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4
Nonlocality and the Bell Inequality

4.1. The Bell Inequality

In the preceding chapter we presented the Einstein dilemma, that the
minimal instrumentalist interpretation F of QM either implied
nonlocality or that F was incomplete. Einstein, as we have seen, chose
the incompleteness horn of this dilemma and concluded that, at any
rate in certain states, observables for which these states were not
eigenstates nevertheless possessed sharp values. This suggested the
programme of ‘completing’ QM in the style advocated in what we
referred to as view 4 in Chapter 2. View A4, it will be recalled, says that
all observables, in all states, have sharp values. But then, in a famous
paper published in 1964, Bell showed that view 4, in conjunction with
a locality principle appropriate to view A, which we shall term LOC,;,
implied a certain inequality between measurable correlation coef-
ficients in a slight extension of the Bohm spin example for the EPR
argument. And this inequality, now usually referred to as the Bell
inequality, turns out to be in disagreement, over a certain range of
conditions, with the predictions of F itself.

This raises two questions. First there is a logical point, that filling
out the interpretation F to the complete interpretation of view A4 is
not consistently possible unless the locality principle LOC; used in
deriving the Bell inequality is violated. In other words, following the
incompleteness horn of the Einstein dilemma has not allowed us to
escape nonlocality, but has itself landed us in a violation of LOC;.
The second question is whether the predictions of F for the particular
set-up envisaged by Bell actually agree with experiment. It might be
that the Bell inequality is not violated by experiment, so that view 4
and LOC; could be maintained, but F itself is what is wrong.

We shall now proceed to develop this circle of ideas in more detail.
First, let us state the locality principle, LOC,, appropriate to view A.

LOC3:
A sharp value for an observable cannot be changed into another sharp value
by altering the setting of a remote piece of apparatus.
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Let us now see how view 4 supplemented by LOC; leads to the Bell
inequality. In the original proof given by Bell, the hidden-variable
version of view A, described in Section 2.1 above, was employed. But,
as noted there, this involves additional assumptions over and above
the existence of sharp values for all observables in all states. In
particular, the hidden-variable approach commits us to the existence
of joint probabilities for incompatible observables. This ‘hidden’
assumption might then be incriminated as responsible for the Bell
inequality, leaving the locality assumption unchallenged. It is import-
ant, therefore, that a proof of the Bell inequality can be given which
does not make use of the hidden-variable machinery, and which
makes no assumption of joint probability distributions for incom-
patible observables. This we proceed to do.

Consider again Bohm’s version of the EPR argument. Two spin-%
particles emerge from a source § in a singlet spin state, and move in
opposite directions towards two spin-meters which can measure the
spin-projection of either particle along any specified direction. We
shall consider two directions or ‘settings’ for each spin-meter, viz. a
and a’ for 4 and b and b’ for B. For the n'® pair of particles emitted
from the source, denote by a, the spin-component of the A-particle
(i.e. the particle travelling towards spin-meter 4) projected in the
direction a in units of #/2 when the A-meter is set parallel to a.
Similarly for a,, b,, and b, in an obvious notation. QM of course
dictates that, in so far as measurements by the spin-meters merely
reveal these values, they are restricted always to be + 1.

The situation is sketched in Fig. 9, where the two settings of each
spin-meter are indicated by the possible positions labelled a, a’, b, and

SPIN (+1,-1) (+1,-1) SPIN
METER - > METER
A B

Fig. 9. Schematic illustration of the Bell experiment. S is the source emitting
two spin-4 particles with possible spin-components in any direction of value
+1 in units of #/2. A and B are two spin-meters which can be adjusted to
measure spin-components parallel to a or a’ for the A-meter and b or b’ for the
B-meter.
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b’ of a ‘knob’ or joystick attached to the corresponding meter. Now
form the expression

Yn = @uby+ asb, +a,b,—a,b, 1)
7, clearly has integral values which can at most lic between —4 and

+ 4 inclusive. The trick here is that the value of the fourth term (with
the minus sign) is the product of the first three. Thus

a,b, a,b,-a,b, = a2 bt-a,b, = a.b.,
A little thought will show that this fact restricts the value of y, to + 2.
This is confirmed by the following simple argument. Write
Now b, and b, must have either the same sign or opposite sign.
In either case, only one term in (2) is non-vanishing, and its value is

clearly +2.
Now consider N events and form
1 X 1 X 1 X 1 ¥ 1 ¥
el = | it bz el ’ . /b/
N"Z=17n an=lanbn+NnZ=la" n+NnZ=1anbn an=1an n

But, since y, = + 2 for all n, this expression must be less than or equal
to 2.
Define correlation coefficients

1y )
c(a,b)=lm — a,b,
( ) N-»wNnZ=1
1 N
c(a, b)=1m =) a,b,
N—>00N n=1
1 N >
c@,b)=Lm —> a,b, (3)
N—»cx)Nn=1
1 N
c(@,b)=1lm =Y a,b,
N—»wNn=1 )

Then in the limit as N — oo we can conclude
|c(a, b)+c(a, b)+c(a,b)—c(a,b)| <2 @)
The inequality (4) is one form of the so-called Bell inequality.
If we remember that the mean values a,, b,, a, and b;, are all zero for

|'W gingler >» and the variances (a,—d,)?, etc. are all unity, then the
definition of the correlation coefficients given in (3) agrees with the
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usual definition given in statistics, that the correlation coefficient
between two statistical variables a,, b, is given in general by

(an - d,,) (bn - Bn)
((@n— @) (by—ba)*)?
where we use the bar to denote average or expectation values.
It is now easy to show that, for suitable choice of the direction a, a’,
b, and b, the QM predictions for the correlation coefficients violate

the Bell inequality. We have in fact already done the necessary
calculations in Chapter 1. Thus from Eq. (1.105) we have immediately

c(a,b) = —cosl,, (5)
where 8, is the angle between the directions a and b. Similarly

c(a,b’) = —cosb,,
c(a,b)= —cosb,, (6)
c(a’y b') = —cos,,

Choose the directions a, a’, b, b’ to be coplanar and take a parallel to b
and 6, = 0,, = ¢,say,so 0 ,. = 2¢ as illustrated in Fig. 10. For this
special choice of directions, the Bell inequality will be satisfied by the
QM predictions provided

F(@)=|1+2cos¢p—cos2¢| <2 (7
Df
A8=b
a’ b’
o|¢

Fig. 10. Special choice of directions for illustrating the violation of the Bell
inequality.

In Fig. 11 we show F(¢) plotted as a function of ¢ in the range
0° < ¢ < 180°. The Bell inequality is violated for all values of ¢
between 0° and 90°. It is easily checked that the maximum value for
F(¢) is 21 and is attained for ¢ = 60°.
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F(¢)

0 90 180
¢ in degrees

Fig. 11. Graph of F (¢) given in Eq. (7) against the angle ¢ in the range 0 to
180°. The Bell limit is given by F = 2. The inequality is violated for all values
of ¢ between 0° and 90°.

It is instructive to consider an example of correlation in classical
physics for which the Bell inequality is of course satisfied. Consider
two wheels which spin with angular momentum Jand — J about their
common axle, so that the total angular momentum of the system is
zero, just as in the QM spin example we have been discussing. Now let
the two wheels fly apart, and measure the sign of the component of
each wheel’s angular momentum along arbitrary directions a for the
first wheel and b for the second. Now consider an ensemble of such
wheel and axle systems with the axles distributed isotropically in
space, and let a, and b, be the signs of the angular momentum
components for the n'® axle. So, just as in the QM case, a, and b, are
always +1.

If we draw great circles on the unit sphere whose planes are
perpendicular to a and b, the surface of the sphere is divided into four
lunes of aperture 0, © — 0., 0., and = — 8, as illustrated in Fig. 12.

Fig. 12. Classical example of the Bell inequality for two wheels which fly
apart with angular momenta J and —J.
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If the axle cuts the sphere in the region of the two shaded lunes of
aperture 6,,, as shown in the figure, then clearly a, b, will be + 1, while
if it cuts the sphere in the region of the two unshaded lunes of aperture
n—0,, a,b, will be—1. With an isotropic distribution of axle
directions we have then the simple result

20,5 (+1)+2(n—0,)(—1)
27

c(a,b)=a,b, =

20,
T

= -1+

8)

With the choice of the four directions a, a’, b, and b’ shown in Fig. 10,
itis easily checked that the LHS of the Bell inequality comes out equal
to 2; so in this particular example the Bell inequality is saturated but
not, of course, violated.

The reason why the Bell inequality is violated in QM is due to the
angular dependence of the correlation coefficients specified in Egs. (5)
and (6). Comparing (5) and (8), notice how for small 6,, the QM
prediction ‘hangs on’ to perfect anti-correlation more tightly than in
the classical example. Thus from (5)

c(a,b) = —cosf,~ —1+403% ...

So de-correlation is proportional to 82 rather than 6,,, as specified in
(8).

The essential ingredient that has gone into the proof of Bell’s
inequality is the assumption of LOC;. For example, we have assumed
that the value of g, is the same whether we are measuring b, or b;, that
the change in setting of the knob on the spin-meter B from b to b’ does
not affect the value of a,, which is ‘discovered’ by the spin-meter 4
with knob set in the direction a. This means that both occurrences of
a, in the expression (1) for y, have the same value, similarly for a,, b,,
and b,. This is crucial to the proof that y, = + 2. Notice that the
definition of a, does allow for a dependence of the spin-projection of
the A-particle parallel to a, on the setting of the spin-meter A.

There are four separate correlation experiments involved in testing
the Bell inequality in the form in which we have presented it. These
involve combining setting a with b, a with b’, a’ with b, and a’ with b’
respectively. We are regarding the four experiments as mutually
exclusive, in the sense that each knob can have only one setting for any
given experiment; so we are taking here the strong line that
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incompatible observables cannot be measured simultaneously.
Nevertheless, we are assuming that a,,, b,, a,, b;, all have definite values
which can be measured simultaneously in pairs: a, with b, a, with b,
a, with b,, and a, with b,,.

We illustrate what is going on by considering the table of values for
a, a,, b, and b, (see Fig.13), in which the four correlation
experiments are distinguished as I, II, I1I, and IV. Each of the four
values occurs twice in each row of the table, since it figures in two
correlation experiments. The fact that each of the two occurrences has
the same numerical value (indicated by the ‘ties’ in Fig. 13) we term the
Matching Condition, which essentially incorporates the assumption
of LOC;. Each pair of columns for a given correlation experiment
enables one to compute, in the limit as n — oo, a correlation coefficient
with respect to possessed values using all values of n.

I I I v
n a, b, a, b, a, b, a, b,
2
3
cab)  c@b)  c@b)  c@b)

Fig. 13. Schematic table of values for the four correlation experiments I, II,
IIL, and IV in the Bell experiment. The Matching Condition is illustrated by
the ‘ties’ connecting values of the same spin-component in different
experiments.

A very important point to notice here is that the possessed values
are in general counterfactually possessed. Thus, if the spin-meter A is
set parallel to a and the spin-meter B parallel to b, then the entries for
a, and b, in the first two columns are actual possessed values. But
what about the value for a, in the third column? This is the value q,
would possess if spin-meter B were set parallel to b’ instead of b. We
shall argue later that these counterfactuals cause no difficulty under
the assumption of determinism, i.e. that the values for a,, a;, b,,and b,
are deterministically related to the total ‘hidden’ state of the two
particles emerging from the source. But, equally, we shall argue that, if
we give up determinism, then the Matching Condition is not licensed
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by appeal to LOC;. So we have uncovered one ‘hidden’ assumption in
the proof of Bell’s inequality, viz. determinism.

But there are other assumptions we need to be explicit about. In
order to carry out the correlation experiments we must perform a
place selection on the sequence of (in general counterfactually)
possessed values which tells us which values of n are to be the subject
of which measurement procedure (I, II, I11, or IV). We can now isolate
two assumptions we have tacitly made:

1. Limiting frequencies computed under these place selections have
the same value as those computed with all values of n.

2. The correlation coeflicients evaluated with respect to measured
values are the same as those evaluated with respect to these selected
possessed values.

The first assumption, which we shall term the randomness assump-
tion, is simply that each sequence of a,’s, b,’s, etc. is a random
sequence in the Church—-von Mises sense, if we suppose that the
selection of measurement procedures is governed by some effectively
computable rule, and furthermore remains random when we con-
ditionalize on any specified value of properties possessed by the
particle entering the opposite wing of the apparatus. This is needed to
ensure that sequences such as { a, b, } are random in addition to { a, }
and {b,}. The second assumption is justified by a

Principle of Faithful Measurement (FM):

The result of measurement is numerically equal to the value possessed by an
observable immediately prior to measurement.

Note that it is conceivable that FM is true, so that every time we make
a measurement we reveal what is there, and yet the frequency
distribution of measured values might not be equal to the unselected
frequency distribution of the possessed values, because measurement
selection might skew the underlying distribution. But this would
suggest a remarkable conspiracy on the part of nature, that is clearly
inconsistent with the experimenter’s freedom to choose which
possessed values to subject to measurement and, in particular, to
specify a rule for selecting measurement procedures.

We can now collect up our various assumptions and write
schematically

View A A LOC; A Determinism A
Randomness A FM — Bell Inequality )
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Looking at this rag-bag of assumptions made in the proof of the
Bell inequality, there may be thought to be a tension or even a
downright inconsistency between the assertions of Determinism and
Randomness. Determinism said that the values of the spin-
projections just before measurement were related deterministically to
the state of the two particles produced in the source, while
Randomness said that the sequence of successive values of a,, for
example, was a random sequence. But even if states of the source were
produced deterministically from previous states of the system, this
does not mean that the outcomes of measurement cannot be a
random sequence—just that the determination is not ultimately
specifiable by a rule which is effectively computable. Randomness in
the Church—von Mises sense is compatible with an ontological
determinism—a given state at one time issues in a unique state at a
later time—but not with what we may term pragmatic determinism,
that the prediction of future states can be effectively computed.

We have stressed so far the assumptions that are made in the proof
of the Bell inequality. But, equally importantly, we stress the
assumptions that have not been made:

1. We do not assume that the a,’s and a,’s, for example, have a well-
defined joint probability distribution, the correlation functions
actually used in dertving the Bell inequality always referring to

compatible (commuting) observables. In particular we do not
N

1
assume that N Y a,ay has any well-defined limit as N — co.
2. Wedo not assume that a, and a; can be measured simultaneously,

contrary to the view expressed by Brody and de la Pefia-Auerbach

(1979).

4.2. Counterfactuals and Indeterminism

In this section we shall discuss the question of whether we can block
the proof of the Bell inequality by giving up determinism.

We shall begin by sketching an argument, due to Stapp and
Eberhard, to the effect that a proof can be given of the Bell inequality
that 1s formulated entirely in terms of actual or possible measurement
results, 1.e. the responses of macroscopic measuring apparatus, and
which is neutral with regard to possible interpretations of QM such as
the views we have labelled 4, B, and C. The locality assumption used
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in this type of argument we shall term LOC,, which is formulated as
follows:

LOC,:

A macroscopic object cannot have its classical state changed by altering the
setting of a remote piece of apparatus.

So the purported theorem is in essence
LOC, — Bell Inequality (10)

If this result could be established, it would provide a very powerful
and comprehensive proof of nonlocality in QM. Schematically

F— ~ (Bell)—> ~ (LOCy) (11)

and this result would apply just as well to view B, for example, as to
view A. We have already seen (3.10 above) that view B implies a
violation of LOC,. But (10) would demonstrate that view B also
involves a violation of LOC,. In other words, we would now not need
to go through the EPR argument plus the Bell inequality argument to
demonstrate nonlocality in QM. Furthermore, the escape from the
Einstein dilemma provided by view C would also be blocked, since not
only LOC, would-be (acceptably) violated, but also (unacceptably)
LOC,.

Let us then attempt, following the ideas of Stapp and Eberhard, to
prove(10). We begin by simply taking over the mathematics.of the
proof of the Bell inequality given in the preceding section, but with
appropriately altered definitions of the symbols a,, a;, b,, and b,. We
interpret these quantities now, not as possessed values for the
microsystems, but as the responses of the macroscopic spin-meters
when set to measure these quantities. Thus a, = response of A-meter
when set to measure o(A) - a for the n** pair of particles emitted by the
source. Similarly for a,, b, and b;,. But since the four correlation
experiments I, II, III and IV are mutually exclusive, we must proceed
counterfactually.

a, = response A-meter would show if Experiment I or
Experiment II were performed.

Now, the essential crux of the derivation of the Bell inequality was
the Matching Condition. Applied to a,, for example, this says that the
result recorded by the A-meter would be the same whether
Experiment I or Experiment II were performed. But Experiments I
and II differ only in the setting of a remote piece of apparatus, spin-
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meter B. Thus the Matching Condition would follow, and hence the
Bell inequality could be proved if the following principle could be
sustained.

Principle of Local Counterfactual Definiteness (PLCD):

The result of an experiment which could be performed on a microscopic
system has a definite value which does not depend on the setting of a remote
piece of apparatus.

Clearly then, modulo the randomness assumption involved in the
proof,

PLCD - Bell Inequality (12)
Suppose now we could show that
LOC, -»PLCD (13)

Then from (13) and (12) we would at once obtain the result we are
trying to prove, viz. (10).

Arguing contrapositively, (13) says that violation of PLCD implies
a violation of LOC,. This is the crucial claim that we want to examine.
Let us consider two simple thought experiments.

In the first, a clock is situated at one end of a table. At time ¢t,, say
9 o’clock, the clock strikes. I stand at the other hand of the table and
at time ¢, say 1 sec. before 9 o’clock, I raise my hand. I now ask the
question: ‘If I had not raised my hand at time ¢; would the clock have
struck at time ¢,? Assuming no mysterious connection between my
hand and the mechanism of the clock, the intuitively correct answer to
this counterfactual query would seem to be ‘Yes’, in accordance with
PLCD. And, moreover, if the clock had not struck at ¢,, when I did
notraise my hand at ¢,, then I think we could have concluded that the
macroscopic behaviour of the clock must depend on the remote
setting of my hand, i.e. a violation of LOC,.

Let us compare this conclusion with what happens in a second
thought experiment. In this, the clock is replaced by an atom of
radium which decays (emits an a-particle) at time ¢,. Again at time ¢,
just before t,, I raise my hand. The question I now ask is: ‘If I had not
raised my hand at time ¢, would the atom still have decayed at time
t,?7 It is not so obvious in this example what the answer to the
question should be. Suppose the decay of the radium atom is a truly
indeterministic process; then, if I imagine running the course of events
through again, with my hand not raised this time, the outcome at time
t, might just as well be that the atom did not decay. Or, to take a
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slightly different example, suppose 1 placed a bet on number 17
turning up for a truly indeterministic roulette wheel, and in fact
number 16 turns up. Should I correctly say: ‘If only I had bet on
number 16 I would have won my bet’? This is a conundrum about
which philosophers have different views, but it is certainly prob-
lematic in a way that is not the case for the deterministic clock
example.

One popular way of analysing the truth conditions for counter-
factuals is in terms of possible worlds. Let us apply this type of
analysis to the counterfactual ¢ (1> ¥, where ¢ denotes the condition
that I do not raise my hand at time ¢, and y the state of affairs that the
atom decays at time ¢,, and [ is a convenient symbol for denoting a
counterfactual conditional.

Let the world in which I raise my hand at ¢; and the atom decays at
t, be denoted by W. Let possible worlds W for variable j be ordered
in respect of ‘nearness’ to W;. More specifically, we collect all worlds
into classes.each of which is composed of worlds ‘equidistant’ from
W;, and then order these classes in respect of ‘distance’ from W;. If W,
is nearer to W; than W, I write W, < W,. Then I analyse ¢ (1> V¥ as

AW [IWU((W, < Wi) A Wil ) A YW (W < W) -
(Wy(¢) - W;(¥)))]

thus reducing the counterfactual conditional (1> in terms of the
material conditional —. W,(¢) signifies that ¢ is true in W,. We are
assuming then ~ W;(¢). In words: there is a world sufficiently close to
W;such that there exist some worlds closer to I#;in which ¢ holds and
such that for any such worlds ¥ holds.

This somewhat involved analysis can be illustrated as follows.
Represent the classes of equidistant worlds as spheres centred on W,
Then ¢ > Y would be true in the situation shown in Fig. 14, where
the conditions ¢ and Y are identified with the classes of worlds in
which they hold. ¢ is shown shaded and y is the region inside the
dotted line. W, is some world on the sphere S;,and WW;a world on the
sphere S;.

Let us take the example given by David Lewis in his book
Counterfactuals. If a kangaroo did not have a tail it would fall over.
The material conditional is not required to hold for worlds sufficiently
far from W, i.e. worlds in which the kangaroo has crutches!

In our example time enters in an essential way—we are dealing with
a tensed counterfactual. It is important here that the specification of
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Fig. 14. Truth conditions for the counterfactual conditional ¢ > ¥. W,
denotes the actual world. S; and S, are ‘spheres’ of possible worlds
‘equidistant’ from W,.

13

‘sufficiently close’ must refer to states of the world up to but not
including t,—i.e. we must not include the fact of y obtaining at ¢, as
part of the specification of a sufficiently close world. This proviso is
required to deal with the following sort of counter-example: ‘If I were
to pull the switch at ¢, the hydrogen bomb would explode at ¢,.” If I
include in the specification of ‘sufficiently close world’ what happens
after the explosion, this statement comes out false, while the
statement: ‘If I were to pull the switch, the switch would jam’ comes
out true, since a jammed switch is closer to the actual world than one
devastated by the explosion of the hydrogen bomb! This is very
counter-intuitive, and can be dealt with as suggested by restricting the
specification of ‘sufficiently close’ to states of the world up to but not
including ¢,.

Informally, then, we consider a world which differs from our actual
world just in the fact that ¢ obtains in the alternative world but not in
the actual world; everything else, including the laws of nature, are the
same, and we let the world run on to the instant before ¢, and ask:
‘Must now s occur at t,? But if the occurrence of Y is essentially
probabilistic, then there is no necessity for ¥ to occur at t, in the
alternative world. This is not paradoxical. It is just what we mean by
saying that the occurrence of i is indeterministic (essentially
probabilistic). We just cannot refine the description of the world prior
to t, so as to force the occurrence of Y at ¢, . If such a refinement were
possible the occurrence of ¥ would be deterministic, not
indeterministic.

To return to our original example, the fact that keeping my hand
down at t; allows the atom not to decay at ¢, has nothing to do with a
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violation of locality, in particular LOC,, assuming the decay of the
atom is used to trigger some macroscopic recording device. It just
involves the recognition of what is meant by the claim that the decay
of a radium atom is indeterministic. So what is wrong with PLCD is
the meaning attached to ‘definite’. The outcome of an essentially
indeterministic situation is definite in the sense that on a particular
occasion, in a particular world, whatever does happen is the
determinate outcome; but it is not definite in the sense that it is both
determinate, i.e. necessarily either true or false, and determined, i.e. is
rendered either necessarily true or necessarily false, by any possible
specification of that world prior to the occurrence of that particular
outcome.

The conclusion of this discussion is that, if we assume determinism,
PLCD is a valid principle which can indeed be licensed by appeal to
LOC,. Under this assumption, violation of the Bell inequality shows
that LOC, is violated. Indeed, if one can change the possessed value of
some attribute at a distance, and this possessed value is linked
deterministically to a macroscopic pointer reading as measurement
outcome, then the state of the pointer can be altered ‘at a distance’. In
other words, LOC, holds if and only if LOC; holds; so violation of
LOGC; commits us to violation of LOC,.

But in an indeterministic framework such as that envisaged in view
B, for example, itis at least highly questionable whether PLCD can be
invoked as a valid principle licensed by an appeal to LOC,; and if
PLCD cannot be used, then the generality claimed by Stapp and
Eberhard for their method of proof must be denied.

A final comment on the Stapp-Eberhard proof. There is an
alternative way that Eberhard refers to in his (1977) for expressing his
results which does not employ counterfactuals. The idea is to record
in a table, such as that illustrated in Fig. 13 above, not the results of
four correlation experiments which could have been performed,
although not simultaneously, but the results of four correlation
experiments which are all actually performed. In other words, each
pair of columns records a sequence of measurements made with the
appropriate pair of knob settings. When four such correlation
sequences have been obtained, they are written down side by side to
form the complete eight-column table, but each row now refers to
four different particle pairs emitted by the source.

So clearly, in general, the Matching Condition will not hold for any
particular row. But, by chance, it may. So now perform a place
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selection on the columns which consists in selecting those rows for
which the Matching Condition does hold. If we calculate new
correlation coefficients using only these place-selected rows of the
table, then Eberhard points out that the results cannot in general
agree with the correlation coefficients calculated with the whole table.
This is perfectly true, since the former, by construction, satisfy the Bell
inequality, whereas the latter, in general, violate it. But all this has
nothing to do with LOC,. It just demonstrates the familiar fact that
place selections in a random sequence, made in the light of the actual
outcomes, can change the limiting frequencies for these outcomes.
There are, however, claims in the literature that sticking with view A
but giving up determinism does allow the derivation of the Bell
inequality by a different line of argument from that used by Stapp and
Eberhard. In Section 4.4 we shall consider the case of so-called
stochastic hidden-variable theories in relation to questions of nonlo-
cality. But first we shall interrupt the main line of discussion to
consider briefly some mathematical manipulations that enable us to
give useful alternative formulations of the basic Bell inequality (4).

4.3. Alternative Forms of the Bell Inequality

We start from the inequality (4)

|c(a, b) +c(a, b')+c(a’, b) —c(a’, b)| < 2.
By interchanging b and b’ we have also

|c(a, b)+c(a,b)—(c(a’,b)—c(a’, b)) <2

Define X =c(a,b)+c(ab) (14)
Y=c(a',b)—c(a, b)) (15)

Then we have shown
| X +Y]<2 (16)
| X-Y| <2 (17

Suppose X has the same sign as Y. Then using (16)
| X|+|Y)=|X+Y|<2
while if X has the opposite sign to Y, using (17)
| X|+|Y]=]X-Y|<2
So in all cases
1 X|+1Y]<2 (18)
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or Y| <2—-|X]| (19)
Now consider an experiment for which
cb,b)= -1 (20)

and choose the direction a parallel to b (the notation c¢(b, b) just
means c(a, b) when a is chosen parallel to b). Then (19) becomes
lc(a’, b)—c(a’, b)| <2 —|c(b, b) + c(b, b)|

=2—|—=1+c(b,b)|

=2—|1—c(b,b)|

=2—(1-=c(b, b))

=1+c(b, b)
So lc(@’,b)—c(a’,b)| <1+4c(b, b) (21)
for arbitrary directions b, a’ and b’. This is the original form in which
Bell presented his inequality. But notice that it is only applicable
under the assumption (20).

Although (20) is true for the state | ¥, ..., >, the inequality (4) is of
more general applicability, since it holds in the more general case
where the strict anti-correlation expressed in (20) does not apply.

Another useful way of expressing the basic inequality (4)is in terms
of probabilities rather than correlation functions. Denote by Prob
(€2, €b)a,p, fOr example, the joint probability that measurement of
a(A)* ayields the value ¢, and measurement of ¢(B) - b yields the value
&, Where ¢, and ¢, have the value + 1 and o(A4) and ¢ (B) are as usual
the Pauli spin-vectors for the A-particle and the B-particle respect-
ively (i.e. the particles moving towards the 4-meter and the B-meter).
Similarly for Prob (&, &y)a,p’ Prob (eu, &).,» and Prob (eu, &y p-
Also let Prob (g;), be the probability of measuring the value ¢, for
a(A)-a, irrespective of what is measured on the spin-meter B.
Similarly for Prob (), Then we have

Prob (+1), = Prob(+ 1,4+ 1), + Prob (+1,—1),, (22)
Prob (+ 1), = Prob(+1,+ 1), + Prob(—1,+ 1), (23)
and
Prob(+1,+1),,+Prob(—1,—1),,+Prob(+1,-1),,
+Prob(—1,+1),, =1 (24)
From Egs. (22) to (24) we easily derive
Prob(+1,-1),, = Prob(+1),—Prob (+1,+1),, (25)
Prob(—1,+1),, = Prob (+1),—Prob (+ 1,+ 1), (26)
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and
Prob(—1,—1),,=1—=Prob(+1,+1),,—Prob(+1,—1),,
—Prob(—1,+1),, = 1 +Prob(+1,+1),,—Prob(+1),
—Prob(+1), (27
From Egs. (25) to (27) we obtain
c(a,b)=Prob(+1,+1),, +Prob(—1,-1),,
—Prob(+1,—1),,— Prob(—1,+ 1), = 4 Prob(+ 1, + 1),
—2Prob(+1),—2Prob (+1),+1 (28)
Writing down similar expressions for c(a, b’), c(a’, b)and c(a’, b'), we
easily derive the following inequality from (4)
— 1< Prob(+1,+ 1), + Prob (+1,+ 1),y + Prob (+ 1,4+ 1),
—Prob(+1,+ 1)y y —Prob(+1),—Prob(+1), <0 (29)

More generally, if we choose ¢, = &4 = ¢, say, and ¢, = &, = &, say,
then we can write

—1 < Prob (g, €5)a,b+ Prob (e, eg)a,p
+ Prob (¢, e5)a,5 — Prob (e, &5)a, v
— Prob (g,),— Prob (e5), < 0 (30)

where ¢, = +1,¢e,= * 1.

The set of four inequalities comprised in (30) are actually equi-
valent to (4), in the sense that we can derive (4) from (30) by
multiplying the two inequalities for which ¢, # ¢, by — 1 and adding
to the two inequalities for which ¢, = ¢,.

4.4. Stochastic Hidden-Variable Theories

We now revert to the question of whether a proof can be given of the
Bell inequality if we combine view A with indeterminism. The
framework of so-called stochastic hidden-variable theories will
provide a basis for this discussion. (We use the term “theory’ rather
than ‘interpretation’ to allow for the possibility of not reproducing all
the empirical predictions of QM.) The idea of such theories is that the
‘complete’ hidden-variable description of the source does not de-
termine the values of local observables possessed by the two particles
in the Bell type of experiment, but only the probabilities for possible
values to occur. We can think picturesquely that the values of the spin-
components in any given direction are developing in time stochasti-
cally, the state of the source controlling only the probabilities that
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particular values will be revealed when subsequent measurements are
performed. We will still suppose that faithful measurement is true, i.e.
that measurement at time t reveals the value possessed at time t. As we
have said before, if measurement results were themselves linked
stochastically to possessed values, it would be difficult to know in
what sense one could talk of measurement at all. More formally, we
shall assume the existence of a joint probability density
Prob (¢, &, 4) J4y'®

for the values ¢, and ¢, to be possessed by the observables a and b,
which are shorthand for 6(4)-a and o(B)-b respectively, and the
value A for the hidden-variable specifying the state of the source. The
superscripts # , and 7, indicate the settings of the two spin-meters A4
and B respectively.

If n, =aand 5, = b, then this will be the probability of finding the
results ¢, and g, on measuring a and b, together with the value A for the
hidden variable. This joint probability in terms of measurement
results will be denoted simply by

PI'Ob (Saa Eps )')a,b

But even if 7, + a, 11, # b, the joint probability Prob (g, &, A)a4"? is
supposed to exist, although its values will not translate immediately in
terms of the probabilities for measurement results.
We now write
Prob (¢, &, A) ;"g’ I8

= Prob (¢,/e, & A)]1+"s

X Prob (g,/A)]+ "

X pllats (1) (31)
where Prob (g,/e, & 1)]+"2is the conditional probability for a to have
the value ¢, given values ¢, for b and A for the hidden variable (with
settings 1, and 7, for the spin-meters), Prob (¢,/A)7+"s is the con-
ditional probability for b to possess the value of ¢, given the value A for
the hidden variable, and p"+75(]) is the probability density for finding
the value A of the hidden variable.

In order to derive the Bell inequality, we begin by making the
following completeness assumption

Prob (g,/¢, & A)]+"8 = Prob (g,/A)}+"s (32)

The significance of (32), first pointed out by Jarrett (1984), is that A is
sufficient to determine completely Prob (g,/¢, & A)]+"5. Specification of
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& is not required. We shall return in a moment to discuss the
significance of violating the completeness condition.
Under the completeness assumption (32), Eq. (31) reduces to

Prob (,, &, 4)14"2 = Prob (g,/A)+"®

x Prob (g,/A)f4"8 x pala(4) (33)
But in order to derive the Bell inequality, it is necessary to make the
following additional locality assumptions:
Prob (g,/A)1+"s is independent of 7,
Prob (g,/A){+"s is independent of 7,
p"+"5(4) is independent of 7, and 7.

Introducing these further locality assumptions into (33), we obtain
finally

Prob (g,, &, A)l4"®
= Prob (¢,/A)M1
x Prob (g,/A)g*
x p(4) (34)
where we have suppressed those indices on which the indicated

probabilities do not depend. In particular, with ¢, and ¢, now referring
to measurement results,

Prob (g,, &, 4),, = Prob (g,/4), x Prob (g,/4), X p(4) (35

The representation (35) is often referred to as ‘factorizability’ in the
literature.
From (35)

Prob (¢, &).6 = JProb (€2/A)q  Prob (ey/A),  p(4)dA (36)
A

Similarly

Prob (¢,, &)y = J Prob (¢,/4), * Prob (ey /)y - p(A)dA  (37)
A

Prob (¢4, &)o' p = JProb (e4/A)ar * Prob (g, /A), « p(A)dA  (38)

A



Nonlocality and the Bell Inequality 101

Prob (g, &)apr = jProb (6a/A), * Prob (g, /Ay - p(A) é/l (39)

A
and Prob (¢,), = PProb (€a/A)a* p(A)dA (40)
A
Prob (g,), = |Prob (g,/1), p(A)dAi 41)
A

With the representations (36), (37), (38), (39), (40), and (41) it is
possible to prove the inequality (30). This follows at once from the
following inequality that holds for any real numbers x, y, x’, y’ that lie
in the interval [0, 1]

—1<xy+xy+xy —-xy—-x—y<0 42)

Substituting

x = Prob (g,/4),

y = Prob (g,/4),

x' = Prob (g;/A)

- ¥ = Prob (gy/A)y

and assuming

=&y =8,

& = &y = &g
yields (30), on integrating over A and remembering

jp(l) di=1

A

From (30), as we have seen, the basic inequality (4) follows. We have
thus succeeded in giving a proof of (4) that avoids counterfactuals.

The violation of the Bell inequality means that we must give up
factorizability. But this circumstance can also be derived without
making any use of the Bell inequality, for the singlet state correlations,
by the following argument. The factorizable stochastic hidden-
variable theories cannot accommodate the existence of strict anti-
correlation, as in the original EPR set-up with a parallel to b. In this
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case we would require Prob (+1, +1),, = Prob(—1, —1),, = 0, but
substituting in (36) this requires, for example,

JProb (+1/4);* Prob (+ 1/A)p* p(A)di =0
A
Since all factors in the integrand are non-negative, this implies
Prob (+1/4), = 0 or Prob(+1/4), =0

Considering, for example, the first alternative implies Prob (—1/4),
= 1, but repeating the above argument with ¢, =¢, = — 1, then
gives Prob (—1/4), = 0, which in turn implies Prob (+1/1), = 1. Itis
clear, then, that in the case of strict anti-correlation all conditional
probabilities Prob (g,/4), and Prob (g/4), are zero or one, and the
theory has collapsed into a deterministic one.

It is true, as we shall see in the next section, that the experimental
tests of the Bell inequality that have so far been carried out have
employed systems that do not involve the strict anti-correlation of our
idealized thought experiment. So in these cases we do require the
violation of the Bell inequality to demonstrate the failure of
factorizability.

We now want to return to the question, what would be the
significance of violating the completeness condition (32)? This would
mean that probability distributions of properties possessed by the A-
particle would depend in an essential way on what property is
possessed by the B-particle. Another way of understanding the
completeness condition is that it identifies A, the complete state of the
source, as the common (stochastic) cause of @ having the value ¢,and b
the value ¢,. Thus Eq. (32) tells us that A screens off ¢, from ¢,. If (32) is
violated it is often argued that a and b must exhibit a direct stochastic
causal link on the grounds that the correlations between a and b can
only be accounted for on the basis of stochastic links to a common
cause or a direct stochastic causal link. But this conclusion can be
questioned if proper account is taken of necessary conditions of
robustness required for a direct causal link. By robustness of a causal
relation we mean the following: A stochastic causal connection
between two physical magnitudes a and b pertaining to two separated
systems 4 and B is said to be robust if and only if there exists a class of
sufficiently small disturbances acting on B(A) such that b(a) screens
off a(b) from these disturbances.
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Denoting the disturbance acting on B by d, then the first part of this
condition can be rendered formally as

ID(VdeD(Prob(a = &,/b = ¢,&d) = Prob (a = &./b = &,))) (43)

A similar condition can be written down for disturbance acting on A.

The requirement of robustness as a necessary condition for a causal
relation means that suitably small disturbances of either relata do not
affect the causal relation. This is essentially the basis of the mark
method for identifying causal processes. The processes propagate
small disturbances (marks) in a local event-structure in accordance
with the causal law at issue.

We can easily translate this robustness condition so as to apply to
the singlet-state correlation we are discussing. Consider possible
perturbations of the quantum-mechanical state |'¥ > by disturbances
acting on the particle B. In order to make the problem tractable we
shall restrict the discussion to coupling of particle B to uniform c-
number fields of arbitrary strength, which are switched on for some
specified interval of time to provide the perturbation. Let ¥ be a
variable ranging over these perturbed states. Then a necessary
condition that a and b exhibit a stochastic causal connection for
arbitrary choice of the directions a and b is:

ADVaVb(V|¥' €D (Prob¥” (a = &,/b = g)

= Prob™’(a=¢,/b=¢,))) (44)
where the superscript on Prob denotes the quantum-mechanical state,
and where the class D is some non-empty set of perturbed states
arising from sufficiently weak perturbing fields.

We shall now show by explicit calculation that condition (44) is
violated. Since (44) is a necessary condition for a direct stochastic
causal link between a and b it will follow that no such link exists.

Denote the spin-projection of ¢, and o, along the arbitrarily
chosen Z-axis by o ,, and o, respectively. Then we have

1
IlP> =7§‘(|GA2= +1>|GBZ= —1>_IGA2

=~ o= +1)) (45)

which is a vector in H , & Hj, the tensor product of the Hilbert Spaces,
H, and Hy for the particles 4 and B.

Consider an arbitrary perturbation acting on M,. It will induce a
2 x 2 unitary transformation on all vectors belonging to H,. This
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transformation is thus an element of U(2), the group of 2-dimensional
unitary transformations. It is well-known that U(2) can be exhibited
as the direct product of U(1), the group of 1-dimensional unitary
transformations, and SU(2), the group of 2-dimensional unitary
unimodular transformations. Formally
U(2) = U(l) x SU(2) (46)

Now an element of U(1) merely induces a phase-shift which does
not change the physical state (ray) associated with particle B and can
be ignored in computing all probabilities. The action of an element of
SU(2) can always be represented as e/“s'™9/2 where the direction of
the unit vector nand the magnitude of the angle ¢ range over the three
parameters of the group (note that 0 < ¢ < 4n).

We denote e'®s"™%/2 by u(n, ¢). Then the most general perturbed
state is given by
jlf”z'("’f +1>u(n, 9)|os,

=—1)—lo,=—1)um, d)log.= +15) (47)

In what follows we shall consider the particular choice ¢, = g, = 1.
Then we have the familiar results (cf. Eq. 1.106)

¥y =

Prob®a =1)=1% (48)
Prob!®>(h = 1) = $ (49)
Prob¥>(a = 1/b = 1) = sin’ 46, (50)

where 6, is the angle between the directions aand b. We are interested
now in calculating Prob'¥> (a = 1), Prob¥> (b = 1) and Prob!¥?
(a=1/b=1).

The robustness condition for stochastic casuality is simply

Prob¥> (a=1/b=1)=Prob!"®) (a=1/b = 1) (51)

We shall show that for any given disturbed state |'¥' > there always
exists directions a and b for which (51) 1s violated.

Tocalculate the new probabilities apply the unitary transformation
u(n, —¢) (= u~'(n, ¢)) to the space H, This converts |'¥' > back into
|'¥ >, but induces a rotation R(n, — ¢) in the operator a5 R(n, ¢)is an
element of the 3-dimensional rotation group SO(3), corresponding
to an (active) clockwise rotation about the direction n. The above
result is a direct expression of the famous homomorphism that exists
between SU(2) and SO(3). (SU(2) is just the simply connected
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universal covering group of SO(3).) Succinctly

u(m, ¢) agu(n, — ¢) = R(m, $)oy (52)
On the left of Eq. 52, u acts on the spinor indices of a5, while on the
right R acts on the vector indices. Thus the effect of our unitary
transformation on the operators a and b is as follows:

a=6,a—>d =a (53)
b=ogb—b = (u(n, —¢)ogu(n ¢))-b
= (R(m, —P)ap) b

= ag* (R(m, $)b) = a° b’ (54)
where
b= R(n, ¢)b (55)
Hence we have at once the following results:
1. Prob'¥’(a = 1) = Prob™>(@’ = 1) = Prob™®>(a = 1) = % (56)

This shows that the perturbation acting on particle B cannot be used
to send signals to the location of particle A. We shall discuss this more
fully in Section 4.6 below.

2. Prob*’(b = 1) = Prob™®’(p' = 1) =} (57)
This is a rather surprising result that is a special property of the
example under discussion.

3. Prob™>(a@a=1/b = 1) = Prob™>(@’ = 1/b' = 1)
= Prob¥’(a = 1/b' = 1) = sin’ 46, (58)
The robustness condition (51) thus reduces to sin® £6,,, = sin®40,,, or
O = Oap (59)

since the angles all lie in the range 0 to #. (59) can be given a simple
geometrical interpretation.
In Fig. 15

ON represents the unit vector n
OB bid 2 2 ?” 2 b
OBI ?” ?” 2 29 bed bl

B and B’ lie on a circle with centre O’ whose plane is perpendicular to
ON. LBO'B' = ¢.

Now 6,, = 6, is equivalent to

cos 0, = cos Oy

orarb=a-b’

ora*(b—b)=0
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N

Fig. 15. Rotation of unit vector OB through angle ¢ about axis ON into new
position OB’. OC is the bisector of the angle between OB and OB’. The plane
NOC, denoted by I1, is shown shaded.

Hence a must line in the plane perpendicular to the line BB'. Call this
plane I1. IT can equally well be characterized as the plane through
ON and OC, where OC is the bisector of the angle between b and b’
The planell is shown shaded in the diagram. So we have the following

Theorem:

For any given perturbation on particle B thatissues ina rotation of bto b’, the
conditional probability Prob'¥>(a = 1/b = 1) will be invariant (robust) under
the perturbation if and only if the direction a lies in the plane defined by the
axis of rotation and the bisector of the directions b and b'.

Corollaries:

(1) If n coincides with a
Prob¥>(a = 1/b = 1) is robust for all b.

(2) If n coincides with b
Prob!¥’(a = 1/b = 1) is robust for all a.

(3) For any perturbation (rotation) however small there always exist
directions a and b for which Prob!¥>(a = 1/b = 1) is not robust.

It is this last corollary which demonstrates, I believe, that a and b
cannot be regarded as related by stochastic causality. The correlations
between a and b are a property of the particular quantum-mechanical
state, viz. the singlet state, in which the particles emerge from the
source. The state involves a feature of holism or nonseparability,
which, lacking the necessary robustness for stochastic causality, may
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be termed passion-at-a-distance as opposed to action-at-a-distance.
The A-particle does not possess independent properties (propensities)
of its own. The conditional probability Prob (g,/e;) W75 is a
candidate for an inherently relational property of the joint two-
particle system. The situation should be contrasted with the resuit of
violating the additional locality assumptions introduced below Eq.
(33). If these conditions were not satisfied we would have a clear
case of action-at-a-distance. Changing the setting of the apparatus B
for example would alter the conditional probabilities of properties
manifested at the location of the 4-particle and the source, and so on.

We shall find a striking analogy to the distinction drawn here
between locality in the sense of no-action-at-a-distance and separ-
ability in the sense of ascribing properties separately to the two
particles, in the developments dealt with in Chapter 6.

4.5. Experimental Tests of the Bell Inequality

In this section we turn to the experimental tests of the Bell inequality
that have been carried out during the past fifteen years or so.

The first point we would like to stress is that, since the Bell
inequality involves experimentally accessible correlation coefficients,
it can be tested directly, without any intermediate reference to QM.
As we have seen, the predictions of QM do in certain circumstances
violate the Bell inequality, but there are two distinct questions:

1. Is the Bell inequality violated?
2. Does the violation conform to the predictions of QM?

The broad consensus of the experimental results is that both these
questions are answered in the affirmative.

There are basically three types of experiment which have, so far,
been carried out. The first type measures polarization correlations
between two “visible’ photons emitted in a cascade transition from the
excited state of an atom such as calcium or mercury, or, in the most
recent example, simultaneously from excited deuterium; the second
type looks at spin correlations in low-energy proton—proton scatter-
ing; while the third type involves y-ray polarizations from the
annihilation decay of the singlet state of positronium. Before
discussing the special features of these types of experiments we have
listed in Table 1 the principal experiments in each class, and whether
the result agrees (indicated by a tick) or disagrees (indicated by a
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Table 1. Experimental tests of the Bell inequality. Violation indicated by a
tick, no violation by a cross.

Visible Photon Correlation Experiments
sult  Remarks

Used Ca cascade

Used Hg cascade

Used Hg cascade

Used Hg cascade

Used Ca cascade with

single-channel polarizers.

Used Ca cascade with

2-channel polarizers.

Used Ca cascade with

optical switches.

1985 Perrie, Duncan, Beyer, and Used simultaneous
Kleinpoppen. 2-photon emission by

metastable atomic deuterium

Date Experimenters R

1972 Freedman and Clauser

1972 Holt and Pipkin

1976 Clauser

1976 Fry and Thomson

1981 Aspect, Grangier, and Roger

Y

1982 Aspect, Grangier, and Roger

1982 Aspect, Dalibard, and Roger

SRR YP LN

Low Energy Proton—Proton Scattering:

1976 Lamehi-Rachti and Mittig \/ Used double scattering to
measure spin correlations.

y-Ray Polarization Correlation Experiments

1974 Faraci, Gutkowski, Notarrigo,
and Pennisi
1975 Kasday, Ullman, and Wu

X Used Compton polarimeter and
22Na source

Vv Used Compton polarimeter and
4Cu source

\/ Used Compton polarimeter and
4Cu source

\/ Used Compton polarimeter and
22Na source

1976 Wilson, Lowe, and Butt

1977 Bruno, d’Agostino, and Maroni

cross) with the prediction of QM and the violation of the Bell
inequality.

We now make some brief comments on these experiments. Only
two of them, Holt and Pipkin, and Faraci et al., have disagreed with
QM and indeed have shown agreement with the Bell inequality where
QM predicts a violation. Of course, from a physicist’s point of view,
any violation of the predictions of QM is looked at very critically, and
in both of the discordant cases the experiments were repeated, and the
discrepancies with QM could not be reproduced. On balance, it is
now generally agreed that these anomalous experiments must have
involved some unsuspected systematic error.

The experiments involving y-ray polarizations syffer from the
necessity of using a secondary Compton scatteting as an indicator of
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the polarization state of the y-ray. In analysing these experiments, it is
assumed that the Klein-Nishina formula is applicable to the
Compton scattering even in ‘hidden’ states of polarization. The same
reservations apply in the case of the low energy proton—proton
scattering where the scattering of the protons off a secondary target is
used as an indicator of their spin orientations.

In the optical photon experiments, one has the big advantage of
being able to detect polarizations directly. Typically, pile-of-plates
analysers are used to transmit photons of a given linear polarization
with high efficiency. With this type of analyser, the orthogonal
component of polarization is detected by absence of transmission.
The only experiment in which two-channel analysers have been
employed is the one by Aspect, Grangier, and Roger (1982). Here a
calcite crystal is used to split orthogonal polarizations into two
beams, each of which has a detector placed behind it. In all of these
optical photon experiments, the photomultipliers used in the detec-
tion process are relatively inefficient; and in addition the nature of the
angular correlation is such that the experiment is not sensitive to all
the coincidence photons (the cascade transition is essentially a three-
body decay due to the recoil of the atom). For both these reasons, one
is only observing a sample of all the photon pairs emitted from the
source; and in assessing the violation of the Bell inequality, it is
necessary to assume that the sample of pairs actually observed is not
biased in such a way as to explain the violation. For example, since the
detection process is ‘downstream’ from the analysers, it is not
surprising that, with suitable ad hoc assumptions as to how the
efficiency of detection might depend on polarization, one can ‘explain’
the violation of the Bell inequality in a ‘local’ way. Such ‘explanations’
have to be ruled out by auxiliary assumptions concerning the
functioning of the apparatus used to analyse and detect the photons.
It would be nice to design an experiment which would eliminate the
need for such auxiliary assumptions. Such an experiment has been
suggested by Lo and Shimony (1981), which employs the coincidence
detection of the two dissociation fragments of a metastable molecule.
With such a two-body decay, strong angular correlations would
obtain, and with Stern—Gerlach analysers and ionization detectors
very high efficiencies can in principle be achieved. This experiment
appears to be quite possible, and there is no doubt it should be carried
out in order to eliminate the ‘auxiliary assumptions’ loophole in the
existing experiments.
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There is, however, another and more profound problem raised by
all the experiments so far described. They are static experiments—
that is to say, the choice of analyser setting is made well in advance of
the emission of the particles from the source. In principle, there is a
possibility that the settings of the analysers ‘communicates’ itself to
the source in such a way as to affect the correlations being measured
with these particular settings. This would be an example of violating
Bell locality but not Einstein locality, in the terminology introduced
in Chapter 3. In order to check for a violation of Einstein locality, one
must devise an experiment in which the settings of the analysers are
decided after the photons have left the source in the photon-cascade
type of experiment. Such an experiment was planned by Aspect and
finally carried out by Aspect, Dalibard, and Roger in 1982. In the
Aspect experiment, an ‘optical’ switch or commutator is introduced in
the path of each photon which can deflect the photon towards one or
other of two analysers with different settings. The arrangement is
shown schematically in Fig. 16. The analyser settings are labelled a, a’,
b and b’ to conform with the arrangement in the idealized Bell
experiment shown in Fig. 9. The switch is pulsed at such a frequency
that it changes the selection of analyser while the photon is in transit
from the source.

Consider the light-cone structure for the source S and the two
switches A and B, as seen from the reference frame in which S, 4, and

N \

Analyser Analyser

Optical
Switch

Switch

Source S

- L —
Analyser Analyser

Fig. 16. The Aspect version of the Bell experiment. A and B are optical
switches sending each photon to one or other of a pair of analysers, with
settings denoted by a, a’, band b'.
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Fig. 17. Light-cone structure for the source S and the two switches 4 and B
in the Aspect experiment. For details see text.

B are all stationary. This is illustrated in Fig. 17. The source emits the
two photons at space-time point s'. The photons reach the switches at
space-time locations a and b, at which time the source is at s. The part
b'b of the world-line of the switch B is outside the light-cone with
vertex at s'. Similarly the part a’'a of the world-line of switch A4 is
outside the light-cone at s'.

Let us put in some numbers. In Aspect’s experiment, the distance L
between A and B is 12 metres. Hence it is easy to calculate that
da=Db'b=40ns (Ins = 10~° seconds). Furthermore, s's = 20 ns.
The switch is designed to change its setting every 10 ns. This is half the
time (20 ns) it takes for the photons to go from the source to the
switches. So the switches will certainly alter their settings while the
photons are in transit, e.g. at points such as a” and b” outside the light-
cone at s'. Indeed, in the following discussion we shall assume that a”
and b" are the last switching operations prior to a and b respectively.
Clearly, the photon moving from s’ to a is always outside the light-
cone with vertex at b”, and similarly the photon moving from s’ to b is
always outside the light-cone with vertex at a”’. In other words, any
influence of the switching event at " on the polarization state of the
photon moving to b, or of the switching event at b” on the polarization
state of the photon moving to a, would be a violation of Einstein
locality.

It is worth noting that the emission event involved in the cascade
actually has a half-life of about 5 ns, so the location of the source at s’
is ‘blurred’ by this amount. It is important for the above argument
that this time is small compared with the 40 ns extent of the exterior
region of the light-cone at s, sectioned at the switches 4 and B.
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In the experiment devised by Aspect, the optical switches consist of
a glass cell filled with water, in which ultrasonic standing waves are
produced via electroacoustic transducers connected to a 25 MHz
generator. The cell acts as a variable diffraction grating. When the
standing wave is of maximum amplitude, the incoming photon suffers
a Bragg reflection from the antinodal planes. Half a period later, when
the amplitude of the standing wave is zero, the photon travels straight
through the cell without any Bragg reflection (diffraction). The device
is illustrated in Fig. 18. In the experiment the Bragg angle 6 is about
1/4°, so the deflection 26, of the diffracted beam is approximately 1°.
With a 25 MHz generator the switching frequency is 50 MHz, since
clearly the switch operates at twice the acoustic frequency. The half-
period for switching, i.e. the time interval between the two ‘directions’
of the switch, comes out at 10 ns, as stated above.

Transducer

Incident beam

Standing wave
pattern

25 MHz
generator

Fig. 18. Optical switch in the Aspect experiment.

The results of Aspect’s experiment were a clear violation of the Bell
inequality. So prima facie we have an important result here, showing a
violation of the Einstein version of LOC;. There are, however, two
points to be noticed:

1. Although the two switches are run from separate independent
generators, it is clear that the switches are not truly operated in a
random fashion. In other words, referring again to Fig. 17, the state of
the apparatus prior to b, i.e. inside the backward light-cone, with
vertex at s, determines the switching operationat b”. So knowledge of
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the switch setting at b, when the photon hits the switch, is available at
locations inside the backward light-cone at s’, and hence could be
‘communicated’ to s’ without violation of Einstein locality. Similarly
for the A-switch.

2. But even if attempts were made to randomize the switching
operations, this would still be consistent with ontological determin-
ism (compare the discussion on p. 90 above); and some event X in the
overlapping backward light-cones of b” and s could be held
responsible both for the switch-change at b” and an effect on the
source at §’, so correlating the state of the switch at b with the state of
the source without violation of Einstein locality.

While admitting that bizarre possibilities of this sort could
circumvent the demonstration of a violation of Einstein locality in the
Aspect experiment, the situation is rather like that referred to in
connection with the auxiliary assumptions, which of course also have
to be invoked in the Aspect experiment. Duhemian ‘good sense’ may
dictate that we should accept the demonstration in the Aspect
experiment of a violation of Einstein locality. The difference lies in the
fact that experiments can in principle be designed that do not need the
‘auxiliary assumptions’, while no experiment can rule out the type of
defence of Einstein locality referred to above.

4.6. Statistical Nonlocality

In Section 4.1 we discussed the condition under which a Bell-type
experiment might lead us to argue for a violation of LOC;—that
sharp values and hence, assuming FM, measurement results at one
location can be changed by altering the setting of a remote piece of
apparatus. But LOGC; is concerned with what happens on a particular
occasion. It still leaves open the question of whether the statistical
frequencies with which measurement results turn up at one location
can be changed by performing different sorts of measurement at
another remote location. To deal with this question we introduce still
another sense of locality:

LOC5 .

The statistics (relative frequencies) of measurement results of a quantum-
mechanical observable cannot be altered by performing measurements at a
distance.

Notice that LOC; is formulated in terms of the statistics of
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measurement results, the very question which the formalism of QM,
via the statistical algorithm, is designed to answer. If LOCs were
violated, this would show that the formalism itself, with the minimal
instrumentalist interpretation, exhibited nonlocal features, indepen-
dently of any more comprehensive interpretation of the formalism.

It is therefore important to realize that LOC; is not violated in the
Bell type of experiment. To see why this is so, let us consider that we
decide to measure g, , on particle 1 in the state |'¥ ., > as givenin Eq.
(3.2). We investigate how this would affect the statistics of any spin-
component measurements made on particle 2. We use the ideal
measurement theory developed in Section 2.4.

We label the measuring device for o, as system 3. Let the initial
state of the apparatus be denoted by |we(3) ) and the final state be
denoted by |w (3) ) if o4, has the measured value + 1,and by |w_(3) )
if 4, has the measured value — 1.

Then the state of the whole system 1, 2, and 3 goes from

1
¥, = 7 (le(1) > 1B(2) >—1B(1) > 1«(2) > ) wo (3) >

before the measurement to

¥, > =~\}—§(Ia(l)>lﬁ(2)> e (3)> =181 122)> [w-(3)))
after measurement.

In terms of von Neumann statistical operators, it follows, from the
discussion given in Section 2.4, that Py, behaves like % Pgp),
+% P\g(2)y in respect of measurements of any observables pertaining to
particle 2 only (compare Eq. (2.10)). This arises because of the
orthogonality of the states |x(1) > and |B(1) ). But Py, also behaves
like 4 Py(2)y +% Pg(2)y in respect of measurements of an observable
pertaining to particle 2 only. This is because the interference terms
arising in any measurement statistics for particle 2 are now ‘killed’
twice over by the orthogonality of |x(1) > and |8(1) ), and also by the
orthogonality of |[w.(3)) and |w_(3) ). So the statistics of measure-
ment results pertaining only to particle 2 is unaffected by ‘hooking on’
the apparatus for measuring ¢, on particle 1. This result holds a
fortiori if we assume that the measurement actually produces a final
mixed state for the joint system.

We are referring here of course to the nonselective stage of
measurement. If we select a sub-ensemble of particle 2’s with
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02, = + 1, say, this will be described by the statistical operator P )y,
which of course gives different statistics in general from % Py),
+4% Pg2)y This selection could be effected in the light of knowing
which measurement results we had obtained for a,, in view of the
mirror-image correlations built into ¥y, >- But then the selection
is made at the wrong location to provide any ‘instantaneous statistical
effects’ at a distance.

Thus suppose we are measuring a sequence of values for g,, on
successive particles emitted by the source. The sequence might be +
— —+ —+ — + + — — — . ... where the limiting frequency of
+ and — is 4. Suppose we perform measurements of ¢,, simul-
taneously on particle 1. This enables us to ‘tag’ each particle 2 as either
+ or — in our abbreviated notation for values of g,, = + 1. But the
tagging information is in the wrong place to change the statistics at
the location of particle 2. To do this we would have to transmit the
tagging information-from location 1 to location 2, with instructions,
for example, to insert an absorbing screen every time a minus particle
is approaching the spin-meter for particle 2, and to remove it every
time a plus particle is approaching. In this way we would clearly
change the sequence of observed measurement results of g5, to + +
+ + + .., but to effect this change we have to transmit information
from location 1 to location 2; we cannot do it simply by ‘hooking on’
the apparatus to measure a,,.

A simple example can illustrate the problem. When I lecture in
Oxford, the audience there learn instantaneously that my room in
London is empty; but to produce a physical change in London, for
example to prevent students knocking on my door, the information
that I have arrived in Oxford must be transmitted back to London.

The conclusion of this discussion is that the nonlocality putatively
demonstrated in the Bell type of experiment cannot be used to
transmit information instantaneously between two remote locations.
In brief, there is no such thing as a ‘Bell’ telephone! In this respect the
situation is quite different from what would obtain if the operators
referring to particles 1 and 2 failed to commute. In such a case LOC;
would be violated. But the nonlocality demonstrated in the EPR and
Bell arguments is subtler than this. In particular, the fact that no
statistical effects get transmitted ‘at a distance’ means that no
nonlocality problems arise in an ensemble or statistical interpretation
of QM. It is only in the context of an attempt to impute states to
individual systems that the difficulties are manifested.
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We have discussed the no-signalling result in the context of
interactions which perform a measurement on particle 1, and for the
particular case of the quantum-mechanical state |'¥ 1, - But in fact
we can give a general proof that quantum-mechanical correlations
cannot be used for signalling along the following lines.

Consider, quite generally, two systems A and B with associated
Hilbert spaces H,and H;. Let C be a third system which may interact
in any way with system B, with associated Hilbert space H, Denote
H® Hc by M. a is any observable on H,, extended to a®I on
H,& Hp. Consider any state|'¥(f) ) of the triple system at time ¢ and
denote by Prob (A)¥§%: the probability that the time-dependent
observable a(t) ®I will yield the measurement result A in the state
|'¥'(t) ). We shall work in the Dirac picture (see p. 12) so in the absence
of perturbation |'¥(¢) ) is constant, while in all cases a(t) ®) I evolves in
time according to the unperturbed Hamiltonian.

Now perturb the system B in any way in the time interval (¢, ') by
the action of a unitary time-evolution operator U y(t', f) acting on Hj.

Then at time ¢, the state of the triple system is

¥ ())> =T RUy,1))|1¥(®)) (60)
We now compute
Prob(A)%81 = Prob ()% (61)
where
dt)YRI=IQRUGYH (@)@ UQUp
=(IQUz" @t)@Uy)
=at)@Up'Up =at)®I (62)
So
Prob (AFSL, = Prob ()2, (63)

But the RHS of this equation is the probability of finding the result 1
by measuring a on A at time ¢’ in the absence of perturbation, since
then the state vector at t’' is the same as the state vector at t.

In other words, the probability of obtaining the result A by
measuring a on A at any time t’ is independent of any possible
perturbation of the system B between ¢t and ¢'.

4.7. Summary of Conclusions

We have distinguished three basic approaches to the interpretation of
QM, labelled 4, B and C, and also five senses of locality: LOC,,
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LOCGC;, LOC3, LOC4 and LOC;. We can now answer the question
‘Does QM predict a violation of locality?’ in the form of a simple table
showing which senses of locality can be violated, as indicated by a
cross, in each of the three interpretations. A tick indicates that the
corresponding sense of locality is not violated.

View LOC1 LOC3 LOC4 LOC5

LOC,
A | V| W X X v
v’
X

B X v \V v
C N v v | v
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Most of the material covered in this chapter is based on Redhead
(1983).

The original proof of the Bell inequality was given in Bell (1964).
This used the deterministic hidden-variable framework, and also
assumed perfect anti-correlation when the two spin-meters measured
parallel spin-components. These restrictions were relaxed in Bell
(1971). See also Clauser and Horne (1974). An interesting alternative
approach is provided in Wigner (1970). The Stapp—Eberhard ap-
proach to the Bell inequality discussed in Section 4.2. was initiated by
Stapp (1971) and developed by Eberhard (1977). The mathematics, as
distinct from the interpretation, of Eberhard’s paper is used in Section
4.1, with improvements dues to Peres (1978) and Brody (1980). See
also Peres and Zurek (1982).

For discussion of counterfactuals, see in particular Lewis (1973),
Slote (1978), Lewis (1979), Bowie (1979), and for an approach that
leads to the opposite conclusion to the one discussed in the text, see
Thomason and Gupta (1980). A useful collection of reprints on this
topic is given in Harper et al. (1981). Our own treatment is based ona
simplified adaptation of Lewis (1973). For a critique of some of the
assumptions involved in the proof of the Bell inequality even in the
deterministic case, see in particular Fine (1974) and (1979), Brody and
de la Pefia-Auerbach (1979), and Brody (1980).

Stochastic hidden-variable theories and the relevance of factoriz-
ability to locality are discussed by Clauser and Horne (1974), Selleri



118 Incompleteness, Nonlocality, and Realism

and Tarozzi (1980), Fine (1981), Shimony (1981), Hellman (1982),
Jarrett (1984) and Shimony (1984). The term “‘passion-at-a-distance’ is
due to Shimony. The nonrobustness of the singlet state was first
analysed in Redhead (1986). For the mark criterion for causal
connectibility see Reichenbach (1928) and (1956) and Salmon (1984).
The proof of the inequality (42) given in the text can be found in
Clauser and Horne (1974), Appendix A. The fact that strict corre-
lation combined with factorizability implies determinism was first
pointed out by Suppes and Zanotti (1976).

Fine (1982a) and (1982b) has demonstrated an interesting mathe-
matical property of the Bell inequality, viz. that it is a sufficient
condition for the existence of joint distributions for all observables
including incompatible ones. The fact that this does not contradict the
claim made in this chapter that the Bell inequality can be derived
without assuming joint distributions for incompatible observables
has been argued in Redhead (1984) and Svetlichny ez al. (1988). The
basic point here is that Fine’s theorem demonstrates the existence of
joint distributions in a mathematical model of statistics that satisfy
the Bell inequality. But this model may not reflect the frequencies
arising in the real world.

Comprehensive reviews of the experiments designed to test the Bell
inequality are provided by Clauser and Shimony (1978) and Pipkin
(1978). The references for the more recent work of Aspect and his
collaborators are Aspect, Grangier, and Roger (1981) and (1982), and
Aspect, Dalibard, and Roger (1982). The most recent experiment of
Perrie et al. is presented in their (1985). A critique of the auxiliary
assumptions used in the Aspect experiment has been made in
particular by Marshall et al. (1983). The Lo-Shimony experiment is
discussed in great detail in Lo and Shimony (1981).

For the general proof that LOCs is not violated in QM see
Eberhard (1978), Ghirardi et al. (1980), Page (1982) and Shimony
(1984). A very simple and elegant proof is also provided by Jordan
(1983). The proof given in the text follows Redhead (1986).

It can be shown that the QM violation of the Bell inequality never
exceeds 2\/5. For an elegant demonstration see Landau (1986).

A recent general survey of the topics covered in this Chapter is
provided by D’Espagnat (1984).

Bell’s collected papers on the interpretation of QM are now avail-
able in Bell (1987).



