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What is non-Euclidean geometry?  
Starting from Euclidean geometry, we have Euclid’s postulates: 

Postulate 1: To draw a line from any point to any point. 
Postulate 2: To extend any line indefinitely in either direction. 
Postulate 3: To draw a circle of any radius about any point. 
Postulate 4: All right angles are congruent. 
Postulate 5: The parallel postulate. 

Kant (1781): The postulates are synthetic a priori truths, whose truth we 
understand through the form of spatial intuition. 

Bolyai (1823): The first four postulates constitute “the absolute science 
of space.” They are the (something like) the conditions of the possibility 
of geometrical reasoning. Geometries compatible with these are all 
possibiy true. Only experience can distinguish among them.



K.F. Gauss on Bolyai:  

“I regard this young geometer Bolyai as a genius of the first order.” 

Gauss to Bolyai’s father: 

“To praise it would amount to praising myself. For the entire content of 
the work...coincides almost exactly with my own meditations which 
have occupied my mind for the past thirty or thirty-five years.”
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Parallel postulate: Given a line L and a point P not on L, there is exactly 
one line through P that does not intersect L. (From Proclus, 500-
something C.E.)

L1

L2

TEquivalently, if lines L1 and L2 
cross a line T, L1 and L2 will 
meet on that side of T where 
their internal angles with T are 
less than two right angles. 
(This is Euclid’s version.)



Measure of curvature: Extrinsic curvature is measured by the relation 
of the space to the ambient space. E.g. perpendiculars to the surface 
of a sphere or cylinder are not parallel.

But if you roll a Euclidean surface into a cylinder, Euclidean figures remain 
Euclidean. The cylinder has no intrinsic curvature.



Intrinsic curvature is measured by features of the surface, or space, 
itself without regard to the ambient space. Such features are 
introduced by the failure of Euclid’s parallel postulate. 

Positively curved space (spherical, elliptical, or “Riemannian” space” 
): Given a line L and a point P not on L, there is no line through P that 
fails to meet L. 

Negatively curved space (Bolyai-Lobatchevsky geometry, or 
“pseudo-spherical” space: Given a line L and a point P not on L, there 
is more than one line through P that fails to meet L. 
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On a spherical surface, every line (“great circle”) through P will 
intersect L.
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On a saddle surface, there may be infinitely many lines through P 
that do not intersect L.



Comparison: On the surface of the sphere, the internal angles of a 
triangle sum to more than 180 degrees, and the excess depends on 
the size of the triangle. Each line of longitude forms a right angle with 
the equator.



On a negatively curved surface (e.g. a 
saddle surface, the internal angles of a 
triangle sum to something less than 180 
degrees.



Intrinsic curvature is determined by the product of the greatest and 
least curvatures at a point. Each of these is determined by the radius 
of curvature, or the radius of the circle that best approximates the 
surface at a point (the “osculating circle”). 
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Evidently the osculating circle at Q must be greater than that at P.  
But the product of their radii will be a positive number.



On a spherical surface, the radius of curvature is the radius of the 
sphere itself, and it is the same everywhere on a perfect sphere, 
varying on (e.g.) an ellipsoidal surface.



On a saddle surface, at any point there are curvatures in opposite 
directions. Hence their product is negative.



Homogeneous geometry:  The geometry of spaces of constant 
curvature. 
Helmholtz-Lie theorem (“free mobility”): If a figure may be moved 
freely through space without changing its dimensions, then there is a 
quadratic function of the coordinates that is unchanging over space, 
and the curvature of the space is constant. (In the special case of 
Pythagoras’s theorem, the quadratic function takes its simplest form, 
as the square root of the product of the squares of the coordinate-
differences.) 
Spaces characterized by Euclid’s postulates, excluding the parallel 
postulate, are spaces of constant curvature. Classical proofs with 
compass and straight-edge are possible. 

Free mobility implies constant curvature, and vice-versa.



What about inhomogeneous geometry? 
How do we describe spaces in which the curvature varies from 
point to point? 
Bernhard Riemann (1826-66) recognized that geometry of constant 
curvature, in which free mobility is possible, is just a special case of a 
more general kind of geometry. 
“Riemannian geometry” is the study of spaces which, at any point, 
have (“infinitesimally”) the structure of the Euclidean plane, but at 
different points, have variable curvature. 
Over a vanishingly small region, a Cartesian coordinate system may 
be constructed. But the Cartesian coordinates at one point can’t be 
assumed to be extendible to any finite distance. (An irregular surface 
such as an apple can only be covered by a large number of very small 
stickers.)
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Spaces that are inhomogeneous: 



The Cartesian rigid 
reference-frame

The Einsteinian 
“reference-mollusc”*

*Actual mollusc may differ

Large-scale and local 
structure of a space-time 
manifold

Local Cartesian 
coordinates



Two things to note about non-Euclidean geometry and Einstein’s 
General Theory of Relativity: 

The theory, as we will see, crucially relies on differential geometry— 
the theory of very small variations in curvature from space-time point 
to space-time point, as developed by Riemann— because the 
variation of curvature is essential to the connection between curvature 
and gravitation. 

The theory is not fundamentally about the curvature of space, though 
spatial curvature plays an important role. The more fundamental 
notion is the curvature of space-time. The features of space-time 
geodesics provide the chief motivations to connect gravity with 
space-time curvature. 



What is the most general concept of space? 
Helmholtz-Poincaré: The most general concept is what is common to 
all spaces in which classical geometry is possible, i.e. all spaces in 
which it is possible to carry out classical Euclidean constructions, 
using a compass and straight-edge. (These assumptions characterize 
what Bolyai called “the absolute science of space”.) 
Geometrically: These are the spaces of constant curvature 
(homogeneous spaces) in which there is an invariant measure of 
length.  
Physically: these are the spaces in which a measuring-stick may be 
displaced in any way without changing its dimensions. Metric 
invariance in spaces of constant curvature (like Euclid’s0) 
corresponds to the free mobility of rigid bodies. 
Riemann: Space as understood by Helmholtz-Poincaré is a very 
special case of a much more general concept.



Riemann’s general conception of space (“manifold”): 
An n-dimensional space is an “n-fold extended aggregate” 
—i.e. any aggregate in which n values are required to specify an 
individual. 3-D space is a three-fold extended aggregate in which three 
values are required to specify an individual.  
“Colour space”: Every colour lies in a 3-D space whose dimensions are 
(e.g.) RGB, or HSI (“hue, saturation, intensity”)



Euclidean space is a manifold whose elements can be thought of as 
ordered triples of real numbers, i.e., as the space ℝ3 or the Cartesian 
product ℝ x ℝ x ℝ. 
A cylinder is a manifold ℝ x 𝕊, where 𝕊 is the circle. 

A torus is a manifold 𝕊 x 𝕊, so that every point lies somewhere on one 
circle and somewhere on another circle.



To consider 3-D space as “geometrical” space, we need to make the 
extra assumption that lengths can be compared. 
To consider a 3-D homogeneous geometrical space, we need to add the 
further assumption of free mobility of rigid bodies. 
In a non-homogeneous space, i.e. a space of variable curvature, we 
assume only that “infinitesimal” lengths can be compared, and that the 
curvature varies from point to point. 
A “differentiable manifold” is a manifold on which all derivatives are 
defined, i.e. on which calculus is possible.  
A “Riemannian manifold” is any continuous manifold that is “locally 
flat,” or locally Euclidean, but whose geometry varies continuously from 
point to point. 
A “Lorentzian manifold” is one that is 4-D and locally Minkowskian, 
rather than Euclidean.



Scalar quantity: one that can be specified by a simple magnitude. An 
example of a scalar field is the distribution of heat on the surface of a 
frying pan. At every point on the disc, there is a value for the temperature 
at that point. 
Vector quantity: one that must be specified by both by a magnitude and 
by a direction. An example of a vector field is the flow of heat in a 
convection oven. At every point inside the oven, there is a value for both 
the temperature at that point and the direction in which heat is flowing. 
Tensor quantity: one that is a function of some number of vectors and 
yields a real number. An example of a tensor is the inner product, which 
takes two vectors and yields a real number. An example of a tensor 
field is the stress on a body that is subject to multiple forces (e.g. 
sagging shelf in a gravitational field). At every point there are stresses 
pulling in three independent directions.







We can arrive at the Minkowski metric as the special 
case where the matrix is:

so that all but the diagonal terms cancel, and 
we have the familiar Minkowski formula: 

 ds2 = dx12 - dx22  - dx32 - dx42



Mathematical representation vs. conceptual representation: 

“Any reasonable formulation of the problem of how mathematic represents reality 
must be predicated on the assumption that we can provisionally take for granted 
what is meant by conceptually representing reality, and that we can also take for 
granted that a conceptual representation does not reduce to or presuppose a 
mathematical representation. Otherwise we would be forced to reject Frege’s 
celebrated solution to the problem of how arithmetic applies to reality. For Frege, 
this is explained by the fact that our judgments of cardinality rest on relations 
between concepts, and concepts sometimes apply to reality.” (Demopoulos 2013) 

Hume’s Principle (after Frege): 

For any concepts F and G, the number of Fs is identical with the number of Gs if 
and only if the Fs and the Gs are in one-one correspondence.  

“This analysis captures a central feature of our notion of number and reveals the 
assumptions on which our conception of their infinity may be based…. 

….The plausibility of the idea that Hume’s principle is analytic of the concept of 
numerical identity depends on the plausibility of a conceptual analysis; but the 
truth of the principle that expresses this analysis depends on the presuppositions 
of the framework of which the analysis is an analysis.” (Demopoulos 2000)



If we use the term spatial to designate those relations which we can alter 
directly by our volition but whose nature may still remain conceptually 
unknown to us, an awareness of mental states or conditions does not enter 
into spatial relations at all…. 

From this point of view, space is the necessary form of outer intuition, since 
we consider only what we perceive as spatially determined to constitute the 
external world. Those things which are not perceived in any spatial relation we 
think of as belonging to the world of inner intuition, the world of self-
consciousness. 
(Helmholtz 1878)



Poincaré: 

1. In the first place, we distinguish two categories of phenomena: — 
The first involuntary, unaccompanied by muscular sensations, and 
attributed to external objects—they are external changes; the second, 
of opposite character and attributed to the movements of our own body, 
are internal changes. 

2. We notice that certain changes of each in these categories may be 
corrected by a correlative change of the other category. 

3. We distinguish among external changes those that have a correlative 
in the other category — which we call displacements; and in the same 
way we distinguish among the internal changes those which have a 
correlative in the first category. 

Thus by means of this reciprocity is defined a particular class of 
phenomena called displacements. The laws of these phenomena are 
the object of geometry.  

(La science et l’hypothèse, 1902) 



Definition of a mathematical group: 

A set G of elements together with a binary operation satisfying four properties: 
1. Closure: If f and g  are two elements in G, then the product fg is also in G. 
2. Associativity: for all f, g, h, in G, (fg)h = f(gh). 
3. Identity: There is an identity, I, such that  for every f,  

              fI = If = f. 

4. Inverse: Every element f has an inverse -f, such that 

               -f(f) = f(-f) = I.



Think of the image of the world in a convex mirror.... the images are diminished 
and flattened in proportion to the distance of their objects from the mirror.... Yet 
every straight line or every plane in the outer world is represented by a straight 
line or a plane in the image. The image of a man measuring with a rule a straight 
line from the mirror would contract more and more the farther he went, but with 
his shrunken rule the man in the image would count out exactly the same number 
of centimetres as the real man. And, in general, all geometrical measurements of 
lines or angles made with regularly varying images of real instruments would yield 
exactly the same results as in the outer world, all congruent bodies would 
coincide on being applied to one another in the mirror as in the outer world, all 
lines of sight in the outer world would be represented by straight lines of sight in 
the mirror. (Helmholtz 1870)



In short I do not see how men in the mirror are to discover that their bodies are not 
rigid solids and their experiences good examples of the correctness of Euclid's 
axioms. 

  
(Helmholtz 1870)



We can even go a step further, and infer how the objects in a pseudo-spherical 
world, were it possible to enter one, would appear to an observer, whose eye-
measure and experiences of space had been gained like ours in Euclid's space. 
Such an observer would continue to look upon rays of light or the lines of vision as 
straight lines, such as are met with in flat space....He would think he saw the most 
remote objects round about him at a  finite distance....But as he approached these 
distant objects, they would dilate before him, though more in the third dimension 
than superficially, while behind him they would contract. He would know that his eye 
judged wrongly. In short, pseudo-spherical space would not seem to us very 
strange, comparatively speaking; we should only at first be subject to illusions in 
measuring by eye the size and distance of the more remote objects. (Helmholtz 
1870)



“If it were useful for any purpose, we might with perfect consistency look upon the 
space in which we live as the apparent space behind a convex mirror with its 
shortened and contracted background....Only then we should have to ascribe to the 
bodies which appear to us to be solid, and to our own body at the same time, 
corresponding distensions and contractions, and we should have to change our 
system of mechanical principles entirely.... Thus the axioms of geometry are not 
concerned with space-relations only but also at the same time with the mechanical 
deportment of solid bodies in motion.” 



In short I do not see how men in the mirror are to discover that their bodies are not 
rigid solids and their experiences good examples of the correctness of Euclid's 
axioms. 

But if they could look out upon our world as we can look into theirs, without 
overstepping the boundary, they must declare it to be a picture in a spherical 
mirror, and would speak of us just as we speak of them; and if two inhabitants of 
the different worlds could communicate with one another, neither, so far as I can 
see, would be able to convince the other that he had the true, the other the 
distorted, relations. Indeed I cannot see that such a question would have any 
meaning at all, so long as mechanical considerations are not mixed up with it.  
(Helmholtz 1870)



We can arrive at the Minkowski metric as the special 
case where the matrix is:

so that all but the diagonal terms cancel, and 
we have the familiar Minkowski formula: 

 ds2 = dx12 - dx22  - dx32 - dx42



“Since the mathematicians have invaded the theory of 
relativity, I do not understand it myself anymore.” 

(Einstein, 1908?) 

“These inadequate remarks can give the reader only a vague 
notion of the important idea contributed by Minkowski. 
Without it the general theory of relativity, of which the 
fundamental ideas are developed in the following pages, 
would perhaps still be in its infancy [‘in den Windeln,’ or ‘in 
diapers’].” 

(Einstein, 1916) 



A philosophy of science guy on Minkowski space-time: 

“Not long after Einstein’s creation of this new theory, Minkowski 
recognized that Einstein had in effect displayed an elegant new 
mathematical entity....Light paths are to be represented by curves in this 
space along which the space-time interval equals zero...motions of 
bodies by paths on which points have time-like separation...and so forth. 
That is to say, according to the new theory, we are to use this 
mathematical object in that way to represent the natural phenomena in 
this domain…. 
 …At this point observers and frames of reference are left behind. 
Neither perception nor individual cognition is a salient topic of inquiry in 
the context of use of Minkowski space....If someone is to use Einstein’s 
theory to predict...choice of coordinate system correlated to a defined 
physical frame of reference is required. The user must leave behind the 
God-like reflections on the structure of space-time in order to apply the 
implications of those reflections to his or her actual situation. (2008)



Geometry as formalism, interpreted or uninterpreted: 

Mathematical formalism as pure uninterpreted structure, vs. physical 
theories as formal calculi requiring an interpretation: 

Carnap: “The development of physics in recent centuries, and 
especially in the past few decades, has more and more led to that 
method in the construction, testing, and application of physical 
theories which we call formalization, i.e., the construction of a 
calculus supplemented by an interpretation. It was the progress of 
knowledge and the particular structure of the subject matter that 
suggested and made practically possible this increasing 
formalization. In consequence it became more and more possible to 
forego an ‘intuitive understanding’ of the abstract terms and axioms 
and theorems formulated with their help.”  (Carnap, 1939).  



“It is clear that the system of concepts of axiomatic geometry alone 
cannot make any assertions as to the behavior of real objects of this 
kind, which we will call practically-rigid bodies. To be able to make 
such assertions, geometry must be stripped of its merely logical-
formal character by the coordination of real objects of experience 
with the empty conceptual schemata of axiomatic geometry…. 

Geometry thus completed is evidently a natural science; we may in 
fact regard it as the most ancient branch of physics. Its affirmations 
rest essentially on induction from experience, but not on logical 
inferences only. We will call this completed geometry ‘practical 
geometry,’ and shall distinguish it in what follows from ‘purely 
axiomatic geometry.’ The question whether the practical geometry of 
the universe is Euclidean or not has a clear meaning, and its answer 
can only be furnished by experience…. 

I attach special importance to the view of geometry, which I have 
just set forth, because without it I should have been unable to 
formulate the theory of relativity.” (Einstein, 1921)

Text



A contemporary view of interpretation: What would the world be like if 
the theory were true?”  

A better question: what are the aspects of our experience that tell us 
that the world is such as the theory says it is? 

How do we know that we live in a Newtonian, or in Minkowski space-
time, or in a general-relativistic space-time? Or in a quantum world? 

What aspects of experience give us insight into these structures?



Minkowski’s spacetime diagram: 
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Now we allow c to increase to infinity, so that 1/c converges to zero, 
and then the figure shows that the branch of the hyperbola ever more 
closely approaches the x axis, the angle of the asymptote expands to 
a straight angle, and that special transformation transforms in the limit 
to one in which the t axis can have any arbitrary upward direction, and 
x’ ever more closely approximates x.



....It is clear that the group Gc, in the limit where c = ∞, thus the group G∞, 
becomes just that complete group that belongs to Newtonian mechanics. 
From this situation, and from the fact that Gc is mathematically more 
intelligible than G∞, the free imagination of a mathematician might well have 
stumbled upon the thought that at bottom, natural phenomena have an 
invariance not with the group G∞, but with the group Gc, where c is finite 
and determinate, but, in ordinary units, extremely large. Such a premonition 
would have been an extraordinary triumph for pure mathematics. Now that 
mathematics can only display its staircase wit, there remains the 
satisfaction that it can...draw out the far-reaching consequences of this 
transformation in our conception of nature. (Minkowski 1909, p. 105)



For example, in correspondence with the previous figure, we 
can also denote time as t’, but then it would become necessary 
to define space by the manifold of the three parameters x’, y’, 
z’, and then physical laws would be expressed in exactly the 
same way by x’, y’, z’, t’, as by x, y, z, t. In that case we would 
have, in the world, no longer space, but infinitely many spaces, 
just as there are in three-dimensional space infinitely many 
planes.Three-dimensional geometry becomes a chapter in four 
dimensional physics. Now you will perceive why I said, at the 
beginning, that space and time would fall away into the 
shadows, and only a world in itself persists.



The Michelson-Morley experiment: An ingenious experiment that was 
delicate enough to detect the minute differences in the velocity of light in 
different directions, even though they are proportional to 

 

where v is the velocity of the moving system and c is the velocity of light. 
Evidently this is a minute quantity for velocities that are very small compared 
to the velocity of light. 

Michelson split a beam of light into two parts, moving in two perpendicular 
directions, and then reflected back to the source. He realized that if the 
beams traveled with different velocities, they would not return at the same 
time, and that the slightest difference in timing would cause a detectable 
effect of interference. (If the beams did not return at the same time, they 
would be “out of phase.”)

1

1 − v2

c2



Michelson’s interference experiment 



Einstein: Light really does travel at the same speed in all directions, no 
matter what the motion of the source or or the observer. Nature is clearly 
telling us this through experiments like Michelson’s. 

 If this sounds contradictory to us, then the problem must be hidden in the 
assumptions that lie behind the experiments. 

Einstein was about the only physicist who was not surprised by the null 
outcome of the Michelson-Morley experiments.  

Even before the Michelson Morley experiment, Einstein was struck by  
theoretical distinctions in electrodynamics that made no physical 
difference. 

 



The relative motion of a magnet and a conductor:

If the magnet moves and the conductor rests, an electric field is created. If the 
conductor moves and the magnet rests, an “electromotive force” is created. But  
both cases the same observable phenomenon: an electric current whose value 
(measured by the ammeter) depends only on the relative motion.



Einstein’s new principle of relativity: 
 “Examples like these, together with the unsuccessful attempts to discover 
any motion of the earth relatively to the ‘light medium’, suggest that the 
phenomena of electrodynamics as well as of mechanics possess no 
properties corresponding to the idea of absolute rest.  

They suggest, rather, that…the same laws of electrodynamics and optics will 
be valid for all frames of reference for which the equations of mechanics hold 
good.” (1905) 

But, as we’ve already seen, this seems to lead to a contradiction. In 
Newtonian relativity, velocity is relative, and only change of velocity 
(acceleration) is invariant. How can there be an invariant  velocity? (Think of 
the example of the trains in relative motion.) 

Einstein’s solution: We only think there is a contradiction because of our 
unexamined assumptions about time. 

We have to analyze what we mean by time, and how we measure time.  

This analysis starts with the concept of simultaneity.



Einstein on the philosophical basis of special relativity: 

“The theory that is to be developed rests—like all electrodynamics—on 
the kinematics of the rigid body, since the assertions of any such theory 
concern the relationships between rigid bodies (systems of coordinates), 
clocks, and electromagnetic processes. Insufficient consideration of this 
circumstance lies at the root of the difficulties which the electrodynamics 
of moving bodies presently has to struggle.” (1905) 

“A mathematical description [of the motion of a material point] has no 
physical meaning unless we are quite clear as to what we understand by 
‘time.’” (1905)



Einstein on the concept of time: 

“If we wish to describe the motion of a material point, we give the values 
of its coordinates as a function of time. Now we mist bear carefully in 
mind that a mathematical description of this kind has no physical 
meaning unless we are quite clear as to what we understand by ‘time’.” 
(1905) 
“We encounter the same difficulty with all physical statements in which the 
conception " simultaneous " plays a part. The concept does not exist for the 
physicist until he has the possibility of discovering whether or not it is fulfilled 
in an actual case. We thus require a definition of simultaneity that supplies us 
with the method by means of which, in the present case, he can decide by 
experiment whether or not both the lightning strokes occurred simultaneously. 
As long as this requirement is not satisfied, I allow myself to be deceived as a 
physicist (and of course the same applies if I am not a physicist), when I 
imagine that I am able to attach a meaning to the statement of simultaneity.” 
(1917) 



Why did Einstein think that simultaneity is the source of the 
problem? 

Moments of time seem like numbers in the number line. One of the 
following relations is true for any numbers x, y: 

x > y    OR   

x < y   OR  

x = y 

If you don’t understand this, perhaps you don’t understand how numbers 
work. Why isn’t it the same for moments of time t1 and t2 ? 

t1 is later than t2,  OR  

t1 is earlier than t2  OR   

t1 is simultaneous with t2. 

This seems equally obvious, but is it equally true? Is the relation of 
simultaneity equally objective?



Einstein’s reconciliation of the relativity principle with the light principle 
(1905): 

At the time t =  τ = 0, when the origin of the co-ordinates is common to the 
two systems, let a spherical wave be emitted therefrom, and be propagated 
with the velocity c in system K. If (x, y, z) be a point just attained by this 
wave, then 

x2 + y2 + z2 = c2t2. 

Transforming this equation with the aid of our equations of transformation 
we obtain after a simple calculation 

ξ2 + η2 + ζ2 = c2τ2. 

The wave under consideration is therefore no less a spherical wave with 
velocity of propagation c when viewed in the moving system. This shows 
that our two fundamental principles are compatible.



What has simultaneity to do with experiments on the speed of light? 

Einstein: All measurements of the speed of light assume the objectivity of 
simultaneity. Subjectively, we can tell if we sense two events 
simultaneously in our own sense organs. But for an objective view events 
at a distance, we need to make some assumptions about the signals that 
those events send us. 

We can tell if light has the same velocity in two directions if they 
propagate from the source, are reflected at equal distances at points A 
and B, and then return to the source at the same time. 

But this requires us to stipulate that light takes the same time to travel 
from A to B as from B to A. 

“There is only one demand to be made of the definition of simultaneity, 
namely, that in every real  case it must supply us with an empirical 
decision as to whether or not the  conception that has to be defined is 
fulfilled. That my definition satisfies this demand is indisputable. That light 
requires the same time to traverse the path A to B as for the path B to A 
is in reality neither a supposition nor a hypothesis about the physical 
nature of light, but a stipulation which I can make  of my own freewill in 
order to arrive at a definition of simultaneity.” 

“It is clear that this definition can be used to give an exact meaning not 
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“then”

“now” (when 
you perceive 
the event)

“Then” (time in your past 
simultaneous with the event)

Time of the event

Instead of thinking that the event is simultaneous with your 
perception of it, you use assumptions about the speed of light to  
infer that it was simultaneous with certain events in the past



time

space

p

If you can’t travel faster than light, then what’s happening “now” can only 
influence you later.

“Here and now”

“Then”

In order to judge that distant events are simultaneous, you 
have to assume that light takes the same time to travel equal 
distances in any directions



If a resting observer and a moving observer (relatively speaking) 
apply Einstein’s criterion of simultaneity, they will not agree on 
which events are simultaneous.

Albert

Albert, at rest on the platform, will see light signals from A and 
B at the same time. Mileva, moving toward B, will see the light 
signal from B before the one from A.

MilevaA B



Einstein on the train 

(Actual train may differ)



Einstein’s reconciliation of the relativity principle with the light principle 
(1905): 

At the time t =  τ = 0, when the origin of the co-ordinates is common to the 
two systems, let a spherical wave be emitted therefrom, and be propagated 
with the velocity c in system K. If (x, y, z) be a point just attained by this 
wave, then 

x2 + y2 + z2 = c2t2. 

Transforming this equation with the aid of our equations of transformation 
we obtain after a simple calculation 

ξ2 + η2 + ζ2 = c2τ2. 

The wave under consideration is therefore no less a spherical wave with 
velocity of propagation c when viewed in the moving system. This shows 
that our two fundamental principles are compatible.



Why do we have to admit the relativity of simultaneity?  

Why can’t we say: 

“The person on the train is wrong. Because she is moving, things that really 
happened simultaneously seem to happen one after the other, relative to her 
moving reference frame. There is an objective relation of simultaneity, but she 
can’t determine it because of her state of motion.” 

We can’t say this, because there is no objective way to determine which of 
the two observers is really moving. 

Any experiment done in a uniformly moving frame will have the same result as in 
a resting frame. If there is a Michelson-Morley apparatus on the train, and 
another on the embankment, both will give a null result. There is no test of 
whether one is uniformly moving or at rest. 

Therefore, there is no objective fact about whether the two events really were 
simultaneous. Simultaneity is a relative relation. Observers in relative motion 
will not agree on which events are simultaneous.



time
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      t1  
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Einstein’s definition of simultaneity, in space-time geometry
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The relativity of simultaneity, in space-time geometry

O’ (worldline of observer O’)

Simultaneous with q, 
according to O’; s’q is 
orthogonal to pr’

r’

s’



Timelike worldlines of inertial observers

Corresponding orthogonal surfaces 
(simultaneity slices)

Null vector (self-orthogonal)

Orthogonality and simultaneity

The indefinite metric, I = t - x2, implies that a nonzero vector can have zero length, 
and can be orthogonal to itself.
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If space-time were Euclidean, with 
metric t2 + x2, the straight line 
would be the shortest distance 
from p to q. 

In Minkowski space-time, with 
metric t2 - x2, the straight line is 
necessarily the longest distance 
from p to q. The light-path has 
length zero.



The twin paradox: A pair of twins separates, one remains at 
rest, the other goes away at a great velocity and returns. If 
time is relative, why is it that the resting twin is now older?

p

q
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Comparison of length in relatively moving frames



Distant clock synchronization



Distant clock synchronization



Minkowski space-time as a vector space: A real-number 
space constituted by the Cartesian product  

ℜ×ℜ×ℜ×ℜ 

Each point is characterized by an ordered quadruple of real 
numbers, x1, x2, x3, x4.

p = {x1, x2, x3, x4 }

qTangent to 
curve at q



Minkowski space-time as an affine space: Any two points 
are connected by a displacement, and any two 
displacements can be characterized as parallel or not.

p

q

r

m

n

o
pr = k(pq) 

pr ⎥⎥ mo 

pr + ro = pm + mo

Affine equivalence



Minkowski space-time as a metric space: Between any 
two points there is a unique space-time interval, 

s2 = x1
2 - x2

2 - x3
2 - x4

2  

Minkowski space-time as a conformal space: at any 
point the invariant light-cone is well-defined.

p = {x1, x2 ,x3 ,x4}u
v

w

Length u  > 0 

Length v = 0, v⊥v 

Length w < 0, u⊥w



Local and global structure of 
Minkowski space-time: the light-
cone structure is the same at every 
point, and any local inertial frame 
can be extended into a global frame 
in which any other inertial frame is 
also inertial. (Local inertial 
coordinates can always be extended 
to global inertial coordinates.)



R1

R2 R0

R3

The rotating frame R2, and the accelerating frame R3, are non-inertial with 
respect to R0 and R1, though the magnitude of rotation and acceleration will 
depend on the respective spatial and temporal measurements of R0 and R1.



Einstein: 
• The invariance of the velocity of 

light is real. 
• Simultaneity is relative: whether 

two events occur at the same 
time depends on the frame of 
reference. 

• Therefore the Lorentz 
contraction and time-dilatation 
are mere frame-dependent 
appearances.

Lorentz: 
• The contraction and dilatation 

are real. 
• Simultaneity is absolute: it is an 

objective fact whether two 
events occur at the same time. 

• Therefore the invariance of the 
velocity of light must be mere 
appearance.

Two views of the electrodynamics of moving bodies:



Minkowski on the foundation of special relativity: 

“A. Einstein has up to now expressed most clearly that this postulate [the 
postulate of relativity] is not an artificial hypothesis, but rather a novel 
understanding of the time-concept that is forced upon us by the appearances.” 
(Minkowski, 1907) 

“Lorentz called the t’ combination of x and t the local time of the electron in 
uniform motion, and applied a physical construction of this concept, for the better 
understanding of the hypothesis of contraction. But the credit of first recognizing 
clearly that the time of the one electron is just as good as that of the other, that is 
to say, that t and t’ are to be treated identically, belongs to A. Einstein.” 
(Minkowski, 1908)



Origins of the general theory of relativity: 

Special relativity: The 1905 theory takes the velocity of light c to be invariant. It 
follows also that the velocity of electromagnetic radiation is a limiting velocity 
for massive objects. The invariance group of electrodynamics becomes the 
invariance group of space-time, and therefore all physical interactions (in 
principle) ought to conform to Lorentz invariance. In particular, there should be a 
Lorentz-invariant theory of the gravitational field, in which gravitational influence 
propagates at the speed of light (or less). 

The “equivalence principle”: Newton had shown that, to high accuracy, 
gravitational and inertial mass are equivalent, and so weight in any given 
gravitational field is always proportional to mass. All objects will accelerate at the 
same rate in the same gravitational mass, independent of their mass and 
composition. In Einstein’s time, the results of Newton’s pendulum experiments 
were confirmed to still greater accuracy by Eötvös (1906).



From Newton’s Corollary VI to the equivalence principle

Because gravity acts equally on all bodies at a given distance from the source, the 
systems of Jupiter and of Saturn may both be regarded (“locally”) as isolated from 
external forces, and the centre of mass frame of each may be regarded as an inertial 
frame. No local experiment will distinguish either from an inertial frame. Yet with respect 
to one another, they are accelerating. Neither is moving inertially in the reference frame of 
the other.

The system of Saturn

The system of Jupiter



The other observer in another local inertial frame



Relatively 
accelerated 
local inertial 
frames



Three paths to general relativity. 

I. From special relativity (the historical path): The 1905 theory, Newton’s first 
law still holds, insofar as the path of a particle not subject to forces is uniform 
and rectilinear. Whereas in Newton’s theory, Newton’s three laws of motion 
determine a privileged class of reference-frames (the inertial frames), now the 
invariance of c defines the inertial frames. 

There is a philosophical objection in principle to a theory with a privileged class 
of reference frames— a “restricted” or “special” relativity theory. Special relative 
shares with Newtonian relativity this “epistemological defect”. Eliminating this 
defect means “generalizing” the relativity principle to include “all possible frames 
of reference.” 

At the same time, there is a prima facie need for a new theory of gravitation that 
is compatible with special relaivity. Preliminary attempts to adapt Newton’s 
theory to Lorentz invariance are unsuccessful 

The “general theory of relativity” solves both of these problems. The 
“equivalence principle” undermines the distinction between inertial and non-
inertial frames. Gravity and inertia are seen to be aspects of the same physical 
field. Freely falling particles follow the “straight lines” of a curved space-time.



II. From special relativity (the ideally reconstructed path): The 1905 theory 
takes the velocity of light c to be invariant, which implies that simultaneity is 
relative, and therefore temporal and spatial measurement are individually 
relative. Newton’s first law still holds, insofar as the path of a particle not subject 
to forces is uniform and rectilinear. Whereas in Newton’s theory, Newton’s three 
laws of motion determine a privileged class of reference-frames (the inertial 
frames), now the invariance of c defines the inertial frames. 

Given special relativity, there is a prima facie need for a new theory of 
gravitation that is compatible with invariance of the velocity of light. Preliminary 
attempts to adapt Newton’s theory to Lorentz invariance are unsuccessful 

The “general theory of relativity” solves this problem by starting from the most 
striking fact about gravity discovered by Newton. The “equivalence principle” 
undermines the distinction between inertial and non-inertial frames. Gravity and 
inertia are seen to be aspects of the same physical field. Freely falling particles 
follow the “straight lines” of a curved space-time.  

Instead of extending “relativity” generally, General Relativity takes the Minkowski 
structure to be the local structure of a space-time that will be variably curved, 
depending on the distribution of matter and energy.



III. From Newtonian gravity (counterfactual history): Newton’s tests of the 
equivalence principle, and use of Corollary VI, already undermines the 
distinction between an inertial motion and the path of a freely falling body, and 
therefore the distinction between inertial and non-inertial frames. Riemann lives 
long enough to formulate Newtonian mechanics in a four-dimensional affine 
space. Then he infers from the equivalence principle that the geodesics of the 
affine space are indistinguishable from the paths of freely falling bodies, and 
have equal right to be treated as geodesics— but of a curved space-time. Space 
remains flat, but the affine structure of space-time is variably curved according to 
the distribution of matter and energy. 

Afterwards, experiment confirms the invariance of the velocity of light. Einstein 
(or Minkowski) infers that the local structure of space-time is not Galilean,with 
hyperplanes of absolute simultaneity, but Lorentzian, with a light-come structure. 

The “general theory of relativity” emerges as the revision of Newtonian curved 
space-time geometry to conform to local Lorentz invariance.  



Limiting-case relations among classical space-time theories

General 
relativity

Special 
relativity 
(Minkowski 
space-time)

“Geometrized” 
Newtonian 
gravity

General 
relativity

Curvature → 0

Curvature → 0

C → ∞

C → ∞



Centrifugal force 
mimics gravity: a 
centrifugal acceleration 
of 9.8 m/sec2 will feel 
like your “weight” 
toward the perimeter 



R1

Why are the rotating frame R2  and the inertial frame R1 not 
equivalent? Why isn’t R2 just an inertial frame with a force field 
acting within it?  Because, while “centrifugal force” is real, it is 
neither centrifugal nor a force: it is an inertial effect that results when 
inertial motion (tending along the tangent) is resisted by forces 
acting on the parts of the disc, or the objects lying on it, to keep 
them in place.

R2



Rotation in Minkowski space-time: comparing the worldlines of rotating 
and non-rotating systems

A congruence of timelike curves: A set 
of non-intersecting timelike curves that 
fills a region of space-time. The 
worldlines of the particles of a rigid 
body form such a congruence. In the 
non-rotating case, the congruence can 
be “cut” by an orthogonal hypersurface. 
In the rotating case, no hypersurface 
can be orthogonal to the entire 
congruence of curves.



Mach’s question:  

How do we know that 
the earth’s centrifugal 
effects arise from its 
own rotation, rather 
than from its rotation 
relative to the fixed 
stars?



There is no decision about relative and absolute which we can hit upon, to which we are forced, 
or from which we can obtain any intellectual or other advantage. When even modern authors let 
themselves be misled by the Newtonian arguments based on the bucket of water, to make a 
distinction between relative and absolute motion, they do not reflect that the system of the world 
is only given to us once; the Ptolemaic or Copernican view is our interpretation, but both are 
equally real. Try to hold Newton's bucket fixed, and then rotate the heaven of fixed stars around 
it, and then prove the absence of centrifugal forces. 

There is no decision about relative and absolute which we can hit upon, 
to which we are forced, or from which we can obtain any intellectual or 
other advantage. When even modern authors let themselves be misled 
by the Newtonian arguments based on the bucket of water, to make a 
distinction between relative and absolute motion, they do not reflect that 
the system of the world is only given to us once; the Ptolemaic or 
Copernican view is our interpretation, but both are equally real. Try to 
hold Newton's bucket fixed, and then rotate the heaven of fixed stars 
around it, and then prove the absence of centrifugal forces… 

The motion of a body K can only be estimated by reference to other 
bodies A, B, C .... When we reflect that we cannot abolish the isolated 
bodies A, B, C..., and therefore cannot decide by experiment whether the 
part they play is fundamental or incidental; that hitherto they have been 
the sole sufficient means of the orientation of motions and of the 
description of mechanical facts; it will be advisable to regard all motions 
provisionally as determined by these bodies. 

(Mach, Die Mechanik, 1883)



“The universe is not given to us twice, once with an earth at rest and once 
with an earth in motion; but only once, with its relative motions, which alone 
are determinable. Therefore we cannot say how it would be if the earth did 
not rotate. We can interpret the one case that is given to us, in different 
ways. If, however, we interpret it in such a way that we come into conflict 
with experience, our interpretation is just wrong. The principles of 
mechanics can  be so conceived, that centrifugal forces arise even for 
relative rotations.” 

Mach’s stricture: Laws of physics should only express dependencies 
among observable phenomena. The laws of motion can only describe 
motions relative to the fixed stars.  

E.g.: Every acceleration relative to the fixed stars depends on an 
interaction, involving equal and opposite reactions relative to the fixed 
stars. 

A body not subject to local forces will move uniformly relative to the fixed 
stars.



According to Mach, this version of the laws of physics expresses 
only what experience justifies. Because we can’t vary the 
circumstances of the universe as we vary the factors in the bucket 
experiment, the evidence we have can’t decide between: 

—Newton was right: the laws of motion are simply true with respect 
to space. In an otherwise empty space, a lone body would move 
uniformly in a straight line, and a rotating body would have 
centrifugal forces. 

—Newton was wrong: the patterns of motion relative to the stars 
somehow physically depend on the stars. Perhaps the rotation of 
the stars around the earth could induce centrifugal forces in the 
earth.



Relative to what reference-frame do bodies obey the the laws of 
motion? Three ways to answer this: 

The right way: The laws describe motion relative to the fixed stars. 
Bodies not subject to local forces move in straight lines relative to the 
fixed stars, and local forces cause bodies to accelerate relative to the 
fixed stars. 

The wrong way: The laws describe motion relative to space itself. 
Forces cause bodies to accelerate relative to absolute space and 
time, and a force-free body describes a straight line in space, 
uniformly in time. 

The Navy way: Don’t specify any reference-frame. Just use the laws 
of motion as a recipe for finding an observable reference-frame that is 
approximately inertial. 



The right way: This is the only option that is satisfactory for empirical 
science, because it expresses the true empirical content of Newton’s 
laws. 

The wrong way: This is just empty metaphysics that doesn’t tell us 
how the laws apply to the world. Space is unobservable, and no one 
has any idea how bodies move with respect to it. 

The Navy way: This way is not strictly empiricist, but at least it makes 
no metaphysical assumptions. In our local universe, it has the same 
practical consequences as the right way. Newton used the laws of 
motion to determine that the fixed stars form an approximately inertial 
frame. 



Einstein revives Mach’s argument (1916): Two spheres S1 
and S2, rotate relative to one another, and S2 bulges at its 
equator; how do we explain this difference? 



No answer can be admitted as epistemologically satisfactory, unless the 
reason given is an observable fact of experience....Newtonian 
mechanics does not give a satisfactory answer to this question.  It 
pronounces as follows: The laws of mechanics apply to the space R1, in 
respect to which the body S1 is at rest, but not to the space R2, in 
respect to which the body S2 is at rest.  But the privileged space R1... is 
a merely factitious cause, and not a thing that can be observed.  

Einstein, “The foundation of the general theory of relativity,” 1916 

Note: Einstein acknowledges, as Mach did, that the set of privileged 
reference frames— which entails the absolute distinction between 
rotation and non-rotation—  is a necessary feature of Newton’s laws and 
of special relativity. 

He infers that this “epistemological defect” can only be overcome in a 
radically new theory. 



What does Nature care about our coordinate systems? 

Einstein, The Meaning of Relativity, 1922 

What makes the situation appear particularly unpleasant is the fact that 
there should be infinitely many inertial systems, moving uniformly and 
without rotation with respect to one another, that are distinguished from 
all other rigid systems.  

Einstein, “Autobiographical Note,” 1949 

General covariance: The relativity principle must be extended, from 
inertial systems to coordinate systems in any state of motion 
whatsoever.



Einstein’s arguments concerning causality: 

1. The cause of a physical distinction cannot be a merely arbitrary 
mathematical distinction, such as the distinction between coordinate 
systems (the “factitious” cause). 

2. The cause of an observable effect must be something observable. 

3. The cause of any physical effect must itself be part of a closed causal 
chain, i.e., it must itself be reacted upon.

“Mach’s Principle”: The local inertial behavior of a body depends on 
its relation to the distribution of mass in the universe. 

e.g.: the centrifugal effects exhibited by the earth (or,the inertial effects 
in any accelerating body) are caused by its rotation (acceleration) 
relative to the distant masses.



Interpreting the “general relativity” of general relativity: 

What is the answer to Einstein’s question? 
“The only satisfactory answer must be that the physical system 
consisting of S1 and S2 reveals within itself no imaginable cause to 
which the differing behaviour of S1 and S2 can be referred. The 
cause must therefore lie outside this system. We have to take it that 
the general laws of motion, which in particular determine the shapes 
of S1 and S2 , must be such that the mechanical behaviour of S1 and 
S2  is partly conditioned in quite essential respects, by distant 
masses which we have not included in the system under 
consideration. 



...These distant masses and their motions relative to S1 and S2 must 
then be regarded as the seat of the causes (which must be 
susceptible to observation) of the different behaviour of our two 
bodies S1 and S2. They take over the rôle of the fictitious cause R1. 
Of all imaginable spaces R1, R2, etc., in any kind of motion relatively 
to one another there is none which we may look upon as privileged 
a priori without reviving the above-mentioned epistemological 
objection. The laws of physics must be of such a nature that they 
apply to systems reference in any kind of motion. Along this road we 
arrive at an extension at the postulate of relativity.”



“Mach’s Principle”: The local inertial behavior of a body depends on 
its relation to the distribution of mass in the universe. 

e.g.: the centrifugal effects exhibited by the earth (or,the inertial effects 
in any accelerating body) are caused by its rotation (acceleration) 
relative to the distant masses. 

In other words: Einstein takes Mach’s empiricist stricture, and makes it 
a causal theory. The  distant masses provide not just a reference 
frame, but also a causal explanation for local inertial effects.



An analogy between general relativity and quantum mechanics, from 
the point of view of their epistemic bases: 

GR incorporates the insight, according to Einstein, that coordinates 
have no physical meaning, and that what is objective in our knowledge 
of space-time is our knowledge of space-time coincidences, or “the 
meetings of the material points of our measuring instruments with other 
material points.”  

This justifies Einstein’s use and interpretation of general covariance. 

But the empirical content of general relativity, in practice, is not based 
on point-coincidences, but on something more like a “classical mode of 
description.” 



“The assumption of the complete physical equivalence of the systems of 
co-ordinates, K and K’ we call the "principle of equivalence;" this 
principle is evidently intimately connected with the theorem of the 
equality between the inert and the gravitational mass, and signifies an 
extension of the principle of relativity to co-ordinate systems which are 
in non-uniform motion relatively to each other….” 

“Are there, in general, any inertial systems for very extended portions of 
the space-time continuum, or, indeed, for the whole universe? ….
[T]here are finite regions, where, with respect to a suitably chosen 
space of reference, material particles move freely without acceleration, 
and in which the laws of the special theory of relativity, which have been 
developed above, hold with remarkable accuracy. Such regions we shall 
call "Galilean regions." We shall proceed from the consideration of such 
regions as a special case of known properties….” 

“The principle of equivalence demands that in dealing with Galilean 
regions we may equally well make use of non-inertial systems, that is, 
such co-ordinate systems as, relatively to inertial systems, are not free 
from acceleration and rotation.” (Einstein 1921)



A freely moving body not acted on by external forces moves, according 
to the special relativity theory, along a straight line and uniformly. This 
also holds for the generalised relativity theory for any part of the four-
dimensional region, in which the co-ordinates K0 can be, and are, so 
chosen that the gµν have special constant values of the expression (4). 
Let us discuss this motion from the stand-point of any arbitrary co-
ordinate-system K1; it moves with reference to  (as explained in § 2) in a 
gravitational field. The laws of motion with reference to K1, follow easily 
from the following consideration. With reference to K0, the law of motion 
is a four-dimensional straight line and thus a geodesic. As a geodetic-
line is defined independently of the system of co-ordinates, it would also 
be the law of motion for the motion of the material-point with reference 
to K1; If we put 
 Γτµν = {µντ} 
we get the motion of the point with reference to K1 given by 

d2xτ = Γτµν dxµ  dxν 

ds2                  ds  ds 



We now make the very simple assumption that this general covariant 
system of equations defines also the motion of the point in the 
gravitational field, when there exists no reference-system K0, with 
reference to which the special relativity theory holds throughout a finite 
region. The assumption seems to us to be all the more legitimate, as 
(46) contains only the first differentials of gµν, among which there is no 
relation in the special case when K0  exists. 
If  Γτµν  vanish, the point moves uniformly and in a straight line; these 
magnitudes therefore determine the deviation from uniformity. They are 
the components of the gravitational field. 



Limiting-case relations among classical space-time theories

General 
relativity

Special 
relativity 
(Minkowski 
space-time)

“Geometrized” 
Newtonian 
gravity

Newtonian 
space-time

Curvature → 0

Curvature → 0

C → ∞

C → ∞



Eddington on the empirical foundations of general relativity: 

The reader may not unnaturally suspect that there is an admixture of 
metaphysics in a theory which thus reduces the gravitational field to a 
modification of the metrical properties of space and time….There is 
nothing metaphysical in the statement that under certain circumstances 
the measured circumference of a circle is less than π times the 
measured diameter; it is purely a matter for experiment. We have 
simply been studying the way in which physical measures of length and 
time fit together– just as Maxwell’s equations describe how electrical 
and magnetic forces fit together. The trouble is that we have inherited a 
preconceived idea of the way in which measures, if ‘true,’ ought to fit. 
(Eddington, 1918).



Local and global structure of 
general-relativistic space-time: the 
light-cone structure looks the same 
in the neighborhood of any point, but 
a local inertial frame cannot be 
extended into a global frame; local 
inertial frames will be accelerated 
relative  to each other. in which any 
other inertial frame is also inertial. 
(So local inertial coordinates cannot 
generally be extended to global 
inertial coordinates.)



Local structure of inertial frames: in the 
“infinitesimal neighborhood” of any point, the 
metric is Minkowski’s, but over any finite scale, 
the metric is expected to vary.  

Question: how to connect the local metric at one 
point with the metric at any other point? How to 
measure the variation of the metric from point to 
point? 



Comparison: On the surface of the sphere, the structure is “locally” that of the 
Euclidean plane. But the local Euclidean planes can’t be extended to include 
one another. The tangent space to any point is the Euclidean plane.

x

y



The geodesic principle: The path of a freely-falling 
particle is a geodesic of space-time.  

Motivation: Arguments from the equivalence of gravity 
and inertia suggest that the path of a freely-falling 
particle is locally indistinguishable from the path of a 
Newtonian “particle not subject to forces.” 

Interpretive  principles of space-time geometry:  

1. The path of a light-ray is a null geodesic of space-time. 

2. The path of a freely-falling particle is a timelike 
geodesic of space-time.



In space, a particle (e.g. a satellite) that would move uniformly in 
the straight line g is, instead, pulled by the earth’s gravitational 
field into a closed orbit s.

g

s



g

In Newtonian space-time, 
the particle would follow 
the space-time geodesic g, 
but instead is bound by 
gravity into the curved 
trajectory s.

s

time

space



p1 p2

Particles p1 and p2 fall in the earth’s gravitational 
field; how is this fact to be interpreted?



g1
g2

p1
p2

Newton: The particles would follow space-time 
geodesics g1 and g2, but are forced into curved space-
time trajectories



g1 g2

p1
p2

Einstein: The free-fall trajectories g1 and g2 are 
geodesics of space-time, and their convergence 
measures the curvature of space-time.



A force-free inertial observer alone in empty space



A freely-falling observer in a gravitational field



In a (nearly) static gravitational field 
such as the Earth’s, with 
acceleration g, the man in the box 
will feel the weight of himself 
against the floor and the objects he 
holds in his hands.



An object that is dropped will 
fall to the floor with 
acceleration g.





If an identical box is isolated 
in empty space, but is gently 
accelerated “upward” with 
acceleration -g, the man in 
this box will feel the weight of 
himself against the floor and 
the objects he holds in his 
hands.



In general, things will be 
have merely in virtue of their 
inertia just as they would in 
a gravitational field. 

To the observer in the box, 
there is nothing to 
distinguish the two 
situations. 

Gravity is indistinguishable 
from inertia. 

The gravitational field is 
“transformed away” in the 
accelerated coordinate 
system.



Experimental determination of space-time geometry: From 
a point p, project particles (including photons) at all 
possible speeds in all possible directions.



p

In a curved space-time, one would expect the 
same experiment to yield different results.



Coordinate perspective on free-fall: In my coordinate 
system, you deviate from the geodesic g because the 
gravitational field pulls you into the trajectory γ.

γ

g

My equation of motion is:  

Acceleration = 0 

Your equation of motion is: 

Acceleration = gravitational potential



But in your coordinate system, my acceleration reveals the 
gravitational potential.  

Invariant view: Both observers are following inertial 
trajectories, or space-time geodesics. 

What they are measuring is the geodesic deviation.



What does the Newtonian observe when a handful of 
particles is scattered in a gravitational field?



F1 F2

equator

pole
geodesics of 
the earth’s 
surface

space-time 
geodesics



γ’ g’

γ
g

γ’γ

In the γ coordinates

In the γ’ coordinates

Geodesic deviation: invariant and coordinate-dependent views



Local and global structure of 
general-relativistic space-time: the 
light-cone structure looks the same 
in the neighborhood of any point, but 
a local inertial frame cannot be 
extended into a global frame; local 
inertial frames will be accelerated 
relative  to each other. in which any 
other inertial frame is also inertial. 
(So local inertial coordinates cannot 
generally be extended to global 
inertial coordinates.)



Einstein, Podolsky, Rosen,1935: “Can the Quantum-Mechanical 
Description of Physical Reality Be Considered Complete?” 

“Starting then with the assumption that the wave function does give  
a complete description of the physical reality, we arrived at the 
conclusion that two physical quantities, with noncommuting 
operators, can have simultaneous reality. Thus the negation of (1) 
leads  to the negation of  the only other alternative (2). We are thus 
forced to conclude  that the quantum-mechanical description of 
physical reality given by wave functions is  not complete.”



Niels Bohr, 1935: “Can the Quantum-Mechanical Description of 
Physical Reality Be Considered Complete?” 

EPR argument does not affect the soundness of quantum 
mechanics, “which is based on a coherent mathematical formalism 
covering automatically any procedure of measurement like that 
indicated. The apparent contradiction in fact only discloses an 
essential inadequacy of the customary viewpoint of natural 
philosophy for a rational account of physical phenomena of the type 
with which we are concerned in quantum mechanics.”



From our point of new we now see that the wording of the above-
mentioned criterion of physical reality proposed by Einstein, Podolsky, 
and Rosen contains an ambiguity as regards the meaning of the 
expression ' without in any way disturbing a system.' Of course there 
is in a case like that just considered no question of a mechanical 
disturbance of the system under investigation during the last critical 
stage of the measuring procedure. But even at this stage there is 
essentially the question of an influence on the very conditions which 
define the possible types of predictions regarding the future behaviour 
of the system. 



Bohr: We thus see that the impossibility of carrying through a causal 
representation of quantum phenomena is directly connected with the 
assumptions underlying the use of the most elementary concepts which 
come into consideration for the description of experience. In this 
connection the view has been expressed from various sides that some 
future more radical departure in our mode of description from the 
concepts adapted to our daily experience would perhaps make it 
possible to preserve the ideal of causality also in the field of atomic 
physics. Such an opinion would, however, seem to be due to a 
misapprehension of the situation. For the requirement of 
communicability of the circumstances and results of experiments 
implies that we can speak of well defined experiences only within the 
framework of ordinary concepts. 



Einstein on the presuppositions of physics: 

What, “independently of quantum mechanics, is characteristic of the 
world of ideas of physics”: 

the concepts of physics relate to a real outside world, that is, ideas are 
established relating to things such as bodies, fields, etc., which claim a 
'real existence' that is independent of the perceiving subject - ideas 
which, on the other hand, have been brought into as secure a 
relationship as possible with sense-impressions; 

these physical objects are thought of as arranged in a space-time 
continuum. An essential aspect of this arrangement of things in physics 
is that they lay claim, at a certain time, to an existence independent of 
one another, provided that the objects ‘are situated in different parts of 
space’. 



Unless one makes this kind of assumption about the independence of 
the existence (the ‘being-thus') of spatially separated objects, which 
stems in the first place from everyday thinking, physical thinking in the 
familiar sense would not be possible. 

It is also hard to see any way of formulating and testing the laws of 
physics unless one makes a clear distinction of this kind. 

The following idea characterizes the relative independence of objects 
far apart in space (A and B): external influence from A has no direct 
influence on B; this is known as the ‘principle of local action,’ which is 
applied consistently only in field theory. The complete abolition of this 
principle would make the idea of the existence of (quasi-) enclosed 
systems, and thereby the postulation of laws which can be tested 
empirically in the familiar sense, impossible. (Einstein 1948)



 [The quantum mechanical] description, as appears from the preceding 
discussion, may be characterized as a rational utilisation of all 
possibilities of unambiguous interpretation of measurements, 
compatible with the finite and uncontrollable interaction between the 
objects and the measuring instruments in the field of quantum theory. 
In fact, it is only the mutual exclusion of any two experimental 
procedures, permitting the unambiguous definition of complementary 
physical quantities, which provides room for new physical laws, the 
coexistence of which might at first sight appear irreconcilable 
with the basic principles of science. It is just this entirely new 
situation as regards the description of physical phenomena that the 
notion of complementarity aims at characterising. (Bohr 1948) 
[emphasis added]



It is reasonable of Einstein to ask whether, without the founding 
assumption that we can characterize the state of a local system, it 
would even be possible to undertake theoretical physics. 

 It is also reasonable to expect that measurements on different local 
systems will be integrable into a coherent classical picture.  

Perhaps the former is a condition of the possibility of mathematical 
physics.  

The latter, however, is merely a reasonable expectation that fails to be 
fulfilled. 

As in the case of general relativity, the most reasonable extension of 
the local framework for measurement fails to capture the reality of a 
larger context.



A “ minimal”conception of realism: 

Physical theories can extend our theoretical knowledge beyond what 
is immediately observable 

Theoretical claims about the unobservable can be meaningful, in the 
sense of having definite truth conditions 

The world can reject our theoretical pictures of it, because it has real 
physical features that cannot be captured within a given picture, 

The replacement of one physical theory by another is, at least 
sometimes, an enlargement of our understanding of features of the 
world that are not immediately observable.
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This conception of realism is not necessarily tied to the idea that any 
given theory, even “our best” theory at  a given moment, is “true”. 

The “pessimistic induction”: All those theories regarded as “someone’s 
best” theory, at some time, turned out to be false. Their approximate 
empirical successes evidently did not guarantee that they provided a “true” 
picture of the world. Therefore, the success of our current “best theory,” or 
any theory, is no reason to regard its way of representing the world as the 
right one.  

But this argument does not affect the circumstance that any successful 
theory— including a superseded theory—may identify some systematic 
feature of reality that survives the transition to the new theory. 

A theory is an instrument—not merely for prediction and control, but for 
understanding. 

Sometimes, a theory serves this instrumental function without being true.               
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