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Conventionalism

Robert DiSalle

Conventionalism, as an epistemological doctrine in the philosophy of science, is 
the fairly straightforward view that some scientific principles – perhaps the central 
theoretical principles of a given science – are incapable of being decided by empirical 
evidence, so that their adoption is necessarily a matter of conventional choice by the 
relevant group of scientists.

This is a relatively uncontroversial view to take of some kinds of scientific propo-
sition, such as those that establish systems or units of measurement. It would obviously 
be absurd to suppose that a particular system of units is true, or that its adoption 
is anything but a free choice among equivalent alternatives, which can differ only 
in their relative convenience. But one generally thinks of a system of units not as 
a description of the world, but, rather, as a kind of language form that facilitates 
descriptions of the world; to compare such language forms by their convenience 
for facilitating scientific descriptions is obviously not to judge their conformity to 
the truth or to the empirical evidence, and it would make no sense to regard their 
adoption as anything but a choice. It is an old, even ancient, philosophical aim to 
identify conventions of the first sort, and to distinguish them from principles that are 
genuinely descriptive; in this way philosophical inquiry may be thought to arrive at 
the underlying nature of things, independent of particular modes of description. Then 
conventions would concern equivalent representations of an underlying structure that 
is the true object of scientific inquiry.

The less obvious, more challenging application of this view is to the actual scien-
tific description of the world, as the claim that precisely the theoretical description of 
the world – not just the linguistic or mathematical forms that it employs – depends on 
conventional choice. There are various considerations from which such a claim might 
originate, but one obvious source is the underdetermination of theory by evidence: 
the same finite body of evidence will be compatible, in principle, with any number 
of theories if it is compatible with one. In that case, the adoption of a given theory 
necessarily involves some decision: either the choice of one compatible theory over 
all the others, or the decision simply to ignore the possibility of alternatives altogether 
and to accept the theory that one has in hand. It could be argued that this, too, is a 
harmless form of conventionalism, given the actual history of science, in which empir-
ically equivalent alternative theories are not as common, or as easy to construct, as 
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philosophical discussions of underdetermination might suggest. Even so, this form has 
implications for larger questions in philosophy of science, perhaps especially for the 
question of scientific realism; the mere possibility of equivalent alternative theories 
suggests a degree of contingency in our adoption of any one theory, and challenges the 
notion that empirically better theories are objectively closer to representing reality.

Neither of these views, each profound in itself, captures the historic importance 
of conventionalism, not only for the history of the philosophy of science, but also for 
the history of science itself, and particularly the history of mathematical physics. In 
fact it would be impossible to understand the contemporary place of conventionalism 
in the philosophy of science – as opposed to its general role as a broadly skeptical 
theme, from ancient times – without understanding its connection with very specific 
problems in the foundations of geometry and physics that arose in the middle of 
the nineteenth century. On the one hand, conventionalism was a response to new 
developments in geometry, and the foundational questions that those developments 
posed regarding the relation between geometry and the world of experience. On the 
other hand, the light that conventionalism shed on these questions influenced further 
reflections on the nature of mathematical structures and their empirical interpreta-
tions, reflections which, in turn, played a decisive role in the dramatic transformations 
of mathematical physics that took place in the early twentieth century. A clear grasp 
of the origins and meaning of conventionalism, as well as its relevance to enduring 
issues in the philosophy of science, begins with an appreciation of its engagement with 
the foundations of science.

Background: Kant and the synthetic a priori

To explain the context in which non-Euclidean geometry came under philosophical 
scrutiny, and conventionalism eventually developed, it is helpful to recall some 
aspects of Kant’s theory of the synthetic a priori. First, the theory highlighted the 
non-logical content of geometry, suggesting that neither our understanding of the 
basic principles, nor our ability to derive their consequences, could be separated – at 
least, with the logical resources of Kant’s time – from the representation of geomet-
rical objects in space. So geometry appears to be an a priori science that nevertheless 
derives its content from sensibility. The objects of our geometrical knowledge are 
not only recognized, but also exhaustively defined, by the constructive procedures 
outlined in Euclid’s postulates. It is in virtue of a constructive definition that we know 
properties of a triangle, for example, beyond those expressed in the verbal definition 
of a three-sided figure. It is for the same reason, more generally, that the self-evidence 
of geometry is irreducibly intuitive, and that the rules to which our geometrical 
constructions conform – approximately in empirical geometry, and precisely in pure 
geometry – may be said to constitute the “form” of spatial intuition. From this point 
of view, it could be argued that the mere existence of non-Euclidean geometries, as 
formal mathematical possibilities, does not touch the certainty of Euclid’s geometry: 
if our intuitive constructions must conform to, and exhibit, the Euclidean principles, 
then the latter is justified a priori as the geometry of our space. But from Kant’s point 
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of view this argument is not even necessary: if geometrical proof is inseparable from 
intuitive construction, then purely formal alternatives to Euclid’s geometry are not 
even possible. We could neither grasp their first principles nor derive their conse-
quences (cf. Friedman 1992).

These aspects of Kant’s view are, perhaps ironically, precisely those that made it 
possible to unseat Euclidean geometry as the necessary structure of space. Having 
undermined any purely rational argument for the uniqueness of Euclidean geometry, 
Kant’s account makes its necessity and universality entirely dependent on the evidence 
of its constructive methods, and indeed denies it any content above or beyond its 
representation in sensible intuition. So, to justify the viability of a non-Euclidean 
geometry as an account of “our space,” it would be not only necessary, but also suffi-
cient, to show that such a geometry has a constructive representation – an intuitive 
representation in precisely Kant’s sense – and its theorems admit of constructive proof. 
Given its complete identification of the foundations of geometry with the space of 
intuitive constructions, the Kantian view would have no room to retreat from such a 
challenge.

From empiricism to conventionalism: Helmholtz and Poincaré

It is a misconception, therefore, that Kant’s account of geometry as synthetic a priori 
knowledge was entirely overthrown by the development of non-Euclidean geometry. 
The decisive fact was, rather, that the special epistemic ground of Euclidean geometry, 
as Kant understood it, could provide an equivalent ground for non-Euclidean alterna-
tives. The mere formal consistency of an alternative geometry would challenge Kant’s 
views of mathematical proof. But it would not necessarily establish the possibility of 
such a geometry as a synthetic account of space. Kant’s followers could still argue that 
Euclidean geometry is uniquely tied to our spatial intuition; alternative geometries 
could be formally developed, but not “visualized” as a possible space of experience (cf. 
Torretti 1978). It was Helmholtz who raised the decisive challenge to this view, by a 
conceptual analysis of what is meant by “visualizing” a geometrical structure:

By the much abused expression “to represent to oneself [sich vorstellen]”, or 
“to be able to imagine [sich denken] how something takes place,” I under-
stand – and I don’t see how one could understand anything else thereby, 
without giving up all the sense of the expression – that one could depict the 
series of sense-impressions that one would have if such a thing took place in 
a particular case.

(Helmholtz 1870: 8)

Helmholtz showed that, in any sense in which we can visualize Euclidean space, we 
can visualize a homogeneous non-Euclidean space. Kant had already recognized that 
the Euclidean structure of space is not something that we immediately “intuit”; what 
we intuit is, rather, the construction of actual or imagined figures, and the systematic 
changes in the appearances of things that accompany our changes of perspective. To 
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intuit a non-Euclidean space would be, simply, to find that such constructive processes, 
and such changes of perspective, exhibit the laws of a non-Euclidean geometry.

This conceptual analysis is a revolutionary step, but also somewhat Kantian in 
spirit, insofar as it admits no other content to the claim that space is Euclidean, or 
non-Euclidean, beyond the succession of intuitions that conform to one or another 
structure. But the analysis leads directly to a further analysis, showing that the intuitive 
practice of geometrical construction depends on empirical features of the world. The 
basic notions of this practice are the congruence of figures and the straightness of 
lines, and we come to know each of these through its practical physical correlate: 
congruence through the displacement of rigid bodies, and straight lines through the 
optical line of sight, or the path of light-propagation. That is, the comparison of 
lengths derives its meaning from our ability to bring bodies into coincidence, and our 
assumption that in the process their size and shape remain constant; analogously, we 
determine the straightness of any body or path by comparing it to the line of sight. 
Helmholtz’s analysis thus leads from a broadly Kantian perspective to empiricism: 
what we bring to spatial experience and geometrical reasoning is not the a priori form 
of spatial intuition, but the expectations we have developed, and completely inter-
nalized, in the course of our experience with nearly-rigid bodies and light rays, and 
the habits and expectations that we have formed regarding the relations between our 
own motions and our lines of sight. The “conditions of the possibility” of geometry are 
therefore facts about the world in which our geometrical conceptions have developed, 
namely that there really are approximately rigid bodies and that light travels in suffi-
ciently straight lines.

Just this principle of geometric empiricism, however, was the first step to conven-
tionalism. For Helmholtz’s analysis introduced a radical insight into the subject matter 
of geometry: insofar as geometry is the science of the structure of space, its subject 
matter is the possible displacements of rigid bodies. Helmholtz pointed out that this 
principle of rigid displacement – thereafter known as the principle of free mobility – 
is not only the foundation of our notion of congruence; it is also the principle that 
characterizes our experience of space as such. Spatial relations are first characterized 
for us, and distinguished from other relations, by the fact that we can freely alter 
them by our own motion. Changes of relative spatial position are distinguished from 
other kinds of change in our environment by the fact that they can be produced, 
combined, and reversed by shifts in the perspective of the observer. We believe that 
we live in an approximately Euclidean world, Helmholtz concluded, because of the 
entirely contingent fact that the displacements of approximately rigid bodies exhibit 
an approximately Euclidean structure, observed in measurements of angles and lengths 
using rigid instruments. For example, the internal angles of triangles approximately 
sum to two right angles; if such measurements turned out otherwise, we would know, 
as a matter of fact, that our space is non-Euclidean.

It is not immediately obvious why this empiricist understanding of the foundations 
of geometry, with its emphasis on physical measurement and approximation, should 
turn out to be a step toward conventionalism. Poincaré took this step because he saw 
more clearly than Helmholtz that the empirical principles on which Helmholtz relied 
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are, in fact, principles of interpretation. That light travels in a straight line is not a law 
of nature, but a physical interpretation of the geometrical concept of straight line; that 
rigid bodies move freely without change of dimension is a physical interpretation of 
the concept of congruence. If such principles were laws of nature, we should be able to 
state, independently of light propagation, what in nature is a straight line, and “light 
travels in a straight line” would become an empirical claim. In that case the burden of 
interpreting the concept of straight line, as a geometrical feature of the world, would 
fall on some other physical principle. This would begin an infinite regress, unless we 
recognize that some physical principle – on account of its simplicity, convenience, or 
other practical virtue – has simply been adopted as the physical definition of straight 
line. Kant had upheld the synthetic a priori because he had recognized that certain 
principles, though they apply to the sensible world, nonetheless partake of a kind of 
necessity because they “constitute” their objects in a strong sense: these principles 
are the conditions of the possibility of our experience of those objects as objects 
of knowledge, rather than as mere appearances. Poincaré saw that such principles 
constitute, rather, the empirical meanings of geometrical concepts. For this reason 
they are not analytic in Kant’s sense, for they do not merely affirm what is “contained 
in” those concepts, but provide them with an empirical interpretation; for the same 
reason, they are revisable, if an alternative interpretation better serves our purposes. 
They were taken as synthetic a priori principles, in short, because they appeared to be 
necessary principles in the form of laws of nature. But this appearance is deceptive; in 
fact they are “definitions in disguise” (Poincaré 1902: 56).

The insight behind conventionalism, then, was that certain principles play a 
peculiar role in our fundamental theories because they determine the meanings, and 
the criteria for the application, of fundamental concepts around which these theories 
are constructed. Conventionalism would be an absurd doctrine if it asserted, in light 
of this insight, that (for example) straight lines are defined by light rays in accord 
with some explicit decision by a social group. For Poincaré, at least, the connection 
between the geometrical straight line and the physical propagation of light arises 
from a long, successful, and largely unexamined history of empirical practice. The 
implication of its definitional character is not that it was deliberately legislated but, 
rather, that, because it is not quite an empirical proposition, it can be rewritten 
without necessarily defying the empirical evidence; equivalently, it can be maintained 
in the face of empirical evidence that might otherwise have seemed to contradict it. 
If the optical measurement of large triangles (for example, surveying large triangles 
near the surface of the earth, or taking the parallax of celestial bodies) showed that 
their angles don’t sum to two right angles, we would not have (as Helmholtz had 
argued) experimental proof that space is non-Euclidean. Such an experiment can 
only demonstrate a conflict between the definition of space as Euclidean and the 
definition of straight line that is presupposed in the measurement. The experiment 
therefore has two epistemically equivalent interpretations: if straight lines are defined 
by light propagation, then space is non-Euclidean; if straight lines are defined by their 
conformity to Euclidean geometry, then the light rays forming the sides of the triangle 
are, by definition, not straight. In that case the principle that light travels in straight 
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lines becomes a mere hypothesis that has turned out to be false, or perhaps there is 
a force that is systematically disturbing the motion of light. Poincaré illustrated this 
point by a physical model of a non-Euclidean world. As Helmholtz had argued, from 
our theoretical account of the behavior of bodies and light in a non-Euclidean space, 
and our practical knowledge of visual perception and its adaptation to the motions 
of bodies and light, we can imagine the course of experience in a non-Euclidean 
world. Poincaré pointed out, however, that we could equally imagine a world whose 
atmosphere had a peculiar distribution of heat, so that the refractive index of light 
and the thermal expansion of bodies varied systematically from place to place. Such 
circumstances could produce exactly the appearances, and the measurements, that we 
would expect in a non-Euclidean world. The equivalence of two such models is not 
a problem of underdetermination, or a lack of evidence to determine which interpre-
tation is true; the point is that the question of truth has no meaning here.

Conventionalism, in this sense, captured some of the central insights gained in the 
nineteenth century into the foundations of geometry, and the connections between 
geometry and physics. Within mathematics, the distinction between geometrical 
structures and their physical interpretation transformed the distinction between 
pure and applied geometry. Formerly, this was seen as a distinction between ideal 
geometrical constructions and their (imperfect) material realizations, both of which 
were, implicitly, already interpreted through the intuitive notions of straight line 
and congruence. Now, however, pure geometry was understood as a class of uninter-
preted formal structures. At this level, the question of a true geometry, or even an 
empirically adequate geometry, could not arise; a set of geometrical axioms can only 
be consistent or inconsistent. The central concepts of geometry are not explicitly 
defined by an association with intuitive notions, but implicitly defined by the axioms 
in which they occur. A set of axioms is adequate if it is both consistent and suffi-
cient to deduce the theorems of the geometry that is of interest – desiderata that 
are completely independent of, and perhaps only clouded by, any association of the 
axiomatic structure with some particular content. To consider geometry as a theory of 
space, one must decide upon an interpretation of its elementary concepts – a decision 
that must be guided by experience but that, by its very nature, cannot be empirically 
determined, precisely because it is a question of interpretation rather than of fact. 
Work inspired by this insight culminated in Hilbert’s Grundlagen der Geometrie (1899).

In physics, according to Poincaré, geometry must be taken for granted at the 
outset because its central concepts are defined in geometrical terms. But the laws of 
mechanics, as a system of axioms, must also be seen as implicitly defining the central 
concepts of the theory. “Force equals mass times acceleration” is an empirical propo-
sition only if force, mass, and acceleration are well defined independently of the law. 
In fact, it is the law that defines the criteria for being a Newtonian force, and for the 
measurement of mass. So this law, too, may be regarded as a “definition in disguise.” 
Its empirical content is that we should expect – and are in fact required – to find 
a physical source wherever we measure an acceleration. As the foundation of an 
empirical program, this definition of force was an overwhelming success, counting 
among its accomplishments the discovery of universal gravitation. Its empirical 
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achievements do not alter the fact that its fundamental principles express criteria for 
the application of its central concepts, rather than directly making empirical claims. 
The indirect empirical claim is that Newtonian forces will actually be found, and will 
account for the relative motions that we observe as interactions between Newtonian 
masses – a claim whose evaluation, according to Poincaré, has an inevitably pragmatic 
dimension, since its realization is always incomplete.

Conventionalism and twentieth-century science

Poincaré’s conventionalism played a decisive role in the emergence of modern 
philosophy of science, because some of its main ideas were exemplified in the 
revolutionary changes, at the beginning of the twentieth century, in the founda-
tions of physical geometry. Taking the Newtonian space-time framework for granted, 
and developing a theory of electrodynamics within it, physicists had reasonably 
expected that the relative motion of the earth and the ether should have empiri-
cally measurable consequences. The failure to detect such consequences, for example 
in the Michelson–Morley experiments, is not by itself a refutation of the theory, 
and it was perfectly reasonable to explain it away through the Lorentz contraction; 
assuming that the spatio-temporal framework imposes criteria on such explanations, 
and doesn’t admit the possibility of an invariant velocity, the framework requires us to 
construct something like the Lorentz hypothesis to explain the apparent invariance 
of the velocity of light. The challenge to this prevailing view came from Einstein, 
who explicitly applied his own version of Poincaré’s philosophy. First, he recognized 
that the problem addressed by Lorentz arose from implicit assumptions regarding the 
measurement of space and time. Second, he claimed the right to reject these assump-
tions, and to revise the framework of space and time, by introducing a new definition 
of simultaneity, based on the stipulation that light signals take the same time to travel 
equal distances in arbitrary directions:

I stand by my previous definition … because, in reality, it assumes nothing at 
all about light. Only one requirement is to be set for the definition of simul-
taneity: that in every real case it provide an empirical decision about whether 
the concept to be defined applies or not. That my definition achieves this 
cannot be disputed. That light requires the same time to travel the path from 
A to M and the path from B to M is neither a supposition nor a hypothesis 
about the physical nature of light, but a stipulation that I can make according 
to my own free discretion, in order to achieve a definition of simultaneity.

(Einstein 1917: 15)

In the case of general relativity, Einstein showed that the Newtonian and special-
relativistic definitions of inertial frame are undermined by the phenomenon of free 
fall, and the empirical indistinguishability of an inertial frame from a freely falling 
frame. His new theory of space, time, and gravity redefined inertial motion as the 
trajectory of a freely falling particle, and redefined the gravitational field as the 
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curvature of space-time induced by the presence of mass-energy. Analogously to the 
case of special relativity, it remained logically possible, in the face of the evidence for 
Einstein’s theory, to maintain the framework of flat space-time, so that the relative 
accelerations of falling bodies would, by definition, indicate the presence of perturbing 
forces.

Einstein argued, in both cases, that new definitions are justified by an empirical 
ambiguity in the application of the old definition. Poincaré did not live to see the 
advent of general relativity, but he argued that special relativity and Newtonian 
space-time represent conventions between which scientists must choose – not on 
strict empirical grounds, since both can be reconciled with the evidence, but on more 
pragmatic grounds of convenience and simplicity (Poincaré 1912). This general idea, as 
adopted and interpreted by Schlick (1917) and Reichenbach (1928), became a central 
idea of the logical empiricists, and was most carefully elaborated in Carnap’s idea of 
a linguistic framework (e.g., Carnap 1950; see also Friedman 1999). A theoretical 
framework in empirical science, by virtue of its defining principles (linguistic rules), 
determines a class of “internal” questions that can be answered by empirical methods 
appropriate to the theory; the choice between alternative frameworks, in contrast, is 
an “external” question concerning the comparative suitability of the frameworks for 
the purposes they are supposed to serve. For example, the framework of Newtonian 
gravitation defines internal procedures for answering internal questions regarding 
the strength of a gravitational field in a given space. The framework of general 
relativity accomplishes the same empirical ends, but its internal questions concern the 
measurement of the space-time curvature. Each framework has its own conventions 
for interpreting theoretical concepts with empirical measurement and observation, 
variously known as “coordinative definitions,” “correspondence rules,” or “meaning 
postulates,” but essentially identical to the conventions that Poincaré identified as 
establishing the connection between geometry and experience.

What diminished Poincaré, as the philosophical founder of this point of view, 
was his stated conviction that conceptual changes such as Einstein propounded 
would not actually take place: physicists, he claimed, would always prefer Newtonian 
physics in Euclidean geometry to non-Euclidean alternatives. One motivation for 
this claim was Poincaré’s view of the relation between geometry and physics: because 
physics formulates its fundamental principles in geometrical terms, physics must take 
geometry as fixed a priori. In that case it would be reasonable to suppose that physics 
should begin with the simplest possible geometrical convention, which is, as a matter 
of mathematical fact, Euclidean geometry. Einstein’s idea – that physics could begin 
with simple geometrical presuppositions, and proceed to physical discoveries that 
force a revision of those presuppositions and the adoption of a new geometry – would 
not quite make sense. Instead, Poincaré treated the Newtonian and special-relativistic 
space-time geometries as epistemically equivalent conventions, and held that physi-
cists would maintain the simpler one. Einstein and the philosophers who followed him 
naturally could not sympathize with this view. But they interpreted it not as a failing 
of conventionalism in general, but as a mistaken application of it. A theory of physical 
geometry rests on a combination of physical and geometrical principles, and so physi-
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cists choose not the simplest geometry, but the simplest combination of geometry and 
physics. When increasingly complicated physical hypotheses are required in order 
to reconcile the simplest geometry with the empirical evidence, the desideratum 
of simplicity recommends a change of convention. Thus Einstein and his followers 
reconciled what they saw as the essence of conventionalism with their conviction 
that, after all, Einstein’s theories were objectively superior to their predecessors. (See 
Einstein 1922, Schlick 1917, Reichenbach 1928, Carnap 1995.)

This last point is important for understanding the place of conventionalism after 
Einstein, and after the decline of logical empiricism. In the later twentieth century 
various refutations of conventionalism were proposed, generally arguing for a sound 
epistemic distinction, and therefore sound epistemic reasons to choose, between 
geometrical theories that Poincaré would have regarded as equivalent on all but 
pragmatic grounds (e.g. Putnam 1974, Glymour 1977, and Norton 1994). Evidently 
such arguments are directed at conventionalism as a problem of underdetermination; 
they do not undermine Poincaré’s point about the crucial role of interpretive principles 
in establishing the empirical content of geometry. Therefore they are not so far in 
spirit from the arguments of Einstein and the logical empiricists for special relativity, 
and later general relativity, as profound improvements in our understanding of space 
and time. But the latter arguments focused on the interpretive principles themselves: 
on how Einstein had identified the empirically uninterpreted concepts in existing 
theories, and had constructed new theories on definitions that satisfied – in the sense 
of Einstein’s remark about the definition of simultaneity – empirical conditions of 
adequacy (e.g. Reichenbach 1949). In this sense the logical empiricists did not all, or 
always, see geometry as a purely pragmatic decision between empirically equivalent 
alternatives. Nor, however, did they provide a completely clear analysis of Einstein’s 
definitions, or their empirical and philosophical significance. Their philosophical 
discussions of general relativity in particular, much like Einstein’s own, were clouded 
by other philosophical aims, especially their aim to vindicate a broadly philosophical 
notion of relativity, and to dismiss earlier notions of space-time structure as merely 
metaphysical. A rational account of conceptual change in the physics of space-time, 
and of the role of interpretive principles in the sense of Poincaré and Einstein, requires 
more attention to the interplay between conceptual analysis and empirical evidence 
in the construction of fundamental principles (cf. Friedman 2002, DiSalle 2002).

Conventionalism and twentieth-century philosophy

The foregoing also clarifies the status of conventionalism in light of what was the 
most influential critique of it, namely, Quine’s critique of the analytic–synthetic 
distinction (1953). In Quine’s account of scientific knowledge as a “web of belief,” or 
a “man-made fabric which impinges upon experience only along the edges” (Quine 
1953: 42), no principled distinction can be made between facts and conventions. This 
is because, in Quine’s interpretation, conventions are the principles that are taken to 
be “true by convention,” and that are maintained “come what may” – that is, in the 
face of recalcitrant experiences. According to Quine, however, all of the propositions 
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that form the fabric of our belief are more or less susceptible to pressure from empirical 
evidence, and therefore subject to revision on empirical grounds; the difference 
between empirical hypotheses and fundamental principles, of the sort that the logical 
empiricists would call conventional, is therefore merely a difference of degree. The 
former are closer to the periphery, the latter to the center of the web of belief. This 
implies only that revising the latter to adapt to experience has ramifications for more 
intervening principles, and is a correspondingly more complex and difficult process.

Re-evaluation of some statements entails re-evaluation of others, because of 
their logical interconnections – the logical laws being in turn simply certain 
further statements of the system, certain further elements of the field. … But 
the total field is so undetermined by its boundary conditions, experience, that 
there is much latitude of choice as to what statements to re-evaluate in the 
light of any single contrary experience. No particular experiences are linked 
with any particular statements in the interior of the field, except indirectly 
through considerations of equilibrium affecting the field as a whole.

(Quine 1953: 42)

This implies that the interior principles appear to have an essentially different 
character only because it is more difficult to revise them, rather than vice versa.

Quine’s argument superficially seems to restate the celebrated holist argument of 
Duhem (1906), that empirical tests always test the entire body of physical theory, so that, 
in the case of failure, there is no logical compulsion to fault any particular principle. Yet 
Duhem’s position is in fact closer to Poincaré’s than it first appears. Duhem also acknowl-
edged that certain fundamental principles play a distinctive role in the organization of 
a program of inquiry; he disagreed with Poincaré’s inference that such principles could 
be held immune from refutation – not because they are indistinguishable from empirical 
hypotheses, but because the program that they define may eventually fail to solve the 
problems that it was meant to solve. Poincaré, on his side, did not hold that conventions 
were removed from experience and could be held “true, come what may”; they were 
guided by experience, and could be abandoned if experience made their use impractical. 
They were not “true come what may,” because they were not the sort of principle to which 
the notion of truth properly applies. They express relations between concepts, or between 
concepts and experience, and so they define the framework within which other principles 
can be formulated, and found to be empirically true or false. In this respect, convention-
alism provides a groundwork, without appealing to a priori categories of the understanding, 
for the Kantian idea of “empirical realism.” The history of physical geometry, at least, 
suggests that Poincaré’s conventionalism illuminated an aspect of conceptual structure 
in science that is unfortunately overlooked in Quine’s attack on “truth by convention” 
(cf. Ben-Menahem 2006, Coffa 1983, DiSalle 2002). For this reason it is also unfortunate 
that conventionalism in the sense of Poincaré and Carnap is associated with the notion 
of voluntarism; voluntarism historically suggests a willful decision to regard a proposition 
as true, whereas conventionalism is meant to separate all questions of truth from decisions 
about the framework within which the truth will be pursued.
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A further omission from Quine’s account is the relation between conventions and 
experience. Quine’s metaphor of a web, with an interior and a periphery, separates 
fundamental principles from experience in a way that is difficult to reconcile with the 
actual history of mathematical physics. Einstein’s definition of simultaneity stands at 
the very center of special relativity, a stipulation on which the relativistic space-time 
framework is constructed. Yet it touches immediately on experience, insofar as experi-
mental evidence for the variability of the velocity of light would immediately cast 
doubt on it – contrary to the assertion of Quine cited above. Similarly, experimental 
evidence that different bodies are differently affected by the gravitational field, that 
is, evidence against the equivalence of gravitational and inertial mass, would directly 
affect the fundamental principles of general relativity. The important point here is not 
merely that the history of science offers counterexamples to Quine’s account of science. 
It is, rather, that his account fails to capture an essential feature of conventions, one 
that is indispensable to understanding the philosophical interest that conventionalism 
maintained for a large part of the twentieth century. A convention, in Poincaré’s 
sense, was supposed to characterize the conceptual significance of some outstanding 
phenomenon – to show that such a phenomenon gives an empirical interpretation 
to some conceptual structure, and establishes the connection between mathematical 
formalism and physical reality that makes mathematical physics possible. Neither 
Poincaré nor the logical empiricists succeeded in articulating this idea quite clearly, 
without suggesting a degree of arbitrariness that only makes its role in the historical 
progress of physics harder to understand.

See also Logical empiricism; Space and time; Underdetermination.
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