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3D quantum well created inside the vacancy. . . . . .. .. ... ... . oL
4.3  Eigenfunctions, eigenerergies, and energy dispersion (k,, = nm/L,n = 1,2,3,...) of
the particle in the simplistic model of the infinite well. In the panel depicting the energy
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44  (Left) Color-center absorption spectra obtained on air, in 298 K, at the UV-visible, by
NaCl, KCl, and KBr crystals radiated using a Tesla coil. [ 1]. The color depends on the size
of the space left by the defect, i.e., by the lattice parameter or lattice constant, a. The peak
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Dependence of the absorption peak on 4 in alkaline halide crystals [1]. The increase in
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well. This leads to a decrease in the energy distance between the ground and first excited
level, hence the energy (wavelength) of the photon that corresponds to this transition is
smaller (larger). . . . . . . . ..
4.5  Left: In a large system as e.g. in a crystal, the environment of each absorber or emitter
is rarely identical, in other words, the quantum wells are not exactly the same. Right:
Vibrational and spatial levels. The spectra, mirroring this situation, will be broad.
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ABBREVIATIONS

Abbreviation Name
1D one-dimensional
2D two-dimensional
3D three-dimensional
1LS single-level system
2LS two-level system
3LS three-level system
MLS multi-level system
AF atom - field
EM electromagnetic
S.IL Systéme International
FWHM Full Width at Half Maximum
HOMO Highest Occupied Molecular Orbital
IR infrared
LASER Light Amplification by Stimulated Emission of Radiation
LED Light-Emitting Diode
LUMO Lowest Unoccupied Molecular Orbital
RWA Rotating Wave Approximation
TB Tight Binding
TE Transverse Electric
TEM Transverse ElectroMagnetic
™ Transverse Magnetic
uv ultraviolet
AB = -BA anticommutation
{A,B} = AB+ BA anticommutator
AB = BA commutation
[A,B] = AB-BA commutator
AEc- conduction band offset
0 delta function
T Gamma function
AEy, valence band offset
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Table 1: Mathematical Symbols.

Symbol

Meaning

SN W N BN o

defined as equal

equal by definition
equivalent

the set of natural numbers
the set of integers

the set of real numbers

the set of complex numbers
exists, exist

does not exist, do not exist
denotes increase

denotes decrease
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Table 2: Physical constants (data from NIST: CODATA [1]).

Symbol Name Value

e elementary charge 1.602176565(35) x 107 C

6.62606957(29) X 10734 s
4.135667516(91) x 10715 eV s
h reduced Planck constant 1.054571726(47) x 10734 s
1.3806488(13) x 10723 J/K

h Planck constant

kg Boltzmann constant 8.6173324(78) X 105 eV/K

c speed of light in vacuum 2.99792458 X 108 m/s
m, proton mass 1.672621777(74) x 107% kg
m, neutron mass 1.674927351(74) x 1077 kg
m, electron mass 9.10938291(40) x 1073 kg
o electrical permittivity of vacuum 8.854187817... X 1072 F/m
to magnetic permeability of vacuum 41 X 1077 N/A?

The units of a physical magnitude M will be denoted as [M].
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CHAPTER 1

OVERVIEW

In this Chapter:

A panoramic overview of the book contents is presented. I explain concepts that are developed further
below.

Prerequisite knowledge: Some knowledge of Quantum Mechanics, Electromagnetism and Statistical
Physics is necessary, although we will explain what we need.

This book is an evolution of the book [ 1] and of newer university lectures [2]. Other sources that the
readers could consult are the following textbooks and university lectures [ 3, 4, 5, 6].

Let us start with a panoramic overview of the contents. Let us explain the basic notions, which will
be further expanded below, and sketch the structure of this book. The book also includes tables with ab-
breviations, a glossary, that is, a dictionary of terminology, as well as a symbolotheque, which includes
physical constants and symbols. Before starting, the author would like to formulate an axiom: “There is
always an error.” Hence, generally, in all human activities, errors exist. During the process of finding these
errors we learn more and understand deeper. It is not a sin to make an error, but to think that you never
make errors. Let us hope that this formulation will motivate readers to think, find and communicate to
me errors and omissions in order to make the book, hopefully in a later edition, better. To the Chinese
philosopher Confucius, 551 - 479 BCE, who died in the year of the Battle of Plataea, is attributed, among
other things, the saying “I hear and forget, I see and I remember, I do and I understand”; a saying that
should accompany the learning process in general. In particular, attending a university course, one should
use lectures, notes, an organized e-class, an e-book, solved old exam problems, exercises, video lectures
and experiment, if possible. Above all, a lively interaction between teacher and students should exist. The
joy of interaction cannot be replaced by anything. Let us keep in mind that the purpose is not evaluation,
but evolution. Finally, in a playful mood, instead of bullets, the following initial comment for commutation
and anticommutation and comments on chapters are marked in Linear B.

TEFEH-TTTEEH At first, for the notation: To simplify the notation A (operation) B, we

will write AB. Here the “operation” can be in the simpler cases addition or multiplication of numbers or of

Constantinos Simserides (2023). «Quantum Optics».
Kallipos, Open Academic Editions. https://dx.doi.org/10.57713 /kallipos-186
Creative Commons Attribution — Non Commercial — ShareAlike 4.0 International


https://dx.doi.org/10.57713/kallipos-186

2 OVERVIEW

matrices, but it can also be any other exotic operation. Although we will discuss this issue in detail below,
let us say a few words about commutation and anticommutation. The following objects are defined, the
commutator

[A,B] := AB - BA,

and the anticommutator

[A,B) := AB + BA.

If the commutator vanishes, i.e.,, [A, B] = 0, then AB = BA, that is, objects A and B commute, in other
words, AB does not differ from BA. This is called commutative property. If the anticommutator vanishes,
ie, {A,B} = 0, then AB = —BA, that s, objects A and B anticommute, in other words, AB is opposite
to BA. This is called anticommutative property (from Greek anti which signifies opposition). The repre-
sentation with operators, annihilation or lowering and creation or raising, that is, with ladder operators, is
called second quantization in physics. Hence, bosons (like photons) commute, i.e., the operators which
describe annihilation (lowering) an creation (raising) of bosons follow commutation relations, with ob-
jects [, ], while, fermions (like electrons) anticommute, i.e., the operators, which describe annihilation
(lowering) an creation (raising) of fermions follow anticommutation relations with objects {, }.
AFTH m Chapter 2 we proceed to an introduction to the quantum nature oflight. We present the
idealization called the “black body” and relevant notions. In short, a black body is an object which absorbs
all EM (electromagnetic) waves that fall onto it, regardless of frequency and angle of incidence, that s,
something “pitch-black’, if we can express ourselves in this vulgar way. We define one of the most central
physical quantities in this book, namely, the energy density of EM radiation in an infinitesimal frequency
range, initially, of a black body, in thermodynamic equilibrium, p(v, T'). The units of measurement in S.I.
are [p(v, T)] = ﬁ , hence, the units of measurement of [p(v, T)dv] = % , thatis, p(v, T)dv is energy
density. We present the important laws for black body radiation in thermodynamic equilibrium, that s, for
the quantity p(v, T): Rayleigh-Jeans (classical, theoretical, in absolute discrepancy with the experiment),
Wien (empirical, fitting with experiment at high frequencies), Planck (quantum mechanical, theoretical,
in agreement with the experiment for all frequencies) laws. We also state the Stefan-Boltzmann law (again,
for the black body) in two forms: the first formulation refers to energy density, 0(T'), with units [o(T)] =

# , and the second formulation refers to radiation intensity, I, with units [I] = Lz = —.

We remind the readers of the Maxwell equations in differential and in integral form, of the boundary
conditions at an interface between two media, as well as of EM fields in cavities. Then, we define an-
other important quantity, g(v) = Z—Ij , that is, the infinitesimal number of EM field normal modes in an
infinitesimal frequency range. Normal modes means frequencies and forms (shapes). The quantity g(v)
and classical physics, that is, the equipartition of energy theorem, lead to the Rayleigh-Jeans law, which
is in absolute discrepancy with the experiment. Whereas, the quantity g(v) and some (paleo)quantum
hypotheses lead to the Planck’s law, which agrees with the experiment for all frequencies. However, the
Planck’s law, “proven” via this route, reminds us of a student who, not knowing how to solve the exam
problem, tries strange tricks, to find the correct result without remorse of wrong intermediate paths. A
robust proof of Planck’s law was given by Einstein; we will discuss it in Chapter 3. Next, we present the
Wien’s displacement law in the form Ay T = constant (which gives the wavelength A where we have max-
imum EM radiation of a black body at temperature T') and in the form /T = constant’ (which gives the
frequency vy where we have maximum EM radiation of a black body at temperature T). Finally, we de-
scribe the photoelectric effect, which, together with black body radiation, convinced us of the quantum
nature of light. All these happened at the end of 19th century - beginning of 20th century, already far in
the past.

A+TH Chapter 3 is devoted to the interaction mechanisms (or processes) between the EM radi-
ation and the 2LS. Necessary abbreviations here are: 1LS = single-level system, 2LS = two-level system,
3LS = three-level system, MLS = multi-level system. Exampli gratia, a 2LS might be the two consecutive
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levels of an atom, molecule, quantum dot or alternatively nanoparticle. This is schematically shown in
Figure 1.1. We will see how we construct a 2LS from two 1LSs, approaching each other, later, in Chapter

(XX

Es
Ea |2Ls) yefe
E1 " oneelectron

Figure 1.1: Schematically, a two-level system (2LS).

4. Anyway, schematically, the explanation is given in Figure 1.2. Let as assume, for the sake of simplicity,
that each isolated 1LS has an energy level €. Then, the unified system, that is, the 2LS, has, within a simple
Tight-Binding approach, energy levels E; and E;, which have an energetic separation 2|t|, where £ is the
transfer integral, = ((PLlI:I |r), which shows how strongly the two 1LSs interact to build the 2LS. [If
the isolated 1LSs are not identical, their levels will not have the same energy, but the result is qualitatively
similar. |

L OO R

distance €

Ey1 =€ 1] = g == E,—E; =2t

Figure 1.2: Schematically, how, approaching two single-level systems (1LSs), which are separated by infi-
nite distance, one left (L) and one right (R), we construct a two-level system (2LS). The energetic separa-
tion of the two levels is determined by the transfer integral ¢ = (¢L|H | ), that is, from how strongly the
once (upper panel) separated 1LSs interact to build the unified system, i.e., the 2LS (lower panel). For the
sake of simplicity, we assume that each isolated 1LS has an energy level ¢, while, the unified system, that
is, the 2LS, has energy levels E1 and E,, which, within a simple Tight-Binding approach, are energetically
separated by 2|f|.

In summary, the mechanisms or processes of EM radiation - 2LS interaction are: (Stimulated) Absorp-
tion, Spontaneous Emission, Stimulated Emission. A process is characterized as stimulated when it exists
due to the existence of energy density of EM radiation, p, whereas it is characterized as spontaneous when
it is not due to the existence of p. The reason why we put parentheses in “(Stimulated) Absorption” is
exactly that there is no other way: absorption will necessarily be forced, that is, it will owe its existence
to p. Of these three processes, Stimulated Emission, which was introduced by Einstein, is fundamental to
the operation of LASERs. Actually, the acronym means exactly this: Light Amplification by Stimulated
Emission of Radiation. Let us notice that within this book, we mainly focus on one electron in a 2LS or
3LS or MLS and on its electric dipole interaction, due to its electric charge, with the EM field. However,
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similarly, we could, if we had space and time, extend to phenomena which require magnetic dipole mo-
ment and interaction due to electron spin. This will maybe be done in a next edition. The probability of
(Stimulated) Absorption is

dwslt)s = Blzp(V, T)dt,

al

that is, proportional to time dt and to p(v, T), with proportionality factor By,. The index 12 means that
with the photon absorption, the electron will be transferred from level 1 to level 2. The probability of
Spontaneous Emission is

degq = A21dt,

that is, proportional to time df, with proportionality factor Ay;. The index 21 means that with the photon
emission, the electron will be transferred from level 2 to level 1. Since this process is spontaneous, dWen
does not depend on p(v, T). The probability of Stimulated Emission is

AWe, = Barp(v, T)dt,

that is, proportional to time dt and to p(v, T), with proportionality constant By;. The index 21 means
that with the photon emission, the electron will be transferred from level 2 to level 1. These are shown
schematically in Figure 1.3. In (Stimulated) Absorption, a photon is absorbed, leading to an electron be-
ing transferred from the lower level to the upper level. In Spontaneous Emission, an electron, which was
in the upper level, falls spontaneously at the lower level, which happens to be empty, and as a result, a
photon is emitted, which however, has random direction, phase, polarization. In Stimulated Emission, a
stimulating or driving photon (i.e., thisis a stimulated or driven oscillation), let us call it stimulating photon,
with energy E¢ = hv, momentum Py = EfP/C’ obliges the electron, which initially was at the upper level,
to fall at the empty lower level, leading to another photon being emitted. This second photon is identical
to the stimulating photon, i.e, they have same energy, momentum (direction), phase, polarization. The
properties of LASER are due to this process: same energy = monochromaticity, ssme momentum =
directionality, same phase = coherence, same polarization = polarized light. It is implied that we must
have conservation of energy and momentum; we will discuss all these thoroughly in Chapter 3.

initial final initial final initial final
stimulating \ﬂ
—.— e photon — =—i)— two identical photons:
; : s e . Lo same energy,
(Stimulated) Absorption ||Spontaneous Emission Stimulated Emission same momentum (direction),
phase, polarization

Figure 1.3: Schematically, (Stimulated) Absorption, Spontaneous Emission and Stimulated Emission.

AETH Chapter 4 is devoted to the continuous and the discrete spectrum. The discrete energy
spectrum is a feature of atoms and molecules as well as of artificial atoms and molecules, i.e., quantum
dots or nanoparticles, which are mainly human-made, either via physical or via chemical paths, as well
as of color centers, which usually appear as defects in crystals. Some other human-made objects or arti-
facts have discrete-continuous energy spectrum, meaning that they have discrete spectrum in one or two
dimensions and continuous spectrum in the rest dimensions. Such systems are quantum wires, with dis-
crete spectrum in two dimensions and continuous in one dimension, and quantum wells, with discrete
spectrum in one dimension and continuous in two dimensions. The continuous spectrum is a feature of
solids, either crystalline or amorphous (with important differences). We also devote space to color centers
and quantum dots, which have discrete spectrum. Moreover, in Chapter 4 we study the transition from
two 1LSs to one coupled system, the 2LS, which is done with three variants of the Tight-Binding method,
with graded simplicity. For quantum wells, wires and dots, we mainly describe their electronic states and
their corresponding density of states.
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AETH Chapter 5 we deal with the so-called semiclassical approximation of the EM field - 2LS,
3LS, MLS interaction. Semiclasical means that, while we treat the EM field classically, we treat 2LS, 3LS,
MLS quantum mechanically, that is, as a system of eigenstates. Here, we introduce the reader to the dipole
approximation. The electric dipole moment between two charges, one positive (plus, P), 4 > 0, and one
negative (minus, M), —g < 0, is defined as ,7_‘} = q(Z where we define d = MP (Figure 1.4). Usually,
when studying an atom, we consider the position vector of the electron (E) relative to the nucleus (N),

NE=7=-d. Then, j} = qtj = —e¥, if we refer to e.g. the hydrogen atom.

PN) 7 _ g

M (E)

Figure 1.4: (Upper panel) The axes origin O, the positive charge P (plus), which can be represented by the
nucleus N in an atom, the negative charge M (minus), which can be represented by one electron E moving

5
around the nucleus. We define d := MP. Usually, when studying an atom, we consider the position vector

- - -

of the electron relative to the nucleus NE = 7 = —d. The electric dipole moment is defined as & := qd
-

something that we can therefore write 7° = —e7, if we refer to e.g. the hydrogen atom. For the latter

case, we notice the vectors OP := Rand OF := 7E. (Lower panel) Very schematically: Under these
conditions, the wave length is much larger than the spatial extent of the system, something like A >> a;
thus, the electric field is practically homogeneous. For example, for optical wavelengths, A ~ 500 nm,
and for the hydrogen atom a ~ a (Bohr radius), hence, A/ay ~ 10%. The triangle OPM (ONE), which
is shown in the upper panel, is shown in the lower panel smaller than the wavelength, but in fact it is much
(~ 10* times) smaller.

We will use time-dependent perturbation theory. Here, by the term unperturbed system we mean the
eigenstate system without EM field, while, by the term perturbed system we mean that the potential energy
of interaction with the EM field, which is time-dependent, has been added. Let us call the Hamiltonian
of the unperturbed system Hy, the potential energy of the perturbation U (7, t) and the Hamiltonian of
the perturbed system F. Then,

H = I:IO + Ugﬁ, t)

The potential energy of the perturbation, that is, of the interaction with the electric field &£ , has the form
Uy =-P - &.

Almost everywhere in this book we neglect the electron spin and hence the potential energy of interaction
with the magnetic field, which has a similar form, that is,

Ug:—ﬁu@_),

-
where [] is the magnetic dipole moment and .% is the magnetic induction. Nice analogies exist between
electric dipole moment inside an electric field and magnetic dipole moment inside magnetic field. We re-
mind these analogies to the reader below, as we list the electric dipole moment, magnetic dipole moment,
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potential energy of electric dipole, potential energy of magnetic dipole and the respective torques. Lis

5
the orbital momentum, S is the spin, ¢ a dimensionless factor, and g, 1 are the particle charge and mass,
respectively.

Analogies Reminder

&z (Electric Field) B (Magnetic Field)

Figure 1.5: Electric and magnetic dipole.

r_@ = C]d electric dlpole moment ‘[j = IE magnetic dlpole moment
or I = (1bm)(L + g5)

Uy = - -& potential energy Up=—1- B potential energy

?zjxg torque ?:ﬁxﬁ torque
[ﬁ]:Cm [ﬁ]:Amz
N T
[Ug]:CmE:Nm:J [uB]_AmA_m_Nm_J
N 2 N
[7] = Cmz =Nm [7] = Am"-— = Nm

The essence of the approach we use is shown in Figure 1.4. The wavelength is much larger than the
spatial dimensions of the system under study, i.e.,

A >> a.

If, for example, we study the hydrogen atom, @ = a is, let’s say, the Bohr radius. If we examine optical
wavelengths,ie.,, A ~500nm,since g = 0.529 A~ 0.5x107! nm, then Y, ~ 10% i.e., the approximation
holds for optical transitions and atomic physics. If indeed this happens, i.e., if the wavelength is much
larger than the system’s spatial extent, then, in a good approximation, the electric field has only temporal
dependence but it is spatially homogeneous. In physics, homogeneous means the same everywhere, i.e., in
every point of space, while, isotropic means the same towards all directions.

Under these conditions, in Chapter S we study and analytically solve the temporal evolution of 2LS
and 3LS, with one electron somehow placed initially (e.g. at the lower level) and finally we obtain the
so-called Rabi oscillations, i.e., how do the probabilities to find the electron at each level oscillate as func-
tions of time. For this purpose, we make the so-called Rotating Wave Approximation (RWA). Practically,
this means that if we denote by w the cyclic frequency of the EM field and by /iQ) the energetic sepa-
ration between e.g. the two levels of a 2LS and solve the problem, then we obtain fast terms containing
+(w + Q) and slow terms containing +(w — €2), but we only keep the slow terms. These oscillations the
electron performs between the two levels are called Rabi oscillations and we meet them here for the first
time, within the semiclassical approximation. Such an example of oscillations of the probability to find an
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Oscillations in a two-level system Oscillations in a two-level system
; (On Resonance and Off Resonance) ; (On Resonance and Off Resonance)
= 7 = - < < = =
—— P, (t) on Resonance = Rk - ~ = [——P;(t) on Resonance
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Figure 1.6: We present the oscillations of the probability to find the electron at the two levels of a two-level
system (2LS) at resonance (A = 0, continuous lines) and out of resonance (A # 0, dashed lines). The
period of the oscillations is T = 27\/Q3 + 2%, while, the maximum transfer percentage is %7/ = Q¥/(Q3 + A?).
To make a graphical representation, we have assigned some values to Q and A. A = @ — Q) is the so-
called detuning and Qy, is the Rabi frequency, which shows how much the two levels are tangled by the
electric field.

-
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Figure 1.7: A comparison between the Rotating Wave Approximation (RWA) and the full numerical solu-
tion (noRWA), for some arbitrary values of Qg, (3, @, A. We present the probabilities to find the electron
at the two levels as functions of time, for initial placement at level 1. The RWA curves are smoother, since
they lack the high-frequency terms +(€2 + w) and only low-frequency terms £({) — @) have been kept.
Also, we observe a slight dephasing, i.e., the RWA curves are little by little left behind the full numerical
solution curves.

electron at the two levels of a 2LS, within RWA, is shown in Figure 1.6. A comparison of RWA with the
full numerical solution, i.e., without ignoring the fast terms, is shown in Figure 1.7. Finally, in Chapter S
we examine the MLS within RWA, under the assumption that levels are equidistant.

AT Chapter 6 is also devoted to the semiclassical approximation. Here, we focus on full nu-
merical solutions, but we also compare with approximate methods, such as the popular RWA and the first
and second order averaging method [7]. Hence, also in Chapter 6, we study again Rabi oscillations in a
2LS and MLS, at the semiclassical approximation. The solution of the —perturbed by the electric compo-
nent of the EM field- 2LS is approached in three ways: (a) via the rotating wave approximation (RWA),
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(b) via the averaging method, (AM), and (c) numerically, by solving the original differential equations
without approximation (noRWA). Ways (a) and (b) give approximate solutions. Indicatively, we test the
following initial conditions:

1. C1(0) =1,C(0) =0 (initial placement of the electron at the lower level),

2. C1(0) =0,C5(0) =1 (initial placement of the electron at the upper level),

3. C1(0) = %eie, C,(0) = %eiqﬁ (initial equiprobable placement of the electron at the two levels,
but generally with different initial phase).

We compare the results of the approximate methods (a) and (b) with the results of the numerical solution
of the relevant differential equations (c) [with matlab, via the trapezoid, Runge-Kutta (2,3) and Runge-
Kutta (4,5) methods]. This study includes resonance (A = 0), as well as out-of-resonance (A # 0) cases.

AETH Chapter 7 is devoted to the so-called allowed and forbidden optical transitions, mainly
within the dipole approximation, and to the so-called selection rules, which, in brief;, tell us “what is al-
lowed and what is forbidden”. A model system which is often used to explain these concepts is the hydro-
gen atom. We will use it here, too. Given the chance, we also analyze the atomic orbitals of the hydrogen
atom, i.e., their parity (whether they are even or odd) and nodal surfaces (surfaces where the wave function
vanishes). We explain the so-called allowed and forbidden transitions within the dipole approximation as
well as the relevant selection rules. Within the dipole approximation, everything is finally reduced to the
integral

7k/k=fd31’ CI)]*(,(?) 7 (Dk(?),

which expresses the matrix element of the position of the negative charge with respect to the positive
charge e.g. the position of the electron relative to the nucleus. k and k’ are the states between which we ask
whether an optical transition can take place. If this integral is zero, then the optical transition is “forbidden”,
while, if it is not zero, the optical transition is “allowed”; the larger this integral is the stronger the optical
transition. The reason is that the matrix element of the potential energy of the perturbation, which tries

to tangle states k and k’ via the electric field, &£ ,is
Ug’k/k(t) =e& .?k’k'

We observe that, everything reduces to the symmetry of the eigenfunctions of the unperturbed system,
since whether the matrix element 7/ is zero or not is determined by which of them are even or odd, given
that the function 7'is obviously odd. Moreover, in Chapter 7 we discuss hybrid sp, sp2 ,and sp3 orbitals.
AEYH m chapter 8 we advance to the full quantum mechanical treatment of photon - 2LS, 3LS,
MLS interaction and to the EM field quantization inside a cavity, which is performed with a somehow
heuristic manner. We mainly focus here on Rabi oscillations of the number of photons within a cavity and
of the probability to find the electron at the levels of a 2LS (or 3LS, MLS) as the electron interacts with the
photons inside the cavity. Hence, here many photons and a single electron are tangled, an electron which
descends and ascends between the two levels. Many-fermion phenomena are out of the subject of this
book. A photon is a boson, i.e., it is benign, in the sense that many bosons can occupy the same quantum
state. But an electron is a fermion, i.e., it is snob, in the sense that two fermions cannot occupy the same
quantum state. This way, while we can condense bosons, we cannot condense (pure) fermions (although
for example, Cooper pairs can be condensed). The Hamiltonian of the 77 mode of the EM field, HEMm )
is expressed via photon (boson) annihilation and creation operators. The EM field Hamiltonian is the
sum of all the I:IEM,m terms. The 2LS Hamiltonian, HZLS , (or 3LS, MLS), which is described via spinors,
is expressed via electron (fermion) annihilation and creation operators. We also need a Hamiltonian, to
express the interaction of the 77 mode of the EM field with the 2LS (or 3LS, MLS), let us call it I:IEM‘m_ZLs.
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This has alternative notations as U ,,, H AF,m; AF has its roots in good old atomic physics, it means atom-
field. U reminds us that it is the perturbing potential energy, which emanates from the electric field &
Hence, finally, we have to add all these individual Hamiltonians.

A popular full Hamiltonian of this kind is the Rabi Hamiltonian. It describes an EM field mode, 11, a
2LS, and the interaction between them. After some initial simplifications, it can be written in the form

Hy p = hawydhdy, + HQS,S_ + 1ig, (S, + S_)(@h, + d,,)-

The first term expresses the mode 11 of the EM field, the second term expresses the 2LS and the third term
expresses their interaction. w,, is the (cyclic) frequency of mode 1 of the EM field and &}, (4,,) is the
photon creation (annihilation) operator of such a photon. /i) is the energy separation of the two levels
and S, (5_) is the electron raising (lowering) operator between the upper and the lower level. Finally, g,
expresses the strength and permissibility of the interaction of mode 11 of the EM field with the 2LS. The
third term of the Rabi Hamiltonian can be expanded into four addends. From these, the first addend ex-
presses raising of the electron and creation of a photon (§ a5, the second addend raising of the electron
and annihilation of a photon (g +d,,), the third addend lowering of the electron and creation of a photon
(S8_4t)), and the fourth addend lowering of the electron and annihilation of a photon (5_4,,). If there is
only one type of photons in the cavity, that is, only one mode 711, then the first and the fourth addends
seem energetically unreasonable. If we dismiss them, we arrive at the Jaynes-Cummings Hamiltonian [ 8],
a form of which is
Hicm = hawydlydy, + 1QS,S_ + 18,,(5 48y, + S_dh).

Using the Jaynes-Cummings Hamiltonian, we study photon absorption and emission and the relevant
Rabi oscillations of the probability to find the electron at each level (at the lower level (§_§+>, at the
upper level (5,5_)) and of the number of photons of mode 1 in the cavity ( (4},4,,)). Two examples are
shown in Figure 1.8. We calculate, among other things, the average (expected) values (ﬁfnﬁm ), (§+§_),

Oscillations in a two-level system
(On Resonance and Off Resonance) ©n

Oscillations in a two-level system
and Off R )

plotting with
g=01s 1

N
o

25 plotting with

g=001s"

probabilities
=2

probabilities

o

N

A=-01s"
n=4

3
\J
\
\

0.5

Figure 1.8: Two examples of Rabi oscillations during a photon absorption, i.e., the initial condition is 4
photons in the cavity and 1 electron at the lower level. We use some arbitrary values of the parameters
to make an indicative figure. On the right, the two levels are tangled more strongly (the parameter g is
larger). We present, the temporal evolution of the expected value of the number of photons in the cavity,

2
@ta,) =n- z}% sin?(Q,,t) (dashed cyan line), both on resonance (A = 0) and out of resonance (A #

. A 2
0), as well as of the expected value of the number of electrons at the upper level, (5,5_) = % sin’ (Q,1)

and at the lower level, (5_5.,).Q,, = \/(A/z)2 + ng2.

(§ A, (S _ﬁ; ), for I:chlm. Finally, we notice that the eigenstates of the electron in the 2LS and the EM
mode 11, without the interaction between them, are usually expressed as |T, 11,,,), ||, 1,,,), where 11,,, is the



10 OVERVIEW

number of photons of EM mode 7 and [T) (||)) means that the electron resides at the upper (lower)
level.

AEYH Chapter 9 is also devoted to the full quantum mechanical approach. We discuss bosons,
fermions, commutations, anticommutations, ladder operators and second quantization. We are interested
in:

the commutator, [A, B] = AB — BA, and

the anticommutator, {A, B} = AB + BA.

*

If the commutator vanishes, AB = BA, we have the commutative property.

*

If the anticommutator vanishes, AB = —B A, we have the anticommutative property.

Boson (e.g. photon) commutation relations: Let us call 4,,, the boson annihilation operator and Al the
boson creation operator at the state or mode 11, where fiw,,, is the energy of the created or annihilated
boson, then, for bosons, the following commutation relations hold:

When [A,B] =0 = AB-BA =0 = AB = BA, i.e, the quantities A and B commute, which shows
the name origin. Simultaneously, 41, can be called raising operator because it raises the energy by ficw,,,, 4y,
can be called lowering operator because it lowers the energy by fiw,,, and therefore, since this is a ladder
of raisings and lowerings, the operators 4,,, a, are called ladder operators.

Fermion (e.g. electron) anticommutation relations: Let us call 3; the fermion annihilation operator and

?1? the fermion creation operator at state 7, where /i(); is the energy of the created or annihilated fermion,
then, for fermions, the following anticommutation relations hold:

4,4/} =06
{ai/ a]} =0

AT AT
{ai/aj} =0

ij

When {A,B} = 0 = AB+ BA = 0 = AB = -BA, ie, the quantities A, B anticommute, which
shows the name origin. Simultaneously, ﬁ:-r can be called raising operator because it raises the energy by
7€)}, 3; can be called lowering operator because it lowers the energy by 7€), and therefore, since this is
a ladder or raisings and lowerings, operators a;, ﬁ;r are called ladder operators, too. Alternatively, we use
the notation: S, for the raising operator at the upper 2LS level from the lower 2LS level and S_ for the
lowering operator to the lower 2LS level from the upper 2LS level. Simultaneously, S could be called
electron creation operator at the upper level and destruction operator at the lower level, while S_ could

be called electron destruction operator at the upper level and creation at the lower level. If we apply the

} = O for the same state, e.g. putting i = j = 7, we obtain {&I, ﬁ:} =0= ﬁ:ﬁ: = 0, which

af

relation { ﬁ:-r, c
means that we cannot put two fermions at the same state, which is the Pauli exclusion principle.

In linear algebra as well as in its applications in quantum mechanics, we define the raising operator,
which increases the eigenvalue of another operator, and the lowering operator, which decreases the eigen-
value of another operator. These are collectively called ladder operators. In quantum mechanics, the rais-
ing operator is frequently called creation operator, and the lowering operator is frequently called annihi-
lation operator. Well-known applications of ladder operators are in the simple harmonic oscillator and in
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angular momentum. In quite a few areas of physics and chemistry, the use of these operators instead of
wavefunctions is known as second quantization.

AFTH m Chapter 10 we discuss the density operator and matrix. We clarify what a pure state is
(the system is described by a wave function), what a mixed state is (the system cannot be described by
a well-defined wave function, e.g., because it is coupled to a reservoir with which it can exchange heat,
particles etc.). We also discuss the relation of the density operator and matrix with the temporal evolution
of the system and the von Neumann equation. The density operator for a pure state can be written as

c1(t)
~ CH(t
p=twyw, wy=|20|
cn(t)
Thatis, [V) = X, ci(t) |Dx), where |Dy) is our basis. Hence, (V| = [C’i (t) c(t) - C;V(t)], hence,
the representation of the density operator in matrix form is
c1(t) ci(B)ei(t) cr(b)ey(t)

W) (Wl = |e®[60) GO ]=|aba® abo®

The temporal evolution of the density operator is given by the Liouville - von Neumann equation

dp .
0 — 111, po),

where H = Hy + U= (7, t) is the system Hamiltonian. If we include energy level relaxations due to spon-
taneous emission or de-excitations, collisions with gas atoms etc, then

odo) . 17
; % = [, p(o)] - S, (),

where f(I)k(7) = VD (7), Yk € R and the Hamiltonian is written H = HO + Uz (7 t) - %f

AEY[H Chapter 11 is devoted to LASERS; specifically, to the operation principles, rate equations
for the level populations and for the energy density of the EM waves in the cavity, longitudinal and trans-
verse modes, and types of LASERs. As a prototype system, we examine the He - Ne LASER, while we also
mention other LASER types, such as the p-n junction LASER, the quantum dot LASER etc. We focus on
the rate equations for the level populations N7 and N, for the levels which participate in the emission of
coherent EM waves and for the energy density of EM waves in the cavity p, that is, on Ni/it, Nafit, 4pfas.
We explain what the longitudinal and transverse modes are. We discuss the optical transition line widths.
Apart from the temporal evolution of N1, Ny, p, generally, we also focus on the values of Ny, Ny, p, at the
steady state, i.e., when a dynamical equilibrium between the statistical set of 2LSs (we have a large number
of 2LSs in the cavity) and the energy density of EM waves in the cavity has been established. We explain
what pumping;, critical pumping and population inversion is. The differential equations, which tangle N,
Ny, p, generally, cannot be solved analytically, but numerically. Here we solve them by matlab; an exam-
ple is shown in Figure 1.9. We notice, finally, that even though the emission of coherent EM waves (aka
lasing) is usually between two tangled levels (2LS), other levels are also involved in the whole process
with auxiliary role.

The LASER rate differential equations in dimensionless form have the form

dvy 121
— =vy 4+ 0(Vy —Vq) — —,
i 2 +0(vp —v1) T
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Figure 1.9: We modify only one parameter (from the set ry, 71, Tg, 4/4) and we observe the temporal
evolution of the dimensionless level populations (11, ,) as well as of the dimensionless energy density
of EM waves inside the cavity (¢) as functions of the dimensionless time (7).

dv
d_T2 =1y +o(vi —vy) — vy,
do 0 A’
I R )

Here 11, 15, 0, T are dimensionless Ny, Ny, p, f (time), while, 7y, 71, 7o, 4/4 dimensionless parameters,
whose meaning is explained in Chapter 11. At the steady state, ignoring 4/4 < 1, the following equations
hold

vy =11y, Y1y

Vo = N, VTNS1
2 T17N+(1—T1), Vry21

_ 0, VT'Nﬁl
T Y ry-1, Vg1

An example of numerical solution of the rate equations is shown in Figure 1.9, where we modify only one
of the parameters 1, 71, Tg, 4/4; Details in Chapter 11. Finally, in Chapter 11 we touch upon the isolation
of the fundamental mode TEMy as well as of higher order modes TEM,/s (here TEM means transverse
electromagnetic).

AETH I Chapter 12 we lay down various other useful elements. Among these, we examine the
Fresnel equations, which concern the incidence of an EM wave at an interface between two media, 1
and 2 (Figure 1.10). The plane of incidence g is the plane defined by the incident wave vector E and
the normal to the interface, at the point of incidence, unit vector 1, that is, in Figure 1.10, the xy-plane.
The reader can see the angles of incidence, reflection, refraction or transmission, 0;, 0,, 0;, respectively,
as well as the components of the electric field E, the so-denoted s from the German senkrecht or TE

(transverse electric) with Es 1 g and the so-denoted p from parallel or TM (transverse magnetic) with



QUANTUM OPTICS 13

Figure 1.10: Incidence of EM wave at an interface between two media 1 and 2. Plane of incidence g is the
plane defined by the incident wave vector Ei and the normal to the interface, at the point of incidence, unit
vector 71, that is here plane x1. We observe the angles of incidence, reflection, refraction or transmission,
0;, 0,, 0,, respectively, as well as the s (perpendicular to q) and I3 (belonglng to ) components of the

incident, reflected, refracted or transmitted electric field E, sis Epl, Esr, Epr, Est, Ept! respectively.

= .
E, € g, thatis, the components of the incident (7), reflected (7), refracted or transmitted () electric

ﬁeld Esz, Epz, Esr, Epr, Est, Epf , respectively. The angle of incidence for which there is no reflected p polar-
ization, is called the Brewster angle. We will also define reflectance, R := |Er|2/ |§i|2, and transmittance,

T := (|Et|2/|Ez|2) Ve p1/€q o (cos O/cos 0;), which are connected via R + T' = 1, the Poynting vector,

— — —
S := E X H which has units of power per unit area, as well as other relevant quantities and properties.

After this overview, it is time to take things from the start ...
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CHAPTER 2

THE QUANTUM NATURE OF LIGHT

In this Chapter:

We discuss the quantum nature of light. The chapter is devoted to phenomena and concepts that histor-
ically led to our perception of the quantum nature of light. Specifically: Initially, we refer to the concept
black body and relevant concepts. Then, we describe the energy density of EM radiation in an infinitesi-
mal frequency interval, of a black body in thermodynamic equilibrium. We refer to Planck’s law and com-
pare it with Rayleigh-Jeans and Wien approximations. Later, we delineate two formulations of the Stefan-
Boltzmann law, the first with energy density and the second with intensity of radiation. We continue by
discussing the Maxwell equations in total charge and current formulation as well as the boundary con-
ditions at an interface. Also, we discuss the existence of EM waves in the absence of current and charge
density, fields inside an ideal conductor, fields at the boundary of an ideal conductor, fields inside cavities.
Then, we discuss the normal EM modes inside a rectangular parallelepiped cavity, and we calculate the
infinitesimal number of EM field normal modes per infinitesimal frequency interval. At this point we are
in the position to prove the classical Rayleigh-Jeans law, using the equipartition of energy theorem and the
infinitesimal number of EM field normal modes per infinitesimal frequency interval. This law is a colossal
failure of classical physics. Next, we present the proof of Planck’s law as Planck proved it. Then, we prove
the Wien displacement law in several variations. Finally, we describe the photoelectric effect.
Prerequisite knowledge: Basic knowledge of Physics and Mathematics plus a little bit of Electromag-
netism and Statistical Physics.

2.1 Black body and related concepts.

Let us start by some definitions. Let us assume that electromagnetic (EM) waves or, in other words, elec-
tromagnetic radiation impinges on a body, as schematically depicted in Figure 2.1. Then, we define the
following physical quantities:

Constantinos Simserides (2023). «Quantum Optics>.
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16 THE QUANTUM NATURE OF LIGHT

. absorption coeflicient, a, is the fraction of EM radiation the body absorbs.
« transmission coefficient, 7, is the fraction of EM radiation that passes through the body.
« reflection coefficient, p, is the fraction of EM radiation the body reflects.

These three quantities are connected through the relation

a+t+p=1 (2.1)

'\P

EM waves

a+p+T=1

Figure 2.1: Electromagnetic waves impinge on a body. We show schematically the absorption («), trans-
mission (7), and reflection (p) coefficients, obeying the relationa + 7 + p = 1.

But what does the term “black” exactly mean? The scientific definition is rather strict... A black body
is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency
and regardless of angle of incidence. A black body lets all incident radiation pass inside it, reflecting no
incident radiation (p = 0), absorbing all incident radiation (& = 1) and letting no radiation pass through
it (t = 0); all these hold for all frequencies and for all angles of incidence. Thus, a black body is a
perfect absorber of incident EM radiation.

Of course, if this was the case (@ = 1, p = T = 0), then, due to constantly absorbing energy, the
black body would continuously increase its temperature. Hence, a black body that is in thermodynamic
equilibrium and consequently in constant temperature, should re-emit electromagnetic radiation.
This radiation is called black body radiation and conserves the equilibrium of energy. Black body radia-
tion obeys the Planck’s law (§2.2, §2.13, Figure 2.2) so that its spectrum depends only on temperature,
regardless of the shape and composition of the body, the angle of emission, etc. A black body in thermo-

dynamic equilibrium has the following remarkable properties [1]:

« (P1).1tis anideal emitter, i.e., it emits at each frequency at least as much energy as any other body
at the same temperature.

« (P2).1Itis an isotropic emitter, i.e., the energy is radiated isotropically, independent of direction.

Real bodies emit only a fraction of the black body radiation. The emission coefficient or emissivity,
€, is the fraction of EM radiation that is re-emitted by a body. By definition, for a black body in thermo-
dynamic equilibrium, € is equal to one,

in thermodynamic equilibrium | _
€black body =1 (22)

In summary, for the black body it holds that

a=1l,p=1t=0e=1 (2.3)
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Figure 2.2: Black body radiation according to Planck’s law (see §2.2 and §2.13). It depends only on tem-
perature and not on the shape, body composition, angle of emission, etc..

Abodywithe < 1iscalled agraybody. Abody that reflects all incident radiation is called a white body
(p =1),thusa = T = 0. All these supposedly hold regardless of frequency, direction or temperature. A
body that transmits none of the EM radiation that reaches it (7 = 0), thusa + p = 1, is called an opaque
body. A body that transmits all of the EM radiation that reaches it (7 = 1), thusa@ = p = Ois called a
transparent body. The above definitions are summarized in Table 2.1.

Table 2.1: Definition of bodies..

black body a=1,p=1t=0,e=1

gray body a,p,t,e<l1
white body p=lLa=1t=0
opaque body T=0,a+p=1

transparent body t=l,a=p=0

Radiation from stars, planets and other bodies is commonly characterized by an effective temperature,
i.e., by the temperature of a black body that would emit the same total (meaning integrated over all
frequencies) intensity of radiation, I (units [I] = W/m?, §2.3).

minimal
hole

opaque
enclosure

Figure 2.3: Cavity with a hole: an approximate realization of the black body by opening a minimal hole
on the wall of an opaque enclosure.

An approximate realization of the black body can be seen in Figure 2.3. An approximate black body
can be constructed by opening a small hole on the wall of an opaque enclosure, e.g., on a wall of a com-
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mon box, thus creating a cavity with a hole [2]. In photonics, we sometimes refer to the term cavity
implying the presence of this minimal hole. Due to the minimal size of the hole compared to the cav-
ity, the light that enters the cavity is (almost) reflected for ever or absorbed and it is improbable that
it will escape from the cavity, making our system an almost ideal absorber. Whether this system is in
thermodynamic equilibrium and thus the radiation it emits is black body radiation that follows the
Planck’s law depends on the nature of the wall and the other contents of the enclosure [3]. Let us now
assume that the cavity is kept at constant temperature T and that the trapped radiation is in ther-
modynamic equilibrium with the enclosure. Generally, the hole will let a fraction of radiation escape.
If the hole is small enough, the incoming and outgoing radiations have negligible effect on the equilibrium
of radiation inside the cavity. The radiation that escapes will approximately be black body radiation,
distributed according to the Planck’s law characterized by its temperature T, and it will not depend
on the properties of the cavity with a hole, atleast for wavelengths adequately smaller than the size
of the hole. The cavity with a hole has been used at least since 1898, when it was described by Otto Lum-
mer and Ferdinand Kurlbaum. Their design was a hole on a platinum box, with its interior blackened with
iron oxide [4] or later with a mixture of chromium, nickel, and cobalt oxides [ 5 ]. Below, we mention some
additional approximate realizations of the black body.

There is an interest in near-black bodies or materials for applications such as camouflage (mainly from
radars), solar energy collectors, and infrared thermal detectors. As a perfect emitter of radiation, a hot ma-
terial with nearly-black-body behavior would create an efficient infrared heater, particularly in space or in
a vacuum, where conductive heat transport is impossible. Near-black bodies are also useful in telescopes
and cameras as anti-reflection surfaces to reduce stray light, and in information-gathering about objects in
areas with high optical contrast, e.g. to observe planets orbiting around their stars, where near-black ma-
terials absorb light that comes from the irrelevant sources. A first approximation of a black body is carbon
black. It has been shown in recent years that nearly perfect black bodies (& = 0.99) can be constructed
using carbon nanotubes [ 6, 7], while the simple color black has & < 0.975. The material “super black” has
a = (0.996 and p = 0.004. A few years ago it has been announced by Surrey NanoSystems that a material
called Vantablack has been developed by carbon nanotubes, absorbing, according to the manufacturers,
99.96% of the incident light. An image of Vantablack on an aluminum foil can be seen in Figure 2.4. The
name originates from vertically aligned nanotube arrays (VANTA) [8] and the word “black”. Vertically
aligned carbon nanotubes (CNTs) like a fuzzy forest of tiny trees has been recently used to develop a ma-
terial that is one order of magnitude darker than other very black materials [9]. According to the authors
[9], “the CNT-metal hierarchical architectures demonstrate omnidirectional blackbody photoabsorption
with the reflectance of 1 X 107> over the range from ultraviolet to terahertz region, which is one order of
magnitude lower than that of any previously reported broadband absorber material.”

£

Figure 2.4: The material Vantablack composed by carbon nanotubes (Surrey NanoSystems) which, ac-
cording to its manufacturers, absorbs 99.96% of incident light, on an aluminum foil.

Planck’s law, formulated in 1900, describes the energy density of EM radiation, in an infinitesimal fre-
quency interval, of a black body in thermodynamic equilibrium, p(v, T)dv. Specifically,

8mth 3
3w
eksT —1

p(v, T)dv = dv. (2.4)
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The units of p(v, T) are [p(v, T)] = ﬁ This is a formulation of Planck’s law as a function of frequency.
There are other formulations, too, which will be described later, e.g., as a function of the wavelength, A, of
the angular frequency, @, and of the wavenumber, k.

2.2 Energy density of EM radiation in an infinitesimal frequency interval, of a black body in ther-
modynamic equilibrium: Planck's law and comparison with Rayleigh-Jeans and Wien approx-
imations.

The energy density of EM radiation, in an infinitesimal frequency interval, of a black body in thermody-
namic equilibrium, p(v, T)dv, was meant to become one of the issues that revealed the quantization
of EM radiation. Below, we mention three equations that were introduced in search of an explanation for
the experimental behavior; the Rayleigh-Jeans expression (theory, classical physics, 1900), the Wien’s ex-
pression (fitting with experimental data of that era, at high frequencies, 1896), and eventually, the Planck’s
expression (theory, old quantum mechanics, 1900) that coincides with the experimental behavior in the
whole frequency range. Hence, we have the Rayleigh-Jeans law (theory, classical physics, 1900),

8mv2ky T

pR_](V/ T) = 3 = pR]/ (25)

c

the Wien’s law (fitting with experimental data of that era, at high frequencies, 1896),

3 3
V™ constants from 8nth v
pwlv 1) = o S——— 5 JwlieT = PW’ (2.6)

ebv/ T Planck’s law
where the notes above and below the “=" sign mean that before the sign we present the original expression
that Wien proposed and after the sign we present the constants predicted by Planck’s law in the asymptotic
limit of high frequencies, in which Wien’s law approximates Planck’s law. Finally, the Planck’s law (theory,
old quantum mechanics, 1900) that coincides with the experimental behavior for all frequencies,

_8mh v
p(V/ T) - c_3€hV/kBT _ 1 - p (27)
Let us change the variables, defining
hv
= — 2.8
XE T (2.8)
Then,
kgT kgT
V= BTx =dv = Bde. (2.9)
Then, the essential difference of the above laws is revealed:
pry(x) = pox? (2.10)
x3
pw(x) = Pox (2.11)
x3
= 2.12
pO) = por—7 (2.12)

hZ

3
0y = o8 ("B_T) (2.13)
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The units are [pg] = % = ﬁ Of course, 0 does not belong to the domain of Eq. 2.12, i.e., we do not

refer to zero frequency or infinite temperature. An alternative notation found in the literature for p(v, T')
isu(v,T).
As mentioned above, the Planck’s law can alternatively be stated as a function, e.g., of the wavelength,

A, ie,, in the form p(A, T). This can be done by demanding

f p(A, T)dA = f o, Tdv = (2.14)
0 0
© g h 3
fmem f = W (2.15)
kBT —
However,
C=/\v<:>v:£:>ﬂ=—i. (2.16)
AT dd T A2
Hence,
o0 01 1 ® dA
J‘MLTMA:$wa-?—W——dA:&maf——mf——: (2.17)
0 o A T 1 O A5(e™eT —1)

the Planck’s law as a function of the wavelength and the temperature is

81th
p(A,T) = 7; ‘ (2.18)
A5(eksT — 1)
Defining
_ e (2.19)
v= AT '
and
(ksT)°
(= 8m 2.20
pO (l’l )4 ( )
Eq. 2.18 is written as
¢5
= pHh———— 2.21
p) = Pt — (1)
The units of p() are [pg] = —5-- Hence, the units of p(A, T) are [p(A, T)] = —)as well. These differ
from the units of p(v, T), whlch are[p(v, T)] = L .In other words, although we use the same symbol

(p), it is not the same physical quantity. Of course, in Eq 2.21, 0 does not belong to the domain of p(¢),
i.e.,, the wavelength and the temperature cannot become infinite.

The three above expressions are compared in Figure 2.5. The once so-called ultraviolet (UV) catastro-
phe, i.e, the divergence of the classical Rayleigh-Jeans approximation increasing frequency, is more than
evident. Hence, the classical approximation is satisfactory only in the regime of very small frequencies;
then, as the frequency increases, it predicts an infinite p, in disastrous contradiction with the experimen-
tal data. The Wien’s approximation has a problem on the opposite limit, i.e., for small frequencies, where
it deviates from the experimental behavior, a fact once called far-infrared (FIR) problem. These characteri-
zations are related to the available experimental data around the 1900s and are, in this sense, deceptive. In fact,
the region where deviations begin to be significant obviously depends on the temperature of the black
body: the expressions 2.10, 2.11, 2.12 differ only in the function of x, which according to Eq. 2.8 depends
not only on frequency, v, but also on temperature, T
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Figure 2.5: Comparison of the Rayleigh-Jeans (Eq. 2.10), Wien (Eq. 2.11), and Planck (Eq. 2.12) laws.
We have set py = 1 (Eq. 2.13), for simplicity, to make the plot. We observe the deviation of the clas-

sical Rayleigh-Jeans theory from Planck’s law (which agrees with the experiment) very soon increasing
h
= ﬁ , as well as the deviation of the Wien fitting from Planck’s law at low enough x. x includes both
B

frequency, v, and temperature, T

2.3 Two formulations of the Stefan-Boltzmann law: (1) Energy density. (2) Intensity of radiation.

We present two common formulations of the Stefan-Boltzmann law, which refers to a black body at tem-
perature T.

’ enerqgy emitted
per unit area
o(T) = aT? per unit time
J W

m2s ~  m2

energy density
J

m?

black body cavity black body cavity

at temperature T at temperature T
1st formulation of the 2nd formulation of the
Stefan-Boltzmann law Stefan-Boltzmann law

Figure 2.6: [Left] The 1st formulation of the Stefan-Boltzmann law refers to the energy density ¢ (units

Jm®) inside a black body in thermodynamic equilibrium at temperature T and has the form o(T) = aT*.
514
= f;z 3;,, ~ 7.5657 X 10_16%1(‘*' [Right] The 2nd formulation of the Stefan-Boltzmann law refers to
m
the energy emitted per unit area per unit time, i.e., to the power emitted per unit area or to the intensity of

54
radiation I (units i = %), and has the form [ = 0T% 0 = 223 5.67 x 1078 —

T 15¢213 m2kt’

In its first form, the Stefan-Boltzmann law defines the energy density (units J*) inside a black body
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at temperature T'. To calculate it, we have to integrate Eq. 2.7, i.e., p(v, T), over all frequencies. Let us use
Eq. 2.8. Briefly,

0 0 3 [
8mh 18 Eq28 8mh (kgT\ kgT x3
e [t =[BT, e [
o(T) p(v, T)dv B3 gt _q v 3 ( h I a1
0 0 0
——— —
A
/15
8ok
T)= ——=T% 2.22
Thus
o(T) = aT* (2.23)
which is the Stefan-Boltzmann law in its 1st formulation. Here,
8ok} J
= ——— ~ 7.5657 x 10716 ——.. 2.24
“= 1503 m3K* (224)

Of course, the units of o(T) are [o(T)] = Jm® (energy density). The 1st formulation of the Stefan-Boltzmann
law is depicted in Figure 2.6 (left). An alternative symbolism for g(T) is ii(T).

In its 2nd form, the Stefan-Boltzmann law defines the energy emitted per unit area per unit time, i.e.,

the power emitted per unit area or the intensity of radiation I (units =~ = — ). Let as take for granted
me=s m

from the kinetic theory of gases [ 10, 11, 12] that the number of particle collisions (here, photons) onto a

wall per unit area and per unit time (units %) or the flux of particles (here, photons) is
n
P, = 1(0), (2.25)

where 71 is the particle density (units 1/m?) and (v) is the mean velocity of the particles (here, photons).
Thus, for photons,

n
CD]/ = ZC. (226)
But
I =)D, (2.27)
where
vy =2 (2.28)
n
is the average value of energy each photon carries. From Egs. 2.26, 2.27, 2.28 it follows that
c
I=-o. 2.29
2¢ (229)
Hence, due to Eq. 2.23,
21k
I= T 2.30
(15czh3 ) (2:30)

or
(231)

which is the 2nd and most common formulation of the Stefan-Boltzmann law. Here,

_2KS e o108
T 15¢2k3 T T % m2Kk’

o (2.32)
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The 2nd formulation of the Stefan-Boltzmann law is depicted in Figure 2.6 (right). In other words, the
2nd formulation of the Stefan-Boltzmann law states that the total intensity of radiation emitted by a black
body at temperature T'is proportional to the 4th power of temperature.

Some electromagnetic issues...

In order to prove Planck’s law, but also to prove the classical Rayleigh-Jeans law, we need to know, among

dN
other things, the normal modes of EM field in a cavity and, more specifically, g(v) = - that is, the
infinitesimal number of EM field normal modes in an infinitesimal frequency range. Hence, we will need
to address some electomagnetic issues...

2.4 Maxwell's equations. Formulation in terms of total charge and total current.

We know the Gauss’s theorem

A-da= | V-AdV, (2.33)
S=0V 1%
and the Stokes’ theorem
A-dé = V XA - da, (2.34)
L=0S

Here, K denotes a vector field, such as the electric field, magnetic induction, etc., S = dV denotes the
surface S containing a volume V, L = dS denotes the line L containing the surface S. Also, d?, da,dV de-
note infinitesimal length, infinitesimal area, and infinitesimal volume, respectively. These theorems allow
us to pass from the differential form of Maxwell’s equations

V-E-= 4 Gauss’s law for electrism (1st) (2.35a)

€0
V-B=0| Gaussslaw for magnetism (2nd) (2.35b)

- - JB
V XE= e Faraday’s law of induction (3rd) (2.35¢)

oo o JE
V X B = o] + HOEOE Ampére’s law and Maxwell’s correction (4th) (2.35d)

after some calculations,
§ e [9Bav= [ Ly - tmmar 360
S= aV Ve €0

B-da= V BdV=0> (2.36b)

5=0V

SQLEan? fv X E.da = f— f_——fB i = (2.36¢)
fLBanf fVXB da = f(y0]+y0€03 ] da = /Jof] d_’+y0€0f£ dd =

(2.36d)
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to their integral form

Qrg_yy = E-da= Jendlosedin v Gauss’s law for electrism (1st) (2.37a)
' §=9V €0
Dps_gy = B-d2=0| Gauss’slaw for magnetism (2nd) (2.37b)
S5=0V
5 o D
Eemr = Q@ E-dl = - 5s Faraday’s law of induction (3rd) (2.37¢)
1=95 Jat
- 8CDE S
B - dl = poliassing through 5 + Ho€0 Bt, Ampére’s law and Maxwell’s correction (4th)
L=4S

(2.37d)

In 2.37d, I assing through s i the current passing through the surface S.
In vacuum, where p = 0 andT = 6, Egs. 2.35a-2.35d become

V-E=0 (2.38a)
V-B=0 (2.38b)
V xE = 9B (2.38¢)
BT oo

. JE
V XB= uOEOE (238d)

2.5 Boundary conditions at interfaces.

We will now describe the boundary conditions at an interface. This information can also be found in a

electromagnetism textbook [ 13, 14].

A oA material (1)
e = n21 above the interface

thin
T disk
- A ~ )
t@O— g / \ —
h small material (1) interface h small ‘\\ - .
3 material (2) v : L
— R /
- — /
A
2| material (2)
. below the interface
AZ — _Aé

Figure 2.7: Boundary conditions for the 1st Maxwell’s equation. The direction of vectors ﬁl and Ez has
been chosen arbitrarily on purpose. Similarly we treat the 2nd Maxwell’s equation, where E should be

replaced by B.

& Let us apply the 1st Maxwell’s equation 2.37a on Figure 2.7, where an arbitrary direction of vectors El
and E, has been drawn on purpose.

E . dz — q enclosedin V .

Op sy =
S=9V €o
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_ 4 enclosedin V
€0

- — - —
(DE, upper circle — Eq- Al = ElJ_Al and q)E,lowercircle =E;- AZ = EZJ_AZ! where ElJ_/ EZJ_’AII AZ are

algebraic values. Thus

AE;| — AE,, + fE-dz:

Butwhenh — 0 = A — 0

= ff-da’—>0

Alateral

Alateral

o
Eyy —Ep =—
€o

= and

We denoted |A_>1| = |A)2| = |A)| = A. Hence, if, e.g., we have spread positive surface charge density o

- -
on the interface, then E1 | and E, | point outside of the interface. Concisely, we can write the alternative

forms

o
Ei, -Ep = .

0

or (El—ﬁz)'ézi

€o

or |(E;—Ep)-fiyy = —

o

€o

— - N o
or |(E;—Ejq)-figp = -

>

21 (from 2 towards 1)

fl1o (from 1 towards 2)

(2.39a)

(2.39b)

(2.39¢)

(2.39d)

¢ Similarly, let us now apply the 2nd Maxwell’s equation 2.37b on Figure 2.7, by switching EtoB.

Dp gy =

B-da=0.
S=0V

In accordance with the above, we arrive at the following alternative expressions

By, =By

or

(Bi-By)-2=0

or

(B1 —By) - fiy1 =0

or

(B, - By) - f11, = 0

é = f1p1 (from 2 towards 1)

f115 (from 1 towards 2)

Q Let us now apply the 3rd Maxwell’s equation 2.37c on Figure 2.8.

(2.40a)
(2.40b)
(2.40¢)

(2.40d)
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—_— A — N\
El € = Nyq
- direction of -

E loop ~ ~
- t®O—— g

O A material (1) interface
L
- t

E material (2)
L 2_1__) J
S=Lh Ejy L, =+Lg

Z
<

Figure 2.8: Boundary conditions for the 3rd Maxwell’s equation. The direction of vectors El and Ez has
been chosen arbitrarily on purpose. Here, the loop is on the plane (¢, ).

h interval h interval 9
El'z1+ ﬁdz +Ez'f2+ ﬁ_f)d?:—ﬁf_B)d?
small left small right 5
but when h—>0:>S:hL—>0:>f§~d5’—>O =
S
h interval h interval
butwhen i — 0= ﬁ-da —0= ﬁs-d?
small left small right

E1 'Ll +E2 'Lz =0= E1||L1 + E2||L2 =0= —E1||L+E2||L =0= E1|| = EZII‘

Above, we denoted |f1| = |f2| = |f| = L, while Eq, Ey);, L1, L, are algebraic values. Since

Ey - I1+E, I,=0=(E,-E})-§=0.
Hence, when the loop is on the plane (2, §) = the difference (E; — E;) L 3.
Similarly, when the loop is on the plane (&, ) = the difference (Ez - El) 17
Thatis, the difference (Ez - El) 1 interface

which can be written as (Ez - E)l) X8 =0.

Hence, concisely, we arrive at the alternative forms

E2|| == E1|| (2.413.)

(Ez - 1__:31) X e = 6 (24lb)

# Let us now apply the 4th Maxwell’s equation 2.37d on Figure 2.9.

B-df = pol + IPes =
. = . &£
Loas Ho passing through S Ho€o at
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B € =Nz
- A A = direction of
Ll — —Lg TBll loop R R
=< - tO—Jg

h (small) Bl

I
=

]linear A material (1) interface
Ot
L2

N 3

S=Lh By L,=+L§

material (2)

27

Figure 2.9: Boundary conditions for the 4th Maxwell’s equation. The direction of vectors §1 and E)z has

been chosen arbitrarily on purpose.

h interval h interval
- - — - —
Bl'L1+ 'df+B2'L2+ B-dt =
small left small right

J 5
yojlinear, passing through S L+ Ho€o E f E-dd
S=Lh

h interval h interval
butwhen K — 0= ﬁ’-d?:(): ﬁ-d?

small left small right

butwhen h—o0=S=Lh—0= fﬁ-dz—m
S=Lh

_Bl||L + B2||L = HO]linear, passing through SL'

Hence, concisely, we can write the following alternative forms

(BZ - Bl) xXe= {JOIHnear, passing through S (2423)

B, = B, = FOI linear, passing through S (2.42b)

If Jinear, passing through S = 0 = By = By By, By are algebraic values. We denoted |L;| = |L,| = |L| =
L. The units of lineqr, passing through § are A/m. Thus, in Eq. 2.42a or 2.42b the units are T = (N/A?)(A/m).

2.6 Existence of EM waves in the absence of charge density and charge current.

V-E= 8% (Lst) V.-E=0 (st)
V-B=0  (@nd)| V-B=0  (2nd)

L. oB S 9. B Ly (2.43)
VxE=-=" G| XE=-= (3ud)
= = - &E) o D _ E /
VXB=pof + oo (4th) VXB=poton, ()
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We will now use the identity

-

Vx(VxA)=V(V-A)-V2A,

where V2 is the Laplacian, for E and for B.

e For E):

wave equation

e For ﬁ:

wave equation

Vx(VxE)=V({V -E)-V2E =
(3rd’)
_ JB -
V x ( - —) -V o
ot
Jd 4th’
_ 2 (¥ xB)=-V2E =)
ot
J ( 8E) ~V2E =
gr\Hoc0 5y | =
g 9°E 1 -
e , Vy = =c
oo 912 ¢ Eotlo
= 19°E
E=2w >
, 12} -
V2 agp =0 or
OF = 6 where [ is the so-called D’ Alembertian.
- e A 3 - (2I1d,)
Vx(VxB)=V(V-B)-V?B =
(4th)
o JE )
V X (80[.10—1_) =-V-B =
- - (3d)
80[.100.)—(V X E) = —VZB =
J( JB -
orogy = 5r) =V =
\Y § 92§ ! c =
Eollg—, V= =
oo 012 ¢ Eollo
= 19%B
B 237 or
2 1 (92 &R
[V - C—Za—tz B = 0 or

where [ is the so-called D’ Alembertian.

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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2.7 Fields inside an ideal conductor.

A good conductor is a material that reflects most of the energy of an EM wave that impinges on it [ 14]. We
define as an ideal conductor a material that reflects all the energy of an EM wave that impinges onit [ 14].
Since the energy density of an EM wave is

50 1 80
U=—F*+_—B%= —[EZ + ZBZ], 2.55
27 Ton, T2lF T (2:55)
with units [U] = is , it follows that
m
inside an ideal conductor, E= 6 and E = 6 (2.56)

2.8 Fields at the boundary of an ideal conductor.

Let us remember the boundary conditions at an interface between two materials and further assume that
materal (1) is an ideal conductor while material (2) is vacuum or, in approximation, air.

o

Ey, -E =— GBC
€o

B, =By,

E1|| = E2|| = (2.57)

linear

B2|| - Bl” = Ho passing through S

units [A/m]

if
material (1) is an ideal conductor (B)l =0 and E)l = 6) = (2.58)

material (2) is vacuum or air

o
~E,, =—  SBC

€0
Bay =0 (2.59)
E2|| = O

linear

B 2| = Ho passing through S

GBC stands for general boundary conditions and SBC means specific boundary conditions. Also, let us
denote SBC* the subset of boundary conditions we will use more often.

E2|| = 0

(2.60)

2.9 Fields inside cavities.

We learned above that the largest fraction of the energy of an EM wave that impinges on the surface of
a good conductor is reflected; actually, if the conductor is ideal, then all the energy is reflected. Hence,
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-
T
vacuum

or
~ air

——

ideal
conductor

@B

Figure 2.10: On the surface of an ideal conductor, the component of B that is perpendicular to its surface

>
and the component of E that is parallel to its surface vanish, so the fields can only have some of the orien-
tations presented in this figure.

we can store EM energy in the form of standing waves inside a cavity with walls made of an ideal (or, in
approximation, good) conductor.
We also saw the SBC and focused on the SBC*

BZJ_ = O
Ez =0,

- -
i.e., for anideal conductor, the component of B that is perpendicular to its surface and the component of E
that is parallel to its surface vanish, as shown in Figure 2.10. Thus, the possible patterns and frequencies of

the standing waves that are preserved inside a cavity are determined by the shape of that cavity. Schemat-

ically,

patterns
(normal) modes { and

frequencies

2.10 Normal EM modes inside rectangular parallelepiped cavity.

Let us assume a rectangular parallelepiped cavity such as the one shown in Figure 2.11.

Inside the cavity p = 0, T: 0=

= 1 0%
V<4E = Er WEE (2.61)
and
,» 10%B

WEE means wave equation for E and WEB means wave equation for B. Since the walls of the cavity are

perfectly (ideally) conducting, in each one of its faces, the perpendicular component of the magnetic field
and the parallel component of the electric field must vanish (conditions SBC¥), i.e.,

)
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X .
A perfectly (ideally)
conducting walls
Ay
0 B aZ P

Y
vacuum inside

y

Figure 2.11: Arectangular parallelepiped cavity with perfectly (ideally) conducting walls. Inside the cavity
there is vacuum or, in approximation, air. To make a clear picture, only the lower (x = 0) and upper
(x = a,) faces have been colored, but all six faces are made of perfectly (ideally) conducting walls.

Plane waves in free space do not satisfy these boundary conditions. We can, however, search for solutions

by separating the variables 7, £, i.e., of the form

Space time

E(x,y,2,1) = Ex(x,y,2)e"" (2.64)

Due to Eq. 2.64, the WEE becomes

MV2E7 = —2(—1'0))2&'4}?7 =
c

- (L)2—> —
V2E; + C—2E7 =0 (2.65)

Then, we separate the variables x, , z, of 7. After several calculations [ 14] that will be omitted here, we

have:
E, = E, cos(k,x) sin(kyy) sin(k,z)e” ! = becomes zero for y = Oandz = 0 (2.66)
E, = E g sin(k,x) cos(kyy) sin(k,z)e ™! = becomes zero for x = 0andz = 0 (2.67)
E, = E,gsin(k,x) sin(kyy) cos(k,z)e®* = becomes zero for x = Oandy = 0 (2.68)
where
a)z
K+k+k=— (2.69)
C

In Figure 2.11, the lower and upper faces (where x = 0 and x = a,, respectively) have been colored, but
all six faces are made of perfectly (ideally) conducting walls. As it is evident from Egs. 2.66, 2.67, 2.68,
in the lower face, the electric field has only x-component, i.e., it is perpendicular to this face. Similarly,
the electric field has only y-component in the back face and only z-component in the left face; it is thus
perpendicular to these faces. In the same manner, the electric field, must have only x-component in the
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upper face, y-component in the front face, and z-component in the right face, i.e., it must be perpendicular
to these faces, as well.
Since E, must vanish forbothy = 4, andz = a, =

Y
sin(k,a,) =0 = k,a, = m,

sin(k,a,) =0 = k,a, = m,n
(yy) vty

Since E, must vanish for both x = 4, andz = a, =

sin(k,a,) =0 = k.a, = m,7
sin(k,a,) = 0= k,a, = m,m

Since E, must vanish forbothx = a,andy = a, =

sin(k,a,) =0 = k,a, = m,7

sin(kyay) =0= kya, =m,n
Concisely, in the upper and lower faces the electric field has only x-component, i.e,, it is perpendicular to
these faces, in the back and front faces the electric field has only y-component, i.e., it is perpendicular to
these faces, and in the left and right faces the electric field has only z-component, i.e., it is perpendicular
to these faces.

Additionally, it occurs that

k, = , k,=——, k,= , (2.70)

where m,, m,, m, € Z.

y/
Furthermore, from the (1st’) Maxwell’s equation, V - E = 0 =

kyExo +kyEyo +k.E-o =0, (2.71)
L , 0B
while, from the (3rd”) Maxwell’s equation, V X E = T =

l' .
B, = Z(EyokZ - Ezoky) sin(k,x) cos(kyy) cos(k,z)e '@t (2.72)

i .
By = Z(EZka - Exokz) cos(k,x) sin(kyy) Cos(kZZ)e_lwt (2.73)

l' .
B, = ;(Exoky - Eyokx) cos(k,x) cos(kyy) sin(k,z)e™ '@t (2.74)

Checking whether B satisfies the SBC* on the walls as well as the (2nd’), V-B= 0,and (4th’), V xB =

Eolo = Maxwell’s equations is left for the reader.

From Egs. 2.69 and 2.70 we can write

2
m,m m, Tt m,Tt
Wiy my,my = C\/( - ) + ( y_) + ( = ) . (2.75)
Y Ay a a,
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For a rectangular parallelepiped cavity,

T2 A2 2
Oty g m, = TIC (—x) + (—y) + (—Z) , (2.76)
a, a a,

for a tetragonal parallelepiped cavity (a, = ay=da’ ),

2
mﬁ + m§ mg
Oy, = MO\ ——5— + —, (2.77)
a a

and, for a cubic cavity (a, = ay =a, = a),

TIC
Dy = 4 |m2 + m3 + m2. (2.78)

Table 2.2: The values of ““/nc occurring from Eq. 2.78 in the case of cubic cavity, for several values of the
natural numbers 71, my, M. Whether zero electric and magnetic field occurs from Egs. 2.66, 2.67, 2.68
and 2.72,2.73, 2.74, respectively, is also noted, in column “amplitude”

My My, M, "““fzc “amplitude”
0 0 0 0 0
o o0 1 1 0
0 1 1 42 £0
1 1 1 43 #0
2 0 0 2 0
2 1 0 45 £0

We canalso choose 1y, 1, m, € IN (natural numbers) thus absorbing the sign changein E , Eyo, Ezo,
ie, allowing E,q, E,, E.p to take positive or negative values such that they agree with the boundary con-

ditions. In Table 2.2 we present some — ~ occurring from Eq. 2.78 for the cubic cavity for several values
of my, m,;, . Whether zero electric and magnetic field occurs from Egs. 2.66, 2.67, 2.68 and 2.72, 2.73,
2.74, respectively, is also noted, in column “amplitude”.

2.11 Infinitesimal number of EM field normal modes per infinitesimal frequency interval.

Below, we will prove that

dN 812V
gw) = m

(2.79)

v c3

where dN is the infinitesimal number of modes in an infinitesimal frequency interval dv and V is the
volume of the cavity, which is a 3D box. In other words, we are interested in the quantity

dN _ d(number of normal modes)

8w) = F d(frequency)

8001 =

The proof will be provided for periodic boundary conditions and for the rectangular parallelepiped cavity
of the previous Section 2.10.
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2.11.1 1st case: Periodic boundary conditions.

Let us suppose that the electric field is subject to periodic boundary conditions, i.e., that
E(?, £ = E’Oei(ﬁ?—wtm)
E(0,t) = Eyel-t+e) = ek =1 & ka, =2nn,, n,€Z

E((ﬂx, 0,0),t) = Eoei(kxax—wmp)

Thus
2mn
k,=—=, n,eZ
ax
2nn,
similarly, k, = , nyeZ (2.80)
y
21n
k,=—=, n,eZ
aZ

As seen in Eq. 2.80, the possible values of k are discrete. The step defining the discreteness in k-space is
2 2 2
Ak, = Z in the x-axis, Ak, = =" in the y-axis, and Ak, = = in the z-axis. These points in k-space are
X g, Yy a, Z g,
drawn in Figure 2.12. Note that in Figure 2.12 only one octant of the k-space is shown; however, k coversall

8 3
eight octants, i.e., the whole k-space. From Eq. 2.80 it occurs that the infinitesimal k-volume is % , where

r 3 kZ
Ak 21
P i I N z =~
/// a,
7 K
9 S >y
- = R . = 2
kx ) /// x a,
Ak'/ _ 2T
Y a,

8 3
Figure 2.12: The possible values of k are discrete and the infinitesimal k-volume is % , where V is the

volume of the cavity (Eq.2.80). In each of the 8 vertices of this infinitesimal volume lies one k-state which
belongs to it by 1/8, since it is shared by 8 similar adjoining infinitesimal rectangular parallelepipeds.

V is the volume of the cavity. In each of the 8 vertices of this infinitesimal volume lies one k-state which
belongs to it by 1/8, since it is shared by 8 similar adjoining infinitesimal rectangular parallelepipeds. Let
us also consider the infinitesimal volume from k to k + dk; i.e. the spherical shell of radius k and thickness
dk, which is equal to 47tk?dk, and denote by N the number of k-states inside this spherical shell. Hence,

2n)* 87 1
in k-space @) =T 3 8= =1 k-state
Ay 0, v 8 =

in k-space k — k +dk ie. 4k®dk 3 dN; k-states
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Ank2dkV 1
_ 2
Ny = —¢ 53— =5 K°dkV 1 4n2v2ndvV  4nV
2 2 2 AN, =5 5 =5 v
CZAV:TVSk:TVSdk:TdV

5
However, there are two possible polarizations of the electric field perpendicular to k, as shown in Figure
2.13. Therefore, the number of states is

8V
AN = ——v?dv, (2.81)
C
hence,
) dN  8mAV
V = — == ,
3 dv c3
which is Eq. 2.79 that was to be proven.
E
2 possible

polarizations

Figure 2.13: There are two possible polarizations of the electric field perpendicular to E

2.11.2 2nd case: Rectangular parallelepiped cavity.

From Eq. 2.66, if we suppose that, for symmetry reasons, the electric field should point towards the same

side of the upper and lower faces of the rectangular parallelepiped, i.e., if E,(x = 0) = —E,(x = a,), it

is implied that1 = —cos(k,a,) = cos(k,a,) = -1 = k, = (me+1)7'(’ m, € Z. Thus, the step that

Ay

2
defines the discreteness in k-space in the x-axis is Ak, = a—n (similar considerations hold also for the y-
X

8 3
and z-axes.). Hence, the infinitesimal k-volume is = , where V is the volume of the cavity. Hence, just as
in the previous Subsection 2.11.1, Eq. 2.79, which was to be proven, occurs.

2.12 Proof of the classical Rayleigh-Jeans law using the equipartition theorem and the infinitesimal
number of EM field normal modes per infinitesimal frequency interval.

As shown below, p(v, T') is the energy density per unit volume per unit frequency, while ‘% is the density

of normal modes per unit volume per unit frequency. Hence, for a given g(7v) , we have to multiply it by the

average energy of each normal mode, E to obtain p(v, T).

AN  8m2V 1
g =—=—73—= 8] = — =5
gw) _ 812 gm|_ 1 s
vV 3 V | Hzm® m3
plv,T) = pEY) (o, T)] = —— = 35

vV m3Hz md
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According to the classical equipartition theorem [ 10, 11, 12], in thermal equilibrium, we attribute to each

degree of freedom of the building block of the system the average energy E(T) = %kBT. Thus, e.g., in

a system of N building blocks, each having M degrees of freedom, the energy is #kB T. The average
energy of each normal mode is

—_— 1
E(T) =M X EkBT. (2.82)
Hence,
. . - 3 - 3
ina 3D ideal gas Exin = EkBT = E= EkBT
_ 1 -1
ina 1D ideal gas Exiny = EkBT =E= EkBT
- - 1 -

in a 1D simple harmonic oscillator (SHO) Evor = Exin = EkBT = E=kgT

Epor (Exin) is the average potential (kinetic) energy. Therefore, supposing an ensemble of SHOs with
E = kg T, we conclude that

8m1?
p(v,T) = 3 kgT Rayleigh-Jeans law (2.83)

Hence, forv — 00 = p(v, T) — oo, that is, we have great problem increasing frequency, because this
behaviour contradicts emphatically experimental data: The limit to infinity disagrees with experimental
data, i.e., we have “catastrophic” disagreement with the experiment at higher frequencies. This behaviour
was named in the past “ultraviolet catastrophy” because it was first observed in the ultraviolet regime. This
issue was addressed in Section 2.2. Let us notice that if we did not assume two degrees of freedom so that

to obtain E = ;kBT = kgT but M degrees of freedom, then the only thing that would change would

812 M
C3 ?kBT. The

extremely problematic behavior 12 that increasing v leads to infinite p(v, T)) would not change at all.

= M
be a constant, because we would obtain E = ?kBT and we would arrive to p(v, T) =

2.13 Proof of the Planck's law the way Planck did it.

We will follow here the assumptions Planck was forced to make in 1900 in order to prove the equation
known today as the “Planck’s law” [ 15 ], which agrees with experimental data on black body radiation. The
problem of black body radiation had been opened at least since 1859 by Kirchhoft. Planck was involved
with the problem of black body radiation from 1894. The Wien’s law, which provides an equation that just
happens to fit the experimental data at high frequencies, was proposed in 1896. The Rayleigh-Jeans law,
which emerges from classical physics, can describe the black body radiation only at very low frequencies,
i.e., it fails miserably, as we have just seen above. Thus, a consistent theoretical explanation covering all
frequencies was missing.

After several failed attempts, Planck proposed in 1900 a proof involving the assumption that EM en-
ergy can only be a discrete, “quantized”, multiple of the quantity /v, where /1 is what we now call “the
Planck’s constant” and v is the radiation frequency. Furthermore, he utilized the statistical Boltzmann dis-
tribution. He was definitely not happy with these assumptions; however they were imposed to him by the
need to explain the experimental data. Soon, in 1905, Einstein [ 16] explained the photoelectric effect by
assuming that such quanta of light exist. The term “photon” was written for the first time in 1926 by G. N.
Lewis [17].

Planck was essentially forced to introduce the notion of the resonator, which has discrete, that is, not
continuous but depending on a natural number, 71, in other words, “quantized”, allowed values of its energy,
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E,, for a given frequency, v. Then he had to assume that the energy corresponding to a given frequency,

v, and temperature, T, is in reality an average value, E(v, T), of the energies of a large number of identical
resonators, each of which is at a different energy level, E,;, while the occupation probability of the levels,
P, is given by Boltzmann statistics.

So, we will assume that the EM energy of a resonator with frequency v inside a black body cavity can
only take discrete values, i.e., it is “quantized” and, actually, that it takes the form

E,=hvwn, n=0,1,23,.. (2.84)

1
We underline that if, instead of this relation, we set E,, = hv(n + 5)’ as we know today for the quantum
simple harmonic oscillator, we do not obtain the Planck’s law... We notice that classically, according to

the equipartition theorem, in thermal equilibrium we attribute an average energy E(T) = %kBT to each
degree of freedom of the building block of the system. Hence, e.g., in a system with N building blocks,

NM
each having M degrees of freedom, the energy s TkB T'.In contrast, here we will assume that the average
energy of a normal mode depends not only on temperature, but also on frequency

Ew,T) = Y, Epy (2.85)

and that the probability that the building block has energy E,, is p,,, given by Boltzmann statistics, i.e.,

_Eﬂ
ksT

pn = 7, (286)

3}

Z = e, (2.87)

Xi=—. (2.88)

From Egs. 2.84, 2.85, 2.86, 2.87, 2.88, it follows that

e kgTx
zZ  Z

EW,T) = Z nxkgT Z ne—"x, (2.89)
n n

1
Z = = , 2.90
D= (2.90)

n

since we have an infinite sum of terms of the geometric progression a4,, = ¢™* with initial value ay =
— . a — . . “« 2 .
e~0% = 1 and ratio 3= Z—H = ¢ < 1. [Here, we used the archaic Greek letter sampi (“san pi”, which

n
means “like a 71”).] Let us now also try to express .2/ as a function of x. From Eq. 2.90 it occurs that

27 Cur e
il zn: ne ™ = =y = (2.91)

A = (2.92)
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Consequently, from Egs. 2.89, 2.90, 2.92 we obtain

e 1
Ew,T) = kBTx1 = kBTx — (2.93)
And, if we remember how x was defined (Eq. 2.88), we arrive at
h
Ew,T) = — - (2.94)
eksT —1
In analogy with what we did in Section 2.12,
dN  8m2V 1
s =—r=—73—= [gW)] = - =s
gv)  8mv? sm]_ 1 s
Vv h C3 \%4 B Hz m3 B m3
= 80) J Js
T . T)] = =
pv, T) = E(v, )= (v, DI = =3

Now E(v, T') depends not only on temperature T but also on frequency v. Actually, it is given by Eq. 2.94,
therefore,

hv  8m/?
pv,T) = — > (2.95)
eksT —1

Consequently, the energy density per unit frequency of the EM radiation of a black body in thermody-

namic equilibrium, p(v, T), with units S is
m VA

8nth 13
p(V/ T) = C_S Ty (296)
eksT — 1

In other words, we have obtained the Planck’s law (Eq. 2.7).

2.14 Proof of the Wien's displacement law.

For Planck’s law in the form p(v, T), proven above, we will find the —as a function of temperature- fre-
quency, Vo(T), where we have maximum of p(v, T), i.e,, Eq. 2.98. Let us remember the form of the Planck’s
law after the change of variables (Eq. 2.8), i.e., after we have set

h kgT kgT
x:—V:>v:B—x:>d =2 dx.
kgT h h
Then, Eq. 2.12 occurs,
x3
P= Py
where, according to Eq. 2.13,
81 (kgT :
po h2\ ¢
with units ]
[Po]
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Of course, x = 0 does not belong to the domain of the function p(x), i.e., we do not refer to zero frequency
of infinite temperature. Therefore,

d 3x%(e¥ - 1) — x3¢* 3(e* - 1) — xe*
P _ o €-1) = poxz—( ) . (2.97)
dx (e -1) (ex-1)
Since we are looking for extrema, the derivative Z—Z should become zero, thus,
dp
o =0=3("-1)—xe* =0= (since x #0) xg~ 3.
X
X is the desired root and v the respective frequency, i.e. xy = :L;. More precisely, a graphical or numer-
B

ical solution gives x = 2.821439. The graphical solution is presented in Figure 2.14. Finally,

_ ksTxg _ kpT 2.821439
T n h

Vo ~ (58.789 GHz/K) T =

Vo
- = 58.789 GHz/K (2.98)

Eq. 2.98 shows how the frequency at which we have a maximum of p(v, T) is shifted as a function of tem-
perature T, it is thus a “displacement law”, although it is expressed in terms of frequency and not wave-
length, as the usual “Wien’s displacement law”, of Eq. 2.101, which is proven below.

f(z) = 3((5": — 1? - :zrl(f"‘

Figure 2.14: Graphical solution of equation 3(e* — 1) — xe* = 0. The first root is xq = 0, which does not
belong to the domain of p(x). The other root is xy = 2.821439.

Next, using Planck’s law as a function of wavelength, p(A, T), in the form of Eq. 2.21, we will find the
—as a function of temperature— wavelength, Ao(T'), where we have maximum of p(A, T), that is Eq. 2.101
below. Taking the derivative of Eq. 2.21, we obtain

dp 5%V -1) -V 5(e¥ —1) - pe?
A ) R N

(2.99)

. . . .4
Since we are looking for extrema, the derivative ﬁ should become zero, thus,

Z_IPP:0:5(6¢_1)_¢e¢:O:}(sincel,bio) Yo ~ 5.
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g is the desired root and A the respective wavelength, i.e. g = /\}llc_CT More precisely, a graphical
oks
solution gives Yy = 4.965114. The graphical solution is presented in Figure 2.15. Finally,
hc hc
1= ~ N 2.100
07 YoksT ~ 4.965114kyT (2100)
AoT = 2.897772 x 1073 m K (2.101)
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Figure 2.15: Graphical solution of equation 5(¢¥ — 1) — ¥ = 0. The first root is /g = 0, which does
not belong to the domain of p(1)). The other root is ¢y = 4.965114.

Eq. 2.98 shows how the wavelength at which there is maximum of p(A, T) is shifted as a function of
temperature T it is thus a “displacement law”, the so-called “Wien’s displacement law”. This is the “con-
temporary form” of Wien’s displacement law; it was derived by W. Wien in 1893 with the phraseology
that the black body radiation for different temperatures peaks at a wavelength inversely proportional to
its temperature, i.e.:

AT = constant (2.102)

This behavior, although it can be derived by Planck’s law, as shown above, leading to Eq. 2.101, it was
discovered by W. Wien some years before Planck’s proof of his law (Eq. 2.12 1} Eq. 2.18). Planck’s law in
the form p(A, T) for T = 1595 K as well as A of Wien’s displacement law are depicted in Figure 2.16.
We chose this value of T with reference to Figure 2 of the historic article by W. W. Coblentz [ 18], which
contains experimental data and comparison with Planck’s law at this temperature.

Planck’s law for several black body temperatures is depicted in Figure 2.17. We notice a shift of the
spectrum towards smaller wavelengths, as the temperature increases, which is expressed by Wien’s dis-
placement law. For these temperatures, the corresponding A, at which there is a peak of p(A, T') is also
shown. Furthermore, the visible region of the EM spectrum is depicted, which will be useful in some ex-
ercises on bodies emitting EM radiation, where we assume that they can be approximated by black bodies
of some “effective temperature”. The effective temperature of a body is the temperature of the black body
that would emit the same total amount of EM radiation. However, this does not mean that the distribution
of radiation as a function of wavelength or frequency essentially follows Planck’s law. Planck’s law, p(v, T),
for some black body temperatures is shown in Figure 2.18. We observe the shift of the spectrum to higher
frequencies, as we increase the black body absolute temperature, T, which is what Wien’s displacement
law expresses. We also observe that generally the whole distribution p(v, T) is increased, as we increase
the temperature T.
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p(AT) forT=1595K X =1816.785 nm

1800 ]

2000

1600

1400

1200

1000

;)(J/m4)

800

600

400

20071

0 ] ] ] ] ] ] |
0 1000 2000 3000 4000 5000 6000 7000 8000
A(nm)

Figure 2.16: Planck’s law in the form p(A, T) for T = 1595 K as well as Ay of Wien’s displacement law.
This value of T was chosen with reference to Figure 2 of the historic article by W. W. Coblentz [ 18].
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Figure 2.17: [ Top] Planck’s law p(A, T') for several black body temperatures. We notice a shift of the spec-
trum towards smaller wavelengths, as the temperature increases, which is expressed by Wien’s displace-
ment law. The corresponding A, at which there is a peak of p(A, T) is also included. We observe that
generally the whole distribution p(A, T') is increased, as we increase the temperature, T. [Bottom] The
visible part of the EM spectrum.
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Figure 2.18: Planck’s law, p(v, T'), for some characteristic black body temperatures. We observe the shift
of the spectrum to higher frequencies, as the black body absolute temperature T is increased, which is

what Wien’s displacement law expresses. We also observe that generally the whole distribution p(v, T) is
increased, as we increase the temperature T.
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2.15 Photoelectric effect.

The photoelectric effect (PEE) is the emission of electrons from a material that has absorbed energy from
EM radiation, usually in the visible or ultraviolet regime. It was observed by H. Hertz [ 19] in 1887, who
showed that it is easier to create electric sparks when ultraviolet light shines on the electrodes. To occur,
the photoelectric effect needs photons with energies of the order of 1 €V to 1 MeV (in materials with large
atomic number). The study of the photoelectric effect led to the acceptance of the quantum nature of
light and of the wave-particle duality. In 1905, A. Einstein explained the PEE by hypothesizing that light
is composed of discrete packets (“quanta”) instead of continuous waves [ 16]. Those discrete packets are
now called photons, a term attributed to G. N. Lewis [ 17] that came to common use much later.

) ) [

®
oo / /
= ®e®e

=

Figure 2.19: A schematic representation of the photoelectric effect.

Einstein used Planck’s theory of black body radiation and assumed that the energy of each photon,
E, is proportional to its frequency, v, with the proportionality constant being what was later named “the
Planck’s constant”, , i.e., he assumed that E = hv. This is how he explained the PEE: a photon with
frequency larger than a threshold value contains the necessary energy to eject a single electron from the
material. For his explanation of the PEE, which lead to the quantum revolution, Einstein was honored
with the 1921 Nobel Prize in Physics. He proposed that, under certain conditions, light is equivalent to a
flow of particles (light quanta, today called photons). He discovered this result by analyzing the thermo-
dynamics of black body radiation in the Wien’s regime. Among the consequences of his proposition was
the explanation of several puzzling characteristics of the photoelectric effect.

So, when visible or UV radiation hits a metallic surface, electrons begin to be ejected, if the frequency
of EM radiation is high enough. For example, when monochromatic light impinges on the cathode of a
discharge tube, current between the anode and the cathode is created, due to the displacement of ejected
electrons from the cathode towards the anode. In the setup of Figure 2.20, the voltage between the an-
ode and the cathode can be either positive or negative. When it is positive, electrons accelerate, thus the
current is increased, while, when it is negative, electrons decelerate, thus the current is decreased. For an
adequately negative voltage, —V/, the current vanishes. Vj is called threshold voltage or potential differ-
ence.

One of the puzzling aspects of the PEE was that, irrespective of the intensity of the incident monochro-
matic radiation, the threshold voltage always remains the same. The existence of a voltage that can stop
electric current implies a maximum kinetic energy that electrons ejected from the cathode can gain. This
maximum kinetic energy is equal to the threshold voltage Vy multiplied by the elementary charge, e. Thus,

2
myu
——buax = Vo, (2.103)
In other words, the kinetic energy the electrons obtain when ejected from the metallic surface has a max-
imum value which always remains the same, regardless the intensity of monochromatic EM radiation.
Every metal has a work function W, which means an electron inside a metal has to obtain energy at least
equal to W to be removed. Ifit obtains exactly W), then it “goes out” with zero velocity, while, if it obtains
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Figure 2.20: (a) The setup needed to study the energy of electrons emitted during the photoelectric effect
(PEE). (b) The shape of the characteristic current-voltage curve, I(V), for two different intensities of inci-
dent EM radiation. In case ii, the intensity of EM radiation is larger than in case i. We observe that there is
avoltage, —V/, at which the current, I, vanishes at both cases, i.e., V) does not depend on the intensity of
incident radiation. (c) The relation Vj(v). (d) The setup used to demonstrate the frequency dependence
within the PEE.

E > WO, it uses the excess amount as kinetic energy. Hence,

m,u?

2

E=W,+ (2.104)
So, Einstein [ 16] hypothesized that light is composed of “packets” or otherwise “particles” or otherwise
“quanta’, each of which carries energy equal to hv. Thus, if we assume that an electron absorbs the energy
of the photon, the previous equation can be written as

2
hv = Wy + mezu . (2.105)

Hence, applying the previous relationship to the maximum kinetic energy, we have

hv = Wy + eV, (2.106)
Therefore,
h W,
Vo=-v-—2 (2.107)
e e

Thus, if we plot the threshold voltage, V), as a function of frequency, v, we will obtain a straight line;
see Figure 2.20(c). According to Einstein, the increase of monochromatic EM radiation intensity means
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2
an increase in the number of electrons with kinetic energy —62 but not an increase in this kinetic energy.

In Figure 2.20(d), the setup used to demonstrate the frequency dependence within the PEE is presented.
The light source is a mercury vapor lamp emitting 5 intense lines from yellow to the UV regime, as seen
in Table 2.3.

Table 2.3: The photoelectric effect using a mercury vapor lamp as a light source.

Emission line Frequency v (x10'* Hz) Threshold voltage V; (V)

ultraviolet 2 8.22 1.807
ultraviolet 1 7.41 1.546
bright blue 6.88 1.359
green 5.49 0.738
yellow 5.19 0.624

This setup ensures the separation of emission lines, and a photoelectric detector counts the energies of
ejected electrons. The results of a typical experiment, plotted in Figure 2.20(c) are shown in Table 2.3.

h h
According to Eq. 2.107, the line’s slope is - So, according to the aforementioned data, we have - =

(0.400 + 0.016) x 107 Js/C, while, today we know that this ratio is approximately g =0.414 x 10714
Js/C. The predictions of Einstein’s theory were verified later, with the most important moment being the
experiments by R. Millikan [20, 21]. The second one [21] is far more detailed.
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CHAPTER 3

INTERACTION PROCESSES BETWEEN A PHOTON
AND A TWO-LEVEL SYSTEM

In this Chapter:

We describe the interaction mechanisms or processes between a photon and a two-level system (2LS).
These processes are usually called Einstein mechanisms or processes: spontaneous emission, stimulated
emission, (stimulated) absorption. This way we also introduce the relevant Einstein coefficients A and
B. Of course, from them, only stimulated emission was introduced by Einstein. The other two processes
were already known, but nobody had up to then seen them as an integral whole, if I am not mistaken.
Here the Planck law is proven, with a proof almost identical to that of Einstein himself, with the help of
these processes and the Boltzmann statistics. A comparison between Maxwell-Boltzmann, Fermi-Dirac,
and Bose-Einstein statistics, which is followed by classical particles, fermions, and bosons, respectively,
is included. We also compare spontaneous with stimulated emission as well as the stimulated processes
between them.

Prerequisite knowledge: Basic knowledge of Physics and Mathematics as well as a little bit of Statistical
Physics.

3.1 Interaction processes between a photon and a two-level system (2LS). (Stimulated) Absorp-
tion. Spontaneous Emission. Stimulated Emission. Einstein coefficients A and B.

LASER is an acronym that means Light Amplification by Stimulated Emission of Radiation. Einstein set
the theoretical foundations of the LASER in 1916-1917, through a re-derivation, that is a new proof, of
the Planck’s law for black body radiation. His proof was based on the so-called today “Einstein processes
or mechanisms”, which describe the probabilities of (Stimulated) Absorption, Spontaneous Emission and
Stimulated Emission. These are the processes involved in the interaction between EM radiation and matter

or, more precisely, between a photon and a two-level system, e.g., within an atom, molecule, quantum dot,
nonoparticle etc.
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48 INTERACTION PROCESSES BETWEEN A PHOTON AND A TWO-LEVEL SYSTEM

Hence, we will deal with the interaction of EM radiation or, better, light quanta (photons) with a two-
level system, e.g., focusing on two energy levels of an atom, E; and E, > E;. We will suppose that this
two-level system has a sole electron. According to Einstein [ 1, 2], there are three processes that affect this
interaction: Spontaneous Emission, Stimulated Absorption and, finally, Stimulated Emission. The latter
was introduced by Einstein [ 1, 2]. A process is called “stimulated” when it needs the influence of EM ra-
diation, i.e., of photons, on the 2LS to occur. A process is called “spontaneous” when it does not need the
influence of EM radiation, i.e., of photons, on the 2LS to occur. The word “stimulated” is often omitted in
the term Stimulated Absorption, since it is implied; any absorption is stimulated, needing EM radiation
to happen. Below we will examine in detail what exactly Stimulated Emission and the rest two processes
(i.e, Spontaneous Emission and Stimulated Absorption) are. The mechanisms or processes of interaction
between EM radiation and a two-level system are analyzed in articles [ 1, 2], which were published dur-
ing 1916-1917. In the same articles, together with the definition of these processes, the derivation of the
Planck’s law using them is included. So, concisely

Stimulated Emission dueto p(v, T)
Stimulated Absorption dueto p(v, T)
Spontaneous Emission

A. Einstein had already (1905) explained the photoelectric effect [3] assuming that there exist light
quanta with energy E = hv, these would later be termed photons. [Probably the word was introduced in
1926 by G.N. Lewis [4].] It is worth noting here that it was only several decades later —mainly in the 1950s
and 1960s— and after international efforts by many prominent or not physicists that it became possible to
construct the first MASERs (“M” stands for Microwaves) and LASERs. In 1964, Charles Townes, Nikolay
Basov and Aleksandr Prokhorov shared the Nobel Prize in Physics “for (their) fundamental work in the
field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the
maser-laser principle”.

We will suppose that we are inside a black body in thermodynamic equilibrium. The mechanisms or
processes of interaction between photons and a two-level system are explained below. As it will become
clear later, for the so-called Einstein coeflicients Ayq, B1y, Bo1 we use A for the spontaneous process and
B for the stimulated processes.

In Sections 3.1.1, 3.1.2, 3.1.3, as an example of a two-level system, we focus on two energy levels, Eq
and E,, of an atom.

3.1.1 (Stimulated) Absorption.

The Stimulated Absorption of a photon with energy E, and momentum p,p,, between two energy levels
Eq and E; of an atom where we focus on, is illustrated in Figure 3.1. Let us suppose that initially the atom
is motionless. Additionally, let us assume that the probability, dW?;, that the atom absorbs a photon in
time dt is given by

dW:t = BlZp(V/ T)dt (31)

i.e, it is proportional to the time interval df and the EM energy density in an infinitesimal frequency in-
terval, p(v, T'), with a constant of proportionality By, where the index 12 means that after the absorption
the electron will jump from level 1 to level 2.

We apply the laws of Conservation of Energy and Momentum.

supposedly negligible

Conservation of Energy Ei+hv=E,+ P E,—-E;=hv
at

) hv hc h h2n
Conservation of Momentum Pph = Pat = Pat = ~ = o = 3 =—=hk=>p,= T = hk
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(Stimulated) Absorption

ATOM ATOM
lectr )
Eph = hy electron Iut
ANNS> photon -
pph: Eph, ¢
L 1 . E 1
electron
INITIALLY FINALLY

we suppose atom initially motionless

Figure 3.1: Stimulated Absorption of a photon with energy E,;, and momentum py,, accompanied with
an electron transfer between two energy levels E; and E; of an atom.

2
Let us now check whether the kinetic energy of the atom after the absorption, 2% , is indeed negligible
compared to the photon energy, E, by calculating their ratio, A. ’

Pa
_2my W2 A h
"~ E,  A2muhe 2Acmy

A

For A to increase, 11, must decrease. Hence, let us set 717, equal to the mass of the smallest possible atom,
hydrogen.

My = M, + M,

p
my, ~1.673-10" kgt = m, ~1.673-10% kg
m, = 9.109 - 10731 kg
We wrote 111, = 11,+1, instead of 1, = 111,,+111, because thereisa (small) “mass defect”, i.e., the binding
energy of the electron and the proton in the hydrogen atom. Let us consider a typical green photon with

A = 500 nm. Then,

6.626-10734s s
A=
2-500-10°m 3-108m 1.673 - 10‘27kg

Hence, in our example, the kinetic energy of the atom is indeed negligible compared to the photon energy.

~1.320-107°.

Question: For which wavelength A, does the ratio A become equal to 0.05 in the hydrogen atom?
Answer:

=0.05=

- 2Acm g,
1o h 6.626-10734s - s
- 2omg A 2-3-108m-1.673-1027 kg - 0.05

~13.2-107° m = 13.2fm.

This is an extremely tiny wavelength. Even y-rays have typical wavelengths below pm (10 X1 0712 m), but,
here we are at the fm regime, that is at the 107 m regime. Even the diameter of the atomic nuclei varies
from 1.75 fm = 1.75 X107> m for hydrogen (the diameter of a proton) to ~ 15 fm for some of the heaviest
atoms like uranium. Thus, our assumption that the kinetic energy of the atom is negligible compared to
the photon energy is valid nearly across the whole EM spectrum.
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3.1.2 Spontaneous Emission.

The Spontaneous Emission is illustrated in Figure 3.2. Let us assume that the probability, d Wem, that the

Spontaneous Emission

ATOM ATOM

photon t\/\/\ﬁ

P :Eph c

ph

electron

1)t the atom will move to
a

’ the opposite direction
1 E, ®

electron

INITIALLY FINALLY
we suppose atom initially motionless

Figure 3.2: Spontaneous Emission of a photon with energy E ., and momentum p,,, accompanied with
an electron transfer between two energy levels E; and E; of an atom.

atom spontaneously emits a photon at time d# is given by

AWeh = Ayydt (3.2)

i.e, it is proportional to the time interval, df, with a constant of proportionality A1, where the index 21
means that with the emission of the photon, the electron will fall from level 2 to level 1. We note that
since this process is spontaneous, dWem does not depend on the EM energy density in an infinitesimal
frequency interval, p(v, T). We can define the lifetime of level 2 as the time it takes for the photon to

be emitted spontaneously with certainty (hence the electron is transferred from level 2 to level 1). If we
denote it by 7, = 7, then, from Eq. (3.2), we obtain 1 = Ay; 7. Thus,

Ty =T=—. (3.3)

motionless. Hence, when a photon is emitted, it will move towards the opposite direction.

2
Pat

at

Conservation of Energy Ey=E1+En+
Conservation of Momentum Pat + Pph = 0

Since this process is spontaneous, photons are emitted towards a random direction, i.e., without direc-
tionality, and with a random phase, i.e., without coherence. In other words, they are incoherent photons.
Directionality means that EM radiation is emitted towards a certain direction. Coherence is a constant
relationship between the phase of waves with the same frequency. For example, two light beams are
coherent when the phase difference between them remains constant, while they are incoherent when
there is a random or varying phase difference between them. Stable forms of interference are created
only by coherent beams. In fact, they usually come from a single beam which is separated into two or
more beams. A LASER, unlike an incandescent light source, produces a light beam the components of
which have constant relationship between their phases. Similarly, two photons with a constant phase re-
lationship are coherent.
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3.1.3 Stimulated Emission.

The Stimulated Emission is illustrated in Figure 3.3. In this process, before the electron falls spontaneously
from level 2 to level 1, a stimulating photon causes it to fall. Let us suppose that the atom is initially mo-
tionless. Let us consider as positive the initial direction of the stimulating photon. Let us further suppose
that the probability, dWZ, that the atom emits a photon in time d# via this process is given by

WS, = By p(v, T)dt (34)

ie., it is proportional to the time interval dt and the EM energy density in an infinitesimal frequency
interval, p(v, T'), with a constant of proportionality B,;, where the index 21 means that after the emission
of the photon, the electron will fall from level 2 to level 1.

before the electron falls spontaneously, Stimulated Emission

it is forced to fall by the stimulating photon

ATOM ATOM Eph =hy
=FEon/r
E, . E, pph ph/c
stimulating electron two identical photons, with same AANL>
photon 1{\t energy, nu)nlf‘nt'um (direction), AN
ANN> phase, polarization
Eph:waEIZh\' —— Epn=hv
» —Eo/n
pphz Eph C pph ph/c
o
electron
INITTIALLY FINALLY
we suppose atom initially motionless ~ We assume positive .-

the initial direction of the stimulating photon

Figure 3.3: Stimulated Emission of a photon with energy E.;, and momentum p;,, accompanied with an
electron transfer between two energy levels E, and E; of an atom. An initial stimulating photon causes
the creation of another photon with identical characteristics (energy, momentum, phase, polarization).

The two photons, i.e., the initial stimulating photon and the photon that is emitted by the atom, are

monochromaticity

directionality

are properties of a LASER
coherence

polarization

Although the two photons involved in the process of Stimulated Emission have the same polarization,
i.e., the electric field of these photons is in the same direction, the rest two processes, Spontaneous Emis-
sion and (Stimulated) Absorption, are still present in the effective medium of a LASER device. However,
in Spontaneous Emission, the emitted photons have random direction, phase, and polarization (while
their energy, in a strictly two-level system is the same). Thus, overall, the photons present inside the ef-
fective medium of a LASER device, do not have a specific polarization. On the other hand, the light of
a LASER device can become polarized by attaching a polarizer (a material that lets only light of specific
polarization pass) or a “Brewster window” at the exit of the LASER device.

When a light beam impinges on the interface between two media, its reflected part and its transmitted
(in other words, refracted) part are described by the Fresnel Equations and depend on the polarization of
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the incident light and the angle of incidence. Thus, p-polarized light (electric field polarized in the plane
defined by the incident beam and the normal to the interface) will not be reflected if the angle of inci-
dence is Oy = arctan(1,/n7), where 711, 11, are the refraction indices of the initial and the other medium.
This equation is known as the Brewster’s law and the angle Oy, is referred to as the Brewster’s angle. We

incident beam reflected beam
(unpolarized) . (polarized)

refracted beam
(partially polarized)

Figure 3.4: The Brewster angle.

discuss the Fresnel Equations and the Brewster’s angle in detail in Section 12.1, and the emission of a
polarized beam in Section 12.3. In practice, the light of some LASER devices is largely polarized (e.g., in
gas LASERs), while the light of some other LASER devices is polarized to a lesser extent (e.g,, in diode
LASERs). LASER devices have a cavity that confines the effective medium and creates a competition be-
tween the EM modes and between polarizations. In the end, the mode and polarization with the smallest
losses dominate. However, there are also LASERs with many modes or polarizations.

Let us notice that:

« What is mentioned above about same phase and polarization is not discussed in Einstein articles
[1,2] nor they do play any role in the derivation of Planck’s law therein, derivation presented below,
too.

« Photons are bosons, thus two or more photons can have the same energy, momentum (hence,
direction), and phase.

+ We need to assume that the initial stimulating photon, with energy E,;, = E; — E; = hv, is not at
all affected during Stimulated Emission.

« We could state that the initial stimulating photon determines the phase and the polarization of the
emitted photon just as the stimulating force determines the phase and the polarization of a forced
or stimulated oscillation.

We now apply the laws of Conservation of Energy and Momentum, supposing that the atom is initially

motionless. According to what we have discussed up to now
small

Conservation of energy Ey +Ey, =2E,+E; +

—

Conservation of momentum Pph = 2i_9)ph + Dot
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We could, of course, attempt to consider that the two photons might have different energy and momen-
tum, e.g., to write

small
2
Conservation of energy E, + % =E; + % + E;h + 4 =
Myt
El,)h :EZ_El = Eph

the photons have the same energy

Let us assume the initial direction of the stimulating photon as positive, that is p;, > 0.

— — = — - —
Conservation of momentum % = % +p’ oh + Py = p’ph = —Pa
If we assume that the stimulating photon determines the direction of the new photon, then

En _ Epn
Pon >0 pp, = — = —— = ppn = the photons have the same momentum
c C T

In brief, because the photons have same energy, the outgoing light will have monochromaticity and be-

3.2 Derivation of Planck's law via emission and absorption processes and Boltzmann statistics.
Relationship between Einstein coefficients A and B.

Let us consider the interaction between the EM field and matter in thermodynamic equilibrium, so that
the temperature T = constant. Let us denote by N; the population of the level j, i.e., the average number of
atoms with the electron at level i, for which we assume that it follows the Boltzmann distribution, which
is

(1) with same statistical weights (2) with different statistical weights
(simpler form) (general form)
Ei Ei
e kT gie kgT
N; = Nyt 7 N; :NtotT
—_——— —_————
Pi pi
or
Ei Ei
Z — Zie kBT Z= Elgle kBT

Here, p; is the occupation probability for level i. The Boltzmann distribution is defined using the partition
function, Z, which plays a central role in the description of the statistical properties of a system in thermo-
dynamic equilibrium (see a statistical physics textbook, e.g., [ 5]). Since we have assumed thermodynamic
equilibrium, the variations of the level populations in time df will be equal, i.e., the number of atoms where
electrons jump from 1 to 2 will be equal to the number of atoms where electrons drop from 2 to 1, i.e.,

ANy = dNj_,;1. (3.5)

dN7_,, will be equal to the population N7 multiplied by the transition probability from 1 to 2 in time dt.
This probability is associated with (Stimulated) Absorption, and is given by Eq. 3.1. dN,_,1 will be equal
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to the population N, multiplied by the transition probability from 2 to 1 in time dt. This probability is
associated with Spontaneous Emission, given by Eq. 3.2, and Stimulated Emission, given by Eq. 3.4. Thus,

NidWS = Np(dWem + dWE). (3.6)

(1) To begin with, let us make calculations with same statistical weights. Due to Egs. 3.1, 3.2, 3.4, Eq. 3.6
becomes

Eq _B
kpT kgT

e e
Ntot7B12p(Vl T)dt = NtotT(A21dt + B21p(1/, T)dt) =
_E _E _E
Biye T p(v, T) — Byre T p(v,T) = Ayje 7 =
_E
A21€ kgT
p(V/ T)= = “E
Bize *3T — Byje T

However, we already know (cf. e.g. Figure 2.18) that

Jim p(v, T) = c0 =

Lzm:BlzzB21 :=B
Bi2 = By
AZl = A.
Hence,
A
B
P (v, T)= HE)
e kBT -1
Comparing with Planck’s law (or even, dimensionally, with Wien’s law), we have
A
B 8rh 13
uptonow | p(v,T) = ﬁ Planckslaw | p(v,T) = ———
e kBT -1 ekB_T -1
Thus,
A 8rhv’
E - 3 (37)

55

(2) Let us now make calculations with different statistical weights. Due to Egs. 3.1, 3.2, 3.4, Eq. 3.6 be-
comes

_h _E
kT kT
NS Biap(v, Tht = N2 (Aandt + Bayp(v, Tdt) =
5B _E _E
(81 e TBp —gye kBTle)P(V/ T)=goe "1 Ay =
_E
A 1€ kpT
ply, T) = —52.2 R

g1 Bige 8T — g5 Byje foT
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However, we already know that

Tlim p(v,T) =0 =

A
_ &M
81B12 — g2 Ba1
g1B12 =82 Ba (3.9)
Hence, comparing with Planck’s law
An
le 5 87Tl’l V3
uptonow |p(v,T) = P Planckslaw | p(v, T) = —- 3
e kBT — 1 ekBT _ 1
Thus,
An _ 8t (3.10)
B21 C3 '
o)
3.3 Comparison between emissions.
Let us compare Spontaneous Emission with Stimulated Emission.
incoherent process 87'[h1/3
dWer% _ Azldt _ CS _ ekI;_VT _1
dWst, Byip(v, T)dt 8mh 13
coherent process C_3 m

Since Spontaneous Emission is an incoherent process, i.e., the produced photons are not coherent (they
do not have a constant phase relation), and Stimulated Emission is a coherent process, i.e., the produced
photons are coherent (they have the same phase), seeking COHERENCE implies that we need as much
as possible (1) larger T, (2) smaller v (or larger A). [See Figure 3.5, where the function f(x) = ¢* —11is
depicted. Here, x = hv/kyT.] Thus, in this sense, it seems easier to create a coherent beam, for example, in

Figure 3.5: Graphical representation of f(x) = ¢* — 1. Here, x = hv/kgT.
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microwaves than in the visible regime. Maybe this is why some of the first attempts to create a device that
produces coherent EM waves were focused on microwaves and led to the creation of the MASER [Mi-
crowave Amplification by Stimulated Emission of Radiation] as a predecessor of LASER [Light Amplifi-
cation by Stimulated Emission of Radiation]. However, today, the acronym LASER is used even for the
invisible parts of the EM spectrum. For example, the terms infrared laser, ultraviolet laser, X-ray laser, etc,
are used. Today, the term atom-laser is used, too, to describe a device which produces coherent beams of
atoms that are bosons, such as g;Rb [6]. Because the MASER was developed prior to the LASER, devices
functioning in the microwaves are still commonly referred to as MASERSs instead of microwave lasers or
radio lasers. The first MASER was created in 1953 by Charles Townes, James Gordon and Herbert Zeiger.
Schematically,

MASER (A ~ 1 cm) LASER (A ~ 500 nm)

easier to achieve coherence harder to achieve coherence

Sp
em

AWt
is possible, (a) in the visible region, e.g., for A ~ 700 nm, and (b) in the microwaves, e.g., for A ~ 1 cm.
We have

Let us assume, for example, that we want the ratio = 1, and examine at which temperatures this

dWeh, A s hv
=l=eT-1=1=2eBT =2 —=h2=>
dWst kT
T - hv . hc
“ksln2| 1|7 T Akpln2

6.626-10734s 3-108m K 6.626 - 3107343048 K

= =~ ~ 29687 K.
700-10°m 1.38-107%%Js In2  7-1.38 In2

Hence, in thermodynamic equilibrium, this is practically unachievable. For example, the Sun’s photo-
sphere has an effective temperature of ~ 6000 K, while temperatures ~ 30000 K can only be found
in the surface of stars with 20 times the Sun’s mass (Figure 3.6). This practical impossibility has lead
researchers to seek for solutions outside thermodynamic equilibrium, such as the population inversion
through pumping. These will be addressed in Chapter 11.

(b) For A =1 cm (microwaves).

Similarly, we find T ~ 2.078 K, i.e., although low, an experimentally achievable temperature.

3.4 Comparison between stimulated processes.

Let us now compare the two stimulated processes.

AW, _ Bropl i _
AW, ~ Buple Pt

for a system with equal statistical weights (g7 = £).

However, in thermodynamic equilibrium, N, << Ny
dN3 ;= Ny - dWE, = dN3',; << dNj,,.
AN = Ny - dW
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Figure 3.6: The Hertzsprung-Russell diagram, showing the relation between a stars’ luminosity and sur-
face temperature [7].

Hence, through the stimulated processes, the population of level 2 increases, therefore, the EM radiation
density decreases. Then, spontaneous emission, which is accompanied by an electron dropping from level
2 to level 1, increases the incoherent EM radiation. This problem (caused by the fact that, in thermody-
namic equilibrium, N, << Nj) can be solved by population inversion through pumping, which will be
addressed in Chapter 11. There are many kinds of pumping. Pumping means that one somehow uploads
electrons in level 2 so that N, > Nj.

Now, let as check, from a quantitative point of view, what does exactly N, << Ny in thermodynamic
equilibrium mean (see also Exercise S of the present Chapter in Appendix A). Let us consider an ensemble
of hydrogen atoms in thermodynamic equilibrium. The eigenenergies of each atom are given by the well-
known Bohr relation, E,;, = ~Ryi2, where Ry = —13.6 €V is the Rydberg energy. We will examine the
population ratio of the first two levels. Given that

N,.ePFi
N; = % (3.12)
this ratio will be o
N2 e Pt2 _
N, = o eP(E1=F2), (3.13)

At room temperature (T = 300 K), this ratio yields e%*> ~ 4.7 - 107172, It is thus evident that, in
thermal equilibrium, the population of the next level is overwhelmingly smaller than the population of
the previous level.
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3.5 Comparison between Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

Previously, in Sec. 3.2, we derived the Planck’s law via the emission and absorption processes, assuming
that the populations of the electroniclevels obey the Maxwell-Boltzmann statistics. It would be reasonable
to wonder why this distribution was used instead of the Fermi-Dirac distribution, given that electrons
are fermions. Well, this happened because in 1916-1917, when Einstein formulated his theory on the
interaction processes between EM radiation and a two-level system, the Fermi-Dirac distribution was not
known, it was only introduced in 1926. Additionally, as we will see below, at large temperatures or at low
concentrations, the Fermi-Dirac distribution converges to the Maxwell-Boltzmann distribution. Let us
compare with somehow higher detail [8] the Maxwell-Boltzmann [9, 14, 15, 16, 17, 18, 19, 20, 21, 10,

, 12, 13], Fermi-Dirac [22, 23, 24] and Bose-Einstein [25, 26, 27] distributions, which are obeyed by
classical particles, fermions and bosons, respectively.

In what follows, we denote the average number of particles at state 7, with energy E;, by 71;, while, we
denote the total number of particles by N. We assume that #i >> N, in other words, the number of
energy levels is much greater than the total number of particles. Moreover, u is the chemical potential,

while B = U,T.

« The Maxwell-Boltzmann (MB) statistics describes classical particles for which we consider no quan-
tized energy levels, such as the building blocks of the classical ideal gas. It has the form

1

We notice that  is determined by the relation

Y7 =N. (3.15)

Thus,

Y e Plieft = N = oft = (3.16)
i

N
Z e_ﬁEz‘ )
i

Hence,

Ne‘ﬁEi

i

1 (3.17)

+ The Fermi-Dirac (FD) statistics describes quantum particles which obey the Pauli exclusion prin-

ciple that a quantum state cannot be occupied by more than one particle. These particles are called
fermions and their spin is a half-integer (half-natural) multiple (%4, 3k, 55, ...) of the quantity 7.
Such particles are, e.g., electrons, protons, and neutrons. For the FD statistics, it holds that

1

n,=—=———. 3.18
! eﬁ(Ei_H) +1 ( )

« The Bose-Einstein (BE) statistics describes quantum particles with the property that a quantum

state can be occupied by any number of particles. These particles are called bosons and their spin

is an integer (natural) multiple (0, 1,2, ...) of the quantity /1. Such particles are, e.g., photons, %He
atoms, and %He atomic nuclei. For the BE statistics, it holds that

1



QUANTUM OPTICS 59

In FD and BE systems with a constant N, (1 is also determined by the requirement of Eq. 3.15. Overall,
we can concisely write

1

n; = FEB 1 (ED) and the relationship 211 fj = N | determines . (3.20)
-1 (BE)
or0) (MB)

The MB, FD and BE distributions are illustrated in Figure 3.7.

0
B(E; — 1)

Figure 3.7: Representation of the Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distributions.

The FD and BE distributions converge to the MB distribution in each of the following cases:

(a) The concentration of particles 1 is small compared to the quantum concentration

3

ng = (kaT)E, (3.21)

27th?

ie, when n < ng. For example, at room temperature (T = 300 K), and for protons, ng =
1000 nm™3, while for electrons, ng = 0.015 nm . Convergence in low concentrations occurs
since

Nverysmall = #n;<<1,Vi = PE >> 1 Vi,

(b) The temperatures are high enough, since then, the distribution covers energetically a broader range,
with smaller occupation probabilities. Hence, e#Fi"#) >> 1, V¥ i. Many levels with higher energy,
even with E; > 1, are partially occupied.

In both cases, since
ePEW >> 1, Vi, (322)
_ 1 1
M= BEW 1] PE
i.e,, both the FD and the BE distribution converge to the MB distribution.

(3.23)
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CHAPTER 4

CONTINUOUS AND DISCRETE SPECTRUM

In this Chapter:

We deal with continuous and discrete energy spectrum. The discrete energy spectrum refers, crudely, to
atoms, molecules, quantum dots (which are, in a way, artificial atoms and molecules), color centers etc.,
the discrete-continuous spectrum refers to quantum wires and wells, and finally, the continuous spectrum
refers to solids. We focus on color centers and use a simplistic three-dimensional infinite quantum well
model to describe them, hence, we present a complete solution of the infinite quantum well. We refer to
quantum dots and use, exempli gratia, a simple three-dimensional finite square quantum well to describe
them, hence, we present a complete solution of the finite square quantum well. Moreover, we describe
the transition from single-level systems to one two-level or three level or four-level system, with three
gradual variations of the tight-binding method. The discrete-continuous energy spectrum refers to cases
with free motion in 2 (or 1) dimensions and bound states in 1 (or 2) dimensions, i.e., quantum wells (or
quantum wires): From the free motion we have continuous energy spectrum with subbands, while, from
the bound states we have levels. We utilize the Slater theorem, the Envelope Function Approach and the
Effective Mass Approximation.

Prerequisite knowledge: Basic knowledge of Quantum Physics and Mathematics.

4.1 Continuous spectrum: solids. Discrete spectrum: atoms and molecules, color centers, artifi-
cial atoms and molecules.

Atoms and molecules have discrete energy spectrum. In other words, there exist some allowed energy
levels, separated by energy gaps, where the presence of electrons is forbidden. On the other hand, solids
have continuous energy spectrum, composed of allowed bands, separated by energy gaps inside which the
presence of electrons is forbidden. These are depicted simplistically in Figure 4.1. In a discrete, e.g. molec-
ular, system, the highest occupied level is called HOMO (highest occupied molecular orbital), while the
lowest empty level is called LUMO (lowest unoccupied molecular orbital). In a continuous system, e.g. a
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solid, the respective quantities are the top of the valence band, Ey;, and the bottom of the conduction
band, E. The difference E¢ — Ey := E, defines the fundamental band gap. Materials for which E, = 0
are metals. For relatively small values of E, we have semiconductors, while for large values of E, we have
insulators.

Atoms, Molecules, Color Centers, Solids
Artificial Atoms and Molecules (continuous spectrum, bands)
(discrete spectrum, levels)
empty
empty
Conduction
empty
band
. LUMO g 2
an -
= 5] E
g Eg g g
=] & £
H O0—o0O HOMO Valence v ied
band occupie
0—0 occupied
o0—&
o—o0 occupied
O—0

Figure 4.1: Simplistic representation of the energy structure. Left: Discrete spectrum. Right: Continuous
spectrum.

We could assume that an approximation of a two-level system (2LS) could be a simple atom (and what
is simpler than the hydrogen atom) for which we restrict ourselves to the lowest two levels. However, there
are also cases where there may exist a discrete energy spectrum inside a solid. This happens when there are
perturbations in the order of the solid (in periodicity, when a periodic crystal is concerned) either due to
impurities, defects, etc, or by construction, for example in heterostructures. [Heterostructures are struc-
tures made up of different materials, so that there is partial order (or when periodic crystals are concerned,
partial periodicity). Such changes in order or periodicity are commonly of the order of, very roughly, 1
nm - 1000 nm.]. Color centers are characteristic examples of the former category, while quantum dots,
which are also commonly called nanoparticles, since these are particles of the order of some nanometers,
are examples of the latter category. Therefore, we could assume, as an approximation of a 2LS, a color
center or a quantum dot for which we restrict ourselves to the lowest two energy levels.

In Section 4.2 we discuss color centers, in a somewhat simplistic manner. In this discussion, it is useful
to know the full solution of the infinite square well; this is done in § 4.2.1. Similarly, in Section 4.3 we
discuss quantum dots. In this discussion, it is useful to know the full solution of the finite square well; this
isdonein § 4.3.1.

4.2 Color centers.

An ideal crystal extends to infinity. [Here, when we refer to crystals, we mean periodic crystals. There
are also quasicrystals etc.] As known, just as solid = lattice + motif, crystal = crystal lattice + motif. The
crystal lattice, i.e., a collection of mathematical points with spatial periodicity, is created by an integer
linear combination of the primitive lattice vectors. The crystal is created by placing the motif (a collection
of atoms, molecules, ions with well-defined orientation) at each crystal lattice point. A monocrystal is the
simplest approximation of an ideal crystal. It differs from the latter in that periodicity is terminated on
the crystal surfaces. However, even in such a crystal, there are deviations from periodicity. Each deviation
from the perfect crystalline structure is a defect. Some common defects include impurities, vacancies,
interstitial atoms, etc. In the case of impurities, the crystal within which these occur is called the host
crystal. The properties of the material depend on both the host crystal and the defects.
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Here, we will focus on a type of defect called color center of F-center (from the German word Farbe =
color), which is a light-absorbing defect. These defects have taken their name from the characteristic color
they give to alkaline halide crystals. Every defect in the crystal structure related to a “trapped” electron
can be characterized as a color center if it absorbs approximately in the visible region of the EM spectrum.
Color centers can easily be formed inside ionic crystals of alkaline halides (e.g. KCl) using ionizing radi-
ation, such as X-rays (e.g. from a powder diffractometer or a synchrotron; a Tesla coil can be also used).
A powerful source of y-rays, such as ®°*Co, could also be an appropriate ionizing radiation source. Ioniz-
ing radiation can release an electron from a halide anion (e.g. CI”). The now “free” electron can wander
inside the crystal until it is finally trapped in a position of a missing halide anion, i.e., in an anion vacancy.
In a KCl crystal, a vacancy has 6 K* cations as is first neighbors [Figure 4.2(left)]. In a rather simplistic

6
approximation, the potential energy at a color center is & — 1 < 0, where r = a/2 is the neighboring

meeqr
anion-cation distance, 4 is the lattice constant or lattice parameter, and ¢ is the dielectric constant. A
simple model that can describe the situation is a particle in a 3D potential well, since there is trapping in
three dimensions. A 2D representation of a color center in a KCl crystal is shown in Figure 4.2(right).

Apart from electron centers, hole centers, impurity centers, etc, can also occur.

EERER@E®
@@@®@®@

@@@@@@@
@)

center : e

Figure 4.2: (Left) A potassium chloride crystal (KCI). Its structure can be described by a face-centered
cubic (fcc) lattice with a diatomic basis (a cation-anion pair). For example, we place (i) a cation exactly
on alattice point and (i7) an anion on a point at a distance (#/2)(X + i + 2), where a is the lattice constant.
For example, on the lattice point at the origin [(0, 0, 0)] there is a cation and the corresponding anion is
placed at the center of the conventional cubic cell. For example, any occurrent vacancy of chloride anion
has 6 potassium cations as its first neighbors. (Right) A two-dimensional representation of a color center
with a trapped electron in a CI™ vacancy. An electron has left a CI™ anion, e.g., due to irradiation. The
distribution of the electron’s wavefunction is determined by the shape of the 3D quantum well created
inside the vacancy.

The color depends on the size of the vacancy, i.e., finally, on the type of the missing halogen atom, since
the narrower the quantum well, the more separated become the allowed energy states inside it, while, the
wider the quantum well, the more they approach each other. In a very rough approximation of the color
center, let us remember the infinite quantum well. In a 1D —along the x-axis— infinite potential energy well
of width L, with potential energy

u(x):{o, O<x<lL (4.1)

0o, elsewhere
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the discrete energy spectrum is
H2m?n?
E,=——,
" 2ml2

wheren =1, 2,3, ... and m is the particle mass (in our case, the particle is an electron). Since the electron

(4.2)

does not move in free space but inside a crystal, the mass 71 should be replaced by the so-called effective
mass 171", The effective mass is a useful approximation relative to the dispersion relation of electrons inside
a crystal, e.g,, close to the bottom of its conduction band. Schematically,

1i%k?

E(k) = ——  (free electrons) (4.3)
2m
1i%k?

E(k) = T (electrons in a crystal ) (4.4)

where k is the wavenumber. This approximation is based on the fact that, for small k (e.g,, close to the
bottom of the conduction band, where there is a minimum), the dispersion relation of electrons inside
the crystal can be approximated by the parabolic form of the dispersion relation of free electrons, since

am:am+pmw+5%m§+m. (4.5)
=

Thus, choosing the origin such that E(0) = 0 and ignoring higher-order terms,

E” 12 fi?
E(k) = 2(0)k2 = o K= m = E70) (4.6)
Hence, returning to our square well, we have
n= % (4.7)
Thus, the distance between consecutive energy levels is
27_(2
E,.i1-E,= W(Zn +1) n=1,273,.. (4.8)

i.e. inversely proportional to the square of the width of the well.
Let us now remember that the wavefunction for the energy level 11 is

\/E_ nmx 0 L
U, (x) = ZS‘“(T)' Sxs (4.9)

0, elsewhere

thus, the respective probability density to find the particle positioned at x is

2 gin? (nnx) O<x<L
—_— — , x

Px)=4L"" \'L (4.10)
0, elsewhere

In color centers, the coloring is due to photon absorption by the trapped electron and the consequent
excitation of the latter from the ground state to an excited state. The energy difference between these
states is given by Eq. 4.8. Hence, using this simple 1D model, we predict that an increase (decrease) in
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Figure 4.3: Eigenfunctions, eigenerergies, and energy dispersion (k, = nm/L,n = 1,2,3,..) of the
particle in the simplistic model of the infinite well. In the panel depicting the energy dispersion, the con-
tinuous gray line represents a particle moving freely inside the crystal.

L leads to absorption of photons with smaller (larger) energy. In other words, the spectrum is shifted
towards red (blue). This is called redshift(blueshift).

The problem is somewhat more complex in 3D. However, an increase in the lattice constant a increases
the space around the vacancy, where the color center is created. If we assume, reasonably, that L o 4, then,
as evident from the above equations, the absorption spectrum is shifted towards lower energies, that is,
larger wavelengths. For example, since dy,c; < dgc) < gy, their absorption spectra are ordered in the
manner depicted in Figure 4.4(left). The dependence of the absorption peak on the lattice constant, 4, in
alkaline halide crystals is presented in Figure 4.4(right).
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Figure 4.4: (Left) Color-center absorption spectra obtained on air, in 298 X, at the UV-visible, by NaCl,
KCl, and KBr crystals radiated using a Tesla coil. [ 1 ]. The color depends on the size of the space left by the
defect, i.e., by the lattice parameter or lattice constant, 4. The peak of the absorption spectrum is shifted
this way because ay,c; < dgxcl < kg, (Right) Dependence of the absorption peak on 4 in alkaline
halide crystals [ 1]. The increase in 4 creates larger vacancies when an ion is missing; thus there is a wider
potential energy well. This leads to a decrease in the energy distance between the ground and first excited
level, hence the energy (wavelength) of the photon that corresponds to this transition is smaller (larger).

Several theoretical models have been proposed to explain the optical properties of color centers [2].
All of them consider that, in the region of the vacancy, the potential energy is represented by a 3D well
responsible for the electron binding, which in turn leads to a change in optical properties, e.g., in absorp-
tion or emission. Below, we will describe a simplistic 3D infinite well model. We assume that the color
center of an alkaline halide crystal is a 3D infinite potential energy well along the x, i/, z axes, respectively,
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U, (x), Uy (y), Us(z), such that
U®@) = Uy (x) + Up(y) + Us(2), (4.11)

where all U; are infinite wells. We further assume that the width of the well in each axis, L;, should be or the
order of the lattice constant a. Let us investigate the energy of the photons corresponding to a transition
from the ground level to the 1st excited level, for example, in LiF and NaCl crystals. Due to the form of
the potential energy, the variables can be fully separated and the energy spectrum of such an infinite well

1S
mrln?  WPrnd  W2rtnd
Eningns = > *L21 +3 *LZZ 5 *L23' (4.12)
MLy myLy maLz

If we also assume that L, = L, = L, = Land m} = my = mj3 = m”, then

hznz
Enynpny = 2 (nF + 15 + 13). (4.13)

Thus, the ground level (GL, n; = 1, = 13 = 1) and the 1st excited level (1stEL, one of 1; is equal to 2
and the two rest are equal to 1) have, respectively, eigenenergy

3 31272

G o2
3 6h272
1stEL — W

(4.14)

Hence, the photon energy which is, e.g., absorbed in order for the electron to jump from GL to 1stEL is

3?2
= . (4.15)
a
If we now suppose that L = >
61212
hy = e (416)

In NaCl, where a = 0.565 nm, m* = 1.13 m,, the energy is hv = 12.498 eV. If we used L = a, we would
find

3h2
hy = ——, 4.17
YT o (417)
thus v = 3.1245 eV. The experimental value for the absorption peak of NaCl is hv,, = 2.7 €V. This

means that the deviation of our simple model’s prediction from the experimental value is = 16%, not
very far. This 2.7 eV corresponds to A = 460 nm, i.e., to the blue. It is obvious that all these are very
approximative. However, apart from numerical factors, it occurs that

1
h o« — (4.18)

a?’
hence /v decreases when 4 increases. This is a qualitative explanation of Figure 4.4. For LiF, the effective
mass can be assumed, in a fair approximation (Equation 2.72 of Reference [2]), m* = 1.5 m,. Thus, from
Eq.4.17, for LiF it holds that hv = 4.62 €V, a value deviating from the experimental value by just 12%. On
the other hand, of course, the value of the effective mass can be rather different; for example, according to
Reference [3], for LiF it holds that m" = m,.Itis of no use to try to fit our simplistic theoretical approach
exactly to the experiment by playing with the value of the effective mass. We will restrict ourselves to
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noting that something that simple can come so close to experimental results, and can actually predict the
approximate a2 dependence. This model, which was employed here as an effortless guess, has actually
been used in roughly the same form to study color centers [ 2], giving satisfactory results. Specifically, the
formula

0.97

v 4.19
(@ in nm)L772 € (4.19)

hv =

can be used to fit all the experimental data for alkaline halides [2] (see Figure 4.4).

A careful eye might have noticed that, even though we refer to transitions between discrete levels the
spectra of Figure 4.4 are not delta functions; on the contrary, they have a rather large width. The rea-
son for this is that, up to now, we have taken into account only the discrete levels stemming from spatial
localization. Generally, we distinguish two types of broadening: homogeneous broadening and inho-
mogeneous broadening. If the physical cause of broadening is the same for every absorber or emitter
(here, for every 2LS) then it is called homogeneous. An example of homogeneous broadening is the one
related to the lifetime of the energy level (lifetime broadening). In particular, the lifetime, 7, of an excited
level, corresponding to Spontaneous Emission to a lower level, is related to the uncertainty in the energy
of the excited level, AE, i.e., T AE o« h. [We remind the reader of the definition of lifetime, for Spon-
taneous Emission from level 2 to level 1, according to the relation 3.2, AWeh = Aypdt = 1 = Ay,
for a dilute gas of identical atoms. ] A small lifetime means large uncertainty in energy, hence broad emis-
sion. This type of broadening leads to a Lorentzian profile of the spectrum. Usually, in condensed matter
physics, we have a large set of absorbers or emitters and the fluctuation AE is different for each absorber or
emitter. The reason is that in a large system, such as a crystal, the environment of each absorber or emitter
is rarely identical, due to the random presence of impurities, defects, etc. In other words, the quantum
wells are not exactly the same (Figure 4.5, left). Inhomogeneous broadening commonly leads to a Gaus-
sian profile. It should also be noted that broadening can be attributed to several causes, hence its shape
is varying. There are additional causes that shape the energy spectrum, such as the vibrational degrees
of freedom (Figure 4.5, right). Therefore, the spectra, mirroring this situation, will be broad. Moreover,
all these are found inside a solid, hence the whole background of the latter will be also present. In prac-
tice (cf. upper Fig. 4.6), by absorbing a photon, an electron can be transferred, e.g., from the ground level
to a higher level than the first excited level (let’s say to a higher vibrational level), then relax at the first
excited level by emitting one or more phonons (quanta of lattice vibrations), and finally fall back to the
ground level by emitting a photon, this time, with energy smaller than the one of the initially absorbed
photon by the energy of the phonon(s). The wavelength or frequency of energy difference between the
position of the absorption and emission peak is called Stokes shift (Figure 4.6). If the emitted photon
has a larger energy, this energy difference is called anti-Stokes shift. These differences are mostly due to
lattice vibrations (phonons) [4].

vibrational
degrees of spatial
freedom confinement

==l ===

Figure 4.5: Left: In a large system as e.g. in a crystal, the environment of each absorber or emitter is rarely
identical, in other words, the quantum wells are not exactly the same. Right: Vibrational and spatial levels.

The spectra, mirroring this situation, will be broad.
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Figure 4.6: Upper: Explanation of the Stokes shift between absorption and emission. Lower: Stokes shifts
of color centers in KCl, KBr and KI; figure adapted from Reference [ 5]. In accordance with Reference [6],
the Stokes shift in KClis = 1.1 V.

4.2.1 Full solution to the infinite square well.

We will try to give a a detailed solution of the infinite square quantum well. Let us think of the infinite
square quantum well of potential energy shown in Figure 4.7. The one-dimensional —along the x-axis—
infinite quantum well, of width L, is symmetrically extended from —L/2 to L/2. We distinguish the spatial
regions I (left), IT (medium) and III (right). Its potential energy is

00, x <-L/2 regionl
U(x) =30, -L/2< x< L/2 regionll (4.20)
00, x> L/2 regionIIl

The particle cannot be found in regions I and III, because there the potential energy is infinite, hence,
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Figure 4.7: Schematic representation of an infinite square quantum well of potential energy.

its wavefunction will be 1(x) = 0. In region II, the time-independent Schrédinger equation is

H2
() = () (421)
Let us try solutions of the form
U(x) = Ae*™ + Be7**, k> 0. (4.22)

However, for k = 0, we obtain 1)(x) = A + B. Due to the demand that the wavefunction is continuous
at the points x = —L/2 and x = L/2, since Y(-L/2) = 0 = ¢(L/2), it follows that A + B = 0, therefore
Y (x) = 0 everywhere, i.e., the particle is found nowhere. Therefore, we will assume below that k > 0.

Hence, ' .
P(x) = Ae*® 4 Bekx k> Q. (4.23)
Therefore, from Egs. (4.21) and (4.23), it follows that
2
—2—[Aikikeikx + B(—ik)(=ik)e ] = E[Ae™* + Be7*], (4.24)
m
/) CE 12k? , , ,
5 [Ae™] + o [Be™**] = EAe’™ + EBe™**, (4.25)
%k? , 1%k? ,
— —E|Aeé®™ + | — —E[Be ™ = 0. (4.26)
2m 2m
Consequently, since this holds Y x, we obtain
1i%k?
E=—. (4.27)
2m
Let us now use the boundary conditions.
‘ ) A .
Y(=L/2) =0 = Ae */2 + Bell2 = 0 = -5 = ekl (4.28)
. ) A .
U(L/2) = 0= Aekt2 4+ B2 = 0 = -5 = —elkL., (4.29)

Consequently,
okl — _pikL —y p2kL _ | — pi2mn e o (4.30)
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Hence,

Moreover, due to Eq. (4.27), it follows that

. hzTCZ 2
" 2ml2
Now, due to Eq. (4.32) and because of
A .
I €ZkL,
B
A .
It _esz’
B
we are led to A
_ einn — e—inn_
B
Then, however,
A
3 = -1, ifn even,
A
3 =41, ifn odd.
Well, therefore,
innx _imnx Tinx
Py(x)=Ae L +Ae L =2A cos (—), if n odd,

fnnx _imnx nx
Y,(x)=Ae L —Ae L =2Ai sin (RT), if n even.

Let us now proceed to normalization

L/2 nx
4| AJ? cos? (NT) dx =1, if n odd,
)
/2
fL 4| AP sin? (nTnx) dx =1, if  even.
Y

However, it holds that
77/2 e
f cos(mz) cos(€z)dz = =0,,¢,
—n)2 2

77/2 e
f sin(mz) sin(£2)dz = 6,.
o 2

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)



Hence, with a change of variable, z = %x , the following must hold

QUANTUM OPTICS 73

1
AP =—. 4.45
AR = o (445)
We can, therefore, choose,
A 1 if 7 odd (4.46)
= —, if n odd, .
V2L
—i
A=—, if n even. (4.47)
V2L
After all this manipulation, we obtain
2 TInx
P, (x) = 4/ = cos (—) if n odd (4.48)
L L
2 TInx
Yu(x) = \/;sin (T) if n even (4.49)

The first four eigenfunctions of an infinite square quantum well are shown in Figure 4.8.

Infinite Quantum Well eigenfunctions

1.5 - + - + +
-L/2 0

L/2

Figure 4.8: The first four eigenfunctions, 1,,(x), of an infinite square quantum well. The number of nodes

isn—1.

Whereas, if we assumed the well in the region x € [0, L], the boundary conditions would be

0=¢0)=A+B=B=-A, (4.50)
0 = (L) = Ael — AeikL, (4.51)
Hence,
2L =1 = 21 = | = T[Tn,n e (4.52)
Therefore,
Uux) = Ae T —Ae T =2Ai sin (%) (4.53)
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However, similarly, it holds that

Tt

7T
f cos(mz) cos(€z)dz = E(Smg, (4.54)
0 N -
f sin(nz)sin(€2)dz = . (4.55)
0
Normalizing again, the following must hold
Lo o (TMX
f 41AP sin (T)dx -1, (4.56)
0

According to the above, with a change of variable, z = % , the following must hold

1
Al = —. 57
|Al oL (4.57)

We can, therefore, choose,

A= (4.58)

i
V2L’

Py(x) = \/%sin (nTnx) (4.59)

In other words, we obtain Eq. (4.9). We notice that moving the variable by /2 and using trigonometric
identities, we can, naturally, be transferred from Eq. (4.59) to Egs. (4.48)-(4.49) and vice versa. We note
that for y # 0, AU = av & A(uv) = a(uv), and specifically, naturally it holds for i + 1.

Hence,

4.3 Quantum Dots.

A typical, square, finite quantum well formed by a semiconductor heterostructure is presented in Fig-
ure 4.9 where we can see the well width L, the bottom of the conduction band E, the top of the valence
band Ey;, the conduction band offset AE, and the valence band offset AEy;. Depending on the materi-
als that constitute the heterostructure, the quantum well has commonly AE: and AEy; of the order of
0.01-10 eV and L is commonly in the range 0.1-100 nm.

Quantum confinement can occur in one dimension (1D), for which we use the expression quantum
well, in two dimensions (2D), for which we use the expression quantum wire, or in three dimensions
(3D), for which we use the expression quantum dot. See also Figure 4.10, where, in the case of quantum
dots, the profile of the density of states (DOS) becomes discrete. Quantum dots are also referred to as
artificial atoms, when they are single, or artificial molecules, when they are coupled.

In a square, finite 1D quantum well, there is at least one bound state [ 7]. In Figure 4.9 we have assumed
that the well of the conduction band has two levels, while the well of the valence band has one. A quantum

well of width L contains [7]
2m*U,L2
n=1+Int W

bound energy states or “levels”. Int(&) is the integer part of &, U, is the discontinuity of the conduction
or valence band (AE or AEy, respectively) between the two materials, and 7" is the electron or hole

(4.60)

effective mass. Hence, in a quantum dot we can choose as a two-level system one level of the conduction
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AlAs GaAs AlAs

Ec

Figure 4.9: A square, finite quantum well, e.g. in an AlAs/GaAs/AlAs heterostructure. The well width L,
the bottom of the conduction band E, the top of the valence band Ey;, the conduction band offset AE,
and the valence band offset AEy;, are shown. The wells have been drawn, schematically, as square; in fact,
their shape depends on several factors, factors beyond the scope of this book.

3D Bulk (quasi) 2D quantum well (quasi) 1D quantum wire (quasi) 0D quantum dot

— — <

density of states (DOS)

DOs
DOs

Energy Energy Energy Energy

Figure 4.10: Quantum confinement in 0D, 1D, 2D and 3D (top) and the respective densities of states
(bottom).

band and one level of the valence band, two levels of the conduction band, or two levels of the valence
band. In the two latter cases there is, of course, the restriction of Eq. 4.60; i.e., there might be only one level
in the valence or conduction band. In the following, we will prove Eq. 4.60 by fully solving the problem
of the finite square well.

4.3.1 Full solution to the finite square well.

We will try to give a detailed solution of the finite square quantum well [ 8]. Let us assume the finite square
quantum well of Figure 4.11.
H Let us examine the regions with E < 0 [regions (m) and (1) ], where bound states may exist.

« Spatial regions I and III. In these regions, the time-independent Schrédinger equation is

12 2mE
——W"(x) = E¥(x) & V" (x)+ —Y(x)=0. (4.61)
2m 2
Since E < 0, we can assume that 2’;—5 dof —q2 ; also, let g > 0. Hence, the above equation takes the

form

W’ (x) - ¢?W(x) = 0. (4.62)
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U(x)

Upper
energy region (u)
(-L/2, 0) (L/2, 0)
(0,0) x
Middle
energy region (m)
©, -U,) Lower
energy region (l)
Left Middle Right
spatial region (1) spatial region (I1) spatial region (Ill)
e.g. AlLGa, As e.g. GaAs e.g. Al,Ga, As

Figure 4.11: Schematic representation of a finite square quantum well of potential energy.

Let us now try solutions of the form
W(x) = Ae™™ + Be™ =
W'(x) = —Age™™ + Bge™ =
W (x) = Ag?e™™ + Bg®e®,

(4.63)
(4.64)
(4.65)

which, as it can be easily verified, satisfy the Schrodinger equation. Additionally, since W(x) must

be square-integrable, it should hold that
lim \Il(x) =0= \IIIH(X) = Ae_qx

X—00
lim W(x) = 0= W;(x) = Be™.
X——00
Consequently,
Wi(x) = Bet*

‘ Wi(x) = Ae™®

« Spatial region II. There are two cases.

- Energy region l. In this region, the time-independent Schrédinger equation is

2

2m(E+Uy

Since E < —U, < E + U, < 0, we can assume that =

Hence, the above equation takes the form
W (x) - Q*W(x) = 0.
We try solutions of the form
W(x) = Te™ + A =
W'(x) = -TQe ¥ + AQe?* =
W7 (x) = TQ% ¥ + AQ%eY,

which, as it can be easily verified, satisfy the Schrodinger equation. Thus,

Wi (x) = Tem Q¥ + Aex

- U = By e Wi + 2R E + U)W = 0.
2m f2

(4.66)

(4.67)

(4.68)
(4.69)

(4.70)

) gt —Q?; also, let Q > 0.

(4.71)

(4.72)
(4.73)
(4.74)

(4.75)
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- Energy region m. In this region, the time-independent Schrodinger equation is

2

- U = By e W)+ 2 E S U)W = 0. (476)
2m 2

2m(E+Up) def

Since0 > E > -U, < E + U, > 0, we can assume that k2; also, let k > 0.

h2
Hence, the above equation takes the form
W (x) + k*>W(x) = 0. (4.77)
We try solutions of the form
W(x) = Tek + Ae ™ = (4.78)
W' (x) = ikTe?™ — ikAe ™ = (4.79)
W7 (x) = —k?Tekx — k2 Ae~kx, (4.80)
or of the form
W(x) = I cos(kx) + Asin(kx) = (4.81)
W’ (x) = -Tksin(kx) + Ak cos(kx) = (4.82)
W (x) = kT cos(kx) — k2A sin(kx), (4.83)
which, as it can be easily verified, both satisfy the Schrodinger equation. Thus, we can choose
either
Wi (x) = Telk™ + Ae~ikx (4.84)
or
| Wy(x) =T cos(kx) + Asin(kx) | (4.85)

To sum up, in spatial region II there are two different solutions: Eq. 4.84 or Eq. 4.85 for energy
region m, and Eq. 4.75 for energy region L.

© To find the full solution, we must, as we know, equate the wave functions and their first derivatives

L
at the borders of the spatial regions, i.e., for x = + 5

© Let us try to equate the solutions of Egs. 4.68, 4.69, and 4.75, i.e., in energy region |, for x = i%.
L
*+ Forx = —5,wehave
L gt
¥ (‘E) =Be'™2 b ob ok
| . L= Be 2 =Te~2 + Ae 2 (4.86)
W, (—5) —Te% 1+ Ae %
and
’ L qé
¥ (‘E) = Bge 2 L ot ot
. L= Bge "2 = -TQe~2 + AQe <2 (4.87)
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Dividing the above relations by parts, it occurs that
L

L
—TQe%2 + AQe %2
q= T T =
Te¥z + Ae 92
L ok L ot
quQE + Age Q7 = TQe?7 + AQe %2 =
L

M(g+Qe% = AQ-q)e % =

L. 9,a (4.88)
A Q+ ‘1
L
* Forx = E,wehave
L L
\I]III(E) = Ae’2 L AL L
= Ae 2 =Te 92 + A2 (4.89)

L L

v, (%) =Te 92 + Ae%2
and

, (L gt
Yin (_) = -Age ™ e ok ot
) ol = —Age "2 = -TQe ~2 + AQe™~2 (4.90)
A (5) = T0e % + AQe%

Dividing the above relations by parts, it occurs that

L L
—TQe 92 + AQe?2

4= L L

Te 97 + Ae2

—ok ot
—qu 2 —Aqe =-T'Qe ~2 + AQe~2 =

oL

[(Q- ) = AQ+ e

L_Q+g eQL (4.91)

ATQ-q

Combining Egs. 4.88 and 4.91, we conclude that

0L = Eg i Z;z (4.92)

e

(Q+9)?
(Q-9)?

which is absurd, since for Q, g > 0, it holds that e~ 2QL < 1, while === > 1.In other words, there is no

solutions in the lower energy region 1.

L
© Let us now try to equate the solutions of Eqs. 4.68, 4.69, and 4.84, i.e. in energy region m, forx = + 5
* Forx = —%,we have
L 4L
P (_5) =Bz g% —ikE ik
= Be 2 =Te "2 + A2 (4.93)
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and
’ L —IJE
Wr(=3) = Bage 2 L ik L
¢ = Bge "2 =Tike ™2 - Aike"2

. L
Wi (~5) = Tike ™ - Aike'

Dividing the above relations by parts, it occurs that

. L .
Tike ™2 — Aike'*2
q= oL

=

r —ikk ikl o kk ik
ge "2 +Age 2 =Tike "2 — Aike™2 =

. L . L
AGik + ™2 = T(ik - g)e ™2 =

A ik _qe—ikL

I ik+gq

L
* Forx = E,wehave

L

L g%
Y (5) =de gE _ ks A ik
= Ae 12 =Te"2 + Ae™2

L . E . E
\IIH (E) == Felkz + Ae lk2

and
/ L — —fIE
Wi () = —Age ™2 L
L

. L .
Wi (5) = Tike™s - aike ™2

Dividing the above relations by parts, it occurs that

ikL —ikk
Tike" 2 — Aike ™2
—] = =
1 ik~ —iks
Te™2 +Ae 2

2 L . L . L . L
—Tge™2 — Age ™2 =Tike™2 - Aike ™2 =

. L . L
Ak — q)e™™2 = T(ik + q)¢"z =

A ik+qe

I ik-g

ikL

Combining Egs. 4.95 and 4.98, we conclude that

2L _ (ik — g)? _ —k? + ¢* — 2ikq
(ik +9)? -k + g% + 2ikg

At this point, it would be useful to introduce the dimensionless quantities

E=—| and q:%

4t L oikk o ik
= —Age "2 =Tike" 2 — Aike ™2

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)
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as well as the quantity

a? &2 42 (4.101)
Therefore,
12 2 2m
= —(k2 +q%) = P (E +Up) - =
) mu,,L2
o= (4.102)

Hence, v is constant, independent of E, and expresses the efficiency of the quantum well. It is proportional

to the mass m or the effective mass m” of the particle, the depth of the well U}, and the squared width of

the well L2. In other words, the quantity a® expresses the lack of freedom of the particle, since when its

mass or the depth of the well or the width of the well increase, the particle becomes more bound.
Additionally, if we define the quantity

B -2+ 1P (4.103)
Eq. 4.99 becomes
i _ ~&+ P -2ikn  BA-2iEn (8% - 2i&n)? _ Bt-4ignp® - 4%
&2 424280 PP +2iEn (B +2iEn)(B? - 2ikn) B+ 4&2n2
e (B + 4E202) = Bt — 4idnp? — 4E% . (4.104)
However, from the definitions of ,82 and a?, we have
B+ 4817 = &+t - 28212 + 4827 = (2 + )% = o (4.105)
and
Bt —4&P = B +4E%? - 887 = a* - 8% (4.106)

Thus, Eq. 4.104 becomes
atet = ot — 8&%n? — 4iEnp? =
at cos(48) + iat sin(48) = (at — 8&21?) + i(-4&np?) =
at cos(48) = a* — 88212 —4&np?
ot sin(48) = —4&np? } 48822’

which seems rather complex. However, it could be somewhat simplified if we notice that, by adding Eqs. 4.105
and 4.106, it occurs that

4 4 1_pa
22 = 2a* - 8827 = 2P = % = &n = —Wzﬁ

The condition a* — B* > 0 is true, since, performing the relevant substitutions, it is reduced to the con-
dition E + U}, > 0, which is true, given that we are in energy region m. Substituting the above relation to
Eq. 4.107, we conclude that the bound states in region m are given by the condition

4 _ p4p2
tan(de) = VP

at —2B4

= tan(4é) = (4.107)

(4.108)

(4.109)

Let us examine if we can derive alternative, simpler forms than the one of Eq.4.109, by equating this
time Eqs. 4.68, 4.69 and 4.85 (i.e., the alternative forms of the solutions in spatial region II) in energy
regionm, forx = + % We will exploit the fact that we know that since the potential energy of the system
is even, its eigenfunctions will be alternately even and odd.



« For even wavefunctions, [W(—x) = W(x)]:

— In spatial regions I and III we have

QUANTUM OPTICS 81

- In spatial region II we have

Wi(x) = Wy(—x) = T cos(kx) + Asin(kx) = I cos(kx) — Asin(kx) = A =0 (4.111)

Hence, to sum up,

Wi (x) = Ae™
Wi (x) =T cos(kx)
Wi (x) = Ae™™

Yi(x) = Age™ (4.112)
Wi (x) = —Tksin(kx) (4.113)
Wi(x) = —Age ™. (4.114)

By demanding the continuity of W(x) and W'(x) at x = —% , it occurs that

L

Wi(—5) = Wy(-3) = A2 = r(%) (4.115)
L

\Pf(_g) = \yﬁ(—g) = Aqe_qi =Tk sin(%) (4.116)

Dividing the above equations by parts, we conclude that

or, alternatively,

tan(¢) =

I

kL\| q
tan(?) —E (4.117)

=

tan(&) = —‘0‘25_52 . (4.118)

L
It can be easily be shown that demanding the continuity of W(x) and W’ (x) at x = > leads to the
exact same expression.

« For odd wavefunctions, [W(—x) = —-W(x)]:

— In spatial regions I and III we have

—\Ill(x) = \I]HI(_x) = —Beqx - Aeqx = B = —A (4119)

— Spatial region II we have

W (x) = Wy(—x) = —T cos(kx)—Asin(kx) = T cos(kx)—Asin(kx) = T =0 (4.120)

Hence, to sum up,

Wi(x) = —Ae™
\IJH(X) = ASin(kX)
Win(x) = Ae™™

Wi(x) = —Aget™ (4.121)
Wi (x) = Ak cos(kx) (4.122)
\Ilin(x) = _Aqe_qx. (4.123)
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By demanding the continuity of W(x) and W’ (x) atx = —% , it occurs that

qL
W(—5) = Wy(-5) = -Ae 2 = -A sin(%), (4.124)
L L —% kL
\I/f(—E) = \I’{I(—E) = -Age 2 = Ak cos(?) (4.125)
Dividing the above equations by parts, we conclude that
k
tan(k—L) =—= (4.126)
2 q

or, alternatively,

tan(&) = —% = [tan({) = —\/%52 .

L
It can be easily be shown that demanding the continuity of W(x) and W’ (x) at x = > leads to the
exact same expression.

(4.127)

To wrap this up, using Egs. 4.68, 4.69 and 4.85, and imposing the boundary conditions (the continuity
of the wavefunction and its first derivative on the borders of the well), we conclude that in energy region
m there are bound states which are given by the pair of solutions

A2 — £2
tan(&) = a—é even and [tan(§) = —L odd (4.128)
< Va? - &2
We remind the reader thatk > 0 <= & > 0, while the function tan(&) is not defined for & =
(2¢ + 1)%, V£ € IN". Egs. 4.128 can be solved graphically. To this end, we define the function

2 — &2
f(é):aTé,

the field of definition of which is the interval (0, a], and for which f(a) = 0, limg_,g+ f(&) = +00, as
well as the function £

(© = ey,
8 VaZ- &
the field of definition of which is the interval [0, @), and for which g(0) = 0, lim;_,,- g(&) = —o0. The

graphical solution to Eq. 4.128 is presented in Figure 4.12, for several values of the parameter . From
Figure 4.12 we notice that

(4.129)

(4.130)

o fora € (0,7R) 3 1 intersection of tan(&) and f (&), and
7 any intersection of tan(&) and g(&)

o fora € [, T0) 3 1 intersection of tan(&) and f (&), and
3 1 intersection of tan(&) and g(&)

o for o € [71,37h) 3 2 intersections of tan(&) and f (&), and

3 1 intersection of tan(&) and g(&)

o for v € [374,27) 3 2 intersections of tan(&) and f (&), and
3 2 intersections of tan(&) and g(&)

o fora € [271,57h) 3 3 intersections of tan(&) and f (&), and
3 2 intersections of tan(&) and g(&)

® etc.
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) a€(0,3)
a€[5,m)
a € [m, 3T)

0 w2 3n/2 5n/2
3

Figure 4.12: Graphical solution of the equations tan(&) = f(&) (cf. Eq. 4.129, dashed lines) and tan(&) =
Q(&) (cf. Eq. 4.130, dotted lines), for several values of the parameter a, which expresses the efficiency of
the quantum well, within the intervals mentioned in the right side.

. . . . . n
Thus, there is always at least one solution, while every time the parameter o is increased by 5 onemore

solution is added. Hence, the number of solutions (bound states) is

mUbLZ
a \Vi
n:1+Int[ﬁ] =1+ Int| 22
2 2

(4.131)

) 2m U, L2
n=1+Int W

which is —~the now proven- Eq. 4.60.

4.4 From isolated one-level systems to a two-level, three-level, and four-level system.

We will now narrate in detail how a 2LS is obtained from two isolated 1LS, when the latter approach each
other. We follow the approach described in the textbook [9]. Relative to the Tight Binding method, the
readers can also consult the textbooks [ 10, 11, 12]. We will define all the relevant integrals: normalization,
on-site energies, potential energies of interaction of one 1LS with the other, overlap integrals, transfer or
interaction integrals. We will address and solve the problem at three different approximation levels. We will
also discuss the bonding and antibonding orbital of the 2LS, in terms of its eigenvalues and eigenvectors.
Finally, we will also discuss, in a similar manner, how a 3LS is formed by three isolated 1LS, and how a

4LS is formed by four isolated 1LS.
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4.4.1 Two-level system (2LS).

Let us report how a 2LS is formed by two 1LSs which get close to each other, within the tight-binding
approximation. Let us assume that the isolated 1LSs have eigenenergies €1 (the left one) and ey (the
right one). This holds as long as they are isolated. However, when they are brought closer to each other
and the unified system (i.e., the 2LS) is formed, the latter will have different eigenenergies; let us call them
E; and E;. This is narrated in a way in Figure 4.13.

distance €x E, — € —

Figure 4.13: From two one-level systems (1LSs), one on the left (L) and one on the right (R), which have
eigenenergies € and €y, respectively, and are placed at infinite distance, to the unified two-level system
(2LS), which has eigenenergies E1 and E,, different from €] and €p.

So, let the distance between the two isolated 1LSs be infinite. The Hamiltonian of the left (L) is HL =
T + Uy, where T is the kinetic term and U, is the potential energy term. If its eigenstate is |l//L> and its

eigenenergy is €, = <¢L| =8 |¢L>, then
HL |1)DL> = €L |I)DL> . (4.132)

The right (R) isolated system is at infinite distance from L, with Hamiltonian Hy =T+ Uy, eigenstate
|1,DR>, and eigenenergy €g = <¢R| Hy |¢R>. Thus,

Hy |¢R> = €R |¢R> . (4.133)

If we further suppose that the two 1LSs come closer to each other so that they become coupled, then
we will have a 2LS. Let us write the eigenstates of the 2LS as a linear combination of the eigenstates of the
two isolated 1LSs, i.e.,

|¢> =CL |1PL> +Cr |1PR>- (4.134)

The Hamiltonian of the 2LS will be

A=T+U + U (4.135)
Thus, if we substitute Eqs. (4.134) and (4.135) into
Hlyp) =E|p), (4.136)
we will obtain
(T+ Uy + Ur)le [o) + cr [9r)) = E(e [yr) + cr [¢r)). (4.137)

Multiplying Eq. (4.137) by <¢L| , we obtain

oo (Yu| T+ Uy + Ug [ + cx (Y| T+ Uy + Ug [r) = cL E@LIPLY + cREWLIpg).  (4.138)

We call on-site energy of the L 1LS the term

en = (Wa| T+ Uy [a), (4.139)



QUANTUM OPTICS 85

while, the integral of the potential energy of the R 1LS at the L 1LS is

Urge 2= (Yo | Ug [yr)- (4.140)
We call transfer or interaction integral between L and R the term
ter = (Y| T+ Uy + Ug [Pr) - (4.141)
Finally, we cal overlap integral between L and R the term
Sir = (YLlR)- (4.142)
Given that the eigenfunctions are normalized,
WLlyr) = (Wrlr) = 1. (4.143)
Hence, Eq. (4.138) can be written as
‘cLeL +c Uppy + Crftr = L E + CRESLR‘ (4.144)

Given that the integral Uy is very small, if we ignore it, then Eq. (4.144) reaches the simpler form

‘cLeL + cptir = ¢ E + cRESLR‘ (4.145)

The assumption that Uy py is negligible is the essence of the method that is called Tight Binding. It means
that we can approximately ignore the potential energy of the other sites near to a particular site, hence,

| T+ Uy + U [pr) = @i | T+ Uy ) = e (4.146)
or written alternatively,
<¢L|H |¢L> ~ <¢L|HL |¢L> = €r. (4.147)

Additionally, given that the overlap integral Sy y is somewhat small, if we ignore it as well, then Eq. (4.145)
reaches the even simpler form

’CLeL + CRtLR = CLE ‘ (4148)

Similarly, multiplying Eq. (4.137), by <¢R|; we have
CL <’-/’R| T+U,+ Uy |¢L> +Cr <¢R| T+U,+ Uy |¢R> = e, E(UplY) + cRECYRlYR).  (4.149)

Defining the integrals in the same fashion, we have

er = (Ug| T + Ug [Yr), (4.150)
Upir = (¢r| UL [Yr), (4.151)
tee = (Yr| T + Uy + Ug |91, (4.152)
SRL = <¢R|¢L>' (4.153)
Hence, Eq. (4.149) is written as
‘CLtRL + CRER + CRURLR = CLESRL + CRE ‘ (4154)

If we ignore the integral Uy g, applying Tight Binding, then Eq. (4.154) reaches the simpler form

‘CLtRL + CRGR = CLESRL + CRE ‘ (4155)

while, if we also ignore the integral Sg;, then Eq. (4.155) reaches the even simpler form

‘thRL + crép = cgE ‘ (4.156)

Hence, in respect with the level of approximation chosen, we have to solve the system of Egs. (4.144) and
(4.154) or of Egs. (4.145) and (4.155) or of Egs. (4.148) and (4.156).
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4.4.1.1 First level of approximation.

If we do not ignore any of the integrals Uy gy, Urr and Syg, Sgi, then we have to solve the system of
Egs. (4.144) and (4.154). Since all integrals are real and due to hermiticity, we can define

t= tLR = tiR = tRL S L@, (4157)

S = SLR = SiR = SRL € Lg? (4158)

Moreover, let us suppose, for simplicity that

Thus, the system of equations can be written in matrix form as

e, +U t c| | E ES|[c.

[ t eR+U] [CR]_ [ES E ||en (4160)
or _

[ t-ES  en+U—E||cx| ™ |0] (4161)

The matrix eigenvalues occur by the roots of its determinant

(e, +U-E)eg+U-E)-(t-ES)>=0=
E? — (€ + g + 2U)E + (e, + U)(eg + U) — 12 — E2S? + 2StE = 0 =
(1 = S?)E? — (], + g +2U — 2SH)E + (e + U)(eg + U) — > = 0.

So, we arrive at a quadratic equation with respect to the energy E. Its discriminant is
A = (e + eg +2U - 2512 — 4(1 — S?)[(er, + U)(eg + U) - 12].

Hence, the eigenvalues are

(e, + € + 2U — 25t) + /(e + eg + 2U — 2512 — 4(1 — S2)[(ey, + U)(eg + U) — 2]

Eip=

2(1 - S?) '
(4.162)
If we suppose that the two 1LS are identical, then €, = € := € and the calculations are simpler.
Indeed, the matrix becomes
e+U-E t—ES ct| |0
t-ES  e+lU- E] |ch - [o] (4.163)
and, from the condition that the determinant becomes zero, we have
2 2
(e+U-E)y-(t-ES) =0=
(e+U-E+t-ES)e+U-E-t+ES)=0=
_ €+ U=+t (4.164)
1+8S '

Let us assume that € + U > 0, taking the reference level appropriately. Also, usually |¢| is small relative

to |€ + Ul. If we assume that t < O (attraction of the two 1LSs) and S > 0 (overlap integral of the

. . +U+t +U~t .
eigenfunctions of the two ground states of the two 1LSs), then E; = : s < E, = z 5 This can

be shown by the nodes of the eigenvectors, as we will realize immediately below. Accordiné to the node
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theorem the number of nodes (roots) increases by 1 as we move from the ground state (no nodes) to
higher states. Hence, the first excited state is the one which has one node. To calculate the eigenvectors,

we use the relations

e+ U-E), +(t—ES)cg =0
( o + (¢~ ES)er =01 (4.165)
(t—ES)cp+(e+U—-E)cg =0
For the eigenvector that corresponds to the eigenvalue E; = HTU: , if we replace the eigenvalue Eq in
Eq. (4.165), we have
U e+U+t s e+U+tS 0
€ -—c ——— S|y =
1+s J* 1+s 7" .
; e+LI+tS lesu e+U+t 0
- ——S|c + € ———— g =
1+S b 1+5 )%
e+U+eS+US-e-U-t N t+tS-eS-US-tS 0
C Cp =
1+S b 1+S R _
t+tS—eS-US-tS e+U+eS+US-€e-U-t
c + cg =0
1+5S 1+S
(eS+US—-t)ec, +(t—eS-US)cg =0
(t—-eS—-US)c, +(eS+US-t)eg =0
Thus,
€L, =Cg =C. (4.166)
Hence, the eigenvector that corresponds to the eigenvalue E; has the form
- c
01 = [Cl
For it to be normalized, it must hold that
B =1= 2 =1= || = 1/V2.
Thus, a convenient choice would be
3= —|! 4.167
01 = % 1| (4.167)

e+U-t
1-S

For the eigenvector that corresponds to the eigenvalue E, = , if we replace the eigenvalue E; in

Eq. (4.165), we have

(e+U—€+—u_t)cL+(t—€+—u_tS cg =0
1-S 1-S
=
(t—H—LHS)cL+(e+U—€+—u_t cg=0
1-S 1-S
e+U-eS-US-e-U+t t—tS5—eS—-US+1tS
( -3 )cL+( 1-3 cg=0
F—1S—eS—US +1S e+U—-eS—US—e—U+t =
( 1-3 )CL+( -3 cg=0

(t—eS—-US)c, +(t—eS—-US)cg =0
(t—-eS-US)c, + (t—eS—US)cg =0
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Thus,
CL = _CR =_C. (4168)

Hence, the eigenvector that corresponds to the eigenvalue E; has the form
—
2 —l

B2 =1= 2 =1= || = 1/V2.

For it to be normalized, it must hold that

Thus, a convenient choice would be

B = % l_ll] (4.169)

As we can see, the eigenvector U of the level E; has no nodes, while the eigenvector U, of the level

1+S
Ery =13 145 to

+U+t
E, has one node. Hence, the level E; = £ with eigenvector T is the ground level, while the level
+U~t +U+t +U~t
z with eigenvector U is the first excited level. For the condition E; = z <E,= z TS
hold, it must also hold that S > O and t < 0 and the numerators have to be positive. The wavefunctions of
the ground and first excited state of the unified quantum well (i.e., of the 2LS) are shown in Figure 4.14.

— € — _
L E,
PN /\ ground state wavefunction
—/ \/ Qe unified quantum well
overlap of the ground-state wavefunctions
of the formely isolated quantum wells

Figure 4.14: The wavefunctions of the ground and first excited state of the unified quantum well (i.e., of
the 2LS), which are produced by the normalized addition (as obtained by the eigenvector ;) and by
the normalized subtraction (as obtained by the eigenvector U,) of the ground state wavefunctions of the
previously isolated quantum wells (i.e., of the two 1LSs).

4.4.1.2 Second level of approximation.

If we ignore the integrals U g, = Ugr g = U, but we do not ignore the integrals S = Sg;, = S, then the
system of Equations to solve is the one of Egs. (4.145) and (4.155), which can be written in matrix form

as €L, t L, E ES L
[t eRllcR]:[ES EHch (4.170)

eg—E t—ESf|[c | |0
lt—ES eR—E“cR]_[O] (4171)

or
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The matrix eigenvalues occur by the roots of its determinant, i.e.,

(e, —E)eg —E) - (t—ES* =0 =
— (e, + €p)E + € eg — 12 —E2S? + 2StE = 0 =
(1-S?)E? — (e, + eg — 2SH)E + €1ex — 1> = 0.

So, we arrive at a quadratic equation with respect to the energy E. Its discriminant is
A = (€L + €R - 25t)2 - 4(1 - SZ)(GLGR - tz) (4172)

Hence, the eigenvalues are

(e1, + €x — 25t) + /(e + eg — 2512 — 4(1 — S2)(eeR — 12)
2(1 - $?) '

Ei, = (4.173)

If we suppose that the two 1LSs are identical, then € = € := € and the calculations are simpler.
Indeed, the system of equations in matrix form becomes

€e—E t-ES||c 0
lt—ES e—EHcR]:lO] (4.174)

and, from the condition that the determinant should be zero, we have

(€-EP?—(t-ES? =0 =
(e—E+t—-ES)(e—-E—-t+ES)=

p= S (4.175)
T 1+S '

Letusassume € > 0, taking taking the reference level appropriately. Also, usually |¢| is small relative to |€|. If

we assume that f < 0 (as attraction of the two 1LSs) and S > O (as overlap integral of the eigenfunctions

of the two 1LSs ground states), then E; = 16:2 < Ey = — ! This can be shown by the nodes of the

eigenvectors, as we will realize immediately below. Accordlng to the node theorem the number of nodes
(roots) increases by 1 as we move from the ground state (no nodes) to higher states. Hence, the first excited
state is the one which has one node. To calculate the eigenvectors, we use the relations

(€ —E)cy, + (t—ES)cg = O}

(t—ES)c;, + (e —E)cg =0 (4.176)

For the eigenvector that corresponds to the eigenvalue E; = % , if we replace the eigenvalue E; in
Eq. (4.176), we have

(e €+t) ( S)c =0
_ R =
it =
(1 frs8) e+ (- g =0
€E+eS—e—t t+1tS - eS—tS
( 1+8S )CL( 1+8S )CR:O
t+tS—-€eS—-1tS €e+eS—e—t =
( 1+s )CL*(T)CFO

(€S—1t)ep +(t—€S)cg =0
(t—€S)cy + (€S —t)cg = 0}
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Thus,
CL =Cgr=C. (4.177)

Hence, the eigenvector that corresponds to the eigenvalue Eq has the form
3 = c
1 cl

B =1=2c=1= | =1/V2

For it to be normalized, it must hold that

Thus, a convenient choice is

U1 = N H (4.178)

For the eigenvector that corresponds to the eigenvalue E, = = , if we replace the eigenvalue E; in
Eq. (4.176), we have

1-S

—t
(e_l—s)CL ( S)CR:O
=
€—t €—t
(-1 SS)CL+(€_ 1- )CR:O
€—€eS—e+t t—tS eS+t
T1-s5 )" ®=
=
t—tS—eS+tS N e—eS—€+t 0
c ——— | =
1-S - 1-S b
(t—€S)e, +(t—€S)cg =0
(t—€S)e, +(t—€S)cg =0
Thus,
L= —Cg =C. (4.179)
Hence, the eigenvector that corresponds to the eigenvalue E; has the form
N c
Uy = l_c] .
For it to be normalized, it must hold that
B2 =1= 2/ =1= || = 1/V2.
Thus, a convenient choice is
1N ]
Uy = — : (4.180)
Al
We observe that the eigenvector U; of the level with eigenenergy E; has no nodes, while the eigenvec-
tor U, of the level with eigenenergy E; has one node. Hence, the level with eigenenergy E; = % and

eigenvector T is the ground level, while the level with eigenenergy E, = -

1-S
+t —t
1€+_S <E;,= 1€TS to hold, the conditions S > 0 and f < 0 must

be obeyed and the numerators have to be positive.

and eigenvector T, is the

first excited level. For the condition E; =
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4.4.1.3 Third level of approximation.

If we ignore the integrals Uy gy, = Urpr = U as well as the integrals Sy g = Sg;, = S, then the system of
equations to solve is the one of Egs. (4.148) and (4.156), which can be written in matrix form as

|€tL g HCL] =E | (4.181)

€Rr [|Cr

€, —E t ¢ | _ [0
[ ; eR_E‘“CRd = _0] (4.182)

The matrix eigenvalues occur by the roots of its determinant, i.e.,

or

(€L—E)(€R—E)—t2:0:>
Ez—(€L+€R)E+€L€R—t2 :0

Hence, we arrive at a quadratic equation with respect to the energy E. Its discriminant is

Hence, the eigenvalues are

2
€ +€ i\/(e —€) + 412 € +e€ € —¢€ 2
Ei,=— = 2L R = L2 L (Lz R) + 12, (4.184)

If we define the half-sum and half-difference of the on-site energies as

€L + €
Y, =

€L —€Rr
, A= , 4.185
5 5 ( )

then the eigenvalues take the form

El,z = Z + VAZ + t2 (4186)

we observe that the two eigenvalues are separated by VA? + £2 from the half-sum, X, of the on-site ener-

gies. The gap between the two levelsis [E,—E{| = 2VA? + 2. Ifeach of the two 1LSs with on-site energies
€1, and e were fully occupied (with two electrons), then, when the 1LSs approach each other, their four

electrons will be placed so that they will first occupy the lower level with eigenenergy E; = Z— VA? + 12,

and then the upper level with eigenenergy E, = £ + VA? + 12 (cf. upper panel of Figure 4.15). If each of
the two 1LSs was half-occupied (with one electron), then, when the 1LSs approach each other, their two

electrons will be placed so that they will occupy the lower level, E; = . — VA? + #2, while the upper one
will remain empty (cf. medium panel of Figure 4.15). Finally, if the 1LSs were both empty, the situation
would be like the lower panel of Figure 4.15.

If we suppose that the two 1LSs are identical, then € = € := €. Therefore, 2 = € and A = 0.
Calculations are simpler. The eigenvalues take the simple form

Ei, =€ ¥t (4.187)
Then, the energy width of the system will be

E,—E; =21t (4.188)
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occupied 2LS E2 ' ' ER
NI Ii —o—o—
€ Ip=—===-
—o—o— ' i
E, ——@—
semi-occupied 2LS E2

€L, ° ZI__\_/A:—:t;I

empty 2LS E2 €
Jrie | :
€p )y I ——————
E,

Figure 4.15: Occupied, semi-occupied and empty two-level system.

To calculate the eigenvectors, we use the relations

(€-E)y +tcg =0 (4.189)
tcp, +(€—E)cg =0 (4.190)

For the eigenvector that corresponds to the eigenvalue E; = € — [£|, that is for the lower level, if we
replace the eigenvalue E; in Eq. (4.189), we obtain

CR=——C
tep + |teg = 0 R= 4

Hence, the eigenvector that corresponds to the eigenvalue E; has the form
5 1
Ur=c| |-
t

e +lerP =12 o2 =1/2 = |eg| = 1/V2.

For it to be normalized, it must hold that

Thus, a convenient choice would be

U1=—| H|=>7 = fort s 0. (4.191)
\2 -7 +1
In brief, the eigenvalue E; = € — || corresponds to the ground level of the system and since f < O there
are no nodes. This is reasonable, since the transfer integral f expresses the attraction between the two 1LSs
that form the 2LS.
For the eigenvector that corresponds to the eigenvalue E, = € + |f[, that is for the upper level, if we
replace the eigenvalue E, in Eq. (4.189), we obtain

_ltch + tCR = 0 |t|
Cp = —C
tep — e =0 R L
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Hence, the eigenvector that corresponds to the eigenvalue E; has the form
. 1
Uy =cp| |-
t

e+ lerP =12 o R =1/2 = [ey| = 1/V2.

For it to be normalized, it must hold that

Therefore, a convenient choice would be

T L r]:ﬁ lllf ts0 (4.192)

Uy = —= | IY U1 =|_4(fort s U. .
\/E n ¥l

In brief, the eigenvalue E, = € + |t| corresponds to the first excited level of the system and since t < 0

there is one node.

4.4.2 Three-level system (3LS).

Let us hypothesize we deal with a three-level system (3LS) composed of three 1LSs. Moving in a com-
pletely analogous manner as we did for the case of the 2LS in Subsection 4.4.1, if we ignore the integrals U
and S (third level of approximation) and assume that the three 1LSs are identical (so that we have equal
on-site energies €; = €, = €3 = € and hopping integrals ¢), then the system of equations to be solved is

e t Of|c 1
t € tl|lex|=El|c (4.193)
0 t € C3 C3

t e€e-E t ||| =]/0]. (4.194)
0 t  e€-E||c; 0

The matrix eigenvalues occur by the roots of its determinant

€-E)(e-E’-#]-t(e-E)=0=
(e-EP-2(-E)=0=
(E-e)(e-Ef-21=0=

E=€or E=e+ V2t (4.195)
Hence, for t < 0, the eigenvalues of the 3LS are
Ei=¢+ V2t, Ey=¢, Ez=¢- Vo2t. (4.196)
The energy width of the system is
E; — E; = 22/t ~ 2.83 |H. (4.197)
Substituting the eigenvalues Eq, E; and Ej to the system of equations

(€—E);+tc; =0
tc; + (€ - E)C2 +tc3 =0, (4198)
tco+(€e—-E)3=0
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we obtain the eigenvectors of the system.
For the eigenvalue Eq = € + \/Et, we have

—\/§C1+C2:O
Cl—\/§C2+C3:O = =03 =
Cz—\/EC:)):O

=c. (4.199)

G
V2
The normalization condition yields

el? + V2c + 12 =1 = dicP =1 = |c] =12,

Thus, the eigenvector that corresponds to the eigenvalue Ej is, e.g,,

1 1
7 = = |V2]. (4.200)
2
1
For the eigenvalue E; = €, we have
tCZ =0
tcy +tc3=0p = ¢, =0,¢; = —c3:=c. (4.201)
tCz =0

The normalization condition yields
P +0+]cf=1= 2/ =1= | =1/V2.
Thus, the eigenvector that corresponds to the eigenvalue E, is, e.g.,

1 1
Uy=—|0]. (4.202)

V2|4

For the eigenvalue E5 = € — \/Et, we have

\/§C1+C2:0

c
¢ +V20+c3=0 :>c1:c3:—\/—2§d=efc (4.203)
C2+\/§C3:0

The normalization condition yields
I + [V2eP + e =1 = 4l =1 = |c| = 1/2.

Thus, the eigenvector that corresponds to the eigenvalue Ej is, e.g,,

L1
U3 = 5 -2 (4.204)
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4.4.3 Four-level system (4LS).

Suppose a four-level system (4LS) composed of four 1LSs. In a completely analogous manner to what we
did in Subsection 4.4.1 for the 2LS, if we ignore the integrals U and S (third level of approximation) and
assume that the four 1LSs are identical (so that they have equal on-site energies€; = €, = €3 =€, = €

and hopping integrals t), then the system of equations to be solved is

e t 0 0][c [C1 ]
t e t Offc| _ £|c
0 t € tf|cs C3
0 0 t €]lca [ C4 |
or
e-E t 0 0 1[c; 0
t €e—E t 0 G| _ 0
0 t e-E t ||| |O]
0 0 t  e€e—E|lcg] 10

The matrix eigenvalues occur by the roots of its determinant
(e-E)Y[(e-Ef* -] -(e-E P -P[(e-E)* -] =0 >
€ — € — -t — (e — - — (e - -+t =0>
E)*[(e - E)* - £] E)*12 EPR2 + =0
(e-E)*-3(-EP+t=0
Settingy = (e — E )2 yields the quadratic equation
-3yt +tt=0

with discriminant A = 9t* — 4+* = 5¢*. Thus,

Hence, for t < 0, the eigenvalues of the 4LS are

f3+ 5 /3— 5 {3— 5 / +
E1:€+ 2\/_t, E2:€+ 2\/—t, E3:€— 2\/_t, E4:€— t

The energy width of the system is

3+ V5
E,—E; =2 2\/— |t| = 3.24 |t].

Substituting the eigenvalues Eq, Ey, E5 and E to the system of equations

(€e—E)c; +tc; =0,
tc; + (e —E)cy +tc3 =0,
tco+(€—E)cz +1tcy =0,
tcz+ (€ —E)cy =0,

(4.205)

(4.206)

(4.207)

3+45

2
(4.208)

(4.209)

(4.210)
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we obtain the eigenvectors of the system.

For the eigenvalue E; = € + 4/ 3+2\/§ t, if we denote
3+vV5 5+1
Ti= \/ 2\/_ = \/_2 ) (4211)

we obtain
¢, =TI,
c1—Tco+c3=0,
o (4.212)
CZ—FC3+C4 =0,
C3 = FC4.
Using the first and fourth equation into the second and third, we obtain
c; —T?c; +Tcy =0, 1-T?)c; +Teg =0,
1 21 4 = ( ) 1 , 4 (4213)
rCl—r C4+C4=0. rC1+(1—F)C4=O.
From there it follows
Cy = r2_1c
4 — 1 “1s
g } (4.214)
Cqy = mcl.

2_
It is apparent from Eq. (4.214), which is OKif " # 0, £1, that % = +1. If we perform detailed calcu-
lations, we obtain

rP-1_ T =1 (4.215)
r TI2-1 ° '
Therefore it will hold that
cp=c:=¢c, c=c3=TIc (4.216)
Consequently,
1
N r
o =c|p|- (4.217)
1
Normalizing, we obtain IcPQ+2I%) =1 = |cf? = ﬁ, that is
1
lcfp = ——. (4.218)
5+ \/3
Hence, we can make the convenient choice
1
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Therefore, the eigenvector corresponding to the eigenvalue E; has the form

1
\5+1
L5
U = ——=| 2| (4.220)
Vo + V5|
1
For the eigenvalue E; = € + % t, if we denote
/3 -5 5-1
I':= = , 4.221
> 5 (4.221)
we obtain
Cy = Tc1,
ci—Tcy,+c3=0,
LR (4222)
Cz—rC3+C4 =0,
C3 = FC4.
Using the first and fourth equation into the second and third, we obtain
¢ -T2 +Tcy =0, 1-T?)c; +Tcy =0,
1 21 4 — ( ) 1 , 4 (4223)
Fcl—F C4+C4:0. rC1+(1—r)C4:O.
From there it follows that
Cq = l—‘2—_1C
! g v } (4.224)
Cqy = mcl.

2_
It is apparent from Eq. (4.224), which is OKif " # 0, £1, that % = +1. If we perform detailed calcu-
lations, we obtain

rP-1_ T 1 (4.225)
r r2-1 '
Therefore, it will hold
cpi=c¢, cp=Ic, c3=-Tc, c¢4=-c (4.226)
Consequently,
1
Uy = _rr : (4.227)
-1
Normalizing, we obtain IcPQ+2I%) =1 = |cf? = 2(111,2), that is
lc[? = 1 (4.228)
- \/g .
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Hence, a convenient choice would be

1
= —— (4.229)

N

Therefore, the eigenvector corresponding to the eigenvalue E; has the form

1
V5-1
3 ! | =
U= ———| 4| (4.230)
V5-V5 |75
-1
For the eigenvalue E5 = € — 3_2—‘/5 t, if we denote
/3—V@ V5-1
I:= = , 4.231
5 5 (4.231)
we obtain
Cyr = —Tcl,
ci+Tcy+c3=0,
LR (4.232)
C2+rC3+C4 =0,
C3 = —rC4.
Using the first and the fourth equation into the second and third, we obtain
c; —T2%c; —Tcy =0, 1-T%)¢; —Tcy =0,
1 12 4 N ( ) 1 24 (4233)
—Fcl—r C4+C4=O. —FC1+(1—F)C4=0.
From there it follows that
Cy = ﬂC
! p v } (4.234)
Cyp = mCl.

2
It is evident from Eq. (4.234), which is OKif ' # 0, £1, that % = +1. If we perform detailed calcula-
tions we obtain

-t r =1 (4.235)
r 1-rz = '
Consequently, it will hold that
ca=c1:=c¢, ¢=-Ic, c3=-Tc. (4.236)
Therefore,
1
N -T
Uz=c|_r|- (4.237)
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Normalizing, we obtain IcPQ+2I%) =1 = |cf? = ﬁ, that is
lef? = ! (4.238)
— .
Hence, a convenient choice would be
1
= (4.239)
V55
Therefore, the eigenvector corresponding to eigenvalue E3 has the form
1
V5-1
3 LI
Ty = Aol (4.240)

N5-V5 |72
1
For the eigenvalue E4 = € — 4/ 3+2\/§ t, if we denote

I:= \/3 +2\/§ = \/5; 1, (4.241)

we obtain
Cyr = —Tcl,
ci+Tcy+c3=0,
Tt (4.242)
e+ Tc3+c¢4=0,
C3 = —FC4.
using the first and fourth equation into the second and third, we obtain
c; —T2%c; —Tcy =0, 1-T%)¢; —Tcy =0,
1 12 4 — ( ) 1 24 (4243)
—Tcl—r C4+C4:O. —rC1+(1—F)C4:0.
From there is follows that
e = ¢
4 — T “1s
. } (4.244)
Cq = mcl.

2
It is evident from Eq. (4.244), which is OKif ' # 0, £1, that % = +1. If we perform detailed calcula-
tions, we obtain

1-T2 r
= =-1. (4.245)

Therefore, it will hold that

cp:i=¢, cp=-Ic, c3=Tc, c¢4=-c (4.246)
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Consequently,

Ty=c (4.247)

-1

Normalizing, we obtain IcPQ+2I%) =1 = |cf? = that is

1
2(1+T2)’

lc|? = (4.248)

1
5+ \/3 '
Therefore, a convenient choice would be

1
0= —— (4.249)

\/5+\/§.

Hence, the eigenvector corresponding to the eigenvalue E4 has the form

1
1 _1+\/§
by = — 2
Uy = 145 |- (4.250)

\5+5

4.5 Discrete-continuous energy spectrum, subbands.

-1

There are cases in which we have free motion in 2 (or 1) dimensions and bound states in 1 (or 2) dimen-
sions, respectively; we call these quantum wells (or quantum wires). In such a scenario, the free motion
leads to a continuous energy spectrum (i.e., bands, although since they correspond to less than 3 dimen-
sions are called subbands), while the bound states we have a discrete energy spectrum, i.e. levels. Our below
description is based on the Slater theorem [ 13], the Envelope Function Approximation, and the Effective
Mass Approximation.

4.6 Slater theorem and consequences.

Using the Slater theorem [ 13], we can reduce the problem of electron motion in a crystal lattice plus per-
turbing potentials to a problem similar to electron motion solely in perturbing potentials; in other words,
we simplify the solving process significantly. The papers by Bloch [ 14] and Wannier [ 1 5] are prerequisites.
The theory of papers [ 14, 15] is extensively described, e.g. in book [ 16].

4.6.1 Unperturbed problem.

The Hamiltonian of the unperturbed problem is

. 1
Hy = —%vz + U (7). (4.251)

e

The first term is the kinetic energy and the second term is the potential energy of a perfect periodic crystal.
The solution of the unperturbed problem

Hy ¥, 7) = Eo@) 0@, 7), (4.252)
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where Ey(P) or E, (%) are the energy band diagrams, which are commonly represented graphically, is the
crystal momentum. This solution was provided by Wannier [ 15], who improved Bloch’s theory [14].

Assume a monoatomic basis in our periodic crystal. Thus, let us suppose that the followmg hold: (a)
The lattice points are described by the position vectors R = mydy + My, + Mmsiy = Rm, where
m = {mq,my, m3}, m; € Z is a collective index for the lattice points and {@, @, @3} are the primi-
tive translation vectors (PTV), and (b) the axes origin coincides with some lattice point. Then [15],

Uo@,7) = Z——ﬁ " a(f - Ry) (4.253)

IR
Alternatively, we can use k, i.e.,

Ho (k) = Eo(k) o(k, ), (4.254)
Yok P = 3 = -, (425)
s m). .
VN
Of course, in our periodic crystalline lattice, the potential energy, Uy (7), is also periodic, i.e.,

U,(7+R,,) = U.(7). (4.256)

L stands for lattice. The Wannier functions are defined as

’"%F 7) (4.257)

Given the property

W 0, 7 5
i me:{N P~ g -p, (4258)

<! <

E e%ﬁ/.f{ma(?_ ﬁm) _ E Z e% p’_ﬁ)~§m¢0(i_§,?) — (4259)
1
% <=ta® ) Dt P = 3 g ANSG - (4:260)
Fi N ‘ m i o

= VN @, 7. (4.261)

Therefore, changing the symbol ;_5' with ;_9: we have

LCUED) WW%C (4.262)

which is Eq. (4.253).
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4.6.2 Perturbed problem.

Now, we want to find the functions 1;(¥) which satisfy the equation
Ay@=E ¢, H=H+H, (4.263)

where i is some collective quantum number and H is the Hamiltonian which contains all the perturbing
potential energies. We assume that H; changes slowly as a function of 7. We are trying to express 1;(7) in
the form

i) = Y piR,) af - R,) (4.264)

In other words, we are trying to find functions @;(R,,) that modify the atomic Wannier functions, (¥ —
R,,), in order to express the solution of the perturbed problem by substituting the exponential functions,

1 _pR B
N s R’”, which modify the atomic Wannier functions, (' — R,,), within the unperturbed problem. The

Slater theorem states that the envelope functions, ;(7), satisfy the differential equation

[Eo(—=ifiV) + Hy(P)] ¢:(P) = E; ;) (4.265)

InEq. (4.265), we have changed l_ém to 7, which is now a coarse grained 7. Eq. (4.265) is called the Envelope
Function Equation (EFE). However, for the Slater theorem to hold, we have to assume that H @ isa
slowly changing function of the coarse grained position 7. Eq. (4.265) is a Schrodinger-type equation for
@;(7), in which the perturbing potential energy H; appears as the potential energy, while Eq(P) of the
unperturbed problem (with p being substituted by the differential operator —iiV ) appears as the kinetic
energy operator.

4.7 From the Schrédinger Equation to the Effective Mass Equation, using the Envelope Function
Approximation and the Effective Mass Approximation.

In the single-electron Schrédinger equation

HY(7) = EY () (4.266)

the Hamiltonian is written as

without external magnetic field, (4.267)

F qA)2
2m,

H

+ U(r)  with external magnetic field, where A is the vector potential,  (4.268)

where U (7) is the total potential energy, analyzed, say, as

Uy (7), where L stands for Lattice, is the potential energy of the perfect periodic crystalline lattice. Ug(7),
where S stands for Scattering, is the scattering potential energy due to defects, impurities, phonons, etc..
Ug (7), where E stands for External, is the potential energy due to externally applied fields and macroscopic
space charges. U, (7), where xc stands for exchange and correlation, is the exchange and correlation po-
tential energy, which describes the effect of the rest electrons. The last term, Uy (7), where M stands for
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magnetic, is the magnetic potential energy, e.g., —ﬁ -Bor- D ; ﬁi . §, where 7 runs over the magnetic
building blocks of the system.

Applying the Slater theorem [13], Eq. (4.265), see Section 4.6, we arrive at the Envelope Function
Equation (EFE)

Eo(=ihV)p(7) + [Us(P) + Ue(F) + Uy () + Un(@]p(7) = Ep(7). (4.270)

Here, ((7) is the envelope function, which crudely describes the wavefunction’s configuration from lattice
point to lattice point, see Section 4.6. The operator —ifiV replaces the crystal momentum p = fik in the
energy band diagrams E((p), i.e., =iV replaces k,

d

R = 0 J
k= (kx1 kylkz) o —iV = —l(a, a—y, g) (4271)

The dispersion relation of a free electron is parabolic, with coeflicient o = -

,i.e.,
e

L PP ~ 1252 ~ _h2V2

E = 4.272
o(k) 2m, 2m, 2m, ( )
Close to the minimum of a specific band (e.g. the conduction band) we can analogously write
N 32 1252 H2V 2
Eo(k) = EcO + p— = EcO + = EcO - p (4273)
2m* 2m* 2m*

where 1" is the effective mass and it is generally a tensor. In more symmetric cases, we can write

. 2k2  B2k2 p2K2
Eo(k) = Eqg + =— L = 4274
and in the simplest case
> 1%k? 72V 2
Eok)=Eo+——=Eyo - . 4.275
0( ) 0 m <0 it ( )

%2
In other words, the effective mass determines the coefficient & = Py of the parabola, just like in the case
2

& .
of the free electron, where the coefhicientis @ = P This means that the effective mass 171" expresses the
e
steepness of the curvature close to the band minimum. See Figure 4.16, in which the case m* < m, is
presented. Popular semiconductors have small effective masses. For example, in GaAs, m* = 0.067m1,.

If we restrict ourselves to the latter, simplest, case, then Eq. (4.270) becomes the so-called Effective
Mass Equation (EME).

h22

Gy (@) + [Eqo + Ug(?) + U, () + Up(D]p(?) + Us(Np(7) = Ep(7). (4.276)
Let us focus on cases without Uy,(7). The quantity Ey + Ug () + U, (7) is the one we draw when we
create band diagrams for heterostructures. Commonly, we solve Eq. (4.276) assuming that Ug(7) = 0
and estimate the effect of Ug(7) using the scattering and transport theory (e.g. by solving the Boltzmann
transport equation) [ 17].

Let us now consider a junction of two different materials, e.g. GaAs and Al,Ga;_,As. In this case, the
conduction band minimum, E g, is higher in the trimer than in the dimer (see Figure 4.17). A well is
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=3 Eol)=Eq+—
# k
;12 E (7:) _ flzkz

" om, o 2m,

Figure 4.16: The steepness of the curvature close to the band minimum is expressed by the effective mass,
m’*. Here, the case m* < m, is presented.

X

E co(tpuiepéq) 1 E co(tpuepéc)
O

E o(8wepiq)

Figure 4.17: A junction of two different materials, e.g. GaAs and Al, Ga;_,As, so that the conduction band
minimum, E ), is higher in the trimer than in the dimer. A well is formed.

formed. If the well width, i.e. the thickness of the medium layer, is smaller than the electron mean free
path, then a quantum description is needed. Therefore, we have a quantum well.
If 1™ is a constant scalar for each material but has different value for each material, then

> 72(k2 + k2 + k2)
Eo(k) = E Y 2
and if we further assume that Ug(7) = 0, it follows that
2 g2 2k,
he o
v o) + [Eq + Ug(®) + U D]p() = Ep(7), (4.278)

2m*(z) 922 " 2m*(z)

hZ 0’)2(P(?) hz ( 0’)2 82

_2m*(Z) 822 + _27’”*(2) &xz + &yz) (p(?) + [ECO + UE(?)) + ch(?)](P(?) = E(P(?), (4279)

and the variables are not separable, due to the presence of 711*(2) in the second term, even if U (7) = Ug(2)
and U,.(¥) = U,.(2). On the other hand, if 7" is constant and scalar, then the variables can be separated.
Such an assumption is not that unreasonable, since electrons are mainly in GaAs. However, it becomes
less realistic as the well width decreases, since this leads to an increased envelope function surpassing of
the Al,Ga;_,As barrier [ 17].
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4.8 Electron eigenstates in a quantum well with constant effective mass.

For Ug(7) = 0, Eq. (4.276) can be written as

2 (92 9% 92
(axz e ﬁ) @A) + [Eq + U + U (D] ¢(7) = E@(). (4.280)

ue)

_Zm*

We have defined U(7) := E, + Ug(7) + U, (7). Let m* be constant and scalar and U (7) = U(z) as it is
qualitatively shown in Figure 4.18. The presence of three different layers, i.e., of three different E , leads
in itself to a square well without curvature. However, the term Ug(7) of the Hamiltonian -specifically, its
part that corresponds to space charges (and occurs by solving the Poisson equation)- and, secondarily, the

term U, (7), lead to a deformation of the bands which is called band bending [ 17].

Figure 4.18: A quantum well between three layers of materials with band bending.

We can try a solution of separate variables to Eq. (4.280), i.e. of the form

(M) = X(x) Y(y) Z(2). (4.281)
Then,
n? [ 92 92 92
o (gxz + Y2 + g) o) + U@)p(F) = Ep(7), (4.282)
(92 92 92
o ( 2t or” 8—22) XYZ + U(A)XYZ = EXYZ, (4.283)
292X W __9*Y K __9%Z
——YZ—— - —XZ - —XY=—= + U(x)XYZ = EXYZ, (4.284)

2m*dx% 2m* Jdy? 2m* 9zZ?
2 102X K2 10%2Y h 19%Z N
2m* X dx?>  2m*Y Jdy?  2m* Z 9z?
—_—
f1) fa(y) f3@)

U(z) = E. (4.285)

There are three terms on the left-hand side of Eq. (4.285); the first f;(x), depends only on X, the second,
f2(y), depends only on y, and the third, f3(z), depends only on z. On the right-hand side there is E and
the equation must hold ¥ x, i, z. Hence, E does not depend on X, 1/, z and the equation can be divided
into three parts, i.e.,

E=E,+E,+E,. (4.286)
7% 1 9°X

~ o 3E = E,, (4.287)
A% 19%°Y

Y IR E, (4.288)
h? 19°Z

- Zm*Zﬁ + U(Z) = EZ' (4289)
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For the first equation,
% 9%X(x)
_ = E. X(%), 4290
we try solutions of the form
X(x) = Ae**  (eigenfunctions) (4.291)
and it follows that
72k2
X(x) = E, X(x), (4.292)
2m*
1i%k2
E,= Z_mf (eigenenergies). (4.293)

We observe that the eigenenergies and eigenfunctions are the characteristic ones of a free particle
moving in the x dimension. We normalize over the whole length of the heterostructure along the
X-axis, i.e.

+L./2
f dxlX(x)l2 =1= |A|2Lx =1, hence, aconvenient choiceis A = . (4.294)
L2

5~
=

For the second equation,

n 9%Y(y)
- ———=E, Y(y), 4.2
we try solutions of the form
Y(y) = Be'kw (eigenfunctions) (4.296)
and it follows that
ﬁzkﬁ
T Y(y)=E, Y(v), (4.297)
k2
E,= Z_mi/ (eigenenergies). (4.298)

We observe that the eigenenergies and eigenfunctions are the characteristic ones of a free particle
moving in the i dimension. We normalize over the whole length of the heterostructure along the
Y-axis, i.e.

+Ly/2 2 9 1
f dy|Y(y)| =1=[B['L, =1, hence, aconvenient choiceis B = —. (4.299)
~Ly/2 vLy
For the third, equation,
h? 9%Z(z
- @) + U(z) Z(z) = E, Z(2), (4.300)
2m*  Jz2

we will generally have some eigenenergies E; and eigenfunctions (;(z) which correspond to bound
states. (We will not focus on energies larger than the top of the well.) Let us assumed that the
eigenfunctions are normalized, so that

+L,/2
f 2 AP = 1. (4.301)

_Lz/
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Hence, in summary, we obtain the eigenenergies

nK2 kg

Ei(ky k) = E; + T T o (4.302)
and the (envelope) eigenfunctions
1 iy kY
Pijee e, (P) = %Ci(Z)e ey, (4.303)

where 5 = L, L, is the cross section of the heterostructure on the xy-plane. In other words, the electron
is free along the x- and y-axes, while it is bound along the z-axis (at least for energies smaller than the top
of the well). The index i is discrete and the indices k,, k, are “continuous” These two elements constitute
the quasi two-dimensional character of such electrons.

4.9 Density of eigenstates of a quasi two-dimensional electron gas.

The density of eigenstates is defined as

g(e) ==Y 6(e —E,) =2 ), 6(c — Ey), (4.304)
u A

where the first (second) summation over i (1) denotes all the eigenstates (energy eigenstates), i.e. the
factor 2 is due to spin. Summation is carried out over all “continuous” and discrete indices. In our case, it is
carried out over the “continuous” quantum numbers k,, ky and the discrete quantum number i. In other

words,
72 (k2 + k2)
gle)=2 Z 5 e—Ei—# ) (4.305)
ikky 2m
Let us impose periodic boundary conditions along the x- and y-directions, i.e.,
e(-2) k(2 . . 2
¢ ( 2) —¢ (2) = elllr =1 = 2™ . € Z =k, = 7me. (4.306)
X
w (- (2 , ‘ 2
elky( 2 ) = ¢ ( 2 ) = efvby =1 = eIZ""y,ny €Z =k, = ™y (4.307)
Y
Therefore,
2ntn 21 21tn 27
ky= === Ak, = —An,, k,=—" = Ak, = —An,. 4.308
X Lx X Lx nx Yy Ly y Ly ny ( )
2 (k2 + k2)
g(e) =2 Z S [g —-E - #) AnyAn,, where An, = An, =1. (4.309)
ik,
Using Eq. (4.308), it follows that
(k2 + Kk2)\ L L
=2 Y §|e-E - ——L| XAk, =LAk, 4310
8(€) 2 (E ' 2m* ) 2 2 Y ( )

ik Ky
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And, since S = L, L, is the cross section of the heterostructure on the xy-plane, we can write

2(1-2 2
g(e) = 2(;)2 ikz;( o (e -E;- %ﬂ:ky)) Ak Ak, (4.311)
exky
Now, let us suppose that
Ak, — dk, assuming L, — oo or, better, >> L, (4.312)
Ak, — dk, assuming L, — oo or, better, >> L,. (4.313)

In this “qualitative” fashion, we conclude that

R2(K2 + K2)
ﬁxdkxﬁydkygé[g_Ei_T) (4314)

which, of course, can also be implied by a known theorem.

S
g(e) =2 (27m)?

Now, let us change the coordinates in the plane k.k; from Cartesian to polar. As we can see in Fig-
ure 4.19, the norm, |?| , of the two-dimensional vector k = (k,, ky) in the plane kxky, is F7(| =k =
JKE + kﬁ, where the infinitesimal change in the radial direction is denoted by dk | and the infinitesimal

change in the polar direction, i.e.,, normal to the radial direction, is denoted by dk | = k| d¢. ¢ is the polar
angle in the plane k,k,. Therefore, we can write

ky

k, 4

Figure 4.19: From Cartesian to polar coordinates in the plane k,k,.

25 OOj\zndkkd o E thﬁ
8(e) = (2n)zf0 . ik CPZ e-Ei-——| (4.315)
S 00 thZ
8(e) = ;Zfo dkllkllé(E_Ei_ 2m”] (4316)
i
Now, performing the variable change
1k 12
X=o = dx = %k”dk”, (4.317)

it occurs that

g(e) = —a E fo dxo(e — E; — x). (4.318)

As it can be seen in Figure 4.20, when ¢ — E; lies within the interval (0, ), i.e,, when ¢ > E;, the integral
is equal to 1, otherwise it is 0. This can be expressed as

s
oe) = th Y6 - E) (4.319)

The density of (eigen)states, with its characteristic step-like form, is presented in Figure 4.21.
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Figure 4.20: € — E; lies within the interval (0, ©0), i.e., when ¢ > E;, the integral is equal to 1, otherwise it

is 0.

S
§(e) = =3 Y,0(c - E)

. m*S
g(é)/ s
3 —
2 ———
1 —
—— &

Figure 4.21: Density of (eigen)states of a quasi two-dimensional electron gas

4.10 Spatial density of occupied states, i.e. electron density

The spatial density of occupied states, i.e. the electron density or spatial electron density is

n= [ de g(e) fole)

where g(¢) is the density of states, f(¢) is the Fermi-Dirac distribution, and Pikyk, (7) is the normalized
envelope function of level i. Caution: there is already a summation over i inside g(¢). Substituting Egs.

(4.319), (4.303) and the definition of the Fermi-Dirac distribution function, we obtain

(4.320)

Ax ity

to  m*S 1
nm:f_m dg@;@)(e—a)“exp(g H(T) |c()| (4321)
kT
B mx— 2 +00 ‘ o ' 1
Tl(?) - % 211 |Cz(z)| ﬁm de @(6 Ez) 1+ exp(s_”(T)) (4-322)
ke T
(4.323)

Oy e T —
R e e

We now perform the variable change x(T') := ﬁ , and denote k(T) := % [below we write them as x
B B

and , for simplicity]. Thus, it follows that

n(?):

1 + exp()( x)’ (4-324)
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- -1

and since (In(1 + ™))" = T = Ti.e We can write
m kB
n(@) = Z i) [~ In(1 + exp(x - x))] . (4.325)
kT
However,
+00 Ei
[— ln(l + exp(x — )())] g =0+ ln(l + exp(K o T)), (4.326)
T B
thus,
o) = "t Sk {1+ e X5 < (4327)
ForT =0,
N 1, e<Eg B .
fole) = {O, esE O(Eg - ¢), (4.328)

where Ey, is the so-called Fermi energy, i.e., the chemical potential at temperature T = 0 [ E¢ := u(0)].
Substituting to the definition (4.320), we obtain

= [ a3 2@ ~E)1 GlaF, (4329)
* Ex
n®) = 5 NIE | de o -E, (4330)
m* 2 Er
nq):% 2 1(2)] . de. (4.331)
occupied

Only the occupied levels contribute now. In conclusion, we obtain the formula

== N GEF (E-E) = nE@) (4332)
occupied

4.11 Spatial electron density, electron energy density, total number of electrons.

As seen in Eq. (4.320) of the previous Section 4.10, the spatial electron density is defined as

+00 2
n(r) := f de g(€) fole) |§0i,kx,ky(?)| . (4.333)
Similarly, the electron energy density is defined as
n(e) := f dr g(e) fol€) | (4.334)
everywhere
while the total number of electrons is
+00
N = f de f drg(e) fole) i s, ) (4.335)
-0 everyw ere
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since

N = Br n(@). (4.336)

everywhere

In the context of electronic devices, the sheet (or surface) electron density

N, = —. (4.337)

is used. Using Eq. 4.327, which holds for all temperatures T', we obtain

kg T T)-E;
N = . d37” mnhlz 2 |Cl‘(Z)|2 ln(l + exp(%)) = (4338)
everywhere i B
*SkgT T)-E;
N = mnhf zln(l + exp(%)) (4.339)
i B

while, using Eq. 4.332, which holds for T = 0, we obtain

*

m 2
N := d3r — ) 6@ (Ep-E) = (4.340)
everywhere T i
occupied
mS
N=— Y, (Ex-Ey. (4.341)
occuzpied

Let us provide an example, to obtain a better understanding of the orders of magnitude we are dis-

cussing. Suppose S = 1 cm?, m* = 0.067 m, (GaAs), and a single occupied state with Ex — E; = 30 méV.

31 194
Then N = 0'076771?6;20 10_6180 30 1073 1.602 107! ~ 0.9 10'?, hence the surface electron density is

N, = 0.9 10'? cm™2.

4.12 Density of eigenstates of a quasi one-dimensional electron gas.

It is left as an exercise to prove that, in the case of a quasi one-dimensional electron gas, with free states
along the x-direction and bound states along the y-, z-directions, the envelope eigenfunctions are given
by the expression

Pijje, (F) = \/% 50 (Y)Ci(2) (4.342)

and the corresponding eigenenergies by the expression

72k2
Ei/j/kx = Ei +E + X

, 4.343
] Zm* ( )

where k, is “continuous” and i, j are discrete.
From the definition of the density of eigenstates [Eq. (4.304) ], using Eq. (4.343), we sum over all the
“continuous” and discrete indices. Here, k, is “continuous” and i, j are discrete. In other words,

4.344
2m* ( )

g(5)2226(6—Ei—Ej—h2k§).

i,jky
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Imposing periodic boundary conditions along the x-axis, we have

e”‘*(‘L?x) _ ;"X(L?X) o efle =1 = o2 € F =k, = 20X o Ak = ZL—nAnx, (4.345)
x x
where An, = 1. Hence, Eq. (4.344) becomes
g(e)=2 E o (g ~E; - E zj:’z‘) An, = 25—; Z o (g ~E-E;- 'Zlf) Ak, . (4.346)
ik LKy
Now, let us suppose that
Ak, — dk, assuming L, — o or,better, >>L,, L. (4.347)

Therefore,

272

Lx ) hzkz 71 <
g(e):?%:f_oodkxé ¢-Ei~E 2—2f dkd (e~ Ei=Ej= 5| (4348)

We now perform the variable change

1i2k2 72 N dy
x = = dy= = dk, = —=. 4.349
2m* X X h\/z \/% ( )
Hence,
g(e) = 2 ~E-Ei-x). (4.350)
Thus,

) (4.351)

gg ih 2\/T Ei

The density of (eigen)states, with its characteristic saw-tooth form and the so-called van Hove singulari-

ties, where the DOS gets infinite approaching from above, is presented in Figure 4.22.

4.13 Density of eigenstates of a three-dimensional electron gas.

It is left as an exercise to prove that, in the case of a three-dimensional electron gas, with free states along
all the x, 1, z-directions, the envelope eigenfunctions are given by the expression

(piljlkx(?)) - \/_V elkxxelkyyelkzz/ (4'352)

where V' = L,L,L;, and the corresponding eigenenergies by the expression

RO+ K2+ 1) 2k

= , 4.353
2m* 2m* ( )

Ex k. =

where ky, ky, k; are “continuous” indices.
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Figure 4.22: Density of (eigen)states of a quasi one-dimensional electron gas with its characteristic saw-

tooth form and the so-called van Hove singularities. In this specific example, we have put E;_y = 0.5,

Ei-1 =1.5,Ej—g =2, Ej=1 =4, in arbitrary units, just to make the figure.

From the definition of the density of eigenstates [Eq. (4.304)], using Eq. (4.353), we sum over all the

“continuous” indices. In other words,

1i%k?
ge)=2 Z 6(8_2m*)'

k.X /ky/kZ

Imposing periodic boundary conditions along the x-axis, we have

o Ly o (Ly
elkx(_T) = elkx(T) = elly =1 =2y € T =k, = 2y = Ak, = z—nAn
’ L L Y
X X
where An, = 1. Similarly,
2 _2n
Aky = L—yAny, Akz = L—ZATZZ,

where An, = An, = 1. Therefore, Eq. (4.354) becomes

i%k? AV 1252
ge)=2 ) 6(5 - —*)AnxAnyAnz === ) 6(e - —)Ak Ak, Ak,.
bk 2m (2n)3 ko 2m*
Now, let us suppose that

Ak, — dk, assuming L, — oo
Aky - dky assuming L, — oo

Ak, — dk, assuming L, — oo.

In this “qualitative” fashion, we conclude that

= )3f dkf dkf dké(e—@)

(4.354)

(4.355)

(4.356)

(4.357)

(4.358)
(4.359)
(4.360)

(4.361)

which, of course, can also be implied by a known theorem. Changing to spherical coordinates, the above

relationship becomes

V4 00 thZ
— 2
g(e) = P j(; 4tk dké( - )

2m

(4.362)
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We now perform the variable change

RES 72 Nm* dy

= = dy=—kdk = dk= —. 4.363
X=5- x=_ 2V (4.363)
Hence,
3
Vm'2N2 ~ x
Thus,
3
Vm'z4/2
g(e) = W‘/E O(e) | (4.365)

The density of (eigen)states, which, in contrast to the previous cases, is a continuous function of energy,
is presented in Figure 4.23.

3 3
V22 Vm'iy2
3‘(‘)/ 20 8 =—733 Ve ©(e)

3

2.5

2

15

1

0.5

0

o

0 2 4 6 8 10

Figure 4.23: Density of (eigen)states of a three-dimensional electron gas.

More for continuous spectrum in solids, energy bands, and so on can be found in classical solid state
physics books, for example in [ 16], [18], [19], [20].

4.14 Degrees of Freedom: translational, vibrational, rotational.

Simply, degrees of freedom of a physical system are the number of independent ways in which it may move.
These are translational, vibrational or rotational. Alternatively, the minimum number of independent vari-
ables required to describe completely the state of the system. Classically, a molecule with N atoms has 3N
degrees of freedom. Its center of mass can move in 3 directions, X, Iy, z, therefore, it has 3 translational de-
grees of freedom. Hence, there remain 3N — 3 vibrational and rotational degrees of freedom.

We will give an example of a diatomic molecule, A-B. The molecule can vibrate along the line connecting
the two atoms. [Let us suppose that this line lies along the x-axis.] Therefore, it has one vibrational degree
of freedom. It can also rotate around the perpendicular directions at the line connecting the two atoms,
i.e,, here around the y- and the z-axis. Therefore it has 2 rotational degrees of freedom.

Generally, if a molecule is linear, it has 2 rotational degrees of freedom, hence, there remain 3N — 5
vibrational degrees of freedom. If a molecule is non-linear, it has 3 rotational degrees of freedom, hence,
there remain 3N — 6 vibrational degrees of freedom. In the quantum world, these movements correspond
to different quantum numbers. For more, see a Physical Chemistry book, e.g. [21].
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CHAPTER 5

SEMICLASSICAL APPROXIMATION |

In this Chapter:

We discuss the semiclassical approach of the electromagnetic (EM) field - two-level, three-level, multi-
level system (2LS, 3LS, MLS) interaction. We manipulate the EM field classically, while 2LS, 3LS, MLS
are treated quantum mechanically, that is, as a set of eigenstates. We introduce the dipole approximation,
after having discussed briefly the electric dipole moment and its analogies with the magnetic dipole mo-
ment. Unperturbed is the system without EM field. The perturbed system, i.e., the system subjected to EM
field, is manipulated with time-dependent perturbation theory. We arrive at a linear system of differential
equations. We evaluate the perturbation potential energy matrix elements. We give analytical solutions
for 2LS, 3LS, MLS within the rotating wave approximation (RWA). We encounter for the first time Rabi
oscillations, i.e., time-dependent probabilities to find the electron at the levels. We introduce the Rabi fre-
quency, which expresses the magnitude and the effectiveness of the perturbation, i.e., of the entanglement
with the EM field. For the solution of the differential equations we use the eigenvalue method, which is
more general, but also other alternatives. We calculate approximatively the Einstein coefhicients. For the
3LS we use a viable, analytically solvable, variation, with equidistant levels in one dimension, an hypoth-
esis that we keep for the MLS, which we solve finally. Relative helpful references are [ 1, 2, 3, 4, 5, 6].
Prerequisite knowledge: Basic knowledge of Electromagnetism, Quantum Physics, and Mathematics.

Let us recall some necessary abbreviations: 1LS = single-level system, 2LS = two-level system, 3LS
= three-level system, MLS = multi-level system. For example, a 2LS may be two consecutive levels of an
atom, molecule, quantum dot (or nanoparticle). This is schematically depicted in Figure 5.1, together with
relevant quantities: the eigenenergies of the two levels E; and E, the angular frequency of the EM field,
w, the energy distance between the two levels, 7i(), the Rabi frequency, (g, which shows how much the
two levels are tangled by the EM field, and the detuning, A = @ — Q).

Constantinos Simserides (2023). «Quantum Optics>.
Kallipos, Open Academic Editions. https://dx.doi.org/10.57713/kallipos-186
Creative Commons Attribution — Non Commercial — ShareAlike 4.0 International
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EM field :
Es
. We focus here
E_|21S) E,-E, =10
ho =01 _
E1 ™ one electron
d=w-Q

_QR= how much the levels are tangled by the EM field

Figure S.1: Schematically, a two-level system (2LS) and relevant quantities: eigenenergies of the two lev-
els, E; and Eq, angular frequency of the EM field, w, energy distance between the two levels, (), Rabi fre-
quency, (g, which shows how much the two levels are tangled by the EM field, and detuning, A = w—().

5.1 Semiclassical treatment. EM field: classically. Two-level system: quantum mechanically.

Semiclassical treatment means that while the two-level system (e.g., atom, quantum dot, nanoparticle,

color center, etc.) is treated quantum mechanically as an eigenstate system, the EM field is treated classically.
The EM field is considered as an external, time-dependent perturbation. Moreover, we consider that

the EM field is so dense that photon absorption or emission by the two-level system of study cannot

substantially affect the amplitudes of the electric and magnetic fields. If we are interested fluctuations of
the EM field density, we need to abandon the semiclassical approximation. This is done in Chapter 8,

where the 2LS - EM field complex is studied in its full quantum mechanical form; that is, in Chapter 8 we

will treat the EM field quantum mechanically, as well.

5.2 Unperturbed system, i.e., without an EM field.

Let us consider the electronic Hamiltonian in the unperturbed two-level system,

H, + U(7). (5.1)

Ny |‘3L>

For example, in the hydrogen atom, the potential (Coulomb) energy is

2
U@ = (~0)——- = ——, (52)

47'[60 r Amegr

where eis the elementary charge. In a multi-electron system with atomic number Z the potential (Coulomb)

energy is
~Ze?
Uu@) = . (5.3)
4drtegr
We can alternatively consider the screened form of the potential energy, i.e.,
~Z¢?
Ug(?) = ekor, (5.4)
4megr
Generally, the Coulomb potential has the form
1 Ze
V({7 = —, (5.5)
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while the screened Coulomb potential has the form

—kor, (5.6)

where ky is the strength of the damping factor or Thomas-Fermi wave vector. The screened potential V§(7)
is also called the Thomas-Fermi or Yukawa potential. The above potentials and potential energies are, in
final analysis, dependent on 7 and not 7; that means that they are central potentials and central potential
energies. The Yukawa potential drops faster than the Coulomb potential, due to the factor e7ko7; this is
depicted in Figure 5.2.

Yukawa vs Coulomb

O L
-0.5
At
E Coulomb
~ -1.5 —— Yukawa, kg =5
—— Yukawa, kg = 10
2r
-2.5
-3 : : : : :
0 0.5 1 1.5 2 2.5 3

r

Figure 5.2: Comparison of the Yukawa and Coulomb potential energies, which are here simplified as

1 1
Viikawa(t) = —;e‘kor and Vouiomp (1) = .1 kg are dimensionless and positive. The Coulomb po-
tential energy has an effect in larger distances, while the Yukawa potential energy drops more rapidly, due
to the factor e <0,

Let us consider the time-dependent Schrédinger equation

IV (7, t N
if (9(2 ) = HyW(7,t) (5.7)
where W(7, t) is the wavefunction of the unperturbed electron. Furthermore, let us assume the separation
of variables
V(7 t) = OF) T(t). (5.8)
67 LdT(t) A ih dT(t) Hy,®@7) _
c8 = CD(?)zh—dt = T(t)Hy®(7) = TO @ - o) for T(t) # 0 # ©F). [If T(t) = O or

®(7) = 0, then Eq. 5.7 is trivially satisfied]. However, for the last equation to be satisfied Y  and V7, it
must hold that

ih dT(t)  Ho®@)
O = E (CONSTANT) (5.9)

since the one part depends solely on f and the other part depends solely on 7. Thus,
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1. Hy®(7) = ED(7), hence E are the energy eigenvalues, generally distinct, which are characterized
by some “collective number” k, i.e.,

Hy®,(7) = Ex D (7). (5.10)
a1 Edt:ﬂT iEt+ = T(t) "_”;_t:
— = — =-——+4cC =e¢‘e
T m h
_IEt
T(t)= Ve &. (5.11)
Therefore, wrapping this up
iEk).‘
\yk(?/ t) = Me_7®k(?), (512)

where ./ is a normalization constant. The eigenstates of the UNPERTURBED PROBLEM are described
by
Ho®(F) = ExPr(7), (8.13)

where Ej are the eigenenergies and @ (7) the orthonormal eigenfunctions. In addition, we define

Ek = th (514)

[l ofav =1 e 107 [|o@fav

This is why we called ./ a normalization constant and assumed that @ (7) are orthonormal. dV = d%r

Let us demand

Il =

1. (5.15)

is the elementary volume and k a collective quantum number. For example, in the hydrogen atom, k =
{n, €, m,}. In the hydrogen atom, the eigenfunction ®(r, 0, ¢) corresponds to the eigenvalue

—Rg
Ek = 7 = En, (516)
where
R et 13.6 eV (5.17)
= e .
ET 3om2e2m

is the Rydberg energy. More details on the hydrogen atom can be found in Chapter 7.

5.3 Perturbed system. Time-dependent perturbation theory. Dipole moment. Dipole approxima-
tion.

5.3.1 Arriving at a Linear System of Differential Equations.

Let us consider the hydrogen Hamiltonian in the perturbed 2LS, i.e., subject to an EM field
H=H,+ U7, 1) (5.18)

and assume that the potential energy of the perturbation, U« (7, t), is adequately small compared to H,.
We want to solve the problem

IV (7, t)
at

if =AY, 1) (5.19)

under the initial condition

W(7,0) = O(F) = known. (5.20)
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We assume that we can expand both W(7, 0) = @(7) and W(7, t) over the eigenfunctions of the unper-
turbed problem @ (7). Therefore, we can write

D@ = Y] fi (), (521)
k
W, t) = Y, Cr(t)e XDy (), (5.22)
k
thus,
Cr(0) = f. (5.23)

From Equations 5.18, 5.19, 5.22 it occurs that
9 | . |
' —it = —iQyt
1%’15[ Ek: Cr(t)e™ q)k(?’)] = [HO + Uz (7, t)][ zk: Cp(F)e i (Dk(?)]- (5.24)

Let us calculate the two hand-sides of Eq. 5.24. For the left hand-side, which we call A’, we have:

A’ =il Y, Cp(t)e WDy (@) + il Y Cr(t)(—iQp)e Dy (7).
k k

Therefore, due to Eq. 5.14, it occurs that

A =i Y, Cr(t)e WD (@) + Y, Cr(D Exe WDy (7).
k k

For the right-hand side, which we call B’, we have:

B’ = ), C(he "M E D (P) + Y, Cr(t)e W Uz (7, Dy (7).
k k

Thus, by eliminating the second term of A’ and the first term of B/, it occurs that

i Y, Cr(De ™ WDy (F) = Y Cr(He U (7, H D (D). (5.25)
k k

Now, we exploit the fact that @y() are orthonormal. We multiply Eq.(5.25) by @}, (7) and integrate over
space, i.e,,

il Y, Cr(t)e Wt f Dy (DAY = Y C(t)e X f @, (AU (7, )PPV (5.26)
k k

However, since @y (7) are orthonormal,

f @, AOUAAV = by,

the above equation becomes,

ihCp (e Xt = Cr(De ™ Uz (), (5.27)
k

where

Usion(®) = [ @O, DDAV = (@l D) (528)
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are the matrix element of the potential energy of the perturbation. Generally, the matrix elements of any
given physical quantity, M, are defined as

My = f AV, DBLF, iV )0 7) = (D |Us 7, £)|Dy) (5.29)

More on this subject can be found in Appendix B.6, where the two formalisms are discussed in more detail.
So, we finally arrive at

. —i .
Cp () = 7 D Cr(He @ 2 U (1) (5.30)
%

In other words, we arrive at a Linear System of First Order Differential Equations. Solving the problem of
Eq. 5.30) is identical to solving the problem of Egs. 5.18, 5.19.
The above procedure constitutes the so-called time-dependent perturbation theory. We will apply it

to a two-level system subject to a monochromatic and polarized electric wave, i.e., our perturbation will
have these features. Afterwards, we will apply it to a three-level system, as well.

We notice that since f W@ AV =1 & f‘I“(?, HW(F, tH)dV =1,
= [V 3G 0% 0,7 Y Culthe W) =1 =
kK k

= 3 3 € ()Cy(Byel @00 f AV, O =1 =
Kk

MICGOP=1|= Y IGOP=1= | Y Ifl? =1 (5.31)
k k k

5.3.2 Dipole moments.

Suppose an electric dipole PM (P: plus, M: minus) with charge g > 0 at P and —q < 0 at M. The electric
dipole moment is defined as

P =qd (5.32)
where d = MP.In Figure 5.3 we consider the hydrogen atom, so the electric charge on the nucleus N =P
isq = e > 0, while, on the position of the electron E =M, itis —g = —¢ < 0. Additionally,d = MP = EN.
If the axes origin is O, we call 7¢ the position vector of the electron relative to O, R the position vector of
the nucleus relative to O, while7” = NE = PM is the position vector of the electron relative to the nucleus.

Then, d= —7, hence
P = qtf: e(=7) = —er (5.33)

We now restrict ourselves to forces coming form the electric field traveling monochromatic and polarized
EM wave

Z =&, explik -7y — wt + )]

where &, determined the polarization of the wave and w = 27V is the angular frequency (V is the fre-

N
quency). k is the wavevector with magnitude k = 27/A, where A is the wavelength. ¢ is some arbitrary
phase. However, we will assume that the position of the electron, 7, does not significantly differ from

- -
the position of the nucleus, R, for the length scales that are of interest here. In other words, 7 =~ R| The

reason why we did so is that we consider optical wavelengths. If, e.g., A = 500 nm, then, given that the
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Figure 5.3: (Upper panel) The axes origin O, the positive charge P (plus), which can be represented by the
nucleus N in an atom, the negative charge M (minus), which can be represented by one electron E moving

5
around the nucleus. We define d := MP. Usually, when studying an atom, we consider the position vector

- - —
of the electron relative to the nucleus NE = 7 = —d. The electric dipole moment is defined as . := gd
something that we can therefore write %2 = —e¥, if we refer to e.g. the hydrogen atom. For the latter

case, we notice the vectors OP := Rand OF := 7E. (Lower panel) Very schematically: Under these
conditions, the wave length is much larger than the spatial extent of the system, something like A >> a;
thus, the electric field is practically homogeneous. For example, for optical wavelengths, A ~ 500 nm,
and for the hydrogen atom a ~ @ (Bohr radius), hence, A/ay ~ 10%. The triangle OPM (ONE), which
is shown in the upper panel, is shown in the lower panel smaller than the wavelength, but in fact it is much
(~ 10* times) smaller.

size of the electron’s’ ‘trajectory” is of the order of the Bohr radius, 4y ~ 0.529 A = 0.529 - 107" m
~ 0.5-107! nm, it occurs that

A__50mm _5.10° o, 7
a9 05-10'nm 5-102 0

Thus, the electric field is practicaly homogeneous, it is practically not space-dependent. Therefore,

&~ & explik-R-wt +¢)| = &, exp[ik - R + )] exp(-iwt),

—

0

hence,

& = &y exp(—iwt) = E(F)|. (5.34)

In other words, we incorporated the factor exp [i (ﬁ R+ (f))] into the amplitude, assuming that the electric
field has practically ONLY SPATIAL dependence.

Additionally, let us use the symbol V' to denote potential and the symbol U to denote potential energy.
We can write

£=-VVv
d J d N =>dV=-& -df >
dV:—de+—de+—de:VV-d?
dx dy Jz
setto 0

VEH - V@D =& 7
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It is implied that for this to happen during integration we assumed that £ is space-independent. If we
multiply by (—e), we find the potential energy of the electron due to the perturbation

we have set to 0
UG, - UGG, = e -7

hence, from Eq. 5.33 it occurs that

UF ) =L - T=-P - Z(1) (5.35)

The above set of assumptions, which led to the perturbation potential energy of Eq. 5.35, is called the
dipole approximation.

Next, we remind the reader of some analogies between the electric and magnetic fields, as we list the
electric dipole moment, magnetic dipole moment, potential energy of electric dipole, potential energy of
magnetic dipole and the respective torques. L is the orbital momentum, Sis the spin, and ¢ a dimension-
less factor.

Analogies Reminder

Figure S.4: Electric and magnetic dipole.

& (Electric Field) B (Magnetic Field)
P =qd electric dipole moment g=1 A magnetic dipole moment

or i = (ﬂ/zm)(z + g§)

Ug = - -& potential energy Ug =—U- B potential energy

?:ﬁxéz torque T = ﬁxﬁ torque
[j]:cm [}_f]ZAm2
N N ~
N ,» N
[?]:CmEZNm [ﬂ:AmEZNm

We have shown that, for optical wavelengths, we can write (Eq. 5.34)

& = é;()) exp(—iwt) = g(t)

Considering that polarization occurs along the z-direction and taking the real part of Eq. 5.34, we obtain

éz(t) = &y 2 coswt

Hence,
Ug =-F - & = —(—e)F- &2 coswt =
Ur =e&yz coswt (5.36)
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5.3.3 Matrix elements of the perturbation potential energy.

Let us now focus on the matrix elements of the potential energy of the perturbation

Uspri () = f AV, AUz 7, () = f AV, (7) 2 Dy (7) ey cos wt =

Ui (t) = 0% cos ot f AV, (7) z Dy (7) (5.37)

Let us denote the matrix elements of the z coordinate as
Zxrk = de(DZ,(?) Z q)km (538)
These have the properties

Z;;’k = Zjg!

Zik = de |q)k(?)|2 z =0 (539)
even  odd
Hence, the non-diagonal elements are symmetric, while the diagonal elements become zero. The latter
property occurs due to the fact that in systems such as atoms, quantum wells, etc, the eigenfunctions are
either even or odd. Therefore, their squared magnitude is an even function.

Finally, the matrix elements of the potential energy of the perturbation can be written as

ng/k(t) = ego cos wt Zrk (540)

In Figure 5.5 we present a two-level system. This can be composed of the two lowest levels of an atom,
a quantum dot, etc. We commonly choose the photons of the EM field to closely match the energy differ-
ence between the two levels, i.e,, fiwo = hv ~ E, — Eq; however this doesn’t mean that they have to be
perfectly matching. This assumption will prove itself useful afterwards, when we introduce the Rotating
Wave Approximation. For a two-level system (k = 1 or k = 2) we can write

Two-level system
(in atom, quantum dot, etc.)

E, O ()

O1(r)

Eq

not excited excited
—_— _._
-9 —

Figure 5.5: A two-level system. When the electron is at the lower level, Eq, the system is characterized as
unexcited, while when it is at the upper level, E,, the system is characterized as excited.

u;glz(t) = €go coswt Z12 Uglz(t) = —@212 go coswt
Ug21 (t) = ego cos wt zp1 or Ug21 (t) = _yZZI go cos wt

ngk(t) = eé”o coswt zy, = 0 ngk(t) =0
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The second column is deduced by the first since &2 = —eF = 7, = —ez, hence the respective matrix

elements are 7,1 = —ezpsy. Thus, Eq. 5.40 becomes

ng/k(t) = —,@Zk,k go cos wt

If our eigenfunctions are real, then for our two-level system it holds that

Pp = —ez1p = —ezy) = Py = P, = P

and this .7° is used in the next section. Therefore

Uglz(t) = -7 go cos wt
Ug21(t) =-7 go cos wt
Ugi(t) =0, k=1nk=2

Hence, Eq. 5.41 becomes

ng/k(t) = —@ go cos wt k * k’
Ugyi(t) =0 k=K

(5.41)

(5.42)

(5.43)

which means that the magnitude of the perturbation is proportional to .#,. This is expressed by

PE,

the Rabi frequency (Qp = - The detuning (see Eq. 5.49) and the Rabi frequency (see Eq. 5.50)

determine the period and amplitude of the oscillations within the two-level system, as it will be shown

below.

5.4 Equations describing the time-evolution of a two-level system. Rabi frequency. Rotating Wave

Approximation (RWA).

We had arrived at a Linear System of First Order Differential Equations (Eq. 5.30) which, if solved, essen-

tially solves the problem of Eqgs. 5.18, 5.19. Eq. 5.30 was

. —1 .
Cr(t) = 7 ), Cr(De =Bt Uy (1)
%

We will now solve it for a two-level system. We define

E, - E4

Q::QZ—le 7 y

eia)t + e—ia)t

where Eq. 5.14 was used. We will also use the identity cos wt = >

) 1 . 0 i .
K =1 Ci() = -3 C1(1) Q20T Uty - = Calt) et 15 (1)

. : | = P |

Co(t) = —% Colt) e (—2) P coswt = =27 Cy(h) e‘th{
. A |

Cy(t) = ! ;ﬁ [e—z(Q—w)t + e—z(Q+a))t]C2(t)

eia)t + e—iwt

2

(5.44)

}

(5.45)



QUANTUM OPTICS 127

. . 1
. i : i : 0
=21 GH=-5G0 e (2O U (1) - 7 C2(t) Q2 U s tt)”

. ] ) e P ‘ iwt —iwt
Colt) = =3 G e (-55) 7 coswt = = QUW@%i_%i_}
&g P . .
Cz(t) - 7 [el(Q+w)t + el(Q—w)t]Cl(t) (5.46)

Therefore, we have the following two equations, which describe the time-evolution of the two-level system

(0RWA)
C10 = Coy S [y pese]
(5.47)
(ﬂ—qmﬁwﬁ[ mﬁw)emwﬂ

Given that the photons of the EM field adequately match the energy difference between the two levels,
without this meaning that they match perfectly, i.e., assuming that i ~ E, — Ey, it follows that w ~
Q, - = Q). Therefore, terms containing ({2 — @) are changing slowly, while terms containing ({ + w)
are changing rapidly. Hence, in any remarkable time scale, these rapid oscillations will have on average
zero (or, let us say, close to zero) effect on the results. The rotating wave approximation, (RWA) is the
assertion that these rapid terms can be ignored. Thus, subsequent to the RWA, Equations 5.47 become

C1() = Colt)5

i(Q-w)|t (5:48)

Colt) = Ca(t)3

We have defined detuning as
A=w-Q (5.49)

and the Rabi frequency’ as

PE,
7

Next, we will make a transformation to obtain a system of differential equations with time-independent

coeflicients. In other words,

Qg = (5.50)

—i(Q-w)t
Ci(t) =Ci(t)e 2
(Q-w)t

Co(t) = Cy(t)e 2

(5.51)

. . —i(Q-w)t —1(Q - —i(Q-w)t
GO=C0e T +CH(— D)
X i(Q-w)t 1(Q) — i(Q-w)t
=G T + G )

!After Isidor Isaak Rabi (1898-1988).
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Hence, Eq. 5.48 becomes

—i(Q-w)t —i(Q - —i(Q-w)t Q-0 (&P
(t)e 2 + Cl(t) u e 2 = Cz(t) e 2 ZO— e i(Q-w)t
2 h
i(Q-w)t QO z(Q w)t -i(Q-w)t g 7
(t) e 2+ Cz(t) u = Cl (t) e 2 ZO— el(Q_C‘))t
2

. —-1(Q - i(Q-w)t 1(Q ot (EN P
Cy(t) + C1(t) (%) Cy(He 2 e 2 lg—he—l(()—a))t

: (Q - _i(Q-o)t _iQ-w)t §EN PP
Cz(t)+C2(t)(¥) =Cyte 2z e 2 l;)—hez(ﬁ—a))t

and, having defined A := w — Q (Eq. 5.49) and Qp, :=

. A ()
i) = -5 € + 2 G
Calt) = + 28 €40 + 2 €l

Therefore, we arrive at a system of differential equations with time-independent coefhicients:

. iA ZQR
aon]_[-3 F][ce
[C;(t)]‘@ i |C§ t)]

(5.52)

iQ);
If our eigenfunctions were not real, then the upper-right matrix element would be TR , thus, then we

would define, e.g.,, %51 = —ezp1 = 7, hence F,1p = —ez1p = Py = 7.
In order to solve the system of Eq. 5.52 we introduce the vector

0= |20
Thus,
i)
X(t) = ld(t)]

and denoting

_in R AR
A= ﬁ é]::—iAz A= _@ _é]
2 2 2 2

the system of Eq. 5.52 is written as

X(t) = AX(t)|.

Let us try solutions of the form

X(t) =velM,
hence,

= —iAU = -iAU = AT =AU

eigenvalue problem

. - AG =3
TAeM = ATeM =

A= —id

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)
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Thus, the whole thing is essentially reduced to the eigenvalue problem
AT =AY (5.58)
from which the normalized eigenvectors Uy, U, which correspond to the eigenvalues A, A, will occur.

Having checked that the normalized eigenvectors ¥, U, which correspond to the eigenvalues A1, A5, are
linearly independent, the solution to our problem is

2
X(t) = E Cr Uy et
k=1

where, of course, /Tk = —iAy. The initial conditions determine the coefficients c. But, first, let us obtain
the eigenvalues.
AT=A0=>AT-Ali=0= (A-AI)v =0

where I is the 2 X 2 unit matrix. Thus,

A_ _2r
det(A—/\I)ZOzl2 Op A2 |=0=>
-— —=-A
2 2
in the general case
Q& + A2
A21 = i—, (559)
’ 2
while, in the resonance case (A = 0)
Q
/\2/1 = '_FTR. (560)

In the following pages, we will also find the eigenvectors, as well as the solution to the system of Eq. 5.52,
imposing different initial conditions.

| SOLUTION for A = 0.]

We present the analytical SOLUTION for A = 0. If we assume that A := @ — Q = 0, then A =

Qg
0 - Qg
[ Qg 2 |and /\2,1 = iT
2
2
Q
For /\1 = —TR
Q Q
0 _% 1 Qg |on _TRUH :_TRUH
=—-—— = = Uy =0
_% 0 l021] 2 [Uzll QR _ QR 21 B
2 T3 =g
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Q
For| A, = =R
2
Or O, Oy
0 - Z)12:%012:} 2 2T g2 o o = o
2R (o] T 2 o2 Qg Qg 2 12
2 ——0p = ——0
2 12 2 22
1
Thus, e.g., the normalized ¥, = [ ‘/% :|
V2
Therefore,

1 1
X = [glgt;] =B 0T =g [*del 2 t+62[ A ]e SR
2 — -
V2 V2

[(Q-0), C_lein_Rt + L2 ‘iQZ—Rt
Ci(t)e 2z
ib)e (Q-w), | = \C/E O 2/5 g .| = (weassumed A = 0) =
Cthe 2 | |Le2!- 22!
v

1 i8Ry o i8R
1612t+_2612t

G| _ V2 V2
= lCz(f) B C_1€i%t_ C_ze_iQTRt (5.61)

e

Let the initial conditions be C{(0) = 1 and C,(0) = 0. Thus,

(] Cy
1:—+—:>C1+C2:\/§
2
— - —F—==C0=0

Therefore,
ZQ—Rt —i—t —t
[Cl(t)] BN N
- .Qpr Qr -
Ca(t) %e’Tt %e_ZTt isin(—t)
Hence,
C1(t) = cos (—Rt)
(5.62)
Cy(t) = isin (—Rt)
and, thus,
ICL(HP = cos? (—t)
(5.63)
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Of course, |Ci(£)|? := Py(t) is the probability that, at time £, the electron lies at level k. The period of the
oscillations is

271
= an
Let us denote .9/ the maximum transfer percentage, i.e., the maximum probability to find it, e.g., at level 2,

having placed it initially at level (the amplitude of the oscillation is .%7/2.) Thus, in the case of resonance
(w=Q & A=0),wehave

Tx (5.64)

o =1 (5.65)

o o
® ©
s
~~
~
R
o
~~
o~
p——
1 1

N o7+ 4
Q0
E 06 h
% 05+ R
Q ot T 27
2 R — 0
Q. o3t SR
0z2r b
01 .
00 l ;_ 3 " : 6 7
1 4 5
t(s)

Figure 5.6: Oscillations of a two-level system at resonance, i.e., forw = Q & A = 0. The period of the

oscillations is T = Q—n , while their maximum transfer percentage is .2/ = 1. We have assigned a typical
R
value Qg = 1 57! without having in mind a particular system.
2
R e
2 2’
A+ Q%
will see in the following pages. In Figure 5.6, we present the oscillations of a two-level system at resonance.
We can also define the maximum transfer rate as the ratio between the maximum transfer percentage

In the general case, the maximum transfer percentage depends on detuning, e.g. .%/ =

e L1 4 . .
and the oscillation’s period, i.e., as —. For a two-level system at resonance, the maximum transfer rate is

TR

K74 1 Qg

= o _ Ik 5.66

T 2 2 (5.66)
Qr

Finally, we can define the mean transfer rate as
(C2())
k=——2"7] (5.67)

thean

where <|C2(t)|2) is the time-averaged probability to find the electron at the upper level and ty ..., is the
time it takes so that the probability to find the electron to the upper level becomes equal to its average for
the first time. For a two-level system at resonance, we have

T, T,
<|C2(t)|2> = L f dt cosz(z_nt) = 1 j(; ‘ dt (1 + cos(;{—nt))

Tr Jo Tr 2Ty R
T,
1 Te (47 \|[F) 1
= —|T+Lsin|—t)| [== 5.68
ZT( 4m Sm(TR )0 ) 2 (5.68)
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and, for t5, .., it holds that

1 Q 1 1
E = sin ( ZR thean) = E - E OS(QRthean) = COS(QRthean) =0= QRthean = % =
Tt
t = 5.69
2mean ZQR ( )
Therefore,
Q
k=X (5.70)
TC

We observe that the ratio between the mean and the maximum transfer rate is, in our case, equal to 2,
hence, the two rates are connected through the relationship

574
k=2—. 71
- (57)

Let the initial conditions be C;(0) = Tele, C,(0) = —e , with probability |C; (0)]> = |C,(0)]? = =

In other words, we assume that, at time 0, the electron is equally shared between the two levels, while we
also assume an arbitrary phase difference. Thus,

L ¢i0 =51 2 = +cy = el

N \/_

1 . .
e'® C—l——:>c1—c2:el¢

VTV

If we add and subtract the above two equations by parts, we conclude that

o 0 + ¢l
2c; =6 4+ = ¢, =
2
o o0 _ ot
20, = e — e = ¢, =
2

Therefore,
0, ,ip QR i0_,ip QR
lcl(t)‘ ~ EZJ\F/% d2y 62\/; et ~ 1 e'f cos(Q2 t) +el¢lsm(7t) R
Cot)| ™ | el0re Ry el SRy T (5| i; (Q ) i ( )
| - 2t e 2 e"1sin t] + e cos| 2t
2v2 2v2 2
Pcl(t)lz' 1 cosz(Q2 t) + sin (%t) +¢'0 cos(%t)e_i‘b(—i) sin(TRt) + 6P sin(%t)e_ie cos(Q—t)
2| =/ . . . .
G| 2 cosz(%t) + sinz(%t) + el sin(%t)e_lqj cos(%t) + 6P cos(%t)e_le(—i) sin(TRt)

[ i Q . [Q i(h— (60—
1 [t § cos{ St sin( Fe)eto-0 0] [1 + isin(Qgh)(el©-) — ¢il0- ¢>)]

2014 écos(%t) sin(%t)(ei(e‘d’) _eio-0y| T 2|1 - isin(Qgb) (@0 — ¢i0-9))

D,\,7j

Thus, if we also exploit the identity eV — e~V = 2i sin 1, we arrive at the expressions

Pi(t) = [CL(H)f = sin(Qgt) sin(6 — )
(5.72)

Py(t) = IC, () =

NIHNI)—‘
NI»—\NU—\

sin(Qgt) sm(@ (P)
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From the form of the above equations, we observe that, in the general case, there is an oscillation around

the value % ) which was the probability imposed by the initial conditions. The period of oscillation is always

the same, T = ==, but its amplitude depends on the phase difference. However, we also observe that, if

Q ~
the coeflicients are in-phase, i.e,, if 0 — ¢ = 0, then the time-dependence of the probabilities vanishes
and it holds that P1(t) = P,(t) = %, V t. In Figure 5.7, we present the oscillations of a two-level system
for these initial conditions, for different values of the phase difference.

P (0).,0-06=0 == Pt).0-0=0
—P(t),0— p=7)6 — — Py(t).0 — ¢ =7/6
Pi(t),0 — ¢ =mx/4 Py(t),0 — ¢ =x/4
Pi(t),0 —¢=mn/3 Py(t),0 — o =n/3
; Py(t),0— ¢ =x/2 Po(t),0 — ¢ = /2
T T T
09 b
0.8 1
07 S0%e - Sl .
Q9 P ~
= 06 v - R
= 2 3
Sos
Q0 3 /, 4
~
O 04r . e B
o ~ o -
03f ~_ _ - J
0.2 B
0.1 i
O 1 1 Il 1 i Il

o
N
-~
E S
o
o

Figure 5.7: Oscillations of a two-level system at resonance, ie, forw = Q & A = 0, for the initial

conditions C1(0) = Te ,Cr(0) = —el¢ and different values of the phase difference 6 — ¢. The period

2n
of the oscillationsis T = o while thelr maximum transfer percentage depends on the phase difference
R

O — ¢. We have assigned a typical value Qg = 1 s without having in mind a particular system.

Let the initial conditions be C{(0) = 0 and C,(0) = 1. Thus,

O=—+—== C1 ()
ViV 2
1.5 @ > =0 ="0= "5
=— - == -C=
Vi Vi
Therefore,
-% _i8%R
[Cl(t) ) %ez t %e it B zsm( t)
- Or LOR T Q
Co(t) ;el 24 %e 2t cos (TRt)
Hence,
Q Q
Cy() = isin(TRt)Cz(t) _ cos (TRt) (5.73)
and, thus,

Q
IC1 (D)2 = sin® [—=X¢
( 2 ) (5.74)

Q
ICo (B2 = cos? (TRt)
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Comparing to Equations 5.63, we observe that the situation is completely analogous to the case with initial
conditions C1(0) = 0 and C5(0) = 1. Therefore, the period of the oscillation, the maximum transfer
percentage, as well as the maximum and mean transfer rates will be the same, with the only difference that
here they refer to the probability that the electron drops from the upper level to the lower one.

| SOLUTION for A # 0]

Ak A Q% + A2
A=| B & |andAy =2——F
2 2
O3 + A2

— - — = — ==+ = —
5 11 5 U21 > 011 5 > 11 U21
Q A VOR + 22 A QR+ A2
—7'011 - 5021 = —TUZ = ——011 = > - 5 021 (an)

which holds. That is, it is sufficient that thus, e.g., from (1st) it is implied that

JOZ+A2

— + 2 ! — h 23—
U21= ——q- Yu| N U21=aln thus 01 = op

N | D>

R

2

For it to be normalized, it must hold that 52 + Ozzﬁz =1, eg, =

1
1 2
2
1+a Viva




QUANTUM OPTICS

For A2:+T::+A>O
A Q 2 2
2 —5 |[or2 _ Qp + A 1oy, N
_TR = Upo 2 U2
A Qp % + N2 A O+ A <
5012 - 7022 = Tvlz = E - T U120 = 7022 (1st)
Qr A AR+ Qg A QRN
—7012 - 5022 = Tvzz = —7012 = E + T Uy (2nd)

2 4 A2 Qg
A NORTA Qp " %2 (f 21240
1/QI%+A2)

which holds. That is, it is sufficient that , thus, e.g., from (1st) it is implied that

A AJOR+A2
22

135

’
2 , ’ -
= |0 = (4 Uy =a’vyp thus U =
22 QR 12 | 22 12 2 [a/ﬁ/]
2
1
1 - 72
For it to be normalized, it must hold that ﬁ’z + 0(’2,8'2 =1, eg,p = — =0, = 1;/"‘
V1 +a'
V1+a’?
Therefore,
2 1 ,-ilqt 2 idgt
—iZt e 1t 4 e 2
—)t _ Cl(t) _ Cl(t)e 2 R —i/\1t+ = —ilgt _ V1+a2 ‘/1+Cg’2 (575)
x(t) = G|~ A, |=ate CUoe ™ = G e, ov i .
CZ(t)e 2 V1+a? V1+a’?

Let the initial conditions be C;(0) =1, C5(0) = 0. Thus,

c c
1= 1L 2
Vi+a?2 V1+a?
0 o cra! a V1 + a’?
=-— c

= + :>C2 T ——=0
Vi+a2 V1+a? & V1 +a?
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. 1 ar+a? ¢ a —a - a’V1 + a2
= - — =0 1=
1+a2 @ \ViI+a2Nt+a? @\l +a? a-a
aV1+a2aNr+a? avl + a’2
€y = —— =>lcp=——
2 & AFFaZ o -a 2 a -
Therefore,
A /
—i-t a —iAqt o it
5 L __*
Cl(t)e N — a/_pce ' a’—;xe . (5.76)
Co(he'2! pmiMt _ 2 idyt
2(f)e o' —a o« -a

Let us calculate the coeflicients that appear in the first equation of Eq. 5.76.

A AJOQR+A2 A ‘/QIZ;+A2 ) /Q%{ A2
_ a

¢ o AEE (BiEoa
Voo e O oo
a [o7% A+‘/Q§+A2__ |2 + A2 + A
o-a e 2R 28 + 2
Hence, the first equation becomes
\ Fam-s | JFames
C,(He'2" = et 4+ it =
2.J0Q% + A 2% + 2
ky

) ) A
C1(t) = (k'™ + ke M)e 2" =
IC1(H)? = K3 + K3 + kikpe®M + kikpe 2N = k2 + k3 + 2k1ky cos(2At) =

Q§+A2+A2—2A,V197R+A2 Q§+A2+A2+2AV197R+A2

C1(H)]? = n
G0 43 + ) 43 + )
Q% + KX -
+ Zﬂ cos(2At) =
4(Q% + A?)
2(Q% +2/N? 2002 Q% + 2N + Q% cos(2At
|C1(t)|2 — ( 1; 2) + - R - COS(Z/U) — -°R > RZCOS( )
4(Q% + A7) 4(Q% + A% 2(Q% + A%)
R o
_ 2 _ -
Pl(t) = |C1(t)| = 1 - m Sin (/\t)

(5.77)

A Q% + A2
2

where A =
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QZ
The maximum value of |Cy (f)|? is 1, while its minimum value is 1 — Qz—-il-{Az Therefore, the maximum
R
transfer percentage is
Ok
= —— 5.78
Q% + N2 (578)
’ 5 (Qrt
For A = 0,= |C1(t)|* = cos (T), as expected (Eq. 5.63).
Let us calculate the coefficient that appears in the second equation of Eq. 5.76.
ad ,/Q%+A2+A./QZ+A2 Q% + M - Az Qg
a - 2.2 + N2 2QR\/02 LN 2\/(22 LN
;A Q , Q
Hence, Cz(t)elzt =R it TR ikt o ————isin(At) =
2,03 + A 2,/02 + A2 /Q%{ A2
2 2
Py(t) = |Co()P = m sin®(At)
(5.79)
A Q% + A2
where A = ——
2
QZ
The maximum value of |C,(f)|? is Qz—-fAZ , while its minimum value is 0. Therefore, the maximum trans-
R
fer percentage is
__ Ok
QR+ N
in accordance with Eq. 5.78.
Qgt
For A = 0,]C,(t)? = sin? (TR), as expected (Eq. 5.63).
As evident from Eqs. 5.77 and 5.79, the period of oscillations is
271 21
Tk = (5.80)

24 A QR + A2

and for A = 0 it follows that T = 27, in accordance with Eq. 5.64. Furthermore, the maximum transfer
percentage of the oscillations, as given by Eq. 5.78, for A = 0 coincides with Eq. 5.65. Oscillations of a
two-level system at resonance and out of resonance are presented in Figure 5.8. We remind that Py(t) =
ICk(t)]?, k = 1,2 are the probabilities to find the electron at level k. From Egs. 5.80 and 5.78 it is clear
that as we move away from resonance, i.e,, as |A| increases, the period and maximum transfer percentage
of the oscillations become smaller; this is depicted in Figure 5.8.

The maximum transfer rate is

R4 Q%“ /Q%{ + A2 Q%Q
TR ZH(Q%{ + AZ) 97 ,Q%{ + A2

(5.81)
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Oscillations in a two-level system
(On Resonance and Off Resonance)

=~
— P, (t) on Resonance

%»(t) on Resonance|
- = = P(t) off Resonance
P,(t) off Resonance| |

el

plotting with ’
Qp=1s" I
A=05s"

probabilities
o
(&)

0371
027
o1r /
/s
0 e L -
0 1 2 3 4 5 6 7

Figure 5.8: Oscillations of a two-level system at resonance (A = 0, continuous lines) and out of resonance
(A # 0, dashed lines). The period of the oscillations is T = 274/0Z + 4%, while, the maximum transfer per-
O
Q% +A2"
referring to a particular system. We observe changes in the period and maximum transfer percentage of

centage is .¢/ = We have assigned some typical values Qg = 1 st and A = 0.5 s without

the oscillations when the system is out of resonance. In Appendix C, there is the matlab program Oscilla-
tions.m, which creates this figure.

The time-averaged probabilities to find the electron at each level are

o0 1 Ir Q% ,(27 1 0% TR 4t
Ci(t :—f dt(1 - ——L— sin?| =t :1———f dt(1 - cos| —t
(GOR =+, ( Q2+ \Tx 2TR 2 + A Jo O\ Ty

T
. L % [TR—Esin(Ll—nt) R]:1 Q% Q%F+2A

2T Q% + A2 4 \Tx 2R+ M) 2%+ N
(5.82)

0

1 IR 02 2 1 Q2 TR 4
1C, O = — [ dt—R_gin?[ L) = — R f dt |1 - cos| =2t
Tx Jo Q3 + A2 T 2TR Q2+ A2 Jy T

1 0% ( Tx (47‘()TR] 0%
Tr — — sin| —t¢

- =R 5.83
2T O% + A2 2(Q% + A?) (5:83)

while 5 can, i€., the time it takes so that the probability to find the electron at the upper level becomes
equal to its average value for the first time, can be found through the relationship

Q%{ _ Q%{ L, 1/Q%+A2 ) w/Q%{+A2 1

= t = si t = -
Z(Q%{ + Az) Q%{ + A2 sin 2 2mean sin 2 2mean 7

1- cos(1 [O% + Aztzmean) 1 -
= 5 = E = COS(\,Q%{ + A2t2mean) =0= fomean = —F—.
2,02 + A2
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Thus, the mean transfer rate to the upper level is

2 202
oGP 2y AR o)

= (5.84)

thean - 277((2%{ + AZ) e [Q% + AZ

We observe that, again, the ratio between the mean and the maximum transfer rate is equal to 2, hence,
the two rates are connected through the relationship

o
k=2—. 8
Te (5.85)

Let us now examine what happens as the magnitude of the perturbation, i.e., the Rabi frequency, be-
comes smaller with respect to the absolute value of the detuning |A| (QQg << |A]).

02 ,[Q%{ + A?
Py(t) = 1Co(H? = =~ sin®| ———

Q% + A2 2

(5.86)

Thus, the period becomes Tg = 27t/|A|. Eq. 5.86 is identical to Eq. 5.89 of Section 5.5, which is derived
under the assumption that the time is so small that the solution does not differ much from the initial
conditions. This happens since, for a very small Qp, a large period Tz occurs, which means that the time
evolution is slow.

Let us further examine what happens in the limit of an infinitesimal perturbation.

271 271
lim Ty = lim —— = Al (5.87)
QZ
lim .7 = lim —R =0 (5.88)
Qr—0 Qr—0 Q% + A2

Therefore, in the limit of an infinitesimal perturbation, the maximum transfer percentage of the oscilla-

tions becomes zero, while their period tends to , i.e., it depends solely on detuning. To obtain a better

A |
idea of what happens at small (QQ, we present Figure 5.9.

5.5 Solution to the system of differential equations, occurring after RWA, using the simplistic
Newton's recursive method.

Let us remember the system of differential equations that occurred after the RWA (Eq. 5.48), which was
exactly solved in Section 5.4:

. lg()r.@

—-1(Q-w)t P&
C1(t) = Ca(t) 7 Qp = = 0
Ca(t) = Cy(8) g(’ Q- A=w-0
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Oscillations in a two-level system
(On Resonance and Off Resonance)

~ T~

-
— P, (t) on Resonance

(f) on Resonance|
- 1’ (t) off Resonance
Py(t) off Resonance| |

—_—D

plotting with
y =01¢l
Qp=01s

probabilities
o
(&)

0 10 20 30 40 50 60 70

Figure 5.9: Oscillations of a two-level system at resonance (A = 0, continuous lines) and out of resonance
(A # 0, dashed lines). The period of the oscillations is Ty = 274/aZ + A?, while, the maximum transfer
Q
Q22
is relatively small. In Appendlx C, there is the matlab program Oscillations.m, which creates this figure.

percentage is .%/ = . We have assigned some typical values Qg = 0.1s™ and A = 0.557}, ie, Qg

Here, we will solve Egs. 5.48 for the initial conditions C1(0) = 1 and C,(0) = 0, using the approximate
Newton’s recursive method, taking as a zeroth order approximation

cO ~ 0 =1
CY () = Cy(0) =

i.e., assuming that, at small times, the solution does not differ much from the initial conditions. Thus, the
first order approximation is

0.
. Qg
e = PO et =0

c S
H o iOp [
Cy(t) = 9‘19(' eidt = f dt()t SR [ =
0 0

0 ,
Oy - ) = IQTR_%A[e_iAt]; _ _%(e—mt’ 1) =

MWy = DR (inr _
Gt = A (6’1 ) M Qg —AF\ _iAt
N = Cy/(t) = 2151n( )e 2 =
% ¢ —1 = 2isin (g)elE 27 2

Q Aty _idt
C(zl)(t) = TR isin (7)6 2,
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% The proof can be found in Appendix B.4. Thus,

2 2 gin? (2
1 1 Qp (A 1 1 Qf sin
Mo =icPor =% s?(3) o [P =iclor =2 At( 2 ) (5.89)
()
Eq. 5.89 coincides with Eq. 5.86 of Section 5.4, which holds for very small (g, which in turn means that
the period T}, is very large, yielding a slow time-evolution.

5.6 Alternative solution to the system of differential equations occurring after RWA.

Let us revisit, once more, the system of differential equations that occurred after the RWA (Eq. 5.48),
which was exactly solved in Section 5.4:

. lgoe_@

—-1(Q-w)t P&
C1(t) = Ca(b) 7 Qp = = 0
Ca(t) = Cy(8) g(’ Q- A=w-0Q

Here, we will solve Egs. 5.48 in an alternative manner, this time by decoupling them.
Let us try to differentiate them with respect to time once more. For the first equation, we have

. 19) iQ)
Cl(t) _ Cz(t)z 2R iAe iAt +C () 2R zAt

Substituting the expressions for Cy(t) and Cy(t) from the second equation, we obtain

a0 }()Ci/l(t %AQ/M"" Ci(t) ZQRVM Rﬁ/Mﬁ C1(t) = iAC4 () - —C1( )

In a completely analogous manner, for the second equation, we have

5 . Q
Cat) = ~iAC,(t) ~ TRsz.

This way, we arrive at the independent equations

Cl(t) - ZACl(t) + %Cl(t) =0

O . (5.90)
Co(t) + iACH(H) + TRCZ(t) =0
We can try solutions of the form
Cr(h) = upetet =
Ck(t) = iykuke‘i“kt =
Ci(t) = —pue 't
for k =1, 2. Substituting to Egs. 5.90, we conclude that
Q
15 + Apg + TR =0
(5.91)

0 .
—H%—A#2+TR=0
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The above quadratic equations determine the time-evolution of the coefficients C; and C; and do not
depend on u uy. Their solutions can be easily found to be

p (5.92)

[ 2
A2+Q%

2

where A = . Therefore, the solutions are of the form

i2 2 i -i At goilt
Ci(t) = ae'2eM + e'2e7M Ci(He "2 = (aeZ + Be”! )
Wy , A | (5.93)
Co(t) = ye '2eM + e '2e7M Cy(He'2 = (;/e”” + 6€_Mt)
« In the case of detuning (A # 0), the solutions 5.93 have the same form with the ones occurring
from the general solution of the coupled differential equations with the eigenvalue method (cf.
Eq. 5.75). Therefore, the method used here produces exactly the same results as the ones discussed

in Section 5.4, in the case A # 0.

« In the case of resonance (A = 0), the solutions 5.93 become

Ci(t) = ae'M + [J’e‘W}

Cy(t) = yet + de~' (5:94)

The solutions (5.94) have the same form with the ones occurring from the general solution of the
coupled differential equations with the eigenvalue method (cf. Eq. 5.61). Hence, we see that, as ex-
pected, the method used here produces exactly the same results as the ones discussed in Section 5.4,
in the case of resonance, as well.

5.7 Calculation of Einstein coefficients.

Let us take the equations

At
O%F (At 0% sin’ (_)
Py(t) = ICo(t)? = — Sin (7 or Py(t) = ICo(t)? = Tﬁfz (5.95)
2

as a starting point. These hold for a very small perturbation, as expressed by (g, which leads to a very
large period Tg = 27t/|A|, which in turn means very slow time-evolution. (As we saw above, the same
hold for very small times within the simplistic Newton’s recursive method). Given that the electron was
initially at the 1st level, P(t) essentially describes the probability of absorption in a two-level system for

light, we % REPLACE %

QO-+something ( )

2 _ plw

go = f dcue—
Q—something 0
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€0 is the vacuum permittivity, with units [ey] = > and p is the energy density of EM radiation in an
Nm

_ (/9] Nm® _

)
infinitesimal angular frequency interval, with units [p] = J—S3 Thus, [ f dw il )]
m o
2 2
N _Nm_N__[gz]
2 = 2 T 2 0
mC mC C
Thus, from Eq. 5.95, we arrive at

» Q-+something

P
P =1G0F =25 [

(Q—something

fo (L

We set a 5 )
%)
x::%:w:%+ﬂz>dw:?dx.

Thus,

yz ) tz +something(/2) . 2 x
sin
. dx p(x)
0 —something(#/2)

Pz(t) = =

x2

+something(#/2)

P2t sin” x
Py(t) = 2Wie, f dx p(x)

—something(#/2) ~716(x) %

% For the approximation of 0(x), consult Appendix B.3.

ploy ()

_m3MC2_

(5.96)

(5.97)

2
Py(t) = =
20 2hi2eg Pl =0 P2
—0:>w_Qt—O = Py(t) = TR p(Q) =
r= 2 B } > w=0 0
however t is finite
dP,(t) P2
= Q
it e, P

polarization should, in some sense, be replaced by

1
<goz> = <gozx + gozy + gozz> = 3<g022> = <gozz> = §<g02>

Hence, it should hold that

dPy(t) P*r p(Q)

dt B 2h2€0 3

according to the relationship
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However, the probability of absorption is
dW:JtD = Blzp(V)dt =
AWz,

Fraie B1op(v)
dWSt
forw =Q dtab. = B12P(Q)
Thus,
dP,(t) B P27 p(€2)
- 2
d{‘f\’;st‘ 2e 3, (5.98)
ab.
=B Q
pr 12p(€2)
B, = T (5.99)
12= 6h2€0 '
while, we remind that we had found
An _ Smhv? (5.100)
B21 C3 '

and

100

Notwithstanding the simplifications that were needed for the calculation, the essence is that it is pos-
sible to calculate the Einstein coefficients of a two-level system.

5.8 Calculation of the Einstein coefficients using the solutions obtained in Section 5.4.

Let us write down Eq. 5.79 of Section 5.4 and Eq. 5.95 of Section S.7. Eq. 5.79 can also be written in an

analogous manner to Eq. 5.95, i.e.,
2 O + A2

Pz(t) = |C2(t)|2 = m sin T t or
VR A2 (5.102)
sin T t
QZ
Po(t) = IC ()7 = = 7
JOZ+A2
> t
just us we wrote
Q? At
— 2 _ R .2
Pat) = [Co(0f = =% sin (7) or
Q2 Sinz (E) (5.103)
_ 2 _ -°R 2 2
Py(t) = |Cy(B)l° = 1 —(E)z
2
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As it is evident, there is an analogy between the second versions of P,(t). So, we can define

JOE + A2t

= (5.104)
just as we had defined
At
xi= — (5.105)

in the previous Section 5.7 (Eq. 5.97). Thus, the calculation of B1, would occur just as it was done in the
previous Section S.7.

5.9 “Eigenenergies" of a perturbed two-level system, i.e., subjected to an EM field.

We want to solve the problem AY(7) = EY(@), assuming that W(7) can be expanded over the eigenfunc-
tions of the unperturbed system, @y (7), with time-independent coefficients g. Then

H=Ho+ UsC.0)  fiy+ UG5 | B i) = E| T 2u0e?)|
BY@ =EvE) | ¢ ¢

W(7) = Z 2D (7F) Let us exploit the orthonormality of @y (7).
k We multiply by @y, (7) and integrate over space.

V8¢ [Pr o @A® + L gx [ProyOUsGH00) = E Y gi [ 0 i)
k k k

= ¥ &Exdvi + Y &kleri(t) = E Y g0k = | gw B + Y, gcllizin() = Eguo
k k k k

- — — . =
within the dipole approximation U = —% - & = +e7 - &ye"'?! = U (7, t)

. —
Ugpi(t) = ee &y - Ty

27
if ti ithi iod — of the EM field, th EY=E,
1rwe average over time within a perlo y (0] e e en

Therefore, the eigenenergies are not affected, on average.

5.10 Solution to the equations describing the time-evolution of a three-level system with quantum
harmonic oscillator eigenstates.

In the previous sections, we focused on the interaction of a traveling monochromatic and polarized electric
field with a two-level system, within the dipole approximation. However, Linear System of First Order
Differential Equations (Eq. 5.30)

. i .
Cu(t) = — D, CrOe =Wt Uy (1) (5.106)
k

can also be solved for a system with three or more levels. In what follows, we will solve this problem,
within the RWA, for a three-level system with with quantum harmonic oscillator eigenstates, i.e., for a
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system described by the Hamiltonian

.~ PP
H = % + EmQ222 (5107)

The eigenenergies of a 1D harmonic oscillator are given by the relationship
1
E, =hQ (n + E) = E,.1 - E, =hQ. (5.108)

The eigenfunctions that correspond to these levels have the form

52

Z,(2) = (Z”H!aﬁ)_%Hn (Z) e 222, (5.109)

where H,,(x) are the Hermite polynomials and @ = 4//nQ. Let us assume that we can restrict the problem
to the three lowest levels of the harmonic oscillator. Their eigenfunctions are presented in Table S.1. For
convenience, we also perform the change of indicesk = n + 1.

Table 5.1: Eigenfunctions of the three energetically lowest levels of the 1D harmonic oscillator and their
parity.

n k D7) = Z,(2) parity
7
1 _=
0 1 (ay/m) 2e 22 even
2
1 2
1 2 (ay/m) 22%¢ 2 odd

22

1 —_——
2 3 (8aym)2 (2 —42)8 22 even

In Section 5.3.3, we saw that the matrix elements of the potential energy of the perturbation are
Ug‘k/k(t) = ego Cos Cl)tZkrk

where
Zpg = deq)k/(?)zCDk(?)

since, here, the eigenfunctions are real. Observing the above equation together with Table 5.1, we can see
that the diagonal elements become zero, the off-diagonal elements are symmetric, while the off-diagonal
elements for which it holds that |k — k’| = even become zero, as well.

For our three-level system (k = 1,2, 3), we can write

Ux1y(t) = e&ycos wt zqp Ugry(t) = —F,1p &g cos wt
Ugo(t) = ey cos wt 2y Ugoyi(t) = —Fppq &) cos wt
Ug13(t) = e&ycoswt z13 =0 Ugzs(t) =0
Ugs(t) = e&ycoswt z31 =0 or Ugs(t) =0
Ugps(t) = ey cos wt zp3 Ugos(t) = —Fy03 &) cos wt
Ugsy(t) = ey cos wt z3p Ugsy(t) = —Fp3p &y cos wt
Uz (t) = ey coswt zi =0 Ugi(t) =0

and, given the symmetry of the matrix elements Zy/,

Py = Py =S Pz = Pysp = S’ (5.110)
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At this point, we are in the position to solve the Linear System of First Order Differential Equations

eia)t + e—iwt
(Eq. 5.30) for a three-level system. We will also use the identity cos wt = > . From Eq. 5.108,
we have
Q-0 =0Q;-0,=Q) (5.111)
Therefore,
. i .
k=1 Ci(t) = 7 Ca(t) e U5 (1)
. i .
Cl(t) = —% Cz(t) e"Qt (—go) P coswt
. &P .
Cul) = 2 i@ 4 @t oy (5112)
k=2 Caot) = — C1(t) 02700 Uy (1) ~ Cs(f) 027080 U5 (t)

Cy(t) = —% Cy(t) e (=&4) P coswt — % Cs(t) e (-&,) P cos wt

Colt) = L ;h [ez(mw)t + ez(Q—a))t]Cl(t) Lo OZh Q) 4 e—z(Q—a))t]C3(t)
(5.113)
k=3 Ca(t) = ﬁ Co(t) €™ U sy (1)
Ca(t) = —% Co(t) € (—Z3) P cos wt
. &g LT . .
Cs(b) - 120 [ez(ﬂ—w)f +el(9+w>f]cz(t) (5.114)

We observe that level (2) acts as an intermediate between levels 1 and 3. Within RWA, we will ignore the
rapidly evolving terms containing ({2 + @). Moreover, as we did for the two-level system, we will define
detuning as

A=w-Q
as well as the frequencies
Qp = @fo’ QY = ‘@f‘) : (5.115)
This, after the RWA, we arrive at the system
Cift) = SR Cye
Calt) = eyt + DRy pen (5.116)
E5(t) = l%c (e
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Next, we will make a transformation to obtain a system of differential equations with time-independent
coefficients. In other words,

Ci(t) = (e

iAt

Co(t) = Cy(he 2

i3At

(5.117)
Cs(t) =Cs(t)e 2

Inserting the transformations of Equation 5.117 to the above system, we arrive at the system of differential
equations

) iA 1Q
Cyi(t) = Y Cy(t) +

R
— Cy(t
=0
. 10) A 10}
Gt = +=2 €1 + 5 G + =E G500,
2 2 2
Q)]

. I3A
Calt) = 2 o) + 5= G50

which can be written in the form of a matrix differential equation as

| BT
Ci(1) 2 2 | Ca(®)
: iQr A Qrn
Cy(1) - 7 5 Co(t) (5.118)
GOl | o G B lcn
2 2
To solve the system of Eq. 5.118, we introduce the vector
Ci(5)
xX(t) = [Ca(h)]. (5.119)
Cs(t)
Thus,
_ 0::1(t)
() = €200, (5120)
Cs(t)
and denoting
iA Qg A o
5 2 ! z 2 9
A=|Or B Opl._ 0 A== A % (5.121)
2 '(%’ ‘32A . 2 Q) 3A .
AR 1 _ MR _°A
0 = 7 0 2 2
the system of Eq. 5.118 is written as
X(t) = AZ(H) (5.122)
Let us try solutions of the form
X(t) =veM, (5.123)
hence,
Aett = Al =

A = X7 L L
~ > -1Av=—-iAv=> Av =AU
A=—id

eigenvalue problem
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Thus, the whole thing is essentially reduced to the eigenvalue problem

149

(5.124)

from which the normalized eigenvectors U1, Uy, U3, which correspond to the eigenvalues A1, A, A3, will

occur. Having checked that the normalized eigenvectors U1, Uy, U3, which correspond to the eigenvalues

A1, Ay, Az, are linearly independent, the solution to our problem

3
?C)(t) = E Cx 7))]( e_iAkt
k=1

is

where, of course, A;, = —iA;. The initial conditions determine the coefficients cj.

SOLUTION for A = 0. |

We present the analytical SOLUTION for A = 0, i.e., at resonance. The matrix A has the form

Qr

0 -——/ 0
_|_&r O
A= g 2
R
0 -—— 0
Its eigenvalues occur by the roots of the determinant
det(A — AI),
where Lis the unit 3 X 3 matrix. Thus,
Ql O
-A = Q|5 O
det(A-AD=0=-1| 5, 2 |+=2| & =0
R _] 2 -2k _)
2 2
Q/Z Q2 Q/Z QZ
=-A(A2-R )4 1R =0 A [22-R_ZR
( 1 ) 1 0 ( 1 4
0% +QF
=>A=0nA=4«
2
Hence,
JO% + Q7R QR +QF
/\12—#':—/\, Ay =0, A3:#::A

Let us now obtain the eigenvectors of A.

(5.125)

=0

(5.126)
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JO% + Q7
= -A

For /\1 = —# =

_2R

/(\)R 2 g, 011 0

- > A _T 071 = 0] =

0 % p |lml 1O
Q

U11 = —szl
2A

Qg :

-5 ot Avy - 2R031 =0
Q/

U31 2—/1\2021

Substituting the first and the third relationship to the second one, we obtain

O+ Q7

2

A —

=0

Upp = 0.

Thus, the choice of Uy, arbitrary (albeit non-zero). We choose v, = 1. Thus,

Qg
2A
U1 = p 1
Or
2A

For U; to be normalized, it must hold that

2 2 Qp +4A2 + Q% 2
i =1 o [ 2Dy gL
=2
Hence, e.g, B = LZ Therefore,
Or
1 |2a
v=—|1 (5.127)
V2| %
2A
Qg
(()2 _T ?)’ 012 0
_TR 0 _TR Uy | = 0l =
0 % o |l 1O
Uyp = 0
Qg
U32 = =5, V12
R



Thus,
1
= 0
Uy =012 x|
_Q_fz

For U, to be normalized, it must hold that
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(5.128)

2 72 2
_,
|Uz| =1= |1)12| (1 + Q’Z) =1= |012| = Qz Q’Z = I
R R T LR
O
Hence, e.g., 015 = K.Thus,
Or
N 2A
Uy = 0
_R
2A
2 72
el ,/QR + QF A
or = =
3 2
Qr
—A _7 0 013 0
Qr Op
= A S |1EY =
o/ v 0
0 % llw
Qg
0U13 = TIA U23
/7
— R 0a = AUy — —R =0
013 U23 U33 =
’
_ Q%
U33 = —ﬁvzs

Substituting the first and the third relationship to the second one, we obtain

JO% - 42+ 0
A Up3 = 0.

=0

Thus, the choice of U3 arbitrary (albeit non-zero). We choose 053 = 1. Thus,

For U3 to be normalized, it must hold that

2 Qp +4A% + Qf 1
2 =1=f =
4N 2

=2

o2
[6:] =1= ||
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1
Hence,e.g., f = 5 Therefore,

Or
L1 |2
G=—=|1 (5.129)
V2| 9%
2A
Finally,
Cy(1)]
FC)(t) = Cz(t) = ?))1 e_i/ht + ¢y ?}2 e—i/\zt + Cs 53 e_MSt
Cs(t)|
Cy(h) e 2] R ] F O gore
AN o |28 . ETN o 28]
Cz(t) ezft =—11 EZAt + Cy 0 + — -1 e—ZAt = (We assumed A = 0) N
284 \/E Qr _Op \/E Qr
Cs(t)e 2| (2 | 7oA [ ]
) FOR C Q] O
Ci(t) o |20] | oo |2
G =—= ], ell\t+C2 0 |+ —= _/1 oAt (5.130)
Ci()| V2|9 | V2|
F2A - L oA N

Let the initial conditions be C;(0) =1, C,(0) = 0 and C3(0) = 0. Hence, for t = 0, the system of

Eq. 5.130 becomes

c1 Qp Qr 3 Qg
= = p— ==

V22A 228 TR 2A
C1 C3
:___:>C1:C3::C

N

4 4
c1 Qk Qr 3 Qf

T R2a oA T LA

Substituting the condition occurring from the second equation of the system to the third equation, we

obtain ,

Q
CZZC\/E R

Qg

Now, substituting to the first equation of the system, we obtain

QF  Qp 202 +20%  \20pA V2Qp

oA =R 4oy

+c—

—(——— == = =
Ve T TV, TR e p

Thus, finally, the system of Eq. 5.130 reaches the form

) . QR int . OF | Ok int
Cy(t) szttt
C,(H)| = %ez‘At _ %e—i/\t —
A 4N
(C3(B)] | 2ROR inr  QRQR | QROQR _int
[ gA2 T 42 8AZ ¢
i [ Q% QR
C1(t) a2 Cos(AD) + 75
.Q
Ca(f)| = lﬁ sin(At)
Cs(t) QrQY, QrQY,
-3/ n AzR cos(At) — n AzR

(5.131)
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These are the equations that describe the time-evolution of the three-level system. The probability that, at

time £, the electron is at level k is, of course, P () := |Ck(t)|2.
e Forlevel 1, Eq. 5.131 yields

Q4 QI4 QZ Q/Z
|C1(t)| = TEAL <8 2(Ab) + 16/l§4 + ;A‘LR cos(At) =
Q4 Q/4 QZ Q/Z
Py(t) = |IC1(H)f = g (cos2AD) +1) + -5 /1; + ;Af cos(At) | (5.132)

. . 21 2 .
We see that there are two periods involved in the above equation, namely T = N and Tp = 5 Since

the ratio between the two periods is a rational number, specifically % = 2, the probability to find the
2

electron at level 1 will be a periodic function, with period

27 47
T1 = K = = 2T2 . (5133)
Q&+ Q7
Let us examine Equation 5.132 a bit more.
+ After afull period,ie., att =T = zxn,
2 4 14 2 /2 4 14 2 2
|C1 (X) = gt (0s4m) + 1) + 7o + = G cos(2m) = 7o + Tt g
QR+ QR
o 1eAt
which is expected, since after one period, the probability will return to its initial value, i.e., |C1 (0) |2 =
1.
* After halfa period, ie., att =T, = i—z,
2 4 14 2 2 4 14 2 (2
2n _ 95 QR QROQR _ Qf QR QrOQR
|C1 (ﬁ) BT A R Ty R VI L Ty VR Ty v ey Y.
@ -opp @
16A% Q% + Q)%

* The first derivative of |C; (t‘)l2 is

e 0% ok 08
—|Cy =- sin - sin = ———sin cos - sin
ICHOF = ~1 % in2A) in(Af) =~ sin(Af) cos(AD) -~ in(AD)

QZ
= —w sin(Af) (Q cos(At) + Q'I%) (5.134)
The second derivative of |Cq (t)|2 is
2 5 2 Q4 )
@|C1(t)| = _8A2 cos(At) ( % cos(At) + Q'Z) + W sin“(At)
Q4 Qz Q'2
= 3A2 (st(At) — cos (At)) S R cos(Af) (5.135)

From Equation 5.134 it occurs that there are two cases in which extrema occur:
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When Qp = Q%, wehave A =
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72

Q
1. When cos(At) = — Q?{ . Attention: in this case, it must hold that Q'Z% < Q%{ Then, Equa-
tion 5.135 becomes
& e k(.o QR) ., Q% _ Ok
E|C1(t)| = gAz |52 (At) — o + SAZ — gA2 Sin (At) > 0.
QIZ
In other words, we have a minimum. Actually, substituting the value cos(At) = — Qlé to
R
21

Equation 5.132, we can easily find that then |C;| = 0. Additionally, within a period T7 = o
Q/Z

there will be two times at which it will hold that cos(At) = —Q—1§ ,i.e., there will be two zeros
R

in a single period T7. Therefore, in this case, the maximum transfer percentage from level 1 is

o =1 (5.136)

2. When sin(At) = 0, thus cos(At) = 1. Hence, there are two subcases:

(a) sin(Af) = 0and cos(At) = 1. Thus, At = 0,27,47, .... In other words, we are at
integer multiples of the period T. Then, Equation 5.135 becomes

d2 2 Qp  QRO%
RGO =255 -

sn2 sre <O

. . 2
Hence, we have a maximum. However, as we saw above, after a full period, |C1(#)|” = 1.
Therefore, this is a global maximum.

(b) sin(At) = 0and cos(At) = —1. Thus, At = 71,37, 57 ... In other words, we are at
half-integer multiples of the period T7. Then, Equation 5.135 becomes

& 2 Qp QRO O%F ., o
@'Cl(tﬂ :_8A2 + 8A2 = 8A2(QR _QR)>O

.. . 2
Hence, we have a minimum. However, as we saw above, after half a period, |C;(t)|” =
(Q%-Qp2)?

W. Therefore, in this case, the maximum transfer percentage from level 1 is

o =1- (O -QR)* _ 40RO% (5.137)
1= Qz Q/Z 2 = Q2 QIZ 2 )
(Qf + QR) (Qf + QR)

V2Qr
- and

T; = V2—|. (5.138)

The period of the oscillation is equal to V2 times the period of the respective two-level system (see
Equation 5.64). Additionally, then, the above cases 1. and 2. coincide, and the maximum transfer
percentage from level 1 is .%; = 1. Moreover, the expression for the time-evolution of the proba-
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bility |Cq (l‘)l2 reaches the simpler form

|C1(t)|2 = % (Cos(‘/EQRt) + 1) + 411 + 1cos( V20 t)

2 2

2
1 2\/§QRt+1+1 \/EQRt_l \/_QR L1
—4COS 5 4 2COS 5 2CS 5 5

2Q)
|C1(f)|2 = cos‘{ \/_4 Rt). (5.139)
e Forlevel 2, Eq. 5.131 yields
0%
|C2(t)| = A2 sin“(At) =
0 0%
Pz(t) = |C2(t)| = W - W COS(ZAt) . (5140)
We see that there is one period involved in the above equation, namely
2n 2n
Tp=" = —— (5.141)

2h - Joz v

Thus, the probability to find the electron at level 2 will be a periodic function, with period T,. Moreover,
the maximum transfer percentage to level 2 is

QO3 Q7
oty =8B ="K 5.142
2TAN T Q%+ 0QF (5142)
) V2Qg
In the case Qg = (%, we have A = 5 an ndTp = TQ_ Thus, the period of the oscillation is equal

to U4 times the period of the respective two-level system (see Equation 5.64). Moreover, the expression

for the time-evolution of the probability |C z(t‘)l2 reaches the simpler form

1 1
IC, () = = - 7 cos(V2Qgt) =

V20g,
G, = = 1
ICo(t) 5 s ( > (5.143)
@ Forlevel 3, Eq. 5.131 yields
|C3(t)| T (At) + ToAd gl cos(At) =
2 ORQfF 0%QF  0R0Q%
Py(t) = |C3(t)| = oA R (cosQAD +1) + e BAd cos(A) | (5.144)

. . . . 2 2 .
We see that there are two periods involved in the above equation, namely T = Xn and T, = ﬁ Since

the ratio between the two periods is a rational number, specifically % = 2, the probability to find the
2

electron at level 3 will be a periodic function, with period

27 B 47

A Jar+ap

T, = =2T,|. (5.145)
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Let us examine Equation 5.144 a bit more.

* After a full period, ie,,att = T =

A)
2 2 /2 2 2 2
2 RO Q202 Q2Q2
|C3(_) = Span (costdm) +1) + ot — =g cos(2m)

_ ORQ% .\ QRQF  QROE
16A*  16A*  8AL

=0,

2
which s expected, since after one period, the probability will return to its initial value, i.e., |C3 (0)| =

0.
* After half a period, ie., att =T, = ;—A,
2 2 2 M2 2 M2
2 Q2072 0%Q 0Q%Q
65 ()] = S tosm) + 0+ S - 5 cost
_QROR | QRO QROR _ QRO 40ROR
16A% 16A% 8A4 4AN4 (Q% + Q)2
2
* 'The first derivative of |C3(t)| is
al 3(t)| =- 12 A3R sin(2At) + sm(At)
QZ Q/Z QZ Q’Z QZ Q
- 8RA3R sin(Af) cos(At) + —X 3R sin(At) = R sin(Af) (1 = cos(Al))
(5.146)
2
The second derivative of |C3(t)| is
2 2 ()2 2 /2
dt2|C3 | = 8RA2 cos(At) (1 — cos(At)) + 8A “RER Gin?(Af)
Q Q QZ Q/Z
aryV [cos(At) — cos?(At) + s1n2(At)] ;AZR [cos(At) — cos(2At)]
(5.147)

From Equation 5.146 it occurs that there are two cases in which extrema occur:

1. sin(At) = 0. This means that cos(At) = +1. Hence, there are two subcases:
(a) cos(At) = 1. Thus, At = 0,27, 47, .... In other words, we are at integer multiples of
the period T7. Then, Equation 5.147 becomes

2 Q307
Gl

E-1]=

Hence, the second derivative does not provide additional information about the ex-

2
tremum. However, we have already seen that after a full period, it holds that |C 3(t)| =
0. Given that this is a function describing a probability, this value is a global minimum.
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Let us verify this by expanding the first derivative around the limits At = 0 + €, where
€ is an infinitesimally small positive quantity:

d|C (e)ZNQ%{Q’Z . QZQ/Z 3 0

dt >\l gA3 8A3

d 2 Q3072 e2 e Q’2 3
el Y, I venter] Ll B | R ve §<0

Hence, we have a minimum.

(b) cos(At) = —1.Thus, At = 71,37, 57 ... .In other words, we are at half-integer multiples
of the period T7. Then, Equation 5.147 becomes
Q0% _QROR
( -1 - 1) R*>“R
82 42

d2
lesef = <0.

2
Hence, we have a local maximum. As we saw above, after half a period, |C3(t)| =

2 2
%. Hence, in this case, the maximum transfer percentage to level 3 is
RTOR
_40R07 148
R (149)
R R
(c) cos(At) = 1. Thus, sin(At) = 0. This reduces to case 1(a).
2. When Qg = Q%, wehave A = \/_20R and
21
R

The period of the oscillation is equal to V2 times the period of the respective two-level system
(see Equation 5.64). Additionally, then, the maximum transfer percentage from level 1 is .%/; =

2
1. Moreover, the expression for the time-evolution of the probability |C3(t)| reaches the simpler
form

|C3(t)|2 = % (cos(\/EQRt) + 1) + i — —cos

E

2 2
1 (VB0 ) 11 (Va0g ) (1 (vaog ) 1)
= 4 COS 2 4 2 COS 2 2 COS 2 2
|C3(t)|2 = sin‘{@t]. (5.150)

The above conclusions are summarized in Figure 5.10, where the oscillations of a three-level system at
resonance are presented.
The maximum transfer rate from level 1 to level 3 is

oy 40302 NOR+OR 2R (515
1 (QR+QRP  4m (3 + Q%)g
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402 (2
A3 F iy
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E 06 [ _Pl(f)
Q —Py(t)
_g — Py(t)
6_9 04 r 1
40202
=1|— FAES 2
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02r RTCR ]
O 1 ‘ 1 J
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= R —Py()
3 A =3 —PRy(1)
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O 1 1 J
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Figure 5.10: Oscillations of a three-level system at resonance, ie, forw = Q & A = 0, for Qg > Qf
(top), Qg < Q% (middle) and Qr = Q% (bottom). Without having in mind a particular system, we
have assigned typical values (top) Qg = 1 s and Q% = 0.5 57}, (middle) Qg = 0.5s™  and Q) = 157,

and (bottom) Qp = Qf = 1571,

The time-averaged probability to find the electron at each level is

(C1(B)Fy =

(Ca(t)Fy =

~

Qr  QF  Qp+20f

+ =
32A%  16A% 32A4
Ok

8A2

N2 /2 N2 2 N2 2

(5.152)



QUANTUM OPTICS 159

The time £3,,c,y, i.€., the time it takes so that the probability to find the electron to the upperlevel becomes
equal to its average for the first time can be found from the relationship

3Q2 Q/2 QZ Q/Z QZ Q/Z QZ Q/Z
R-R = R (cosQAbypen) +1) + ——R — —RR
32A% 32A4 16 A% 8A%

1 1
. (COS(ZAtSmean) + 1) + E - g COS(AtSmean) =

1
Z (COS(ZAt?)mean) + 1) + E - COS(At3mean) =

1 1
E COSZ(At3mean) + E - COS(At3m€an) =

Cos(At3mean) =

= cos?(Atgpean) + 1 — 2 cos(Atamenn) =

1

052 (At3mean) -2 COS(At3mean) - 5

Thus, we arrived at a quadratic equation in cos(At3y,ca,)- Its roots are

3

cos(Atzpen) =1 % > (5.153)

S w
O NIWERIWRWR

3 .
Theroot]1 + \/; > 1is rejected. Therefore,

3 3
cos(Atzpean) =1 — \/; = Al3mean = arccos[l - \/;) =1.797478 =

1.797478

t x 5.154
3mean A ( )
Hence, the mean transfer rate from level 1 to level 3 is
t 302 Q/Z 3Q2 Q/Z
k= <|t : | 32A3 Ii 797478 R3 ) ' (8.155)
Bmean x 4(Q% + Q)2 X 1.797478
Finally, the ratio between the mean and the maximum transfer rate is
3
k 30%Q% n(Q% + Qp)? 3n (5.156)
20 3 202 : :
T A% +QD): x1797a78 ROk AXLTITATE
Therefore, the two rates are connected through the relationship
§e72
k = 1.31083T—3. (5.157)
1

Let the initial conditions be C;(0) = 0, C,(0) = 0 and C3(0) = 1. Hence, for t = 0, the system of
Eq. 5.130 becomes

’ ’
C1 QR QR C_3QR
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Substituting the condition occurring from the second equation of the system to the first equation, we

obtain

Cy = —C\/E

Now, substituting to the third equation of the system, we obtain

Qg
QL

V20

Ok

Q Q% o 2002 +20)2 20, A
2A =¢ R+C\/§QF+C R _ R R —\/_R
R

V2 V2T,

Thus, finally, the system of Eq. 5.130 reaches the form

] L [9ROR inr _ OROR | OROR At
Cq(t) 82 4A2 8A2
Q Qf
Co(t)| = ﬁ plAt _ ﬁ piAt —
| Cs(t)] g piAt Q% + o piAt
8A2 4A2 T 8A2

) } 'QRQ;Q _QRQ;{
Ci(B] |Tam oA - T

Co(t)| = iZ2 sin(Af)
72 2
|C3(8)] | QR cos(At) + _S\Rz

4A2?

C=2 2= = :
Qf + QF zm 2V2A

(5.158)

Comparing between Equations 5.158 and 5.131, i.e., the one that occurred for initial placement of the
electron on the lower level, we observe that the transformation C(t) «— Cs(t), Qg «— Q} leads to
exactly the same system of equations. Therefore, the above discussion will hold for this initial condition,

as well, if we consider this transformation.

SOLUTION for A # 0

In the presence of detuning, the matrix A has the form

A Qr
A= _é_R _é _g_fz (5.159)
0 G o
2 2
To make calculations easier, we will solve the problem for the special case
Qr=0Qy=A:=28
Thus, in this case, we have the matrix
1 -1 0
A=g|-1 -1 -1]. (5.160)
0 -1 -3
Its eigenvalues are obtained by by the roots of the determinant
det(A — AI),
where Lis the unit 3 X 3 matrix. Thus,
det(A - AT) =0 =(f - 1) |_ﬁ_; ! _3;5_ Al TP :g —350— /\| =0
=B - D[+ NGB+ ) - 2]+ BB+ ) =0
= — A3 —3BA% + 3642 + 58% = 0.
We can verify that the value A = —f satisfies the above relationship. Hence, the rest eigenvalues can by

found by dividing the left-hand side of the above relationship by A + , i.e.,
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A% -3BA%2 43BA% +58% | A+ B
e -A> -pA? —A? —2BA + 52
—2BA%  +3B%1  +5p3
o —28A%2 2827
58A%  +58°
e 58A%  +58°
0

Hence, the condition that the determinant becomes zero is factored as
(A +B)(A2 + 281 -58%) =0

and the eigenvalues are

M =-pA+V6), A =-pa-v6),  A;=-B| (5.161)

Let us now find the eigenvectors of A.

For|A; = —B(1 + \/g)

o1y — 01 = —(1 + V6)oyy

1 -1 0|fvy o
1 -1 1||vg1| = -0+ V6) [v31| = 011 — vpy — 031 = —(1 + V6)vyy
0 1 =llow o3t ~0y1 - 3031 = —(1 + V6)oy
0y = 2+ V6)vy; 2 +6
= U171 + U3 = \/6021 = = _2 - \/5011

0y1 = —(2 = V6)0g vy = 2+ V6o

Thus,
1
U1 =711 2+V6
_2+\/5
2-vV6
For U; to be normalized, it must hold that
L2
|'01| =1.

2-v6
Hence, e.g., 711 = ——. Therefore
y €84 011 5 \/6 )

(5.162)
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For|A; = —B(1 - \/g)

1 -1 0][op U1 012 — U3 = —(1 = V6)o1,
-1 -1 -1||vgn|=-1-V6)|vy| = —01y — vp — 3 = —(1 - V6)vyy
0 -1 -3]lvn 3 ~vy, — 3v3p = —(1 — V6)v3,
Uy = (2= V6)01, 2-+6
= 1y + 03 = —V6vp, = 7 24 \/8012

Upp = —(2 + \/6)032 Upp = (2 - \/6)012

Thus,
1
Ty = vpp | __://_66
_2+\/3
For U, to be normalized, it must hold that
2
?))zl = 1
2+\/6
Hence, e.g.,, 015 = PV Therefore,
1|2+ \6
Gy=——| -2 (5.163)
26 |2 Vo)
For| A3 = -8
1 -1 0[||vs U13 U13 — U3 = ~U13
-1 -1 —1||vas| = —|Vo3| = V13 — V23 — V33 = —V23
0 -1 -3 U33 U33 —Up3 — 3033 = —0U33
U3 = 27113}
=
Us3 = —U1303 = —20U33
Thus,
1
53 =013 2
-1
For U3 to be normalized, it must hold that
L2
|U3| =1.
1
Hence, e.g.,, 013 = 3 Therefore,
1]
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After all, the general solution is

Cy(1)] . ‘ ,
?(t) = Cz(t) =0 61 €_M1t + Cy 5}2 e‘lAZt +C3 53 6_1A3t
Cs(1)]
Ce® o [2- Ve . |2+ Ve . |1
Cy(eft | = | -2 |epa+vor . 2 | o |eiA-Ver . 3 | o [eift  (5165)
C3(i’) €i3ﬁt_ 2\/6 24+ \/g 2\/8 7 _ \/6 2\/8 -1

As in the previous cases we examined, imposing initial conditions determines the coefficients ¢y, ¢y, 3
and, subsequently, the time evolution of the probability to find the electron at each level.

5.11 Multi-level system with equidistant levels within the RWA.

At this point, we will solve the problem of the multi-level system (MLS), i.e., with N levels, within the
RWA. To simplify the problem and make its solution feasible, we will suppose that the energy levels of the
system are equidistant. This is the same we did in the previous section, where we considered a system with
quantum harmonic oscillator eigenstates, whose energy levels are indeed equidistant. From Eq. (5.30), we

have
, —1 )
Cp(t) = 7 D, Cue =W U1 (1) |, (5.166)
k
where,
Ui (f) = e cos wt f AV, (7) 2 Oy(7) | (5.167)

The matrix elements of the z-coordinate are
Zxrk = de(D;,(?) Z q)km (5168)

We note that, fork = 1,3, 5, ..., @y, are even functions, while, for k' = 2,4, 6, ..., they are odd functions.
Therefore, given this fact, and knowing that the z-coordinate is an odd function, the following hold:

« Fork =k, z; = Osince

Zk’k:fdvm)k@lz z =0 (5169)
Even agd

« Fork # K,

*+ If, e.g. k' = k —1, then z;_  # 0. This happens since, from the relation,

Zk—l,k = deCD,*(_l(ﬂzCDk(?) (5.170)

we notice that if ®;_,(¥) — EVEN, then ®;(¥) — ODD, while, on the contrary, if
®;_,(r) — ODD, then ®;(¥) — EVEN. Thus, in both cases, the result will be either
EVEN - ODD - ODD or ODD - ODD - EVEN, i.e., non-zero.

* Similarly, it can be demonstrated that, for k" = k — 2, z;_5 ; = 0, etc.
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Thus, to summarize,

Zk-1k = Zkk-1 # 0
Zkok = Zkj—2 =0
Zk-3k = Zk k-3 # 0

Zk—ak = Zkj-4 =0

# 0 ,for N = even
FN-DEZZREND] 20, for N = odd

Given that the matrix element of the potential energy of the perturbation can be written as (see Eq. 5.41)
plwt 4 p-iwt

U;ak,k(t) = - Zk’k gg coswt = — Zk’kgOT/ (5171)

Eq. (5.166) becomes

C () = o Zgo PrarCr(b) (£ ~Urlt 4 o=yt

Assuming that the energy levels are equidistant, we have (Q, — Q) = (k" — k)Q). Thus,

%0 ) ,
Cp(t) = % Zﬁzk,kck(t)( iK' -k)Q+awlt 4 pil (K -k)Q- a)]t)

; N

@ k’kck(t) ( i[(k"—k)Q+w]t + ol ik~ )Q—w]t) .

2 k=k"+1

The coefficients k" — k are presented in the table below:

k\ K 1 2 3 4 N
1 0 1 2 3 N -1
2 -1 0 1 2 N-2
3 -2 -1 0 1 N-3
4 -3 -2 -1 0 N-4
N | -N=1)| =(N=2) | -(N=3) | <(N=4)| | 0
The terms that correspond to slow changes are, for K’ — k = -1, the exponential ei[(k,_k)oﬂ"]t, and,

for k’ — k =1 the exponential el -k)Q-wlt 1 any other case, changes are fast, hence, we can omit them
within the RWA. Therefore, from the N occurring equations, we have, fork” =1,k =2,3,...,N -1 and
k" = N, respectively,

Cit) = =5 —Calt)e™

. 'L@l ! _ g . ‘g@/ /! g .
Cor(t) = Zk’;#ck,_l(t)e‘mt + l"é‘%ck,ﬂ(t)ew
) P, &

Cy(t) = ZNNAT0 0 (et
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where A = @ — () is the detuning. Alternatively, setting Qprpx = Ziio , the above equations can be
written as
. Q) ,
Ci(t) = —RL2C, (el (5.172)
. 1Qpr , 1QRi kr :
Ck/(t) = Mck/_l(t)e_lAt + Mckr+1(t)elAt (5173)
. iQ - :
Cy(t) = %CN_l(t)e—W. (5.174)

These equations can be solved using the following transformations:

« Foreven N,
Co(t) = Co (e VD203t
Cp(t) = Ck,(t)ei((N+1)—2k’)§t +i(N +1) - 2k')%ck,(t)ei((N+1)—2k’)§t
. ForoddN,
Cott = G203 o

. . o A A A
Ck/(t) = Ckr(t)el(N 2k )zt + l(N _ Zk/)ECk/(t)el(N 2k )2t

Substituting the transformations, we have

« Foreven N,

+ fork’ =1,
C,(He™ 2! (N - 1)EC1(t)M ! ;l'zcz(tW =
. A iQ
Ci(t) = ~i(N - 1) C1(1) + 51'2 C, () (5.175)

+ fork’ =2,3,..,N -1,

L i A . _
Cp (1)l 2! 4N +1- 2K') 5 Ce (D E2TSE
ZQ ! Jel — ; Y St . ZQ 7 Jet ; _o( L
= —sz’k LCp (e 2lemilt 4 —sz’k L Cporpq (1)1 2!eidt =

Cpo(t) = @”‘%qu(t) —i(N+1- 2k’)§([jk,(t) + %Ckf+l(t) (5.176)
+ fork’ =N,
EnOIT i(1-N) S Cy (T = TRINAG 23T s
iQRN,N—l

. A
CN(t) = l(N - 1)ECN(t) + CN—l(t) (5177)

2
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« ForoddN,
* fork’ =1,
S A o iQ B
Cl(t)M +i(N—2)EC1(t)eZ( 2! = %Cz(t IN=A2Teit =
. A iQ
Cy(t) = ~i(N = 2)5Cy(1) + gl’zCz(t) (5.178)
* fork’ =2,3,..,N—1,
Nt A N2k
Ck,(tM +i(N - Zk')Ecr:k,(t)eﬁb””?7 =
ZQ ’ Je! — TN ’ é . ZQ ! I’ HINAR ’ ol
_ sz,k 1Ck'—1(tm+ Rk2,k +1Ck,+1(t)ez[N 2 21GiAt
. iQRk',k’—l . , A iQRk’,k’ 1
Cio(t) = = Cr-() ~ i(N = 2K) S Cu(t) + T*ck,ﬂ(t) (5.179)

+ fork’ = N,
A Qe I
Ca(e™e - iNECN(tW _ %CN%@W >

iQ) -
) + Rl;I,N 1

Cn_1() (5.180)

. A
CN(t) = +1NECN

Hence, three different forms occur in each case (i.e., three forms for even N and three forms for odd
N). We notice that in both cases, we have arrived at a system of first-order differential equations of the

form 3 ~
CZ(t) _ Cz(t)
G| =A4|GO |, (5.181)
LCN(t)_ CN(t)
where
« foreven N,
—_(N_l)A QRl,Z 0 O O 0
Qrip  —-(N=-3)A Qg3 0 0 0
2 o Qka—1,kf (N +1-2K')A Qpprpryr - 0 /
6 O 0 0 0 - (N _ 1)A]
« forodd N,
[—(N - 2)A Qg1 0 0 0 0
Qg1 —-(N-4A  Qpos 0 0 0
B 2 : .:. Qka—l,k’ _(N - Zk/)A QRk’,k'-{—l e (.)
0 0 O 0 0 .. NA_
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In other words, in both cases, we arrive at a problem of the form
X(t) = AR(t) := —iAX(t) (5.182)
We try solutions of the formx(f) = ﬁeZt, with A = —iA. Thus, we conclude that,
Taigh = At = —ijii = —iail =
Au = Au |,

Hence, for a given N, we arrive at an eigenvalue-eigenvector problem, the solution of which is feasible,
using the methods described in the previous Sections.
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CHAPTER 6

SEMICLASSICAL APPROXIMATION I

In this Chapter:
We continue studying Rabi oscillations with the semiclassical approach. However, here we focus on nu-

merical solutions. Also, we compare our numerical results with approximative methods like the Rotating
Wave Approximation (RWA), which we analyzed in the previous chapter, and the Averaging Method, of
1st and of 2nd order. We solve for various initial conditions either on resonance or off resonance. Relevant

references for further reading: [ 1, 3,4, 5,6,7, 8,9, 10, 2].
Prerequisite knowledge: Basic knowledge of Quantum Physics and Mathematics.

The purpose of this chapter is to solve the linear system of first-order differential equations (Eq. 5.30)
without the rotating wave approximation (RWA). The method we use to this end are the numerical so-
lution with matlab (no RWA, NRWA) and the averaging method (AM). The linear system will be solved
for a 2LLS, both in-resonance and out-of-resonance, with initial conditions

1. C1(0) =1, C,(0) = 0, i.e,, placing the electron, at time zero, at the lower level,
2. C1(0) = 0,C,(0) =1, i.e., placing the electron, at time zero, at the higher level
3. C1(0) = —¢® Cy(0) = =

. 1 \/E 72 \/E
IC1(0)P = IC5(0) = 5 at both levels.

¢'?, i.e., placing the electron, at time zero, with equal probability

The linear system of first-order differential equation for the 2LS is

i%, P
2

Ci(t) = Co(t) [e—i(ﬂ—w)t + e—i(Q+w)t]

(6.1)

: S P |
CZ(t) = Cl(t)lg—h [el(Q+a))t + el(Q_(lJ)t]
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6.1 Rabi oscillations in a 2LS without Rotating Wave Approximation.

The significance of the full numerical solution (NRWA) is that it is the most accurate approach to obtain
the actual solution to our problem. Therefore, the numerical solution provides the opportunity to compare
it with the approximate ones (RWA - AM), in order to obtain a criterion for their range of successful
application.

The 2LS (6.1) is numerically solved utilizing matlab; specifically, we used an algorithm based on the
trapezoid and Runge-Kutta (4,5) methods (ode45). The algorithm ode4S selects a certain partition of
the chosen interval, in our case for time ¢, producing at each point in time a column vector Cy(), where
k = 1,2.1t is important to notice that this particion can be controlled. Additionally, Two important
options of the algorithm are the relative and absolute tolerance, RelTol and AbsTol, respectively. At each
step of the ode4$ algorithm, an error is approximated.. If i is the approximation of y/(xy) at step k and ¢,
is the approximate error at this step, then matlab chooses its partition to ensure that

e < max(RelTol - yi, AbsTol)

where the default values are RelT'ol = 0.001 and AbsTol = 0.000001. In the following, we set RelTol =
10719 and AbsTol = 10710, since our tests have shown that these values give the optimal results.

6.2 The averaging method.

The Averaging Method (AM) in nonlinear dynamical systems belongs to asymptotic methods. The sim-
plest form of averaging is periodic averaging, which deals with solving a perturbation problem of the stan-
dard form

x = ef(x,t) + €2g(x, 1) + ... (6.2)

where € << 1and f(x,t), g(x, t) periodic functions with period T. We write the function f as

foxh) = f) + flxb). (63)

j_f(x) is an idiotypic temporal average of f in the regime [0, T']: We average over f, but assuming x(f) con-
stant, hypothesizing that x(¢) is a slowly varying function. The functions y() and z(t) are confronted with
the same hypothesis, which are defined the Egs. (6.7), (6.22) respectively. Therefore, for f(x) we have,

F(x) = f F(x, Dt (6.4)

Similarlywith f (x, ), we treat g(x, t), ... . Below we use similar separation of functions f, g, h ... to f, g, h, ...
and f,3,h,
6.2.1 Averaging method of first and second order.

As above, we start by writing the periodic function f(x, t), i.e.,

fx 1) = f@+ fx 1), (6.5)
where

T
Fo == fo Fx, bt (6.6)

Furthermore, we define,
x(t) = y(t) + e w(y(t), £) (6.7)
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where w is a function of y(f) and the time, ¢, which defined below, in Eq. (6.17). The differential of x(¢) is

dx(t) = dy(t) + € dw(y(t), t), (6.8)
(9w 5’W
dw(y, t) = 8 3 ——dt, (6.9)

where (;—v: is the derivative of w with respect to f, keeping y(f) constant, hypothesizing that y(f) is a slowly

varying function. Hence,

ow ow 6.10
x—y+€a—yy+€0.)t ( )
Eq. (6.3), with Eq. (6.7), becomes
fy+ew,t) = fly+ew) + f(y +ew,t). (6.11)
Therefore, using Eqs. (6.7), (6.10), (6.11), Eq. (6.2) becomes
y+eo;—wy+eaw (fy+ew)+f(y+ew,t))+ezg(y+ew,t) (6.12)
y
Using a Taylor expansion vs. y, we obtain
Fig+ew) = )+ €21 (Y)w + O(&w?) (6.13)
f(y +ew, t) = f(y, t) + €8f8(y, t)w + O (e*w?) (6.14)
y
gy +ew,t) =gy, t)+ eag;y, t)w + 7 (e*w?) (6.15)
y
Thus, using Egs. (6.13), (6.14), (6.15), Eq. (6.12) becomes
ey e =l + fly ) + (0w 4 L g 4 @)
y y
Rearranging, we have
(I + e&—w)y =€ (f(y) + f(y, t) - 8—W) + €2 (mw +g(y, t)) + 0(e3), (6.16)
dy dt dy

where [ is the unit relevant to the nature of y. If y is a simple function of ¢, I = 1. If y is a column matrix,

1
asin our case, [ = lo 1 l We define the function w through the relationship

~ ow
f(y, t) = E (617)

The use of Eq. (6.17) to simplify Eq. (6.16) is obvious. Therefore,

1
= (I + e&_w) lef(y) +ée? (Qf(y, +8(y, f)) + ﬁ(€3)l
dy dy

d dw
I+e—W —I—e—+ﬁ(ez)
dy dy
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y=€ef(y) +€

(3/’ (y, 1)
dy

ow -
w+g(y, £) - &—yf(y)) + (%) (6.18)

If we ignore terms of order €2 and above in Eq. (6.18), we obtain the first-order AM of Eq. (6.2), i.e.,

v =€ef(y) (6.19)

It is worth-noticing that the functions of the problem of Eq. (6.19) are independent of time. As a result,
this problem is easier to solve than the initial problem of Eq. (6.2).
Continuing towards the second-order AM, from Eq. (6.18), we have

- af(y, ow -
y=efty)+e (yw +80,1) - 7f<y>) +O(E) =
y y

h(y.t)
¥ =ef(y) + Eh(y, t) + 7 (%) (6.20)
Just as we did previously with the function f(x, t) of Eq. (6.3), we write the function h(y, ) as
h(y, t) = h(y) + h(y, t), (6.21)
where
y(t) = 2(t) + ua(t), 1), (6:22)

u is a function of z(f) and the time, f, which defined below, in Eq. (6.33). The differential of y(¢) is

dy(t) = da(t) + €2 du[z(t), t], (6.23)
dulz(t), t] = &—dz + ‘;“dt, (6.24)

where % is the derivative of u with respect to £, keeping z(f) constant, hypothesizing that z(f) is a slowly

varying function. Hence,

,0u ,du
y—z+€ Zz+€§ (6.25)

Eq. (6.21), with Eq. (6.22), becomes
h(z + €%u,t) = h(z + €2u) + Ii(z + €%u, 1) (6.26)

Therefore, using Eqgs. (6.22), (6.25), (6.26), Eq. (6.20) becomes

J u . _ 3
n eza—ui + 62(9—1; = ef(z + ) + € Rz + €2) + filz + €2u, 1)) + O () (6.27)
VA

Using a Taylor expansion vs. z, we obtain

j‘:(z+€2u)=jf(z)+€2 f( )u+@( 2), (6.28)
Ji(z + €2u) = i(z) + € ag(z)u + O (), (6.29)
,9h(z, 1)

fi(z + €%u,t) = hi(z,t) + €2 8—11 + O (e*u?) (6.30)
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Thus, using Egs. (6.28), (6.29), (6.30), Eq. (6.27) becomes

LA . F@) + € (h@) + iz, 1) + O () (6.31)
dz dt
Rearranging, we have
,du) - 5 (5 ~ du 3
I+e¢ &— Z:€f(z)+€ h(z)+h(z,t)—§ +@)(€ ) (632)
z

where [ is the unit relevant to the nature of z. If z is a simple function of t, I = 1.Ifz is a column matrix,

asin our case, [ = lé g)l We define the function u through the relationship

~ du

The use of Eq. (6.33) to simplify Eq. (6.32) is obvious. Therefore,

-1
. (1 + 62%) [/ (e) + 2h(a) + ()]
=

1

% d

I+(—:28—u) 21_62&_“4_@7(64)
YA z

z=c f(z) + € h(z) + 7€) (6.34)

If we ignore terms of order €> and above in Eq. (6.34), we obtain the second-order AM of Eq. (6.2), i.e.,

1=¢€ f(z) + €2 h(z) (6.35)

We notice again that the functions of the problem of Eq. (6.35) are independent of time. As a result, this
problem is also easier to solve than the initial problem of Eq. (6.2).
6.2.2 Averaging method for Rabi oscillations in a 2LS.

labelsubsec: AMRabi The Rabi oscillations of electron probabilities of a 2LS interacting with an electro-
magnetic field, are described by Eq. (6.1)

i&y S

Cit) = G —7

[e‘i(Q—w)t + e—i(Q+w)t]
' (6.36)
CZ(t) = Cl(t)léﬁzo—hg [ei(QﬂU)f + ei(Q—a})t]

where we have already defined the detuning, in Eq. (5.49), as

(6.37)

and the Rabi' (angular) frequency, in Eq. (5.50), as

PE
QR = 7 0

(6.38)

!After Isidor Isaak Rabi (1898-1988).
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Our aim at this point is to apply the AM in Eq. (6.1). Before proceeding, it is important to remind the
reader of the solving process for the above equations within the RWA, where we assumed that the terms
containing ({2 — @) are slow, while the terms containing ({) + @) are fast. Hence, in any remarkable
time scale, these fast terms are somehow expected to have negligible effect. The RWA is the claim that we
can ignore these fast terms. Afterwards, using the transformation of Eq. (5.51), we obtained a system of
differential equations with time-independent coeflicients, i.e.,, manageable case of differential equations.
The AM arrives at this result via a different path. If we also define the sum of angular frequencies as

Ta+0) (639)

Eq. (6.1) can be written in matrix form as

Ci(h] Qg 0 et IOt 4 e T Cy (1)
lcz(t)] =5 [e—iAt 4 ottt 0 ch(t) (6.40)
Solution for A # 0
We write Eq. (6.40) in the form
x(f) = ZQTR [e—iAt _?_ HiTt e -5 e_iZt]X(t)z (641)
ef(xt)

where x(t) = [g;gg ], we define €f(x, t) as the right-hand side of Eq. (6.40), and
g(x, 1) = 0. (6.42)
For the AM to be applicable, f must be periodic. Eq. (6.41) involves two periods, T; = ZKH and T, = ZER

If T—l is a rational number, then the system is periodic with a common period, T, which is the least common

2
multiple of T1 and T’. In other words,

T, X

T = X = N, where: N = Rational
2 a =>T= 0(T2 = ﬁTl
N = E, where: a, f = Integers

T . .
On the contrary, if T—l is not a rational number, then, we can choose any close rational and solve approx-
imately the problem. We notice that in numerical calculations, since T and T’ are represented as floats,

T . . .
T—l is always a rational number. For example, if
2

Doy

T,

in a computer, it will be approximated by \/E = 1.41..., with a finite number of decimal places. Moreover,
141

in this case, we would choose, for example, \/5 =141 = 00"

The average of f(x, t) is

T . .
. 1 T ~ 1 0 £ (e+zAt +e—zZt)dt B
€f )= fj;) €f G Byt = T £T(e—iAt + e+t 0 x(t) = [O le(t)’
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since
T 1 .
f et = +—(e**T —1) = 0, because
0 X
. +i2a2—n i ]
etiZT — pF=AT _ pri2na (e’zn)i“ =1** =1, and
T 1 -
f etiM gt — i__(eﬂAT —1) =0, because
0 IA
AT _ #ME _ iion 2m)£f — 1+
eHAT = o™R = o2 = (2 = 146 = 1.
Therefore,

Thus, from Eq. (6.3), we obtain

0
Fox8) = f+ Fx, ) =

0 e+iAt + e—iZt

For the first-order AM, from Eq. (6.19) we have

175

fx) = [8 8] (6:43)

- 19)
ef(xt) = ZTR le—mt 4+ pHiZt 0 ]X(t) . (6.44)

y =€ef . (6.45)
However, in our case, f(y) = 0. Thus,
y=0 (6.46)
Therefore, y is a constant matrix, i.e.,
y= [ylol . (6.47)
Y20

Y10, Y20 can be determined by applying the initial conditions. Finally, we obtain w by Eq. (6.17) as

ow -
ey =efrn) =

. €+iAt e—iZt
IQR 0
ew(y, t) = >

iA ir

For the second-order AM, from Eq. (6.35) we have

omiAE ISt in 0 i :|Y(t)- (6-48)
+

z=€ f(z) + € h(2). (6.49)

In our case, f(z) = 0. From Eq. (6.20) where we have defined the function f(y, t), we have

f z,t
h(z, t) = f;z )w(z, t). (6.50)
Using Eq. (6.50), Eq. (6.35) becomes
z=¢’ of e, t)w(z, t). (6.51)
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Substituting Eqs. (6.44) and (6.48), Eq. (6.50) becomes

Qp\ (1 1[-
eZh(z(t),t):i(TR) (E lg) ‘01]+Kl01 ﬂ)z(t)

Qg 2 1 [_pita+Dy 0 Qg 2 1 [pia+Dy 0
+1 5| A 0 A+L)t z(t) + i Sy 0 _pi(A+ T z(t).

el

The average of Eq. (6.52) is

_ 2f(z, {Q 2 -
- B -4 S

From Egs. (6.21), (6.52), (6.53), and since A + X = 2w, we have

2 , ,
~ {Q R 1 [—p 2wt 0 1 [ei2wt 0
€%h(z, t) = 1(7) (Z l 0 eiZwt] t5 l 0 _e—iZwt]) z(t).

Therefore, Eq. (6.51) becomes

where
Qg 20
A=l—]| ——.
( 2 ) w? -2

The solution to Eq. (6.55) is

Nz®] _ [z10e7
z(t) = [z;(t)] = lzlz(;emt.]

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

The coefficients z1g, Zp( are determined by the initial conditions. Finally, from Eq. (6.33), we conclude

that

2 e—i2mt eiZa)t
2 _ Qg R2wA + 2wy 0
€“u(z, t) =1 > 20t 2wt z(t) |
+
0 2wA RwX

To sum up, we present the results for the first- and second-order AM.

« First order:

x(t) =y + e w(y,t)
_ Y10
v L/zol
. e+iAt e—iZt
iQpg 0 — - —
ew(y, t) = | e g ik ly
—— 0
iA iz

(6.58)

(6.59)
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« Second order:

x(t) = z(t) + ew(z(t), t) + €u(z(t), t)
lzloe 1Atl
( ) - 1At

ew(z(t), t) = ZQTR

O e+iAt e—iZt
T T 6.60
emiAt Tt iA 0 i Z(t) ( )
-—— 4+
iA X

2 . )
) QR 1 e—lZa}t 0 1 eszt 0
eu(z(t),t) = 1(7) [m [ 0 eiZwt] ooy l 0 —12a)t] ]Z(f)

We observe that in Egs. (6.59), (6.60) there are three types of €, i.e., (i ) (; nd 22 These three distinct,
small, € reflect the relative magnitude of the perturbation, which is described by the Rabi (angular) fre-

quency with respect to the detuning A = w — €, the sum of frequencies X = @ + (2 and the frequency
w, respectively. These considerations give us the opportunity to confront different numerical cases.

’ Solution for A = 0 ‘

The need to re-solve the problem for A = 0 stems from the fact that, unavoidably, as A becomes smaller,

Q
TR gets so large that non-resonant AM is not successful anymore. Hence, we have to start again from the
initial problem, i.e., Eq. (6.40), and set A = 0. Therefore,

. ZQR 0 1+ e—iZwt
X(t) = T 1 + e+i2a)t O X(t), (661)

ef(xt)

Ci(t)

where x(t) = [Cz(t)

], we define € f(x, t) as the right-hand side of Eq. (6.40), and

g(x 1) = 0. (6.62)

For the AM to be applicable, f must be periodic. We notice that, indeed, € f (x, t) is periodic, with period
T==1

The average value of f(x, t) is

g T o 0
ef) = = fo ef(x,t)dt:T : lg g]x(t)—lzR [(1) é]x(t)
Therefore,
0
ef(x) = - ng é]x(t) (6.63)

Thus, from Eq. (6.3), we obtain
fet)= @)+ flx ) =

0 1 + e i20t iQrlo 1
x(t) -

Gf(x, t) = Gf(x, t) - Gf(x) = TR 1 + gti2wt 0 T 1 le(t) =
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_ 1Q) —i2wt
dmn=1R[° ‘

2 Olﬂﬂ (6:64)

For the first-order AM, from Eq. (6.19) we have

y = €f(y). (6.65)
In our case, due to Eq. (6.63),
iQg Q)
Qg0 1 o yi(t) = TyZ(t) yi(t) + - y1(H) =0
=20 tho=t""" 2 s 2 .
() = () ”®+G¥)”®:0

Qgr Qg
y1(t) = Ay cos( > )+Bll sm( > t)

(6.66)
Qg Q
Yo(t) = A Cos( 5 ) + By Sm( ZR t)
with

Qg Qg
{}/1(0) - An} ; 11(0) = —B11 = 1—3/2(0) (667)
n .67

_ Q

¥2(0) = Ay 1(0) = —B21 = z—y1(0)

Aq1, B11, Apq, Byp are determined by applying the initial conditions. Finally, w is calculated from the
Eq. (6.17),

8‘: - ef(Y/ t) =

Q 0 _e—iZwt
GW(Y, t) = - |f3

o |e2ot 0 ]Y(t) (6.68)

For the second-order AM, from Eq. (6.35) we have
z=€ f(z) + € h(z). (6.69)
From Eq. (6.20) where we have defined the function k(y, t), we have

df(2)
d

z

d owl(z, t) -
Wz, t) = w(z,t) f ( w( £ +g(z,t) — ;z 2 f(). (6.70)

We want the average of i(z, t), hence,

_ df(z f(z, ow(z, t) -
h(z) = ( g(z) w(z, t) + f;z t)w(z, t)+g(z,t) - 8(z t)f(z)) (6.71)
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We will calculate the above terms one-by-one.

8f(z) ZQR 01 QR 0 _e—i2a)t QR 1 eiZwt 0
15t term: &z W(Z/ t) = T 1 0 E eiZwt 0 Z(t) = l -_— _e—iZwt z(t)

2] 20| 0

~ ) . 2
. df(z,t) iQr| 0 e 20| Qr| 0 —ei20t AQrY 1 (1 0
2 d term: 92 W(Z, t) = +T eiZa)t 0 E eiZa)t 0 Z(f) =1 7 Z 0 -1 Z(f)

3 term: g(z,t) = 0

2 - ,
3w(z, 0 e 20t iQr [0 1 Q 1 [-e0t 0
4th term: f( ) - | 2wt 0 :| 2R ll Olz(t) ( ZR) % 0 eiZwt]z(t)

Thus, h(z, t) in our case is
, Qp\" 1 [e2t 0 t OV 11 o t
(z,t) =i > 2| 0 ezt Z()+17 7o lo -1 z(t)
] QR 2 1 _e—iZa)t 0
I\ 5| o et |HD)
Therefore, the averages of the above terms are
If(2) (Qr\" 1 [0 0 0 0
st ) —j[Z2ZR}) =
1 term.( Ew w(z, t)]| =1 o lo o 2(t) = 0 0

2
= 2
27 term: (Bf&(z, t)W(Z, t)) = i(QR L ll _O lZ(t)

3 term: (z, 1) = 0

-, < 2
w(z, t) - Qr)y 1
o FE) (2] £ S

We finally obtain that

(6.72)

2
S (QrY 1 (100
h(z)_z(—2 ) 5 lo _1]z(t) (6.73)

h(z, t) occurs from Egs.. (6.21), (6.72), (6.73):

QR 1 eiZa)t 0 QR 1 _e—iZa)t 0
(z, )_ Z( 7 ) 2&)[ 0 e—zZa)tlz(t) ( 2 ) Z[ 0 eiZwt Z(f) (6'74)

Using Eqs. (6.63), (6.73), Eq. (6.35) becomes

2

Q Q\* 1 ‘
i(t):lTR[g élz(t)+i(7R) ZF) _01 2(t) =

2
QR) 1 Qr

a(f) =i (2 2w 0 (6.75)

2
Qr g\ 1
2 2 ) 2
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2
Setting o := (%) L and B = % , the system of differential equations of Eq. (6.75) becomes

2 2w
}ﬁ
}:

Z1(t) = iazy(t) + iﬁzz(t)} - {z"l(t) = iazy(t) + ifzZy(t
Zp(t) = ifz1(f) — iazy(t) Zy(t) = ifz1(f) — iazp(t
Z1(t) = ia(iaz(t) + iBzy(t)) + iB(ifz1(t) — iaz,(t)
{Z"z(t) = iB(iazq(t) + ifzp(t)) — ia(ifzy () — ivzo ()

~— ~— N S

Z1(t) + B?zy(t) = 0
1O ER0 =0 (676)
Zz(t) +B Zz(t) =0
where B? := a2 + 2. The solutions to the above equations are known:
Z1 (t) = Aqp COS(Bt) + By s1n(Bt) (677)
Z5(t) = Ay, cos(Bt) + By, sin(Bt)
with
z1(0) = Ay z1(0) = B - Byp = iaz1(0) + ifz5(0)
and { | ) ) (6.78)
25(0) = Ay 7(0) = B - By, = ifz(0) — iaz,(0)

A1y, Byp, Ay, By, are determined by applying the initial conditions. Finally, u is calculated from the
Eq. (6.33),
2
Q 1 1 0
2 _ (R 1
€“u(z, t) = l( > ) 72 sin 2wt [0 _1lz(t). (6.79)

To sum up, we present the results for the first- and second-order AM.

« First order:

x(t) = y(t) + € w(y(t), )

A cos(%t) + Byq sin(%t)

y(t) =
Ay cos(%t) + By sin(%t) (6.80)

QR 0 _e—iZ(ut
ew(y, t) = o [eiza}t 0 ]Y(t)

« Second order:
x(t) = z(t) + ew(z(t), t) + €®u(z(t), t)

(t) = Ay cos(Bt) + By sin(Bt)
= Ay cos(Bt) + By, sin(Bt)

(6.81)

m(z(t), t) _ QR l 0 _e—iZa)t

To |ei20t 0 ]Z(t)

Qp\

1
€2u(z(t), t) = Z(T) m sin 2wt lé _()1] Z(t)
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We observe that in Eqs (6.80) and (6.81) the three distinct values of € are reduced to one, R Thus, when
in-resonance (A = 0), this € reflects the relative magnitude of the perturbation, which is descrlbed by the
Rabi (angular) frequency with respect to the frequency . These considerations give us the opportunity
to confront different numerical cases.

6.2.3 Solutions for different initial conditions.

There is another step we have to take before we can arrive at some final equations which allow as to de-
scribe the behavior of Rabi oscillations in the 2LS; that is, to set the initial conditions. We will assume
the probability that the electron is located each energy level, at time zero. This allows as to calculate the
unknown factors obtained for each case of the AM, discussed above, and reach the final equations. The
initial conditions that will be used are

1. C1(0) =1, C,(0) = 0, i.e., initial placement of the electron at the lower level,

2. C1(0) = 0,C5(0) = 1, i.e., initial placement of the electron at the higher level, and

3. C1(0) = —619 C,(0) = Te ,1.e., initial placement of the electron at both levels with probability

IC1(0)P = |C2(0)|2 =z
1. Let the initial conditions be C;(0) =1,C,(0) =0

’ Solution for A # 0,1 order AM ‘

Using Egs. (6.59) for x(0) = [(1)], we have

1=y +Q 1 1)y
1 1 = Y10 ~ v |Y20
Q 0 - — = 2 \A X
X(O):[}ho]Jr_R L AT l}/lol:> N
Yol 2 (-5 0 |[Y0 0= +& 11
= Y20 Yy A Y10
2A
1:y10+Q—Ry20 L +(2A 2 .
A A Y10 Ox Y10

0=y~ Q—Rylo = Yy = Q—Rylo

2A
1 O
Yyio=———=|, |[Yy=—""—3| (6.82)
1+ (ﬁ) 1+ (ﬂ)
Or Or
where )
Qg 2Q)
A=|—| ——— 6.83
( 2 ) w? -2 (683)
Therefore, the solution is,
1
iQR e+1At e—l):t 24 2
x(t) = Ci®)] _ '1 4 T( A ix ) 1+(29E) .
Calt |~ |f2n (e, ) . o
2 iA iZ 2
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1 - e+iAt e—iZt
Ci) =——[1+A -
1() ZA)Z» + ( A Y )]
1+ _R
L[240 oot ] (6.84)
2 a2 LlOg 2 A T
1+ =
(QR)

where |C1(t)|? is the probability to find the electron at lower level and |Cy(t)[? is the probability to find
the electron at higher level.

Solution for A # 0,2 order AM

Using Egs. (6.60) for x(0) = [é], we have

[ 1 1 2 N
Z10 QR 0 N Z10 . QR 1 1 0 1 1 0 Z10
0) = + — A X +1|— +—= =
x(0) [220] 2 { %—% 0 ]} [Zzo] ! 2 ) {i2a)A 01 2wy |0 1 220 |
1 + L +QR21 1+1 =1 1+A +2A
=Z — |—— —=1]Z —_— — | — —\1Z = — | Z —Z
W5 A )2\ 2 ) 20\Aa " x)0 20107 Q% .
1 1 QY1 (1 1 2A A
OZZZO+— E—K Z10 t+ 7 EK—FE ZZO:>Q_RZIO: 1+E Z70
A
(2A )2 1+ 55
Qr 210 = 2 2
1=(1+—)210+ X Z10 A 24
Q (1 + i) 1+ 20 + Qr
2Q) =
2A %
Or Q
220 71210 20 = 5 2
(1 + —) 1+ i + ﬂ
20 20 Or
Therefore, the solution is
2 . )
QR 1 e—zth ezth QR ezAt e—l):t ‘
=902 1+ (7) z( » T ) 2 (T B T) zi0e” ] _
X CZ(t) Qr e—iAt e+iZt 1 Qg 2 1 eiZa)t e—iZ(ut ZzoelAt
T(_A+z) +(T)5(A+z)
2 ) ) . .
Q 1 e—szt eszt ' Q ezAt e—zZt )
it =[1+ (TR) z( AT )]Zwe'”” |3 (K T )]W””
(6.85)

A z A X

o) ~iht  HiZt ‘ O.\> 1 [e20t 2wt ‘
Cz(t):[TR (—e—+e )]zloe‘lAt+[1+(7R) —(e 46 )]zzoelf”




QUANTUM OPTICS 183

Solution for A = 0,1% order AM ‘

Using Egs. (6.80) for x(0) = [é], we have

] 1= Ay - 2Ry
A Qr |0 -1||An I PR
x(0) = i e = =
21| 4w |1 0 ||Axn Qg Qg
- 0=An+-—An = Ay =-—An;
4w 4w
1= Ay +(—)?An 1 —?—R
=[A = Ay = w
Q 11 % ’ 21 % ”
Ay = —4—RA11 1+() 1+(3)
w
Furthermore, through Eq. (6.67), we know that

_jOr
Q Q — - 4w
70 = 2By = iRy, |Pn=Ma = o0

2 2 o ()

. Qr Qg i

¥2(0) = 7321 = 17]/1(0) By = iAy = ————

Qr
1+ (E)z

Therefore, the solution is

B C (t) y @) 0 _e—iZwt y
e B A E (A

Q Q Qp . Q Q
Cq(t) = Aqq cos R+ iAjq sin TR - R 2wt Ajq cos R+ iAqq sin Ry
2 2 4w 2 2
Q Q Qg . Q Q - (6386)
Cz(t) = Ay COS(TRt) + 1A SIH(TRt) + 4_a§el2a)t lAll COS(TRt) + 1Ay Sln(TRt)]
Solution for A = 0, 2" order AM
Using Eqs. (6.81) forx(0) = [(1)], we have
: 1=Ap-—2A
x(0) = A| Qr |0 ~1[]|A - 27 402 R
T |A2] 4w |1 0 |[Ax R Qg
- 0=Ap+-—Ap=An= —Et‘hz
2
Q
1= AlZ + R AlZ _%
4w 4w
o = |Ap = 5 2,A22——Q 5
R R R
AZZ__EAIZ 1+(4w) 1+(4a))

Furthermore, through Eq. (6.78), we know that

{21(0) = B- By = iaz;(0) + Z'522(0)} R
Z(0) = B - By = iBz1(0) — iaz,(0)
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Q
fa e
2 2t >
2o B = 5 _
a2
QR l+(ﬁ)
] 2 og \? .
iBA1p —iaAy, 1+ Qg
By, = _ _
B B 2B
Therefore, the solution is
2
. QR 1 . QR .
x(t) = [Cl(t)] B 1+1 (T) 52 sin(2wt) E(_e 20t [
G| , ) all
2( ) ?—jeIZwt 1-1 (QZR) za% sin(Zwt) 2( )

Ci(5)

Qe .
Cy(t) = —Rei20tz (£) +
4w

with

; QR 1 ; QR —2wt
[1 +1 (7) ﬁ sm(Zwt)} Zl(t) - Ee lea Zz(t)

(e

2

2w?

L sin(Qw t)] Z5(t)

{Zl (t) = Aqp COS(Bt) + By, sm(Bt)} n

Zz(t) = A22 COS(Bt) + Bzz Sil‘l(Bt)

2. Let the initial conditions be C;(0) = 0, C,(0) =1.

Solution for A # 0,1% order AM ‘

Using Egs. (6.59) forx(0) = [ﬂ, we have

1 1
0 —_=
x(0) = []/10] + % [1 A Z] l}/lol =
Y20 SR 0 Y20
2 2A
0=y + Q—Ryzo = Y10 = —Q—Ryzo

2A
1=y - Q—Rylo

0:y10+

1=y +

Qp (1 1
2 \a %)Y

Qp (1 1

2

=

=1= + 24 =
=Y Ox Y20

Zl(t)] -

(6.87)
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24
1 Tox
Y20 = 2|7 | Y10 = 1 (6.88)
1+(2 1+ (2
Qr Qg
where )
Q)" 20
A () 2 -
Therefore, the solution is
_24
1 iQp [etidt  pint Or .
Cut Gt || Iy
X(t): lC;Et;]: QR emiAt L 2 A = 1+(?R) =
T(_T S ) 1 —
&)
i) = 1 T 2A . Qp (At e7ixt ]
ne Ml O 2\ A ¢
1+ (= R
Qr
oty = — o[- | 0
2 L. (A AL
o
Solution for A # 0, 2" order AM
. 0
Using Egs. (6.60) for x(0) = [1 ], we have
o [[ o -1 QN (1 1o 1 1 0 '
Z10 R A5 Z0], S[*4R 210
0) = + — A X +i|— + — =
T T 1 C N P B 1
) L Ok (11 +QR21 11y, 24 LA
=z — ===z — | —[=+=]z ——2Zpg = — |z
W5 A )\ 2) 20\Aa )07 Q% 2071 .
: L Ok (11 +QR21 L WY 2A
=z — ===z = —[=+=]z = —|zp0— —2
7\ AT 2 ) 2wl\AT ) 2070 Q0
2A _2A
N Q
Z10 = QA 220 210 = . o 2
(1+35) (1+35) +(5)
A 2 2 - 1+4
1=(14=—=|zp+ Z20 20 = 22Q 2
ZQ (1+i) 1+i + %
2Q 20 Qg
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Therefore, the solution is

o 2 | [0t g2t Qp [eM it
X(t) _ lc1(t) _ 1+ (T) Z( A . X ) 72( A b)) ) ' [Zloe "
Cy(t) o (_e—zAt N e+12t) 14 (%) 1 (ezzmt E—zth) Zp0e! t
2 x 2 2w A x

2 . . .
QR 1 e—zZa)t eszt ] Q zAt e—zZt ]
Ct:[1+— — + ] "Af+[— — - ] At
1 ( 2 ) 20 ( Az e 2 \(a ~ Tz ) (Go1)
Qp [ et gHist ) Qg 2 1 (et pi2wt " '
—|2=x - —1At R _ 1At
CZ(t)_[z( AT z)]zme +[1+(2)2w(A > )]Zzoe
’ Solution for A = 0,1 order AM ‘
. 0
Using Eqs. (6.80) for x(0) = [1 ], we have
— 0= Ay - 2R ay = Ay = 2R
All QR 0 -1 All - 411 4w 21 11 — W 21
x(0) = + — = =
Ayl 4w (1 0 ||Ay Qr
- 1= AZl + —A11
4w
Q
A = Ay Qg
4w w 1
QZ =|An = QZ’A21: o2
R R
1—A21+(4w) A21 1+(E) 1+ E)
Furthermore, through Eq. (6.67), we know that
5 ; By =iy = ——
R
¥1(0) = _RBll = 1—Ry2( 0) 1+ (E)
Q Q = O
¥2(0) = 321 =i— > £41(0) By = iy = —2
1+
4w
Therefore, the solution is
Ci)] _ ], Qe[ 0 —e 2|y
t) = = +— =
X( ) [CZ(t)] L/z 40 elZa)t 0 Yy
Q Q Q
Cl(t) = A11 COS( ) + ZA21 sin (TR ) - — —lZa)t [AZI COS(TRt) + iAll Sin(TRi’)l
( Oy . (6.92)

Cz(t) = A21 COS( ) + ZA11 sin

2

) e

—Rei2wt] AL cos Q—t‘ + 1A51 sin Q—t
11 2 21 2

Solution for A = 0,24 order AM
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Using Eqs. (6.81) forx(0) = [ﬂ, we have

- 0=Ap——Ay = Ajp=-——A
X(o):lAlzl_‘_%lo _1] A12]:> 12 4o 22 12 4w 22 -
A 1 0]|A
2] 4o o 1=Agp+-—Ap,
@
Qg

AIZZEAZZ o ]

Q)2 :'A12:%,A22:T
— >R R >R
1—A22+(4w)A22 1+(4w) 1+(4w)

Furthermore, through Eq. (6.78), we know that

{21(0) = B- By = iaz;(0) + Z'ﬁZZ(O)} -
Z5(0) = B - Byy = iBz1(0) — iaz(0)

Q
%1+(4—(§)
. . 2 Qr 2 .
ZO(AlZ + lﬁAzz i 1+ E) ZQR
By = =1 =
B B 2B
Q 2
R w (%) RN
2 2 2 2
B i,BA12 - iaAzz . 1+(iz_£) N 1+(g4)_(§) 0
oy = =1 =
B B
Therefore, the solution is
2
[ Qr 1 . Qr —2wt
B Cl(t) B 1+1 (7) m s1n(2a)t) E(_e 12w ) Zl(t)
x(t) = C,(H |~ Ok g\ 1 zy(t) -
ﬁeﬁwt 1-i (TR) 207 sm(Zwt)
g\ 1 0
QR . R —iw
Cl (t) = [1 +1 (7) ﬁ sm(Zwt)} Z1 (t) - Ee 2a tZz(t)
) (6.93)

2
Cy(t) = %eﬁwtzl(t) + [1 -1 (%) 2(11)2 sin(Za)t)] Zy(t)

with
_Or
A = 4; 5
R
1+ (5)
21 = Aqp cos(Bt) + Byy sin(Bt __ 1
1 = Aqp cos(Bt) + By, sin(Bt) g VA = ———
Zy = Ay cos(Bt) + By sin(Bt) 1+ (%)
0
iQp
By = —R
2= 5
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3. Let the initial conditions be C{(0) = %elg, C,(0) = %e i with probability |C1(0)]> = |C,(0)]> =

Solution for A # 0,1% order AM ‘

1

Using Egs. (6.59) forx(0) = [‘{_ ¢:|, we have
—e'
V2

X(O):[y10]+%[10 %_%Hylol:’, \/5
X

Y20 2 1 0 Y20 1 . Or (1 1
A @e@ =y + — E_K)ylo
Loy A, 124 ,_24 24\
V2 007 \/_QR QRy10+ Qx| @
1 . 2A 1 2A
ﬁe@ = —Q—Rylo + Y20 $ei¢ = ——ym + Y20
2A
L2445 1 4y _ +(2A) _ 2el? o ol
= —=¢€ Y20 Y20 Y20 =
Q Q
ol e
R
1. 2A Lo 24
—e0 =y g+ — =Y+ —]/20
N Y10 QRyzo \/5 )
=
Lei‘?b:—%ylowzo 1 ( ZA) o _ (ZA) +( ZA)
\2 Qg 2\ Og On Y10 Ox Y20
Lo 124 +(2A)2 . -5’
Y10 Y10 Y10 =
Q Q
\/_ \/_ R \5(1 4 (ZA) )
where
2
Q)" 20
A=l—| ———— .
(2) - (6.94)
Therefore, the solution is
ei@_é_Aeiqb ]
Qg o il oitt ﬁ
0 = [0 o T( n iZ) */5(“(@)) -
X - CZ(t) - m_R(_iN+e+th) 1 %eﬁﬂm
2 iA ir —k
Afr{5) )
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1 (., 2A .\ Qg (e e\ (24 . .
G = 2 (ele‘g—el‘P)*?R(%‘ez )(Q—ele”@)]
\/5(1+(ﬁ) ) R R
Q
. . . 6.95
_ 1 Qg (e e 24 L\ (24 s (695)
) = a2 (T ) el ) el T
\/5(1+(%) ) R R
Or
Solution for A # 0,2 order AM
1,0
Using Egs. (6.60) for x(0) = |:\{§ i¢>:|’ we have
$€
1 1 2
ZlO QR 0 N ZlO . QR 1 1 0 1 1 0 Z].O
0) = + — A X% +i|l— | s =— + — =
X0 Lzo] 2 {[%—% 0 ]H@o] 1(2 {iZa)A 0 1" 2wz |0 1|f|z20
2
1 . Qr (1 1 Q 1 (1 1
R e L ) Bl G
@
=
Lo, L Qr(1_1)  (0g)"1(1 1
v 2T\ TA) 0 (2 ) 2w AT E)
Lo_(1,A), .24
= = 50 710 T 57220
2 20 Qx
=
Lg_ 24 (. A
=€ = T =57%10 50 | 720
V2 Qx 20
124 2A( A\ (24)
———e" = — — |z — z
V2Qr  Qr\ 0 20)70 T Q) )
=
2
B O P i z10 + 1+ 4 Zp0
\/E 2Q) Qg 2Q) 2Q)
124 , 1 A\ o 1(24Y AN
EQ—Re +$ 1+Ee :[Q_R +1+E ]ZZOZ>
24 g
~ Q—ReZ +(1+20)e’¢
20 — 2 2
2A A
() « (5 |
16“9— 1+ A z +2Az
B~ - ~ | 210 ~ ~20
V2 20 Qx
=
1, 24 A
ﬁe :—Q—R210+ 1+E 220
L 1+A ei9—1+Azz +1+A 2Az
U 20) U T 2q) 7 20) Qx|
1 [ 24 24\ A\ 24 -
— = ]e? = | =— 1+ —||-==
2( QR)e (QR) ZlO+( +2Q)( QR)ZZO
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L, Al 124, [2A2+1+A2] .
—_— —_— _— —— —_— —_— Z
V2120 NI Qg 20) I
b g)er 2

\/_[ =t 1+—)2]

Therefore, the solution is

(Q ) 1 ( —2wt 12wt) Or (ez'At eiZt) "
%) = S \E T 2106
X(t) [ (t) o il oHiZt 1 Qg 2 1 {20t 2wt [ZzoeiAt ] =
) (3 = (F5)
2 . . .
QR 1 e—szt eszt QR zAt e—zZt ]
Gl = [H(T) Z( A E ]Zloe MM[ 2 \a "z ]ZZOeZAt (656
Qp [ oM gHiTt " Qg 2 1 (et 2wt ” '
GO == -——F+ ‘”+[1+—— + ] 1At
2(t) [2( A z)]‘zloe (Z)Zw(A z)zzoe
’ Solution for A = 0,1 order AM ‘
1 e
—e
Using Egs. (6.80) for x(0) = [\f i¢:|, we have
\/Ee
All QR 0 1 A11
0 =
o-[a]- 20 oA
1 . QR 1 0 _ QR
ﬁele = An - EAH %el = A - @An "
= 2 =
iei(p = A21 + %All L&ei‘p = &A + % A
V2 4w V2 4w 40 4w 1
2 i0 . OR g
1 1 Qg . Q e’ +_—e
\/_819 + —4—Rel‘7’ (1 (—) All = All = 4w 5
W
2 V2 V2 (1 + 2
4w
1 Qg 1 ( Qg . Q Qg \’
_616 = All - _A21 — ——R 10 — ——R A11 —R A21
\2 4w V2 \ 4w 4w 4w (+)
= =
Lo = py + 284 L o Qg
\/Ee — 4121 4 11 ﬁe = A21 + 4—A11
2 R ,i0 i
1 Q 1 . e’ +e
e oo
w
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Furthermore, through Eq. (6.67), we know that

OR i | pip
By =iAy =i L 5
Q Q Or
171(0) = ==Buy = i=y,(0) ﬁ(l +(5) )
=

Q QR oi0 4 OR g
¥2(0) = le =i—=1100) By = iAy =i W
Crey

Therefore, the solution is
TCI _pi2wt "
¢ >R
0= [@( 0= 2| * 3w g |~
Qg Q Qg Qg
Ci(t) = Ann cos(Tt) + 1Ay sin (TRt) 4a) g2t [A21 cos(Tt) + 1A sm(Tt)l

Q _ (Q
+ — v 12mt[ 1cos(7Rt) + 1Ay sm(TRt)l

. (697)

o Qg
Cz(t) = A21 cos Tt + ZAH sin 5 —t

Solution for A = 0,24 order AM

L 6
Using Eqs. (6.81) forx(0) = \{E :

1 i

V2

A QR 0 -111A
ON b R

:| , we have

1 . Q 1 . Qg
b — _2°R —e? = A, - —2A
\/Ee’ = A12 i A22 \/Ee 12 4w 22 )
= =
Lei‘p = Azz + %Alz L%ei(b — %A % 2A
V2 4w \2 4w 40 2 " 4w 12
2 io , Or i
1 1 QR QR e + _a)e
\/_ 19 \/_40) 1¢:(1+(5) AlZz Alz_ 40 5
\/5(1 + (—R) )
4w
1 Q 2
—616 = A12 — —RA22 L _% i0 _ _% A12 % A22
V2 4w NART 4w 4w (+)
= =
Lo = Agp + %Alz Lo = ppy 4 PB4
V2 4 NG 2+ A
2 R ,i0 i
1 Q 1 . e’ +e
e o2 e e
0
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Furthermore, through Eq. (6.78), we know that

{21(0) = B - Byy = iaz;(0) + Z'/322(0)} -
Z5(0) = B - Byy = iBz1(0) — iaz(0)

Therefore, the solution is
2

L[ Q 1 . Q _j
Cl 0 1+1 (TR) 202 Sll‘l(za)t) ﬁ(—e szt) 1 6)
0= e O NERCIERNRPIN | F1G) I
Ee 1-1 (T) 202 Sll‘l(zwt)
Qp\* 1 Q
C1 (t) = [1 + Z(TR) m s1n(2wt)1 Z1 (t) - 4—£€_lzwt22(t)
2 4
Qg . (ORY 1
Cz(t) = 4_2612601‘21“) + |:1 —1 (TR) 2—0)2 sm(2a)t)] Zz(t)
with
0 Or
Lges EEI(P
12 — o
V2 (1 + (4—R) )
Z; e? + ¢
z1 = Ay COS(Bt) + By, sm(Bt) A22 = 2
] and V2 (1 + Qr
Zp = Ayy cos(Bt) + By, sin(Bt) 1
QRel¢
By =i
12 2\/—B
_QREZQ
By =i——
22 2\/§B

g, < 12 + Az :i(%) 3@+ re) + QRZ( e+ )
B \2B (1 + (?—5) )
QR21 RRiOQ QRzlﬂR R\ ich Qr O\ o .
s 7% 2w +((7) 2wt T2 ) :i2(1+ w) e _ e
vas 1+(2]) | Vil (]2
2
B, = PAr "0y _ i%(ew T (%) o) -
B \/EB (1 + (f—j) )
o, () 1 O i o (R OR 1 :p Or i0 .
_i(7+(7) 2w TG %) wr :Z,T(1+ w) e _ Qe
V2B (1+(f—£)2) \/53(1/%%)7 2v2B

(6.98)
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6.3 Results with NRWA, RWA, first and second order AM.

In the following, we compare results for NRWA, RWA, first- and second-order AM, and focus the limits
of the approximate methods (RWA, AM). In all figures, the horizontal axes represent the dimensionless

N
quantlty , i.e, time t divided by Ty, o, and the vertical axes represent the probability at the lower

Qr Q
level, P;. For non-resonance (A # 0), we have defined three types of small quantities €, i.e., TR , ?R and

Q Q
jR. Unavoidably, when A becomes smaller, at some point, TR gets so large that non-resonant AM is not

Q
successful anymore and resonance must be treated via a different path, using just one type of ¢, i.e., :R'

O Q Qf
In general, the accuracy of second-order AM has a range between the outcomes, TR . H—)R = A—alj

QR QR_

and

==, due to the fact that the above terms appear in the final equations [see Egs. (6.60)] and
they are the last terms that we do not i ignore. First-order AM is frequently far from the numerical solution.
We include it in the figures below for comparison, and to demonstrate the real reason why we should use
second-order AM.

The values of € were chosen with the purpose of introducing cases where AM approaches success.
Hence, the values are down to the order of magnitude 0.01. For smaller values, AM is successful. Fur-
thermore, very small values of € mean very small perturbation, i.e., these are trivial cases.

6.3.1 Results for electron initial placement at the lower level.

Let the initial conditions be C;(0) = 1, C5(0) = 0, i.e., we initially (at # = 0) place the electron at the
lower level.

6.3.1.1 Non-resonance.

Q Q
In Fig. 6.1 we modify €; = ?R, keeping €, = TR = —0.5 (¢; = 0.5) on the left (right) column. For
€1 > 0, as €, gets smaller, RWA becomes identical to NRWA. Second-order AM is very close to NRWA
in all cases. For €1 < 0, as €, gets smaller, second-order AM and RWA become identical to NRWA. The

different behavior of AM for negative and positive €1 stems from €3 = ?R being different: fore; > 0, €3 is

smaller than for € < 0.In Fig. 6.2 we modify €, = % and keep e, = % = 0.01. On left (right) column

€1 < 0 (€1 > 0). RWA gets identical to NRWA, but not with second order AM. As €7 gets smaller, AM
gradually approaches NRWA. Oscillations diminish as €; becomes smaller. Oscillations at the same row
butin different columns are alittle different due to the different value of €3. In Figs. 6.1, 6.2, the two panels

of the same line seem similar, because €3 = % are almost identical, except for the first line in Fig. 6.1.
1
For example, in Fig. 6.1, the two panels of the last line have €; = —0.5,¢; = 0.01, €3 = o ande; = 0.5,
1
€, =0.01,e3 = Bl respectively, while the two panels of the first line have €1 = —0.5,6, = 0.4,¢3 = 4

4
ande; = 0.5,6, =04,e3 = > respectively. Hence, second-order AM is identical to NRWA when €7, €;
and €3 are sufficiently small.

6.3.1.2 Resonance.

In Fig. 6.3 we illustrate Pq vs. %, modifying € = %. As € gets smaller, AM is identical to NRWA.
Additionally, since we are in resonance, oscillations are particularly strong, of the order of one.
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0.6 0.6
—NRWA 224 order AM 15 order AM - -RWA
0.4 0.4 ‘ : )
o 05 1 15 2 25 3 o 05 1 15 2 25 3
Qpt Qpt
2m 2m
; Qgt Or Or .
Figure 6.1: A # 0. Py vs. o fore; = S = —0.5 (left column) and €; = S = 0.5 (right column),

varying €, = %. (@), (b) e, = 0.4. (c), (d) e, = 0.1. (e), (f) e, = 0.04. (g), (h) €, = 0.01. Lines
correspond to NRWA (continuous — ), RWA (dashed ——), second-order AM (dotted ---), first-order
AM (dash-dotted -—).

6.3.2 Results for initial electron placement at both levels with equal probability, but with phase
difference.
1 1
Let the initial conditions be C;(0) = ﬁelg, C,(0) = —=€'?, i.e., we initially (at t = 0) place half electron

V2
at each level, but with a phase difference 0 — ¢.

6.3.2.1 Non-resonance.

In Fig. 6.4 we vary €, = %, keeping €1 = % = —0.5 (¢; = 0.5) on the left (right) column, with
0-0¢ = g Although the initial probabilities at the two levels are equal, phase difference of the initial
wave functions leads to strong oscillations, a clear coherent phenomenon. Decreasing €;, second-order
AM approaches NRWA.

In Fig. 6.5 we modify €; = %, keeping €, = % = 0.01 with© — ¢ = g We observe strong
oscillations, depending of course on the magnitude of €7, although the initial probabilities are equal, a
pure coherent phenomenon, due to the initial phase difference of the wave functions. Decreasing |€1],
second order AM approaches NRWA. The discussion on the effect of the relative magnitude of €1, €, €3,
applies here, too.

In Fig. 6.6 we keep €1 = 0.5 and €; = 0.01, varying the initial phase difference of the wave functions,
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Figure 6.2: AiOPlvs — for€2— S = 0.01, varymgel:— (a) 1 = -0.9.(b) €1 = 0.9. (¢)

€1 =-0.6.(d)e; = 0.6. (e) €1 =—-02.(f) e; =0.2.(g) €1 = 0. 1 (h) €; = 0.1. Lines correspond to
NRWA (continuous — ), RWA (dashed ——), second order AM (dotted - ), first order AM (dash-dotted

-).

(©
0.8 0.8
Py
0.6 0.6
0.4 0.4
NRWA
0.2 0.2 e grder AM
==-15¢ order AM
0 L ] 0 . - -RWA‘ ]
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5 3
Qrt Qpt
2m 2m

Figure 6.3: A = 0. Py vs. 5, varying € = —2. (a) € = 0.9. (b) € = 0.5. (¢) € = 0.1. (d) € = 0.05. Lines
correspond to NRWA (continuous — ), RWA (dashed ——), second order AM (dotted - -+ ), first order AM
(dash-dotted -—).

0 — ¢. We observe another aspect of coherence, a vertical and horizontal displacement of the oscillations.
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\// ) vﬁ' v (VA VA A
—NRWA 284 order AM 15t order AM-- RWA
0 0 '
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
Qpt Qpt
27 27

Figure 6.4: A # 0. Py vs. % fore; = % = —0.5 (left column) and €; = % = 0.5 (right column),

varying €, = % with 0 — ¢ = g (@), (b) e; = 0.4.(c), (d) eo = 0.1. (e), (f) e, = 0.04. (g), (h)
€, = 0.01. Lines correspond to NRWA (continuous — ), RWA (dashed ——), second order AM (dotted
--+), first order AM (dash-dotted -—).
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Figure 6.5: A # 0. Py vs. 5 for €, = = = 0,01, varying €] = £ with 0 — ¢ = = (a) & = ~0.9. (b)

€1 = 0.9. (C) €1 = -0.6. (d) €1 = 0.6. (e) €1 = -0.2. (f) €1 = 0.2. (g) €1 = -0.1. (h) €1 = 0.1. Lines

correspond to NRWA (continuous — ), RWA (dashed ——), second order AM (dotted - --), first order AM

(dash-dotted -—).
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Figure 6.6: A # 0. Py vs. - fore; = N 0.5ande; = < = 0.01, varying 6 — ¢. (a) 6 — ¢ = 0.

(b)0-¢ = g(c) 0-¢= 2?71((1) O-¢p=m(e)0—-¢ = 4?11' Ho-o¢= 5?n.Linescorrespondto
NRWA (continuous — ), RWA (dashed ——), second order AM (dotted ---), first order AM (dash-dotted

-).
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6.3.2.2 Resonance.

In Fig. 6.7 we modify € = % , for initial phase difference, 0 — ¢ = g As € gets smaller, AM becomes
identical to NRWA.

Figure 6.7: A = 0. Py vs. %, varying € = % with0 — ¢ = g () e=0.9.(b)e=0.5.(c)e =0.1.(d)
€ = 0.05. Lines correspond to NRWA (continuous — ), RWA (dashed ——), second order AM (dotted
-++), first order AM (dash-dotted -—).

In Fig. 6.8 we keep € = (.1, varying the initial phase difference, © — ¢». We observe that the amplitude
of the oscillations can be readily manipulated this way.

6.3.3 Non-resonant AM vs. resonant AM.

The reader might wonder why we have introduced two different versions of the AM, one for non-resonance

and another for resonance. We have already explained the reason above: When A becomes very small, %
gets very large, so that non-resonant AM is not successful anymore. Therefore, in resonance, the AM has
to be manipulated in a different way.

% and keep €, = % = 0.01. We observe that
for €; < 1, the second order AM for non-resonance is closer to the numerical solution (NRWA) than
the second-order AM for resonance. However, for €; > 1, A is so small that the second-order AM for

resonance comes closer to NRWA than the second-order AM for non-resonance.

Here we give a few examples. In Fig. 6.9, we vary €] =
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Figure 6.8: A = 0. Py vs. (;—it,e = % = 0.1, varyingf—-¢.(a) 6-¢ = 0.(b) 0-¢ = %(c) O-¢ = g

DO-¢=2(0-¢p=T00-¢=2.(90-¢p=n()0-¢=".()0-¢="".()
0-¢ = 3?71 (k)O-¢ = 5?71 Ho-0¢ = 11Tn.Lines refer to NRWA (continuous — ), RWA (dashed

——), second order AM (dotted ---), first order AM (dash-dotted -—).
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R _

Figure 6.9: A # 0. Py vs. 2Rt, keeping €, = 2 _ 0.01 and varying €] = %. (a)e; =0.5.(b)e; = 1.

r

7T

(c) € = 5.(d) €; = 10. Lines correspond to NRWA (continuous — ), RWA (dashed ——), non-resonance
second order AM (dashed ——), non-resonance first order AM (dash-dotted -—), resonance second order
AM (dashed ——), resonance first order AM (dash-dotted -—).
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CHAPTER 7

ALLOWED AND FORBIDDEN OPTICAL TRANSITIONS

In this Chapter:
We discuss the so-called allowed and forbidden optical transitions, within the dipole approximation. We

refer to historical atomic models (Rutherford, Bohr) and finally to the atomic orbitals model. We focus
on hydrogen atom as a didactic example. We discuss the shape and symmetry of atomic orbitals and we
calculate the dipole moment matrix elements. We explain the so-called allowed and forbidden transitions

within the dipole approximation. We include the relevant selection rules.
Prerequisite knowledge: Basic knowledge of Quantum Physics.

7.1 Allowed and forbidden optical transitions within the dipole approximation.

We remind the reader of the steps we have taken so far within the dipole approximation, which are men-
tioned in Section 5.3, considering the hydrogen atom as an example. Ris the position of the nucleus (N)
and 7y is the position of the electron (E) with respect to the origin of the coordinate system O, while 7is
the position of E with respect to N, i.e., 7 = NE.

S

& =&, exp [i(E~7H - wt + gb)]

= (homogeneous, time-dependent &£ ) =

& = _E) exp(—ia)t)zéz(t)
Z=-vVV L, eV =-£.73
N dV = —éﬂ d? potential
av =VV .dr

potential energy

=eZ T=-P-Z| (#)

of electron

Constantinos Simserides (2023). «Quantum Optics>.
Kallipos, Open Academic Editions. https://dx.doi.org/10.57713/kallipos-186
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i.e,, Eq. 5.35. The matrix element of the potential energy of the perturbation,

Usion(t) = [ dr a0}, () U G, DO,

can be written, given Eq. (%), as

U i) = -5 - f PBr &, A PO = ~& - P,

Prrk

5
where Zy/. is the matrix element of the dipole moment or as

ng/k(t) = €g?' fdg”’q’]i'@?q)k(?) = 65'7}«]{,

Ttk

where 7}/ is the matrix element of the position of the negative charge with respect to the positive one, e.g.
-

of the electron’s position with respect to the nucleus. Of course, s, = —e Tk Finally, we can see that
everything is reduced to the symmetry of the eigenfunctions of the unperturbed problem, since which
of these are even or odd determines whether the matrix element 7 becomes zero or not, given that the
function 7 is evidently odd.

If 7,/ becomes zero, then Ug/i(f) becomes zero, as well. If Uz (t) = 0O, then the perturbation
does not couple states k" and k; hence, if the electron was at k; it will not transition to k” and vice versa.
Therefore, if 7y, = 0 & Ugpr(t) = 0, we say that the transitionk” «— kis “forbidden”. We note that the
above hold within the dipole approximation, within which the wavelength is very much smaller than the
dimensions of the system. In other cases these rules about “allowed” and “forbidden” transitions do not
hold. Finally, the larger the magnitude of 74, hence of Ug/k(t) is, the stronger the “allowed” transitions
are.

7.2 Atomic models.

The discovery of the electron in 1897 by].]. Thomson [ 1 ], led scientists to realize that atoms are composed
of charged particles. In 1902, G. N. Lewis developed the model of the cubical atom (it was published
later [2]), according to which electrons are placed on the corners of cubes. In 1904, again J. J. Thomson for-
mulated the so-called plum pudding model [ 3], within which atoms are made up of a positively charged
volume inside which there are tiny, negatively charged, electrons. In the same year, H. Nagaoka [4] pro-
posed an alternative model, the Saturnian model, according to which atoms are composed of a large,
positively charged, center, surrounded by a number of electrons revolving around it, just like the rings of
Saturn. 1911 was marked by the discovery of the atomic nucleus by E. Rutherford [ 5]. This discovery lead
again to the formulation of a planetary model, within which atoms are revolving around a small, dense,
positively charged nucleus. Many phenomena related to electrons in atoms and solids could not be ex-
plained though the classical theory. These insurmountable difficulties led to the development of the old
quantum theory (1900-1925) and subsequently of quantum mechanics (> 1925).

7.2.1 Rutherford's model.

Experiments by Rutherford [ 5] led to the conclusion that electrons revolve around a tiny, dense, positively
charged, nucleus. Rutherford’s atomic model is an idiotypic, classical, “solar” or “planetary” system.
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Rutherford’s model (1911) is based on classical physics. The electron is in a circular orbit around the
nucleus, and the the centripetal force is the electrostatic attraction between the nucleus and the electron.

That is,

2 2
F electric = F centripetal = e = ze ) (71)
r 4rtegr
Ze2 v=2mvr
o=y [——— = (7.2)
m ATmeyr

where 11, €, v, v is the electron mass, charge, (linear) velocity, and frequency, respectively, 7 is the electron-
nucleus distance, and Z is the atomic number of the nucleus. Let us note that today we know that the
atomic center of mass essentially coincides with the center of the nucleus, sinnce the later is much smaller
(of the order of fm) than the whole atom (of the order of A), i.e., it is 10° times smaller, while the masses
of the nuclear particles are m, = 1836m, and m,, = 1839m.. p, n, e stand for proton, neutron, electron,

respectively. The reduced mass in the hydrogen atom is u = ,:1&.::: = M. Therefore, the kinetic energy
ettty
of the electron is
Ex = Sm,o? ze (7.3)
= —m,0" = . .
Kt 8meyr
Hence, given that its potential energy is
Ze?
Ep =— , (7.4)
4rtegr
its total energy is given by the formula
Ze?  Zé Ze?
ET = EK + EP = - = - . (75)
8megr  4megr 8megr

Contradictions of the Rutherford’s model

1. According to the Rutherford’s model, since the electron is revolving around the nucleus, it will
have a centripetal acceleration. However, in classical electrodynamics, accelerating particles emit
electromagnetic waves. The power, P, emitted by an accelerating, non-relativistic (v < c), point
charge is given by the Larmor equation as

2.2
q-a
P=—— 7.6
673’ (7.6)
where g is the particle’s charge (in our case, § = —¢) and a the magnitude of its acceleration (in our

case, centripetal). [We denote decrease by | and increase by T.] Therefore, since the electron loses
energy as it accelerates, Eq. 7.5 yields

Erl = |Ef/T = rl = 97 xa vT. (7.7)

Thus, the electron loses energy by following a spiral orbit of increasingly smaller radius 7 and larger
velocity v and frequency v, until it eventually collapses in the nucleus. Therefore, Rutherford’s
model is a fatally flawed model.

2. According to Eq. 7.5, the electron-nucleus distance and the velocity (hence, the frequency) can
change in a continuous manner. This is in contradiction with experimental data, which, already by
the end of the 19, suggested that atoms emit light in discrete, not in continuous, frequencies. See
Fig. 7.2 and Table 7.1.
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n=3
n=2
n=1 '4\:’\/\/""

Figure 7.1: The Bohr’s model (1913) [6] is an evolved version of the Rutherford’s model (1911) [5]
and belongs to the old quantum theory. The electron revolves only in specific, allowed, circular orbits
characterized by a quantum number n = 1,2, 3, .... When it moves from an initial state to another final

state, it emits or absorbs electromagnetic radiation hv.

7.2.2 Bohr's model.

The Bohr’s model (1913) [6] is an evolved version of the Rutherford’s model (1911) [5] and belongs to
the old quantum theory. See Fig. 7.1. It is based on the following assumptions:

1. Electrons move in circular orbits around the nucleus. The centripetal force comes from the electro-

static attraction between the nucleus and the electron and obeys to the laws of classical mechanics,
expressed by Egs. (7.1), (7.2), (7.3), (7.4), (7.5) (mentioned previously in the context of Ruther-
ford's mOdel) for Felectricl Fcentripetall EKI EP/ ET/ o,V.

. However, instead of the infinite orbits that would be possible within classical mechanics, within the

i
Bohr’s model the electron can only move in circular orbits in which the magnitude (|L| := L) of
-
the angular momentum, L = 7X}, is a natural multiple of the constant known today as “the Planck
constant”, i.e.,
> S o
L=F%xp=>L=rp=myor=nh,Vn=1,23,...

In other words, Bohr introduced the hypothesis that the angular momentum is quantized, i.e., it
comes in discrete values. The positive integer number 71 is today called the principal quantum num-

ber.

. In these allowed stationary orbits, the electron does not radiate, i.e., the Larmor equation 7.6 does

not hold. In these orbits, which lie in specific distances from the nucleus, the electrons have a spe-
cific, constant energy.

. EM radiation is emitted or absorbed only when the electron moves to another allowed orbit and

the frequency of the emitted or absorbed radiation follows the relationship hv = |El~ —Ef | , where
Ejf) is the energy corresponding to the initial (final) orbit.

Since the angular momentum is quantized, it follows that

mur = nfi, (7.8)

therefore Eq. (7.2) yields

_ 4716077[2
~ Zm,e?

r=r, n. (7.9)
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2
The quantity ag = 42622 ~ 0.529-107 19 mis called the Bohr radius. Thus, in the hydrogen atom (Z = 1),

N =dag, 1y = 4&0, r3 = 9(10, and so forth.
Given, Eq. 7.9, Eq. 7.5 for the total energy becomes

E_f - zZe  ZPmet 1 (7.10)
T Breyr, 32m2e3h2 n? '
4
The quantity Rp = % ~ 13.6 eV is called the Rydberg energy. Thus, in the hydrogen atom (Z = 1),

E{ ~-13.6eV,E;, ~ 3.4 €V, E5 ~ —1.5 €V, and so forth. Compactly, in the hydrogen atom,

E,=—— ~———¢V. (7.11)
From the above, it follows that the photon energy is

1 1

n; Tlf

hV:|Ef—Ei|:>h%:

Rg Rg

Tlf n;

1 Rp

- 12
3= e ’ (7.12)

R
where R := £ ~ 1.097 10’m™! is the Rydberg constant. In other words, the experimental Rydberg
formula occurs. Success! To sum up, Bohr’s atomic model:

« Managed to explain the experimental Rydberg formula for the hydrogen atom

% _ R[lz _ lz] (7.13)

ny o
where 11,11y € INY, with 11y < n;. This formula predicts the wavelengths at which the hydrogen
atom emits EM radiation. The emission spectral lines of atomic hydrogen are presented in Fig-
ure 7.2 and are grouped in the so-called Lyman, Balmer, Paschen, etc, series, depending on the
values of 11 and 71, which are presented in Table 7.1.

A (nm)
91122 365 656 820 1875

n,=4 Lni=3 ’ n.=6 n.=5 Lni=4

\
/ \ Balmer series \ Paschen series /

Lyman series
ng=1

n;,=2 ng=3

Figure 7.2: Emission spectral lines of the hydrogen atom.

« Can also be applied to hydrogen-like atoms, such as He™, Li?*, Be>*, etc, through the form
L RZ 1 1 (7.14)
A n% n? ) '

« Can also be applied to describe distant electrons in multi-electron atoms, the effective nuclear
charge of which can be considered = ¢ > (), since all nuclear charges apart from one are screened
by the rest electrons.
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Table 7.1: Hydrogen spectral series.

n; Name Converge towards

n
1f 00 Lyman series 91.13 nm (Uv)
2 00 Balmer series 364.51 nm (~Visible)
3 4—oco  Paschenseries 820.14 nm (IR)
4 00 Brackettseries = 1458.03 nm (FIR)
5 00 Pfund series 2278.17 nm (FIR)
6 oo Humphreys series  3280.56 nm (FIR)

energy e ) = 4], Zeeman effect
states L i
2p s m=0

.

i separation of energy states
st m = -1 under a magnetic field

transitions

1s

I | I I | absorption
| spectra

without magnetic field ~ with magnetic field

Figure 7.3: Zeeman effect: separation of the energy states of a subshell due to the presence of an external

magnetic field.

On the other hand, Bohr’s model also displays serious disadvantages [ 7].

« It can only be applied to H, single-electron ions such as He*, Li*t2, Be*3, ... and outer electrons. It

is not sufficient to even explain the He atom.

« It cannot explain why some spectral lines are more intense than others, i.e., why some transitions

between energy levels are more probable to occur that others.

« It cannot explain why many spectral lines are multiple, i.e. they are composed of distinct lines with

a very small wavelength difference. In other words, it cannot describe the fine structure of atomic

spectra.

« It cannot explain why, when a magnetic field is applied, the multiple lines are separated (Zeeman

effect). See Figure 7.3.

« Itdoesnot provide an understanding of how the atoms interact to form molecules, solids, and other
clusters. In other words, it cannot be applied in Chemistry and Condensed Matter Physics.

Even though there where several efforts to improve the Bohr’s modes, e.g., by Wilson [ 8] and Sommer-

feld [9], the above contradictions could only be solved in the context of modern quantum mechanics,

which was developed after 1925. Below, we discuss the atomic orbitals model, which belongs to modern

quantum mechanics.
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7.3 Schrédinger equation in spherical coordinates

The Schrodinger equation in spherical coordinates is

29Y 1 oV 1Py 2m
E- 1
r2 ar (r ar)+ 2in0 90 (Smeae) t Zan20992 7 (E-UM)¢=0,  (715)
where 3 ; »
a4 1 Y 1 v,
o=V 1
7’2 or (1’ ar + 2 sin O 89 sin 989 " 12 sin 20 8(}52 Y(r, 6, 9), (7.16)
is the Laplacian in spherical coordinates. In the hydrogen atom
2
ue) = - (7.17)
dmeyr

Let us try to solve the problem by separating variables, i.e., by trying solutions of the form

P(r, 0, p) = R(r) ©(0) O(¢). (7.18)

Thus,
@pd (,dR\ RO d ®\ RO &O 2
( ) (51 ) m(E U@)ROD = 0. (7.19)

Za\" &) Zinede \""Vae) T Zsinzoagr
If ROD = (), then the previous equation is trivially satisfied, whereas if RO® # 0, then we can divide by

RO®, so that
11d(,dR\ 1 1 d ©) 1 _1 & 2m
——— 00— — E-U 0. 7.20
Rerr( ) ©2sin0do (Sm d@) ®125in20 dg2 | 2 (E-um)=0. (720)

We multiply by 72 sin 20 to obtain

sin?0 d dR N sin@ d
R dr\ dr © db
The third addend of the above equation is a function of ¢ only. We move it to the right-hand size and we

d®\ 1 dd 2mr?sin?6
(sm 0@) o i3 + P (E - U(?)) =0. (7.21)

use Eq. (7.17), so that

sin?0 d dR N sinf d 6d@ 2mr? sin 20 E4 e 1 4?0 (722)
R a\"a) @™ 30 12 dmeyr) D dP? '

The left-hand side, A, is a function of ¥ and 0, while the right-hand side, A, is a function of ¢. For the left
hand side to be equal to the right-hand side Y 7, 6, ¢, it must hold that A = A = constant. Let us call this

constant, without justification at this point, m% yie, A=A=my

Thus, it occurs that
1 P
2 (7.23)

T a2

D d¢p?

which is an equation with respect to ¢, as well as
1d(,dR 2myr? e? m2 1 d de
= = sin 0— (7.24)
R dr dr #2 4Ttegr sin20  ©OsinOdo do
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the left-hand side of which, A’, depends only on r and the right-hand side, A", only on 0. For the left-
hand side to be equal to the right-hand side ¥ 7, 0, it must hold that A" = A" = constant. Let us call this
constant, without justification at this point £(£ +1),i.e, A" = A’ := {({ +1). Hence, moving on, we obtain
the equation

m; 1 d de
sin 59  @sin0do (sin 6@) =U+1) (7.25)
which is a function of @ only, and the equation
1d{,dR\ 2mr? 2
Re @ E = 1 2
Rdr(r dr)+ 2 ( +47‘(€0r) (e+1) (7.26)

which is a function of 7 only. Eq. (7.26) is the only one containing the potential energy. It is going to give
us E, that is the energy eigenvalues or the “allowed energies”.
Let us solve Eq. (7.23) first, by trying solutions of the form

D(p) = A M9, (7.27)

so that .
@'(p) = Aimy e"?, (7.28)

and ‘
D" (P) = —Am? ™. (7.29)

Thus, it can easily be shown that Eq. (7.23) is satisfied. Moreover, since it must hold that
D(p +21) = D(p) = M@+ = eiMd = M2T =1 = 2 e ZT = my,=me Z. (7.30)

Concisely,

D, (p)=A émet, mye Z. (7.31)

myg is called the magnetic quantum number, for reasons that will not be explained yet. Additionally, nor-
malizing over the interval [0, 277], we obtain

27 ) 2 5 1
[ laemef =15 147 = (7.32)
0 27

. . 1 .
hence it would be convenient to choose A = —, i.e,,
V271

1 .
q)mg((z)) = \/T_T( elm[(p/ me € Z (7-33)

Regarding Eq. (7.25), we mention (without proof) that it has solutions when
my=0,+1,%2, ..., +L. (7.34)

{ is called the secondary quantum number or angular momentum quantum number. Therefore, we can
denote the solutions to Eq. (7.25) as @, (0).
Regarding Eq. (7.26), we mention (without proof) that it has solutions when E > 0 or when

Rp me* 1
B2 = e (7:35)
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Figure 7.4: Comparison of energies and positions, at the ground state, between the Bohr’s model and the
atomic orbitals model.

and, at the same time, £ = 0,1,2, ..., n —1. States with E = E,, are called bound states. It is worth-noting
that these energies are the same with the ones of the simplistic Bohr’s model. 7 is called the principal
quantum number. Thus, we can denote the solutions to Eq. (7.26) as R,,¢(7). We also note that we can
bring Eq. (7.26) to the form

1d(,dR) 2m( L A R0 (7:36)
—_ | r— _— — = . .
r2dr\ dr 12 dmeyr 2mr?
2
If we remember that the energy of a particle moving inside a central potential (such as U(7) = — 4:6 T)
0
contains the rotational term )
L
E, = 3 (7.37)

it follows that the magnitude of the angular momentum L is given by

L=#e(t+1), €=0,1,2,..,n-1. (7.38)

In other words, the angular momentum is quantized. This is why the number ¢ is called this way.
To wrap this up, the solutions to the Schrédinger equation for the hydrogen atom have the general form

\I]nfmg = WRnf(r)(afmf(Q)cDmg(ﬁb)/ (7.39)

or

\ynfmg = /VRnf(r)Yfmg(el ®), (7.40)

where the product @y, ,,,, is represented by the spherical harmonics, Y,

7.3.1 Atomic orbitals model.

According to the atomic orbitals model, the state of the electrons inside an atom is determined by the
solutions to the Schrédinger equation, which gives its allowed energy levels, E,;/,,,, and its eigenfunctions
(atomic orbitals), W4, (7). For the hydrogen atom, this procedure was described above, and it leads to
Euem, = Ey. In multi-electron atoms, E;;,, = E,¢. However, as we will see below, the degeneracy
with respect to 11, is lifted under a magnetic field. Generally, the electronic states are dependent on the
following quantum numbers:
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. n =1,2,3,.. is the principal quantum number, which defines the shell and determines the

average distance between the electron and the nucleus (contrary to Bohr’s atomic model, in which
it determined the radius of the circular motion).

t=0,1,2, ..., n—1is the secondary quantum number or angular momentum quantum number,
which determines the subshell and the shape of the probability density to find the electron some-
where in space. For example, for n = 1, there is one subshell with £ = 0. For nn = 2, there are two
subshells with £ = 0,1, and so forth. The number ¢ determines the form of the probability density
to find the electron somewhere in space. Subshells with [ = 0 are called s orbitals, with £ = 1p
orbitals, with £ = 2 d orbitals, and so forth. s orbitals display shperical symmetry, p orbitals are
bilobed with directionality, and so forth.

m=—{,—C+1,..,0—1,{is the magnetic quantum number. It takes 2¢ + 1 different values.
This number is the total number of energy states within a subshell. For example, for { = 3,m =
0, £1, 2, +3. Hence, there 7 energy states within in an f-subshell. In the absence of magnetic
fields, the energy states of a subshell are degenerate, i.e., E,z,, = E,;. This degeneracy is lifted
under a magnetic field (Zeeman effect, see Figure 7.3). Consider a magnetic field, E, along the
z-direction. The magnitude of the electronic angular momentum is

L=m/ee +1), (7.41)

while the z-component of the electronic angular momentum is
L, =hmy, my=0,+1,%2, ..., +L. (7.42)

However, since [1my| < £ = m2 < (2 < £(€ +1) = 12m? < 20(€ +1) = |L,|* < |L|* This
means that that the angular momentum L cannot be directed exactly parallel or antiparallel to B.

The components L,, L, are not well defined, however, due to symmetry reasons, (L,) = (L,) =

0. Therefore, we can imagine L as if it were rotating around the z-axis (Larmor precession). See
Figure 7.5, e.g. for { = 2, my, = -2,-1,0,1, 2. We note that the magnetic field only provides an
experimentally well-defined direction. This analysis holds for any given direction. To sum up, the
magnitude of the angular momentum L = /in/€(£ + 1) as well as one of its components (whichever
we choose), e.g. L, = 171y, are quantized quantities. The rest components are not well defined. If
they were, i.e,, if the angular momentum could be fully determined, e.g.. L= L,Zz, it would hold
that

L=FXp=7 L=7-FXxP=p-PxP=p-0=0=>71 L. (7.43)
In other words 7 would lie on xy-plane, which in turn means that the z-component of the electron
would be fully determined, i.e., Az = 0. This is absurd, since it contradicts the Heisenberg’s un-

certainty principle, according to which AzAp, > g Thus, since only L, L, are well-defined and
|L| < |L,|, the electron can never be confined to a plane.

Under a magnetic field E), there is a potential energy term added to the Hamiltonian which has the
form

U = -iiB, (7.44)

where [/ is the magnetic moment of the system. For a magnetic field along the z-direction and
ignoring spin-related effects, we obtain

—€ —>— e et
LB = —LZB = —mgB = [megB, (745)

u=-
2m, 2m, 2m,
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Figure 7.5: The cones represent the possible directions of the angular momentum, e.g, for £ = 2
(my = -2,-1,0,1,2). For a magnetic field along the z-direction, the angular momentum cannot di-
rected exactly parallel or antiparallel to the field. The x- and - components of the angular momentum are
not well defined.

where the quantity yp = 9.274 - 10724 J/T = 5.788 - 10™ eV/T is called the Bohr’s magneton.
Therefore, under a magnetic field, the energy depends not only on the quantum number 7, but
also on m1,. This is the reason why this number is called the magnetic quantum number. Under a
magnetic field, the 2¢ +1 degenerate energy states are separated. Therefore, under a magnetic field,
the spectral emission lines are separated. This is the normal Zeeman effect (see Figure 7.3).

o Thereisalso the spin quantum number, 71, which for electrons takes the values 1, = +14. Similar
to the angular momentum, the magnitude of the spin of a particle is

S=Hs(s+1), (7.46)

while its z-component is z
S, =hmy, my =0,%1,£2, ..., +s. (7.47)

The quantum number s takes positive integer values when the particle is a boson or positive half-
1
integer values when the particle is a fermion. Electrons are fermions with spin s = > (half-integer).
1
Therefore, my = +-. Similar to the angular momentum, for a magnetic field along the z-axis, the
spin cannot be directed exactly parallel or antiparallel to the field. The x- and y- components of the

=
spin are not well-defined. Therefore we can imagine S as if it were rotating around the z-axis. See
Figure 7.6.

Under a magnetic field B), there is a potential energy term added to the Hamiltonian which has the
form

U = —iB, (7.48)
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Figure 7.6: The cones represent the possible directions of the electron spin. For a magnetic field along the
z-direction, the spin cannot directed exactly parallel or antiparallel to the field. The x- and - components
of the spin are not well defined.

where [] is the magnetic moment of the system. For a magnetic field along the z-direction

U=-fB=-—(@©+gS)B = —

eh
2me e(LZ +gsz)B = z_meme = [Jb(mf + gms)B/ (7-49)

2m

where the constant ¢ = 2 is called the Landé factor. Therefore, under a magnetic field, the energy
depends not only on the quantum number 7, but also on 1., m,. Hence, under a magnetic field,
the 2 + 1 degenerate energy states of angular momentum and the 2 spin-states are separated.
This is called the anomalous Zeeman effect. For degenerate spin, every state of each subshell can

be occupied by up to 2 electrons (with mg = +§ and my = —%), due to the Pauli’s exclusion
principle, according to which two fermions cannot occupy the same quantum state. We note that,
apart from the Zeeman effect, there are other corrections to the eigenenergies of hydrogen, such as
the fine structure, which occurs from relativistic corrections to the Schrodinger equation and the
hyperfine structure, which occurs if we take into account interactions with the spin of the atomic
nucleus. These corrections are several orders of magnitude smaller.

In Table 7.2 the structure of the first four energy shells within the atomic orbitals model is presented.
Taking into account the Pauli’s exclusion principle, since inan s (¢ = 0) subshell there is 1 state (11, = 0),

this subshell can by occupied by 2 electrons at most, one with spin up (11, = + %) and one with spin down

(mg = —%) Similarly,inap (£ = 1) subshell there are 3 states (11, = 0, +1), hence it can by occupied by
up to 6 electrons. In ad (£ = 2) subshell there are 5 states (11, = 0, +1, £2), hence it can by occupied
by up to 10 electrons. In an f (£ = 3) subshell there are 7 states (1, = 0, £1, +2, +3), hence it can by
occupied by up to 14 electrons.

In Figure 7.7, an approximative schematic representation of the relative energies of various shells and
subshells is presented. We observe that:
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Table 7.2: Structure of the first four energy shells within the atomic orbitals model.

Shell (7) Subshell (£) States (71,) Maximum #¢~ inshell Maximum #e~ in subshell

1(K) 0 (1s) 0 2 2
0(2s) 0 2
2(L) 12p) 0,+1 6 8
0 (3s) 0 2
3 (M) 1(3p) 0,+1 6 18
2 (3d) 0,+1,+2 10
0 (4s) 0 2
1 (4p) 0, +1 6
4(N) 2 (4d) 0,21, +2 10 32
3 (4f) 0,+1,+2,+3 14
f d
d s P
P I ——
2 o

1 2 3 4 5 6 7
principal quantum number n

Figure 7.7: Approximative schematic of the relative energies of shells and subshells.

« The more inner the shell (i.e., the less the value of the principal quantum number 1), the less the
energy of the subshell of the same form, e.g, Eqs < Eps < Ezs < Egg, ..., Epp < E3y < Eyy ...,
K.0.K.

« For any given shell, i.e. for a given 71, the energy of the subshell increases with the value of £, e.g.
E3S < E3p < E3d'

« Itispossible thata subshell with a smaller #1 (“amore inner shell”) has alarger energy than a subshell
of another form with larger 71 (“a more outer shell”), e.g. E3; > Ejq. In other words, shells can
be overlapping with each other. This effect is mainly observed for large values of 71 and especially
between f and d orbitals.

We characterized this representation as approximative, since, e.g., the 3d and 4s orbitals are very close
to each other energetically, and their specific arrangement depends on:

« the specific atom, i.e., the number of protons, neutrons, and electrons.

. the repulsion between electrons that occupy orbitals. For example the combinations 3d* 4s? or
3d%4s! are more favorable, since d and s orbital have different distributions of the electron cloud,

hence the repulsion between them is different,
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o the Pauli’s exclusion principle, etc.

3p
—Q— 3s
53
]
-0 00— -0-0-» §
-0 2
-0 1

1
Na ls2 252 Zp6 3s

Figure 7.8: Ground state configuration of the Sodium atom (Na).

Of course, not all of the possible energy states of an atom are occupied by electrons. The way in which
the energy states of an atom are occupied by electrons is called the electron configuration. In most atoms,
electrons fill the states with the lowest energy, with two electrons with opposite spins occupying each
state. The ground state (i.e., the one with lowest energy) electron configuration of the Sodium atom is
schematically presented in Figure 7.8. Of course, there are many ways to excite electrons in atoms so that
electronic configurations with larger energies occur. The conventional notation is that the number of elec-
trons in each subshell is marked by an exponent next to the subshell symbol. For example, for Sodium: Na
1522522p6351 , which means that, out of its 11 electrons, 2 belong to the 1s subshell, 2 to the 2s subshell,
6 to the 2p subshell, and 1 to the 3s subshell.

The electrons that occupy the outer shell (i.e., the highest energetically shell which is partially or fully
occupied) are called valence electrons. For example, in Sodium there is one valence electron, the one
that belongs in shell 3, and specifically in subshell 3s. These electrons are very important, since they par-
ticipate to bonding between atoms to form atomic and molecular clusters. Furthermore, many physical
and chemical properties mainly depend on the valence electrons.

We say that an atom has a stable electronic configuration when the s andp subshells of the outer shell
(or, for He, only the s subshell) are filled. Therefore, the occupied outer shell has 2 + 6 = 8 electrons (or,
for He, 2 electrons). The elements He, Ne, Ar, Kr, Xe, Rn have a stable electronic configurations. These
elements are called noble gases or inert gases and have essentially no chemical reactivity. Some atoms with
no fully occupied valence shells can obtain a stable electronic configuration by adding or losing electrons,
i.e. by forming ions, or by sharing their valence electrons with other atoms. This is a general tendency,
not a strict rule. Some exceptions are, e.g., BF3 and PCls. The electronic configuration of noble gases is
presented in Table 7.3.

Finally, it should be noticed that we cannot know a priori the relationship between the energies of the
subshells of two different atoms. For example, the electronic configuration of Na is [ Ne] 3s!, with ioniza-
tion energy 5.1391 €V i.e,, Eg] = —5.1391 eV, while the electronic configuration of Cl is [Ne]3523p5,
with ionization energy 12.9676 €V, i.e,, Eg;? = —12.9676 €V . In other words, EIB\,] > Eg;ﬂ This is why
chlorine is said to be more electronegative than sodium.
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Table 7.3: Electronic configuration of noble gases.

Noble gas Electronic configuration Number of electrons in shells
Helium (He) 152 2

Neon (Ne) [He]2s%2p° 2,8

Argon (Ar)  [Ne]3s23p° 2,8,8

Krypton (Kr) [Ar]3d'04s24p° 2,8,18,8

Xenon (Xe) [Kr] 5524d105p6 2,8,18,18,8

Radon (Rn) [Xel4f 14°5d106526p6 2,8,18,32,18,8

7.4 Hydrogen Atom: Form of atomic orbitals.

In Fig. 7.9 we show the spherical coordinates (7, 0, @) as they are commonly used in physics: the distance
r from the axes origin O, the polar angle 6, and the azimuthal angle ¢. The unit vectors ¢,, &g, €, are also

depicted.
Z|
e,
,_—'w-s\'
\
/: <\ >\
7/ ~Sm ol e\
/ \
/ 0 \ ’ \
/ r ey
! 0) L (.
! S> ]
J
\ i ;7
Y P /
\ / £
7/
/ 7
N / 7
- \\ VS
X -

Figure 7.9: The spherical coordinates (7, 0, ¢): the distance 7 from the axes origin O, the polar angle 0,
and the azimuthal angle ¢. The unit vectors &,, &g, éqo are also depicted.

We remind that the unit vectors &,, &g, &, of the spherical coordinate system can be transformed to the
unit vectors of the Cartesian coordinate system (&, ey, é,) and vice versa according to the relationships

e, sinOcos@ sinOsing cosO ||, ey sinOcos® cosOcosqp —sing||e,

eg|=|cosOcosp cosOsing —sinO||2,|, [é|=[sinOsing cosOsing cosq |[eg].

(" —sin@ cos 0 e, e, cos 0 —sin 0 0 ey
(7.50)

In spherical coordinates, the eigenfunctions of hydrogen have the form

\I]nt’m(rl 6/ (P) = Rn{’(r)®£’m(9)q)m((ﬁ)

These are the @ (7) of the general notation we have been using so far, where k = {11, £, m} is the collective
quantum number. To be more specific, below we list the atomic orbitals 1s, 2s, 2p, 3s, 3p, 3d [ 10].

1 7

\I]100(r/ 6/ (P) = (7'“18) 26_% \yloo =1s
1 r
_z r _r
\PZOO(TI 6/ (P) = (32 7'(018) 2 (2 - _) e % \PZOO =25
o
1 r
-7 _r
Woio(r, 6, 9) = (32 ﬂag) 2 — cosOe 2 Wy = 2p,

a4
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r

r -
— sin 0 e*'Pe 20 (Wo141 + W1 1)/V2 = 2p,
)

N =

Wo141(r, 0, 9) = (64 7'“18)_

(Wor41 — Vo 1)/(iV2) = 2p,

_L 2\ _r
Wano(r, 0, ) = (19683 ng) 2 (27 - 18% + 2r_2) e %o Wi = 35
0 ag
1 r
-3 r\ r -~
W310(r, 0, ) = (6561 Wg/Z) ? (6 - —) —e %0 cos 6 Wy 1= 3p,
do) Ao

r

1
W3141(r, 0, ) = (6561 775’8) ? (6 - a_ro) a—roe_% sin 6 =¥ (Wa14q + Way_1)/V2 := 3p,
(V3141 — Wa1-0)/(iV2) = 3py

2

1 r
Wao(r, 0, ) = (39366 7tag) * (é) e 3% (3cos? 0 —1) Wyo = 3d.2

r

1
Wapu1(r, 6, ) = (6561 ma3) 2 (ai) e 30 sin@ cos Oer® (Wi, + Wsy )/V2 :=3d,.
0

(Waps1 — Wi 1)/(iV2) = 3d,,
2

1 r
Wao.a(r, 0, ) = (26244 1a3) 2 (%) e 0 sinf? 029 Wy + Wi p)/V2:=3d,2

(Wap42 — Wap 2)/(iV2) = 3d,y

Of course, the eigenfunctions can be multiplied by a factor %, where 4 is an arbitrary phase, still re-
R
maining eigenfunctions. As discussed above, the respective eigenenergies are E; = hi(); = ——}25 =E,,
n
i.e,, there is degeneracy with respect to £, m. Rg = 13.6 €V is the Rydberg of energy and 4, is the Bohr
radius. The first five atomic orbitals, i.e, 1s, 2s, 2p,, Zpy, 2p,, are depicted in Figure 7.10, the five 3d or-
bitals in Figure 7.11, while all the atomic orbitals of hydrogen-like wavefunctions up to 7s are presented

in Figure 7.12.

nodal surfaces

Figure 7.10: The first five atomic orbitals, i.e., 1s, 2s, 2p,, 2py, 2p, [11]. The colors (orange, azure) corre-
spond to different signs; e.g., if the orange region is positive, then the azure region is negative. We set the
factor & = 1. On the right we show the nodal surfaces of 2p with detail.

7.5 Nodal surfaces.

In Figure 7.12 we can observe that, apart from 15, all orbitals have at least one nodal surface. A nodal
surface is a surface on which the wavefunction becomes zero; hence, the probability to find the electron
there becomes zero, as well. There are two types of nodal surfaces:

« Spherical nodal surfaces, which are called radial nodes, since they are fully described by their ra-
dius. The number of radial nodes in an orbital is determined by the quantum numbers # and £; in
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3dy,

xz plane

3d.2_ y

x axis

Figure 7.11: The five 3d orbitals [ 11]. The colors (orange, azure) correspond to different signs; e.g., if the
orange region is positive, then the azure region is negative. We set the factor e = 1.
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Figure 7.12: All the atomic orbitals of hydrogen-like wavefunctions up to 7s. The colors correspond to
different signs; e.g., if the red region is positive, then the blue region is negative. We set the factor e’ = 1.
Image from wikipedia [ 12].

specific, itis  — £ — 1. Radial nodes can be determined by obtaining these distances 7 at which the
wavefunction becomes zero. Thus, 1s orbitals have no radial nodes,, 2s have one, 2p have none, 3s
have two, 3p have one, and so forth.

o Planar or conical surfaces, which are called angular nodes, since they are fully described by the
angle they form with one of the three axes. The number of angular nodes in an orbital is determined
by the quantum number ¢; in fact, it is equal to €. Angular nodes can be determined by obtaining
these angles 0, ¢ at which the wavefunction becomes zero. Thus, s orbitals have no angular nodes,
p have one, d have two, f have three, and so forth. The angular nodes are the ones that essentially
determine the outer orbital shape.

Based on the above, the total number of nodal surfaces, both radial and angular,isn — £ -1+ ¢ =n - 1.
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7.6 Parity, allowed and forbidden transitions, selection rules.

The fact that we know the analytical form of the wavefunctions of hydrogen allows us to use it as an exam-
ple in order to study its allowed and forbidden transitions within the dipole approximation. We remind
that, within this approximation, the potential energy of the perturbation is

Uppi(H) = £ - f PBr d, ()T O (7).

Ttk

If 71/ becomes zero, then Uz (t) also becomes zero, hence states k” and k are not coupled. Therefore, the
electron cannot move from state k to k” and vice versa. Thus, everything is reduced to the parity of the hy-
drogen wavefunctions, since 7'is of course an odd function. If two eigenfunctions @ (7) = W4, (, 0, )
and @y, (7) = \I’n/g/mz) (7,0, @) have the same parity, then the integrand is an odd function, hence the
spatial integral becomes zero by identity. In this case, we say that this transition is “forbidden”. On the
contrary, if the two eigenfunctions have different parities, then the integrand is an even funtion and the
spatial integral is not zero by identity. In this case, we say that this transition is “allowed”. Of couse, in
the latter case, the value of the integral is different for different pairs W,z (7, 0, ¢) and W, o) (r,0,9).
In other words, not all transitions have the same strength. In the case of hydrogen, the symmetry of the
eigenfunctions results in transitions with A¢ = +1, Am, = 0, +1 being “allowed”. These are the so-called
selection rules. We will address all the above on more detail below, using the hydrogen atom as an exam-
ple/exercise. Additional relevant exercises can be found in Appendix A.

7.7 Hydrogen Atom: Calculation of the dipole moment matrix elements. Allowed and forbidden
transitions. Selection rules.

Consider the eigenfunctions of the hydrogen atom

\I]nfm(r/ 91 (P) = nf(r)@fm(e)q) (P) q)k(—)

where k = {n, {, m} is the collective quantum number.7 = 1,2, 3, ... is the principal quantum number,
¢ =0,1,2,..,n—1is the angular momentum quantum number, andm = ¢, +1,..,{ -1,{is
the magnetic quantum number. Specifically, consider the eigenfunctions

1y

Wioo(r, 0, ) = (77“0) e ™ Wigo :=1s
1 r
_1 r\ -
\Ilzoo(?', 8, (p) = (32 nﬂg) 2 (2 - g_)e 2aq \IIZOO = 2s
0
1 r
1y _r
Woio(r, 6, 9) = (32 ”“8) : ——coste 0 Waio :=2p,
0
1 r
- r . [
W1 (1, 0, ) = (647a5) * — sin 0 20 (Wari1 + War 1)/ V2 = 2p,
0
(War41 — \y21—1)/(i\/5) = 2py
1 2 o
\11300(7’, 8, (p) = (19683 71618) (27 18a— +2— ) 3ag \y300 = 3s
0 ao
R
The corresponding eigenenergies are Ey = 7i{Q); = —— = E,, thus there is degeneracy with respect to

{,m. Rp = 13.6 eV is the Rydberg energy and 4 is the Bohr radius.
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1. Check whether the above given eigenfunctions are normalized.
2. Check whether they are even or odd.
3. Determine whether the integrals
Tty = f VD, (7) 7 Dy, ()
everywhere

i.e., the matrix elements of the electron’s position with respect to the nucleus, become zero or not.

N
These integrals are proportional to the matrix elements of the dipole moment % = —¢¥, i.e,,
— ) . -

Proty = f AV (7) (—e)F Dy, ()
everywhere

N
We remind that if7k1 k, = 0, then the optical transition k1 <> k; is “forbidden”.

4. Predictwhich of the transitions between the above given eigenstates are allowed, and check whether
the “selection rules” A = +1, Am = 0, =1 hold.

S. Check whether the above given @ (7) are orthogonal.

— —
6. Calculate the dipole moment matrix elements .7y 219 and %90 21+1-

7. Compare the strengths of the optical transitions 1s «— 2p, and 1s «— 2p,.

Consider the following as given:

A [erdr=y ™Dl wheren =1,2,3, .. andy > 0.
0

B. Inspherical coordinates (7, 0, @), inversion through the origin of the reference system, i.e., the op-

- — .
eration7? — 7’ = —7, corresponds to the variable changes 7’ = 7,0’ = m— 6,and ¢’ = @ + 7.
C. The following expression for the position vector holds:

)e'? + (2 + i8,)e"?] + 1 cos O 2.

7= 5 sin O[(&, — i,

Answer
In what follows, we will use the variable change g = uL and the notation:
0

' 'm’'|n€m) = fd3r W oy @) W () and (0" €'m’ |7 [nbmy := fd3r W oy O T Y (7).
1. For W10 (7) we have:

2r

o T 27
1 -
(1001100) : = f Br W0 (7) Wioo(7) = f f f 2 sin 0 drdOdp—e ™ =
000 T
1 00 o Tt 2n a3 00
=— | drrte % fsin 0do fd(p = —%quqze‘Zq[— cos O]727
T[ao 0 9 0 7'(110 9

22+ =1

-2 ququ—Zq[_ cos Tt + cos 0] = 4 quqze—z‘i =4
0 0
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+Weused A, fory = 2,1 = 2.In other words, [100) is normalized, as expected. Similarly, the nor-
malization of the rest functions can be checked, by calculating (200|200), (210[210), (21 £ 1|21 £ 1),
(300|300).

2. We can check the parity using B. We note that sin 6’ = sin(7t — 0) = sin 0, cos 6" = cos(1 — 0)
= — cos 0, while e*#" = gi(P+7) = pFiQpEim — (_1)e*i® Thuys,

Wioo(-7) = V100 * even

Waoo(—7) = Wapo(r)  + even

W300(-7) = Wapo(F) even

Woro(-7) = =Wao()  #* odd

Wo121(=7) = W19 () #x+ odd

+ Since it depends only on 7 and the operation 7 — 7’ = —7has no effect.
«+ Since it depends not only on 7, which is unaffected by the operation 7 — 1 = =7, but also on
cos 0, which will become cos 6" = cos(7t — 0) = — cos 6.
« % x It depends on 7, which is unaffected by the operation 7 — 1’ = —7, on sin 0, which goes

tosin@ = sin(t — 0) = sin 6, i.e., which is unaffected as well, but also on ¥’ = *i(®+m) =

etiPetim = (~1)e*i?, ie,, it is odd due to ¢.

In other words, we have shown that 1s, 25, 3s are even, while 2p, is odd. 2p, and 2py are also odd,
since they are derived by the sum or difference of the odd functions W5q.1. Actually, it is “ency-
clopedic” knowledge that s-type functions are even and p-type functions are odd.

3.-4. In Table 7.4, the transitions within the fist two shells, i.e., for n = 1,2, are briefly described. (E)
means even and (O) means odd. We observe that the selection rule A¢ = +1, Am = 0, 1 holds,
i.e., when these relations are satisfied, then the transition is allowed.

Table 7.4: Allowed (AL.)and forbidden (FORB.) optical transitions within the first two shells of the hy-
drogen atom, using the dipole approximation. The notation * means that, in the hydrogen atom, the initial
and final states correspond to the same energy, i.e., they are degenerate, thus in fact such transitions do
not exist. 2p, and 2p,, are derived by the sum or difference of the odd functions W514;.

ki =1{ny, ,mi} ky ={ny, b,my} Dp (1) D, () O DT D) Trp, AL Am
100 1s 200 25 (E)  (E) (O)FORB. 0 0 0
100 1s 200 2p. E) (0) (E)AL £0 1 0
100 1s 21+1 2p,,2p, (E) (0) (E)AL. #0 1 =+l
100 1s 300 3 ()  (E) (O)FORS. 0 0 0
200 25 200 2p, (E) (0) (E)AL.* 40 1 0
200 2s 2041 2p,2, () (0) (E)AL* 40 1 41
200 25 300 3 () (E) (O)FORS. 0 0 0
200 2p. 21+1 2p,2p, (0) (0) (O)FORB. 0 0 =+l
200 2p, 300 3s 0) () (E)AL. 40 -1 0
20+1 2p,2p, 300 35 (0) (B) (E)AL. £0 -1 T
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S. Let us check for orthogonality the eigenfunctions W1y and Wy:

r

12 sin O drdOde e_%(Z - QL) e 20 =
0

® ® 0o T
(100200) : = | d°r Wioy Wapo = f f
nao 0 0

O%:

1 r - r 5 weset
= 47 frze“o (2——)@ Z“Od f 92 - ezd
RN N % ’ 7ot e s

g=— go

2f_3_42 1 @, . =2 1 3
S 2 [ty L [otpa e 2 LY
y q-aq ‘/Eo q-aq (§)2+1 \/E(E)sﬂ
2 2

We used A, for y = g, n = 2andfory = g, n = 3. Thus, he have shown that (100|200) =
0, hence W1y and Wy are orthogonal, as expected. Similarly, the rest inner products between
different eigenfunctions can be calculated, which actually become zero, as well.

Reminder: The spatial integral of an even function is not zero by identity. This does not mean that it

cannot become zero, see, e.g., Figure 7.13. On the other hand, the spatial integral of an odd function
is zero by identity, since, e.g.

+00 +00

ﬁixf (%) j;le(x j;le(x) fdyf( y)+ dxf(x) fdyf(y)+ dxf(x)
we set y=—Xx
1
3 -1 1 3
L1 . S

Figure 7.13: The spatial integral of an even function is not zero by identity but it can become zero, as is
the case, e.g., with the depicted even function.

- — —
5. We know that ./, = —eFjst, hence the calculation of %7 yy19 and Zjgp1.1 is reduced to the
calculation of 71gp10 and 71go214.1, respectively. For the first one:

100210 = (100[7]210) = f dr Wigy 7 Waro

oo 12T

_r r r
r2sin0drdOdpe © 7 — cosOe 20
naoﬂ fff ¢ see I EIO

000

oo 1T 2T

fffr sin 0 drdOdg e A {g sin @[(e,( i@}/)ei(’) + (&, + iéy)e‘i(’)] + 7 cos 9@2}-
00

47w0
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r

r o
-— cos@e %0
ap

2T

rzdre a r— 2”0 {ffsm 0dod “P+(e +i,)e”'? | cos O+
47w3\/—f "2 [ ! ]

I(r)

2T

+ fﬁin@d@d(p cos? 9@2}.
00

3
We will now use A., for y = 5 andn = 4.

g 3 4! ,2:3-4 28
r)—aofqque Tqgqe 2 =ag fq4dqe 2 =0y RYE = dg—5— 2° = o7
)
Also,
271 ' eii(P 2
fovap-[22f -0
] 0
d(cos® 6 2@ 2me,r 1 Ame
fd(pfsm@ cos>0dO e, = f (co; ) -(-1) = nTerlldy = nTez[y]_l = 7;62,
d(cos® 0 d
% = 3 cos? O(-1) sin O = (cc:—s?)) = cos? O sin Od0.
Thus,
1 28 Mé 215/2 215/2
— _ 4 zZ _ ~ — _ - _ A
100210 = a—3\/§ Gy 31 —3 = Aoz 5~ = T1o0210 = 1007210 = o5 008z | =
~15/2 . ~15/2
Provao = ~ 35 bz | P100210] = 5 0

For the second one:

71002141 = (100|721 £1) = fd?’f Wioo 7 Wor41

oo TT 27T

1 —_—
- 70 ¢— — ip z<p
(R & 7'((13)1/2 fffr sin O drdOdp e 0{ sin 6[(6 i2,)e'? + (2, + ie,) ]+

r

r oL
+ 7 cos Gez}— sin O e*'Pe 290
o

27T

fdrr e “0 r— 2”0 ffsm Gde(p{sn [(ex—zey)e P+ (8 +iey)e” l¢]+cos Qez} i
o

87w0
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[o0]

fo 4 -3 ap 4!
= 81 f dqq*e 2 - angular dependence = gﬁ - angular dependence
0 (E
_ D2 ear depend
=3 angular dependence.
But
27 ) eiZi(p 27 27 A eiifp o
feiZZ(Pd(p:I: ] =0 and feJ_rZ(pd@:l: : ] =0,
0 +21 0 0 +1 0
r sin® 6 n 4
angular dependence = f 40— [2n(éx ii@’y)] = e, x it | f dOsin° 0 = ?[éx +i2, ],
0 0
TC
36 b 4
fd931n39=|cos —cos@] =——+1-=-+1=—,
0 0 3 3
d (cos® O ) , X
since %( 3 cos 6) = —cos“ 0 -sin O + sin O = sin O[1 — cos* O] = sin” O.
Thus,
- ao 25 4;% ” T - 27 R .
Fl0021£1 = 0 3 ?(ex +i2y) = | 1002121 = Ao ﬁ(e" + ie,)
> 27 . ~15/2
P1002121 = ~35 (8 £ 18y)edo [ Pro02121] = —5-edo |

7. From the previous question, it occurs that

.
|-Z100210!

— =1.
|-P1002141l

Thus, these two transitions have the same strength.

More indicative calculations can be found at the end of this Chapter’s exercises, in Appendix A.
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CHAPTER 8
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In this Chapter:

We proceed to the full quantum mechanical approach of the photon - 2LS, 3LS, MLS interaction and to
the quantization of the EM field, which is performed in a somehow heuristic manner. The main part here
are the Rabi oscillations of the number of photons and of the probability of electron presence in the levels
of a 2LS, which interacts with photons inside a cavity. Initially, we explain what the full quantum mechan-
ical approach versus the semiclassical approach is: now we quantize the electromagnetic (EM) field, too.
We discuss the relation between wavevectors, angular frequencies and phases of the electric and magnetic
field and how a standing wave inside a cavity is created. We continue by describing the Hamiltonian of
the EM field with photon creation and annihilation (or raising and lowering) operators, the Hamiltonian
of the two-level system with spinors and electron creation and annihilation (or raising and lowering) op-
erators [and generalize presenting the Hamiltonian of the three-level and multi-level system with spinors
and electron creation and annihilation (or raising and lowering) operators]. Then, we discuss thoroughly
the two-level system - EM field interaction Hamiltonian and calculate the mean (expectation) values of
various quantities for the Jaynes-Cummings Hamiltonian, which is a simplified total Hamiltonian. With
this Hamiltonian we study the Rabi oscillations, i.e., the time-dependent probabilities of the two levels
occupation and of the number of photons in the cavity, for photon absorption and emission.
Prerequisite knowledge: Basic knowledge of Quantum Physics.

8.1 Fully quantum mechanical approach versus semiclassical approach.

In Chapters S and 6 we discussed the so-called Semiclassical Approach (two-level system: quantum me-
chanically - EM field: classically). To describe the EM field, we used the language of vectors E, B. We as-
sumed that the amplitude of the electric field is constant. The EM radiation had to be dense enough so
that the amplitude of the electric field is not significantly affected by photon absorption or emission.

In this Chapter, we move on to the Fully Quantum Mechanical Approach, i.e. we threat both the two-

Constantinos Simserides (2023). «Quantum Optics».
Kallipos, Open Academic Editions. https://dx.doi.org/10.57713 /kallipos-186
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level system and the EM field quantum mechanically. We could say that we are trying to describe the EM
field using the language of the number of photons. Therefore, we have to obtain an expression for the Hamil-
tonian of the EM field that allows the translation from the language that uses the vectors E and B to the
language of the number of photons. This will be done in the example of an EM wave in a cavity, in Sec-
tion 22. Prior to this, in Section 8.2, we will examine the relationship between the wavevectors, angular
frequencies and initial phases of the electric and magnetic fields. Then, in Section 8.4, we will remember
the photon creation and annihilation operators, and, using these operators, we will quantize the Hamilto-
nian that describes the EM field, as well as the electric and magnetic fields separately. Thus, we will obtain
a Hamiltonian for the EM field. Next, in Section 8.5, we will use spinors to describe two two-level system,
and specifically the raising and lowering of an electron between its two energy levels. Thus, we will obtain
a Hamiltonian for the two-level system. Afterwards, in Section 8.7, we will also construct the Hamilto-
nian describing the two-level system - EM field interaction. After all, we will be in position to define a
Total Hamiltonian which describes the EM field, the two-level system and the interaction between them
(Rabi and Jaynes-Cummings Hamiltonians). In Section 8.8, these Hamiltonians are summarized. In Sec-
tion 8.9, we calculate the average (expected) values of quantities related to the Jaynes-Cummings Hamil-
tonian, which are useful for the description of photon absorption and emission. Finally, we present two
applications of the Jaynes-Cummings Hamiltonian to the problems of photon absorption (Section 8.10)
and photon emission (Section 8.11), arriving at the description of oscillations for the photon population
and energy level occupations.

8.2 Relations between wavevectors, angular frequencies and initial phases of electric and mag-
netic fields.

Let us remember the Maxwell’s equations in terms of total charge and total current, and specifically in
their differential form

V.-E= L Gauss’s law for electricity (8.1a)
€0

V-B=0 Gauss’slaw for magnetism (8.1b)
;!

V XE= N Faraday’s law (8.1c)

V X B = pof + #OGOE Ampeére’s law and Maxwell’s correction. (8.1d)

V- E=0 (8.2a)
V-B=0 (8.2b)
VxE= 9B (8.2¢)
T ot o

. JF
V XB = [.1060— (82d)

ot.

The following identities hold:

Vx(VxA)=V(V-A)-V2A (8.3)

V2A = (V- V)A. (8.4)



Thus, Eq. 8.2 implies

Trying solutions of the form

at Eq. 8.5, it follows that

Similarly, Eq. 8.2 implies

Trying solutions of the form

2
at Eq. 8.8, we again obtain Eq. 8.7. Since w = 27mtv, ¢ = Av, Eq. 8.7 yieldsk = Tn We notice that, given
that we differentiate over x, y/, z, ¢, the “initial phases” 6, 6’ remain constant, i.e. they are not determined
by the calculations made so far.

5
From the solutions 8.6 and 8.9, after some calculations, we conclude that the operator V canbe replaced

by ik, i.e. schematically

since, if we assume a field of the form

then

v.3-(2 9 9
~\ox’ 9y’ 9z
Aoy eDik, + Agy €Diky + Aoz €Dk = ik, ky, k=) - (Ao, Agy, o) €

and also

V2E =

J°E
eO#Oﬁ

EG}I f) = Eoei(ﬁ«?—wtﬂﬁ)

k|

-

::k:

w
c

J%B

VZB = GOyoﬁ.

§(?, f = goez’(ﬁ?—wtw)

V = ik|

A = Roe®F-wt+0) .= (A, Aoy, Aoz) RO)

) (A, Ay/ A;) =

A, IA
+

, 9A,

ax | ay

aAOZ€® 8A0x€@

0z

~

(250 2 f

?(z’k A, - ikZAy) - ](ikxAZ - ikZAx)

dx 0z

Jz

) K

# H{ikA - kA,
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=ik A,

8A0xe@ &Aoye@

dy dx

(8.10)

(8.11)

)
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Therefore,
Eqs.823,86 = ik-E=0= k-E=0
Egs.82b,89 = ik-B=0= k-B=0
Egs.8.2¢,8.6,89 = ikxE=iwB= kxE=wB
Egs.8.2d,8.6,89 = ik X B = poeg(—iw)E = kX B = —pgeqwE

(8.12a)
(8.12b)
(8.12¢)
(8.12d)

It is a brief mind game to obtain the direction of the vectors I_-f, B, k by Egs. 8.12a, 8.12b, 8.12¢, 8.12d;

- - —
more precisely, it can be found that the inner product between E pe to B has the same direction as k, i.e.

EXETT?.

(8.13)

Actually, E, E,E obey to the directional and the perpendicularity relations depicted in Figure 8.1. The

relationship of Eq. 8.13 can mathematically be shown using the identity

X (bx7T) = (@b - (@- D). (8.14)
For example, starting from Eq. 8.12c, we have Ex (? X E) = wEXB = (E . E)E— (E K)E = wE X B.
Figure 8.1: ExB ™ k.
But, given Eq. 8.124, it follows that
— — E) 2—»
ExB= uk (8.15)
W
Taking the above perpendicularity conditions for E, E,E into account, Egs. 8.12¢-8.12d imply that
E
|_)—| = (8.16)
|B|
Now, instead of Egs. 8.6 and 8.9, let us try solutions of the form
E(_) t E0€ T-wet+0) = Eoe@ (817)
B@, 1) = Byel®m-wnt+0n) = Be® (8.18)

to Egs. 8.5 and 8.8. In other words, let us assume that E(?, t) and §(7, t) do not necessarily have the

- -
same wave vectors, k, and kj, angular frequencies, w, and @y, and “initial phases”, O, and 0. Then,

Egs.8.2a,8.17 - k,-E=0

Egs. 8.2b, 8.18 = k-B=0
Egs.8.2¢,8.17,8.18 = k,xE = w,B
Egs.82d,8.17,8.18 = Ky X B = —peo@,E

(8.19a)
(8.19b)
(8.19¢)
(8.19d)
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and no relationship between 6, and 0 occurs. From Eq. 8.19c, it follows that

Kex key kee |= (a)bBOxe®/ a)bBOye@/biOZe@) = (8.20a)
EOxe@ Eoye@ Eq.e

keyEoze@ —keZEOye@ = (UbBOx€®
keZEOxe —kexEOZe@ = a)bBOy(f@ = (820b)
kexEOye _keyEOxe = wpBye

kybortkeboy — _ @, = pilfsKe) T (@p-we)t+0p-0)]

kBT

ezE0x " Rex 0z — €®€@ — same

; EbilgyE (8.20c)

e - e®e@* = same

wpBoz
constants functions of 7, t

Assuming some specific time £, given that the left-hand sides are constants (i.e. independent of 7), then
the right-hand sides must be constants, as well. Thus,

—

Ky = k.. (821)

If we assume some specific position 7, given that the left-hand sides are constants (i.e. independent of 7),
then the right hand-sides must be constants, as well. Thus,

Wy = W, (8.22)

Finally, from Eqgs. 8.21-8.22 it follows that the right-hand sides will be equal to €/®~%) = cos(6; — 6,) +
isin(0y — O,). If the left-hand sides were real, then sin(6, —6,) = 0 = 6, — 0, = nn,n € Z, hence
there is a partial solution 6, = 6,. However, E(, B are generally complex, hence we arrive at the relations

keyEOz_kezEOy _ ei(éb_ée)

koo R

ezB0xMexb0z . i(65—0,)

B e (8.23)

kexEOy_keyEOx — ei(éb_ég)

wpBo;

8.3 Standing EM wave in a cavity.

In this Section, we will construct an expression for the Hamiltonian of the EM field that allows to trans-
lated from the language of the vectors E, B to the language of the number of photons. This will be done
using the example of a standing EM wave in a cavity.

But before this, let us remember that for traveling waves, given the conditions of Section 8.2, we have

2—> 1 0—)2E> = - '(E'ﬁ_ t+6)

V<E = C_Zﬁ E(?, t) = Eoel rw (824)
10 3 drems

V4B = C_Zﬁ B(?, t) = Boel rmw (825)

and E X B 17 k, as it can be seen in Figure 8.2(left). These are the wave equations for the electric and
magnetic field, respectively, in three dimensions, together with their solutions.
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Figure 8.2: [Left] For traveling waves, it holds that ExB ™ k. [Right] We assume that ExB ™ E,

along the axis directions depicted.

If the axis directions are the ones shown in Figure 8.2(right), then

1%E

2—)
Ei= 555 (8.26)
E(# t) = Egei®:= w0 = E (z,1) (827)
., 19%B
2B _ y
B(7, 1) = By,e'®* 19 = B, (z,1) (8.29)
therefore 2 2
E, 1%,
I 8.30
272 2 Jt? (8.30)
J9%B 1 92B
oY (8.31)
2072 2 9t

These are wave equations for the electric and magnetic field, respectively, in one dimension. Let us now
see we can draw any conclusions from the Maxwell’s equations in vacuum.

ol ol

V-E=0 (Eq. 8.2a) :>
/91/ s
JdE,
5 = 0, which is expected. (8.32)
X

JB, 9
V-B=0 (Eq. 8.2b) => 6/ B/_O:>0+8_y+0 0=

8]/ /z’z

8By
—— = 0, which is expected. (8.33)
Iy
) A
V XE = _8_1' (EE 82C) = ? 3_]/ E =-] 0.)t ] az =-J 8{' =
0 o0
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JE JB
JF Pk 1 JE JB 1 dE
o 3 _ 3 C? a _ x5 . y ) x
V XB = eO#OE (EZ 82d) = E 3—y = | = C_Z o7 1= Z(—a—z) = 1C—2 5 =
0 By 0
JB 1 JE
o (835)

& Now let us place ideally conducting mirrors at positions z = 0 and z = L (Figure 8.3). The incident
wave at each mirror will interfere with the reflected one, hence standing waves will be created.

V=LS S
z
>
(ideally)
¥ conducting mirrors
b atz=0andz=L
z= 0 z=L

Figure 8.3: We place flat, ideally conducting mirrors at positions z = Oand z = L.

Egs. 8.30 and 8.34, i.e.

PE,_1PE OB 9B
dz2 % Jt? 0z ot’
as well as Egs. 8.31 and 8.35, i.e.
2 2
é’By:l&By @:_lBEx
dz> % Jt? Jz cz Jt

continue to hold for the linear combination of incident and reflected waves.
We are looking for solutions using separation of variables, assuming that

E.(zt) = V' Z(2)T(t) (8.36)

Let us remember the boundary conditions at the interface between an ideal conductor and vacuum
-
or, in approximation, air (Figure 2.10). The parallel component of E becomes zero at this interface. Since

E has only a x-component (Eq. 8.27) and the flat, perfectly conducting mirrors are placed at z = 0 and
z = LsothatE is parallel to them, it follows that

E.(0,t) =0=E.(L,t),Vt (8.37)
From Egs. 8.30 and 8.36, it follows

d2z 1 2T
//T(t)y = C_zz(z)ﬁ S
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vacuum
conductor conductor

E=0 E=0

% 4

conducting mirrors

Figure 8.4: Conducting mirrors before z = 0 and after z = L.

1 liZZ 1 1 dZT hence

Lt = — = tant .= —kZ,
Z@)d2 T 2ar ~ O
—_— ——

£G) 20
Yz, ¥Vt

given that Z(z) # 0 and T(t) # 0, while for Z(z) = 0 and T(¢) = O the trivial solution holds. Therefore,

a2z
=+ k2Z(z) = 0 (8.38)
and
d’T
W + kZCZT(t) =0]| (839)

® Let us begin by solving Eq. 8.38, trying solutions of the form ez, Then, we obtain the characteristic
polynomial

AN +k2=0=> A% =-k* = A =+ik, egletuschoose keR,

Thus, the solution will essentially have the form

Z(z) = Ae** + Beikz (8.40)
Z(0) =0 boundary condition 1 (8.41)
Z(L) =0 boundary condition 2 (8.42)

where we have taken into account the boundary conditions of Eq. 8.37. From Eqs. 8.40 and 8.41 it follows
that A + B =0 = B = —A, hence Eq. 8.40 becomes

Z(z) = Ae™* — Ae** = 2iA sin(kz) (8.43)

and, applying Eq. 8.42,
sin(kL) =0 = kL =mn,m e Z. (8.44)

However, given that above we chose k € R, it must hold that m € IN, while, for a non-trivial solution, it
must hold that m € IN". Thus, k € R’,.. Concisely, k depends on a natural, non-zero index, i.e.

m
k, = T”m e IN* (8.45)
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Hence,

Z,(2) = 2Aisin (?)

Additionally, if we demand that Z,,, are orthonormal,

L L 1
[ #ezi@2.@ = o= [ de2i2sin (") sin () = oy
0 0 L L

Defining ¢ = %Z, so that dy = %dz, we obtain

"L .o : L S .
j(; —dy2iA? sm(mlp) sm(llp) =0, = - 4A2L dy sm(mlp) sm(hp) =0,

T
But,
7t T
j(; ay sin(rmp) sin(ll/}) = Eéml' (8.46)
while it also holds that
7t T
j(; dy cos(mgb) cos(lgb) = Eéml. (8.47)
Hence,
L T 1
; 4A2§5ml = 6ml = A% = Z

i). Therefore,

Let us choose something convenient, e.g., A

- L
=

7. (z) = \/% sin (?) (8.48)

e Let us continue by solving Eq. 8.39. We set

w :=kc >0, (8.49)

so that w? = k?c?. Using Eq. 8.45

mric ]
Wy, = T,m eIN (850)

Trying solutions of the form et yields the characteristic polynomial
MP+wl=0=1=ziv,, o,cR;. (8.51)
Thus, the solution will essentially have the form
T(t) = Tewmt + Ae~@mt (8.52)

and if we impose the initial condition

T(0) =0, (8.53)
if follows thatI' + A =0 = A = —I, hence

T(t) = Telnt — Te@nt = 24T sin(w,,t) = (8.54)

T, (t) = 2iT sin (?t) (8.55)
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Additionally, if we demand that T}, are orthonormal at a time interval from 0 to some value ¢,,, i.e.

& b mrict ITtct
f AT (VT (8) = 6,y = f dtzirzsin( )sin(T) =5, >
0 0
o (%, (mmcty (lmct
= 4T f(; dtsm( T )sm( T )=6m1.
Defining x = nTCt, sothatdy = %dt, we obtain
o L Ll . )
ar2 = f dy sin(my) sin(ly) = 6, (8.56)
Tic Jo
Hence, having Eq. 8.46 in mind, it is convenient to set %C b= =
L
t, = S=T (8.57)

Defining the quantity 7 this way gives the time of photon flight through the cavity, hence this was not
an unreasonable choice. Finally, the orthonoramalization is

f ' dtT;,(H)T)(t) = O,y (8.58)
0

We end up obtaining

c

L 7T
ar2— [ dyesinn) sin(lx) = 8, = [P = -
Tic Jo 2L

Let us choose something convenient, e.g.,, I' = (—i), /i Then,

T, = \/%sin (?t) (8.59)

Hence, to sum up, using Eqs. 8.36, 8.48, 8.59, we obtain

24/c mrz mrict
ET(Z,t)ZT\/—J/Sin( Z)sin( Z ) (8.60)
Regardi its, it thldthtz—‘/E/V—X—E:
egarding units, it must hold that | — ===
\'%
[7] = . (8.61)
Vm/s
In order to determine the magnetic field, we will use Eq. 8.35 combined with Eq. 8.60:
B 124/ mmnz\ mnc  (mmct
Yy _ .
7=z ()T e () (8.62)
" B} 2mm mmct\ (% mmnz
Az = =20 cos )fd-(—): .63
. Z Ee \/ELZ cos I . Z sin I ( )



QUANTUM OPTICS 237

’

2 t\ L i
BI(Z,t) - BUI(0, ) = - an./Vcos(mnC )—[—cos(’mz)] - (8.64)
0

L Jmn L

By(z',t) - By/(0,1) = 2\2: cos (mZCt) [cos (mZZ/) —26{011 (8.65)

Therefore, by properly imposing the value of By/(0, f) and performing the change of variables z’ — z, it

occurs that
240 mrz mrict
By(z,t) = cos( " ) cos( T ) (8.66)

AJcL L L

For the energy density, it holds that

1
U=2p2 4 — p2= D2y 2p2), (8.67)
2" "o T2

, ' j o] EVE _CV: ]
We note that the units of the energy density are [U] = =5 For example, [?E ] "R and
m

m m
B2] T°A _TA N _ Nm
2u0 |~ Tm  m

= ﬁ, e.g., given the known relations B = poH , F = Bll and 2= L.

m m2 - m3 €oHo
Hence, from Egs. 8.60, 8.66, 8.67, we obtain the energy density of mode 11 as
€ 4c V2 mmnz mmct mmnz mmct
m = ?0 2 [sin2 ( I ) sin’ ( I ) + cos? ( I ) cos? ( I )] (8.68)

Thus, the energy of mode 7, which is obtained by integrating the energy density of mode m over the
volume of the cavity V = LS, is

E,=| 4ru,. (8.69)
V=LS

Therefore,

E, = M sin? (mnct) fL dz sin? (@) + cos? (mnct) fL dz cos? (@) )
" 12 L 0 L L 0 L

L T
Weset1) = % = dy = %dz, so that, given Eqs. 8.46-8.47, the integrals overzbecome;](; dy sinz(mlp) =
Ln L Ln

_ L 2 _Ln _ L . . .
5 =3 and - fO diy cos*(my) = —> =5 Then, we substitute in the above equation and, finally, hav-

ing followed this classical approach, we obtain

€oc V%S [ iy (mrcct) 5 (mrcct)] eqc V%S
= sin + cos =

8.70
" L L L L (8.70)
Let us now view E,;, in a somewhat different manner:
oV %S mrct mrct
E, = OT [Lz sinz( I ) +12 cosz( I )], (8.71)
We will define a “generalized position” and a “generalized momentum”. So, we call the quantity
mrict
qm(f) =L sin( ) (8.72)
“generalized position”, and the quantity
mrict
gm(t) := mmc cos ( ) (8.73)
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“generalized momentum’, so that [7,,(t)] = m and [§,,,(#)]= m/s. Then, Eq. 8.71 is written as

eoc /S L
Em 13 {[qm(t)] m [qm(t)] ’ (8-74)
At this point, we could see an analogy between Eq. 8.74 an the Simple Harmonic Oscillator (SHO), whose
energy is
K M K M
E:_2+_2:_ 2+_2‘ 8.75
27 T2 T lx K"’ (8.75)
Therefore,
ect?S K
—_— == 8.76
IE > (8.76)
L _M (8.77)
m2n2c2 K '
In other words, we obtain a “spring constant”
2¢ec.V?S
=—5 (8.78)
and a “mass” )
2€0,// S
M, = ——. 8.79
" cLm?m? (8.79)

We note that the “mass” is dependent on 71, which means that it is different for each mode of the EM
field. We can easily verify that M,, has units of mass (we will need Eq. 8.61) and that the relationship
K = M,,w?, is satisfied. Hence, classically, there is a typical similarity between our problem and a SHO
with angular frequency w,, (Eq. 8.50) and “mass” M, (Eq. 8.79). In other words, Eq. 8.71 or 8.74 can be
written as

M,,w? M
G (8.80)

Therefore, we can deduce that the quantum analogue for a mode 1 of an EM field, i.e. the Hamiltonian
of the EM field for a mode m, is

E, =

R M, w3, M, .2
Hegm, m = 5 =l + 2m q,, b (8.81)
with energy eigenvalues
1
Epn, = liw, (nm + 5) i (8.82)

where m € IN" refers to the mode of the EM field and 11,,, € IN refers to the number of photons at mode
m. Consequently, the Hamiltonian of all the modes of the EM field will be

Hey = E Hent, m (8.83)
m
Next, we notice that from Egs. 8.60 and 8.72 it follows that
2 mmnz
EM(z,f) = i//’ sin ( ) an(®), (3.84)
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hence, the quantum analogue is

En(z,t) = ZL—\iE// sin(¢)qm(t). (8.85)

Additionally, from Eqs. 8.66 and 8.73 it follows that

201 (mnz
S

By = e eos (] )qm(t), (8.86)

hence, the quantum analogue is

20 1 (THT(Z)¢ 0 (887)
L\/EW!T(C coSs I q,,(t). .

From Eqgs. 8.84, 8.79 and 8.50 it follows that

B]’/”(z, t) =

1y
2M, @, 2 mnz
#) sin (T) Gm(t) | (8.88)

Ef(z,t) = (

hence, the quantum analogue is

1
2M,, @, > & _ (mnz
— siIn{—
€0V L

Enz ) = ( )@m(t) (8.89)

From Egs. 8.86, 8.79 and 8.50 it follows that

Yz
" 1 (2M,, mnz\ .
By'(z,t) = C ( oV ) cos( T )qm(t) , (8.90)

hence, the quantum analogue is

1y

N 1(2M mrmz

m I m 2

By'(z,t) = C ( oV ) cos( T )qm(l‘) ) (8.91)

Finally, from the above equations, it follows, as expected, that [%] = [c].
y

8.4 Hamiltonian of the EM field using photon creation and annihilation (or raising and lowering)
operators.

Let us now discuss photon creation and annihilation operators. Having reached this point, it is now easy
to quantize the Hamiltonian that describes the EM field by introducing the operators

Jm = qm (8.92)

Py = —i— (8.93)
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We also introduce the operators:

1
a, = ——M,,w,,j,, + ip “annihilation” 8.94
at ! (M@l — i) | “creation” (8.95)
= — @ — creation .
The following property holds:
[erﬁm] = l?mf?m - mem = ih. (8-96)
—_——
commutator
Hence,
[4,,, %] = d,,a% —ata, =1. (8.97)
——
commutator
Therefore, the operators {,,, and p,,, can now be written as
. 12
A ~t ~
== a,, +ad,), 8.98
Gm (Zmem) (o + ) (8.98)
12
. M, iw -
P = z( - ’”) (@h = ). (8.99)
Thus, the Hamiltonian of mode 7 of the EM field is
n 4 A 1
HEM,TI’Z = ha)m amﬂm + E . (8.100)

Let us denote the state of the 77 mode of the EM field with 7,, photons by |r1,,,). We call this a “photon
number state”. |11,,,) form a complete set, i.e. it holds that (1,,|l,,,) = 6.
The operators 4, and 4,, have the properties

at n,) = \n, +1n, +1), (8.101)
A ) = Ay Iy = 1), (8.102)
4,10y = 0. (8.103)
From Eqs. 8.101 and 8.102, it follows that

At A _
Ay M) = Moy 1) (8.104)
i.e. the operator N,, = 4t,4,, counts the photon number of EM mode 11, hence we can refer to it as the

photon number operator of EM mode 1. Furthermore, it occurs inductively that

1

(@t,)" 10y . (8.105)

[1n,,) =

Due to Egs. 8.100 and 8.104, it follows that

- 1
HEM, m |nm> = hc‘)m (nm + E) |nm> ’ (8.106)
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i.e. the Hamiltonian I:IEM, m yields the energy eigenvalues

1
Eppn,, = fiwy, (nm + E) : (8.107)

1
The ground state of the SHO, |0), with eigenenergy Eha)m corresponds to vacuum, i.e. without any parti-
3
cles, the first excited state of the SHO, [1), with eigenenergy Eﬁa)m corresponds to one particle, the second

excited state of the SHO, [1), with eigenenergy gﬁa)m corresponds to two particles, and so forth. In this
occasion, these particles are called photons. They are created or destroyed by the creation and annihila-
tion operators, starting from a reference point, which here is vacuum. (see Figure 8.5). They obey to the
bosonic commutation relations (see Section 9.3). This representation is also known as second quantiza-
tion.

e 2> -0-@— - o
®
m\
= W‘——, () — — — -— o0

Figure 8.5: Particles (here photons, represented by green dots) are created and destroyed though the ac-
tion of the creation and annihilation operators, respectively. They obey to the bosonic commutation re-
lations (see Section 9.3). This representation is also known as second quantization. The photon number
is equal to the number of nodes in the eigenfunction.

The Hamiltonian of mode m of the EM field is

N 1 N 1
HAgng e = Hiwy, (ﬁ*mﬁm + E) = hw,, (Nm + E)' (8.108)
. fiwy, . .
Ignoring the term — itcan be written as
HEM, m = ha)mdaﬁm = hmem (8.109)

We can have any number of photons in the quantum state /iw,y,, since photons are bosons. 4}, is a raising

operator, since it raises the energy by creating a photon with energy fiw,,; this is why it is also called the
creation operator. 4,, is a lowering operator, since it lowers the energy by destroying a photon with energy
fiw,y,; this is why it is also called the annihilation operator.

Finally, let us note that from Egs. 8.89 and 8.98 it follows that

1/2

Bz, b) = (2’—5) sin (@) @ +a,)) (8.110)

while, from Egs. 8.91 and 8.99 it follows that

i (hw 12 mrnz
Bz, t) = - (—’”) cos( ) @t -a,) (8.111)
c\eV
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8.5 Hamiltonian of a two-level system using spinors and creation and annihilation (or raising and
lowering) operators.

Let us consider the Hamiltonian of a two-level system with spinors and electron creation and annihilation
(or raising and lowering) operators. In other words, we will now describe the raising and lowering of an
electron between the energy levels of a two-level system, e.g., of an atom, using spinors. A spinor is a
column vector with two components. Let us start with some definitions (e.g. [1]):

) =(Z)=(g)=|0>, |¢>:(:):(§)):|1>, |T>=(:)=(é)=l2> (8112)

The first one represents an empty two-level system, the second one a two-level system with the electron
lying at the lower level, with energy E, and the third one a two level system lying at the upper level, with
energy E,. Now, let us define the operators

A 01 A 00
S, = (0 0), S_= (1 0) , (8.113)
01\ _{0 0
for which it actually holds that 5t = (0 0) = (1 O) = S_. Let us find out what the result of their
action is on the spinors we defined right above:
5,10y = 8 (1) 8 = 8 =10) no action
S, 1) = 8 (1) 2 = é =T raises it (8.114)
ST = 8 é é = 8 =10) throws it out
S_|0) = g) 8 8 = 8 =0) no action
S_|I)= g 8 ? = 8 = |0) throws it out (8.115)
S_IT) = 2 8 é = 2 =11) lowers it

Thus, S, is called the raising operator, while o S_is called the lowering operator of the electron. Let us
examine some more properties. It holds that

s _ (0 1\{0 0)_(1 0
S+S_—(0 0)(1 0)— 0 0), (8.116)
A A 0 0\(0 1 00
5,090 3= 9). o
Thus,
5.5 +6.8,=(F Y) =i 8.118
S-+55: =1y {]= (8.118)

which is the identity matrix. The above can also be written in the form

6,,5) =1 (8.119)
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{A, B} or [A, B], is the Poisson bracket or the anticommutator, defined as

{A,B} = AB + BA, (8.120)
while [A, B] or [A, B]_ is the commutator, defined as

[A,B] = AB - BA. (8.121)

When {A,B} = 0 = AB+ BA = 0 = AB = —BA, ie. the quantities A, A anticommute with
each other, while when [A,B] = 0 = AB - BA = 0 = AB = BA, i.e. the quantities commute with
each other; this is where the names come from. As we will see below, the Poisson bracket or anticommu-
tator is used in the anticommutation relationships that hold for electrons, which are fermions, while the
commutator is used in the commutation relationships that hold for photons, which are bosons.. Sadly,
it is common in Greek textbooks for secondary education that the commutative property is mistitled as
“anticommutative” property; it seems we have been lost in translation...

Now, let us remember the Pauli matrices 6, 6y, 6, and see how they are related to the raising and

lowering operators, S,and S, respectively.

. (01 . (o -\ , (10
Ux_(l 0), ay—(i 0), UZ_(O _1). (8.122)

We can show that it holds that
[6+,6,] = 2i6., (8.123)

as well as its cyclic permutations. Moreover,

1 0\ .
6% =065=062= (0 1) =1, (8.124)
and
{61,6,) = 6:6,+ 6,6, =0, (8.125)

Additionally, we can easily show that

and, using Egs. 8.116 and 8.116, that

5.5 -85 =1[5,,5_1=6,. (8.126)

The Hamiltonian of the two-level system, HZLS ,is

E2§+.§_ + Elg_g_,_ = E2 ((1) 8) + El (8 g)) = (E(:)z E(j)l) , (8127)
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(6 2)o)=(5)=2:0) o229
(& 2)6)=() == 0) 0229

Hence, concisely, we have shown that

since

H, ¢ =ES5.5 +ES5.8S, | (8.130)

Now, if we set E; = 0 = E; = /iQ) (remember Eq. 5.44 and Eq. 5.14), then

H, s =108, 5. (8.131)

The operator 5..5_ counts the number of electrons in the upper level, since

5.5 1) = (é 8) ((1)) = (8) =10y = 5,5 1) =0]1), (8.132)

5.5 12) = ((1) g) ((1)) = ((1)) =2) = 85,5 2)=1[2). (8.133)
The operator 5_S,, counts the number of electrons in the lower level, since

5.8, 1)y = (8 g) (g) = (‘f) =1)=85,. [1)=11), (8.134)

5.5, 12y = (8 g) (é) = (8) =10) = 5.5, 12) =02). (8.135)

Concisely, for the operators A+ and S_ we can show that (§+)Jr = §_ aswell as that

(5,81 =15, =8,8_+ 5.8, =1
8,81 =18,8,1=8.6,+8,8 =1
15,8 =158, = 5.5, 8.8 =1 (5156
{54,5.1=1{5.,8"}=5,5,+5,5,=0
(5,51 =131,81} =35 +3.5 =0

where 1 is the 2 X 2 identity matrix and 0 is the 2 X 2 zero matrix. Egs. 8.136 show that the operators
§+ and S_ obey to the fermion anticommutation relations which are discussed in Section 9.3. §+ is a
raising operator, since it raises the energy by creating an electron with 7CJ; this is where the name creation
operator comes from. 5_isa lowering operator, since it lowers the energy by annihilating an electron with
energy 1i(); this is where the name annihilation operator comes from. We can only have a single electron
with energy /i(), since electrons are fermions.

Let us also notice that, as the notation in Eq. 8.112 suggests, there are several ways to denote the
(fermion) creation and annihilation operators in the literature, such as

S_= )M =M@ =ap=26
S.=mdl=R)Al=ah =¢,

which are totally equivalent. Therefore, some equivalent ways to write the Hamiltonian of the two-level
system (Eq. 8.131) are

A5 = 1Q8,5_ = hQ M) (1] = 1Q2) (2] = hQ4lay, = KO,
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8.6 Hamiltonian of three- and multi-level systems using spinors and creation and annihilation (or
raising and lowering) operators.

In accordance with the above, for a three level system with eigenenergies E; = 0 < E; < Egj, we can
define the column vectors

0 1 0 0
oy =|o|, w=[o], 2=[1], 1B =|o0]. (8.137)
0 0 0 1

The first one represents an empty three-level system, and the rest a three-level system with the electron
lying at level 71, with energy E,;. In order to describe its elementary excitations from the ground state, we
can define the creation and annihilation operators

1 010
app =M1)2] = 0(0 1 0): 0 0 0f=ah
0 000
0 000
a =12)¢1] =1 (1 0 0): 1 0 of=4al,
0 000
1 001
a3 =1[1) 3l = 0(0 0 1): 00 0f=ah
0 000
0 000
a3 =13)(AI={0|(1 0 0)=|0 0 0|=4j;,
1 100

whose action is
ap 1) = a3, [1) = [1) (2[1) = |0)
a1 1) = afa [1) = 2) (1) = |2)
a3 11) = ab [1) = [1) B1) = |0)
431 1) = 213 [1) = 13) (L[1) = |3)

ap 12) = a3, 12) = [1) 22) = 1)
81 12) = a1, 12) = 2) (112) = |0)
415 12) = a3 12) = [1) (312) = [0)
431 12) = 415 12) = I3) (112) = |0)

a2 13) = 431 13) = 1) (213) = [0)
a1 13) = a1, 13) = 2) (113) = |0)
a3 13) = a1 I3) = 1) (313) = 1)
431 13) = 413 13) = 13) (113) = 10).

Using these operators, the Hamiltonian describing the elementary excitations of a three-level system from
its ground state [1) (with E; = 0) can be written in the equivalent forms:

Hys = Epdlars + Esdigdss = Eo [2) (21 + E5 3) (3| = Exthe, + Estles. (8.138)
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In a completely analogous manner, for a multi-level system with N levels and eigenenergies E; = 0 <
E, < ..Ey, we can define N + 1 column vectors, 1 for the vacuum state and N describing the state
[n) of an electron lying at level 11, with energy E,,. Using these operators, the Hamiltonian describing the
elementary excitations of a multi-level system from its ground state [1) (with E; = 0) can be written in
the equivalent forms:

N N N

& AT A RN

Flyis = Y, Exdindty = Y Eqln) (nl = ) Eehe,. (8.139)
n=2 n=2 n=2

8.7 Interaction Hamiltonian between two-level system and EM field.

Letg > Obe —g < 0 be two opposite electric charges, placed at points P and M, respectively. If d = MP
is the position vector of the positive charge with respect to the negative one, then the electric dipole
moment is defined as

—

P =qd. (8.140)
For example, in the hydrogen atom, if N represents the nucleus and E the electron and, as usually, we
define 7 = PE, then j = qc?z e(-7) =

P = —t. (8.141)
This is depicted in the upper panel of Figure 8.6.

P =(](1 2 = transition
1 void 1 / o
—_— clou
/ vood
electron ayen v0|d
cloud
initial final

Figure 8.6: Left. Electric dipole moment. Right. Transition (electric) dipole moment.

The potential energy, Uz, of an electric dipole subject to an electric field Z is
Uy =-P - &. (8.142)

In accordance with the above, we can analogously define a dipole moment when a part of the electron
cloud is transitioned from an initial to a final area. This is how the transition (electric) dipole moment" is
defined. This is depicted in the lower panel of Figure 8.6. If the charge of the transitioning charge is —e,
then, again, ]_9) = qd_> = e(-7) = ;_7) = —¢7. In other words, this means that, for region 2, the difference
between the final and the initial state is equivalent to the transition of charge —e, while, for region 1, the
difference between the final and the initial state is equivalent to the transition of charge +e.

The transition (electric) dipole moment operator is alternatively denoted by d or p. Written on the
basis of the energy eigenstates of the unperturbed atom (or system), it is defined as

~ N N
d=p:= Y, D d;|®;) (P, (8.143)
i=1 j=1

"The word “electric” has been put in parenthesis because it is commonly implied.
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again, with the alternative notations
dij = }_?)Z] =—e <CDZ|7|CD]> (8144)

for the matrix element of the transition (electric) dipole moment between states |®;) and |CD]-). We recall

that the position operator?is such that
7Ir) =7[F). (8.145)

We also recall that

@710 = Y, (@) PITIFY (71D = Y (DifF) 7 (7| D;)

17,1y ")

since .
(FIFI"y ="'y =176, 5. (8.146)
Therefore,
dyy = —e (O] F|Dy) = —edeq)l(?)*?cbl(?) =0, * (8.147)
—
odd
diy = —e (D,[7]Dy) = —e f AV, (7T Dy(P) # 0, (8.148)
dyy = —e(Dy[7]D;) = —e f AV D, 7D, (7) # 0, (8.149)
dyy = —e (D] P|y) = —e f AV Oy T Do) = 0. * (8.150)
dd

- -
In other words, while the diagonal elements become zero, d1, and d; are not zero (“by identity”). Let us

now find out what g does at a two-level system.

P = dp |01) (1] + dip [D1) (Dy] + doy [ D) (D] + oy |Dy) (D]

=dy (?)(0 1)+212(2) (1 0)+dy (é)(o 1)+c?22((1)) (1 0)

0 x
. 00 . = 0 0
11 01 12 1 0
diagonal element —— off-diagonal element
part of diagonal matrix part of antidiagonal matrix
0 =%
N 7 01 N 2 10
21 00 22 00
off-diagonal element ~——— diagonal element ———
part of antidiagonal matrix part of diagonal matrix

From Egs. (8.148)-(8.149) we conclude that 1?12 = 6?21 , given that ®;(7) are real, thus

A~ = (01
P=d12(1 0)- (8.151)
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Question: And what does the operator (2 é)do?

= RAR-6- 6600

In other words, it transitions from one energy level to the other, as it should!

At this point, we can define the potential energy operator. We assume that the EM field - 2LS in-
teraction has the form of an electric dipole mechanism. We ignore other interactions, such as electric

quadrupole or magnetic dipole. Since Uz = P& , it is implied that
um=-2.&m, (8.152)

where the index 1 denotes the 71 mode of the EM field. The respective operator can be defined ass

AMm
ur=-p-2 . (8.153)
Therefore,
A N N — A A
0z == 3} 2 di 0 (Pl - EY(z, ).
i=1 j=1

1is the unit vector of the x-axis, since we have assumed this direction for the electric field (see Figure 8.2).
Alternatively, due to Eq. 8.151,

a2 = —dy, (? é) Emz, p. (8.154)
But
dlZ . /l\ = —EIdV(Dl(?)*(?‘ /l\)(DZG)) = —€X1p = Lgbxlz =P, (8155)
Thus,
0 = exp, (O 1 Er(z,t) (8.156)
& 12 1 0 x %/ b). .
We recall Egs. 8.110 and 8.111
1
fiw,, \? Mmmz\ , .
En,t) = (E()—"j) sin (T) @, + )
1
R fiw,, \? 1 Mmnz\ . .. .
Bji(z,t) = (EO—";) ECOS( T )z(a;;q —a,).

out of which, however, only the first one is needed in the context of our assumptions. Moreover, we recall

that
. . [0 1\ (0o 0\ (01
S++S-‘(0 0)+(1 O)_(l o)'

Thus, finally,
1
N fiw,, \2 MTZ\ A ANt A
UZ = exq — sin (—) (S +S.)@, +d,). (8.157)
€0
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We can alternatively write

1
fiw,\2 (mnz
fo — m i ( ) 8.158
g exis ( SOV) sin I (8.158)
ar =ng™(S, +S_)@ah +a,) (8.159)

So, this is the interaction Hamiltonian between the 2LS and the mode m1 of the EM field. In the context
of atomic physics, this is also denoted as H;, where AF stands for Atom-Field.
From Eq. 8.158 it follows that

1

fw,, \2 mmz
g™ =12 ||| —> (—) 8.160
=12 () (" (8160
We can also define, for reasons that will be explained below, the Rabi frequency as
"= 24/ng". (8.161)
Thus,
1
|9@|| dhw,m\? | (mmz |2 |EY!
on=""1 ; (_) = , 8.162
R=F [\ Tev | T 7 (8.162)

where, however, the “amplitude” Ef}' is spatially configured, i.e. it depends on the position z of the atom
inside the cavity. In other words, Ej' = Efj'(z). If the EM mode m we refer to is implied, we can use the
simpler notation |g| or (. Additionally, to avoid vector norms we can choose the phase of the wavefunc-
tions to be such that g is real and positive [2]. Concisely,

_ 8 _|7IEY
2yn Tk

Let us examine the EM field-2LS interaction Hamiltonian (Eq. 8.159) a bit more. For a single, unique
mode 71, this Hamiltonian is analyzed into four terms

0% = hg™(S, + S_)(@h + dy,) =
= tig"{S,a}, + S 4, +S5_at, +5_a,,).

SN—— N—— N—— N——
Ist 2nd 3rd 4th

Qg

(8.163)

« 1st TERM. The electron is raised an a photon is created/emitted. Therefore, the energy difference is
AE > 0.Hence, this term does not conserve the energy by itself and seems unreasonable. Schemat-

()=

— —
before after

ically:

However, it is possible that such terms are kept if multiple modes (711) hence multiple frequencies
(Eq. 8.50), are supported, i.e. if the EM field - 2LS Hamiltonian is a sum of terms, as in Eq. 8.159.
In such a case, it is possible that the 2LS absorbs a high frequency photon and is raised, and, at the
same time, a lower frequency photon is created/emitted. Schematically:

fi waev- (:) (:) ~> fr<fi

before after




250 QUANTUM MECHANICAL APPROACH |

« 2nd TERM. The electron is raised and a photon is destroyed/absorbed. This term conserves the
energy even for a single mode (717). Schematically:

=l

before after

« 3rd TERM. The electron is lowered and a photon is created/emitted. This term conserves the en-
ergy even for a single mode (11), as well. Schematically:

[t -

—_— — ———
before after

« 4th TERM. The electron is lowered and a photon is destroyed/absorbed. Therefore, the energy
difference is AE < 0. Hence, this term does not conserve the energy by itself, just like the 1st

TERM. Schematically:
(.) (O)
~~> o .

before after

However, it is possible that such terms are kept if multiple modes (712) hence multiple frequencies (Eq. 8.50),
are supported, i.e. if the EM field - 2LS Hamiltonian is a sum of terms, as in Eq. 8.159. In such a case, it
is possible that the 2LS absorbs a low frequency photon and is lowered, and, at the same time, a higher
frequency photon is created/emitted. Schematically:

fi~~> (:) (:) wav- f¢> fi

—_——
before after

If we ignore the 1st and the 4th term, which to not themselves conserve the energy, then
= g™ (Sya, +S_abh,). (8.164)

This approximation is somehow analogous to the RWA, which was discussed in Chapter S. There, we kept
only the slower term of the Rabi equations, in which the EM field and the two-level system are approxi-
mately at resonance, i.e., () ~ @. In other words, we kept the slow terms containing ei(Q-w)t

the fast terms containing eti(Qraw)t,

and ignored

8.8 Synopsis of Hamiltonians.

Let us summarize what we have done so far.
In Section 8.4, we arrived at Eq. 8.100, which describes an EM mode m, i.e.

. 1
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fiw,y, .
Ignoring the term % , the above equation becomes Eq. 8.109

8.4, we arrived at Eq. 8.100, which describes an EM mode 11, i.e. In Section 8.5, we arrived at Eq. 8.130,
which describes a 2LS, i.e.

HZLS = E2§+§_ + E1§_§+

Setting E; = 0 = E, = iQ) (remember Eq. 5.44 and Eq. 5.14), the above equation becomes Eq. 8.131

IA_IZLS = hQ§+§_

The picture is competed in Section 8.7, where the interaction between a mode 11 of the EM field and
the 2LS is described, i.e.,

= 1ig" (S, + S_)(@%, + 4y |

Therefore, the Hamiltonian that describes an EM mode 11, a 2LS, and the interaction between them
(which is often called the Rabi Hamiltonian) can be written as

HY = hw,,dt,4,, + 1QS,S_ + hg™(S, + 5.) @k, +4,,) |, (8.165)

while the states (of the electron and the EM mode 11, without the interaction between them) is

1T, 1), (8.166)
1L, 1) - (8.167)

Concisely, while for the total Hamiltonian for an EM mode 7 we obtain the Rabi Hamiltonian

A

HY = hw,,dtd, + hQS,S_ +hg"™(S. al, + S.4,, + S_at, + 5_a,,), (8.168)

according to the discussion of Section 8.7, we can ignore, in first approximation, the so-called counter-
rotating terms

A

Hcounter—rotating = hgm(‘§+ﬁ;l-n + g—ﬁm) ’ (8169)

so that we arrive at the so-called Jaynes-Cummings Hamiltonian [3]

At = iw,yaf,dyy, + 1QS,5_ + 1g"(S iy + S_a1,) | (8.170)

We note that in paper [3] the authors take the average energy between the two levels as a reference

hQ hQ
point. In such a case, i.e. if we set E; = - and E, = - the second term, initially given by Eq. 8.130,

HZLS = E2§+§_ + E1§_§+,

would become (see Eq. 8.126)

N o
HZLS = 70—2. (8171)

However, we will continue to use E; as a reference point, so that our second term is
HZLS = hQS+S_

In exercise 1 of this chapter we neglect for simplicity the index 712. (A) We find what terms 474,

A A A

a
,5.,5.5,,5,4",5,4,5_4%,5_4,doonstates ||, n) and |1, ). (B) We calculate (a*a), (ad"), (5..5_ >
5_8.), (8,a"), (5,a), <s_a+>, (S_a), for states ||, 1) and |1, n).

.l.
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8.9 Mean (expected) values of quantities related to the Jaynes-Cummings Hamiltonian.

Letus not calculate the average (i.e. the expected) values of the operators involved in the Jaynes-Cummings
Hamiltonian

A A

Hjt = w8y + 1QS,5_ + 18" (S, + S_4Y),
ie. (ala,), (S S_), <S+am>, (S_ﬁm)forthe states:
e (A WA®) =1 ()L, )+ a(B) 1T, n - 1)
o (B) We()) = ()L, n+1) + (1) 11, 1)
Case (A)
@ty = Ga®lablpa®) = {c; (L nl+c5 (1, n =11 fahafer 1L n) + co 11, n 1) )
= lesP (L, nlabanll, ny + cicp (L, nlah a1, n - 1)
+c3e1 (1,1 = 1ahdull, n) +Ica (1,1 = 11aha,00, 1 - 1)
= les PV (U, nll, ny + cieaVn = 1Wn = 1¢L, |t n - 1)
+ eV (1, n =111, n) + 1PV = 1Vn 11, n =11, n - 1)

=nlei -1+ cea(n—1)-0+cyen -0+ (n—1cyf? - 1

= nler? + nlca = leal? = n(ler? + o) = IeoP = 1= o2 =

(at )y =1 = ey (1)1 (8.172)

(54800 = Wa®ISLS_[Wa®) = {1 (Lonl + ¢y (1, n =11}8,8 {e; [Ln) + a1, m 1) ]
= le1 (U, IS S, m) + ciep (L, IS, S_[T, n - 1)
+c3eq (T, n = 115,5_|1,n) + o (1, n = 1S, 5_|T,n - 1)

0
=y ? - 0+ cjop (Lt =1) + coeq - 0+ P (T, n =11, n 1) =
<‘§+‘§—>(A) = |C2(t)|2 (8-173)
Hence,
(@) 4 + (S48 (8.174)

Set) gy = Wa®OS P a®) = {c1 (Lol + ¢ (1, =11|S,dfer 1L n) + ¢ 11,n = 1) |
= le1P (L, IS, dyll, n) + ¢ (L nlS a1, n = 1)
+ 51 (T, 1 = 1S Il 1) + leaf? (T, = 1S, a1, n = 1)

0 0
= IV Lt =T) + ciep Vi~ L (LSt i = 2)
0

+ e V(T n =11, n =1y + |V - 1(1, n =U55iT,n - 2) =

(Satt) a) = S3(er () Vn (8.175)
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(G-l = Wa®IS_ablp ) = [c; (Lnl +c3 (1, n =11 |S_ah{er 1, m) + ¢ |1, m - 1) }
= les2 (L nlS_ahlL, ) + ciea (L, mlS_ak i1, n - 1)
+cyer (T, n =18 ah|L, m) + |62|2<T,n ~115_ak11,n-1)

= ey + W +ciep Vi (L, il m)
+chep (T, n=U5= ,n+1>Vn+1+|c2|W\/_:>

(S ) = ci(Bea(t)n (8.176)
Case (E)
(@) ey = We®Olahaupe®) = {1 (Ln+ 11+ (1 nlJahaufe L n +1) +co 1T, 1) )
= ey (4, 1+ Lahd,ll, n+1) + ¢y (4, n + 1ahd, |1, n)

+ coe1 (1, nlafanll, n +1) + leo* (1, nldhd,, T, n)

0

= PV + IV + 1 (L + 1L n o+ 1) + e (LT, )
0
+ 301 +1) (Ll 1) + 6P T, nit, n)

= lerP(n +1) + nlco = n(jer? + leo?) + s 2 =

<ﬁZ1ﬁm>(E) =1+ ey (D) (8.177)

A

(5180 = WeMISS_Ie®) = {e1 (L +11+ ¢ (1, }S,S_{er 1L n +1) + ¢ [T, m) |

0
= |12 0+ cip (LT ) + Gy - 0+ [P (T, T, 1) =
(5,500 = lea(t)P (8.178)
Hence,
() gy + <§+§_>(E) =n+1 (8.179)

St gy = @IS aulpp®) = {c; (Ln + 11+ ¢y (1 nl Sydfer 1L n +1) +co 1T, ) |
=1 (L + 18,8, n +1) + 6ep (U n + 118,811, 1)
+ cyer (0,8 all, n+1) + o (1, nlS. 1, 1)

0
= |c1*Vn + 1W+ c162 - 0+ cyeyVn + 1T, n|T, n) + o2 0=

<§+ﬁm)(E) = c5(ey(t)Vn +1 (8.180)
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Sty = We®IS_ablpe®) = {¢ (Ln+11+ e (0l }S_abfer 1L, n +1) + 17, m) |
= |c1|2 {,n+ 1|§_ﬁm|l,n + 1)+, n+ 1|§_ﬁm|T,n)
+ cer (1, nlS a1, n + 1) + e (T, nlS_af T, m)

0
=|c1PVn+2{l,n T+ 2)+ceoVn+ 1, n+1||,n+1)
0
+cher -0+ o (TudmF)Vn+1 =

(S_f) g = ci(B)ea()Vn +1 (8.181)

The relationships we have shown above will be useful in what follows, in Sections 8.10-8.11.

8.10 Photon absorption.

Let us focus on the problem of photon absorption, which is described by the equations

[Wa(t) =c1(®) L, 1) + c2(B) T, 11, = 1), (8.182)
_d N
lﬁg [Wa(t)) = HIWA(®)), (8.183)
A = Hjt. = haw,,ah,d,, + 1QS,S_ + 1g"(S.d,, + S_a},), (8.184)
and the initial conditions
c1(0) =1, c2(0) = 0. (8.185)

The left-hand side of the time-dependent Schrodinger equation 8.183 becomes

iﬁ% (W a(t)) = ihily L, ) + iiEo [T, 1 = 1), (8.186)

while the right-hand side becomes
H A1) = (@l +HQS,S_ + 1g™ S dy, + 1g™S_ah)(cy 1L, 1) + 2 T, 11y = 1))

= chw,n, |, n,) +c18Q|0, n,,) + c17g™ T, n,, = 1) A/nyy, + c1ig™n,, + 110,11, + 1)
+ ohiw,, (n,, = 1) T, 1, = 1) + chQ T, 1, — 1) +

Cohig" N1y, — 110, 1y, = 2) + g™ |1, 11,) /12
= cthwy iy, [, ny) + e ig™ 11,y — 1) Ay,
+ CZﬁwm(nm - 1) |T/ My — 1> + CZhQ |T/ Ny — 1> + hgm |~L/ nm> \/ECZ

Acting with (|, | on both sides,

the left-hand side becomes iheq
the right-hand side becomes  fiw,,,1,,,c1 + g™ \/n,,co

161 = Ny, €1 + "M yCo. (8.187)
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Accordingly, acting with (T, 7 — 1| on both sides,

the left-hand side becomes ihc,
the right-hand side becomes  #ig"'\/n,,,c1 + fiw,,,(n,,, — 1)c, + iCcy

ity = §"\nycr + [Q+ (n,, - Dwyler (8.188)

Thus, we obtain the System of Differential equations

¢ M, W,y " c
Bl oim)l] e

Now, we define the generalized Rabi frequency

1/2

Q,, ::[(wm )+§1 } . (8.190)

or, omitting, for simplicity, the index m denoting the EM mode,

12

Q, = [($)2 +g2n1 . (8.191)

The above System of Differential Equations (8.189) can be solved, e.g., with the eigenvalue method (see
Appendix B.7), i.e. the same way we saw in Chapter S. Performing the calculations for the problem of
photon absorption [i.e. for initial conditions ¢1(0) = 1, ¢;(0) = 0] yields

2
ey (B = ’gz sin?(Q, 1) (8.192)
and
2
n
e (OF =1 = ley() =1 - Qiz sin?(Q, 1) |. (8.193)
Hence, from Equation 8.172 it follows that
.2
.. ng? sin”(Q,,t)
() ) = 1 = T , (8.194)

i.e. the average (expected) value of the photon number in the cavity as a function of time will perform
oscillations. The index (A) denotes absorption. Moreover, from Eq 8.173 it follows that

<§+§_>(A) ngz sin?(Q,t) |, (8.195)

i.e. the average (expected) value of the number of electrons at the upper level E; as a function of time
will perform oscillations. Those oscillations are commonly called the Rabi oscillations. Two examples
of Rabi oscillations during photon absorption can be seen in Figure 8.7.
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Since sin?(Q,,t) = % - % cos(2Q),,t), the period of these oscillations is
L . i (8.196)
20, Q, 2 112 '
0= Q) o2y
() +s
Hence, when @ = (), i.e. at resonance, the period reaches its maximum at
T
T=——. (8.197)

g\n

Oscillations in a two-level system Oscillations in a two-level system
(On Resonance and Off Resonance) (On Resonance and Off Resonance)
4 —— - - 4 -
35 3.5
3 3
1 R photons on Resonance
n photons on Resonance w lotting with Py(t) on Resonance
D 25 i ( sonance @ 25 plotting wi 1(t) son:
£2°]  [potnowiy £%°] geo1s"
= g=001s 2%) esons = A=-01s" photons off Resonance
Qo A=-01s" ])hu(uus.uﬂ Resonance Q 5 _ = = = Py(t) off Resonance
© = = = Py(t) off Resonance © n=4
o n=4 Pl(." ‘ﬂ_ R SOnanc o Py(t) off Resonance
© 5(t) off Resonance re)
=15 S 15
o [oR

Figure 8.7: Two examples of Rabi oscillations during photon absorption, i.e, the initial condition is 4
photons in the cavity and 1 electron at the lower level. We use some arbitrary values of the parameters
to make an indicative figure. On the right, the two levels are tangled more strongly (the parameter g is
larger). We present the temporal evolution of the expected value of the number of photons in the cavity,

2
@ta,) =n- % sin?(CQ),,t), both on resonance (A = 0) and out of resonance (A # 0), as well as of

A A

2
the expected value of the number of electrons at the upper level, P(t) = (5,5_) = Z}% sin?(Q,,t) and
at the lower level, P (%).

The maximum transfer percentage between the two levels, .27, is, as evident from Eqgs. 8.195 and 8.190,

VI S (8.198)

- Q%z (w—Q

Therefore,
« for Q) = w (resonance) = ./ = 1, while
« for Q # w (out of resonance) = .7 < 1.

To conclude, the number of photons in the cavity, 71, the quantity ¢ (Eq. 8.158) and the detuning,
defined in Eq. 5.49 as A := w — (2, determine the maximum transfer percentage and the period of oscil-
lations.



QUANTUM OPTICS 257

8.11 Photon emission.

Let us focus on the problem of photon emission, which is described by the equations

[We(t) = 1) L,y + 1) + 2 |T, 1) (8.199)
_d .
lﬁﬁ [\WE(t)) = H [WE(t)) (8.200)
A = HE. = haw,,dl,d,, + HQS,S_ + 18" (S, d,, + S_a},), (8.201)
and the initial conditions
(0)=0,  ¢,(0)=1. (8.202)

The left-hand side of the time-dependent Schrodinger equation 8.200 becomes

)
ih% |\WE(t)) = ificy |1, n, + 1) +ifcy |T, n,,) (8.203)
while the right-hand side becomes

HI|Ve(t)) = (fiw,dhd, + BQS.S_ + 1g™S 4, + hg"S_at) (c1 1L, 1y + 1) + 2 T, 1))
= Tiw,C1 (M, + 1) |1, 1 + 1) + QC; - 0+ Fig"cy [T, 1) Vit + 1 + Fgey - 0
+ fiw oty |1, 1y + 1Qcy T, 1) + Hig™cy - 0+ g™ co |1, 1y + 1) Vi, +1
= 10y, €1 (1t + 1) 1L, 1y + 1) + Fig" 111 + 11T, 1)
+ FwyCoty [T, ) + QU [T, 1) + g™ o\ 1y + 1|1, 11, + 1)

(8.204)
Acting with (], 71 + 1| on both sides,
the left-hand side becomes ihéq
=
the right-hand side becomes  fiw,,,c1(n,, + 1) + ig"c\n,, +1
it1 = w,,(n,, + ey + ¢"\n,, +1cp (8.205)
Accordingly, acting with (T, 11| on both sides,
the left-hand side becomes ihc,
=
the right-hand side becomes  fig"c1y/n,, + 1 + hiw,,con,, + hQc,
ity = g"\n,, +1cy + (@, + Q)cy (8.206)
Thus, we obtain the System of Differential equations
; ¢1) _ ((ty + Dy "Ny +1) (4 (8207)
o) g"n, +1 Q+n,w, |\ '

Now, we define the generalized Rabi frequency

12

2
Q, 1= [(wmz— Q) + Q2 (n,, + 1)} . (8.208)
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or, omitting, for simplicity, the index 7 denoting the EM mode,

) 12
Q.= [(%) + ¢%(n + 1)] : (8.209)

The above System of Differential Equations (8.207) can be solved, e.g., with the eigenvalue method (see
Appendix B.7), i.e. the same way we saw in Chapter S. Performing the calculations for the problem of
photon emission [i.e. for initial conditions ¢1(0) = 0, c,(0) = 1] yields

(n+1)g?
ey ()F = T2 sin (@) (8.210)
n+1
and
(n+1)g?
P =1-la®f =1- Tg sin2(Qpnt) | (8.211)
n+1

Hence, from Equation 8.177 it follows that

ot gn+1)
Bl = N+ S5

sin?(Q,,411) (8.212)

n+1

i.e. the average (expected) value of the photon number in the cavity as a function of time will perform
oscillations. The index (E) denotes emission. Moreover, from Eq 8.178 it follows that

A A 2(n+1
(545 0@ =1~ % sin*(Q,411) (8.213)
n+1

i.e. the average (expected) value of the number of electrons at the upper level E; as a function of time
will perform oscillations. Two examples of Rabi oscillations during photon absorption can be seen in

Figure 8.8.
Since sin?(Q,,,1t) = % - % c0s(2€),,,1t), the period of these oscillations is
T2 I (8214)
- 2(2114—1 - Qn+1 - 2 12 .
O 4 2(n+1)
> 8
Hence, when w = (), i.e. at resonance, the period reaches its maximum at
Tt
T=—. (8.215)

gVn+1

The maximum transfer percentage between the two levels, .27, is, as evident from Egs. 8.213 and 8.208,
_Sm+1) 2(n+1)

02 - o 2
i (TQ) +g2(n+1)

(8.216)

Therefore,

« for Q) = w (resonance) = .%7 =1

« for Q) # w (out of resonance) = .&/ <1

To conclude, just like in the case of photon absorption, the number of photons in the cavity, 71, the
quantity ¢ (Eq. 8.158) and the detuning, defined in Eq. 5.49 as A := @ — (), determine the maximum
transfer percentage and the period of oscillations.
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Figure 8.8: Two examples of Rabi oscillations during photon emission, i.e., the initial condition is 4 pho-

tons in the cavity and 1 electron at the upper level. We use some arbitrary values of the parameters to make

an indicative figure. On the right, the two levels are tangled more strongly (the parameter g is larger). We

present the temporal evolution of the expected value of the number of photons in the cavity, {4},4,,,) 6 =
g2(n+1)

n+ o, sinz(QnHt), both on resonance (A = 0) and out of resonance (A # 0), as well as of the ex-
n+

A

R 2
pected value of the number of electrons at the lower level, P1(t) = (5,5_) = ‘% sin?(Q,,411), and

n+1

at the upper level, P,(t).
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CHAPTER 9

QUANTUM MECHANICAL APPROACH I

In this Chapter:

We continue with the quantum mechanical treatment. We discuss the analogy between the quantities,
which describe Rabi oscillations in the semiclassical and in the full quantum mechanical approach. We
describe the solution of the relevant differential equations with the general eigenvalue method for one
and for many photons in the cavity. We continue by analyzing the boson (as photons are) commutation
relations and the fermion (as electrons are) anticommutation relations and we clarify what commutation
and anticommutation is. Also, we discuss somehow the ladder operators and the second quantization.
Finally, we describe encyclopaedically the fifth state of matter, i.e., the Bose-Einstein condensate.
Prerequisite knowledge: Basic knowledge of Quantum Physics.

9.1 Photon absorption: analogy between the semiclassical and the quantum mechanical approach
for quantities describing Rabi oscillations.

Let us recall the case of photon absorption within the quantum mechanical approach. We found that the
expected value of both the number of electrons at each level and the number of photons inside the cavity
perform Rabi oscillations with period (Eq. 8.196)

27

T= ,
Vag?n + (0 — Q)2

while, the maximum transfer percentage between the levels is (Eq. 8.198)

VA SLUN <
5

5 .
w-Q 4 o2y
2 8
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Additionally, if we recall that in Eq. 8.163 we defined the Rabi frequency as
8
Qr = —=,
R 2\/E

we can easily realize that

2n 2n 4¢%n Q%

T = = , % = = A
\/4g2n + (w - Q)z \/Q% L A2 4g2n + A2 Q%{ + A?

(9.1)

These are the Equations 5.78 and 5.80, at which we arrived within the semiclassical approximation. Hence,

there is a complete analogy between the semiclassical and quantum approximations.

9.2 Photon absorption: solution of the relevant differential equations with the eigenvalue method

for one or many photons inside the cavity.

In Chapter 8 we presented the solutions of the problems of photon absorption and emission without per-

forming the calculation. Here, we present some indicative calculations for photon absorption, considering

two cases: the presence of a single photon inside the cavity and the presence of 11 photons inside the cavity.

As we have already seen, the problem is reduced to finding the eigenvalues and eigenvectors of the

matrix (see Eq. 8.189)
4o gvn
\evn Q+(n-Nw)’

where we have omitted, for simplicity, the index 71 denoting the EM mode.

9.2.1 One photon inside the cavity.

In the case of a single photon inside the cavity, the form of the matrix is simplified, i.e.

A=y &)
Its eigenvalues are found by the roots of the determinant
det(A — AI),
where I is the unit 2 X 2 matrix. Thus,
(W-AMNQ-1)-¢?=0>A - (0 + QA +wQ-¢*>=0.

Therefore, the eigenvalues are

2
+Q -Q
A2,1: @ i\/(a)T) +g2 ::Hliﬂl.

2

Let us now find the eigenvectors corresponding to these eigenvalues.

« For the eigenvalue A; = Hj — ()1, we have

. . w g\ (v o1\ . §v21 = (Hy — Qg — w)oyy
At = =(H, -Q
“ A”’l:’( )( ) (H 1)( ):gvn=<H1—Ql—Q)v21

g QJ\vy U1

}.

(9.2)

(9.3)

(9.4)
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Substituting the second equation to the first one, it follows that
(H; -y —w)(H; -0, - Q)
5 [
8
To obtain a non-trivial solution, the fraction that appears in the above equation must be equal to

unity. Replacing the definitions of H; and {4, we can easily find out that this is indeed the case.
Hence, the choice of Uy is arbitrary (apart from zero) Let us choose vp; = 1. Then,

U1 = 21-

w —Q—-20)
g =H -1 -Q) =0y = T 0w
8
Hence, finally,
a)—Q—ZQl
U, = 28 : (9.5)
« For the eigenvalue A, = H; + ()4, using completely similar considerations, it follows that
w-Q+20
7}2 = ( 213 ) (96)

We recall that the general solution has the form

10)
where the coefficients 01, 0, are determined by the initial conditions. For photon absorption, these are
c1(0) =1, ¢cy(0) = 0. Hence,
a)—Q—ZQl a)—Q+2Q1
+0p——

2 2w Lo 0e=0y(w-Q-20Q)) - 0@ - Q+2Q;) =
0:01+02:>02:—01

cq(t : :
FC)(t) = ( 1( )) = Gﬁle—l/\lt + Gzﬁze_mzt,

1201

8

01 = _2_£)1 = —03. (97)
Therefore,
8 il - 8 i
)= -——2_ i(H1—Qq)t + 2 i(H1+Q)t
o) = =35, 20,°
_ _Zéle—iHlt (eint _ e—int) _ _Qile—iHltism(Qlt)
ey g
= ct)=e 2 |[-i—=sin(Qqt)].
Q
Thus, it follows that
(B = ﬁz sin®(Q241) (9.8)
Of
and
B =1-le)f =1 - g cos2(Q41) |. (9.9)
1

The above relationships are Eqgs. 8.192 and 8.193, studied in Chapter 8 for the problem of photon absorp-
tion, in the case n = 1.
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9.2.2 Mamy photons inside the cavity.

In the case of multiple (77) photons inside the cavity, we need to find the eigenvalues and eigenvectors of
the matrix

Pl gvn
gVn Q+n-Nw)’

Its eigenvalues are found by the roots of the determinant
det(A — AI),
where Lis the unit 2 X 2 matrix. Thus,

(nw - AN)[Q+n-1w-A]-ng> =0
= A2 -[Q+2n-1w]A + nw[Q + (n - 1)w] — ng? = 0.

Therefore, the eigenvalues are

Q+@n-Nw w-Q\
Moy = —————=\||5—) +n=H, 0, (9.10)

Let us now find the eigenvectors corresponding to these eigenvalues.

o For the eigenvalue A1 = H,, — (), we have
= _ 3= hw gVn o) _ _ (4
(s .20
. g\nvy = (H, - Q, — nw)oy }
gVnoy = {H, - Q, ~ [Q+ (n -Dwl} vy

Substituting the second equation to the first one, it follows that

(Hn - Qn - na)) {Hn - Qn - [Q + (1’1 - 1)69]}
ng? ¢

U1 = 21-

To obtain a non-trivial solution, the fraction that appears in the above equation must be equal to
unity. Replacing the definitions of H,, and {2,,, we can easily find out that this is indeed the case.
Hence, the choice of U5y is arbitrary (apart from zero) Let us choose vp; = 1. Then,

w—-Q-20,

2gvn

gVno = (H, - Q, - [Q+ (n-Nw] = vy =

Hence, finally,

w-0-2Q,
61:[ 2g\/n ] (9.11)

« For the eigenvalue A, = H,, + (2, using completely similar considerations, it follows that

w-Q+2Q,
52:( 2g1x/ﬁ ) (9.12)
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We recall that the general solution has the form
= c1(t) = —ilqt iAot
xX(t) := = 0,01 + g,T,e72t,
*) (cz(t)) 101

where the coefficients 01,0, are determined by the initial conditions. For photon absorption, these are
c1(0) =1, cy(0) = 0. Hence,
w-0Q-2Q, w-0+20),

1 = _ 1 _— —
o1 Zﬁg 72 Zﬁg = 01 4Qn =1= 01 = —g\/ﬁ = —03.
0:(71 +0p = 0p = =071 zﬁg ZQn
Therefore,
co(t) = g\/— o i(Hn =) g\/— o i(Hn+ Q)
g\/_—Ht Qut _ iyt g\/_ iH,,t
20, ! (’ ! ) ~Hnti sin(Q),t)
.Q+2n-1)w
=c(t)=e' 2 ! l—ig\m sin(Qnt)l.
Q,
Thus, it follows that
2
et = Z&- sin?(Qy1) (9.13)
and
2
n
G OF =1-l®F =1- Zr o) (9.14)

The above relationships are Egs. 8.192 and 8.193, studied in Chapter 8 for the problem of photon absorp-
tion.

9.3 Commutation relations for bosons and anticommutation relations for fermions.

Let us call 4,, the boson annihilation operator and 4}, the boson creation operator at the state or mode
m. For bosons, the following commutation relations hold:

[, BF] = Oyt

[4,.,4,1=0 (9.15)
[at, at] =
[A, B] or [A, B]_ is the commutator, defined as
[A,B] = AB-BA, (9.16)

hence, when [A,B] = 0 = AB - BA = 0 = AB = BA, i, the quantities A and B commute, which
shows the name origin.

Let us call 3; the fermion annihilation operator and ?1; the fermion creation operator at state i. Then,
for fermions, the following anticommutation relations hold:

(8,4} = 6;
{ﬁi, a.]} = 0 (917)

AT AT
{ai/aj} =0
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{A, B} or [A, B],. is the Poisson bracket or anticommutator, defined as
{A,B} = AB + BA, (9.18)

hence, when {A,B} = 0 = AB + BA = 0 = AB = —BA, i., the quantities A and B anticommute,

which shows the name origin. If we apply the relation {ar, ﬁ;} = (for the same state, e.g. puttingi = j = 7,

.t At Atat . .
we obtain {3,,3,} = 0 = 3,3, = 0, which means that we cannot put two fermions at the same state,

which is the Pauli exclusion principle.

9.4 Ladder operators.

In linear algebra as well as in its applications in quantum mechanics, we define the raising operator, which
increases the eigenvalue of another operator, and the lowering operator, which decreases the eigenvalue
of another operator. These are collectively called ladder operators. In quantum mechanics, the raising
operator is frequently called creation operator, and the lowering operator is frequently called annihila-
tion operator. Well-known applications of ladder operators are in the simple harmonic oscillator and in
angular momentum. In quite a few areas of physics and chemistry, the use of these operators instead of
wavefunctions is known as second quantization.

9.5 Bose-Einstein condensate.

The Bose - Einstein condensate (BEC) is a state of a boson gas cooled to temperatures close to absolute
zero (0 K or —273.15 °C). Under such conditions, many bosons occupy the same quantum state. Then,
quantum phenomena are reflected at the macroscopic scale. This state of matter was predicted by Satyen-
dra Nath Bose [ 1] and Albert Einstein [2, 3]. Bose, not being able to publish his paper regarding the
statistics of light quanta (which are now called photons), sent the work to Einstein, who understood its
value and helped him publish it by submitting it on behalf of Bose [ 1]. Let us note that the photon has
spin s = fi. In the following years, Einstein worked on the subject as well [ 2, 3], and extended Bose’s ideas
to other, more complex particles with mass, whose spin s is a natural multiple (0,1, 2, ... ) of 7i.

The result of the efforts by Bose and Einstein is the concept of the Bose gas, which is governed by
the so-called Bose-Einstein statistics that describe the distribution of identical particles whose spin is a
natural multiple (0,1,2, ... ) of /i. Today, these particles are called bosons. Bosons do not obey to any
exclusion principles such as the Pauli’s exclusion principle that holds for fermions. Hence, two or more
bosons can occupy the same quantum state or, stated otherwise, any number of bosons can be described
by the same wavefunction; this is called boson condensation. Cooling bosons at very low temperatures
causes them to drop into the lowest available quantum state, i.e., they are “condensed”, which leads to a
new state of matter. Thus, in the case of bosons, coherent waves with macroscopic amplitudes can be
constructed. Such waves can be described classically. For example, photons are bosons and the respective
classical field is our familiar electromagnetic field which satisfies the Maxwell equations. This is how any
number of photons can occupy the same quantum state, as it happens inside lasers.

The carriers of interactions, the Higgs boson, the -more complex- mesons, and even larger particles
whose total angular momentum is a natural multiple of i, all fall into the category of bosons. This is the
case even for whole atoms.

For example, 5He hasanucleus consisting of two protons and two neutrons. Both protons and neutrons

h
are baryons are composite fermions, with spin 5 However, they are configured in a way such that the
total nuclear angular momentum is I = 0. Hence, the %He nucleus is a boson. Moreover, gHe has also

h
two electrons, which are fermions with spin 5 However, these two electrons are placed in the 1s subshell
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(which corresponds to angular momentum L = 0) with opposite spins, so that the total electron angular
momentum is | = (. Therefore, since | = 0 and | = 0, it follows that the atomic spin of %He isF =
I+ ] = 0.1In other words, the neutral %He atom is a boson. Hence, many %He atoms can occupy the same
quantum state at very low temperatures (BEC).

Thus, some atoms like %He have a total atomic angular momentum that is a natural multiple of 7, i.e.
are bosons and follow the Bose-Einstein statistics, hence they can occupy the same quantum state (con-
densate) and create coherent waves with macroscopic amplitudes! Moreover, in analogy with the laser, in
which multiple photons can occupy the same state, an “atom laser” can be constructed [4]. The first one
was developed at MIT by W. Ketterle’s group in 1996. We might also add all the “atomic spins” to obtain
a "molecular spin” or even add all the "molecular spins” and so on.

Maybe the most impressive demonstration of BEC is the condensation of alkali atomic gases (e.g. ru-
bidium [5] and sodium [6]) whose spin is a natural multiple of 7. Previously, demonstrations of BEC
appeared in more complex systems, in low temperatures. On the contrary, when BEC was discovered in
cooled alkali vapors in 1995 (Figure 9.1), the experimental evidence was very strong. Additionally, the
interference between two atomic Na Bose-Einstein condensates, with distance 40 um was observed for
the first time [7]; in specific, interference fringes with period 15 pm occurs, which showed that Na atoms
behave just like photons in lasers, i.e. they are coherent. Images of interference patterns for beams of atoms
in BEC state can be found at the webpages of Atomic Quantum Gases @ MIT". The first pulsed atom laser
was constructed in 1997, while, in 2010, BEC of photons in a cavity was demonstrated [ 3].

TG

0% Absorption
Figure 9.1: (Left). Interference pattern of beams of atoms in BEC state. More images like this can
be found at the webpages of Atomic Quantum Gases @ MIT. This image (https://www.rle.mit.
edu/cua_pub/Retterle_group/Projects_1997/Interference/Straight_Int.jpg) belongs to
the MIT group and is a courtesy of Professor Wolfgang Ketterle. (Right). Colored representation of the
velocity distribution of a g;Rb atomic vapor BEC as the temperature decreases. From left to right: just
before BEC has occurred, just after BEC has occurred and an almost pure BEC [5]. Image from [9].
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CHAPTER 10

DENSITY MATRIX AND OPERATOR

In this Chapter:
We are introduced to the discussion about the density matrix and the density operator. We discrimi-

nate between pure states and mixed states. We focus on the density matrix and the density operator of
a two-level system. We continue by analyzing the temporal evolution of the density matrix with the von
Neumann equation. Finally, we discuss the form of the temporal evolution of the density matrix in the
presence of decay mechanisms

Prerequisite knowledge: Basic knowledge of Quantum Physics.

10.1 Pure state and mixed state.

Maybe in all quantum mechanics studied by the reader so far, the examined cases involved a wavefunction,
say W(7, t), that describes the system under study. Then, |W/(7, t)|? is the probability that the coordinates lie
close to the position 7at time f. This wavefunction can be obtained, at least in principle, by the Schrédinger
equation. Since the wavefunction is known, we can calculate the expected value of any given operator A,
as (A) = (V|A|W). This is commonly done by finding a complete basis, say {Dy(7)}, where k is some
collective quantum number able to describe the system. We usually study finite systems, hence k can be
considered as discrete, and we can use sums Ek ; however, in other cases k could be continuous, hence

we would use integrals fdk. If our basis is complete, then the wavefunction can be written as a linear
combination of the form

W, t) = Y k(P (P. (10.1)
k

Therefore, the problem is reduced to obtaining the coeflicients ¢ (#). When they have been obtained, the
expected value of the operator A is (for calculations, see Appendix B.6)

(A =V AP () = D] crt)ep, () Apg = (102)
kk’
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(A) =Y paer (D Avr ), (10.3)
kK

where Ay is the matrix element of the operator A between states |Dy) and |D; ), and we have defined

prrr () = cr(B)cp () | (10.4)

Hence, in principle, everything can be calculated. Such a scenario, in which the system is described by one
wavefunction is called a pure state [ 1].
However, it is not always possible to describe a system by a single wavefunction. In many cases the

(T) system, i.e. the system of interest plus the reservoir, is isolated, then we can define a wavefunction
for the total system, say W (7, 7, ). In the absence of interactions, this wavefunction could be separated
into a product W(7, £) Wy (7, t), which shows that what the system of interest is doing is independent to
what the reservoir is doing, since the two do not interact with each other. Then, we can isolate W(7, t)
as the wavefunction of the system of interest. On the other hand, if the system of interest interacts with
the reservoir, then we cannot separate its wavefunction from the one of the reservoir. However, we might
not want to work with Wi, 7, t), since it contains all the information about what the reservoir is doing;
this may not interest us or we may not need it or it may be extremely complex. This raises the following
question: How can we address such cases, in which there is no well-defined wavefunction for the system
of interest? Such a scenario, in which there is no well-defined wavefunction for the system of interest is
called a mixed state [1].

However, even in such scenarios, there is a route to follow. We will assume that the system of interest it
at the state described by the wavefunction W;(7, t) with probability w;. In other words, instead of saying
that the system of interest is certainly in a specific state, described by a specific wavefunction, we allow it
to lie in different states, described by different wavefunctions, with different probabilities. Of course, the
total probability must be equal to unity; i.e.

Y wi=1. (10.5)

In this mixed state, the expected value of an operator Ais

(A) = D wi(A),;, (10.6)

since the system has a probability w; to be in state W;(7, t), in which the expected value of the operator A
is

Ay, = WOV D) = [ ErviEHAYG . (107)

More detailed calculations can be found in Appendix B.6. However, each of the possible wavefunctions
W, (7, t) can be expanded using a complete basis {®(7)} as

\Iji(7/ t) = Z C;'((t)q)k(?)/ (10-8)
k

with

DIk B =1. (10.9)

k
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Hence, if we know the coeflicients C;((t) and probabilities w;, we can write
(Ay = wJﬁ%an%@Mqu%O

- Z D ACCION RELHGEENG

i kk

= Y w; Y, Bk (t)Apk = Y | Y] wick(®ck () | Avk =

i kK’ kKk'| i
) = 3 pre (D Awk | (10.10)
kk’
where we have defined
P (8) = D wick(B)ck (t) | (10.11)
i

We observe that Eq. 10.4, which holds for a pure state, is a partial case of Eq. 10.11, which holds for a
mixed state. In other words, when we are at a pure state, then there is only one possible i with w; = 1,
so that Eq. 10.11 becomes identical to Eq. 10.4. With this in mind, the expression of Egs. 10.3, 10.10,
which give the expected value of A, become identical, as well. The matrix p, whose elements are given
by Egs. 10.4, 10.11 is called the density matrix. So, we can see that both pure and mixed states can be
described with the help of the density matrix.

10.2 Density matrix and density operator.

The density matrix p, which is a representation of the density operator p, constitutes a more general de-
scription of a quantum system than the description we commonly use with the help of the wavefunctions
W(7,t) or the state vectors [W(t)). The terms density matrix and density operators are often used inter-
changeably, in a loose sense. The density matrix and density operator, as a formalism, were introduced
independently by John von Neumann [2] and Lev Landau [3] in 1927. Both the matrix and the operator
are Hermitian and have a unit trace [4].

While a wavefunction or a state vector is enough to describe a quantum system in a pure quantum state,
the density matrix can also describe a quantum system in a mixed quantum state. For example, it is also
useful in cases of decoherence due to the interactions between the system of interest and a reservoir with
which it exchanges energy or particles.

Egs. 10.3,10.10 show that, to calculate expected values of operators, we only need the quantities py (t)
of Egs. 10.4, 10.11 instead of all possible W; and w;. Since expected values is, in final analysis, all we are
looking for, all the useful information about the system of interest is encoded in the elements of the density
matrix, Py (t). Therefore, the density operator P can be defined in a way such that

(O Dp1) Dy (7)) = i (E) | (10.12)

Using this definition, Egs. 10.3, 10.10 are written as

(A = pae O Apk = Tr(p(t) - A) | (10.13)
Kk
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We denote by Tr the sum of the diagonal elements of a square matrix. This is called the trace of a matrix.
Eq. 10.13 holds because Y}, piis (£) Aprk is the diagonal, kk, element of the matrix that occurs by multi-
plying the matrices p(t) and A. Thus, if we add up these diagonal elements, i.e. if we take the sum over k,
we obtain the trace of p(t) - A, which is denoted by Tr(p(t) - A). The trace of a matrix is equal to the sum
of its eigenvalues and remains unchanged if we choose another basis. Let us see some properties of the
density operator.

1. We can give an alternative definition of the density matrix for a pure state, i.e. Eq. 10.4 can also be

written as
p = [W)<W[| (10.14)
since, the representation
ci(t)

W) = Cz.(t) ,

which implies
W= o®n ]
yields

a(h) (et ca(beyt) -
W) (W] = CZ.(t) [c{(t) cy(t) - ]: cz(t).ci(t) Cz(t)'CE(t) w|=p (10.15)

2. The probability to find the system at the state £ of the basis {®y(r)} is psg(t). This follows by the
definition of Eq. 10.11 for k = k’ = €. That s,

pec(t) = D wic (e () = D wilcy (B, (10.16)

Each term in this some is the probability to find the system at state i times the probability, being in
i, to find it at the state € of the basis {®Py(7)}. Therefore, the sum is the total probability to find the
system at the state £ of the basis {Dy(7)}.

3. The trace of the density matrix is equal to unity, i.e.
Tr(p(t)) = 1. (10.17)

This follows from Eq. 10.16 by summing over ¢, i.e.

et = Y] Y wilck(®)P = Y, w DIkt = Y wi =1, (10.18)
£ € i i £ i

since Y}, |Cé;(i‘)|2 =1(Eq.10.9) and ¥, w; = 1 (Eq. 10.5). Alternatively, we can consider Eq. 10.13
forA=1 , where 1 is the unit operator, hence

(1) = Tr(p(t) - 1) = Tr(p(t)) (10.19)

and observe that the expected value of the unit operator is 1. This property essentially replaces the
normalization condition for the wavefunction of a system at a pure state.

4. The density operator is Hermitian, p = ', i.e. for the elements of the density matrix it holds that
Pk’ = Pix- This can occur directly, by obtaining the complex conjugate of Egs.. 10.4, 10.11.
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5. The density operator p is positive semidefinite, i.e. the eigenvalues of ¢ are > 0. This can be obtained
as follows: Since the operator p is Hermitian, there is a complete basis {®,,(7)} such that the matrix
p is diagonal. Since the operator p is Hermitian, its eigenvalues must be real. From property 2.,
we know that these eigenvalues, which are the diagonal elements of p using the basis, represent
probabilities, hence they are not only real, but also positive or zero. Since the matrix p is diagonal
in this basis, p,, ,; = 0, 0p, 0y is the respective eigenvalue, which, using property 2., is also the
probability to find the system at state 71.

6. Tr(pz) < 1. This can be shown as follows: Since the trace does not depend on the basis we use,
let us calculate it in the basis that makes p diagonal, i.e. in {®,(7)}. Therefore, Tr(pz) =%, 02

However, g, are probabilities, hence 0 < g, < 1. Thus, 0? < (2, 0,)% = Trz(p) =12=1.

7. If the system is at a pure state, then Tr(p?) = 1. This is due to property 1. That is, for a pure state
Eq.10.14,
p =19l

holds, thus,
p* = W) (W|W) (¥| = [W) (V| = p.

Hence, Tr(p?) = Tr(p) = 1, due to property 3. Therefore, the value of Tr(p?) tells us whether the
system is at a pure state (Tr(p?) = 1) or a mixed state (Tr(p?) < 1).

Finally, we need something analogous to the Schrodinger equation. When we are at a pure state, the
Schrédinger equation allows us to find the wavefunction at any given time, since we know it at the initial
time. We would like to have a similar equation which yields p(t), given that we know p(0). This equation
exists, is called the Liouville-von Neumann equation, and has the form

T
i g—it) = [A, p()], (10.20)

where [ , ] denotes the commutator and H is the Hamiltonian of the system. See Eqgs. 10.31 or 10.39
below. We have to notice that this equation can be used only as long as the Hamiltonian of the system
exists (i.e. the system is isolated). If the system interacts with a reservoir, then we have to include the
result of the interaction within the evolution of the density operator. See, for example Eq. 10.53.

10.3 Density matrix and density operator for a two-level system at a pure state.

Following the notation we used in previous chapters, the state of a two-level system can be described by
the equation

[W(5)) = c1(8) 1) + c2(D) IT) = c1() [D1) + c2(8) (D) - (10.21)
Multiplying by (7],
AW) = c1(8) (ALY + ca(t) (AT) = c1(t) (A1) + ca(t) (D),
we obtain the spatial representation
W(7,t) = c;(H)DP1(7F) + co(H) Dy (7). (10.22)

Thus, the probability to find the electron at the ground or the excited level is expressed by

ei()P =i er(t)” and lea(D)P = ca(t) cpt)” (10.23)
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A
=

Let us calculate the average value of the dipole moment at state 10.22. Since p = —e7’ = —¢¥, we have

@ = [V (ORI + OXM) ) (1O + ca(E)()
= e OF [ dVOID-eND1()+ci(ex(t) [ AV FN-enD,
+es(e1(t) [ VRPN + O [ dVORP(-eRID,(

Therefore, A
(P) = ci(O)ea(t) P12 + c5(t)er(H) Pay,
since
f AVD: (7)(~e)D,() = 0 and f AVD37)(—e) Dy (7) = 0,

while

Pro= [ Vi) -enD,@

P = [ VRO,
And, since

- o
P21 = P12/

(10.24)

the average value of the dipole moment, (ﬁ ), is a real number, as a sum of two complex conjugate num-

bers.
Eq. 10.24 contains the quantities

[a)c(t) and otya))

(10.25)

Eq. 10.23 contains the “diagonal elements” and Eq. 10.25 contains the “off-diagonal elements” of the

2 X 2 (in this case) density matrix, which has the form

p= lclci ClcEl — lpn Plz],

* *
CaC1 CrCy P21 P22

(10.26)

where we have omitted time-dependence, which is implied. In other words the density matrix element is

Prm *= CnCopy |

And, since we can use the representation

c

W) = [ 1]

€2

and
Wl =[q o]

it follows that

€11 €16

_ [+ +1_ 2|
"P><‘I"—[c2][cl Cz]—|czc>i CZCZ]_p

(10.27)

(10.28)

(10.29)

(10.30)
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10.4 Time evolution of the density matrix: the von Neumann equation.

The von Neumann or Liouville-von Neumann equation describes the time-evolution of the density ma-
trix. It has the form

o

ZHE =[H,p], (10.31)

where [ , ] denotes the commutator.
Let us now prove Eq. 10.31. From Eq. 10.27 it follows that the rate of change for a density matrix ele-
ment is
Pum = CuCy + CpCin- (10.32)

Of course * and'capbe performed in any order, since e.g, ifz = a+if,z € C,a, f € R, thenz" = a—if,
Z = d&+iB,and (z*) = & — if = (2)*. From the Schrodinger equation

JV(r, t N
AL UL e
Jdt
and Eq. 10.22, it follows that
iht, = Y, ek (10.33)
k

We used the definition of the matrix element of an operator (Eq. 5.29) and the orthonormality of q)k@ R
ie. [dV®, 7 D(P) = O, Thus,
—ifiéy, = Y, CtHy. (10.34)
k

But H}, = Hj,, since the Hamiltonian is a Hermitian operator. Combining the above, the time evolution
of the density matrix element occurs as

lhpnm = E(anpkm - pnkam) . (10-35)
k

In a somewhat different formulation, if we consider the temporal evolution of the general definition
(Eq. 10.14), it follows that

p =) (W] + W) (¥, (10.36)

while, from the Schrédinger equation ‘
i)y = H W) (10.37)

it follows that '
(V| = (V| H*. (10.38)

But A = H, since the Hamiltonian is a Hermitian operator. Combining the above, the time evolution of
the density matrix occurs as

ifip = H|W) (V| - |W)(V|H = HAp - pH,

or, more concisely,

ifp =[H,pl|, (10.39)

which is Eq. 10.31.
We notice that, according to the definition of the matrix element of an operator (Eq. 5.29),

Hy = f AV®, 7)) HD, (7). (10.40)
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Consider the Hamiltonian of a perturbed two-level sytem, as in Eq. 5.18,
H = HO + u;;(?, t),

where U (7, t) is the potential energy of the perturbation and H,, is the Hamiltonian of the unperturbed
two-level system. Then, Egs. 10.40 and. 5.18 yield

Hy = f AV D, (7 HoDy(7) + f AV D, () Ug (7, Pk (7) =
Hyx = Exbyi + Ugpi(8). (1041)

Combining Eqgs. 10.33 and 10.41, we obtain

iht, = cyEp + Y, Uz n(t) (10.42)
k

In a two-level system within the dipole approximation, which leads to the diagonal elements Uz (t)
becoming zero (Section 5.3, Eq. 5.43), it follows that

ZhCl = E1C1 + Uglz(t)CZ, (1043)
thz = E2C2 + Ug21(t)cl. (1044)

For real @(7), Uz (t) = Ugra(1).

10.5 Time evolution of the density matrix in the presence of decay mechanisms.

Egs. 10.43 and 10.44 that we just obtained in Section 10.4 can be modified so that the decay of the energy
levels 1 and 2 can be included. This decay can be due to spontaneous emission or other mechanisms, e.g.,
collisions of the atoms of the gas mixture inside a gas laser. As we will see in Chapter 11, a fast decay of the
lower level (1) contributes to the achievement of population inversion. Moreover, we will see (Eq. 11.42)
that, for a laser to operate, the lifetime of the upper level (2) must be larger than the lifetime of the lower

level (1), i.e. £, > t;. The decay of energy levels 1 and 2 can be achieved by including the term
ih .

——I, 10.45
5 (10.45)

to the Hamiltonian of the perturbed two-level system, i.e. to Eq. 5.18. The operator [ has the property
[D.7) = VPr(?), V& € R. In other words,

Lok = Viuk (10.46)
or, in matrix form,
&y 0
I'= . 10.47
o] (1047)
Thus, the Hamiltonian becomes
n . 1l
H=H,- Er + Ug(7, 1). (10.48)
In this case, Eq. 10.41 is modified to
in
Hy = ExOu + Ugni(t) = = VO (10.49)

2
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Therefore, using Egs. 10.33 and 10.49, we obtain

o 7]
ih¢, = c,E, + 2 Uz i (t) — Ecny” (10.50)
k

Hence, if we take the decay mechanisms into account in a two-level system, Eqs. 10.43 and 10.44 are
replaced by

ih

thl = E1C1 + u%lZ(t)CZ - E)/lCl, (1051)
ih

thQ_ = E2C2 + Ug‘:Zl(t)Cl - E')/zCz. (1052)

Using Egs. 10.51 and 10.52, and assuming that Ugy1(t) = Ug1,(t), it can be shown that the time evolu-
tion of the density matrix with decay mechanisms is given by the equation

=

ihp = [H, p] - ={L, p} | (10.53)

N

We recall that [ , ] denotes the commutator and {, } the anticommutator.
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CHAPTER 11

LASER

In this Chapter:

Initially, we analyze the basic parts of a LASER. As an example, we examine the He-Ne LASER. We derive
the rate equations for the populations of the levels, participating in the emission of coherent EM radiation,
and for the EM radiation density inside the cavity. We evaluate the number of longitudinal modes of the
cavity inside the line width of emission of coherent EM radiation. We find the populations of the levels
and the density of EM radiation in the steady state. We explain what critical pumping and population in-
version are. We continue by explaining how we solve numerically the rate equations in the general case,
i.e., at every instance. Here we include a simulation laboratory: practice at solving rate equations numer-
ically. Then, we discuss the generation of standing EM waves inside a cavity. We discriminate between
longitudinal and transverse EM modes. Afterwards, we discuss the shape of transverse modes within a
rectangular parallelepiped and within a cylindrical cavity. Also, we list LASER types and indicative appli-
cations, and we say a few words about p-n junction LASER or alternatively diode LASER and for quantum
dots LASER. Finally, we refer to transverse mode isolation techniques.

Prerequisite knowledge: Basic knowledge of Electromagnetism and Quantum Physics.

The LASER (Light Amplification by Stimulated Emission of Radiation) is based on ideas by Einstein,
published in 1916-1917 [ 1, 2]. Decades later (1950-1960), and after international efforts by many promi-
nent or non-prominent researchers, the first MASERs and LASERs were developed. In 1964, Charles
Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics “for fundamental
work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers
based on the maser—laser principle”. The first LASERS were even characterized as a solution looking for a
problem; however, today, LASERS are used in medicine, communications, everyday life, military, indus-
try, cosmetics, etc. A LASER is a device that converts other forms of energy into coherent EM radiation.
The incident energy can be EM energy, solar energy, chemical energy, etc, while the outgoing energy is
coherent EM radiation. Apart from the acronym LASER, today we have derivative terms, such as “to lase”,
“lasing”, etc. In what follows, we will use the terms LASER and laser interchangeably.

Constantinos Simserides (2023). «Quantum Optics».
Kallipos, Open Academic Editions. https://dx.doi.org/10.57713/kallipos-186
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Figure 11.1: ALASER device.

A LASER device is depicted in Figure 11.1. The active medium is a collection of building blocks
(atoms, molecules, ...). The cavity is the space in which the active medium is confined, e.g., a glass tube.
There are standing waves along the direction of the mirrors, i.e. parallel to the “optical axis”, e.g., the z-axis.
The distance between the mirrors, L, determines the allowed modes of EM radiation, i.e. it determines
@Wyy,. These are the so-called longitudinal modes. The transverse modes, which are created by the width
of the cavity, determine the energy distribution along the cross-section, i.e., normal to the “optical axis”,
i.e., the xy-plane.

11.1 He-Ne LASER.

The excitation - pumping mechanism in a He-Ne LASER is presented in Figure 11.2. The active medium
is a mixture of gas phase Neon (Ne) and Helium (He) in approximately 1:10 ratio. The Neon atoms play a
central role, while the Helium atoms help with the excitation of Neon atoms, as it will be explained below.
The excitation mechanism contains the following steps: Initially, an electric discharge creates accelerating
electrons which excite the He and Ne atoms. Next, the He atoms excite the Ne atoms. In this LASER type,
the most important processes take place between four (4) energy levels, as shown in Figure 11.2. Two
meta-stable energylevels, E5 and E3, actas upper LASER levels, while the less stable levels E4 and E; actas
lower LASER levels. A meta-stable energylevel is a “semi-stable” energy level, in the sense that it has anon-
negligible, yet finite, lifetime. Thus, the main allowed transitions are: the main visible transition between
levels Es and E,, which is the classic characteristic red of the He-Ne LASER in 632.8 nm, the infrared
transition between levels E3 and E; in 1.152 ym = 1152 nm, and the infrared transition between levels
Esand E; in 3.391 um = 3391 nm. The energy levels have a fine structure, i.e,, they are in fact complex.
Therefore, the resulting energy transitions are not delta functions; instead they have some distribution
around a central wavelength. Although the most important, “trademark” transition of the He-Ne LASER
corresponds to a wavelength A1 = 632.8 nm (red, slightly to orange), there are more transitions, such as
Ay = 1152 nmand A} = 1523 nm (infrared), A3 = 3391 nm (infrared), A4 = 543.5 nm (green), A5 =
594.1 nm (yellow), Ag = 604.6 nm and A;, = 611.9 nm (orange)). Which of the above prevails depends
on the construction of the LASER device, e.g., on the distance between the two mirrors. We can enhance
a particular color by using a special coating on the mirrors that mainly reflects the desired photons. For
example, if we want to enhance the red light, we use a coating that reflects only the red light. By doing so,
the red light is reflected inside the cavity and its photons are multiplied via stimulated emission between
levelsEs and E;, while the photons with other wavelengths are forced to always pass through the active
medium. Other wavelengths can be enhanced in a similar way. Thus, there are today orange, yellow, and
green He-Ne LASERS, which take advantage of transitions that are not depicted in Figure 11.2. However,
the red light 632.8 nm is the most efficient one in a He-Ne. Finally, let us note that in some LASER devices
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there is the possibility of tuning, i.e., we can choose the desired wavelength or even emit two or more
wavelengths simultaneously.

energy (eV) A Heatom Ne atom
LASER transitions _ 3391nm

20.651 Es 54— ﬁQES ===F,
< >

1981 4 E 3 Ex =
‘ 1152nm ; E,
energy transfer _,-‘: ~600 nm
through collision .} fast transition
between atoms _ .'* (spontaneous emission)
‘-

= transition to the

{7 efzcitation‘ "1_‘ ground state (collisions
via electric *~.  with tube’s walls)
discharge ™
f f ground state .",'
He E; Ne

Figure 11.2: Energy diagram of the He-Ne LASER. Only the main levels and transitions are presented.

Although the transitions on which emission of coherent EM radiation depends have to do with Ne
atoms, the He has is used in the He-Ne LASER to increase efficiency. This is due to the following two
reasons: First, a direct excitation of Ne atoms thought the electric discharge is inefficient, while the exci-
tation of He atoms is efficient. Second, one of the excited levels of the He atom (the one denoted as E5)
has almost the same energy as one of the excited levels of the Ne atom (the one denoted as Es, too). This
is also the case for the excited levels denoted as E3. The excitation of the Ne atoms occurs in three stages:
1. A high voltage accelerates electrons from the cathode to the anode.

2. These electrons collide with He atoms and transfer to them their kinetic energy, so that the He atoms
are excited and transfer energy to higher levels.

3. The excited He atoms collide with Ne atoms and transfer to them the excitation energy.

Thus, the He atoms do not participate in lasing, but increase the efficiency of Ne atoms excitation to the
upper levels that participate in lasing. This results in a large increase in efficiency.

In most He-Ne LASER applications, the transitions between levels E5 and Ej, which yield red light
with wavelength A = 632.8 nm, are used. This is the strongest line in the visible region. A problem in the
creation of these photons is that the energy level E5 can also emit to the infrared region with A = 3391
nm, which corresponds to the transition between E5 and Ey4. This leads to a decrease in the population of
the energy level E5, without emitting visible radiation.

The amplification of coherent EM radiation occurs by stimulated emission. Ina common He-Ne LASER,
the amplification of the active medium is about 2%. In other words, in a single passage through the active
medium, from the one mirror to the other, the amount of radiation increases from 1 to 1.02. Losses are
owing to collisions of excited He atoms with the walls of the tube containing the gas, absorption by other
molecules, etc. Thus, it must be below 2%. For a LASER to be operational, the lifetime of the lower en-
ergy levels that participate in lasing must, as we explain below, be very small, so that population inversion
can be achieved. In the Ne has, which is the active medium, the transition from the lower energy level
that participates in lasing is not very fast, but it is accelerated thought collisions with the walls of the tube.
Since the number of collisions with the tube’s walls increases as the tube becomes smaller, amplification
of LASER radiation is inversely proportional to the radius of the tube. Thus, the radius of the tube must
be as small as possible. The output power of He-Ne LASER commonly varies between 0.1-100 mW. One
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of the two mirrors is totally reflective, while the other is about 99% reflective. Since the latter mirror lets
only 1% of the radiation through, the power inside the cavity is 100 times larger than the emitted power.
In He-Ne LASERS, the length of the cavity is of the order of some tens of cm and the thickness of the
cavity is of the order of some mm.

11.2 Rate equations for the populations of the levels participating in emission of coherent EM ra-
diation and for the radiation density.

We will derive the rate equations, i.e., the equations that describe the time-evolution of the population
of two levels that participate to emission of coherent EM radiation and the equation that describes the
time-evolution of EM radiation density inside the cavity. In Figure 11.3, we present a system with four
levels, in which electrons are pumped from the ground level (g) to the upper LASER level (2). Thus, here
“two-level system” means that there are two levels, (1) and (2), between which coherent EM radiation is
emitted, but there are also auxiliary levels such as (h) and (g). The help energy level (h) is needed so that
electrons do not stay in (1), i.e., so that population inversion between (1) and (2) can be achieved. Thus,
we assume that the spontaneous transition (1) — (h) is relatively faster than the spontaneous transition
(2) — (1).Additionally, the transition (1) — (h) is either non-radiative, i.e., the energy is lowered without
phonon emission, e.g., through phonons, or, even if it is radiative, the emitted phonons are not supported
by the cavity’s mirrors. A transition from one level to another is called non-radiative if it occurs without
absorbing or emitting photons, e.g., by phonons, while it is called radiative if it occurs by absorbing or
emitting photons.

energies rates populations
upper LASER
E N2 energy level
2821 NQBgll) '\TlBl.’.p
R E N lower LASER
1 energy level
pumping =N, Alﬁ fast transition
auxiliary (help)
E Nh energy level
e.g. collisions
with walls of cavity
ground
E g Ng energy level

Figure 11.3: Representation of a system with two LASER levels and two auxiliary levels, in which electrons
are pumped from the ground level to the upper LASER level.

We start by defining pumping, R, = R, as the rate at which we raise electrons from the ground level
(g) to the upper LASER level (2). That is, pumping is the number of electrons that we raise divided by the
corresponding time. Thus, its units are [R] = 1/s. Below, we will define several rates that have the same
units, [1/s].

« For an atom, the probability for spontaneous emission from level (1) to the help level (h), in time
dt, is

dAWP " = Aydt. (11.1)
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We define the “lifetime” of level (1), #7, through the relationship

1
1 :Alhtl = hHh=—) (112)
Ay
that is, #; is the time needed for dWip_')ehm' to become equal to 1. Therefore, we can write
m At
AW = o (11.3)
1

The number of atoms that transition from level (1) to level (h) in time d#, via spontaneous emission,
is

Sp. em. N
AN 5™ = Ny Ayydt = t—ldt. (11.4)
1
Therefore, the transition rate from level (1) to level (h) via spontaneous emission is
AN 5 Ny
—= =N;Ay, = —. 11.5
T = Nidy, = (115)

For an atom, the probability for spontaneous emission from level (2) to the level (1), in time dt, is
dwzp_::lm = AZldt' (116)

We define the “lifetime” of level (2), t,, through the relationship

1
1=Ant, = \th=—| (117)
Ap
that is, ¢; is the time needed for d W;p_.)elm " to become equal to 1. Therefore, we can write
mdt
AW, = o (11.8)
2

The number of atoms that transition from level (2) tolevel (1) in time d#, via spontaneous emission,
is

Sp. em. N
AN ™ = Ny Agydt = t—zdt. (11.9)
2
Therefore, the transition rate from level (2) to level (1) via spontaneous emission is
AN N,
—=— =NyAy = —. 11.10
dt 24121 tz ( )

For an atom, the probability for stimulated emission from level (2) to the level (1), in time d¥, is
AW3ES™ = By p(v)dt. (11.11)

The number of atoms that transition from level (2) to level (1) in time dt, via stimulated emission,
is
AN3ES™ = NoBy p(v)dt. (11.12)
Therefore, the transition rate from level (2) to level (1) via stimulated emission is
ANgS

dt = N2B21p(1/). (1113)
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« For an atom, the probability for stimulated absorption from level (1) to the level (2), in time dt, is
AW5t35 = By p(v)dt. (11.14)
The number of atoms that transition from level (1) to level (2) in time df, via stimulated absorption,
is

dNit_z:g = NlBlzp(V)dt. (1115)

Therefore, the transition rate from level (1) to level (2) via stimulated absorption is
N

dt

= NlBlzp(V)' (1116)

« If we were in thermodynamic equilibrium, i.e., there were no losses and no pumping, we would
write, as we already know,

le_)z = dN2—>1 (=4
Ny WIS = NpldWS™ + dWSsp] &
N1Bipp(v, T)dt = Np[Apdt + By p(v, T)dt]
and then, by denoting Ay; = A, By; = By = B and comparing with the Planck’s law, we would

8rthv3
3

A
arrive at the relationship 3= This has been done in Section 3.2, e.g. see Egs. 3.7 and 3.10.

« However, now we have both losses, expressed by t, and pumping R. Additionally, p does not cor-
respond to a black body with a specific temperature at thermodynamic equilibrium, so we do not
have p(v, T) but rather p(v). Thus, we expect to see

N; = N1(R, tp)
N, = Ny(R, tp)
p = p(R, to)

Let us construct the differential equations for the rates, setting Ay; = A, By; = B1, = B. We consider the
positive and negative contributions to the populations of levels (1) and (2) as well as the energy density
of EM radiation in an infinitesimal frequency interval.

For the rate of change in the population of level (1), we have

le Nl NZ
_— = ———N1B12p+N2B21p+ —_—. (1117)
dt t ty

In the left hand-side of the above equation, the first term corresponds to losses towards level (h), the
second one to losses towards level (2), while the third and fourth ones correspond to gains from level (2).
Therefore, simplifying the notation (Ay; = A, By; = By, = B),

dN- N
d_tl = —t—l + Bp(N, - Ny) + AN, (11.18)
1

For the rate of change in the population of level (2), we have

dN. N
d_t2 :R+N1B12P—N2B21p—t—2. (1119)
2
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In the left hand-side of the above equation, the first term corresponds to gains from pumping, the sec-
ond one to gains from level (1), while the third and fourth ones correspond to losses towards level (1).
Therefore, simplifying the notation (Ay; = A, By; = By, = B),

dN.
-Ef:R+BmNrJﬁynﬂﬁ (11.20)

For the rate of change in the energy density of EM radiation in an infinitesimal frequency interval, we
have

dp

dt

In the left hand-side of the above equation, the first term describes losses towards the mirrors in a phe-

hv
=~ + [-NiBup + NoBp + AN, | FO). (1121)

nomenological manner, the second one corresponds to losses due to stimulated absorption, the third one
to gains due to stimulated emission, and and the fourth one to gains due to spontaneous emission. We
have to pay attention to the fact that spontaneous emission occurs towards any direction, hence we do
not take advantage of the whole term Ay N to increase EM radiation in the cavity. We only take advan-
tage of those photons that are emitted towards a direction approximately parallel to the axis defined by
the mirrors. Therefore, since only a small portion of the total solid angle is of interest, the coefficient A,
occurs, which is much smaller than Ay, e.g., Ay, = 107 A,;. Again, simplifying the notation (Ay; = A4,
By = Byz = B),

dp _ p 1
E = —% + [BP(NZ - Nl) +A Nz] VF(V) (1122)

Egs. 11.18 and 11.20 are sometimes referred to as “matter equations”, while Eq. 11.22 as “field equation”.

3
Let us comment a bit on the units. For the Einstein coeflicients, [A] = 1/sand [B] = ez while for the
S

d
energy density of EM radiation in an infinitesimal frequency interval, [p] = m3JHz = % Thus, [d_Ft) ] = é

As seen in Eq. 11.22, we express the radiation losses to the mirrors with a phenomenological term —tﬂ.
0

That is, we introduce a quantity £, with units of time. Thus, losses are expressed in units [_tB] = % The
0 m

parameter f( characterizes the time needed to empty the cavity of p due to losses to the mirrors, in the
absence of an active material. The smaller the reflectance of the mirrors, i.e., the larger the losses, the less
the time 4. N7 and N, are populations with units [N7] = [N;] = 1. Based on the above,[N1By,p] =
[N2By1p] = [A21N;] = [A3N,] = 1/s. F(v) is the shape of the transmission line, which, as we have
already mentioned, is not a delta function; rather, it has some width. This is schematically depicted in
Figure 11.4. F(v) is called spectral line shape function and has units [F(v)] = 1/Hz. FWHM means
Full Width at Half Maximum. The shape of this line can be approximated in some cases by a Gaussian
or a Lorentzian, but this subject exceeds the scope of this book. V' is the volume of the cavity, with units

[V] = m3. Thus, [hVVF (V)] J Therefore, the right-hand side of Eq. 11.22 has units #

T mlHz

Egs. 11.18,11.20, 11.22 can alternatively be written as

d

i _ M + Bp(n, — ny) + An, (11.23)

it i

d

% =7+ Bp(ny — ny) — Any (11.24)
d
0= P [Bo(ny — my) + A'my | vF() (11.25)
it~ t
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Spectral line shape function, F(v)

4 AVEWEM o 1 7 GHy,

o2 ; t‘« Full Width at
,’; | le &,}&\ Half Maximum
Af FWH L
/;.-

| | | ‘ C
Vm Vi Al/m.m*jl — 27

|
vy ~ 0.474 PHz

Figure 11.4: The spectral line shape function, F(), expresses the shape of an emission line. FWHM stands
for Full Width at Half Maximum. The central frequency, v, its FWHM, AVSWHM, two consecutive fre-

quencies of longitudinal modes, v, V;,,+1, and the distance between them Av,, ,,, ;1 = ZLL , are noted. As
an example, typical values for the red line of a He-Ne LASER are presented. In this specific example, the
FWHM contains 4 longitudinal modes.

where we have set

N:
n; = 71 (11.26)

and

R
=—. 11.27
r=5 (11.27)

11.3 Number of longitudinal modes within emission line width.

In Chapter 8 (Eq. 8.50) we saw that inside the cavity only EM modes 1 such that the circular frequency

1S
mric
Wy = T’m e N

are supported. L is the distance between the mirrors along the z-axis. Therefore, the frequency is

mc
Vi = M e N, (11.28)
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These EM modes were derived by imposing boundary conditions along the z-axis connecting the two
mirrors. Since this dimension of the cavity on the z-axis has usually much larger size than the other two
ones on the xy-plane, these modes are called longitudinal modes.

The red line has a central wavelength

Ag = 632.8 nm,

hence, the corresponding central frequencyis vy = Ai ~ 0.474 x 10°Hz =
0

Vo = 0.474 PHz.

The FWHM of the red line is AVSWHM ~ 1.7 GHz. Thus,

FWHM
Avg

—— 2x36x107°,
Vo

i.e., the red line is fairly thin; see Figure 11.4. Let us try to answer the following question: Are there modes

m supported by the cavity in the frequency region of v with width Av§"VF™? From Eq. 11.28, we con-
clude that the frequency distance between longitudinal EM modes is

c
AViyms1 = oL (11.29)

Let as assume that the length of the cavityis L = 0.4 m. Then, Av,, ,, .1 = 375 MHz. Within the FWHM
of the spectral line there will be
[ AvEWHM

l EM modes. (11.30)
AVm,m+1

AEWEMT  T17GHz | =1 _
Avm,m“] - [375 MHZ] - [4'533] = 4

Therefore, we see that there are several longitudinal modes inside the linewidth (there are also transverse
modes, see Section 11.7). The width of each longitudinal (and transverse, as well, , see Section 11.7) EM
mode is of the order of AVEWHM =~ 1 ¢ 10 MHz and is related to the loss rate of the cavity through the
mirrors, £y [3].

Here, [...] denotes the integer part. In this specific example, [

11.4 Finding level populations and EM radiation density in the steady state. Critical pumping. Pop-
ulation inversion.

In the steady state, we have

le_sz_O_dp

=< = . 11.31
dt dt dt (11.31)
Thus, Eqs. 11.18 and 11.20 become
N,
_t_ +BP(N2—N1)+AN2 =0 (1132)
1
R+ Bp(N; —N;)— AN, =0 (11.33)

while, if we ignore A’ as much smaller than A, then Eq. 11.22 becomes

!
—tﬂ +Bp(N, - Ny) + %F(v) —0e (11.34)
0
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Bp(N, - Np) = —2 (11.35)

Adding Egs. 11.32 and 11.33 by parts, we obtain R = % &
1

(11.36)

Adding Egs. 11.33 and 11.35by parts, we obtain

R - AN, = hvp & (11.37)
to3 F(v)
R
N, P (11.38)

A AYEw)

There are two cases for p, either (C1) p > 0 or (C2) p = 0.

Let the case be (C1), i.e,, p > 0. Then, Eq. 11.37 yields R > AN,. Given Eq. 11.36 and the definition
(Eq. 11.7) of the lifetime of level (2) A = Ay = tl’ we obtain % > Ne =
2

1 2
t, h

b _h 11.39
N, N (11.39)

Now, from Eqs. 11.35, 11.36, 11.38, since p # 0, it follows that

R 1
B|+ - +] ~B4R= ——— & (11.40)
AtovF(V) tovF(V)
hv tz - tl 1

= Rty—F(v)—— - — 1141
P 0y, ) ) Bt, ( )

Let us note that if {; < ¢, then from the above equation it follows that p < 0. Thus, it must hold that

. (11.42)

In other words, the lifetime of the upper level (2) must be larger than the lifetime of the lower level (1).
However, in the case we are currently examining it holds that p > 0, hence

1
R > — =R, (11.43)
Bto(t — t1) - F(v)

The quantity R, is called critical pumping. Apparently, for R, > 0 & Eq. 11.42. Thus, p can be written
as

= -—= (11.44)

From Eqgs. 11.38, 11.43, 11.44, it occurs that

N, = R+ (t, - H)R.| (11.45)




QUANTUM OPTICS 289

Let the case be (C2),ie, p = 0. Then, Eq. 11.37 yields R = AN,. Therefore,
(140

To wrap this up, in the steady state, the solutions to Eqs. 11.32,11.33, 11.35 are

Ny =HR, VR] (11.47)
tHR, VR<R
= 2 ¢ (11.48)
th + (tz - tl)RC/ VR> RC
0, Y R <R,
p={AR A 1 1 (11.49)

== R-—, YR>R,
BR., B BHR, Bt

Next, let us make some remarks.

Remark 1. The population inversion is defined as

|AN := N, - Np |, (11.50)

hence, from Eqgs. 11.47 and 11.48 we conclude that

(11.51)

ty—t)R, VR<R
AN = (2 1) c
(t,—t)R., YR=R,

This way it becomes apparent that AN > 0 & t, > {4, i.e, in order for population inversion to occur,
Eq. 11.42 must hold.

In Figure 11.5 a representation of Eqs. E§. 11.47, 11.48, 11.49, 11.51 is presented, which was realized
using the Matlab program N1N2DNrho.m, which can be found in Appendix C. The parameter values are
here purposely dimensionless and do not correspond to actual values. The reader may play withe these
parameter values to obtain an understanding of Eqs. 11.47,11.48, 11.49, 11.51.

Remark 2. According to Eq. 11.43, the critical pumping is defined as

1
= h .
Bio(tr — t1) 5 F(v)

R, :

Thus, increasing ¢, implies a decrease in R, which is reasonable, since, if we increase £, this means that
the losses, i.e. p/t(, are mitigated. Additionally, we remind that in order to get R, > 0, Eq. 11.42 must
hold, thatis t, > t;. Furthermore, if £, >> t1, a very small R, is obtained.

Remark 3. The relationship
A 8u® 1 8mhty?

B 3 B 3

(11.52)

thus, Eq. 11.43 becomes
8rthtyv?
R, = 2 a1 (11.53)
oty — 1) 7 F ()
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Ny, Ny, AN vs. R pvs. R
14 . . 1.4 . . . ,
T - Ny t, =3
t =1 "'iZN t =1
12r R =2 , 1 12+ g
c ’ c
B=1 , B=1
.
.
10 R4 1t
’
.
Z 8 ’ 0.8
< e
. .
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/
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Figure 11.5: A representation of Eqs. 11.47, 11.48, 11.49, 11.51, realized using the Matlab program
NIN2DNrho.m, which can be found in Appendix C.

Thus, e.g., R.(microwaves) < R.(visible), i.e., it is easier to create a coherent beam in the microwaves than
in the visible.

Remark 4. All the above make sense only if the transition from the upper level (2) to the lower level
(1) with photon emission is allowed. In other words, as we discussed in Chapter 7, it must hold that

Tio = [AVO;DFDy(F) # 0, i, Py i= [ AV (F) (—e)F By(F) # 0.

Aiming to solve the rate equations numerically in the general case, we will make, initially, Eqgs. 11.47,
11.48,11.49, 11.51 dimensionless.

« First of all, let us complete the changes of variables we performed in Eqgs. 11.26 and 11.27, i.e.,

N;
n = -t 11.54
=5 (1154
and R
r=—, 11.55
y (11.55)
by defining
R,
re = —. 11.56
= (156
Then, Eqs. 11.47,11.48,11.49, 11.51 become
‘nl =tr, VY r‘ (11.57)

tor, Vr<r,

ny = { (11.58)

tlr + (tz - tl)rc, Yr> Yo

0, Vr<r,

p=1Ar A 1 1 (11.59)
r——, Vr>r,
BT'C B Btz?’c Btz
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(11.60)

{(tz - tl)T, Vr< Yo
Ani=ny,—-n; =

(ty—ty)re, Yr>r.

« Next, we make Egs. 11.57, 11.58, 11.59, 11.60 dimensionless. To this end, we define the following

quantities:
ng = tor, (11.61)
with units [1] = Sm% =1/m°.
t
Ti=—. (11.62)
)

In other words, we are counting time in units of the upper level’s (2) lifetime, t,, so that 7 is dimen-
sionless, [7] = 1.

t
To = —O (1163)

t

and ;
7= = (11.64)

t

which are dimensionless, as well ([7g] = [71] = 1). We continue by defining
r
N = —, (1165)
rC
which is the “dimensionless pumping”, [rn] = 1. Moreover,

0 = Btyp, (11.66)

3
is the “dimensionless EM radiation density”, [¢] = [m—z s %] = 1. We also define the “dimension-
S

less populations for the levels (1) and (2)” as

n
vy ==, (11.67)
Ny
n
vy = =2, (11.68)
Mo
. [t17] sm> [tor] sm>
since [v1] = [nLOr] === land, eg, [v,] = ﬁ =—= 1.

Based on the above definitions, Eqs. 11.57, 11.58, 11.59, 11.60 become

‘Vl = TN, Y VN‘ (1169)
N, Vry<l1
v, =4 N N (11.70)
TN + (1 - Tl)/ v N = 1
O, Y N <1
= 11.71
0 {rN—l, Vory>1 (11.71)
1-1)ry, Vry<1
Avi=vy—v) = A=y N (11.72)
(1—’1'1), v N >1

Remarks
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« InEgs. 11.69,11.70, 11.71, 11.72, all quantities are dimensionless.
« V1,Vs, Av depend only on 71 and ry;.

« 0 depends only on 7.

For example, for 71 = 0.5 and ry = 1.5, it occurs that
v =05-1.5=0.75

1, =05-15+(1-05)=075+05=1.25

Av =0.5

0=15-1=0.5

while, for 71 = 0.5 and ry = 0.5, it occurs that
v1 =05-05=0.25

Vo = 0.5
Av =0.25
0=0.

11.5 Numerical solution of rate equations in general case, i.e., at every instance.

We have already shown that the rate equations, i.e., Eqs. 11.18, 11.20, 11.22, can be written in the form of

Eqgs. 11.23,11.24,11.25

d?’ll nq
— =-—+8B -n)+A
I f p(ny —ny) U]
d
M _ r+ Bp(ny —ny) — An,
dt
dp _p ,
E = —% + [Bp(n2 - 7’11) + A 1’12]]’11/1:(1/)
where N
n; = Vl,
R
r=-—,
v
while, above, we also defined
R,
r. = 7

Let us now make the rate equations dimensionless, using, as we did above, the definitions of Eqs. 11.61,
11.62, 11.63, 11.64, 11.65, 11.66, 11.67, 11.68. This way, the dimensionless Eqgs. E. 11.73, 11.74, 11.75

occur. For the latter, we also used Eq. 11.43, together with Eq. 11.56.

dVl Vl
—— =-—+o(n-v)+n
dt T

dv
d_rz =ry+0o(v1—v2) =1,

do 0 A’ 1
ar T + l@(Vz —vy) + szl

To(l = 71)

Remarks

(11.73)

(11.74)

(11.75)
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« InEgs. 11.73,11.74, 11.75, all quantities are dimensionless.

« The solution of the differential equations 11.73, 11.74, 11.75 to obtain v1, V5, 0, depends only on
A/
Toyy T YN and e
« In the following Section we will solve them on Matlab using the programs laser.m and calllaser-
commands.m.

11.6 Simulation lab: practice on numerical solution of rate equations.

Egs. 11.73, 11.74, 11.75, can be numerically solved with different ways and software. In this Section we
solve them using Matlab, with the help of the two files presented below, in Codes 11.1 and 11.2. The result
of running the program is presented in Figure 11.6.

Code 11.1: To apyeio matlab calllasercommands.m.

global taul taub arn AptoA
x0=[0 0 0];

tspan=[0,500];
[t,x]=0ode45(@Laser, tspan, x0)
plot(t,x)

Zfigure;

Zplot(t,x(1), 'R',t,x(2),'r',t,x(3),'g")

xlabel ('\tau', 'FontSize',16)

ylabel( '\nu_1, \nu_2, \rho', "FontSize',16)
set(gca, 'fontsize',16)

title('\nu_1, \nu_2, \rho vs. \tau', "FontSize',16)
text(100,1.10, '\nu_1', 'Color', 'b', "FontSize',16)
text(150,1.10, '\nu_2', 'Color', 'r', "FontSize',16)
text(200,1.10, '\rho', 'Color',[1,0.5,0], 'FontSize',16)
annotation( 'textbox', ...

[6.6 ©.54 ©.25 0.22], ...

'String',{[ "\tau_1 = ' num2str(taul)],...
['"\tau © = " num2str(taue)], ['r N = ' num2str(
arn)], ...
[ 'AptoA = ' num2str(AptoA)]},...

'"FontSize',12, ...
"FontName ', 'Arial ', ...
"LineStyle', '--", ...

"EdgeColor',[1 1 @]
"LineWidth',2,...
'"BackgroundColor',[6.9 6.9 0.9], ...
"Color',[0.84 0.16 0]);

Code 11.2: To apxeio matlab laser.m.
function xprime = laser(t,x);
global taul tau® arn AptoA
%LASER: Computes the derivatives 1involved in solving the
Laser equations.
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Vi Vs P

%

ta
ta
ar
Ap
ta
Xp

e

N

N X R R

nul=x(1), nu2=x(2), rho=x(3)
ul=e.5;
uo=180;
n=1.5; % normalized pumping

toA=10"7(-9);

utau=taue*(1-taul);

rime=[x(2)+x(3)*(x(2)-x(1))-x(1)/taul; arn+x(3)*(x(1)-x
(2))-x(2);-x(3)/taud+(AptoA*x(2)+x(3)*(x(2)-x(1)))*(1/
tautau)J;

Observe that x is stored as x(1), y is stored as x(2),
and z as stored as x(3).

Additionally, xprime is a column vector,

as is evident from the semicolon following the first
appearance of x(2).

If in the Command Window,

>> x0=[-8 8 27];

>> tspan=[06,20];

>> [t,x]=0de45(@lLorenz, tspan, x0)

we type

Vis Vs P VS. 7

1.5 ' : - :
|. 1/
|‘.‘> 2
*1=(15
r =1
| r:) -15 |
AptoA = 1e-09
| v,
0.5}
O L L L L L
0 100 200 300 400 500

T

Figure 11.6: Graphical representation of V1, 15, 0 as functions of 7, as it is obtained by the Matlab code.
Note that the notation p in the panel is in fact the dimensionless ¢ of Eq. 11.75.

As an example, let us suppose that we want to determine the effect of changing r; on the functions of

A/
V1, Vs, 0 versus T. Let us keep 7o = 10, = = 107 and 7; = 0.5 constant, while we change ry setting the

values 0.5, 1.5, 2.0, 2.5. The results of the solution to our rate equations using our programs is presented
in Figure 11.7. We initially observe that when the values of v, 5, ¢ have finally stabilized, which means
that we have reached the steady state, they coincide with the predictions of Egs. 11.69, 11.70, 11.71. Fur-
thermore, we should point out the reason why there is a difference in the time it takes for ¢ to become
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Vis Vs P VS. T Vis Vs P VS. T
057 15 o 1
0.4 7, =05 | r, =05
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Figure 11.7: The effect of changing 7y on the functions of v, V5, 0 versus 7. We keep 79 = 10, == 107
and 77 = 0.5 constant, while we change 7 setting the values 0.5, 1.5, 2.0, 2.5. Note that the notation p
in the panels is in fact the dimensionless ¢ of Eq. 11.75.

perceivable. The reason is that when we increase the dimensionless pumping 7y, the term v, is also in-

A d
creased due to Eq. 11.74, thus, in Eq. 11.75, the term - V2 which is the only one that leads to £ >0

when ¢ is negligible, increases as well.

11.7 Standing EM waves inside a 3D cavity: Longitudinal modes and transverse modes.

Let us inspect standing electromagnetic waves in a 3D cavity more carefully. There are the so-called lon-
gitudinal and the so-called transverse modes. Let us begin with some general nomenclature. EM modes
without an electric field in the direction of propagation are called TE (Transverse Electric). EM modes
without a magnetic field in the direction of propagation are called TM (Transverse Magnetic). Finally,
EM modes without an electric and a magnetic field in the direction of propagation are called TEM (Trans-
verse ElectroMagnetic). Here, we will focus on TEM, considering the longest dimension of the cavity
as the direction of propagation, i.e., using the choice we have made so far, the dimension parallel to the
Z-axis.

The longitudinal modes appeared when we solved the essentially one-dimensional (1D) problem, by
putting mirrors in positions z = 0 and z = L, and assuming that the lateral component of E becomes zero

on the mirrors (just like the perpendicular component of E) So, we found that (Eq. 8.45)
mTt
km = T, me N,
We also found that (Eq. 8.50)

Wy = m e N,
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Thus (Eq. 11.28),

and
L=m— (11.76)

as expected for standing waves between two mirrors in distance L (length). From Eq. 11.28, we concluded
(Eq. 11.29) that the frequency distance of the longitudinal EM modes is

C
AVm,m+1 = i .

In this 1D problem, the solutions contain (Eq. 8.48)

Z,(z) = \/%sin (?),

m =1,2,3,.... Thus, the number of nodes, i.e., where Z,,(z) is constantly zero, is m’ = m — 1. We could
also solve the following 1D problems: in height (1) withp = 1,2, 3, ...andp” = p—1 = number of nodes
in the x-axis, or in width (w) withg =1,2,3, ...and g’ = g — 1 = number of nodes in the y-axis.
However, a cavity is three-dimensional (3D), e.g. rectangular parallelepiped or cylindrical, as shown in
Figure 11.8. In a rectangular parallelepiped cavity, commonly L >> h, w, where L = length, i = height,

Figure 11.8: A rectangular parallelepiped and a cylindrical cavity.

and w = width. In a cylindrical cavity, commonly L >> r, L = length, and r = radius. The transverse
modes occur during solving the 3D problem and depend on the geometry of the cavity, e.g. whether it is
rectangular parallelepiped or cylindrical. This subject has been discussed in Section 2.10. Let us assume
that we examine an empty rectangular parallelepiped cavity with perfectly conducting walls and edges
with heighth = a,, widthw = ay, andlength L = a,, along the X, i and z axes, respectively. Additionally,
let us assume that the cavity lies on the first octant of the Cartesian coordinate system Oxyz, with a vertex
on O. For the electric field, Egs. 2.66, 2.67, 2.68 occur, i.e.,

E, = E,q cos(k,x) sin(kyy) sin(k,z)e” ! = becomes zero for y = Oandz = 0 (11.77)
E, = E,gsin(k.x) cos(kyy) sin(k,z)e ™! = becomes zero for x = 0andz = 0 (11.78)
E, = E,ysin(k,x) sin(kyy) cos(k,z)e" ! = becomes zero for x = 0andy = 0 (11.79)



For the magnetic field, Eqs. 2.72, 2.73, 2.74 occur, i.e.,

l. .
B = 1 (Biok: = Exoy im0 cos{ k) cost 2
Z. .
l. .
Z(Exoky - Eyokx) cos(k,) cos(kyy) sin(k.z)e ™"

Eq. 2.69 holds, as well:

2
w
2 12,12 _ Y
ks +ky +kz = 2
So does Eq. 2.70
M, T m, Tt m,Tt
kx: = ’ kyzir kz: = ’
a, a, a,

where m,, my,m, € Z.. We can alternatively consider m,, my,
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(11.80)
(11.81)

(11.82)

m, € IN, absorbing the sign change in

Evo, Eyo, Ezo, i, allowing Eyq, E g, Eq to take positive or negative values, such that they agree with the
boundary conditions. m,, = p, m,, = g, m, = m, which are called mode numbers, are thus independent
y x = p,my =q,Mm; p

non-negative integers which obey to the constraint that no more than one of them can simultaneously
become zero [4]. This constraint occurs since if two or three of 171, m,, m, become zero, then the EM field
in the cavity becomes zero as well, according to Egs. 2.66, 2.67, 2.68 and Egs. 2.72, 2.73, 2.74. Combining
the above, we can write that the angular frequency and the frequency obey to the rule

Wpgm = 27'cqum = kpqmc,

whereky,, is the norm of the vector with components k,, k,, k..

For a rectangular parallelepiped cavity, we have shown Eq. 2.76

(11.83)

2
m, m,
Wiy m, = T\ =] + +1—, hence
ay a,

or

| 3

2 2
Wpgm = TLC\/(%) + (%) + (L) , hence

) 2+ (2)

If, however, we have a triagonal. cavity, with i = w = g, then
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while, for a cubic cavity, withh = w = L = g,

Tic
Wpgm = _a ﬂpz + qZ + ﬂlz,
- \P? + %+ m?
v = me.
pqm 2 p q

From Egs. 2.66,2.67,2.68,2.72,2.73,2.74, we obtain Table 11.1 (Table 2.2)

Table 11.1: Modes for a cubic cavity. The numbers of modes 111, = p, m, = q,m, = m are independent,
non-negative integers, subject to the constraint that no more than one of them can become zero simulta-
neously, or else the EM field in the cavity becomes zero.

my=p m,=qg my=m 2%v EMfield

0 0 0 0 0
0 0 1 1 0
0 1 1 V2 £0
1 1 1 \3 #0
2 0 0 2 0
2 1 0 \5 #0

For the tetragonal cavity,

_c [PP+g> m? cm L2p?+q>  mc
Vpgm = 5 " +F“§f 1+¥ — _Z\/1+x, (11.84)

_ LZ pZ + q2
a2 om?
This x is very small in practice. For example, suppose a He-Ne LASER, with central wavelength Ay =

632.8 nm, vy = 0.474 PHz,and L = 0.4 m. Let us try to estimate the order of magnitude of 7. If we had
. . mrc mc c 2L 0.8 m

only longitudinal modes (1D problem), w,, = T D Vm =~ Vo= " =>m~ " 5328

m =~ 1.264 x 10°, hence m? =~ 1.6 X 10'2. For a = 1 mm, (44)? = 160000, for a =~ 2 mm, (4:)% = 40000,

for a ~ 4 mm, (44)? = 10000, for a = 10 mm, (1/2)> ~ 1600. Thus, for smallp,q =0, 1,2, ..., x is small,

so we can get, e.g., a Taylor expansion

where

(11.85)

x X2 X
w/1+xz1+___+...z1+—’ (1186)
2 8 2
which yields
mc  cL p?® +q°
o e _ 11.87
Yrm X or Va2 m (1187)
Thus
mc
Voom = o7 = Vi, (11.88)

which are the frequencies of the longitudinal modes for the 1D problem (Eq. 11.28). Of course, in the 3D
problem, if two of the numbers of modes become zero, the EM field in the cavity becomes zero, as well.
The modes with p # 0 or g # 0 are called transverse modes. Thus, the frequency distance between two
consecutive transverse modes, e.g., by changing p only for given g and m1 is

A cL (p+1)?+q> cLp*+q> cL2p+1
Vypr] & ———————— - ——— = —
PP 42 m 4a2 m 4a2 m

. (11.89)
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For example, for L =0.4manda =4 mm, Av, 11 = 1.5 (2p + 1) MHz, where we have estimated m =

1.264 x 10°. Let us remember, for comparison, that for L. = 0.4 m, the frequency distance of longitudinal

ﬁ = 375MHz. Forp =1, it occurs that Av;, ,,,1 = 4.5 MHz, hence the frequency
distance of the transverse modes is rather smaller than the frequency distance of the longitudinal modes.

modes is AV, ;41 =

Given this, the longitudinal and transverse modes in a rectangular parallelepiped cavity are qualitatively
depicted [5] in Figure 11.9. We also took into account that, for the same m,

p=1,g=00rp=0,g=1 = p*+¢*=1

p=1,q9=1 = pPPHgi=2
p=2,q=00rp=0,g=2 = p*+q*°=4
p=2g=lorp=1,9=2 = p?>+4*°=5

P, d —— transverse modes

\'pqm
m —— |ongitudinal modes
Voom
\'olm V00m+1 \'01 m+1
Viom Viom+1
Viim t%m Viim+l
Voam+1
I l I I Vom+1
- , > v
, C
AI/m.m—H =

2L

Figure 11.9: Longitudinal and transverse modes v, in a rectangular parallelepiped cavity.

11.8 Shape of TEM00 and TEMp'q' of higher order in rectangular parallelepiped and cylindrical
cavities.

Usually, in nomenclature, the indices p’, g’ are used instead of p, q. These are defined as follows:
In a rectangular parallelepiped cavity, the indices in TEM,,» mean:
p’ = the number of nodes along the x-axis.
g’ = the number of nodes along the y-axis.
For example, TEMy, means there there are no nodes along the x-axis and two nodes along the y-axis. The
EM radiation intensity of the mode TEM, is, in Cartesian coordinates, [6]

, 12 21
Hp,[\/jx]e_%] lHq, (%]e__z] (11.90)

On the left-hand side of Table 11.2, the Hermite polynomials, H,,(x), involved in Eq. 11.90, are presented,
while w is the spot size FWHM of the fundamental TEMy mode. The shape of the TEM mode, as occurs
from Eq. 11.90 is presented in Figure 11.10, left. Higher order modes have larger spatial extent. Therefore,

Ip/q/ (x, y) = IO

by interposing an aperture the laser output we can prune these modes that have more extent than desired.
Generally, the total form of the radiation intensity occurs as a superposition of all the modes in the cavity,
although it is often desired to operate solely with the fundamental mode.

In a cylindrical cavity, the indices in TEM,;» mean:
p’ = the number of radial nodes.
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Table 11.2: The first Hermite polynomials, which are related to the rectangular parallelepiped cavity, and
the first Laguerre polynomials, which are related to the cylindrical cavity.

Hermite polynomials Laguerre polynomials
Hp(x) =1 Lo(x) =1
Hq(x) = 2x Li(x)=—x+1
Hy(x) = 422 - 2 Ly(x) = 5 (2 - 4x +2)
Hj(x) = 8x3 —12x Ls(x) = %(—x3 +9x? —18x + 6)

Hy(x) = 1664 482 +12 Ly(x) = o-(x* ~ 162> + 722% — 96x +24)

01* 01

(D I (D) uofon '

11 21

Figure 11.10: Left: Transverse TEM,,» modes in a rectangular parallelepiped cavity [7]. Right: Trans-
verse TEM,,» modes in a cylindrical cavity [8]. TEM is more concentrated close to the z-axis than
higher order TEM,y ;: as the values of the indices increase, the modes occupy a larger portion of the xy-
plane.

g’ = the number of nodes along half a periphery, i.e., in angular terms, within a 7 angle.
For example, TEM(, means there there are no radial nodes and two nodes along half a periphery, i.e,,
within a 7t angle. The EM radiation intensity of the mode TEM,, is, in polar coordinates (7, @), [6]

, 2
Ly (0, @) = Iop" [LZ,(p)] co2( PP (11.91)

where p = 2r2/w?, w is the spot size FWHM of the fundamental mode, TEMy), which coincides with

the TEM of the rectangular parallelepiped cavity, and LZi is the associated Laguerre polynomial of order
p’ and index q’. On the right-hand side of Table 11.2, the Laguerre polynomials,

X n

= (e™x™), (11.92)

Ly (x)
are presented. These are used to construct the associated (or generalized) Laguerre polynomials, L% (x),
which are involved in Eq. 11.91. Specifically, the Laguerre polynomials are the special, 2 = 0, case of the
associated (or generalized) Laguerre polynomials, that is,

L9(x) = L,,(x). (11.93)
Li(x) = x:!ex dd; (e Xy (11.94)

The shape of the TEM mode, as occurs from Eq. 11.91 is presented in Figure 11.10, right.
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In summary, the shape of the EM radiation intensity I, of the TEM,, in a rectangular parallelepiped
cavity (left) and in a cylindrical cavity (right) is presented in Figure 11.10. In Table 11.2, we present the
first Hermite polynomials, associated with the rectangular parallelepiped cavity (left), and the first La-
guerre polynomials, associated with the cylindrical cavity (right).

11.9 Laser types - indicative applications.

The first LASER that produced visible light was the Ruby LASER, constructed in 1960 [9]. Today, there
are really many types of LASER; most of these are used only for specialized research purposes. Their
wavelengths vary from the ultraviolet, to the visible, the near infrared, the mid infrared, and the far infrared
[10]. We will not go into much detail. As a matter of fact, this book focuses on quantum optics and not on
the technical aspects of LASER, for which there is a vast literature in Greek, either translated or not [11,

, 13,14, 15, 16]. Therefore, we will not go into these subjects. In Table 11.3 the most important LASER
types are presented, together with some representative members of each type. They are mainly classified
with respect to the active medium and the pumping mechanism.

Today, LASER applications cover a very broad spectrum. Let us name some, indicatively: research
(pumping for other LASER, interferometry, LASER cooling, various spectroscopies, lithography, con-
focal microscopy, etc), medicine (surgery, dentistry, tissue ablation, kinda stone treatment, dermatol-
ogy, retinal phototherapy, etc), cosmetics (tattoo removal, wrinkle removal, etc), telecommunications,
holography, military, industry (soldering, cutting, automotive lighting, lithography, engraving, etc), ev-
eryday life (printers, writing and reading Blu-ray discs, DVDs, CDs etc, projectors, pointers, optical scan-
ners, detection of pollution, etc).

11.10 p-n junction LASER or diode LASER.

Most lasers are not tiny objects. For example, in He-Ne lasers, the length of the cavity is some dm and
its thickness is some mm. However, we use lasers in portable audio and video reproduction devices (e.g.,
DVD players), to read product prices in shops with small barcode readers, in printers, in optical fiber com-
munications and many more daily use items. Those tiny lasers are usually laser diodes - they are also called
p — 1 junction lasers. These are devices similar to LEDs (light-emitting diodes), the tiny light indicators
used in various devices. The laser diodes were first constructed by Robert N. Hall in the 1960s [ 17]. Their
tiny size and cheap price makes them the most widespread lasers today.

We have basically a bilayer semiconductor device, with one layer being a p-type semiconductor (with
excess holes) and the other one being a 11-type semiconductor (with excess electrons). A common p — 1
diode conducts only in one direction, i.e., then the applied voltage has a forward bias. The inverse voltage
is called reverse bias; the diode does not conduct in this case. In a LED or a laser diode there is electron-
hole recombination, which takes place through the band gap and produces photons (phonons may par-
ticipate in the process, as well). The most common semiconductors used in laser diodes are alloys such as
Al,Gay_,As, In,Gay_ As Py, Depending on the size of the band gap, photons can have various visible
colors or even ultraviolet or infrared wavelengths.

In laser diodes, pumping occurs by forward bias. The number of impurities (donors) in the #1-type semi-
conductor and the number of impurities (acceptors) in the p-type semiconductor are large enough (of the
order of 10'8cm™2) that the Fermi level of the 71-type semiconductor, F,, lies within the conduction band
and the Fermi level of the p-type semiconductor lies within the valence band (Figure 11.12, top). Then the
two layers contact, the large hole concentration in the p-type semiconductor and the large concentration
of electron in the 7n-type semiconductor create flows from the side with large concentration to the side
with small concentration: electrons are injected in the p-type layer and holes are injected in the n-type
layer, hence, in the vicinity of the junction, the p-type layer is negatively charged and the n-type layer is
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Table 11.3: Types of LASER and some members of each type. In the first column the active media are

presented, and in the right column the wavelengths in nm.

Gas LASER pumping: electric discharge
He-Ne 543.5,593.9,611.8,632.8,1152.3, 1520, 3391.3
Ar 351, 363.8,454.6,457.9,465.8,476.5,472.7,488.0, 514.5, 528.7
Kr 416, 530.9, 568.2, 647.1, 676.4,752.5,799.3
N 337.1
CO, 9400, 10600
Chemical LASER pumping: chemical reaction
HF 2700 - 2900
DF 3600 - 4200
O,1 1315
Dye LASER pumping: other lasers or flashlamps
stilbene 390-435
coumarin 460-515
rhodamine 570-640
Metal vapor LASER  pumping: electric discharge
HeCd 441.6, 325
HeHg 567,615
HeSe red to UV
HeAg 224.3
Sr 430.5
Solid state LASER pumping: other lasers or flashlamps
Ruby 694.3
Nd:YAG 1064, 1320
NdCrYAG 1064, 1320
Er:YAG 2940
Yb 1030
Ho:YAG 2100
Semiconductor LASER  pumping: voltage or light
GaN 400
InGaN 400-500
AlGalnP, AlGaAs 630-900
InGaAsP 1000-2100

positively charged; this causes thermodynamic equilibrium. Therefore, the Fermi levels coincide and the
is no longer electron or hole flow from the p-type layer to the n1-type layer and vice versa. This means that
a potential energy barrier is created, of the order of 0.1 eV (Figure 11.12, middle). If an external voltage
V is applied, then the Fermi levels are separated so that

AF=F,-F,=e¢V. (11.95)
The operating voltage of a laser diode is small, of the order of V, since AF is of the order of the semicon-
ductor’s band gap, E @ which is close to eV. This is how population inversion is achieved in the vicinity of
the junction (orange arrow in Figure 11.12, bottom). This means that there are enough electrons in the
conduction band and enough holes in the valence band for lasing. Some of the electrons spontaneously
drop from the conduction band to the available states of the valence band; in other words, we have spon-
taneous emission. These electrons are not, of course, coherent. The have a random phase. However, they



QUANTUM OPTICS 303

n-type
Light coming out lens
of smooth surface junction
p-type

Figure 11.11: A laser diode device with two electrodes (+) and (—) in forward bias. The upper and lower
surfaces, which are normal to the plane of the figure, have dimensions of the order of mm?. The junction
region, i.e. the “medium” layer is of the order of 100 nm, while the sides are of the order of 10-100 yim. In
other words, this device is small enough to be used in various small everyday devices.

force other electrons in the conduction band to drop to the valence band by emitting photons; in other
words, we have stimulated emission: emission of photons with the same energy, momentum, polariza-
tion, and phase. However, since these electrons do not drop from a level with small enough width (as it
is the case, e.g,, in a He-Ne laser), but rather from the occupied energy region of the conduction band to
the empty energy region of the valence band, the emission line of the laser diode is broader than, e.g,, the
one of the He-Ne laser, of the order of 100 times [3].

Photons are forced to be reflected in the narrow region of the contact between the p- and n-type layers,
thus creating standing waves. Therefore, photons are traveling inside the junction for a time long enough
to achieve many stimulated emissions. Part of the amplified light comes out of a surface of the structure
that has been flattened out, while the rest surfaces remain rough so that light is confined. This flattened
surface must be exactly parallel to its opposite, for standing waves to occur in the cavity. These two surfaces
may be also covered by mirrors or metallic coatings to amplify the generation of standing waves. In other
words, a LED device can emit a laser beam if it has a resonance cavity [ 3].

11.11 Quantum dot LASER.

Another type of semiconductor laser is the quantum dot laser (Figure 11.13). It is a device the active
medium of which is a collection of quantum dots (see Section 4.3). Due to the strong quantum confine-
ment of the carriers in quantum dots, their electronic structure is similar the one of atoms. Actually, as we
also mentioned in Section 4.3, this is the reason why quantum dots are also sometimes referred to as arti-
ficial atoms when they are single and as artificial molecules when they are coupled. Lasers constructed by
such active media display properties similar to gas lasers and are superior to other semiconductor lasers,
e.g., in terms of emission lines. Since the electronic structure of quantum dots is dependent on their size as
well as of the type of -usually- semiconducting alloys used [ 18, 19], the active region can be constructed
in a way such that the device can operate in several wavelengths, even in regions that were not possi-
ble for common semiconductor lasers. Quantum dot laser devices are used in commercial applications,
medicine, screens, spectroscopy, telecommunications, etc. Some years ago, a quantum dot laser for use in
optical telecommunication systems [20] in 10 Gbps = Giga bits per second, with operating wavelength
1.3 ym and operating temperatures 20 - 70 °C. Since then, this performance has been further improved.
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p- and n-type semiconductors separately
Ec Ec
p-type n-type Eg
Ey Ey

no bias, thermodynamic equilibrium

Ec
-t
no bias E piype
AFE = = \'%
AF =K, - Fp— 0 Ec
n-type Eg
Ey
forward bias
Ec ~— I
forward bias p-type C
AI: = I:n = Fp = C\] E n-type Eg
\'% — E
\'%

Figure 11.12: Operation principle of the p-7 as alaser. Top: the p- and n1-type semiconductors, separately.
Middle: The structure without polarization, i.e., without external bias, in thermodynamic equilibrium.
Bottom: The structure with forward bias, an external voltage V. When the structure has been formed,
there are “three layers”, since there is also the junction region (where the bands appear inclined). During
forward bias, we have population inversion in the vicinity of the junction, which is denoted by an orange
arrow. This means that in this region there are many electrons that, as they drop from the conduction
band to the valence band through the band gap E,, emit photons and are recombined with holes. These
photons, in turn, force stimulated emission to other electrons of the junction region.

11.12 Isolation techniques for the TEM00 and of higher order TEMp'q'.

In Figure 11.10, the TEM,, were presented. Here, let us consider the case of a rectangular parallelepiped
cavity [ 7], which is presented again, for the facilitation of the readership, in Figure 11.14. We observe that
TEMy mode is more concentrated close to the z-axis (centered at the point x = y = 0) than higher
order TEM,,: as the values of the indices increase, the modes occupy a larger portion of the xy-plane.
The polarization of the light beam on the laser output depends on the mixture of polarizations of the
TEM,ry modes it contains [ 21 ]. The polarization of the outgoing beam can be corrected using a window
positioned at Brewster’s angle, see, e.g., Sections 12.1 and 12.3. TEM, modes of higher order can be
pruned by inserting an aperture in the way of the outgoing beam. This aperture (“iris” = hole of adjustable
width) closes as much as it is needed so that higher order TEM,y,r, which have a larger spatial extent than
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active medium:
collection of quantum dots

«-W/ 3

R
L';::- o ...V -

GaAs substrate

Figure 11.13: The body of a quantum dot laser device that transmits data in 25 Gbps. Modified image from
the press conference by Fujitsu, 2010.

Figure 11.14: Transverse TEM,,,» modes in a rectangular parallelepiped cavity [7]. TEM is more con-
centrated close to the z-axis than higher order TEM,,: as the values of the indices increase, the modes
occupy a larger portion of the xy-plane.

the hole width, are not allowed to pass. Thus, we can even isolate a single dot, i.e., TEMyy mode. On the
other hand, as the aperture width gets larger, higher order TEM,,» modes are also allowed to pass.

If the vertical thread is shifted a bit more, it will reach a position in which the field 0 02 becomes zero.
Similarly, if the horizontal thread is shifted a bit more, it will reach a position in which the field o 20 be-
comes zero. This new position will allow 02 (or, similarly, 20) to survive, since in this new position it will
have zero intensity and thus will not have losses due to diffraction by the thin thread. On the other hand,
01 and 00 (or, similarly, 10 and 00) will be destroyed. TEM,,» modes of even higher order can be isolated
in a similar fashion.
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CHAPTER 12

VARIOUS

In this Chapter:

We lay down some useful properties and elements. We analyze Fresnel equations and explain what the
Brewster is and the total internal reflection. We discuss the polarized beam emission. We refer to the Poynt-
ing vector.

Prerequisite knowledge: Basic knowledge of Electromagnetism.

12.1 Fresnel equations. Brewster angle.

We recall (Section 2.4) that the Maxwell’s equations in terms of total charge and current are, in differential
form and integral form,

differential form integral form

= -
V- -E= ﬁ = CDES oV = E d—> qenclosedi
€0 S=JV €0

ﬁ'E):Oz@B,S:aV: §d§=0
S5=0V

VxE=-Z o |gne = ¢ E-di = -8
ot EME ™ ¥ o8 ot
V xB T+ IE = B-df I + 9 Pes
= &n— . = &
Ho Ho€o ot L9s Holpassing through S T H0€0 ot

Constantinos Simserides (2023). «Quantum Optics>.
Kallipos, Open Academic Editions. https://dx.doi.org/10.57713/kallipos-186
Creative Commons Attribution — Non Commercial — ShareAlike 4.0 International
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We moved from one formulation to the other using the Gauss’s theorem and the Stokes’ theorem

Gauss’s theorem § A-da= V-AdV
S=0V 14

Stokes’ theorem § A-dl=| VxA-da
L=0S S

D = ¢y¢E, (12.1)
B = pouH. (12.2)

Let us assume (mmw that ¢, {4 are constant values and not tensors.
Additionally, the Maxwell’s equations in terms of free (f) charge and current are, in differential form
and integral form,

differential form integral form

6 : 5 = Pf = § B -da = qf,enclosedinV (123)
5=0V
V.-B=0|=|¢p B-d2=0 (12.4)
S=0V
. - OB e L
VXE=-— Eemp = Q E-dl = - - 12.
of | = | CEME o ot (12.5)
V XH = ]f + W = Lgs dt = If,passingthroughS + 7 (126)

In the absence of free charges and currents, these equations become

V-D=0 D-da=0 (12.7)
S=0V

V-B=0 B-da=0 (12.8)
S=0V

VxE=-— E-dl =- 12.

ot s ot (129)

VxH=— H-dl = —22 12.10

ot R=0S ot ( )

In the case of an interface between two media, say 1 and 2, repeating the procedure we followed in
Section 2.5, i.e. applying the Gauss’s theorem in an elementary S = dV,

D-di=0= =
S=9v

Dy, =Dy, (12.11)

B-da=0= =
S=9V
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— —

D;y,,D;,,Bq,, By arethe algebraic values of the components of D or B that are normal to the interface,

on the side of medium 1 or 2. In other words, it occurs that D | and B are continuous on the interface.
Applying the Stokes’ theorem in an elementary L = d'S

- o &(I)
E-dt = BS ... 5

1=05 Jat
Ey = Ey (12.13)
Hy = Hy (12.14)

- =
Eqy, Ez), Hy), Hy) are the algebraic values of the components of E or H that are parallel to the interface,
on the side of medium 1 or 2. In other words, it occurs that E| and H | are continuous on the interface.

Figure 12.1: Incidence of EM wave at an interface between two media 1 and 2. Plane of incidence g is the

plane defined by the incident wave vector E and the normal to the interface, at the point of incidence, unit
vector 71, that is here plane xy. We observe the angles of incidence, reflection, refraction or transmission,
0;, 0,, 0,, respectively, as well as the s (perpendicular to q) and I3 (belonglng to q) components of the
incident, reflected, refracted or transmitted electric field E, sir Epl, Esr, Ep,, Est, Ept! respectively.

Let us now consider the incidence of an EM wave at an interface between two media, 1 and 2 (Fig-
ure 12.1),in the absence of free charges or currents, so that Egs. 12.7,12.8,12.9,12.10, as wellas Egs. 12.11,
12.12, 12.13, 12.14 hold. Furthermore, let us denote by g the plane of incidence, i.e. the plane defined
by the incident wavevector E and the normal to the interface, at the point of incidence, unit vector 71,
that is here plane xy. By the way, let us denote by Er the reflected wavevector, and by E the transmitted
or refracted wavevector. The polarization of an EM wave incident to an interface is characterized by the

direction of E with respect to . Specifically, the polarization is named s or p, after the German words
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senkrecht=perpendicular or parallel, respectively, depending on whether Eis perpendicular or parallel to
the plane g. Schematically, if we identify the plane of incidence with the plane of this page, then,

© E s polarization (E 1 g) TE (transverse electric) polarization
E

/

p polarization (E € g) TM (transverse magnetic) polarization

Below, we will separately examine the incidence of EM wave in an interface between two materials for
s or TE polarization and for p or TM polarization. Before we move on, we recall that ExB [ E Also,
the index | denotes a field component perpendicular to the interface, while the index || denotes a field
component parallel to the interface.

e TE or s polarization (E L q) e TM or p polarization (E - q>

Ei. E

Figure 12.2: Left: TE or s polarization (E L g). We observe Ei, Er, Et, Ei, I—E)U_,I_B)i”, B,, E)M_,E)r”,
Et, B)tyﬁtn- Right: TM or p polarization (E) € q). We observe B)l-, E)r, B)t, Ei, E)z‘yﬁiu; Er, E),L,E)YH,

E; E;|,E;). The index | denotes a field component perpendicular to the interface, while the index ||
denotes a field component parallel to the interface. Colored dots denote equal angles.

In the left panel of Figure 12.2, we present the TE or s polarization, i.e. the situation in which ElL q.
From Eq. 12.1,since E 1 ¢ = D 1 g. Then,

Continuity condition for D | (Eq.12.11) = nothing (7 such components for s polarization)
Continuity condition for B, (Eq. 12.12) = —-B;sin6; — B, sin0, = —B; sin 6;

Continuity condition for E|| (Eq.12.13) = E, +E; = E;

B; cos O; N B, cos O, _ _Bt cos 0,

Continuity condition for Hj (Eq. 12.14) = —
Hot Hot HoH2

In the right panel of Figure 12.2, we present the TM or p polarization, i.e. the situation in which Bl q.

Continuity condition for D | (Eq.12.11) = ¢&(E;sin6; + E, sin 0,) = &E;sin 6,
Continuity condition for B| (Eq. 12.12) = nothing (# such components for p polarization)
Continuity condition for E|| (Eq. 12.13) = E;cos0; — E, cos 0, = E; cos 0;

B; N B, _ B,
Hottr  HoiH1  Hoi2

Continuity condition for Hj (Eq. 12.14) =
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Let ¢( be the speed of light in vacuum, ¢ the speed of light inside some material, and 7 the refraction
index of this material. Then,

E
— = E

o (= B=n—. (12.15)
n=22 Co

C

Let us assume that (Assumption 2) the frequency v of the EM wave remains unchanged during chang-
ing materials and during transmitting through the material. Due to the fundamental law of wave me-

chanics,
21
c=Av=—-v, (12.16)
k
lkil = n;lkol
Co 27TV|%| Ik = n,lkol K‘A = ”1|]:0|
) ? ) |z0|2711/ = kil = mylkol = | lk,| = nqlkol (12.17)
ny =n;=n, Ikl = nplko
le = I’Zt

If the amplitudes are constant then, in TE polarization, the continuity of E |, i.e. the relationship E, +
E; = E;, implies that

—

Eg el ®r-ort) 4 EOiez’(i-?—wit) _ EOtei(Et-?—wtt)
Y t, V7 on the interface

k T-wt=k -T-wt=k F-awt (12.18)

i.e. we arrive at a phase matching condition. Similarly, if the amplitudes are constant, then, in TM polariza-
; B
tion, the continuity of H |, i.e. the relationship e implies Eq. 12.18, as well. Taking
ot Hotr  Hok2
Assumption 2 into account, if follows that w, = w; = wy, hence,

-

kK -7=k-T=k-7 (12.19)

Let uslook into Eq 12.2, and remember Eq. 12.17. Then, E T= Er T=

|E||71 cos (g - Qi) = |E| <[] cos (g - Qr) = n1|%0| sin 0; = n1|E0| sin0, =

6, = 6;], (12.20)
which is the reflection law. Furthermore,

—

E =k T> |E||71 cos (g - 91-) = |%t||7’1 cos (g - Gt) = n1|%0|sin 0, = n2|?0| sin 6, =

i (12.21)

‘ n; sin 6; = n, sin 6,

which is the refraction law.
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Let us examine TE polarization in more detail, using the equations we obtained above. We will as-
sume that our materials are non-magnetic, i.e. that u; = pp = 1.

E,+E =E
BicosO; B,cosO, Bjcos0O; E,+E;=E,
HoH1 HoH1 - Hotz | _ n1E; cos 0; — nyE, cos 0, = nyE; cos 6, N
W= =1 n:= 2 (the relative refraction index)
B=n— "
Co

Ei’ + El - Et
_ nEjcos 0, ¢ =

E, + Ei = Et 0;=0,
=
E;cos0; — E, cos 0, = nE; cos 0, E,-E,

cos 0;
) 1 cos 0,
(adding by parts ) 2E; = Et(l + )
cos 0;
E; 2 cos O; 2n; cos 0;
trgi=— = = . 12.22
TE E; cosO;+ncosO; mn;cosB;+ n;cos6; ( )
However,
n;sin0@; = n;sin0; 9| sin 0; = nsin 6,
) o sin 6;
while cos 0 = /1 —sin” 6; =[1 - ——,
n
2 cos 0,
thus, treg = .
sin® 6;
cos 0; + nyJ1 - —
n
Hence,
2 cos O;
trp = o . (12.23)
cos O; + y[n? — sin® 0;
Moreover,
E;—E,)cos0;
Et:El-i-Ey:(l T) 1
1 cos O,

=

|

(1+ COSGZ')_E(COSQI' 1)
' necos6;) \ncosb;

E, cosO;—ncosO; mn;cosO;—n;cosb;
'TE = —_—= = . (1224)
E; cosO;+ncosO; njcosO;+n;cosO;
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Hence,

cos 0; — A[n? — sin” 6);

rTg = : (12.25)
cos 0; + /12 — sin® O;

Therefore, Eqs. 12.23 and 12.25 lead to the conclusion that

(1229

The quantities t7g and 77, defined in Eqs. 12.22, 12.24 are just ratios of amplitudes and not transmittance
(T) and reflectance (R). The latter two quantities are defined below, in Egs. 12.53.
If we want no TE reflection, it must hold that 77 = 0, hence, due to Eq. 12.24,

n; cos 0; = ny cos 6; tan 0; = tan 0,
= (12.27)
however (Eq. 12.21), 1; sin 6; = n; sin 6, 0;, 0; are acute angles
6, = 6; (12.28)
therefore, due to Eqs. 12.27, it follows that
. (12.29)

Egs. 12.28 and 12.29 mean that the EM wave does not change propagation medium. In other words, this is

a trivial solution, since in this case there is no interface. To conclude, it is not possible not to have reflected
s polarization. Due to the above, Eq. 12.22 yields t7p = 1. The values rrg = 0, trp = 1 satisfy Eq. 12.26.
See Figure 12.3.

. n rpg =0
E; Tr tre =1

Figure 12.3: If we want no TE reflection (no reflected s polarization), then the EM wave does not change
propagation medium. In other words, this is a trivial solution, since in this case there is no interface. Con-
clusion: It is not possible not to have reflected s polarization.

Let us examine TM polarization in more detail, using the equations we obtained above. We will
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assume that our materials are non-magnetic, i.e. that y; = p, = 1.

E;cos0; —E,cos0, = E; cos 0,
B; N B, B E;cosO; —E,cos0, = E; cos 0,
Hob1  Hobr  HoMz | _ nE; + mE, = nyE, 91';@
= = n
= =1 ni=-2 (the relative refraction index)
E ny
B=n—
Co
cos O
Ei-E = Et—t ) cos 0,
cos 0; ¢ = (adding by parts) 2E; = Et(n + 5 ) =
E,+E, = nFE, cos i
E; 2 cos 0; 2n; cos 0;
try = — = = . 12.30
™ E; ncosB;+cosO; nycosO; +n;cos 0 ( )
Alternatively,
2 cos 0;
tTM = =
. 2
sin” 0;
necosb; +4/1 - —
n
2n cos 0;
brag = el . (12.31)
n? cos 0; + y/n? — sin? 6;
Moreover,
1 cos 0;
E; = Z(Ei —E,)=(E;+E)
cos 0,
1 cos 0; 1 cos 0;
(e rem )
cos 0, cos 0,
E, ncos0;—cosO; n;cos0; —n;cosb;
o B - 12.32
™ E; ncos0O;+cosO; n;cos0;+ n;cos0, ( )
or
n? cos 0; — A[n% — sin® 6;
rTM = : (12.33)
12 cos 0; + \[n? — sin 6;
Hence,
ro —ntry = 1| (12.34)

The quantities f1); and 71y, defined in Eqgs. 12.30, 12.32 are just ratios of amplitudes and not transmit-
tance (T) and reflectance (R). The latter two quantities are defined below, in Eqs. 12.53.
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If we want no TM reflection, it must hold that 1y, = 0, hence, due to Eq. E£. 12.32,

sin@; sin0;

1 cos 0; = n; cos 0, cos0; cosO,
= =
however (Eq. 12.21), 1 sin 6, = n; sin 0;

} = sin260; = sin260;  (12.35)

Hence, (1) 26, =20, or (2) 206, =m-20,

Choice (1) yields
0, = 0; (12.36)

. (12.37)

Egs. 12.36 and 12.37 mean that the EM wave does not change propagation medium. In other words, this is
a trivial solution, since in this case there is no interface. To conclude, it is not possible not to have reflected
s polarization. Due to the above, Eq. 12.30yields t7); = 1. Thevaluesrp; = 0, frpg = 1, due to Eq. 12.37,
satisfy Eq. 12.34. See Figure 12.4, left.

and, due to Eq. 12.21,

rea =0
rrp = 0

tray = 1 trar = —
7

Figure 12.4: Left: If we want no TE reflection (no reflected p polarization), one case (choice (1)) is
that the EM wave does not change propagation medium. In other words, this is a trivial solution, since
in this case there is no interface. The values 1y = 0,frpr = 1, due to Eq. 12.37, satisfy Eq. 12.34,
ie. rrp — ntrpyr = —1. Right: If we want no TE reflection (no reflected p polarization), the other case
(choice (2)) is that the reflected beam is perpendicular to the refracted beam. However, the reflected
beam, denoted here by the orange line, refers to TE polarization. It holds that n = n,/n; = tan 0;, and the
angle 0; which satisfies this relationship is called the Brewster angle, Op. That is, tan Og = n/n; = n.
The values rrp = 0, tra = 1/n satisfy Eq. 12.34, i.e. 175 — ntrpr = —1. Conclusion: It is possible not
to have reflected p polarization, and this happens when 0; = Op.

Tt Tt
Choice (2) yields 0, = 5~ O;or0; + 0, = > which, due to the reflection law (Eq. 12.20), leads

Tt
to0, + 0, = > If we denote by ) the angle between the reflected and refracted beams, it holds that

Tt
0, + 3 + 0, = 1. Therefore, 3 = > i.e. the reflected beam is perpendicular to the refracted beam. See
Figure 12.4, right.

Due to the refraction law (Eq. 12.21),  n;sin 6; = n; sin 0;

and choice (2), 6; = g -0,

=
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(m ' n;  sin0;
msin|— —0;] =n;sinf; > — =
2 n; cos0;

n
n= ;‘* = tan O, (12.38)

1

The angle O; which satisfies Eq. 12.38 is called the Brewster angle, Op. (The same conclusions can be
drawn from 1, cos 8; = 1; cos 0; of Eqs. 12.35, as well). Then, Eq. 12.30 becomes

2n; cos O; 2n; cos O; 2 2
tTM = = - = = — =
nycos0; +njcos0; nycosO;+n;sin0; n+tanb; 2n

1

1
The values rrpr = 0, trpy = - satisfy Eq. 12.34. See Figure 12.4, right. To conclude, it is possible not to

have reflected p polarization, and this happens when 0; = Op.
Egs. 12.22,12.24,12.30, 12.32, as well as their equivalents, are called the Fresnel equations. They are

summarized below:
E, 2n; cos 0;
trgi=— = 12.40
TE E; njcosO; + nycos 6, ( )
E, n;cos0; —n;cos 0,
rTg = = = 12.41
TE E; n;cos0;+n;cos 6, ( )
E, 2n; cos 0;
tryi= — = 12.42
™ E; nycosB; + n;cos 6, ( )
E, nycos0;—n;cos 0,
7 = — = 12.43
™ E; ny;cos0;+ n;cos 6, ( )
12.2 Total internal reflection.
Let us assume that 177; > 1, and use the refraction law (Eq. 12.21).
refraction law #; sin 0; = 1, sin 6, in 0; < sin 0,
1y = = 0, <0, (12.44)
n>n = n= - <1 0;, O, are acute angles
i

However, increasing 0; increases 60; as well, since, due to the refraction law (Eq. 12.21), ,/ 6; =

sin0; = sin0; = 0,. This, increasing 0;, 0, is also increasing, remaining at the same time larger
Tt

than 60; (Eq. 12.44). Hence, when O, reaches the value > the value of 0; in called critical angle, i.e. 0 =

0;. Then, it holds that 1n; sin 65" = 1, sin(77/2). Hence,

n
sin 65" = ;t =n), (12.45)
i
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Y

Y
(1) |

) < 1

o] N

Figure 12.5: Total internal reflection: the refracted ray is tangent to the interface, i.e. it essentially does

Tt
not get into the other material, 0; = > The value of 0; at which this happens is called critical angle, i.e.

n
05" = 0,. Then, it holds that sin 05" = “L=n

i

This situation, in which the refracted ray is tangent to the interface, i.e. it essentially does not get into the
other material is called total internal reflection (see Figure 12.5). Then,

2n; cos 6; 2n; cos 65"
tre = = l =2
n; cos 0; + n; cos 0, or T
njcos 07" +nycos | —
2
Tt
n; cos 0 —nycos | =
n; cos 0; — ny cos 6, ! ! f (2)
'TE = = 1
n; cos 0; + n; cos 0, or T
njcos 07" + n;cos | =
2
We observe that Eq. 12.26, trg = r7g + 1, holds, since 2 =1 + 1.
; 2n; cos 6; 2n; cos 05" 2
TM = = = —
nycos 0; + n;cos 0 Tt n
f P b 1pcos 05 + njcos (—)
2
T
1y cos 65" — n; cos —)
1y cos 0; — n; cos 6, f ! ! (2
rTM = = p = 1

1y cos 0; + n; cos 0
f P b npcos 0 + njcos (E)

2
We observe that Eq. 12.34, 1 — nitrp; = =1, holds, since 1 —n— = 1.
n

12.3 Emission of polarized beam.

According to what we saw in Section 12.1, When the angle of incidence is equal to the Brewster angle
(6; = Op), then an unpolarized incident beam results in a fully polarized reflected beam and a partially
polarized refracted beam. These are depicted in Figure 12.6. Hence, if we put on the output of alaser device
a material such that the outgoing beam is incident to it at an angle 0; = Op, then we can exploit either the
fully polarized reflected beam or the partially polarized refracted beam. Technical details vary in different
kinds of lasers [ 1], [2], [3].
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tre =rre + 1 revm =0 try = -

Unpolarized

incident beam _ Tr L —
k; Brewster k,

angle

tanfg = ny/n; = n

:ll't

Fully polarized
reflected beam

Partially polarized
refracted beam

Figure 12.6: When the angle of incidence is equal to the Brewster angle (6; = 03), then an unpolarized

incident beam results in a fully polarized reflected beam and a partially polarized refracted beam.

12.4 Poynting vector.

The Poynting vector is defined as

S:=ExH]|,
and, in terms of units,
. o . VA VC ] W
[S] = [E][H] = =5 =3 =—.
mm m?s m°s m

Therefore, the Poynting vector describes power per unit surface. Its norm is

- - = EE) EZ —
= L Ay 3 LG

HHo  HHoCo ‘LLZ‘LL%
— — EE
S| = [ER,[—),
Hto
where we have used the relation
BV E = E
Co Co
n=—
C

Additionally, as we might remember,

1
Co =
NG
oo =>n::c—0: /M: n=[eu|
c= 1 ¢ €oHo

VEEoHHo

(12.46)

(12.47)
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Let us now calculate the norms of the Poynting vectors for the incident, reflected and refracted beams,
using Eq. 12.47:

151 = E2 = [E;P (12.48)
Hilo Hilo

N - ELE EqE

5, = [E,2, [ =2 = |E,2, [ 22 (12.49)
Hrio Hito

N - &€ &€

15, = [E2 [=2 = |E, 2, | 22 (12.50)
Httho H2Ho

Figure 12.7: The Poynting vector of the incident beam, §i, a part of the interface, A, and its projection,

A, ;,normaltoS;. A; = Acos0,.

In Figure 12.7 we observe the Poynting vector of the incident beam, §i; apart of the interface, A, and its

projection, A | j, normal to S;. From this Figure, it is evident that A | ; = A cos 0,. The situation is similar
for the reflected and refracted beams. Concisely,

A,;=Acos0;,
A, =AcosO,,
A = Acos0,.

Let us denote by P;(A, ;) the power incident to surface A ; and so forth, and recall that the Poynting
vector describes power per unit surface. Then,

= P(AL;) =IS|AL; =PiA,; = |S]|Acos 6,

similarly, =P, A, = |§7|A cos 0,,
similarly, =P;A ; = |§t|A cos 0;.

However, if the materials do not absorb energy, then the incident power is equal to the reflected power
plus the refracted power. That is,

Pi(ALi) = P(ALy) + Py (ALy). (12.51)
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Hence,

1A cos 0; = [S)A cos 0, + S| A cos 6, = 1 = 12 | 15i1c0s b
1Sil |Sil cos 6;
_IE.2 |E? [eauq cos O,

- - — 7
[Ei2  EiR N €142 cosO;

where we have used Eqs. 12.48, 12.49, 12.50. In other words,

1=R+T] (1252)

where we have defined

E,P
= = (reflectance)

|Ei|?

T 12
_|Ed® [eapi1 cos O

(12.53)

(transmittance)

T o
|Ej[2'\ €142 cos O;

The quantities 7 and f (e.g. Eqs. 12.40, 12.41, 12.42, 12.43) have been defined as ratios of amplitudes.

Therefore, we can write
e cos 0
1=12+¢ /2—“1 —t (12.54)
€1y cos O;

R =12 (12.55)
T=p et st (12.56)
E1lp cosO; '
|Et|2 1y cos 64 2, 608 0,
—_— = =tn )
|E|2 1 cos O cos 0;

For non-magnetic materials, i.e. when p1; = up =1, if follows that T =

Bibliography

[1] M. Young. Onmixs] kar Méilep: Ommikég Tveg xar KvparoSnyyol. (Tlpwrdtuvnn ékSoon: Optics and Lasers,
Springer-Verlag, 2000). ISBN: 9602546758. [Tavemotnpiakés Ex§ooeig EMIT. Metd@paon: H. Zov-
pumovAng, I'. Kovpovkng, A. Kovota, E. Awapokdmng, K. Pantng, 1. Pantng, A. Zepagetvidng, E. Qa-
prpcéln. Emotnpovikh empédewa: H. Zovpmodng, A. Kovora, 2008.

[2] J.Wilson and J. Hawkes. Ontondextpoviksi: pia eroaywyr. (Ilpwrétuonn ékSoon: Optoelectronics: an
introduction, 3rd edition, Prentice Hall, 1998). ISBN: 9789602546697. [lavemotnmaxés Ex86-
oeig EMIL Metdgpaon: A.A. Zepagetwvidng, M. I. Makpomovlov, A. Iamayiavvng, I Zepywot, E.
Oapmpkéln. Emotnpoviks empédeta: A.A. Zepagetwvidng, 2007.

[3] =.Bec. Ewaywyt oty KPavriky owtixi] kau Laser. @eaoadovikn: Ex§6oeg TtaxovdH - Tamovdn, 1999.
ISBN: 9780007425389.



APPENDIX A

EXERCISES

A.1 Exercises for Chapter 1: Overview.

There are no exercises in this chapter.

A.2 Exercises for Chapter 2: The quantum nature of light.

« Exercise 1. Conventionally, the far infrared (FIR) part of the electromagnetic spectrum corre-
sponds to wavelengths 25 ym < A <1000 um. Find the x (Eq. 2.8) to which FIR corresponds for
temperature (a) 300 K, i.e., approximately the temperature of an animal, (b) 6000 K, i.e., approxi-
mately the effective temperature of the Sun’s photosphere, and (c) 6 K.

« Exercise 2. Conventionally, the ultraviolet (UV) part of the electromagnetic spectrum corresponds
to wavelengths 10 nm < A < 400 nm. Find the x (Eq. 2.8) to which UV corresponds for temper-
ature (a) 300 K, i.e., approximately the temperature of an animal, (b) 6000 K, i.e., approximately
the effective temperature of the Sun’s photosphere, and (c) 6 K.

« Exercise 3. Conventionally, the far infrared (FIR) part of the electromagnetic spectrum corre-
sponds to wavelengths 25 um < A < 1000 pm. For the upper and the lower limit of the FIR
region, find the temperature of a black body at which the Wien’s prediction, pyy becomes half the
experimental value p, which is also predicted by the Planck’s law. In other words, we are looking
for the temperature regime at which we have problem at lower frequencies.

Solution of Exercise 3.
We demand that the relationship pyy = 0.5p is satisfied. Thus, according to Eqs. 2.11 and 2.12, we
have
x3 x3
Poz = 0-5p0

= 1:>ex—1:O.Sex:>ex:2:>x:1n2z0.693.
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hv c=Av A hC (A 1)
X=— & = . N
kg T xkgT
The ratio
hc _
— ~ 14404 x10 3mK. (A2)
B

Hence, between the upper and lower limits of the FIR region, the following inequality holds:

hc
T <1000 ym =

25 <
Hm kg

hc hc
—_— < T<— =
xkg 1000 ym xkg 25 ym
21K < T <831 K.

« Exercise 4. Find when the Rayleigh-Jeans law prediction, pgj, becomes exactly equal to the exper-
imental value, p, which is also predicted by the Planck’s law.

Solution of Exercise 4.
We demand that equality pr; = p holds. Using Eqs. 2.10 and 2.12, it occurs that

x3

2 _
PoX Poex 1

Hence, forx # 0,x = ¢* =1 = ¢* =1 + x = x = 0, which is absurd. Therefore, the Rayleigh-
Jeans law never coincides with the Planck’s law.

« Exercise S Find the temperature T at which, in the UV limit, i.e,, for A = 400 nm, the prediction
of the Rayleigh-Jeans law, g, becomes twice the experimental value, p, which is also predicted by
the Planck’s law.

Solution of Exercise §.
We demand that the condition pgy = 2p holds. From Egs. 2.10 and 2.12, it occurs that

x3

2=2 .
PoX Poex_1

Hence, forx # 0,2x = ¢* =1 = ¢* = 1 + 2x. From a graphical solution of the above equation,
we have x) = 1.25645 = Z. From Eq. 2.8, we have

XA —— T, (A.3)

- kBTA - kBAXA.

Substitution of numerical values leads to Ty = 28800 K. This temperature only corresponds to
surface temperature of stars with very large mass (e.g. 30 times the mass of Sun). Hence, we realize
that the term “UV catastrophe” is misleading.

. Exercise 6. Examine the behavior of Planck’s law in the following limits: (a) zero frequency, and
(b) infinite frequency. Also, prove that (c) at very low frequencies, Planck’s law is identical to the
Rayleigh-Jeans law, while, (d) at very high frequencies, it is identical to Wien’s law.
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Solution of Exercise 6.
Forv > 0=>x—>0:

im0 = o Tim (<= ) = o 1im (2] = 0
XIL%P—POX% er—1 _poxlinO ex B

Forv D co = x —> 00

. . x3 TEAKA i 6
lim p = pg lim 1 polim [—=]=0

X—00 x—o0 \ X —

For low frequencies, i.e., for small x (x || ):

325

2
X X
F@) = f0) + O+ f1 O + (a4)
thus
x X2
ef-1=1+ 1F + 15 + -+ —1=x (1storderapproximation). (AS)
Hence,
x3 x3 )
P =Por—7 = Po = PoX” = pry- (A.6)
For high frequencies, i.e., for large x (x T7):
3 3
X X
ex—lzex::»p:poex_lzpoe—x:pw (A7)
Exercise 7. Prove that pyy # pg; for small and large x.
Solution of Exercise 7.
For large x (x T1):
X3
i, Py = po Jlim x* = e0 # lim pue = po lim 7 =0 (A8)
For small x (x ||), although for x — 0 both vanish:
3
lim ppy = po lim 32 = 0 = lim pyy = po lim — = 0 (A9)
w0 0250 a0l W 050 ex ’ '
they still remain unequal. Indeed, using the expansion
l4 X " xz
£ = FO)+ FO)7; + /03 + . (2.10)
we realize that
x o x?
e =1+ 1F + 15 + -+ =1+4x (Lstorderapproximation), (A.11)
hence,
A # pox? = (A.12)
PW—Poex~P01+x PoX™ = Pry- .
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. Exercise 8. For temperatures (a) 300 K, (b) 6000 K, and (c) 6 K: Calculate the wavelength, A, at

which the prediction of the Rayleigh-Jeans law, Prj, becomes twice the value of the experimental
value, p, also predicted by Planck’s law. In which region of the EM spectrum does A, belong each
time?

Exercise 9. Prove that the following substitution of a position vector
- —
7 > =7 (A.13)

is equivalent, in spherical coordinates, with the substitutions

— r=r (A.14)

Exercise 10. The I function [ 1] is an extension of the factorial function to real and complex num-
bers with its argument shifted by —1. It can be finally proven that

I'n)=m-1)! for n=1,2,3,... factorial form (A.15)

The I function is defined for all complex numbers except for negative integers and zero (0, -1, -2, ...).
If the complex number z has a positive real part, i.e., if Real(z) > 0O, then it is defined by the relation

I'(z):= f e 't?1dt  Euler form (A.16)
0
This definition can be extended to all complex numbers, except non-positive integers, in a manner

that does not concern us here. The I' function is mainly used in probabilities and statistics. The
notation I'(z) is attributed to Legendre. There are also other forms

I'(z)=2 f e~ 12211 (A.17)
0

T(z) = j; (. (A.18)

(a) Starting from the Euler form, prove that

I'z+1) = zI(z) (A.19)
1) = 1 (A.20)
Ir'n) = (n-1)! (A.21)
r1/2) = +n (A22)

The Gaussian integral is given:

00 1
f e iy = = | = (A23)
0 2 a

(©e]

I= f eV dr =y~ )y (A.24)
0

(b) Prove that

wheren =1,2,3,...andy > 0.
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. Exercise 11. Check the following [2, 1]:
00 gin2 0 gin?
(a) Assuming as known that ) gy = Z|al, prove that for t > 0, S0 e =
g 2 P —00 x2
(b) eii(¢+n) — _eii(j).
270 .
© [ " et dgy = 0.
(d) In the first order approximation, V¢ + x = /c + %

Tt

Solution of Exercise 11.

The first three questions are simple. The Taylor expansion of a real or complex function, f(x), of
a real or complex variable, x, that is infinitely differentiable at a real or complex number, 4, is the
power series

fla
1!

(x (x—a)", (A.25)

f() = f(

"( O)(a) o~ S (a)
f a)2+f3—!a(x—a)3+---:;=%fn!a

where, 11! is the factorial of 7 and f (") (a) is the n-th derivative of f at the point a. The zeroth order
derivative of f is, by definition, f itself, (x — a)? :=1and 0! := 1. Fora = 0, this power series is
also called Maclaurin series, i.e.,

(0 ”(0 G0 o [0
0= 0+ L0 L0 PO S0,
: : n=0
In the first order approximation,
f(x) = f(0) + f ’1('0)x. (A27)

Thus, for f(x) = v/c + x, it is implied that f'(x) = 2\/1T
Hence, f(x) = v/c + zi\/E

= f(0) = Ziﬁ while £(0) = /.

« Exercise 12. Assume that the EM energy of a resonator with frequency v inside a black-body cavity
can only take discrete values (i.e., it is “quantized”) and, specifically, has the form

1
E,=hv (n + 5) , n=0,1,23,.. (A.28)

instead of the form E,, = hvn,n = 0,1, 2, 3, ... that Planck assumed. Find how is the energy den-
sity per unit frequency of EM black-body radiation at thermal equilibrium, p(v, T) (units JH ),
is modified relative to the Planck’s law (Eq. 2.7).

« Exercise 13. Calculate the wavelength, A, at which the Planck’s law in the form p(A, T) displays
a maximum, assuming that we can approximate as black bodies: (1) the human body with temper-
ature 6 = 36.6 °C, (2) the Sun’s photosphere, with “effective temperature” T = 5800 K, and (3)
the photosphere of the Altair star, with “effective temperature” T' = 7000 - 8500 K.

Solution of Exercise 13.

(1) Ag ®9355.2 nm = 9.3552 pm, i.e, in the infrared (IR).

(2) Ap = 500 nm, i.e., in green, while yellow is in = 570-590 nm.
(3) Ag = 414 ¢wg 341 nm, i.e, in the violet - ultraviolet.
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Exercise 14. Assume that instead of Planck’s law in the form p(A, T) of Eq. 2.18, the —1 in the

denominator was missing, i.e., we had the respective Wien’s law. Prove that in such case, the Wien’s

he

displacement law would be AyT = e
B

Exercise 15. For the Ay and v or Egs. 2.101 and 2.98, prove that Ayvy = 0.568c, while, if instead
of the Planck’s law in the forms p(v, T) and p(A, T), the Wien’s expressions held, i.e., if ~1 in the

denominator was missing, we would have Ayvy = =C.

Exercise 16. From the distribution of Planck’s law, p(v, T), derive the distribution p(w, T'), where
w = 27v is the angular frequency, i.e., prove that

w3

h

eksT —1

Exercise 17. Prove Eqs. 2.66, 2.67,2.68, as well as Eq. 2.69, which result by separating the variables
X,z of 7. These proofs were omitted in the main text, for brevity.

Solution of Exercise 17. We separate the variables x, v, z, of 7. In Eq.2.65

P 0)2—> —
\Y E7+ —2E7: 0
C

we look for solutions of the form
Ex(x,y,z) = X(x)Y(y)Z(2)e,
where @ defines the polarization, i.e., the orientation of E. Thus,

v2i X xzBY v L Py 0
dx? dy? dz2 = ? B

1ﬂx+1ﬂy+1ﬂzﬁﬁ_o
Xdx2 Ydy? Zdz2 2
N—— ——

We find that three functions which depend on different variables have a constant sum. Hence, we
can assume that each one of them is equal to a constant. We denote these constants by —k2, —ki,

—k2, respectively. Thus, Eq. 2.69 occurs

2
R+B+R =2,
but also
X dx? Y dy? boozdz
22X 42y a2z
. 2y 27 _
ﬁ_}_kxx_o d—y2+kyY—0 E+kzz—0



QUANTUM OPTICS 329

Hence, we have solutions of the form
X(x) = Ay sin(k,x) + By cos(k,x)

Y(y) = A, sin(kyy) + B, cos(kyy)

7(z) = Ay sin(k,z) + B; cos(k,z)

Consequently,

Ex,y,2) = (&, + 8, +2,)

[Aq sin(k,x) + By cos(k,x)][Ay sin(kyy> + B, cos(kyy)][A3 sin(k,z) + Bs cos(k,2)].
e has generally a random orientation, so we analyze its componentis in the x, 1, z axes, i.e, & =
ey + &y + &,. Thus,

E, will be some first combination of the sin and cos contained in , ,

Ey will be some second combination of the sin and cos contained in , , , and

E, will be some third combination of the sin and cos contained in , ,

These combinations must be such, that

E, becomes zero fory = Oandz = 0

Ey becomes zero forx = Qandz =0

E, becomes zero forx = Qandy = 0.
So, Egs. 2.66, 2.67, and 2.68 occur.
E, = E, cos(kx) sin(kyy) sin(k,z)e" ! = becomes zero for y = Oandz = 0
E, = E,gsin(kyx) cos(kyy) sin(k,z)e”™! = becomes zero for x = 0andz = 0
E, = E,gsin(k,x) sin(kyy) cos(k,z)e"®* = becomes zero for x = Oandy = 0

« Exercise 18. Prove Eq. 2.71 as well as Eqs. 2.72, 2.73, 2.74. These proofs were omitted in the main
text, for brevity.

Solution of Exercise 18. From the (1st’) Maxwell’s equation, we have

V'E=0=>(i i i)~(ExE Ey-0m 2 By OE o
x’ dy’ dz Ty dx dy Iz

— Exoky sin(k,x) sin(kyy) sin(k,z)e @+

- Eyoky sin(k,x) sin(kyy) sin(k,z)e @+

— E ok, sin(k,x) sin(kyy) sin(k,z)e”™@t = 0 =

k¢Exo + kyEyo + k,E;q = 0, which is Eq. 2.71.

JB

From the (3rd’) Maxwell’s equation, VXE= 5 =
1 fi i
J J J
ox e e e—ia)t:_(an’aBy’&BZ) -
[Exo cos(kyx) [Eo cos(kyy) [E,q cos(k,z) dt~ dt = Jt

sin(kyy) sin(k.2)]  sin(k,x) sin(k.z)]  sin(k.x) sin(k,y)]
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JB, |
_Jt:%%wﬂﬁm%@m@w—M@m@wm@@m@Mwwz
8 .
_% = [kyEzo — k;E o] sin(k,x) cos(kyy) cos(k,z)e @t =
k,E.o — k.E |
Bx = [ y 0 - yo] Sin(kxx) Cos(kyy) COS(kZZ)e_la)t =

w
i ‘
B, = ;[kz Eyo — kyEo] sin(k,x) cos(kyy) cos(k,z)e ™t whichis Eq. 2.72.

Similar considerations hold to obtain Egs. 2.73 and 2.74. Being somewhat “creative’, in the tempo-

ral integration, for t = 0, we set E(O) =0.

. Exercise 19. Check whether B (Eq.2.72,2.73,2.74) satisfies the SBC* on the walls, as well as what

does occur from the (2nd’) Maxwell’s equation, V.B= 0, and the (4th’) Maxwell’s equation,

. JF
V XB = SOHOE'

« Exercise 20 (Essentially this is a review of the theory) Assuming the Plank’s law as known

8th 1
p(V, T) = C_3 hv 4
eksT — 1

prove the two formulations of the Stefan-Boltzmann law
() for the energy density, o(T'), and

(b) for the intensity of radiation, I.

(¢) Prove Planck’s law in the form p(A, T).

(d) What are the ST units of p(v, T), p(A, T), o(T), I2

x3 7'[4

ex_ldx = E

(o)
It is given that f
0

A.3 Exercises for Chapter 3:Interaction mechanisms between a photon and a two-levelsystem (2LS)

. Exercise 1. Let us consider the (Stimulated) Absorption and focus on the consumption of en-
ergy and momentum. Additionally, let us suppose that the atom is initially motionless. In which
wavelength A region does the kinetic energy of the atom, after absorbing the photon, become large
enough (let us say, equal to 0.05 of the absorbed photon energy) so that it could not be ignored in
the energy balance? Consider as given: the proton mass 11, = 1.672621777(74) x 107 kg, the
Planck’s constant it = 6.62606957(29) X 10734 Js, the speed of light in vacuum ¢ = 2.99792458 X
108 m/s. Assume, for simplicity, that the atomic mass 71,, = Zmy, + Nmy, + Zm, = Am,,.

« Exercise 2. Let us compare the probabilites for spontaneous emission and stimulated emission. Do
we need small or large frequencies, small or large temperatures, if increased coherence is desired?
Judging by the comparison of the above, is it easier to create a coherent beam in the radiowaves or
in the infrared?

« Exercise 3. We want the probability for spontaneous emission to be equal to the probability for
stimulated emission. In what temperature is this possible in the FM radiowaves (e.g., in frequency
100 MHz) and in the ultraviolet (e.g., in wavlength 200 nm)?
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« Exercise 4. The dalton (Da) or unified atomic mass unit, # = 1.660538921 (073) x10%” kg, is
defined as the 1/12 of the atomic mass of the most common carbon isotope ( 1%C). Let us consider
the %C atom, which contains 6 protons, 6 neutrons and 6 electrons. Consider as given: m, =
1.007276466812(90) u, m,, = 1.00866491600(43) u, m, = 5.4857990946(22) x 107 u. If
we add 6 m,, + 6 m, + 6 1, we find approximately 12.099 1, and not 12 u. This is due to the
“mass defect”, i.e,, the fact that a part of the resting mass is used to bind the protons, neutrons and
electrons together to form the atom. Let us consider the (Stimulated) Absorption and focus on
the conservation of energy and momentum. Additionally, let us suppose that the atom is initially
motionless. In which wavelength A region does the kinetic energy of the atom, after absorbing the
photon, become large enough (let us say, a tenth of the absorbed photon energy) so that it could
not be ignored in the energy balance? 1 = 6.62606957(29) x 10734 Js, ¢ = 2.99792458 x 10%

m/s are also given.

« Exercise S. Suppose an ensemble of hydrogen atoms in thermodynamic equilibrium and that the

. . . 5 . . -13.6 eV
eigenenergies of each atom are given by the well-known Bohr’s relationship E,, = Te Assume

that the temperature is (a) 4.2 Kand (b) 300 K. The Boltzmann constant is kg = 1.3806488(13) X
1072 J/K = 8.6173324(78) X107° eV/K.

(A) Compare the number of atoms in the 1st Bohr orbit with the number of atoms in the 2nd orbit.
Continue in pairs up to the Sth orbit (the pairs are 1st-2nd, 2nd-3rd, 3rd-4th, 4th-Sth).

(B) Compare the number of atoms that jump from the 1st to the 2nd orbit in time dt with a stim-
ulated process, N3 ,,, with the number of atoms the drop from the 2nd to the 1st orbit in time
dt with a stimulated process, dN3,;. Continue in pairs up to the Sth orbit (the pairs are 1st-2nd,
2nd-3rd, 3rd-4th, 4th-5th). Suppose that Byy = By;.

« Exercise 6. Consider a quantum dot of rectangular parallelepiped shape with a core of GaAs with
dimensions 8 X 4 X 4 nm and a shell of Al,Ga;_,As, where the molar fraction of Al, x, is such that
the discontinuity of the conduction bands between the two materials is V;, = 224 meV. Consider
the conduction band effective mass as approximately equal to the one of GaAs, i.e, m* = 0.067m,.
(A) How many energy levels does this quantum dot possess? If you cannot prove the above, con-

VL2
\ %] bound energy
states [3]. Int[£] is the integer part of &.

(B) What is the wavelength to which the jump from the ground to the first excited level of this
quantum dot corresponds?

(C) Furthermore, assume a large ensemble of such quantum dots with one electron at each, and
that the Boltzmann statistics with equal statistical weights is adequate to describe the energy level
populations. The temperature is (a) 4.2 Kand (b) 300 K. Compare the number of quantum dots at

sider as known that a quantum well of width L contains 7 = 1 + Int

which the electron is on the ground level with the number of quantum dots at which the electron
is on the first excited level.

(D) Now, consider that all this ensemble of quantum dots is subject to an appropriate external
EM field. Compare the number of quantum dots with electrons that jump from the ground to the
first excited level in time df with a stimulated process, dN3" ,,, with the number of quantum dots
with electrons that drop from the first excited level to the ground level with a stimulated process,
dN5E ;. The reduced Planck’s constant Planck 7i = 1.054571726(47) x 10734 Js, the elementary
charge e = 1.602176565(35) x 1071? C, the electron mass 11, = 9.10938291(40) x 1073! kg,
the Boltzmann constant ky = 1.3806488(13) x 10723 J/K= 8.6173324(78) X 107° eV/K, and,

generally, any physical constant you might need, are given.

. Exercise 7. Vindicate Figure 3.7, where the Maxwell - Boltzmann (MB), Fermi - Dirac (FD), and
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Bose - Einstein (BE) statistics are compared. In other words, draw the concise Equation 3.20. Study
the functions, their important points, their limits x — +00 and x — 0* etc. We have defined the
continuous variable x = B(E — u) and we are interested in the average number of particles 7 as a
function of x.

« Exercise 8. (o) Show that in room temperature, T = 300 K, the quantum concentration, ngo, is

~ 1000 nm~2 for protons and =~ 0.015 nm ™ for electron. ( B) The density of copperis =9 g cm™3,

its atomic mass is = 63.5, and in its solid form, each copper atom has one “free electron” Show that
the copper atoms cannot be described classically, since their concentration, 7, is much larger than
the quantum concentration, ng.

A.4 Exercises for Chapter 4: Continuous and discrete spectrum.

« Exercise 1. Prove that in the case of quasi-one-dimensional electron gas, with free states along

the direction x and bound states along the directions ¥, z, the envelope functions are given by the
expression

1
Piji, () = L 5 0i(y)Ci(2) (A.30)

and the relevant eigenenergies by the expression

h2k2
Ei’j k 2m*’

(A.31)

where k, is «continuous» and i, j are discrete indices.

« Exercise 2. Prove that in the case of three-dimensional electron gas, with free states along all direc-

tions X, I/, z, the envelope functions are given by the expression
L ke ik Y sik,z
(Pi,]',kx@ = etxtey s etz , (A32)
vV

where V' = L,L,L,, and the relevant eigenenergies by the expression

U2+ K+ k) 2k

= , A.33
2m* 2m* ( )

Ex ek, =

where ky, ky, k, are «continuous> indices.

A.5 Exercises for Chapter 5: Semiclassical approximation 1.

« Exercise 1. Consider the equations occurring by the Rabi equations after the Rotating Wave Ap-

proximation (RWA), i.e.,
i 0‘@ —i(Q-w)t
C1(t) = C(t) {Q-w)
. @
Calt) = €0 2 oo

We want to solve them under the initial conditions C;(0) =1,C,(0) =0
(2") Perform the transformation

i(Q-w)t

Ci(t) = Z1(t)e
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i(Q-w)t

Cy(t) = Go(t)e 2

and prove that the following system of differential equations occurs:

5

[ A iQg

)

. 2
&y (1) Or é Eo(t)
2 2
We have defined the detuningas A := @ — () and the Rabi frequency as Qp := thgv.

(b’) Define the vector
0=[

and the matrix

i iy Ao
T &|--n= & %]
2 2 2 2

so that the system of differential equations becomes
X(t) = 7X(F)

Try solutions of the form

omov A = —iA.

(¢’) Solve the problem for A = 0.

(d) Solve the problem for A # 0.

(¢’) Compare the maximum transfer percentage and the period of the oscillations that occur for

A=0and A # 0.

Exercise 2. Consider the case in which Eq. 5.103 holds, and specifically that the probability to find
the electron at the upper level is

2 sin2 (&
Py(t) = |Co(t)1 = %% 2
2

PE,

Given the definition of the Rabi frequency, Qp = (see Eq. 5.50) and assuming we are at

resonance, estimate the time needed so that P,(t) = 1. The magnitude of the dipole moment, .7,
is of the order of eag, where ¢ is the elementary charge ~ 1.602 X 1071 C and ay =~ 0.529 A is the
Bohr radius. Consider three cases for the magnitude of the electric field; in specific, 103,10° and
108 V/m. The reduced Planck’s constant is known: /i = 1.054 x 10734 Js.

Solution of Exercise 2.
If we are at resonance, when A := @ — () = 0, and we want the probability to become equal to



334

EXERCISES

sin2 X

In
x2

At
unity, then, if we set x = - DX = 0= — 1. Thus, it is implied that t =

P&,

particular,

2x1.054 x 10734 s
1.6x10°19C 0.529x10°m 103V/m
2 x1.054 x 10734 Js
1.6x10°19C 0.529x10°m 105V/m
2x1.054 x 10734 Js
1.6x10719C 0.529x1070m 108V/m

E)=100V/m= t= ~25%x108s=25ns

Ep=10°V/m= t= ~25x1071%s = 0.25ns

E)=108V/m= t= ~25%x10713s=0.25ps

Exercise 3. Using the program Oscillations.m (Code C.8 in Appendix C), create a graphical rep-
resentation of oscillations for a two-level system for which it holds that |A| = 3Q.

Exercise 4. Create a program analogous to Oscillations.m (Code C.8 in Appendix C) for a three-
level system, and create a graphical representation of oscillations within it in the case Qy = Qf =

1,A=0.

Exercise S. Two-level system in the semiclassical approach and dipole approximation. The follow-
ing equations, before the rotating wave approximation, are given

Cy(t) = Cz(t)iQTR et + 2], (A.34)
Cy(t) = Cl(t)iQTR 7t + et]. (A.35)

(a) Explain and define the symbols, Qy, A, X, C1(£), Co(#).

(b) Let’s suppose that the magnitude of the perturbation is large so that A and X are negligible
compared to Qp. How will Egs. (A.34)-(A.35) be simplified?

For the simplified equations:

(c) Find C;(f), C5(t) with initial conditions C1(0) =1, C,(0) = 0.

(d) Calculate the probabilities of electron presence at the levels, P1(f) and P,(t), as well as the

period, T§, and the maximum transfer percentage, Ay, of the Rabi oscillations.
(P2(t))

2,mean

presence probability atlevel 2, and t; ,,..,, is the required time so that P,(t) reaches for the first time

(e) Calculate the mean transfer rate, k = , where (P5(t)) is the mean value of the electron

its mean value, having initially placed the electron at level 1.

Exercise 6. Quantum dot and the variables are separable. Along axes x and  we have quantum
wells which hold only one level, whereas, along the z axis we have a simple harmonic oscillator,
whose levels are energetically equidistant at separation /). We focus on the lower three levels,
let’s call them k = 1,2,3 (n = 0,1, 2). Thus, we have a three-level system. Suppose semiclassical
approach with electric field along the z axis. The eigenfunctions along the z axis are

2
Z,(2) = 10,(2) exp (—%) , (A36)
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1/2
where a = (E) and the following are given

1\
uy(z) = —) , (A.37)

am

3 1 12 z
11(2) ﬁ) [2(5)] (A38)

1 12 z\2
uy(z) = Saﬁ) [2—4(;) ] (A.39)

Prove that the (cyclic) Rabi frequencis, Qp and Qf, as well as the off-diagonal dipole moment ma-
trix elements .77 and %', between levels 12 and 23, respectively, satisfy

(a)

_2ea
= f du p? e, (A.40)

(b)
\/Eea

P =

(0] 2 (o¢]
f_ du p? et + % 2]: du pt e, (A41)

f dy p2 e = v

T
2
f du et :i (A.43)

and because it is given that

(A42)

we have finally

(c)

P 1
@’| (A.44)

V2

A.6 Exercises for Chapter 6: Semiclassical approximation II.

There are no exercises in this chapter.

A.7 Exercises for Chapter 7: Allowed and forbidden optical transitions.

« Exercise 1. Prove that, e.g. at the Hydrogen atom, the electric force is much larger than the gravi-
tational force. Find, actually, how many orders of magnitude larger it is.

« Exercise 2. Find the quantum number 7 that characterizes the movement of the Earth around the
Sun, within the Bohr’s model. Consider as known: Earth’s mass, M = 6 - 10%* kg, orbital radius of
Earth, R = 1.5 - 10! m, linear velocity of Earth,v = 3 - 10%* m/s.

« Exercise 3. Show that the constant A in the azimuthal function ®,,, (¢) = Ae™e? can be chosen

1
as =50 that the function is normalized. Moreover, show that for 11; # 1, the functions ®,, ()
and @,/ ((]5) are orthogonal.
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Exercise 4. Show that ©,,(0) = @(3 cos? 0 — 1) solves the polar equation 7.25 and that it is
normalized.

Exercise S. Consider as given the function Ry((r) = %e_% and Eq. 7.26 and find the energy Eq
g

of hydrogen.

¢ 2% golve the radial equation (7.26)
0

2 1
Exercise 6. Showthat R o(7) = ¢ "apand Ry = —
10( ) L 0 21 5 \/gaz& 7

and that they are normalized. Consider as known:

f dppeyp =y "nl, n=1,2,3,..,y > 0.
0

Exercise 7. Compare the probability densities to find the electron in the 1s orbital of the hydrogen
3
atom at distances %, ag and %0.

Exercise 8. Find the distance at which the probability density to find the electron at the 1s orbital
of the hydrogen atom becomes maximum.

Exercise 9. Find the average distance of the electron in the 1s orbital of hydrogen. Consider as
known:

f dpp"e yp =y " nl, n=1,2,3,..,y > 0.
0

Exercise 10. Show that the substitution 7 — —7 of a position vector is equivalent, in spherical
coordinates, to the substitutions 7 — 7,0 — 1 — 0, ¢ — 7 + @, which were used in Section 7.7.

Solution of Exercise 10:
Let us consider, without any loss of generality, the point marked in Figure 7.9, which lies on the

first octant. Thus, 0 € [0, 2], @ € [0, 4]

The substitution? = —7 =1’ is equivalent to
x'=-x & 1r'sin0 cosp’ = —rsin0cos @,
Y =-y e r'sin0 sing’ =-rsinOsing,
2=z 1 cos@ =—rcos0.

However,

Y= \/x’z +y2+22 = \/(—x)z + (—y)? + (—2)? = \/xz + 1% + 22

Thus, and the above relations become

sin 0" cos @’ = —sin O cos @,
sin 0’ sin@’ = —sinOsin @,
cos @’ = —cos 6.

From the third relation, given that 0, 8" € [0, 7], it follows that . Additionally, divid-
ing the first two relations by parts yields

tan@’ = tan@

Hence, given that @, ¢’ € [0, 27t], the two possible solutionsare ¢’ = @ and ¢’ = 7+¢@. However,
substituting the former solution to any of the first two relations, it follows that sin 6" = —sin 0,

which, for 6, 0’ € [0, 1] is absurd. Therefore, | @’ = T+ @ |
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« Exercise 11. Show that the below expression for the position vector,

r Y ~ ~ i "
P = 2 sin O[(6, — i8¢ + (& + iE,)e?] + rcos 02,

which was used in Section 7.7, holds.

Solution of Exercise 11:

e, — i?,’y)ei(P = (&y —18y)(cos @ + isin @) = &, cos @ + E,lsim — i, cosP + & sin @

e, + iéy)e_i‘P = &y +18,)(cos p — isin ) = &, cos @ — ;ishr + i, cosP + &, sin @
r

= [..] =28, cosp + 28, sinp = > sin O[... ] + rcos Oe, =

= rcos @ sin 02, + rsin @ sin 68, + ¥ cos 08, = x€, + ye, + z¢, =7

« Exercise 12. Given that the Einstein coeflicients are given by Eqgs. 5.99, 5.100, 5.101

3 P
127 G
Ay _ 8mhv?
By, s
Bis = By,

calculate them for the atomic transitions 100 — 210 and 100 — 21 +1 of the hydrogen atom.
Assume that we are at resonance.

Solution of Exercise 12:
Calculations in Section 7.7 show that

152 0152

= -
F100210 = " 35 M0t = |Z100210 = 5 %0
- 7 . 21512
F100211 = ~55(Cx £ 8y )eag = [Pro011] = —5-edo
Hence, we can compactly write
15/2
L@ = 3—5€ﬂ0.

15/2
Therefore, # = = 1.602 x 107°C - 0.529 x 10 1%m = 0.6313 x 1072’ Cm, since the

elementary charge e ~ 1.602 X 107! C and the Bohr radius 4y ~ 0.529 A. Hence,

3
B = By, = By, ~ 0.02121 X 1022}’“—2
S

The vacuum permittivity is &g ~ 8.854 X 10712 F/m and the reduced Planck constant is i ~
1.054 x 10734 s,
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Since we are at resonance, A 1= @ — () = 0 = @ = (. So, let us calculate €. For the hydrogen
energy levels, we have E,, = -13.6 eV/n?. Thus,E; = -13.6 éV,E, = 34 eV = E, -~ E; =

E; - Ey 15
102eVv=>Q = 7 ~ 15.5 x 10" Hz = 15.5 PHz
8t hv? 8 h w3 27 Q3 Q3.2

_ _ _ ~ ~ 9
Ay = —G—B= =55 B=— 5B~ 55— ~1963x10° Hy

. Exercise 13. Calculate the matrix elements and simple overlaps (100|7[100) and (100[100), (100|7|200)
and (100|200), (200|7]200) and {200]200), of Section 7.7.

Solution of Exercise 13:

2, — 2, )

00 TC Tt _z . 8
(100/71100) = (rad) (a2 [ [ f P sin 0drd6dc e r{SII;
0 0 Y0

T+ @+ iéy)e‘i‘?’] + 2. cos 9}

o
"2 d a f f sin Qded(]b{sm [ ey — ley)el‘i’
0

+ @+ iéy)e-@] 2. cos 9}
20 . .
f e quq{ f desm fz dqb[ iéy)el¢+(éx+iéy)e‘l¢]
+f d@sin@cos@éﬁz\f2 d¢)}
0 0

4 3

(o]
-, (&)
nay Jo \ag

0 2.3 3 3
32 dg =273 = —— = — ==

foqe q 7 =3T3
y=2,n=3

jjn dol...] = (&; —ie,) fﬂ dpe® + (2, + i) fzn dp e
J‘zﬂdqbeﬂqj f d¢ cos +qb +lf d¢ sin +¢) M+ Z/QW 0

f 70 sin 9 fnl—COSZQ 3 { f 29}
2 —4 e . cos

f 40 sin 0 cos 0 = fde- 29—1[_C0526n
. Sin COS —2 0 Sin —2 2

=0

0

N _ ap 3 (m _ .
Thus, (100|7]100) = E?{Z 0+0- 271} = 0, expected, since

(100|7[100) = f (even)(odd)(even) =

00 ATT e _2r
While, (100[100) = (ra3)™! f f f P sin OdrdOdp e "
0 0 0
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3 ) 2 2 e 277
a r r -——
=2 [Cd(Z)Z) e [ dosmo [ do
Tty Jo g/ \ag 0 0
3

1 o , b 1 o1 2
:—f dq e q[—cos@] 2m = =2 @1 +1) 2w = = =1
tJo ~—— 0 T 2

y=2,n=2

This is expected, since @1 (7) is normalized.

27T r
(100|71200) = (rad)""2(32ma3) 1/2f f f 12 sin OdrdOdge (2— a_) 20
0

0 | |
{S“; [(@x —ie,)e® + (2 + iéy)e-@] +2, cos 9}

B AN ) [ o]t

_ﬁ 00 _ﬁ 3 —(3+1) 3 —(4+1)
f dqqez(Z q) 2f dq g®e 2—f dqq4e2=2(—) 3!—(—) 4!
—_ 0 — 2 2
3
)/:—,n=3 )/25,7’1:4
_2 242 3 252 302 26 28 _(4)3 (4)4
34 -3 33 3¢ \3 3

.2 " g
T 6 TT . i
f 46— fz d¢[(éx—i§y)el¢+(éx+iéy)e_l¢]+f dGSiHQC"SQéZf 4
0 0 ; '

T 0+40-21=0
= — . 2T =
1

3 4
- ap ((4 4 .
Thus, (100|7|200) = ((5) - (—) ) -0 = 0, expected, since

n4\/§ 3
(100|7]200) = f (even)(odd)(even) = 0

While, (1001200 = (rad) Y2(32ma3) 2 f f fz P sin OdrdOdo e %( ; )e‘%
0
= — 2”0(2——) d@sm@f d
na34\/_ (ao)(ﬁlo) f ¢
3q
per R L o
—(2+1)

et [aret)- L0 ()

y——n =2 y——n =3
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1 {25 25} _
ERVA DA
This is expected, since (g (7) and P, (7) are orthogonal.

2

(o) 7T 27T _r
(200/71200) = (327ta3)2(327a3) 12 f f f P sin OdrdOdd e (2— al) r
0 0 0 0

0 | |
{ [(éx )6 + (&, +i2,)e7 | + 2, cos 0]

4

=2 d(L)(L) 2—— ffsm@d@dqb
32may Jo apg/\ay

sin O .

{ > [...]+ezcos(9}

quq3(2—q)ze"7:f dgg® (4 +q*>—4g)e =
0

—4f dqqeq+f dqqe‘?—4f dg q*e™
y1n3 y1n5 1n4

=4-176GD31 4 1-6+D51 — 4. 17141 = 41 + 415 - 414 =
=41(1+5-4)=2-4!

1 o~ 21 ' 0 ' 0 e 21
5 f 46 sin 0 f do [(éx — i) + (2 + iéy)ﬂﬂ + f 46 sin O cos 02, f dé
0 0 0 0
j‘n 40 sin2 6 = f” 1 - cos26 46 = U |Sin29 ]n _T
0 o 2 2 122,72

7T 7T
f dO sinO cosO = f sin O d(sin 0) =
0 0

Thus, (200[7[200) = 3”702 : 4!{% 040- 271} = 0. This is expected, since
TC

(200|7]200) = f (even)(odd)(even) =

2

1 (o8] 7T TT _r
[ f 7 sin Odrd0dp (2- ) o
32mnag Jo Jo Jo ao
?g SRR r\2 _r pmop2n
- d(—)(—) (2——) ¢ f f sin 046
3271;1'6r 0 \dg/\dg o 0 Yo

47 (total solid angle)
1 00
= —{f dq g° (4 +q% - 4q) e“’}
81 Jg

Thus, (200/200) =
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1 (o0) (o0) (oo}
= —{4f dg g?e™ +f dg q*e™ —4f dg q3e™ }
8\ Jo 0 0
y=1,n=2 y=1,n=4 y=1,n=3
8+ 4! - 4!
I R
8

= 1{4 17@+D21 4 1-G+D41 — 4. 1—<3+1>3!} =
8

This is expected, since @y (7) is normalized.

« Exercise 14. For the hydrogen atom:

1. Check the parity of 2s, 2p,, 3d,..
2. Find how many and which nodal surfaces each of the above functions has.

3. Check whether the transitions 1s <> 2p,,1s < 3p,, 2s <> 3p, are allowed or fobidden

within the dipole approximation and whether the selection rules Al = +1, Am, = 0, £1
hold.

4. Compare the strengths of transitions 1s <> 2p,,1s <> 3p, within the dipole approximation.

S. The dipole moment matrix elements are

L@klkz = f dV(D}zl(?) (—6)7q)k2(?)

everywhere

Explain why there is no such optical transition if this matrix element becomes zero.

6. Find the energy, frequency, and wavelength at which the transitions 1s < 2p,,1s < 3p,,
25 <> 3p, correspond. Which of these transitions could be used for a visible laser?

« Exercise 15. Consider a 1D infinite quantum well of width L, with walls places at positions x =
—L/2 and x = L/2. Its eigenfunctions are

\/%cos(nLix), n=1,3,5,..
Wy (x) = \/% sin(2), 1 =2,4,6, .

0, outside

1+cos(20) 1—cos(20)

The identities cos® O = ,sin® @ = can be used. Show that the optical transitions

2
3 & 1and 2 < 4 are forbidden, while1 <> 2 and 2 < 3 are allowed.

Show the same thing, this time considering a 1D infinite quantum well with walls at positions x = 0
and x = L, i.e., with eigenfunctions

2  (nmx
\PH(X) = Z sm(T), n = 1, 2, 3, .. s

. Exercise 16. We give the atomic orbitals (notation n£m) of the hydrogen atom 210 (2p,) and
32+2 (with proper sum and difference of which 3d,2_,2 and 3d,, are constructed)

=12 r r
0,¢) = (32ra3) | — cos@ exp|-—|, A4
P210(r, 6, ¢) ( ﬂao) oy < eXP( ZaO) (A435)
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2
=12 ( r r
(1, 0,9) = (26244na3) | —| sin® O exp(£2i -—. A46
V3242(1, 6, ) ( o) (ﬂo) sin eXP( (P) eXP( 3%) (A46)
(a) Find and justify the parity and the number of nodal surfaces of these atomic orbitals.
(b) Is the transition 210 «> 32+2 allowed within the dipole approximation? Are the rules Al = +1

and Am = 0, +1 satisfied?
We give that (r — 1’ = —x) & (/ = 1,6’ = 71— 0,9/ = ¢ + 7).

A.8 Exercises for Chapter 8: Quantum mechanical approach I.

« Exercise 1. The index 71 of the EM mode is ornltted for 51mp11c1ty
(A) Determine the action of the terms 44, 447, S S$.,S. S+, § il S+a, S_ 4%, 8 4, act on the
states ||, 7) and |T,n).
(B) Calculate {(a*a), (aa*), (5,5_), (5_5.), (5.a%), (5.a), (5_a*), (5_a), for the states ||, 1)
and |T, n).

Solution of Exercise 1:

ata|r,ny = a'\n|T,n—1) = \n\n|l,n) = n|l,n),
ata|l,ny = a'\nll,n-1) = Vn\nll,n) =nl|l,n).

y=avn+1|T,n+1)=vVn+1lvn+1|T,n)y=n+1)|T,n),
gy =avn+1|,n+1)=vVn+1lvn+1||,ny=m+1)||,n).

S.S5 11, my=8,1l,n) = |1,n)=11,n), eigenstate with eigenvalue 1

S.S5_|l,n)=5,10,n) = |0,n) = 0]],n), eigenstate with eigenvalue 0".
§_§+ IT,n)y =5_10,n) = |0,n) = 0|1, n), eigenstate with eigenvalue 0.
§_§+ 1L, ny=S8_|T,n) = ||,n) =1|],n), eigenstate with eigenvalue 1.

S.at Ity =Vn+1[0,n+1),

S.at|l,ny = \/n+ 117, n+1).

S.alt,ny=~nl0,n-1),

Siall,ny=+n|T,n-1).

S_alt,my = ynll,n-1),
S—ﬁ|l1n> = \/E|0/n _1>
Isince 0 =

O = = O

Zsince 0
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(B)
@'ay, » = (1,nld*ar,ny = n(t,nlt,n) = n,
@y, = (Lnlatall,ny =n(l,nll,n) =n

@aty, = (1,nlad’ |, ny = (n+1) (0 nlt,m) = n+1,
@aty, = (L nlad’|l,ny = (n+1) (L nll,n) = n+1.

(848 = (LS, ST my = (il m) =1,
(848 = (LS5 ILm) = (1, nl0,n)=o0.

(-5 )y, = (1,nIS_S,1T,m) = (1,nl0,m) = 0,
(S-S = (LnlS_Sill,m) = (Lnll,my=1.

W

(SsPyp y = (0 mlS,a" 1, 1) = Vi + 11, nj0,n +1) =0,
(Spd™y = (LnlSiatll,ny = Vn+1¢],nt,n+1) = 0.

(Sedypy = (TS,all,m) = (1, ml0,n~1) =
(Siayy = (LnlSall,ny = \n(l,nlt,n-1) =

S,y = QS afmy = N+ 1l +1) =0,

(S.ahy = (LnlSatll,ny = Vu+1(l,njo,n +1) =

(S_B)yg,y = (TmlS_aln, ny = \n (1, nll,n-1) =0,
(-, = (LIS all, ny = \nl,nl0,n-1) = 0.

& Electrons obey to anticommutation relations (Eq. 9.17). Among others, we have shown (Eq. 8.119)
that

~

{5,,51=5,5+585,=1=55,=1-5,5 = (5.5,) = (H- (5,5.)
Ifastate |k) = [Zlis normalized, then <i>|1<> = (xlix) = (x|x) = [a* b*]lZ] = |al2 +|b]? = 1.

Hence, (§_§+> =1- (§+ S ), which is in agreement with the above.

& Photons obey to commutation relations (Eq.9.15). Among others, we have shown that[4,,, 4 g] =
Ome = Ay, a4, =1 = a4y}, — aha, =1 = 4,a% =1+ ahd, = (4,45) =1+ (@hd,),
which is in agreement with the above.

« Exercise 2. Prove the following relationships:

M [N =-a
+

a [N,at]=at
() N@ln) = (n-1)(@|n))
(V) N@"ny) = (n +1)(@" |n))
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where N = 474 is the photon number operator, at is the photon creation operator, and 4 is the
photon annihilation operator.

« Exercise 3. Starting from Eq. 8.81, and using Egs. 8.97, 8.98 and 8.99, prove Eq. 8.100.

« Exercise 4. Consider electron raising and lowering between the energy levels of a two-level system
(2LS).
(a) Define the spinors that describe the electron at each of the two levels of the 2LS as well as the
vacuum, in the form of column vectors.
(b) Define the raising and lowering operators, §+ kat S , in matrix form. Show the result of their
action on the spinors.
(c) Find §+ +5_and §+§_ + §_§+.
(d) Show that the Hamiltonian describing the 2LS is H, s = E;5.5_ + E;5_5, and show how
the relationship Hy; g = Q5. 5_ occurs.
(e) Show that

{§+/ Si} = i {g—/ St} = i {§+/ §+} = 6 {g—/ g—} = 6

T is the identity 2 X 2 matrix, and 0 is the zero 2 X 2 matrix.

(f) Let us now remember the Pauli matrices 4, Gy, 0

.01y . (o -\ . (10
%=1 o) wT\i o) =70 )

[6,,6,] = 2i6..

Show that

an so on, cyclically.
(g) Also show that the Pauli matrices anticommute.

(h) Finally, show that
S, +5_=6,
§+ - g_ = l(’j\y.

« Exercise S.
(a) For the Jaynes-Cummings Hamiltonian of one EM mode, calculate {&t&), (aa'), (5,5_),
(5_5.),(5,.4),(5,a"),(5_a"), (5_a), for the state

i i0
() = i—Fz 1,2) + f—ﬁ 1,1y, (A47)

where @ and 0 are arbitrary angles.
(b) Find to which system of differential equations is then equivalent the time-dependent Schrédinger
equation.

A.9 Exercises for Chapter 9: Quantum mechanical approach Il.

Thre are no exercises in this chapter.
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A.10 Exercises for Chapter 10: Density matrix and operator.

« Exercise 1. Prove that, if the Hamiltonian is time-independent, then Eq. 10.31 has a solution of
the form

p(t) = o iHih ﬁ(o)eth/h.

« Exercise 2. Starting from Eq. 10.39, prove Eq. 10.35.

Solution of Exercise 2: From Eq. 10.39 we have
ih ﬁ =[H,

nm

1, Plum = (nl Hp [m) — (n| pH |m)
(n|H |6y <€l plm)y =Y (nl p1€) (€| H |m)

=

14 4
E nfpfm pné’H{’m)r

4

which is Eq. 10.35.

« Aoxnon 3. Defining the Matrix 10.47, using Eqs. 10.51 and 10.52, and assuming that Uz, (t) =
Ug1,(t), prove that the time evolution of the density matrix with decay mechanisms is given by
Eq. 10.53.

A.11 Exercises for Chapter 11: Laser.

« Exercise 1. Create graphical representations of V1, v, 0 versus 7, changing 7, = 0.25 or 0.5 or
0.750r1.0 or1.5 and keeping ry = 1.5, A’/A = 1079, To = 10 constant, and explain them using
Eqs. 11.73, 11.74, 11.75.

« Exercise 2. Consider the dimensionless form of the laser rate equations

dv %

d—; :V2+Q(V2—V1)—T—1

dv

d—; =1y +o(v—v2) -2
do 0 A’ 1
R R )

A/
Prove that when - << 1, then in the steady state, the following equations hold:
V1 = T1YN, Y N

_ N, VrN<1
V2 = T17N+(1—T1), VT'N>1

_ 0, VVN<1
CT ) ry-1, Vry>1

« Exercise 3. The panels of Figure A.1 represent the solution of Eqgs. 11.73, 11.74, 11.75, for chang-
ing 79 = 10 or 5.0 or 1.0, and keeping 7, = 0.5,y = 1.5, A’/A = 107 constant.
(a”) What is the ratio of the lifetimes between levels 1 and 2?
(b’) Why is there a difference in the time it takes for ¢ to become perceivable?
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Figure A.1: The solution of Egs. 11.73, 11.74, 11.75, for Ty = 10 or 5.0 or1.0,and 71 = 0.5,y = 1.5,
A’/A =107 constant. Note that the notation p in the panel is in fact the dimensionless g of Eq. 11.75.

« Exercise 4. Create graphical representations of v, v, ¢ versus 7, changing A’/A = 102 0r10%or
10~ andkeeping 7 = 0.5,7¢ = 10,7y = 1.5 constant, and explain them using Egs. 11.73, 11.74, 11.75.

« Exercise S. Think of the LASER rate differential equations in the dimensionless form

dv v
d_l :V2+Q(V2—V1)——1, (A48)
T 74
dv
T
dr - g ATV A Ty A.50
T T { avetet Vl)} T - 1) (A.50)
At the steady state, ignoring AX, < 1, the following equations hold
V1 = T1YN, Y N (ASI)
_ ) Ny V" Ny < 1
2 { Ty + 1 -11), Yry21 (A.52)
M (A.53)

0,
Q_{rN—l, Viry>1
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The numerical solution of Egs. (A.48), (A.49), (A.50) is shown in Figure A.2, where we modify

only one of the parameters 7, 71, Tg, -

4

(a) What is the fraction of the levels’ lifetime, a.

2
(b) Which parameter is modified and what is the value of the modified parameter at each subfig-
ure?

(c) Why is there a difference in the time required to appreciate (i.e. clearly see) the modification
of ¢ in the lower subfigures?

(d) Why before ¢ becomes appreciatable, i.e. clearly seen, in all subfigures it holds 1;—2 =22
1

Vs Vs P VS, 7 Vs Vs P VS, 7
0.5 1
0.4 0.8
0.3 2 06
o~
o - o o o - e & e - o e e e e o e o e -
0.2 04
0.1 0.2
0 R R N f 0 . . N .
0 100 200 300 400 500 0 100 200 300 400 500
Vys Vo VS. T Vys Vo, pVS. T
" L‘ -
1
=15
N
e e e e = o e e e o e o o - -
=
0.5
0.5
0 " M . " 0 A " . " I
0 100 200 300 400 500 0 100 200 300 400 500

Figure A.2: We modify only one parameter and observe the time evolution of Eqs. (A.48), (A.49), (A.50).

A.12 Exercises for Chapter 12: Various.

There are no exercises in this chapter.
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APPENDIX B

AUXILIARY MATHEMATICS AND CALCULATION

DETAILS

B.1 Arithmetic Progression.

We recall the definition of the geometric progression (4,,) and some relevant relationships.

n
2

a1 —a, =, n=1(0),1,2,3,..
a,=a;+n-1o
_aty

2

(al +'an)

B.2 Geometric Progression.

@ . difference

recursive formula

B : arithmetic mean (B.1)

sum of the first 71 terms

We recall the definition of the geometric progression (4,,) and some relevant relationships.

Ap+1

=3#0, n=(0),1,2,3,..

n-1
o p=ay
3 -1
1
al%_ll %;t
an, 3=
ay

3 ! ratio
recursive formula

f . geometric mean
(B.2)

sum of the first 77 terms

sum of infinite terms (]3| < 1)
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B.3 A representation of the delta function.

1 sin®(ax
We will show that the function 6,(x) = ﬁ # , where a # 0, is an approximation to 0(x). For
Tt|a X
example:
_ ) 1 sin®(ax) o lal . sin(ax)  |a|/.  sinax 2
*  lim 6,(x) = lim — ——— 4= — lim ——— = —| lim
x—0 -0 lal a?x? T x—0  a?x? T \x>0 ax
Jal sinax\> lal_, lal
= —( lim ) =—1"=—=
Tt \ax—0 ax Tt T
. lal .
lim 6,(x) = — |=| lim | lim §,(x)| = oo
x—0 Tt a—0oo \ x—0
oo 1 sin®ax 1
* f Oa(x)dx = f — s—dx=——mal=1=
e oo Tal  x 7t|al

+00
f 5,(0)dx = 1

We just used the definite integral [ 1]

© ¢in? ax T
2 dx = _lall
0 X 2

for a # 0. In other words, in the limit @ — oo, the function ,(x) represents 6(x), i.e.

ali_)ngo 0q(x) = 0(x) |

In Figure B.1, 6,(x) is depicted fora = 3, 6.

;
1 sin“(ax)

18F (511(-1,) =

7|a x?

16+

14}

12F

08}

06

04}

0.2+

Figure B.1: 0,(x) fora = 3, 6.

Therefore, in a completely approximate manner, we could write

1 sin?(ax
5(x) ~ — sin”(ax) (B.3)
ntlal  x?
Let us play a little bit more with the function
. 2
sin” x
fx) = (B4)
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I sin” x _ (l' sinx)2 _ (1_ cosx)2 _1 (B.5)
xlg%)xz_xlg%)x _xli%l - '
ie, for x = 0, there is a global maximum with value 1.
f(x)=0 , . o
40 = sinx = 0 = for x = nm, n € Z*, there are global minima with value 0. (B.6)
X

Let us search for local maxima end minima:

. .2
2 sin X cos X x% — sin” x 2x
f'(x) = = f'(x) =0=2x sinx(xcosx —sinx) =0 =
x4
x=0 or sinx=0 or X =tanXx
. ) ————— ———
global maximum x=nm,neL* x~+4.49,+7.72,...
global minima inspection leads to local maxima

A graphical representation of f(x) is presented in Figure B.2.

0.9

0.8F

06F

flx)

04F

03F

02

01F

L f
40 8 & 4 2 0 2 4 & &8 10

Figure B.2: f(x) = 5

B.4 Some trigonometric relations.

We will show the relation marked by ¥ in Section 5.5, i.e.

. X\ ;X
X _1 = 2isi (—) ZE‘
e 1SIn > e

. . X X . X\. X
cosX +isinx —1 = 2isin (E) cos (—) + 2i sin (—)1 sin (—) =

2 2 2
X
cosX + isir¥ — 1 = isirx — 2 sin? (E)
X X X
cos X — cos? (E) — sin® (E) = —25sin® (E) =
X X
COS X — cos> (E) = —sin2 (5) =
X X
cos X = cos? —) — sin® (—),
2 2
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which holds, since
cos(a + ﬁ) = cosacos 3 F sinasin p.

Accordingly, we also mention the relation

sin(a + ﬁ) = sina cos f§ =+ sin f§ cos 4.
B.5 Rotating waves.

5
Consider an electric field of the form &'(f) = &2 cos wt. It is sometimes convenient to decompose it

into its positively and negatively rotating components, = (H)™*) and = (), respectively. That s,

= & : ; & . & . — —
Z(t) = 70 2ot + elvt) = 70 semiwt 4 7" selwt .= £(HH 4+ £(H)O)

Im A Complex Im A

Plane i [§

AN D
o

“positive direction” (clockwise) “negative direction”

Figure B.3: Rotating Waves.

B.6 Matrix elements of operators.

W Mp) = f dx” f dx (U (| L) () = f dx” f dx P () | B ) (')
<x//|.%|x/> — <x//|x/ |x/> - xl<x”|xl> - xlé(xl/ _ x/) — xllé(x/l _ xl)

" 2 / — . 8
xX"plx") = ih EPT

it is shown below v

6(.’3(” _ xl) =

= expanding in powers of X and p

. )
W I, D)) = M(x”, —iha—x”)é(x” ) 1D
|\ BT P) Iy = M@, =iV ")5(r" — 1) 3D

thus, e.g.,

(D] M| Dy) = f Pr f B (D7 W M) ADy)
- f By f Br O3B, iV )o(7 - D)
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- f Prdi DI, iV )y (7)

which is Eq. 5.29.

[X,pl=ih o ip-pr =i =
X"&p "y = (X" px |x") = ih(x"|x") =
X" xX"plx"y = (X" px’ x") = ihd(x" - x") =
(" =x") X" plx') = iho(x” —x') =

d
6(x// _ x/) — _(x// _ x/)

~O0(x" —x') =
‘ , ax
it is shown below v
=YX | p Iy = —ifi(x” P ”6(x” -x') =
. L 0
X" plx'y = —ih o(x” —x')

8xll

Similarly, for Eq. 10.2, we have

Ay = Wl Aw) = [ [ Eeon@ArEwe)
_ f By f Br W7, )AF, iV )S5F — P)W(F, £)
_ f Bry* @, HAF, iV U, 1)
= [ 300, A, -i19) Do)

= Y T at) [ drap, DA, -V o)
K K
= Z Ck(t)CZ’(t)Ak’k

kx

where we have used Eq. 10.1.

Similarly, for Eq. 10.7, we have

Ay = (TOIAE) = [ dr [ dr @ OPARATTII0)
f B f By (VDD AF, -V )6 F — 7 )T (1))
= [ v AG, -9 W)
_ f BV 7, DAF, —iV )7, 1)

or, simpler,

- f PV 7, DAY, b).

353
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v Let us prove the relation we mentioned above. We will first show that

’ x6’(x) = —0(x) ‘ (B.7)

To this end, we will integrate both hand-sides after we multiply them by a function f(x).
Left hand-side:

Txé’(x)f (x)dx = [xé(x)f (x)]j: - Té(x)( fx)—xf ’(x))dx =

- [Loertadx+ [ stoxs @ = ~f©) +0- £/0) = ~£(0)
Right hand-side:
- [ sef et = ~f0)

Combining the two sides, the desired property B.7 occurs. Hence,

8 6(x/l) - _6(xll)

d
x6'(x) = =6(x) A xg—xé(x) =-0(x) 7 x”8x”

a 6(x// _ xl) — _6(x// _ x/)

(x —X)W

B.7 Solution of differential equations with the eigenvalue method.

In Chapters S and 8 we arrive at some systems of differential equations. For example, the System of Dif-
ferential Equations 8.189 can be written as (if we omit, for simplicity, the index 7 that denotes the EM

mode)
(2) _ () ( nw g\n ) (Cl) (B.8)

avn Q+n-Now/\c
i.e. it is of the form

X(t) = AX(t) (B.9)

D (=10) S [c1(®) o . nw g\n
x(t)—(é(t)), x(t)—(ci(t)), A—(—z)(g Vi Q+ (n—l)a)) (B.10)

Similarly, the System of Differential Equations 8.207 can be written as (if we omit, for simplicity, the
index m that denotes the EM mode)

c1\ _, . nm+1w gVn+1)[c
(CZ)_( l)(g\/n+1 Q+na))(C2) (B.11)

with

i.e. it is of the form

X(t) = AX(t) (B.12)
with
oo [€1(F) —n _ [c1(®) o ~[(n+Do gVn+1
’“”‘(Q(t))' x‘”‘(q(t))' A=) (g\/—n+1 Q+na)) (B.13)

Therefore, these problems can be solved using the eigenvalue method, as it was done in Chapter S.
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APPENDIX C

MATLAB PROGRAMS

C.1 fornu0ofT.m

Code C.1: The matlab code that produces Fig. 2.14, fornuOof T.m.

tic
xl=-5;
Xr=+5;

step=(xr-xl)/100;

for i1=1:101

x(i)=xl+step*(i-1);
f(i)=3*(exp(x(1))-1) - x(i)*exp(x(1));
end

createfigurefornu@ofT(x,f);

toc

Code C.2: The function createfigurefornu0of T.m called by Code C.1.

function createfigurefornu@ofT (X1, Y1)
%CREATEFIGURE2(X1, Y1)

% X1: vector of x data

% Y1: vector of y data

% Create figure
figurel = figure;

% Create axes
axesl = axes('Parent’',figurel, 'YGrid', 'on', 'XGrid', 'on");
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1 %% Uncomment the following Lline to preserve the Y-lLimits of the

axes
12 % ylim(axesl,[-5 5]);
13 box(axesl, 'on');
14 hold(axesl, 'on");
15
16 % Create plot
17 plot(X1,Y1, 'DisplayName’, "f(x)")
18 axis([-5,5,-5,5])
19 title('$8f(x)=3(e"x-1)-xe"x$$"', "interpreter', "Latex")
2 xlabel ('$$x$$ ", "interpreter ', "Latex ")
2 ylabel ('$$f(x)$% ", "interpreter ', 'Latex")
22
% % Create Llegend
2% Legendl = legend(axesl1, 'show');
25 set(legendl, 'FontSize',9);
C.2 forlambda0ofT.m

Code C.3: The matlab code that produces Fig. 2.15, forlambdaOof T.m.

1 tic

2 xl=-10;

3 xXr=+10;

4 step=(xr-xl)/100;

s for i=1:101

6 x(1)=xl+step*(i-1);

7 f(i)=5*(exp(x(1))-1) - x(i)*exp(x(1));
8 end

9 createfigureforlambda@ofT(x,f);

10 toc

Code C.4: The function createfigureforlambdaOof T.m called by Code C.3.
1 function createfigurefornu@ofT (X1, Y1)

2 ZCREATEFIGURE2(X1, Y1)

3 % X1: vector of x data

4 % Y1: vector of y data

N

6 % Create figure

7 figurel = figure;

8

9 % Create axes

10 axesl = axes('Parent’,figurel, 'YGrid', 'on', 'XGrid', 'on");

1 %% Uncomment the following Line to preserve the Y-limits of the
axes

12 % ylim(axesl,[-5 5]);



QUANTUM OPTICS 359

13 box(axesl1, 'on');

14 hold(axesl, 'on");

15

16 % Create plot

17 plot(X1,Y1, 'DisplayName’, "f(\psi)")

18 axis([-10,10,-10,50])

19 title( '$8f(\psi)=5(e”\psi-1)-\psi e*\psig$', 'interpreter', 'latex
")

20 xlabel ('$$\psig$ ', "interpreter ', 'Latex")

21 ylabel ('$8f(\psi)$$', "interpreter ', "Latex")

22

23

2 % Create legend

2 Legendl = legend(axesl, 'show');

2 set(legendl, 'FontSize',9);

C.3 WienDisplacementANDPIlanckofLambda.m

Code C.5: The matlab code that produces Fig. 2.16, WienDisplacementANDPlanckof Lambda.m.

1 clear all

2 clc

3 tic

4 xl=0; % nm

s xXr=8000; % nm

6 T = 1595 % K black body temperature
7 nop=2001;

8 step=(xr-xL)/(nop-1); % nm

9 for i=1:nop;

10 x(1)=xl+step*(i-1); % nm

1 x(1)=x(1)*1le-9;

5} cl = 499.24825e-26; %8\pi hc = 499.24825322511997970335670474955
x 107°{-26} I m

13 c2 = 14.38777e-3; %hc/k_B = 14.387769599838156234952726573188 x

107{-3} m K

14 rho(i) = c1/(x(1)"5);

15 rho(i)=rho(i)/(exp(c2/(x(1)*T))-1);

16 x(1)=x(1)*1e9;

17 end

18 %plot(x,rho); figure(gcf);

19

20 Lambda6= 2897772/T % nm (Wien Displacement Law)

u createfigureforPlanckLambdaofT(x,rho, T, Lambda®);

22 toc

Code C.6: The function createfigureforPlanckLambdaof T.m called by Code C.5.
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1 function createfigureforPlanckLambdaofT (X1, Y1, T, Llambda@)

2 ZCREATEFIGURE2(X1, Y1)

3 % X1: vector of x data

4 % Y1: vector of y data

N

6

7 % Create figure

8 figurel = figure;

9

10 % Create axes

1 axesl = axes('Parent’',figurel, 'YGrid', 'on', 'XGrid', 'on");

12 %% Uncomment to preserve the Y-limits of the axes

13 % ylim(axesl,[-5 5]);

14 box(axesl, 'on');

15 hold(axesl, 'on");

16

17 % Create plot

18 plot(X1,Y1, 'DisplayName ', "\rho(\Lambda,T)");

19 axis([e,8000,0,2000])

20 %title('Planck s Law in terms of Wavelength and Temperature')

2 title([ '\rho(\LlLambda, T) for T = ", num2str(T),"' K',' \
Lambda_6=",num2str (Lambda@), ' nm'])

£ xlabel ( '\ Lambda(nm) ")

2 ylabel ('\rho(J/m"4)")

24

2 % Create legend

26 Legendl = legend(axesl, "show');

2 set(legendl, 'FontSize',9);

C.4 WienDisplacementANDPIlanckofLambdaMultipleT.m

Code C.7: The matlab code that produces Fig. 2.17, WienDisplacementANDPlanckof LambdaMulti-
pleT.m.

1 clear all

2 clc

3 tic

4 xl=0; % nm

s xXr=5000; % nm

6 nop=2001;

7 step=(xr-xlL)/(nop-1); % nm

8 for j=1:5

9 T(j)=3000+j*500 % K black body temperature

10 Lambdao(j)= 2897772/T(j) % nm (Wien Displacement Law)

1 for i=1:nop;
12 x(1)=xl+step*(i-1); % nm
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13 x(i)=x(i)*1e—9;

14 cl = 499.24825e-26; %8\pi hc = 499.248253225119979760335670474955
x 107°{-26} I m

15 c2 = 14.38777e-3; %hc/k_ B = 14.387769599838156234952726573188 x

10°{-3} m K

16 rho(i,j) = c1/(x(1i)"5);

17 rho(i,j)=rho(i,3)/(exp(c2/(x(1)*T(j)))-1);

18 x(i)=x(i)*1e9;

19 end

20 end

21

2 colorspec = {[1 06 ©]; [1 0.5 0], [0 1 0], [0 0 1], [6.4 0 1]},

2 figure(1);

2 title({ '\rho(\lLambda,T)"',["' \lLambda 6=',num2str(lambda®,4),' nm'
10

2 xlabel ( '\ Lambda(nm) ")

2% ylabel ("\rho(J/m"4) ")

2 hold on

2 for 1 = 1:5

2 plot(x,rho(:, 1), 'Color', colorspec{i})

30 end

31 Zlegend(num2str(T(:)))

2 Legend([num2str(T(1)), ' K'], [num2str(T(2))," K'], [num2str(T(3))

, " K"], [num2str(T(4)), " K'], [num2str(T(5)),"' K'])
33 hold Off

34

35 toc

C.5 Oscillations.m

Code C.8: The matlab code Oscillations.m that produces Fig. 5.8, which discribes oscillations of a 2LS

both in-resonance (A = 0) and out-of-resonance (A # 0).

1 clear all

2 clc

3 tic

4 OmegaR=1

s Delta=3*0OmegaR

6 Lambda = (sqrt(OmegaR"2+Delta”2))/2
7 TRonR =(2*pi)/(OmegaR)

8 TRoffR=(2*pi)/sqrt(OmegaR”"2+Delta"2)
9 pi/Llambda-TRoffR

10 nop=501;

11 tl= 0,

12 tr= TRonR;

13 step=(tr-tlL)/(nop-1); % nm
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for i=1:nop;

t(i)=tl+step*(i-1);

PlonR(1i)=cos((OmegaR/2)*t(i))"2;

P2onR(i)=sin((OmegaR/2)*t(1))"2;

PloffR(i)= 1 + (OmegaR"2*(cos(2*lambda*t(i))-1))/(2*(0OmegaR"2+
Delta”2));

P2offR(1i)=(0OmegaR"2)/(0OmegaR*2+Delta”2)*sin(Llambda*t(i))"2;

end

%plot(x,c, 'kR',x,y1,'b"',x,y2,"'r"); figure(gcf);

plot(t,PlonR, 'k',t,P20nR, 'b"', "LineWwidth',2, "LineStyle', '-"); hold

on;
Zlegend('P_1(t)"', 'P2(t)")
plot(t,PloffR, 'r',t,P20ffR, 'g', 'LineWidth',2, "LineStyle', "--")

h = legend('$P_1(t)$ on Resonance', '$P_2(t)$ on Resonance', '$P_1(
t)$ off Resonance', '$P_2(t)$ off Resonance');

set(h, 'Interpreter', 'Latex', "FontSize',10)

title({'Oscillations in a two-level system';'(On Resonance and
Off Resonance)'})

xlabel ('$t$(s)', 'Interpreter', 'Latex', "FontSize',16)

ylabel ( 'probabilities ', "FontSize',16)

annotation( 'textbox', ...

[6.7 .45 0.17 ©.15], ...

‘String',{ 'plotting with',[ "\Omega_R = ' num2str(OmegaR), ' s"{-1}
"1,[ "\Delta = ' num2str(Delta), ' s*{-1}"']},...

"FontSize',10,...

"FontName', 'Arial ', ...

"LineStyle', '--",...

"EdgeColor',[1 1 0]

"LineWidth',2, ...

'BackgroundColor',[0.9 0.9 0.9],...

"Color',[0.84 0.16 0]);

hold off;

toc

C.6 NIN2DNrho.m

Code C.9: The matlab code NIN2DNrho.m creates a representation of Eqs. 11.47, 11.48, 11.49, 11.51,
which describe the level populations, the EM radiation density, and the population inversion in the sta-

tionary state.
clear all
clc
tic
OmegaR=1

Delta=3*0megaR
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Lambda = (sqrt(OmegaR”2+Delta”2))/2
TRonR =(2*pi)/(OmegaR)
TRoffR=(2*pi)/sqrt(OmegaR”*2+Delta”"2)
pi/Llambda-TRoffR

nop=501;
tl= 9;
tr= TRonR;

step=(tr-tlL)/(nop-1); % nm

for i=1:nop;

t(i)=tl+step*(i-1);

PlonR(1)=cos((OmegaR/2)*t(1))"2;

P2onR(1)=sin((OmegaR/2)*t(i))"2;

PloffR(i)= 1 + (OmegaR"2*(cos(2*Lambda*t(1))-1))/(2*(0OmegaR"2+
Delta™2));

P2offR(1i)=(0OmegaR"2)/(0OmegaR"2+Delta”2)*sin(lambda*t(i))"2;

end

Zplot(x,c, 'R',x,y1,'b",x,y2,'r"); figure(gcf);

plot(t,PlonR, 'k',t,P20nR, 'b", 'LineWidth',2, 'LineStyle', '-'); hold

on;
%legend('P_1(t)', 'P2(t)")
plot(t,PloffR, 'r',t,P20ffR, 'g"', 'LineWidth',2, "LineStyle', "--")

h = Legend('$P_1(t)$ on Resonance', '$P_2(t)$ on Resonance', '$P_1(
t)$ off Resonance', '$P_2(t)$ off Resonance');

set(h, "Interpreter', 'Latex', "FontSize',10)

title({'Oscillations in a two-level system';'(On Resonance and
Off Resonance)'})

xlabel ('$t$(s) ', "Interpreter', 'Latex ', "FontSize',16)
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The book is an introduction and overview, at the undergraduate level, to quantum optics. We analyze the quantum nature of light. We
focus on the interaction processes between a photon and a two-level system. We explain what is continuous and what is discrete energy
spectrum, as well as intermediate cases such as low-dimensional structures. The interaction of electromagnetic field with matter is
tackled, in the first stage, semi-classically, where the electromagnetic field is treated classically and the matter quantum-mechanically.
We explain in detail to which extent optical transitions between energy levels are allowed. Then, the interaction between electromagnetic
field and matter is treated quantum-mechanically, i.e., the electromagnetic field consists of photons. We explain ladder operators and
the differences between bosons and fermions, commutation and anticommutation. Then, we introduce the concept of density matrix and
density operator. We explain the operating principles of LASERs. Finally, we develop several related topics. The book contains
exercises, auxiliary mathematics and illustrative matlab programs.
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