = > leads to the
exact same expression.

« For odd wavefunctions, [W(—x) = —-W(x)]:

— In spatial regions I and III we have

—\Ill(x) = \I]HI(_x) = —Beqx - Aeqx = B = —A (4119)

— Spatial region II we have

W (x) = Wy(—x) = —T cos(kx)—Asin(kx) = T cos(kx)—Asin(kx) = T =0 (4.120)

Hence, to sum up,

Wi(x) = —Ae™
\IJH(X) = ASin(kX)
Win(x) = Ae™™

Wi(x) = —Aget™ (4.121)
Wi (x) = Ak cos(kx) (4.122)
\Ilin(x) = _Aqe_qx. (4.123)
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By demanding the continuity of W(x) and W’ (x) atx = —% , it occurs that

qL
W(—5) = Wy(-5) = -Ae 2 = -A sin(%), (4.124)
L L —% kL
\I/f(—E) = \I’{I(—E) = -Age 2 = Ak cos(?) (4.125)
Dividing the above equations by parts, we conclude that
k
tan(k—L) =—= (4.126)
2 q

or, alternatively,

tan(&) = —% = [tan({) = —\/%52 .

L
It can be easily be shown that demanding the continuity of W(x) and W’ (x) at x = > leads to the
exact same expression.

(4.127)

To wrap this up, using Egs. 4.68, 4.69 and 4.85, and imposing the boundary conditions (the continuity
of the wavefunction and its first derivative on the borders of the well), we conclude that in energy region
m there are bound states which are given by the pair of solutions

A2 — £2
tan(&) = a—é even and [tan(§) = —L odd (4.128)
< Va? - &2
We remind the reader thatk > 0 <= & > 0, while the function tan(&) is not defined for & =
(2¢ + 1)%, V£ € IN". Egs. 4.128 can be solved graphically. To this end, we define the function

2 — &2
f(é):aTé,

the field of definition of which is the interval (0, a], and for which f(a) = 0, limg_,g+ f(&) = +00, as
well as the function £

(© = ey,
8 VaZ- &
the field of definition of which is the interval [0, @), and for which g(0) = 0, lim;_,,- g(&) = —o0. The

graphical solution to Eq. 4.128 is presented in Figure 4.12, for several values of the parameter . From
Figure 4.12 we notice that

(4.129)

(4.130)

o fora € (0,7R) 3 1 intersection of tan(&) and f (&), and
7 any intersection of tan(&) and g(&)

o fora € [, T0) 3 1 intersection of tan(&) and f (&), and
3 1 intersection of tan(&) and g(&)

o for o € [71,37h) 3 2 intersections of tan(&) and f (&), and

3 1 intersection of tan(&) and g(&)

o for v € [374,27) 3 2 intersections of tan(&) and f (&), and
3 2 intersections of tan(&) and g(&)

o fora € [271,57h) 3 3 intersections of tan(&) and f (&), and
3 2 intersections of tan(&) and g(&)

® etc.
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) a€(0,3)
a€[5,m)
a € [m, 3T)

0 w2 3n/2 5n/2
3

Figure 4.12: Graphical solution of the equations tan(&) = f(&) (cf. Eq. 4.129, dashed lines) and tan(&) =
Q(&) (cf. Eq. 4.130, dotted lines), for several values of the parameter a, which expresses the efficiency of
the quantum well, within the intervals mentioned in the right side.

. . . . . n
Thus, there is always at least one solution, while every time the parameter o is increased by 5 onemore

solution is added. Hence, the number of solutions (bound states) is

mUbLZ
a \Vi
n:1+Int[ﬁ] =1+ Int| 22
2 2

(4.131)

) 2m U, L2
n=1+Int W

which is —~the now proven- Eq. 4.60.

4.4 From isolated one-level systems to a two-level, three-level, and four-level system.

We will now narrate in detail how a 2LS is obtained from two isolated 1LS, when the latter approach each
other. We follow the approach described in the textbook [9]. Relative to the Tight Binding method, the
readers can also consult the textbooks [ 10, 11, 12]. We will define all the relevant integrals: normalization,
on-site energies, potential energies of interaction of one 1LS with the other, overlap integrals, transfer or
interaction integrals. We will address and solve the problem at three different approximation levels. We will
also discuss the bonding and antibonding orbital of the 2LS, in terms of its eigenvalues and eigenvectors.
Finally, we will also discuss, in a similar manner, how a 3LS is formed by three isolated 1LS, and how a

4LS is formed by four isolated 1LS.
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4.4.1 Two-level system (2LS).

Let us report how a 2LS is formed by two 1LSs which get close to each other, within the tight-binding
approximation. Let us assume that the isolated 1LSs have eigenenergies €1 (the left one) and ey (the
right one). This holds as long as they are isolated. However, when they are brought closer to each other
and the unified system (i.e., the 2LS) is formed, the latter will have different eigenenergies; let us call them
E; and E;. This is narrated in a way in Figure 4.13.

distance €x E, — € —

Figure 4.13: From two one-level systems (1LSs), one on the left (L) and one on the right (R), which have
eigenenergies € and €y, respectively, and are placed at infinite distance, to the unified two-level system
(2LS), which has eigenenergies E1 and E,, different from €] and €p.

So, let the distance between the two isolated 1LSs be infinite. The Hamiltonian of the left (L) is HL =
T + Uy, where T is the kinetic term and U, is the potential energy term. If its eigenstate is |l//L> and its

eigenenergy is €, = <¢L| =8 |¢L>, then
HL |1)DL> = €L |I)DL> . (4.132)

The right (R) isolated system is at infinite distance from L, with Hamiltonian Hy =T+ Uy, eigenstate
|1,DR>, and eigenenergy €g = <¢R| Hy |¢R>. Thus,

Hy |¢R> = €R |¢R> . (4.133)

If we further suppose that the two 1LSs come closer to each other so that they become coupled, then
we will have a 2LS. Let us write the eigenstates of the 2LS as a linear combination of the eigenstates of the
two isolated 1LSs, i.e.,

|¢> =CL |1PL> +Cr |1PR>- (4.134)

The Hamiltonian of the 2LS will be

A=T+U + U (4.135)
Thus, if we substitute Eqs. (4.134) and (4.135) into
Hlyp) =E|p), (4.136)
we will obtain
(T+ Uy + Ur)le [o) + cr [9r)) = E(e [yr) + cr [¢r)). (4.137)

Multiplying Eq. (4.137) by <¢L| , we obtain

oo (Yu| T+ Uy + Ug [ + cx (Y| T+ Uy + Ug [r) = cL E@LIPLY + cREWLIpg).  (4.138)

We call on-site energy of the L 1LS the term

en = (Wa| T+ Uy [a), (4.139)
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while, the integral of the potential energy of the R 1LS at the L 1LS is

Urge 2= (Yo | Ug [yr)- (4.140)
We call transfer or interaction integral between L and R the term
ter = (Y| T+ Uy + Ug [Pr) - (4.141)
Finally, we cal overlap integral between L and R the term
Sir = (YLlR)- (4.142)
Given that the eigenfunctions are normalized,
WLlyr) = (Wrlr) = 1. (4.143)
Hence, Eq. (4.138) can be written as
‘cLeL +c Uppy + Crftr = L E + CRESLR‘ (4.144)

Given that the integral Uy is very small, if we ignore it, then Eq. (4.144) reaches the simpler form

‘cLeL + cptir = ¢ E + cRESLR‘ (4.145)

The assumption that Uy py is negligible is the essence of the method that is called Tight Binding. It means
that we can approximately ignore the potential energy of the other sites near to a particular site, hence,

| T+ Uy + U [pr) = @i | T+ Uy ) = e (4.146)
or written alternatively,
<¢L|H |¢L> ~ <¢L|HL |¢L> = €r. (4.147)

Additionally, given that the overlap integral Sy y is somewhat small, if we ignore it as well, then Eq. (4.145)
reaches the even simpler form

’CLeL + CRtLR = CLE ‘ (4148)

Similarly, multiplying Eq. (4.137), by <¢R|; we have
CL <’-/’R| T+U,+ Uy |¢L> +Cr <¢R| T+U,+ Uy |¢R> = e, E(UplY) + cRECYRlYR).  (4.149)

Defining the integrals in the same fashion, we have

er = (Ug| T + Ug [Yr), (4.150)
Upir = (¢r| UL [Yr), (4.151)
tee = (Yr| T + Uy + Ug |91, (4.152)
SRL = <¢R|¢L>' (4.153)
Hence, Eq. (4.149) is written as
‘CLtRL + CRER + CRURLR = CLESRL + CRE ‘ (4154)

If we ignore the integral Uy g, applying Tight Binding, then Eq. (4.154) reaches the simpler form

‘CLtRL + CRGR = CLESRL + CRE ‘ (4155)

while, if we also ignore the integral Sg;, then Eq. (4.155) reaches the even simpler form

‘thRL + crép = cgE ‘ (4.156)

Hence, in respect with the level of approximation chosen, we have to solve the system of Egs. (4.144) and
(4.154) or of Egs. (4.145) and (4.155) or of Egs. (4.148) and (4.156).
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4.4.1.1 First level of approximation.

If we do not ignore any of the integrals Uy gy, Urr and Syg, Sgi, then we have to solve the system of
Egs. (4.144) and (4.154). Since all integrals are real and due to hermiticity, we can define

t= tLR = tiR = tRL S L@, (4157)

S = SLR = SiR = SRL € Lg? (4158)

Moreover, let us suppose, for simplicity that

Thus, the system of equations can be written in matrix form as

e, +U t c| | E ES|[c.

[ t eR+U] [CR]_ [ES E ||en (4160)
or _

[ t-ES  en+U—E||cx| ™ |0] (4161)

The matrix eigenvalues occur by the roots of its determinant

(e, +U-E)eg+U-E)-(t-ES)>=0=
E? — (€ + g + 2U)E + (e, + U)(eg + U) — 12 — E2S? + 2StE = 0 =
(1 = S?)E? — (], + g +2U — 2SH)E + (e + U)(eg + U) — > = 0.

So, we arrive at a quadratic equation with respect to the energy E. Its discriminant is
A = (e + eg +2U - 2512 — 4(1 — S?)[(er, + U)(eg + U) - 12].

Hence, the eigenvalues are

(e, + € + 2U — 25t) + /(e + eg + 2U — 2512 — 4(1 — S2)[(ey, + U)(eg + U) — 2]

Eip=

2(1 - S?) '
(4.162)
If we suppose that the two 1LS are identical, then €, = € := € and the calculations are simpler.
Indeed, the matrix becomes
e+U-E t—ES ct| |0
t-ES  e+lU- E] |ch - [o] (4.163)
and, from the condition that the determinant becomes zero, we have
2 2
(e+U-E)y-(t-ES) =0=
(e+U-E+t-ES)e+U-E-t+ES)=0=
_ €+ U=+t (4.164)
1+8S '

Let us assume that € + U > 0, taking the reference level appropriately. Also, usually |¢| is small relative

to |€ + Ul. If we assume that t < O (attraction of the two 1LSs) and S > 0 (overlap integral of the

. . +U+t +U~t .
eigenfunctions of the two ground states of the two 1LSs), then E; = : s < E, = z 5 This can

be shown by the nodes of the eigenvectors, as we will realize immediately below. Accordiné to the node
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theorem the number of nodes (roots) increases by 1 as we move from the ground state (no nodes) to
higher states. Hence, the first excited state is the one which has one node. To calculate the eigenvectors,

we use the relations

e+ U-E), +(t—ES)cg =0
( o + (¢~ ES)er =01 (4.165)
(t—ES)cp+(e+U—-E)cg =0
For the eigenvector that corresponds to the eigenvalue E; = HTU: , if we replace the eigenvalue Eq in
Eq. (4.165), we have
U e+U+t s e+U+tS 0
€ -—c ——— S|y =
1+s J* 1+s 7" .
; e+LI+tS lesu e+U+t 0
- ——S|c + € ———— g =
1+S b 1+5 )%
e+U+eS+US-e-U-t N t+tS-eS-US-tS 0
C Cp =
1+S b 1+S R _
t+tS—eS-US-tS e+U+eS+US-€e-U-t
c + cg =0
1+5S 1+S
(eS+US—-t)ec, +(t—eS-US)cg =0
(t—-eS—-US)c, +(eS+US-t)eg =0
Thus,
€L, =Cg =C. (4.166)
Hence, the eigenvector that corresponds to the eigenvalue E; has the form
- c
01 = [Cl
For it to be normalized, it must hold that
B =1= 2 =1= || = 1/V2.
Thus, a convenient choice would be
3= —|! 4.167
01 = % 1| (4.167)

e+U-t
1-S

For the eigenvector that corresponds to the eigenvalue E, = , if we replace the eigenvalue E; in

Eq. (4.165), we have

(e+U—€+—u_t)cL+(t—€+—u_tS cg =0
1-S 1-S
=
(t—H—LHS)cL+(e+U—€+—u_t cg=0
1-S 1-S
e+U-eS-US-e-U+t t—tS5—eS—-US+1tS
( -3 )cL+( 1-3 cg=0
F—1S—eS—US +1S e+U—-eS—US—e—U+t =
( 1-3 )CL+( -3 cg=0

(t—eS—-US)c, +(t—eS—-US)cg =0
(t—-eS-US)c, + (t—eS—US)cg =0
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Thus,
CL = _CR =_C. (4168)

Hence, the eigenvector that corresponds to the eigenvalue E; has the form
—
2 —l

B2 =1= 2 =1= || = 1/V2.

For it to be normalized, it must hold that

Thus, a convenient choice would be

B = % l_ll] (4.169)

As we can see, the eigenvector U of the level E; has no nodes, while the eigenvector U, of the level

1+S
Ery =13 145 to

+U+t
E, has one node. Hence, the level E; = £ with eigenvector T is the ground level, while the level
+U~t +U+t +U~t
z with eigenvector U is the first excited level. For the condition E; = z <E,= z TS
hold, it must also hold that S > O and t < 0 and the numerators have to be positive. The wavefunctions of
the ground and first excited state of the unified quantum well (i.e., of the 2LS) are shown in Figure 4.14.

— € — _
L E,
PN /\ ground state wavefunction
—/ \/ Qe unified quantum well
overlap of the ground-state wavefunctions
of the formely isolated quantum wells

Figure 4.14: The wavefunctions of the ground and first excited state of the unified quantum well (i.e., of
the 2LS), which are produced by the normalized addition (as obtained by the eigenvector ;) and by
the normalized subtraction (as obtained by the eigenvector U,) of the ground state wavefunctions of the
previously isolated quantum wells (i.e., of the two 1LSs).

4.4.1.2 Second level of approximation.

If we ignore the integrals U g, = Ugr g = U, but we do not ignore the integrals S = Sg;, = S, then the
system of Equations to solve is the one of Egs. (4.145) and (4.155), which can be written in matrix form

as €L, t L, E ES L
[t eRllcR]:[ES EHch (4.170)

eg—E t—ESf|[c | |0
lt—ES eR—E“cR]_[O] (4171)

or
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The matrix eigenvalues occur by the roots of its determinant, i.e.,

(e, —E)eg —E) - (t—ES* =0 =
— (e, + €p)E + € eg — 12 —E2S? + 2StE = 0 =
(1-S?)E? — (e, + eg — 2SH)E + €1ex — 1> = 0.

So, we arrive at a quadratic equation with respect to the energy E. Its discriminant is
A = (€L + €R - 25t)2 - 4(1 - SZ)(GLGR - tz) (4172)

Hence, the eigenvalues are

(e1, + €x — 25t) + /(e + eg — 2512 — 4(1 — S2)(eeR — 12)
2(1 - $?) '

Ei, = (4.173)

If we suppose that the two 1LSs are identical, then € = € := € and the calculations are simpler.
Indeed, the system of equations in matrix form becomes

€e—E t-ES||c 0
lt—ES e—EHcR]:lO] (4.174)

and, from the condition that the determinant should be zero, we have

(€-EP?—(t-ES? =0 =
(e—E+t—-ES)(e—-E—-t+ES)=

p= S (4.175)
T 1+S '

Letusassume € > 0, taking taking the reference level appropriately. Also, usually |¢| is small relative to |€|. If

we assume that f < 0 (as attraction of the two 1LSs) and S > O (as overlap integral of the eigenfunctions

of the two 1LSs ground states), then E; = 16:2 < Ey = — ! This can be shown by the nodes of the

eigenvectors, as we will realize immediately below. Accordlng to the node theorem the number of nodes
(roots) increases by 1 as we move from the ground state (no nodes) to higher states. Hence, the first excited
state is the one which has one node. To calculate the eigenvectors, we use the relations

(€ —E)cy, + (t—ES)cg = O}

(t—ES)c;, + (e —E)cg =0 (4.176)

For the eigenvector that corresponds to the eigenvalue E; = % , if we replace the eigenvalue E; in
Eq. (4.176), we have

(e €+t) ( S)c =0
_ R =
it =
(1 frs8) e+ (- g =0
€E+eS—e—t t+1tS - eS—tS
( 1+8S )CL( 1+8S )CR:O
t+tS—-€eS—-1tS €e+eS—e—t =
( 1+s )CL*(T)CFO

(€S—1t)ep +(t—€S)cg =0
(t—€S)cy + (€S —t)cg = 0}
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Thus,
CL =Cgr=C. (4.177)

Hence, the eigenvector that corresponds to the eigenvalue Eq has the form
3 = c
1 cl

B =1=2c=1= | =1/V2

For it to be normalized, it must hold that

Thus, a convenient choice is

U1 = N H (4.178)

For the eigenvector that corresponds to the eigenvalue E, = = , if we replace the eigenvalue E; in
Eq. (4.176), we have

1-S

—t
(e_l—s)CL ( S)CR:O
=
€—t €—t
(-1 SS)CL+(€_ 1- )CR:O
€—€eS—e+t t—tS eS+t
T1-s5 )" ®=
=
t—tS—eS+tS N e—eS—€+t 0
c ——— | =
1-S - 1-S b
(t—€S)e, +(t—€S)cg =0
(t—€S)e, +(t—€S)cg =0
Thus,
L= —Cg =C. (4.179)
Hence, the eigenvector that corresponds to the eigenvalue E; has the form
N c
Uy = l_c] .
For it to be normalized, it must hold that
B2 =1= 2/ =1= || = 1/V2.
Thus, a convenient choice is
1N ]
Uy = — : (4.180)
Al
We observe that the eigenvector U; of the level with eigenenergy E; has no nodes, while the eigenvec-
tor U, of the level with eigenenergy E; has one node. Hence, the level with eigenenergy E; = % and

eigenvector T is the ground level, while the level with eigenenergy E, = -

1-S
+t —t
1€+_S <E;,= 1€TS to hold, the conditions S > 0 and f < 0 must

be obeyed and the numerators have to be positive.

and eigenvector T, is the

first excited level. For the condition E; =
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4.4.1.3 Third level of approximation.

If we ignore the integrals Uy gy, = Urpr = U as well as the integrals Sy g = Sg;, = S, then the system of
equations to solve is the one of Egs. (4.148) and (4.156), which can be written in matrix form as

|€tL g HCL] =E | (4.181)

€Rr [|Cr

€, —E t ¢ | _ [0
[ ; eR_E‘“CRd = _0] (4.182)

The matrix eigenvalues occur by the roots of its determinant, i.e.,

or

(€L—E)(€R—E)—t2:0:>
Ez—(€L+€R)E+€L€R—t2 :0

Hence, we arrive at a quadratic equation with respect to the energy E. Its discriminant is

Hence, the eigenvalues are

2
€ +€ i\/(e —€) + 412 € +e€ € —¢€ 2
Ei,=— = 2L R = L2 L (Lz R) + 12, (4.184)

If we define the half-sum and half-difference of the on-site energies as

€L + €
Y, =

€L —€Rr
, A= , 4.185
5 5 ( )

then the eigenvalues take the form

El,z = Z + VAZ + t2 (4186)

we observe that the two eigenvalues are separated by VA? + £2 from the half-sum, X, of the on-site ener-

gies. The gap between the two levelsis [E,—E{| = 2VA? + 2. Ifeach of the two 1LSs with on-site energies
€1, and e were fully occupied (with two electrons), then, when the 1LSs approach each other, their four

electrons will be placed so that they will first occupy the lower level with eigenenergy E; = Z— VA? + 12,

and then the upper level with eigenenergy E, = £ + VA? + 12 (cf. upper panel of Figure 4.15). If each of
the two 1LSs was half-occupied (with one electron), then, when the 1LSs approach each other, their two

electrons will be placed so that they will occupy the lower level, E; = . — VA? + #2, while the upper one
will remain empty (cf. medium panel of Figure 4.15). Finally, if the 1LSs were both empty, the situation
would be like the lower panel of Figure 4.15.

If we suppose that the two 1LSs are identical, then € = € := €. Therefore, 2 = € and A = 0.
Calculations are simpler. The eigenvalues take the simple form

Ei, =€ ¥t (4.187)
Then, the energy width of the system will be

E,—E; =21t (4.188)
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occupied 2LS E2 ' ' ER
NI Ii —o—o—
€ Ip=—===-
—o—o— ' i
E, ——@—
semi-occupied 2LS E2

€L, ° ZI__\_/A:—:t;I

empty 2LS E2 €
Jrie | :
€p )y I ——————
E,

Figure 4.15: Occupied, semi-occupied and empty two-level system.

To calculate the eigenvectors, we use the relations

(€-E)y +tcg =0 (4.189)
tcp, +(€—E)cg =0 (4.190)

For the eigenvector that corresponds to the eigenvalue E; = € — [£|, that is for the lower level, if we
replace the eigenvalue E; in Eq. (4.189), we obtain

CR=——C
tep + |teg = 0 R= 4

Hence, the eigenvector that corresponds to the eigenvalue E; has the form
5 1
Ur=c| |-
t

e +lerP =12 o2 =1/2 = |eg| = 1/V2.

For it to be normalized, it must hold that

Thus, a convenient choice would be

U1=—| H|=>7 = fort s 0. (4.191)
\2 -7 +1
In brief, the eigenvalue E; = € — || corresponds to the ground level of the system and since f < O there
are no nodes. This is reasonable, since the transfer integral f expresses the attraction between the two 1LSs
that form the 2LS.
For the eigenvector that corresponds to the eigenvalue E, = € + |f[, that is for the upper level, if we
replace the eigenvalue E, in Eq. (4.189), we obtain

_ltch + tCR = 0 |t|
Cp = —C
tep — e =0 R L
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Hence, the eigenvector that corresponds to the eigenvalue E; has the form
. 1
Uy =cp| |-
t

e+ lerP =12 o R =1/2 = [ey| = 1/V2.

For it to be normalized, it must hold that

Therefore, a convenient choice would be

T L r]:ﬁ lllf ts0 (4.192)

Uy = —= | IY U1 =|_4(fort s U. .
\/E n ¥l

In brief, the eigenvalue E, = € + |t| corresponds to the first excited level of the system and since t < 0

there is one node.

4.4.2 Three-level system (3LS).

Let us hypothesize we deal with a three-level system (3LS) composed of three 1LSs. Moving in a com-
pletely analogous manner as we did for the case of the 2LS in Subsection 4.4.1, if we ignore the integrals U
and S (third level of approximation) and assume that the three 1LSs are identical (so that we have equal
on-site energies €; = €, = €3 = € and hopping integrals ¢), then the system of equations to be solved is

e t Of|c 1
t € tl|lex|=El|c (4.193)
0 t € C3 C3

t e€e-E t ||| =]/0]. (4.194)
0 t  e€-E||c; 0

The matrix eigenvalues occur by the roots of its determinant

€-E)(e-E’-#]-t(e-E)=0=
(e-EP-2(-E)=0=
(E-e)(e-Ef-21=0=

E=€or E=e+ V2t (4.195)
Hence, for t < 0, the eigenvalues of the 3LS are
Ei=¢+ V2t, Ey=¢, Ez=¢- Vo2t. (4.196)
The energy width of the system is
E; — E; = 22/t ~ 2.83 |H. (4.197)
Substituting the eigenvalues Eq, E; and Ej to the system of equations

(€—E);+tc; =0
tc; + (€ - E)C2 +tc3 =0, (4198)
tco+(€e—-E)3=0
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we obtain the eigenvectors of the system.
For the eigenvalue Eq = € + \/Et, we have

—\/§C1+C2:O
Cl—\/§C2+C3:O = =03 =
Cz—\/EC:)):O

=c. (4.199)

G
V2
The normalization condition yields

el? + V2c + 12 =1 = dicP =1 = |c] =12,

Thus, the eigenvector that corresponds to the eigenvalue Ej is, e.g,,

1 1
7 = = |V2]. (4.200)
2
1
For the eigenvalue E; = €, we have
tCZ =0
tcy +tc3=0p = ¢, =0,¢; = —c3:=c. (4.201)
tCz =0

The normalization condition yields
P +0+]cf=1= 2/ =1= | =1/V2.
Thus, the eigenvector that corresponds to the eigenvalue E, is, e.g.,

1 1
Uy=—|0]. (4.202)

V2|4

For the eigenvalue E5 = € — \/Et, we have

\/§C1+C2:0

c
¢ +V20+c3=0 :>c1:c3:—\/—2§d=efc (4.203)
C2+\/§C3:0

The normalization condition yields
I + [V2eP + e =1 = 4l =1 = |c| = 1/2.

Thus, the eigenvector that corresponds to the eigenvalue Ej is, e.g,,

L1
U3 = 5 -2 (4.204)
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4.4.3 Four-level system (4LS).

Suppose a four-level system (4LS) composed of four 1LSs. In a completely analogous manner to what we
did in Subsection 4.4.1 for the 2LS, if we ignore the integrals U and S (third level of approximation) and
assume that the four 1LSs are identical (so that they have equal on-site energies€; = €, = €3 =€, = €

and hopping integrals t), then the system of equations to be solved is

e t 0 0][c [C1 ]
t e t Offc| _ £|c
0 t € tf|cs C3
0 0 t €]lca [ C4 |
or
e-E t 0 0 1[c; 0
t €e—E t 0 G| _ 0
0 t e-E t ||| |O]
0 0 t  e€e—E|lcg] 10

The matrix eigenvalues occur by the roots of its determinant
(e-E)Y[(e-Ef* -] -(e-E P -P[(e-E)* -] =0 >
€ — € — -t — (e — - — (e - -+t =0>
E)*[(e - E)* - £] E)*12 EPR2 + =0
(e-E)*-3(-EP+t=0
Settingy = (e — E )2 yields the quadratic equation
-3yt +tt=0

with discriminant A = 9t* — 4+* = 5¢*. Thus,

Hence, for t < 0, the eigenvalues of the 4LS are

f3+ 5 /3— 5 {3— 5 / +
E1:€+ 2\/_t, E2:€+ 2\/—t, E3:€— 2\/_t, E4:€— t

The energy width of the system is

3+ V5
E,—E; =2 2\/— |t| = 3.24 |t].

Substituting the eigenvalues Eq, Ey, E5 and E to the system of equations

(€e—E)c; +tc; =0,
tc; + (e —E)cy +tc3 =0,
tco+(€—E)cz +1tcy =0,
tcz+ (€ —E)cy =0,

(4.205)

(4.206)

(4.207)

3+45

2
(4.208)

(4.209)

(4.210)
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we obtain the eigenvectors of the system.

For the eigenvalue E; = € + 4/ 3+2\/§ t, if we denote
3+vV5 5+1
Ti= \/ 2\/_ = \/_2 ) (4211)

we obtain
¢, =TI,
c1—Tco+c3=0,
o (4.212)
CZ—FC3+C4 =0,
C3 = FC4.
Using the first and fourth equation into the second and third, we obtain
c; —T?c; +Tcy =0, 1-T?)c; +Teg =0,
1 21 4 = ( ) 1 , 4 (4213)
rCl—r C4+C4=0. rC1+(1—F)C4=O.
From there it follows
Cy = r2_1c
4 — 1 “1s
g } (4.214)
Cqy = mcl.

2_
It is apparent from Eq. (4.214), which is OKif " # 0, £1, that % = +1. If we perform detailed calcu-
lations, we obtain

rP-1_ T =1 (4.215)
r TI2-1 ° '
Therefore it will hold that
cp=c:=¢c, c=c3=TIc (4.216)
Consequently,
1
N r
o =c|p|- (4.217)
1
Normalizing, we obtain IcPQ+2I%) =1 = |cf? = ﬁ, that is
1
lcfp = ——. (4.218)
5+ \/3
Hence, we can make the convenient choice
1
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Therefore, the eigenvector corresponding to the eigenvalue E; has the form

1
\5+1
L5
U = ——=| 2| (4.220)
Vo + V5|
1
For the eigenvalue E; = € + % t, if we denote
/3 -5 5-1
I':= = , 4.221
> 5 (4.221)
we obtain
Cy = Tc1,
ci—Tcy,+c3=0,
LR (4222)
Cz—rC3+C4 =0,
C3 = FC4.
Using the first and fourth equation into the second and third, we obtain
¢ -T2 +Tcy =0, 1-T?)c; +Tcy =0,
1 21 4 — ( ) 1 , 4 (4223)
Fcl—F C4+C4:0. rC1+(1—r)C4:O.
From there it follows that
Cq = l—‘2—_1C
! g v } (4.224)
Cqy = mcl.

2_
It is apparent from Eq. (4.224), which is OKif " # 0, £1, that % = +1. If we perform detailed calcu-
lations, we obtain

rP-1_ T 1 (4.225)
r r2-1 '
Therefore, it will hold
cpi=c¢, cp=Ic, c3=-Tc, c¢4=-c (4.226)
Consequently,
1
Uy = _rr : (4.227)
-1
Normalizing, we obtain IcPQ+2I%) =1 = |cf? = 2(111,2), that is
lc[? = 1 (4.228)
- \/g .
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Hence, a convenient choice would be

1
= —— (4.229)

N

Therefore, the eigenvector corresponding to the eigenvalue E; has the form

1
V5-1
3 ! | =
U= ———| 4| (4.230)
V5-V5 |75
-1
For the eigenvalue E5 = € — 3_2—‘/5 t, if we denote
/3—V@ V5-1
I:= = , 4.231
5 5 (4.231)
we obtain
Cyr = —Tcl,
ci+Tcy+c3=0,
LR (4.232)
C2+rC3+C4 =0,
C3 = —rC4.
Using the first and the fourth equation into the second and third, we obtain
c; —T2%c; —Tcy =0, 1-T%)¢; —Tcy =0,
1 12 4 N ( ) 1 24 (4233)
—Fcl—r C4+C4=O. —FC1+(1—F)C4=0.
From there it follows that
Cy = ﬂC
! p v } (4.234)
Cyp = mCl.

2
It is evident from Eq. (4.234), which is OKif ' # 0, £1, that % = +1. If we perform detailed calcula-
tions we obtain

-t r =1 (4.235)
r 1-rz = '
Consequently, it will hold that
ca=c1:=c¢, ¢=-Ic, c3=-Tc. (4.236)
Therefore,
1
N -T
Uz=c|_r|- (4.237)
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Normalizing, we obtain IcPQ+2I%) =1 = |cf? = ﬁ, that is
lef? = ! (4.238)
— .
Hence, a convenient choice would be
1
= (4.239)
V55
Therefore, the eigenvector corresponding to eigenvalue E3 has the form
1
V5-1
3 LI
Ty = Aol (4.240)

N5-V5 |72
1
For the eigenvalue E4 = € — 4/ 3+2\/§ t, if we denote

I:= \/3 +2\/§ = \/5; 1, (4.241)

we obtain
Cyr = —Tcl,
ci+Tcy+c3=0,
Tt (4.242)
e+ Tc3+c¢4=0,
C3 = —FC4.
using the first and fourth equation into the second and third, we obtain
c; —T2%c; —Tcy =0, 1-T%)¢; —Tcy =0,
1 12 4 — ( ) 1 24 (4243)
—Tcl—r C4+C4:O. —rC1+(1—F)C4:0.
From there is follows that
e = ¢
4 — T “1s
. } (4.244)
Cq = mcl.

2
It is evident from Eq. (4.244), which is OKif ' # 0, £1, that % = +1. If we perform detailed calcula-
tions, we obtain

1-T2 r
= =-1. (4.245)

Therefore, it will hold that

cp:i=¢, cp=-Ic, c3=Tc, c¢4=-c (4.246)
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Consequently,

Ty=c (4.247)

-1

Normalizing, we obtain IcPQ+2I%) =1 = |cf? = that is

1
2(1+T2)’

lc|? = (4.248)

1
5+ \/3 '
Therefore, a convenient choice would be

1
0= —— (4.249)

\/5+\/§.

Hence, the eigenvector corresponding to the eigenvalue E4 has the form

1
1 _1+\/§
by = — 2
Uy = 145 |- (4.250)

\5+5

4.5 Discrete-continuous energy spectrum, subbands.

-1

There are cases in which we have free motion in 2 (or 1) dimensions and bound states in 1 (or 2) dimen-
sions, respectively; we call these quantum wells (or quantum wires). In such a scenario, the free motion
leads to a continuous energy spectrum (i.e., bands, although since they correspond to less than 3 dimen-
sions are called subbands), while the bound states we have a discrete energy spectrum, i.e. levels. Our below
description is based on the Slater theorem [ 13], the Envelope Function Approximation, and the Effective
Mass Approximation.

4.6 Slater theorem and consequences.

Using the Slater theorem [ 13], we can reduce the problem of electron motion in a crystal lattice plus per-
turbing potentials to a problem similar to electron motion solely in perturbing potentials; in other words,
we simplify the solving process significantly. The papers by Bloch [ 14] and Wannier [ 1 5] are prerequisites.
The theory of papers [ 14, 15] is extensively described, e.g. in book [ 16].

4.6.1 Unperturbed problem.

The Hamiltonian of the unperturbed problem is

. 1
Hy = —%vz + U (7). (4.251)

e

The first term is the kinetic energy and the second term is the potential energy of a perfect periodic crystal.
The solution of the unperturbed problem

Hy ¥, 7) = Eo@) 0@, 7), (4.252)
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where Ey(P) or E, (%) are the energy band diagrams, which are commonly represented graphically, is the
crystal momentum. This solution was provided by Wannier [ 15], who improved Bloch’s theory [14].

Assume a monoatomic basis in our periodic crystal. Thus, let us suppose that the followmg hold: (a)
The lattice points are described by the position vectors R = mydy + My, + Mmsiy = Rm, where
m = {mq,my, m3}, m; € Z is a collective index for the lattice points and {@, @, @3} are the primi-
tive translation vectors (PTV), and (b) the axes origin coincides with some lattice point. Then [15],

Uo@,7) = Z——ﬁ " a(f - Ry) (4.253)

IR
Alternatively, we can use k, i.e.,

Ho (k) = Eo(k) o(k, ), (4.254)
Yok P = 3 = -, (425)
s m). .
VN
Of course, in our periodic crystalline lattice, the potential energy, Uy (7), is also periodic, i.e.,

U,(7+R,,) = U.(7). (4.256)

L stands for lattice. The Wannier functions are defined as

’"%F 7) (4.257)

Given the property

W 0, 7 5
i me:{N P~ g -p, (4258)

<! <

E e%ﬁ/.f{ma(?_ ﬁm) _ E Z e% p’_ﬁ)~§m¢0(i_§,?) — (4259)
1
% <=ta® ) Dt P = 3 g ANSG - (4:260)
Fi N ‘ m i o

= VN @, 7. (4.261)

Therefore, changing the symbol ;_5' with ;_9: we have

LCUED) WW%C (4.262)

which is Eq. (4.253).
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4.6.2 Perturbed problem.

Now, we want to find the functions 1;(¥) which satisfy the equation
Ay@=E ¢, H=H+H, (4.263)

where i is some collective quantum number and H is the Hamiltonian which contains all the perturbing
potential energies. We assume that H; changes slowly as a function of 7. We are trying to express 1;(7) in
the form

i) = Y piR,) af - R,) (4.264)

In other words, we are trying to find functions @;(R,,) that modify the atomic Wannier functions, (¥ —
R,,), in order to express the solution of the perturbed problem by substituting the exponential functions,

1 _pR B
N s R’”, which modify the atomic Wannier functions, (' — R,,), within the unperturbed problem. The

Slater theorem states that the envelope functions, ;(7), satisfy the differential equation

[Eo(—=ifiV) + Hy(P)] ¢:(P) = E; ;) (4.265)

InEq. (4.265), we have changed l_ém to 7, which is now a coarse grained 7. Eq. (4.265) is called the Envelope
Function Equation (EFE). However, for the Slater theorem to hold, we have to assume that H @ isa
slowly changing function of the coarse grained position 7. Eq. (4.265) is a Schrodinger-type equation for
@;(7), in which the perturbing potential energy H; appears as the potential energy, while Eq(P) of the
unperturbed problem (with p being substituted by the differential operator —iiV ) appears as the kinetic
energy operator.

4.7 From the Schrédinger Equation to the Effective Mass Equation, using the Envelope Function
Approximation and the Effective Mass Approximation.

In the single-electron Schrédinger equation

HY(7) = EY () (4.266)

the Hamiltonian is written as

without external magnetic field, (4.267)

F qA)2
2m,

H

+ U(r)  with external magnetic field, where A is the vector potential,  (4.268)

where U (7) is the total potential energy, analyzed, say, as

Uy (7), where L stands for Lattice, is the potential energy of the perfect periodic crystalline lattice. Ug(7),
where S stands for Scattering, is the scattering potential energy due to defects, impurities, phonons, etc..
Ug (7), where E stands for External, is the potential energy due to externally applied fields and macroscopic
space charges. U, (7), where xc stands for exchange and correlation, is the exchange and correlation po-
tential energy, which describes the effect of the rest electrons. The last term, Uy (7), where M stands for
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magnetic, is the magnetic potential energy, e.g., —ﬁ -Bor- D ; ﬁi . §, where 7 runs over the magnetic
building blocks of the system.

Applying the Slater theorem [13], Eq. (4.265), see Section 4.6, we arrive at the Envelope Function
Equation (EFE)

Eo(=ihV)p(7) + [Us(P) + Ue(F) + Uy () + Un(@]p(7) = Ep(7). (4.270)

Here, ((7) is the envelope function, which crudely describes the wavefunction’s configuration from lattice
point to lattice point, see Section 4.6. The operator —ifiV replaces the crystal momentum p = fik in the
energy band diagrams E((p), i.e., =iV replaces k,

d

R = 0 J
k= (kx1 kylkz) o —iV = —l(a, a—y, g) (4271)

The dispersion relation of a free electron is parabolic, with coeflicient o = -

,i.e.,
e

L PP ~ 1252 ~ _h2V2

E = 4.272
o(k) 2m, 2m, 2m, ( )
Close to the minimum of a specific band (e.g. the conduction band) we can analogously write
N 32 1252 H2V 2
Eo(k) = EcO + p— = EcO + = EcO - p (4273)
2m* 2m* 2m*

where 1" is the effective mass and it is generally a tensor. In more symmetric cases, we can write

. 2k2  B2k2 p2K2
Eo(k) = Eqg + =— L = 4274
and in the simplest case
> 1%k? 72V 2
Eok)=Eo+——=Eyo - . 4.275
0( ) 0 m <0 it ( )

%2
In other words, the effective mass determines the coefficient & = Py of the parabola, just like in the case
2

& .
of the free electron, where the coefhicientis @ = P This means that the effective mass 171" expresses the
e
steepness of the curvature close to the band minimum. See Figure 4.16, in which the case m* < m, is
presented. Popular semiconductors have small effective masses. For example, in GaAs, m* = 0.067m1,.

If we restrict ourselves to the latter, simplest, case, then Eq. (4.270) becomes the so-called Effective
Mass Equation (EME).

h22

Gy (@) + [Eqo + Ug(?) + U, () + Up(D]p(?) + Us(Np(7) = Ep(7). (4.276)
Let us focus on cases without Uy,(7). The quantity Ey + Ug () + U, (7) is the one we draw when we
create band diagrams for heterostructures. Commonly, we solve Eq. (4.276) assuming that Ug(7) = 0
and estimate the effect of Ug(7) using the scattering and transport theory (e.g. by solving the Boltzmann
transport equation) [ 17].

Let us now consider a junction of two different materials, e.g. GaAs and Al,Ga;_,As. In this case, the
conduction band minimum, E g, is higher in the trimer than in the dimer (see Figure 4.17). A well is
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=3 Eol)=Eq+—
# k
;12 E (7:) _ flzkz

" om, o 2m,

Figure 4.16: The steepness of the curvature close to the band minimum is expressed by the effective mass,
m’*. Here, the case m* < m, is presented.

X

E co(tpuiepéq) 1 E co(tpuepéc)
O

E o(8wepiq)

Figure 4.17: A junction of two different materials, e.g. GaAs and Al, Ga;_,As, so that the conduction band
minimum, E ), is higher in the trimer than in the dimer. A well is formed.

formed. If the well width, i.e. the thickness of the medium layer, is smaller than the electron mean free
path, then a quantum description is needed. Therefore, we have a quantum well.
If 1™ is a constant scalar for each material but has different value for each material, then

> 72(k2 + k2 + k2)
Eo(k) = E Y 2
and if we further assume that Ug(7) = 0, it follows that
2 g2 2k,
he o
v o) + [Eq + Ug(®) + U D]p() = Ep(7), (4.278)

2m*(z) 922 " 2m*(z)

hZ 0’)2(P(?) hz ( 0’)2 82

_2m*(Z) 822 + _27’”*(2) &xz + &yz) (p(?) + [ECO + UE(?)) + ch(?)](P(?) = E(P(?), (4279)

and the variables are not separable, due to the presence of 711*(2) in the second term, even if U (7) = Ug(2)
and U,.(¥) = U,.(2). On the other hand, if 7" is constant and scalar, then the variables can be separated.
Such an assumption is not that unreasonable, since electrons are mainly in GaAs. However, it becomes
less realistic as the well width decreases, since this leads to an increased envelope function surpassing of
the Al,Ga;_,As barrier [ 17].
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4.8 Electron eigenstates in a quantum well with constant effective mass.

For Ug(7) = 0, Eq. (4.276) can be written as

2 (92 9% 92
(axz e ﬁ) @A) + [Eq + U + U (D] ¢(7) = E@(). (4.280)

ue)

_Zm*

We have defined U(7) := E, + Ug(7) + U, (7). Let m* be constant and scalar and U (7) = U(z) as it is
qualitatively shown in Figure 4.18. The presence of three different layers, i.e., of three different E , leads
in itself to a square well without curvature. However, the term Ug(7) of the Hamiltonian -specifically, its
part that corresponds to space charges (and occurs by solving the Poisson equation)- and, secondarily, the

term U, (7), lead to a deformation of the bands which is called band bending [ 17].

Figure 4.18: A quantum well between three layers of materials with band bending.

We can try a solution of separate variables to Eq. (4.280), i.e. of the form

(M) = X(x) Y(y) Z(2). (4.281)
Then,
n? [ 92 92 92
o (gxz + Y2 + g) o) + U@)p(F) = Ep(7), (4.282)
(92 92 92
o ( 2t or” 8—22) XYZ + U(A)XYZ = EXYZ, (4.283)
292X W __9*Y K __9%Z
——YZ—— - —XZ - —XY=—= + U(x)XYZ = EXYZ, (4.284)

2m*dx% 2m* Jdy? 2m* 9zZ?
2 102X K2 10%2Y h 19%Z N
2m* X dx?>  2m*Y Jdy?  2m* Z 9z?
—_—
f1) fa(y) f3@)

U(z) = E. (4.285)

There are three terms on the left-hand side of Eq. (4.285); the first f;(x), depends only on X, the second,
f2(y), depends only on y, and the third, f3(z), depends only on z. On the right-hand side there is E and
the equation must hold ¥ x, i, z. Hence, E does not depend on X, 1/, z and the equation can be divided
into three parts, i.e.,

E=E,+E,+E,. (4.286)
7% 1 9°X

~ o 3E = E,, (4.287)
A% 19%°Y

Y IR E, (4.288)
h? 19°Z

- Zm*Zﬁ + U(Z) = EZ' (4289)
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For the first equation,
% 9%X(x)
_ = E. X(%), 4290
we try solutions of the form
X(x) = Ae**  (eigenfunctions) (4.291)
and it follows that
72k2
X(x) = E, X(x), (4.292)
2m*
1i%k2
E,= Z_mf (eigenenergies). (4.293)

We observe that the eigenenergies and eigenfunctions are the characteristic ones of a free particle
moving in the x dimension. We normalize over the whole length of the heterostructure along the
X-axis, i.e.

+L./2
f dxlX(x)l2 =1= |A|2Lx =1, hence, aconvenient choiceis A = . (4.294)
L2

5~
=

For the second equation,

n 9%Y(y)
- ———=E, Y(y), 4.2
we try solutions of the form
Y(y) = Be'kw (eigenfunctions) (4.296)
and it follows that
ﬁzkﬁ
T Y(y)=E, Y(v), (4.297)
k2
E,= Z_mi/ (eigenenergies). (4.298)

We observe that the eigenenergies and eigenfunctions are the characteristic ones of a free particle
moving in the i dimension. We normalize over the whole length of the heterostructure along the
Y-axis, i.e.

+Ly/2 2 9 1
f dy|Y(y)| =1=[B['L, =1, hence, aconvenient choiceis B = —. (4.299)
~Ly/2 vLy
For the third, equation,
h? 9%Z(z
- @) + U(z) Z(z) = E, Z(2), (4.300)
2m*  Jz2

we will generally have some eigenenergies E; and eigenfunctions (;(z) which correspond to bound
states. (We will not focus on energies larger than the top of the well.) Let us assumed that the
eigenfunctions are normalized, so that

+L,/2
f 2 AP = 1. (4.301)

_Lz/
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Hence, in summary, we obtain the eigenenergies

nK2 kg

Ei(ky k) = E; + T T o (4.302)
and the (envelope) eigenfunctions
1 iy kY
Pijee e, (P) = %Ci(Z)e ey, (4.303)

where 5 = L, L, is the cross section of the heterostructure on the xy-plane. In other words, the electron
is free along the x- and y-axes, while it is bound along the z-axis (at least for energies smaller than the top
of the well). The index i is discrete and the indices k,, k, are “continuous” These two elements constitute
the quasi two-dimensional character of such electrons.

4.9 Density of eigenstates of a quasi two-dimensional electron gas.

The density of eigenstates is defined as

g(e) ==Y 6(e —E,) =2 ), 6(c — Ey), (4.304)
u A

where the first (second) summation over i (1) denotes all the eigenstates (energy eigenstates), i.e. the
factor 2 is due to spin. Summation is carried out over all “continuous” and discrete indices. In our case, it is
carried out over the “continuous” quantum numbers k,, ky and the discrete quantum number i. In other

words,
72 (k2 + k2)
gle)=2 Z 5 e—Ei—# ) (4.305)
ikky 2m
Let us impose periodic boundary conditions along the x- and y-directions, i.e.,
e(-2) k(2 . . 2
¢ ( 2) —¢ (2) = elllr =1 = 2™ . € Z =k, = 7me. (4.306)
X
w (- (2 , ‘ 2
elky( 2 ) = ¢ ( 2 ) = efvby =1 = eIZ""y,ny €Z =k, = ™y (4.307)
Y
Therefore,
2ntn 21 21tn 27
ky= === Ak, = —An,, k,=—" = Ak, = —An,. 4.308
X Lx X Lx nx Yy Ly y Ly ny ( )
2 (k2 + k2)
g(e) =2 Z S [g —-E - #) AnyAn,, where An, = An, =1. (4.309)
ik,
Using Eq. (4.308), it follows that
(k2 + Kk2)\ L L
=2 Y §|e-E - ——L| XAk, =LAk, 4310
8(€) 2 (E ' 2m* ) 2 2 Y ( )

ik Ky
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And, since S = L, L, is the cross section of the heterostructure on the xy-plane, we can write

2(1-2 2
g(e) = 2(;)2 ikz;( o (e -E;- %ﬂ:ky)) Ak Ak, (4.311)
exky
Now, let us suppose that
Ak, — dk, assuming L, — oo or, better, >> L, (4.312)
Ak, — dk, assuming L, — oo or, better, >> L,. (4.313)

In this “qualitative” fashion, we conclude that

R2(K2 + K2)
ﬁxdkxﬁydkygé[g_Ei_T) (4314)

which, of course, can also be implied by a known theorem.

S
g(e) =2 (27m)?

Now, let us change the coordinates in the plane k.k; from Cartesian to polar. As we can see in Fig-
ure 4.19, the norm, |?| , of the two-dimensional vector k = (k,, ky) in the plane kxky, is F7(| =k =
JKE + kﬁ, where the infinitesimal change in the radial direction is denoted by dk | and the infinitesimal

change in the polar direction, i.e.,, normal to the radial direction, is denoted by dk | = k| d¢. ¢ is the polar
angle in the plane k,k,. Therefore, we can write

ky

k, 4

Figure 4.19: From Cartesian to polar coordinates in the plane k,k,.

25 OOj\zndkkd o E thﬁ
8(e) = (2n)zf0 . ik CPZ e-Ei-——| (4.315)
S 00 thZ
8(e) = ;Zfo dkllkllé(E_Ei_ 2m”] (4316)
i
Now, performing the variable change
1k 12
X=o = dx = %k”dk”, (4.317)

it occurs that

g(e) = —a E fo dxo(e — E; — x). (4.318)

As it can be seen in Figure 4.20, when ¢ — E; lies within the interval (0, ), i.e,, when ¢ > E;, the integral
is equal to 1, otherwise it is 0. This can be expressed as

s
oe) = th Y6 - E) (4.319)

The density of (eigen)states, with its characteristic step-like form, is presented in Figure 4.21.
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Figure 4.20: € — E; lies within the interval (0, ©0), i.e., when ¢ > E;, the integral is equal to 1, otherwise it

is 0.

S
§(e) = =3 Y,0(c - E)

. m*S
g(é)/ s
3 —
2 ———
1 —
—— &

Figure 4.21: Density of (eigen)states of a quasi two-dimensional electron gas

4.10 Spatial density of occupied states, i.e. electron density

The spatial density of occupied states, i.e. the electron density or spatial electron density is

n= [ de g(e) fole)

where g(¢) is the density of states, f(¢) is the Fermi-Dirac distribution, and Pikyk, (7) is the normalized
envelope function of level i. Caution: there is already a summation over i inside g(¢). Substituting Egs.

(4.319), (4.303) and the definition of the Fermi-Dirac distribution function, we obtain

(4.320)

Ax ity

to  m*S 1
nm:f_m dg@;@)(e—a)“exp(g H(T) |c()| (4321)
kT
B mx— 2 +00 ‘ o ' 1
Tl(?) - % 211 |Cz(z)| ﬁm de @(6 Ez) 1+ exp(s_”(T)) (4-322)
ke T
(4.323)

Oy e T —
R e e

We now perform the variable change x(T') := ﬁ , and denote k(T) := % [below we write them as x
B B

and , for simplicity]. Thus, it follows that

n(?):

1 + exp()( x)’ (4-324)
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