$$\frac{dY_{1}}{d\tau} = -\frac{v_{1}}{\tau_{1}} + g(v_{2} - v_{1}) + v_{2}$$

$$\frac{dV_{2}}{d\tau} = V_{N} + g(v_{1} - v_{2}) - v_{2}$$

$$\frac{dV_{2}}{d\tau} = V_{N} + g(v_{1} - v_{2}) - v_{2}$$

$$\frac{dV_{2}}{d\tau} = V_{N} + g(v_{1} - v_{2}) - v_{2}$$

$$\frac{dV_{2}}{d\tau} = -\frac{g}{\tau_{0}} + \left[g(v_{2} - v_{1}) + \frac{A'}{A}v_{2}\right] - \frac{1}{\tau_{0}(n - \tau_{1})}$$

$$\frac{d}{\tau_{0}} = -\frac{g}{\tau_{0}} + \left[g(v_{2} - v_{1}) + \frac{A'}{A}v_{2}\right] - \frac{1}{\tau_{0}(n - \tau_{1})}$$

$$\frac{dV_{2}}{d\tau} = V_{N} - A$$

$$\frac{dV_{2}}{\tau_{0}} = -\frac{g}{\tau_{0}} + \left[g(v_{2} - v_{1}) + \frac{A'}{A}v_{2}\right] - \frac{1}{\tau_{0}(n - \tau_{1})}$$

$$\frac{dV_{2}}{\tau_{0}} = \frac{g}{\tau_{0}} + \left[g(v_{2} - v_{1}) + \frac{A'}{A}v_{2}\right] - \frac{1}{\tau_{0}(n - \tau_{1})}$$

$$\frac{dV_{2}}{\tau_{0}} = \frac{g}{\tau_{0}} + \left[g(v_{2} - v_{1}) + \frac{A'}{A}v_{2}\right] - \frac{1}{\tau_{0}(n - \tau_{1})}$$

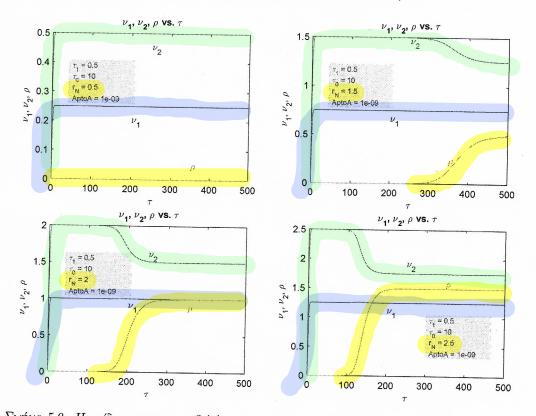
$$\frac{dV_{2}}{\tau_{0}} = \frac{g}{\tau_{0}} + \left[g(v_{2} - v_{1}) + \frac{A'}{A}v_{2}\right] - \frac{1}{\tau_{0}(n - \tau_{1})}$$

Enl	napasti zyen:	70=10,	$A' = 10^9$, 7= 0.5
	1 01	- /	A	

	ZTM otabiym kata67000				
YN	Y1	V2	G	AN	
Ø.5	0.25	0.5	Ø	0.25	
1.5	0.5	1.0	Ø	Ø.5	
1.5	0.75	1.25	Ø.5	0.5	
2	1.0	1.5	1.0	0.5	
2.5	1.25	1.75	1.5	0.5	

 $r_{N} = 0.5, 1, 1.5, 2, 2.5$ $r_{N} = \frac{dv_{2}}{d\tau} = \frac{dv_{$

Εν είδει παραδείγματος, ας υποθέσουμε ότι θέλουμε να δούμε την επίδραση της μεταβολής του r_N στη μεταβολή των ν_1 , ν_2 , ϱ συναρτήσει του τ . Ας υποθέσουμε ότι χρατάμε σταθερά τα $\tau_0 = 10$, $\frac{A'}{A} = 10^{-9}$ και $\tau_1 = 0.5$. Ας μεταβάλουμε το r_N θέτοντας τις τιμές 0.5, 1.5, 2.0, 2.5. Το αποτέλεσμα της επιλύσεως των εξισώσεων των ρυθμών με τα προγράμματα μας φαίνεται στο Σχήμα 5.9. Παρατηρούμε αρχικά ότι όταν πια οι τιμές των ν_1 , ν_2 , ϱ έχουν σταθεροποιηθεί, δηλαδή έχουμε φτάσει στην στάσιμη κατάσταση, αυτές συμπίπτουν με τις προβλέψεις των Εξ. 5.69, 5.70, 5.71. Αχόμα, αξίζει να σημειώσουμε γιατί υπάρχει διαφορά στο χρόνο που χρειάζεται η ϱ για να γίνει αισθητή. Ο λόγος είναι ότι αυξάνοντας την αδιάστατη άντληση r_N , αυξάνεται ο ν_2 λόγω της Εξ. 5.74, οπότε στην Εξ. 5.75 αυξάνεται ο όρος $\frac{A'}{A}\nu_2$ που είναι ο μοναδικός που οδηγεί σε $\frac{d\varrho}{d\tau} > 0$ όταν το ϱ είναι αμελητέο.



Σχήμα 5.9: Η επίδραση της μεταβολής του r_N στη μεταβολή των ν_1 , ν_2 , ϱ συναρτήσει του τ. Κρατάμε σταθερά τα $\tau_0 = 10$, $\frac{A'}{A} = 10^{-9}$ και $\tau_1 = 0.5$, ενώ μεταβάλλουμε το r_N θέτοντας τις τιμές 0.5, 1.5, 2.0, 2.5. Στην εικόνα εμφανίζεται ρ αλλά πρόκειται για το αδιάστατο ϱ της Εξ. 5.75.