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A matrix is a rectangular array of numbers. Example:

Row m



Matrices - Presentation

A matrix is a rectangular array of numbers. Example:

Elements or entries of the matrix: aij , Aij , A[i , j ].

 Note: Rows first, then columns.

Dimensions of the matrix: number of rows m, number of columns n.

Rows: horizontal lines of the matrix.

Columns: vertical lines of the matrix.



Matrices – Simple example

Let’s see a simple example of a matrix:

A 4 × 3 (four by three) matrix – a matrix with 4 rows and 3 columns

 a31 = ?, a13 = ?, a42 = ?

 a31 = 7

 a13 = 3

 a42 = 11



Row matrix (there is only one row)

1 × n matrix

Matrices – Special matrices



Row matrix (there is only one row)

 example:

1 × 3 matrix
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Column matrix (there is only one column)

m × 1 matrix
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Column matrix (there is only one column)

 example:

3 × 1 matrix
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Square matrix (same number of rows and columns)

m × m matrix
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Square matrix (same number of rows and columns)

 example:

3 × 3 matrix

main diagonal of a square matrix:

top-left corner to bottom-right corner

Matrices – Special matrices



Diagonal matrix (all elements apart from the main diagonal are equal to zero)

 example 1:

3 × 3 matrix

Matrices – Special matrices



Diagonal matrix (all elements apart from the main diagonal are equal to zero)

 example 2:

3 × 3 matrix

Matrices – Special matrices



Matrices – Special matrices

Identity matrix (a square diagonal matrix with all elements in main diagonal equal to 1)

 example 1:

example 2:

The n × n identity matrix is denoted by In 



Matrices – Trace

Trace of a matrix: the sum of all elements on the main diagonal of the matrix

Tr(A) = a11 + a22 + … + amm

example: 

Tr(A) = 1 + 5 + 9 = 15



Matrices – Operation between scalar and matrix

Matrix scalar multiplication (scalar: βαθμωτό μέγεθος)

Given a m × n matrix A = (aij)m×n and a scalar λ, the scalar multiplication λA is:

example:



Matrix addition

Given two m × n matrices A = (aij)m×n and B = (bij)m×n, their sum A + B is also an m × n 
matrix computed by adding the corresponding elements.

A + B = (aij)m×n + (bij)m×n = (aij + bij)m×n

In full form:

Matrices – Operations between matrices



Matrix multiplication

If A = (aij)m×k and B = (bij)k×n then AB is an m × n matrix with elements given by:

(AB)ij = ai1b1j + ai2b2j +  ∙ ∙ ∙  + aikbkj
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Matrix multiplication
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Matrices – Operations between matrices

Matrix multiplication

 example



Matrices – Transpose Matrix

Transpose Matrix: rows become columns and columns become rows

 notation: the transpose of A is denoted as AT

 it is the “reflection” of A by its main diagonal

 dimensions: if A is an m × n matrix, then AT is an n × m matrix

 elements:

 example

  

  

  



Matrices – Transpose Matrix

Properties:  

  

  



Matrices – Symmetric Matrix

Symmetric Matrix: a matrix which is equal to its transpose

  

For a symmetric matrix aij = aji  

example



Vectors

Vector: A vector is a matrix that one of its dimensions is equal to one.

Vectors are commonly used to represent entities with a magnitude and a direction that 
can be added to each other and multiplied with scalars.

Such entities are for example forces, velocity and acceleration.

 



Vectors

Vector: A vector is a matrix that one of its dimensions equals to one.

column vector: an m × 1 matrix (one column and m rows) (same as column matrix)

row vector: an 1 × n matrix (one row and n columns) (same as row matrix)

example 1: a 3-element row vector, or an 1 × 3 matrix 

example 2: a 3-element column vector, or a 3 × 1 matrix 



Vectors – Geometric representation

Vector: An n-dimensional vector (a vector with n entries) vector can be represented as a 
directed line in a n-dimensional space.

 
example 1: a 2-element vector (2 dimensions)



Vectors – Geometric representation

Vector: An n-dimensional vector (a vector with n entries) vector can be represented as a 
directed line in a n-dimensional space.

 
example 2: a 3-element vector (3 dimensions)



Vectors – Magnitude (norm)

Vector magnitude: The length of the vector (L2 norm, Euclidean norm) 

 general expression:

notation:

(summation notation)

norm 1:

norm 3:

norm (general):



Vectors – Magnitude

Vector magnitude: The length of the vector (norm L2, Euclidean norm) 

 general expression:

example 1: a 2-element vector (2 dimensions)

(summation notation)

Pythagorean theorem



Vectors – Magnitude

Vector magnitude: The length of the vector.

 general expression:

example 2: a 3-element vector (3 dimensions)

(summation notation)

Pythagorean theorem



Vectors – Description

Vector description: We need to define the magnitude and the direction

 example in two dimensions:

magnitude:

direction:

  determined by the angle φ between the vector and the horizontal axis x

φ



Vectors – Multiplication by scalar

Vector multiplication by scalar: all elements are multiplied by the same scalar

magnitude gets scaled,  and direction remains the same (or reverses if λ < 0) 

example in 2 dimensions:



Vectors – Multiplication by scalar

Vector multiplication by scalar: all elements are multiplied by the same scalar

magnitude gets scaled,  and direction remains the same (or reverses if λ < 0) 

example in 2 dimensions:



Vectors – Addition

Vector addition: a new vector with elements the sum of the corresponding elements

 

example: in two dimensions



Vectors – Dot product (εσωτερικό γινόμενο)

Vector dot product: Definition (the result is a scalar)

(summation notation)

Matrix notation:



Vectors – Dot product

example: calculate the dot product of the vectors [1   3   5] and [2   4   3]

in matrix notation:



Vectors – Dot product – Geometric representation

example: dot product of two vectors in 2D Euclidean space

θ

It depends on:

a) the magnitudes of the two vectors

b) the angle between the two vectors

when we vary the angle between the two vectors 
keeping their magnitude constant, the dot product 
becomes maximum when they are perfectly aligned

parallel and co-directional (ομόρροπα)

(projection of b on a )



Vectors – Dot product – Geometric representation

Commutative property (αντιμεταθετική ιδιότητα)

If vectors a and b are perpendicular to each other, their dot product is zero.

If angle θ = 0, cos(θ) = 1 (co-directional). Dot product equals magnitudes’ product.

If angle θ = 90o, cos(θ) = 0.  Dot product is zero.

If angle θ = 180o, cos(θ) = -1 (antiparallel). Dot product equals negative magnitudes’ product.

The dot product of a vector with itself equals to the square of its magnitude:

Given two vectors, the angle between them can be determined by:
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Limits

Limit definition: A function f (x) has a limit L at a point p if the value of f (x) can be made 
as close to L as desired, by making x close enough to p.

  

We say that the limit of f, as x approaches p, is L,  and we write:



Limits



Limits

Limit example: We will find the limit of function f(x) as x approaches x0 = 0.  

  



Limits

Limit example: We will find the limit of function f(x) as x approaches x0 = 2.  

  
Observation: approaching 2 from the left side leads to a different limit value than 
approaching 2 from the right side.



Derivatives - Differentiation

Differentiation: It measures the rate of change at any given point on a curve.

This rate of change is called the derivative.

  



Derivatives – Straight line 

Differentiation: For a straight line, the slope expresses the derivative. It is constant at any given x0.

The slope is defined as the difference in ys divided by the corresponding difference in xs.



Derivatives – Arbitrary function

Differentiation: For arbitrary functions the derivative may change across x.

 The slope is considered only at the neighborhood of the point.

 The tangential straight line has a positive slope



Derivatives – Arbitrary function

Differentiation: For arbitrary functions the derivative may change across x.

 The slope is considered only at the neighborhood of the point.

 The tangential straight line is horizontal, zero slope.



Derivatives – Arbitrary function

Differentiation: For arbitrary functions the derivative may change across x.

 The slope is considered only at the neighborhood of the point.

 The tangential straight line has a negative slope.



Derivatives – Straight line 

The derivatives can be considered as composite functions (functions acting on other functions)

Differentiation: For  arbitrary functions the derivative may change across x.

 example: graph of f(x) (top) and graph of the derivative of f(x) (bottom)



Derivatives – Definition for arbitrary function

Differentiation: Suppose a function f(x) is defined in an interval containing point a.

 The derivative of f with respect to x at point a is given by the limit:

If f’(a) exists, then the derivative of the function exists.  

If the limit does not exist, then the derivative of the function does not exist.

If f’(a) exists, then f is said to be differentiable at a.

If f is differentiable at every point in its domain, then it’s called a differentiable 
function.



Derivatives – Notation

Common notation for the derivative of a function y = f (x) is:

The notation dy/dx (Leibniz notation) is read “the derivative of y with respect to x”.

This notation suggests that the derivative of f is the rate of change of f with respect to x.

Similarly, the derivative of function f (x) at a specific point a is also notated as:



Derivatives – Rules



Derivatives – Simple Applications



Derivatives – Partial derivative

Partial derivative: It concerns functions of two or more variables.

The partial derivative of f is its derivative with respect to one of those variables while 
the others are held fixed during differentiation.

Common notation for partial derivative

First-order partial derivative:

Second-order partial derivative:



Derivatives – Partial derivative

Mixed derivative: Partial derivative that involves more than one variable. 

 Example:

For most functions (continuous) the mixed partial derivatives are equal irrespectively of the order:



Sums - Description

Summation is the addition of a set of numbers. The result of summation is called sum.

It is possible to add an infinite number of elements. An infinite sum is called a series.

For a concise representation of a sum, we use the summation symbol, capital sigma.

Example:

i is the index of summation running from 1 to n (i takes integer values)

Additional examples:



Sums - Application

Application: Write the following sum using the summation notation.

Solution:



Sums - Description

Some additional common types of sums

The sum of f (k) over all (integer) k in the specified range:

The sum of f (x) over all elements x in the set S (S should be countable) :



Sums – Multiple indices

We can have sums with multiple indices (independent or not)

Example 1:



Sums – Multiple indices

We can have sums with multiple indices (independent or not)

Example 2:



Integrals – Description

The integral of a function is an extension of the concept of a sum.

The process of finding integrals is called integration.

Integration is usually used to compute areas, volumes, mass, displacements etc., when 
their distribution or rate of change with respect to some other quantity (position, time, 
etc.) is specified.



The integral of f (x) on the interval [a, b] is equal to the signed area bounded by the 
lines x = a, x = b, the x-axis, and the curve defined by the graph of f.

The area is the width of the rectangle times its height, so the value of the integral is

S = C(b − a).

The same result (as we will see) can be found by integrating f(x)

Integrals – Description



To find the area between the two curves and between two limits a and b, would be to 
evaluate the integral of the function representing the difference in the value of the two 
functions between those limits.

Integrals – Description



Leibniz introduced the standard “long S” notation for the integral:

 The   sign represents integration

 The a and b are the endpoints of the interval

 f(x) is the function we are integrating known as the integrand

 x is the variable of integration

 dx is a notation for the variable of integration.

Integrals – Definite integral



If a function has an integral, it is said to be integrable.

The function for which the integral is calculated is called the integrand.

Definite integrals result in a number, not another function.

If the domain of the function to be integrated is the real numbers, and

If the region of integration is an interval, then

 the greatest lower bound of the interval is called the lower limit of integration,

 and the least upper bound is called the upper limit of integration.

Integrals – Definite integral



The notation of an “indefinite integral” is

 this is read “integral of f (x) dx”.

 note: There are no limits of integration in this notation.

 an indefinite integral, results in a function, not a number.

Integrals – Indefinite integral



The Fundamental Theorem of Calculus states that:

differentiation and integration are inverse processes.

Mathematically, this is expressed as:

Integrals– Fundamental Theorem of Calculus



Examples

Integrals– Fundamental Theorem of Calculus



Examples

Integrals– Fundamental Theorem of Calculus

Important example
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All living things are dynamical systems, that is they change over time.

Differential equations describe dynamical systems.

Every system must pass through a continuous path of intervening states to get from one 
state to another.

Example: The position of an object a tiny amount of time in the future can be calculated 
from its current position and current velocity. Differential equations quantify this 
procedure.

Ordinary differential equations (ODEs) describe how individual properties of a system 
change with time, or along a single spatial dimension, but not with both together.

Differential equations – Ordinary differential equations



Example

The rate of growth y’= dy/dt of a population y is proportional to the population itself.

 

If we know the population y(t0) at time t = t0, the above differential equation tells us 
how the population changes from that point on.

The population y(t1) at time t = t1 will only depend on the difference Δt = t1 - t0, rather 
than the specific value of time t1.

If we assume that the population at time instant t = 0 is y0, i.e. y(0) = y0. This is an initial 
value problem.

We would like to find a function y(t) which satisfies both the differential equation and 
the initial condition.

Differential equations – Ordinary differential equations



Example (solution)

Given the differential equation, we are interested in predicting the evolution of the 
population across time.

To reach an explicit mathematical expression for the function y(t), we will need to do 
some mathematical manipulation.

Differential equations – Ordinary differential equations



Example (solution)

We will need to isolate the terms which contain variables y and t.

Differential equations – Ordinary differential equations



Basic Idea: Given a known y(t0) for a specific t0, we can approximately predict the future 
value of y at a close enough timepoint t0 + Δt, y(t0 + Δt), if we know the derivative of y’ 
at timepoint t0. The approximation is better the smaller the Δt we use.

The predicted value of y is:  

Differential equations – Solution Methods



Euler’s Method

Most differential equations cannot be solved exactly (i.e. closed form solutions); hence 
they must be solved numerically.

A numerical solution for function y(t) consists of a set of approximated function values 
y1, y2, y3,… for specific values at specific points t1, t2, t3, … of the independent variable t.

Euler’s method: use the first two terms of a Taylor series to generate the solution of a 
first order differential equation with an initial condition (y(0) = y0) .

Differential equations – Solution Methods

),(' ytUy =

Taylor series:



Euler’s Method

The problem of solving these equations amounts to determining y as a function of t on 
some interval, say t ϵ [a,b]. To solve a first order diff. equation numerically on [0, 1] 
with the initial condition y(0) = y0, we proceed as follows:

Let t0, t1, … ,tn be a set of equally spaced points on [0, 1] with

t0 = 0,  tn = 1,  ti+1 – ti  =  h  =  1/n, (0 ≤ i < n)

Euler’s method computes the solution on these points according to the following 
formula:

Differential equations – Solution Methods

),(' ytUy = hytUyy iiii ),(1 +=+



Euler’s Method (example)

Given the initial value problem:

 y′= y, y(0) = 1

we would like to use the Euler method to approximate y(4).

The Euler method is:

  yn+1 = yn + h f(tn, yn)

so first we must compute f(t0, y0). In this simple differential equation, the function f is 
defined by f(t, y) = y. 

We have f(t0, y0) = f(0, 1) = 1. By doing the above step, we have found the slope of the 
line that is tangent to the solution curve at the point (0, 1).

Differential equations – Solution Methods



Euler’s Method (example): The next step is to multiply the above value by the step size h, which we 
take equal to 1 here: 

h  f(y0) = 1 ∙ 1 = 1

Since the step size is the change in t, when we multiply the step size and the slope of the tangent, 
we get a change in y value. This value is then added to the initial y value to obtain the next value to 
be used for computations.

y0 + h f(y0) = y1 = 1 + 1 ∙ 1 = 2

The above steps should be repeated to find y2 , y3 and y4.

y2 = y1 + h f(y1) = 2 + 1 ∙ 2 = 4

y3 = y2 + h f(y2) = 4 + 1 ∙ 4 = 8

y4 = y3 + h f(y3) = 8 + 1 ∙ 8 = 16

The conclusion of this computation is that y4 = 16. The exact solution of the differential equation is 
y(t) = et , so y(4) = e4 ~ 54.598 . Thus, the approximation of the Euler method is not very good in 

this case. However, as the figure shows, its behavior is qualitatively right.

Differential equations – Solution Methods



Euler’s Method (example): by using smaller step size, we get smaller errors.

The error recorded in the last column of the table is the difference between the exact solution and 
the Euler approximation. In the bottom of the table, the step size is half the step size in the 
previous row, and the error is also approximately half the error in the previous row. This suggests 
that the error is roughly proportional to the step size, at least for fairly small values of the step size. 

Differential equations – Solution Methods

step size
Euler's method 
prediction

error

1 16 38.598

0.25 35.53 19.07

0.1 45.26 9.34

0.05 49.56 5.04

0.025 51.98 2.62

0.0125 53.26 1.34



Runge-Kutta Method

Let an initial value problem be spaced as follows.

y’ = f(t, y); y(t0) = y0

Then, the Runge-Kutta method for this problem is given by the following equation:

 

yn+1 = yn + h (k1 + 2k2 + 2k3 + k4) / 6

Differential equations – Solution Methods



Runge-Kutta Method

k1 = f (tn; yn) 

k2 = f(tn + h/2; yn + k1 h/2)

k3 = f(tn + h/2; yn + k2 h/2)

k4 = f(tn + h; yn + k3 h)

Thus, the next value (yn+1) is determined by the present value (yn) plus the product of the size of 
the interval (h) and an estimated slope. The slope is a weighted average of slopes:

• k1 is the slope at the beginning of the interval

• k2 is the slope at the midpoint of the interval, using slope k1 to determine the value of y at the 
point tn + h/2 using Euler's method

• k3 is again the slope at the midpoint, but now using the slope k2 to determine the y-value

• k4 is the slope at the end of the interval, with its y-value determined using k3.

Differential equations – Solution Methods



Thank you!

The End


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

