THE RHIND MATHEMATICAL PAPYRUS

bRITISH MUSEUM IOO 57 AND 10058
PHOTOGRAPHIC FACSIMILE, HIEROGLYPHIC TRANSCRIPTION,
transliteration, literal translation, free TRANSLATION, MATHEMATICAL COMMENTARY,

AND BIBLIOGRAPHY

IN TWO VOLUMES

OBERLIN, OHIO, U. S. A.
I929

THE RHIND MATHEMATICAL PAPYRUS

VOLUME II
PHOTOGRAPHS, TRANSCRIPTION TRANSLITERATION, LITERAL TRANSLATION
by
ARNOLD BUFFUM CHACE
Chancellor, Brown University

LUDLOW BULL
Associate Curator in the Egyptian Department, Metropolitan Museum, New York

HENRY PARKER MANNING
Associate Professor of Mathematics,
Brown University, Retired

BIBLIOGRAPHY OF EGYPTIAN AND BABYLONIAN MATHEMATICS (SUPPLEMENT)

BY
RAYMOND CLARE ARCHIBALD
Professor of Mathematics, Brown University

THE MATHEMATICAL LEATHER ROLL IN THE BRITISH MUSEUM BY
STEPHEN RANDOLPH KINGDON GLANVILLE
Department of Egyptian and Assyrian Antiquities, British Museum

MATHEMATICAL ASSOCIATION OF AMERICA OBERLIN, OHIO, U.S.A.

I929

Whes the manuscript of this treatise approached completion, Doctor Chace requested the Mathematical Association of America to undertake its publication, generously providing the means necessary to assure its appearance in a form commensurate with its importance. Upon learning of the desire of the Trustees to contribute to the success of the undertaking in every way possible, Doctor Chace made the further offer to donate to the Association a certain number of copies, adding the suggestion that these should then be sold at a price considerably below the cost of publication. This was done with the desire not merely to assist financially an organization of which he was a charter member and to which he has always contributed with great liberality, but to make it possible for the individual and institutional members to purchase the work much more reasonably than would have been possible had it been simply a commercial product. The proceeds from its sale are to constitute an endowment of the Association known as the Arnold Buffum Chace Fund.

The Association takes pleasure in making these facts known, and at the same time in expressing its high appreciation of this notable work of a well-trained scholar in mathematics, of the interest which he has always shown in the cultivation of the science in this country, and of his generosity in connection with this publication.

Raymond Clare Archibald
David Eugene Smity
Publication Commitlee
on behalf of
The Mathematical Association of Americ.

THE greater part of this second volume of a work intended primarily for mathematicians and the general reader consists of 109 plates containing the original hieratic text of the Rhind Mathematical Papyrus, a hieroglyphic transcription, and the transliteration from right to left, each plate being faced with a page on which the transliteration has been repeated in the usual form, from left to right, together with a strictly literal English translation,' and various notes concerning philological questions and the mistakes of the scribe.

From the free translation of the first volume to the original hieratic writing four steps are thus provided, and those portions of the original which were written in red ink appear in red in each of these steps. We know of no Egyptologist who has ever written transliteration from right to left as on our plates; this method was introduced simply as a matter of convenience to assist the reader who knows nothing of hieroglyphic or hieratic writing. There should be little danger of confusion in reading the transliteration on the plates for all the letters and digits are consistently in reverse order throughout, while letters and digits appear in the normal order on the opposite pages. In the hieroglyphic transcription we have employed for the most part characters belonging to a period close to that of the papyrus.

Of the numbers which correspond to fractions with numerator 1 , all after 34 are designated in hieratic by a dot placed over the first figure. We have written these numbers in the transliteration with a dot over the first figure, and we have written in the same way $1 / 2,1 / 3$, and 34 . For the fraction 34 the symbol $\ddot{3}$ has been employed:

When the denominator of a fraction contains more than one figure the dot in hieratic is placed over the first, the others following as if it were a whole number. What the hieroglyphic practice was we cannot tell, for so far as we are aware the only examples of fractions in hieroglyphic occur in texts written in vertical col-

[^0]umns. Sethe says ${ }^{2}$ (1916, page 87) that when a number contains tens and units the fraction sign stands over the tens only, when there are also hundreds over the hundreds only, and when the number contains thousands over the thousands only, and he gives illustrations on a preceding page, but even in the same article he writes a fraction with the entire number under the \leftrightarrows and both forms appear in the works of others. Since Sethe's rule expresses the practice of the hieratic we have followed it on our plates.

In the original papyrus the problems are not numbered, nor is there any separation into chapters or divisions of any kind; even the first part, which is usually spoken of as a "table," is not separated from the rest nor distinguished in any way. The first words of a problem are usually in red, but this is not always the case, and red is often used also in subheadings and for purposes of contrast or emphasis. Eisenlohr has supplied numbers for all of the problems that come after the first "table," and this numbering has generally been adopted by writers on the papyrus, so that it is convenient, and even necessary, to use it for purposes of reference. In a few cases problems of one kind are separated from each other by problems of another kind and Eisenlohr has so arranged his order of numbering as to bring those of a kind together. Thus a few of the problems as numbered by Eisenlohr seem to be placed somewhat irregularly in the papyrus. But as we are presenting them separately, even on the plates, this irregularity of arrangement will not be noticed by the reader unless he refers to the photographs.

Besides numbering the problems Eisenlohr has numbered the lines, and when the solution of a problem is arranged in several groups of lines he has indicated these groups by the letters a, b, c, etc. Eisenlohr is not always consistent, nor does he carry out his scheme completely, but his plan makes a convenient system of refer-
${ }^{1}$ In referring to a publication listed in the Bibliography, we shall generally give with the name the year of publication, and if there is more than one publication listed under the same name in a given year, a second number will indicate the one referred to. But all references to Pees will be to his edition of the Rhind Papyru and all references to Gunn to his review of Peet, both listed under Peet, 1923, 2, and only the number of the
page or plate will be given. Nearly all references to Grifith will be to the series of articles listed under 1891 and 1892, and in these references only the numbers of the volume and page will be given.

Erman and Grapow, 1925, is occasionally referred to simply as Wörterbuch.
ence and we have therefore put Eisenlohr's line-numbers on the plates and the letters a, b, c, etc., over the groups to which he has applied them, and have used these letters and numbers in making references.

The excellence of the drawing of the hieratic facsimile and of part of the transcription and transliteration on the plates is due to the skill of Miss Lillian V. M. Helander of Providence, Rhode Island. The hieratic was originally copied from the British Museum Facsimile but it has been collated with the photographs and most of the discrepancies have been corrected. Most of the drawing for the hieroglyphic transcription, and for the transliteration, was done by Mr. L. F. Hall of the Egyptian Department of the Metropolitan Museum.

When Peet was engaged in placing the New York fragments he had only tracings of the originals and perhaps an indistinct photograph of all the fragments taken together. Having the advantage of working with the originals we have been able to place a dozen more of these fragments.

We are also able to publish Problem 9 correctly for the first time, all previous investigators having been led astray by the omission of certain signs in the British Museum Facsimile. We believe that we have also established the significance of certain phrases in Problems 4 and 5.

The hieroglyphic transcription is of course based on that of Peet, and we are naturally very greatly indebted to Peet's translation and to his discussions of doubtful points. We also owe much to Gunn's full and masterly review of Peet's edition. Our debt to these scholars is acknowledged many times in footnotes.

The first publication of a photographic reproduction of the Rhind Mathematical Papyrus is presented in this volume. Since the Mathematical Leather Roll, B.M. 10250, is a document of the same period, it was decided that our volume should contain an official account of that document and a photograph. We are much indebted to Mr. Glanville of the Museum's staff for his contribution in this connection, and to Mr. E. C. Padgram of the British Museum Laboratory for the photograph of the Leather Roll which is here reproduced. But especially great are our obligations to Doctor H. R. H. Hall, keeper of Egyptian and Assyrian Antiquities in the British Museum, and to the Museum's Trustees, for permission to publish the reproductions of the Papyrus and of the Roll.

Finally, we wish to express our thanks to the Metropolitan Museum for permitting the free use of type for the alphabetic signs on page xiii.

Since the first volume of this work was printed more than two years ago, it appeared desirable for Professor Archibald to provide a supplement to his survey of mathematical literature given in the first volume, especially in view of the recent remarkable discoveries in the field of Babylonian mathematics.

The index of selected Egyptian words enables the reader to refer to all occurrences of these words and phrases in the papyrus and thence to discussions of them in the footnotes and in other works.
A. B. C.
L. B.
H. P. M.

CONTENTS

Preface

Introduction
Fgyptian Writing: Phonetic Signs, Non-phonetic Signs, Hieratic and Hieroglyphic, Direction of Writing
Egyptian Grammar: Gender and Number, Verbs, Adjectives, Demonstratives, Prepositions
Numbers: Signs for Whole Numbers, Fractions, Special Signs for numbers of hekat and setat
Transliteration and Translation
The Alphabetic Signs, Pronunciation
Rhind Mathematical Papyrus, Photographs
Rhind Mathematical Papyrus, Transcription, Transliteration, Literal Translation
Bibliography of Egyptian and Babylonian Mathematics (Supplement)
The Mathematical Leather Roll
Index of Selected Egyptian Words
General Index to Volume II
Additions and Corrections for Volumes I and II

INTRODUCTION

OR readers who have no knowledge of Egyptian a few general observations on the language may here be made. ${ }^{1}$
EGYPTIAN WRITING

Phonetic signs.-While the Egyptian system of written communication undoubtedly began as picture-writing, it had ceased to be such before the historic period and had become phonetic, most signs standing for one, two, or three consonants, and the form of the signs which represented a word-stem having no necessary relation to the meaning of the stem. In Egyptian writing the vowels were not indicated, as was originally the case also in most Semitic languages, and the vocalization of any Egyptian word of the time of the Rhind papyrus can only be guessed at from that of Coptic (Egyptian written with Greek letters including vowels), which has no inscriptions earlier than the Christian era, and from the few renderings of Egyptian names and words in Babylonian, Assyrian, and Greek documents, none of which is earlier than 1400 b.c. (Babylonian), the Greek renderings not beginning until the fifth century b.c.

There were twenty-four consonants in the Egyptian alphabet and the signs for these are given later, but most of the Egyptian signs stood for combinations of two or three consonants. These signs, however, were often accompanied by some or all of the alphabetic signs for the same consonants, signs which we shall call alphabetic complements. Thus an alphabetic sign accompanying a bi- or triliteral sign which includes the same consonant does not have the effect of doubling that consonant: if doubling is actually involved the alphabetic sign appears twice. An example of the use of alphabetic complements is seen in the word sti.t, Titlepage, line 1 . The third sign of the word has the value t; while the second is a complementary t and the fourth a complementary :. An alphabetic sign may also be used in a tri-literal stem along with a bi-literal sign (as is the sign for $\stackrel{s}{ }$ in the
'Those desirous of in vestigating these matters more in detail are relerred to Gardiner's Grammar, 1927. 'There are exceptions to this rule. See Problem 66, footnote 6 (irr), and Problem 67, footnote 9 (per
hape inn).
word sst:t just mentioned). At the time of the Rhind not many word-stems were habitually written with alphabetic signs alone.

Non-phonetic signs.-There are two classes of signs, however, which in certain uses may be said to be relics of the ancient picture-writing. These are the determinatives and certain of the ideograms.

Some of the ideograms especially recall the picture-writing stage of the language. They are those which are actual pictures of the objects or ideas for which they stand. An example of this type of word is the first word of the papyrus, tp. Such word-signs, unaccompanied by alphabetic complements or by determinatives, are generally followed by a stroke, as is the case with tp, and the stroke is sometimes present even when alphabetic and other signs are used, as in šfdw and snn, Title-page, line 2 and end of line 3. This stroke has no phonetic value. The phonetic values of words written with a single sign are known chiefly through variant writings in which alphabetic signs are employed.

The so-called determinatives, originally ideograms, are signs which are placed at the end of most words to aid in determining their meanings. Examples are the papyrus-roll which is used with the word $\mathrm{b} s \mathrm{~b}$, reckoning, and the word $\mathrm{h} \cdot \mathrm{t}$, things, and with other words on the Title-page of the Rhind papyrus, and the pair of legs which occurs at the end of the word $h: \cdot t$ on the same page. The papyrus-roll follows many abstract words, and the legs are regularly used with verbs of motion. When signs are used strictly as determinatives they have no phonetic value.

The reader will notice that some signs occur both as determinatives and also, in other words, as ideograms or as phonetic signs. Thus the human legs are determinative in the word $h \cdot \cdot t$ in the first line of the Title-page while they are an ideogram in the words iw, return, Problem 35, line 1, and 'k, go in, Problem 28, line 1. Certain signs also have more than one phonetic value, this fact being due to their early use as ideograms with words having different stems. Attention is called to these in footnotes. On the other hand, at a given period the same word might be written with a number of different combinations of signs.

We may note that there is not complete agreement among scholars as to the
reading of certain words. For example, some scholars believe that the consonant ; is not present in the word t:, bread, loaf, r:, a part (fractional sign), used also as the name of a measure, and ri, goose (Gardiner 1927, pages 515, 198, 548). We have retained the consonant in these words in our transliteration.

Hieratic and hieroglyphic.-In general hieratic bears the same relation to hieroglyphic that the ordinary informal writing with ink in any script bears to caried monumental inscriptions, carefully made manuscripts, and printed books. That is to say; all necessary signs are present, but they are made so cursively and are so often joined together that their forms frequently have little resemblance at first sight to those of the more formal hieroglyphic. In most cases the hieroglyphic transcription on our plates follows the original hieratic exactly without regard to certain differences in the use and arrangement of signs which normally obtain between the two methods of writing. We may note also that there are a number of signs that are made in hieratic in more than one way, even by the same scribe.

Direction of writing.-The normal method of writing in Egyptian (as also in Hebrew and Arabic) is from right to left as in the Rhind papyrus. Vertical lines are occasionally employed in hieratic and frequently in hieroglyphic inscriptions. Writing from left to right was used in decorative balanced inscriptions. In any inscription, signs which face to the right or left always face the direction from which the writing proceeds. When hieroglyphic writing is required in modern books the direction left to right is employed unless there is some particular reason for doing otherwise. The type used in the alphabetic sign-list below shows the signs facing as in inscriptions that read from left to right.

EGYPTIAN GRAMMAR

Gender and number.-There are two genders in Egyptian, masculine and feminine, the sign of the latter, as in the Semitic languages, being the letter t added at the end of the word-stem. This t precedes determinatives and also precedes plural strokes (see below) if they are present.

Number may be singular, dual, or plural. The plural ending is w for masculine, $w \cdot t$ for feminine. The w of the plural was rarely written at the time of our papyrus, but the plural was regularly indicated by the use of three vertical strokes at the end of the word, generally placed side by side, but occasionally one above another. In hieratic these strokes were often joined together, and if they were also joined
to a preceding sign they frequently became a horizontal line. The three strokes were often used also with collective nouns and abstract words, and their presence does not necessarily require the plural in translating. With adjectives the plural strokes were more often omitted than not.

Verbs.-The reader will notice that all finite forms of the verb, except one, precede their subjects, whether the latter be noun or pronoun. The one exception is the so-called pseudo-participle (Erman) or old perfective (Gardiner); see Problem 28 , footnote 2. Among the forms with subject following are those which show only the stem of the verb, including those with reduplication of a consonant in verbs of certain classes, and forms in which the particles n or hr are inserted after the verb-stem. Of the last two the n-form generally indicates past time and the hr-form has a hortatory sense. The imperative in Egyptian, as in other languages, does not employ pronouns. The infinitive of certain classes of verbs is feminine.

Adjectives.-Adjectives follow their nouns and theoretically agree with them in gender and number, but by the time of the Rhind papyrus there was often no indication of the plural in the writing of modifying adjectives, and sometimes the feminine t was omitted.

Demonstratives.-The pronoun pw, originally demonstrative, is rendered by this throughout our literal translation. In the use in which it is found in the Rhind papyrus it has often been compared to the French ce (itself a demonstrative) in the phrase c'est, and most writers in English translate the phrase $\mathrm{X} \mathrm{pw}, i_{1}$ is X . But, in view of the demonstrative origin of the word and the fact that other words require to be translated by $i t$, we have preferred to use this for pw.

The weak demonstrative $p:$, feminine $t ;$, plural n, already at the time of the Rhind scarcely more than a definite article, we hàve consistently translated the except in the phrase p: pw, n: pw, occurring in Problems 57, 58, 60, and 67 . Peet sometimes renders it by this (Problems 30, 32, 34, and 62) and sometimes by the (Problems 36, 52, 65, 66, 71, 74-77). p: precedes the noun while the demonstrative pn, this, follows it.

Prepositions.-The preposition m represents several meanings in English (see Gardiner 1927, page 124, §162) as will be seen in reading the problems. For the so-called " m of equivalence" we have often used a colon in the literal translation. The m in the oft-recurring phrase wih-tp m was doubtless originally the m of
instrumentality or perhaps that of place, since the phrase appears to have meant nod the head with. or $a t$, or count with, a certain number, but the sense of the phrase is often simply mulliply and we have used the colon in a number of such cases. The other prepositions occurring in the papyrus do not need special mention here.

NUMBERS

Signs for whole numbers.-The reader will quickly become familiar with the hieratic and hieroglyphic signs for the numbers. He will learn that a horizontal stroke in hieratic may stand for the four unit strokes of the number 4 in hieroglyphic, and that other special signs in hieratic are used for $5,6,7,8$, and 9 . All of these latter, however, were evolved from the groups of unit strokes used in hieroglyphic. Similarly the hieratic signs for the various multiples of 10 under 100 have some relation to their hieroglyphic counterparts. Readers interested in the development of these signs may consult Möller 1909, Numbers 614-655. For the names of the numbers see Gardiner 1927, pages 191-192.

Fractions.-The method of writing fractions is explained in volume 1 at page 4. The hieroglyphic sign \mathbf{r} placed above the numbers stands for the word r , part (Erman and Grapow, 1926, volume 2, page 392. Gardiner and others read r alone, without the :. See above page ix). The sign for 35 probably means two parls (out of three). In the hieratic sign the curved top must stand for the r and the vertical and diagonal strokes for the two original vertical strokes. These latter were of the same length in the hieroglyphic sign as late as the time of the Rhind papyrus and it would have been more accurate to have so represented them on the plates in this book. Compare volume 1 , page 7. The sign for $1 / 2$ is possibly an animal's rib. It is read $\mathrm{g} s$, which means side in the sense of one of the two sides, and hence half. The hieratic sign for $1 / 2$ was originally a ligature including the r and a horizontal line below representing three short vertical strokes. In the sign used by the Rhind scribe scarcely anything is left of the r and the line at the base is little more than a dot. The principal part of the sign as we find it here was originally merely the oblique flourish connecting the upper and lower elements. The hieratic sign for $1 / \mathrm{as}$ explained by Griffith (volume 16, page 169) is a special form which indicates four parts very clearly. It must have been invented to avoid confusion with 40 , because if $1 / 4$ had been written in hieratic after the analogy of other fractions the sign would have been the same as that for 40 , a horizontal stroke with a dot above.

1 On the signs for 6 see Problem 61, footnote 4.

In numerical expressions in the papyrus the dot placed over a number to indicate that it is used as a fraction is very often omitted, either through carelessness or because the context would show that the number was a fraction and the writer did not consider the dot to be very important. We do not need to regard the omission of the dot as necessarily an error (see Sethe 1916, page 87, footnote 1). Where the scribe has omitted the dot the number appears in the Literal Translation as a whole number, but in the Free Translation in volume 1 as a fraction.

Special signs for numbers of hekat and setat.-On the special Horus eye notation for fractions of the volume-measure hekal see volume 1, pages 31 and 175, and Peet, page 25, or Gardiner 1927, page 197. There were also special signs in hieratic for $5,6,7,8$, and 9 hekat, the existence of the sign for 9 (Problem 84) being recognized for the first time, so far as we are avare, by Gunn (page 126). These signs are presumably ligatures for groups of small circles, each representing a hekat, just as there are other ligatures for the abstract numbers 4-9, which represent groups of short vertical strokes.

On the special signs for certain fractions of the area-measure setat see volume 1 . page 33. There are also special signs in hieratic for $5^{1}, 6,7$, and 9 setal, of which 6,7 , and 9 appear in the Rhind. Gunn, so far as we know, was the first to call attention (page 126) to the existence of the signs for 5 and 6 setat and to notice that the signs of the setal series are the same as the corresponding signs for numbers of hekat. In the Rhind 5 and 8 setat are written with the abstract numbers.

TRANSLITERATION AND TRANSLATION

We have made a few restorations in the literal translation where these are practically certain and are necessary to the continuity of the text. Restorations in the transliteration are confined to a few individual words here and there. All restorations are in square brackets. Phrases, words, and letters, which have crept into the text through error, are for the most part placed in parentheses in the transliteration and have not been translated.

In the literal translation the reader will notice that certain words, such as parts of the verb to be, which are necessary in English, are regularly omitted in Egyptian. In such cases, of course, therc is no Egyptian word over the English word.

In a number of places in the papyrus a sign like the letter r, and in many places dots, are used exactly as we use ditto marks, and in the translation we have used

[^1]ditto marks in such places. Dots are also used in many places by the scribe as mere separation marks, or as punctuation marks, and often they are placed with numbers without any apparent significance.

In the transliteration we have used dots in the following cases: before the t of the feminine termination, before the suffix pronouns, before the endings of the pseudo-participle (old perfective) and the so-called "verbal adjective" (Problem 61B), before the particles n and hr placed after verb-stems in certain forms, before the plural ending (masculine w, feminine $w t$), and before the indefinite pronoun tw when used as subject of a verb or as passive particle. Hyphens are used in compound words and, as in English, where a word is divided between two lines.

THE ALPHABETIC SIGNS, PRONUNCIATION

It would not be practicable to include in this book a complete sign-list of the Rhind with explanations of the signs and their phonetic values. For this information readers are referred to Gardiner's Grammar, pages 432-531. It is hoped that readers may be able to arrive at the values of many of the bi- or tri-literal signs through the transliteration and the list of alphabetic signs.

In the second column of the sign-list are the symbols used in transliterating Egyptian. In most cases they are, of course, English consonants, but there are several consonants in Egyptian which have no parallel in English and for these consonants symbols have been adopted which are now in general use by scholars.

The second consonant of the list perhaps originally had only the value of the consonantal y (with possibly also a use for a long i-vowel). In time, however, especially at the beginning of words, it tended to change in many cases to a mere glottal stop like the first consonant of the list. For this reason we have followed others in transliterating it at the beginning of words by the letter i topped with
a mark like the Greek smooth breathing. For the sake of regularity we have used this letter even in words like $i^{\prime} h$ (in I'h-msw, Title-page, line 3) or it, barley (for example, Problem 64, line 1) where the initial consonant retained its original value down into Coptic times. We have departed from the usage of some scholars by using y regularly for the first person singular of the suffix pronoun in order to avoid suggesting that the consonant might be a glottal stop in that position. One can say fairly confidently that in this word it was consonantal y or long vocalic i.

The sign representing a man seated on the ground with one knee raised and one hand forward (not to be confused with the similar man with hand to mouth), is not really an alphabetic sign, but is an ideogram for the suffix pronoun, first person singular, y, and therefore in a sense "stands for" y. It is also an ideogram or determinative in the first person singular ending kwy of the pseudo-participle (old perfective) where also it stands for y since y is not written alphabetically when the man is present in this form of the verb.

The alternative form of w, resembling a coil, was developed from the abbreviated form of the bird. The hieroglyphic version had not come into common use until after the time of the Rhind papyrus, but, following others, we have employed it in transcription to preserve the distinction between the two hieratic forms.

It may be said at this point that for purposes of instruction, and for convenient oral reference in general, most scholars pronounce Egyptian words by using a short e with each consonant of a word except the last, but before and after the two consonants ; and ' a short a is apt to be used because in the Semitic languages the two corresponding consonants, especially the one corresponding to ', are more often associated with a than are other consonants. Thus the first words of the Rhind papyrus might be conventionally pronounced tep-heseb en ha;at em het. Individuals, of course, vary in many respects in their customs of pronunciation.
Srans.
' Jn the type of this book this is represented by an inverted comma pointed towards the right.

THE RHIND MATHEMATICAL PAPYRUS
BRITISH MUSEUM 10057 AND 10058
PHOTOGRAPHS

T
HE size of the photogravure reproduction of the Rhind Mathematical Papy1 rus in the following pages is five-sixths that of the original. Photograph IX was prepared from photographs of the left end of B.M. 10058 and the right end of B. M. 10057, and a suitably reduced scale-photograph of those of the fragments in the New York Historical Society which have been assigned to their proper places by Peet and by the authors.
sheets which were gummed together to make up the roll. The pagination of the text disregards the points of juncture of the sheets. These joints may be seen in the photographs. In Griffith's figure Number 86 was incorrectly placed near the right end of B.M. 10057, verso. That its true place is near the left end of the verso may be seen by comparing photographs XXII and XXXI. The former shows the end of the recto and the latter the end of the verso and the same long vertical

The Rhind Mathematical Papyrus was originally a single roll about $181 / 2$ feet (5.64 m .) long and about 13 inches (33.02 cm .) high. The figure above was drawn to the scale of 1 to 20 . Griffith (1894 (1891]) published a similar diagram which was reproduced in Peet. Our figure indicates the pagination of the text and the content of each page of writing. Griffith's figure shows the number of leaves or
break in the papyrus is visible in both. Some others of the more noticeable break and holes in the papyrus which are visible in the photographs of both recto and verso have been indicated. The lettering of Numbers 85 and 86 is upside down to show that these texts are reversed with respect to the rest of the writing on the verso.

PHOTOGRAPH I

 Hy ${ }^{2}$ 空

PHOTOGRAPH II

$$
\frac{1}{2} \cdot-1 \times \pi
$$

$\rightarrow+$

$2 x=-2410$

1. N 11 al
 ST

12

2 divided by 29 ,
$31,33,35,37$, and 39

2 divided by 17 ,
19, 21, 23, 25, and 27

PHOTOGRAPH III

$\therefore-2-2 x$.

\qquad

2 divided by 29, 3^{r},

2 divided by 41,
$43,45,47,49$, and 51
$33,35,37$, and 39 (concluded)

PHOTOGRAPH V

4.

 2. Sit$\therefore<\frac{\mathrm{C}}{2}$

$\rightarrow \rightarrow-3-2$

效 入
47
tin $=$
, ...

\%

divided by 65 ,
$67,69,71,73$, and 75

2 divided by 53,55 , $57,59,61$, and 63 (concluded)

PHOTOGRAPH VI

PHOTOGRAPH VII

$1 \pm \times 1 / 2 \pi \quad$ " 7×1.
 is
is D
$+4$

$\hat{y}_{1} \rightarrow$

$\frac{7}{7}$

PHOTOGRAPH VIII

2 divided by $89,91,93,95,97$, and 99

PHOTOGRAPH IX

I

3

4

5

Problems 1, 2, 3, 4, and 5

Table of division by 10
(in register 2)

2 divided by 89,91 , 93, 95, 97, and 99 (concluded)
B. M. 10058 , recto, New York fragments, and beginning of B. M. 10057 , recto, brought together to show as nearly as possible the original appearEnd of B. M. is placed in its proper position in register 5. On the left the outline of B. M. 10057 can make no claim to absolute accuracy because of the dark tone of the edge of Photograph X. We have lightened the background of the strip placed here in registers 5 and 6 and in the process parts of two signs have unfortunately been erased (see Plate 37).

PHOTOGRAPH XI

 Jele

(1a

 7 21 A (IV) 411

程 231124 $1-4113=10.11 i$

(20,

PHOTOGRAPH XII

IA

$+732+11$

3: at y 1 a.

PHOTOGRAPH XIII

[^2]PHOTOGRAPH XIV

PHOTOGRAPH XV
 (in register 4 , lines $1-4$)

PHOTOGRAPH XVI

Photographs XV and XVII, instead of overlapping, do not quite come together, and this photograph was taken to supply a few missing signs.

PHOTOGRAPH XVII

Problems 39 and 40 (concluded)
Between these Problems and Problem 4^{1} there is a blank space of about 55 cm . in length.

$$
=-\frac{1}{1} \cdots n_{0}^{-11-x}
$$

＝2lujullla是何

$$
\begin{aligned}
& \text { EF Ex ll nexl? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 三- - }-x_{1} \\
& \geq 1, ~ \text { 明 }
\end{aligned}
$$

PHOTOGRAPH XIX
44

Problem 48
Problems 44, 45,46 , and 47

Problems 4^{2}

PHOTOGRAPH XX

19 行

53-54

$53200.5103-1 \times \frac{1 \pi}{4} 4$

Problems 49, 50, 51,52 ;
54 and 53 ; and 55
Problems 44, 45, 46 , and 47 (concluded)

PHOTOGRAPH XXI

 य12 214

 (4) 2 万nin

Tin-- M111. $x^{\circ} 0^{\circ}$

MU2

Problem 59B

Problems 56, 57, 58,59, and 60 (concluded)
 い… ：
 412 n 2 Z al4
 $2415: 4=3.21-2$ － $1-425$ －iz -1 ，की
 अH10022．

 u．
S
$63 \mathrm{~L}-8 \mathrm{C} \times \mathrm{a}$ a －酸放 $=-1$ —— $12 \boldsymbol{*}$
${ }^{6+} \sqrt{2} 2 \leq 1 D \times 14=4$ $+$

，177

सेर
$174 a^{\circ} 40^{2}$

Problems 62， 63 ，and 64
Problem 6ib

PHOTOGRAPH XXIV

PHOTOGRAPH XXV

PHOTOGRAPH XXVI

PHOTOGRAPH XXVII

Problem 84
(in registers 1,2 , and 3)

Problems $82,82 \mathrm{~B}$, and 83
Problem 8 I (continued)

Problems 74, 75,
Problems 74, 75, 77 , and 80 (concluded)

Problems 84 and 81 (concluded)

PHOTOGRAPH XXIX

This text is inverted on the papyrus, the edge seen at the top of the photograph being the lower edge of the verso. This is the last piece of writing on B. M. 10058 verso.

PHOTOGRAPH XXX

Number 87

Number 86
A patch near the left end of B. M. 10057 verso. This patch was so applied that the text, like that of Number 85 , is inverted with respect to the rest of the writing on the verso.

THE RHIND MATHEMATICAL PAPYRUS

HIEROGLYPHIC TRANSCRIPTION, TRANSLITERATION, AND LITERAL TRANSLATION

${ }^{1}$ Literally: "head of reckoning," i.e. approved reckoning.
${ }^{2}$ This is a verb meaning "to be" which is sometimes used as a kind of auxiliary followed by the principal verb, in this case sphr. It is best left untranslated here.
There word for month is to be read ;bd
of a word with a similar stem and partly because of the general belief that the Een generally assumed that it was the season of inundation, partly because of the meaning volume 1, page 44. However, the meanings of the names of the seasons are still uncertain year originally began with the rise of the Nile. This view is set forth above in October, when the inundation begins to subside and the first quickly-growing crops are beginning has been suggested that the New Year may originally have been placed of the inundation.
${ }^{5}$ In proper names compounde
be read first or not. This name appears to mean "Great-of-strength-is-Ré" " case written with the sun-disk) is usually, as a mark of honor, placed first, whether it is to not always clear. ${ }^{\circ}$ This name m
page 1). The name of the scribe means, "A'h (the moon-god)-is-born."

2 divided by 3

ny's 2 bnt 3
Call 2 out of 3

2 divided by 5

Sšm-t	5
Working-out:	
1	5
$\ddot{3}$	$3 \dot{3}$
$\dot{3}$	$1 \ddot{3}$
i5	$\dot{3}$

2 divided by 7
$\dot{4} \quad 1 \dot{2} \dot{4} \quad \dot{28} \quad \dot{4}$
$1 \quad 7$

$\dot{2}$	$3 \dot{2}$
$\dot{4}$	$1 \dot{2} \dot{4}$
4	28

$\dot{3}$
$1 \dddot{3}$
i5 3

- divided by

4
1
2
4
7
14
14
28

The "4 $281 / 1 /$ " in the last line on the left is one of the expressions representing two multiplications plained in the Introduction, volume 1, page 17 . In these expressions in the table of 2 divided by odd num-
bers, there are, besides some doubtful cases, about 50 in which the ind 30 in which it is written without a dot.

The meaning is: Get 2 by
This phrase is used with each of the numbers that comes at the top of a a 3. See volume 1, page 5, footnote 3

2 DIVIDED BY 3, 5, AND 7

$$
\begin{aligned}
& \begin{array}{l}
\text { 2. }=\text { gl }= \\
-1, \\
x=1 x
\end{array} \\
& =\bar{\lambda} t^{*} x=\bar{\lambda} \ldots{ }^{4}
\end{aligned}
$$

2 divided by 9

1	9			12
$\ddot{3}$	6			
$\dot{3}$	3			
$\dot{6}$	1	2		
$[2$	$1] 8$	$\dot{2}$		

The fractional dot is omitted in the first term of the answer written at the top, although this term is $1 / 6$ The fractional dion and not the whole number 6 .

2 divided by $I I$
$6 \quad 1 \dddot{3}$
$66 \quad 6$

$[1]$
$[2$
$\begin{array}{ll}11 & 11 \\ {[2} & 2] 2 \\ {[4} & 4] 4\end{array}$
$\begin{array}{rr}{[4} & 4] 4 \\ 6 & 66\end{array}$
${ }^{1}$ The fractional dot is omitted with this 6 on the opposite plate, but there may have been a dot on the papyrus, obscured now by a crack or fold (see Photograph I).

2 divided by 13
$\dot{8} \quad 1 \dot{2} \dot{8} \quad \dot{5} 2 \quad \dot{4} \quad 104 \quad \dot{8}$ $\begin{array}{rcr}1 & 1[3] & \\ \dot{2} & 6 \dot{2} & \\ \dot{4} & 3 \dot{4} & \\ \backslash & 1 \dot{2} \dot{8} & \\ -4 & \dot{5} 2 & \dot{4} \\ \mathbf{8} & \dot{1} 04 & \dot{8}\end{array}$

2 divided by 15
10
$1 \dot{2}$
$\dot{3} 0 \quad \dot{2}$

$$
\begin{array}{cr}
1 & 15 \\
\backslash i 0 & 1 \dot{2} \\
\backslash 30 & 2
\end{array}
$$

2 DIVIDED BY IS AND IS

$\doteq x \cdot 4 \dot{7} \doteq 1 . \doteq$

$$
\begin{aligned}
& \text { 7. } \dot{\lambda} \Rightarrow 1 \cdot \dot{\lambda}
\end{aligned}
$$

Photograph I, Registers 5-6 \quad B. M. Facsimile, Plate I

Two lines on the right contain expressions of the form referred to in the note to 2 divided by 7 . Here the middle numbers are dotted, and then also the 17 and 34 from which they are derived. The same form writing occurs in 2 divided by 19, but in most of the multiplications carried through for the purpose of obtaining fractional multipliers that will produce given fractions the partial products are written without
${ }^{1}$ This number should be $1 / 6$ and not 6 . See note to 2 divided by 9

2 DIVIDED BY IT

2 divided by 19

1	19
3	12 3
$\dot{3}$	$6 \dot{3}$
6	36
12	12 i2
di $\cdot \mathrm{t}$	$\dot{4} \mathbf{6}$

i2 $1 \dot{2}$ i2

خ̇6	4	114
	1	191
	2	$\dot{3} 8$
	4	76
dmd	${ }_{6}$	i14

$\dot{6}$

The dot before the red fraction $1 / 6$ in line 1 on the plate seems to have been made in black and then corrected to red. ${ }^{1}$ See note to 2 divided by 17 . In the second of these two multiplications the 76 is written without a dot although the first
partial products are dotted. Perhaps this is bease the partial products are dotted. Perhaps this is because the 76 has a slightly different use in the two multiplications. 76 ith the first two

2 DIVIDED BY Iq

2 divided by $2 I$

1	21	
$\backslash \frac{13}{3}$	14	12
$\backslash 2$	42	i

The fractional dot is omitted in the second term of the answer as it is in the first term in the case of 2 divided by 9 . The number here is 42 , and the sign for 40 has already a dot, which makes it resemble a dotted number. The fractional dot is omitted with the sign for 40 in 2 divided by 35 (twice), 43 (twice), $63,67,69$, and 71, and in Problems 32, 33, and 61 (twice).

2 divided by 23

1	23
$\dddot{3}$	$15 \dot{3}$
$\dot{3}$	$7 \ddot{3}$
6	$3 \dot{2} \dot{3}$
12	$12 \dot{4} 6$
d; -t	12
Remain	

i2 $1 \ddot{3} \dot{4}$
$276 \quad 12$
mainder
$14 \quad 12$
$42 \quad$ i
$\dot{~}$

2 DIVIDED BY RI AND 23

$41 \cdot 2$ 妇

2 divided by 25
1
$\backslash 15$
$\backslash 3$
13
$\begin{array}{lcl}15 & 13 & \\ 13 & \dot{7} 5 & \dot{3}\end{array}$
$\begin{array}{llll}15 & 1 \ddot{3} \quad \dot{7} 5\end{array}$

2 divided by 27

14	27	
$\backslash 3$	18	$1 \dot{2}$
$\backslash 2$	$\dot{5} 4$	$\dot{2}$

2 DIVIDED BY 25 AND 27

$$
\begin{aligned}
& \text {-. 7. } \quad 1 \quad=\dot{\lambda} \quad e^{\prime}{ }^{\prime} . \\
& =1 .=\dot{\lambda} 1 \\
& >-7 . /^{3}
\end{aligned}
$$

2 divided by 29

nys 2 bnt 29
Call 2 out of 29
sšm•t
Working-out:

$\backslash 1$	$\dot{2} 4$	$1 \dot{6} \dot{2} 4$
$\backslash 2$	$\dot{5} 8$	$\dot{2}$
\backslash	174	$\dot{6}$
\backslash	$\dot{2} 32$	$\dot{8}$

The scribe has been careless here. In the solution the first fraction is $1 / 24.1 / 24$ of 29 is $1 / 61 / 24$, leaving $3 / 21 / 61 / 8$ The scribe has been careless here. In the so 2 , so that he finishes his solution by writing " 2 " (that is, "twice"), " 6 " and " 8 ." With these three to mat pecond, third and fourth lines it was natural to put " 1 " at the numerals before him at the beginng of lines formed a single multiplication.

2 divided by $3 I$
$31 \quad \dot{2} 0 \quad 1 \dot{2} \dot{2} 0 \quad 124 \quad \dot{4} \quad$ i55 5
$1 \quad \dot{20} \quad 1 \dot{2} \dot{2} 0$

4
5
$\dot{4}$
$\dot{5}$
Here again the scribe has by mistake put " 1 " at the top of the first column, opposite $1 / 20$.

2 DIVIDED BY 29 AND 3I

2 divided by 33

	33	$\dot{2} 2$	$1 \dot{2}$
$\ddot{3}$	22		$1 \dot{2}$
2	$\dot{6} 6$		$\dot{2}$

2 divided by 35

35	301	$1 \dot{6}$	42^{2}
6	7		3̈
5			

${ }^{1}$ With this number 30 the dot is omitted on the opposite plate, but it is possible that a dot on the papyrus is concealed under the patch which covers part of the 30 (see Photograph III).
${ }^{2}$ See note to 2 divided by 21 .

2 DIVIDED BY 33 AND 35

$$
\begin{aligned}
& =1-11 \pi 1 \\
& \text { >. 检以 }
\end{aligned}
$$

2 divided by 37

$\frac{1}{3}$	$\begin{aligned} & 37 \\ & 24 \ddot{3} \end{aligned}$
3	12 \%
$\dot{6}$	$6{ }^{6}$
12	3 i2
$\backslash{ }^{14}$	1224
di.t	38
Remainder	

$24 \quad 1224$
$111 \quad 3$
296
1
2
$\backslash 3$
di:t
Remainder
37
74
111
$\dot{8}$
$\begin{array}{lr} & 1 \\ & 1 \\ 3 & 2 \\ & 4 \\ & 8\end{array}$
37
74
148
296
$\dot{8}$

2 divided by 39

$$
39 \quad \dot{26} \quad 1 \dot{2} \quad \text { i8 } \quad \dot{2}
$$

$\dddot{3}$	26	$1 \dot{2}$
2	78	$\dot{2}$

2 DIVIDED BY 37 AND 39

2 divided by $4 I$

nys 2 bnt 41 Call 2 out of 41

24
$1 \dddot{3} 24$
246
6
$328 \quad \dot{8}$
sšm $\cdot \mathrm{t}$
Working-out:

3	${ }^{2} 7^{1} \dot{3}$
3	$13 \ddot{3}$
$\dot{6}$	$63{ }^{\text {¢ }}$
12	$3 \dot{3}$ i2
$\backslash{ }_{24}$	13 24
di.t	6́8

1	41
$\backslash 2$	82
\4	164
dmd $\backslash 6$	$\stackrel{1}{246}$
Total	
$\backslash 8$	$\dot{3} 28$

$\dot{6}$

Remainder
68
Total
$\dot{3} 28$
$\dot{8}$
The scribe has carelessly added a fractional dot to the 27 .

2 DIVIDED BY 4I

$$
\therefore=\frac{2}{=}=
$$

2 divided by 43
43
$42^{1} \quad 142^{1}$
$\dot{6} 6 \quad \dot{2}$
129
$301 \quad 7$

gm	$\backslash 42$	$1 \dot{4} 2$
Find		
2	66	$\dot{2}$
3	129	$\dot{3}$
7	$\dot{3} 01$	$\dot{7}$

The sign for 60 is used here twice in what was intended to be $\dot{8} 6$. This use of 60 for 80 occurs also in 2 divided by 83 , and twice in 2 divided by 93 .

The expressions in this table beginning with the word gm are in one respect like the expressions referred to in the note to 2 divided by 7 . The number in the middle seems to be used in two ways, first as a whole number to be found, and then in its reciprocal form as a fractional multiplier. Thus it is written sometimes with a dot and sometimes without. By actual count the word gm occurs twenty-two times in this table. In eleven cases the number is written with a dot and in ten cases without, while in one case (2 divided by 99) the multiplier $2 / 3$ is put in with gm , making an expression of the form referred to in the note to 2 divided by 7 . The process of "finding" this number, carried out in the examples which make up the first part of this table, gives a fraction at once, but when the author uses the word "Find" he seems to think of it as a whole number.
${ }^{1}$ See note to 2 divided by 21

2 DIVIDED BY 43

$$
\begin{array}{cc}
n \cap \cap \\
n & 1 \\
24 & 1
\end{array}
$$

2 divided by 45
$45 \quad \dot{3} 0 \quad 12$

$\backslash \ddot{3}$	30	$1 \dot{2}$
$\backslash 2$	90	$\dot{2}$

2 divided by 47
$\begin{array}{ccc}\mathrm{gm} & \text { 30 } & 1 \text { i i } 15 \\ \text { Find } & & \\ \backslash 3 & \text { i41 } & \dot{3} \\ \backslash 10 & 470 & \dot{4} 0\end{array}$

2 DIVIDED BY 45 AND 47

i. 3至人

2 divided by 49

| gm | $\dot{2} 8$ | $1 \dot{2} \dot{4}$ |
| :--- | :---: | :---: | :---: |
| Find | | |
| 4 | 196 | $\dot{4}$ |

2 divided by $5 I$
$51 \quad \dot{3} 4 \quad 1 \dot{2}$
102 [2]

$\backslash \ddot{3}$	34	$1 \dot{2}$
2	102	$\dot{2}$

2 DIVIDED BY 49 AND 5I

2 divided by 53
nys 2 bnt 53
Call 2 out of 53
$30 \quad 1 \ddot{3}$ io
$318 \quad \dot{6}$
$\dot{7} 95$
i5
ssmm•t
Working-out:

gm	$\backslash 30$	$1 \ddot{3}$ io
Find		
6	$\dot{3} 18$	$\dot{6}$
	di•t Remainder	is

	1	53
dmd	530	
Total		265

2 divided by 55

	55	$\dot{3} 0$	$1 \ddot{3} \dot{6}$	$\dot{3} 30$
gm		$\dot{3} 0$	$1 \ddot{3} \dot{6}$	
Find				
6	$\dot{3} 30$	$\dot{6}$		

${ }^{1}$ In this multiplication we should expect dots with all the numbers of the second column, or with only the last, or not at all (see note to 2 divided by 17).

2 DIVIDED BY 53 AND 55

2 divided by 57

57
38^{1}
12
$114 \quad \dot{2}$
$\begin{array}{rrr}\dddot{3} & 38 & 12 \\ 2 & 114 & \dot{2}\end{array}$
2 divided by 59
$59 \quad \dot{3} 6 \quad 1 \dot{2}$ í2 i8 $\quad \dot{2} 26 \quad \dot{4} \quad \dot{5} 31 \quad \dot{9}$
gm
Find

4
9

136
236
531
${ }^{1}$ Fractional dot omitted.

Plate 17
2 DIVIDED BY 57 AND 59

$$
\begin{aligned}
& \text { 7. }-\Lambda^{\circ} \quad 1 \text { = } \\
& \begin{array}{l}
=1=1 \\
=1=\lambda \\
=-17
\end{array}
\end{aligned}
$$

gm	$\backslash 40$	$1 \dot{2} \dot{4} 0$
Find		
$\backslash 4$	244	$\dot{4}$
$\backslash 8$	$\dot{4} 88$	$\dot{8}$
$\backslash 10$	6610	$\dot{10}$

2 DIVIDED BY GI

$\dot{\wedge} \therefore \dot{\doteq}=\underline{\text { sun } \therefore \quad x \cdot-\therefore \therefore} \quad \therefore 1$.

\(\begin{array}{ll}n \& n 9 g\%
oi \& 016\end{array}\)

$$
\underbrace{4}_{111} \cdot \underset{44 i}{\text { nnw }}
$$

$$
\varliminf_{\substack{n n n \\ 0 i}} \underset{i}{ } 1
$$

2 divided by 63 $63 \quad 42^{1} \quad 1 \dot{2} \quad$ i26 $\quad \dot{2}$
$\begin{array}{ll}\backslash 3 & 42 \\ \backslash 2 & 126\end{array}$
12
${ }^{1}$ See note to 2 divided by 21 .

2 DIVIDED BY 63

$$
\Rightarrow \quad \frac{1!n}{i}
$$

च.

Photograph v，Register $6 \quad$ B．M．Facsimile，Plates Iv－v

$$
\begin{aligned}
& \text { >. 㒴 }>1 \text {. } \|=\quad \text { Ill II } \\
& \text { 2. リース } \\
& >\text {. } 2 \pi \cdots
\end{aligned}
$$

2 divided by 65
nys 2 bnt 65 Call 2 out of 65 sssm-t Working-out

gm Find $\backslash 3$	$\dot{3} 9$	$1 \ddot{3}$
	195	$\dot{3}$

2 DIVIDED BY 65

$$
\begin{aligned}
& \therefore \text { "兰; H. «*入 } \\
& \text { 11 - 11月nกก } \\
& \begin{array}{lc}
T 1 \cdot & \text { III? } \\
31 & 93
\end{array}
\end{aligned}
$$

2 divided by 67

2 divided by 69
69 461 1 i $\quad 138 \quad \dot{2}$
$\begin{array}{rrr}\backslash \ddot{3} & 46 & 1 \dot{2} \\ \backslash & 138 & \dot{2}\end{array}$
${ }^{1}$ See note to 2 divided by 21 .

$$
\begin{aligned}
& 2 \text { DIVIDED BY } 67 \text { AND } 69
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Muon } \\
\substack{11 \\
76}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\\
\$ 11 & 11 \text { in 999 } \\
111 & 11097 \\
8 & 635
\end{array} \\
& \left.\begin{array}{c}
\text { zn } \\
m g \\
111 \\
11 \\
5
\end{array}\right\}^{3} \\
& \left.\begin{array}{c}
1111 \\
111 \\
8
\end{array}\right\} 4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { N. }-1
\end{array} \\
& \begin{array}{ccc}
= & 1 . & 111 n n \\
i & 111 n n \\
& & 64
\end{array}
\end{aligned}
$$

Photograph vi, Registers 2-3 \quad B. M. Facsimile, Plates v-vi

2 divided by $7 I$

$$
\begin{aligned}
& \text { gm } 40 \quad 1 \dot{2} \dot{4} \dot{4} 0 \\
& \begin{array}{ll}
\text { Fina } & \\
\backslash 10 & 568 \\
10 & 710
\end{array} \\
& \begin{array}{r}
568 \\
710
\end{array} \\
& 1 \dot{2} \dot{4} 40 \\
& \begin{array}{l}
\dot{8} \\
\text { io }
\end{array}
\end{aligned}
$$

${ }^{1}$ See note to 2 divided by 21 .

2 DIVIDED BY TI

$$
\begin{aligned}
& \begin{array}{cccc}
\underset{n}{n} & 1111 \\
0.4 & i & i & 1
\end{array} \\
& \begin{array}{cc}
\substack{n \\
n \\
n \\
0 n \\
0.4}
\end{array}
\end{aligned}
$$

2 divided by 73

gm	$\checkmark 60$	16 \% 2
Find		
3	219	3
$\backslash 4$	292	4
${ }_{5}$	365	51

${ }^{1}$ Photograph VI seems to show a crease or overlap in the papyrus here. It is pis concealed, was written over this 5 .

2 DIVIDED BY 73

 $\underset{\substack{11!1 \\ 4}}{\infty}$

i. 30

$111 \begin{gathered}n \cap n n \\ n \cap n \\ 37\end{gathered}$

Photograph vi, Register 5 B. M. Facsimile, Plates v-vi

2 divided by 75°
$150 \quad$ 2
$\begin{array}{rrr}\backslash \ddot{3} & 50 & 1 \dot{2} \\ \backslash 2 & i 50 & \dot{2}\end{array}$

2 DIVIDED BY 75

$$
\begin{aligned}
& \text { 万. } 7 \text {... }
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow 1 .
\end{aligned}
$$

2 divided by 77

nys 2 hnt 77 Call 2 out of 77
$44 \quad 1 \dot{2} 4$
§šm•t
Working-out:

2 DIVIDED BY 77

1ํกกกิก

2 divided by 79

$\underset{\text { Find }}{\text { gm }}$	$\backslash{ }_{60}$	14 is
$\backslash 3$	233	$\dot{3}$
	4161	4
\0	790	io

${ }^{1}$ These numbers should be 237 and 316 as in the line at the top.

2 DIVIDED BY 79


```
@ nnn\999
```

$$
\begin{aligned}
& 1110 \\
& \| \cap \\
& 1111 \\
& 5 i \quad i
\end{aligned} .
$$

Photographs VI-viI, Register $2 \quad$ B. M. Facsimile, Plate vi

$$
\begin{aligned}
& 2 \text { divided by 8I } \\
& 81 \\
& \begin{array}{ll}
\backslash \ddot{3} & \\
\\
2 & 162
\end{array} \\
& 541 \text { 1i i62 i } \\
& { }^{1} \text { Fractional dot omitted. }
\end{aligned}
$$

2 DIVIDED BY 8I

$$
\begin{aligned}
& 7 \text { LINO, } 7 \text { ? } \\
& \Rightarrow \quad \text { "nnn }
\end{aligned}
$$

Photographs vi-viI, Register 3 B. M. Facsimile, Plate vi

2 divided by 83

${ }^{1} 63$ was written for 83 . See note to 2 divided by 43 .

2 DIVIDED BY 83

Photographs vi-viI, Register 4 B. M. Facsimile, Plate vi

2 divided by 85

	$\dot{8} 5$	5113	255
1	85		
gm	$\backslash 51$	13	
Find			
13	255	$\dot{3}$	

2 divided by 87

1	87	$58 t$	1	i	i74	$\dot{2}$

$\begin{array}{rrr}\backslash \ddot{3} & 58 & {[1] \dot{2}} \\ \backslash & 174 & \dot{2}\end{array}$
${ }^{1}$ Fractional dot omitted.

> 2 DIVIDED BY 85 AND 87
> バリヨ・~ H. リン。

$$
\begin{aligned}
& \begin{array}{ccc}
\text { T } & 1 & \mid \hat{n n} \\
\ddot{3} & \text { nn } \\
& 15
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { >-主 }>1 \text { = } 1 \text {. } \\
& \text { ? }
\end{aligned}
$$

Photographs vi－vir，Registers 5－6 \quad B．M．Facsimile，Plate VI

2 divided by 80

2 divided by $9 I$
$91 \quad$ خंo 1 它 io i30 $\quad 330^{3}$

gm	jo	$1 \dot{5}$ io
Find		$\ddot{3} 30^{3}$
gm	130	

${ }^{1}$ An error has crept into Peet's Plate D, where $1 / 330$ occurs in his hieroglyphic transcription.
${ }^{2}$ From the New York fragments. See Photograph IX. The two fragments which we have placed here, with the ractional dot and part of the 90 in the red $/ 1800$, are among Peet's unplaced fragments on his Plate E opposite egisters 5 and 6 , respectively.
${ }^{3}$ Fractional dot omitted.

2 DIVIDED BY 89 AND gI

Photograph viII, Registers i-2 \quad B. M. Facsimile, Plates vi-viI
Also Photograph ix, N. Y. Historical Society Fragments

2 divided by 93

[9]3
$62 \quad 1 \dot{2}$
166^{1}
2
gm
Find
2

12
$\stackrel{\text { Fin }}{2}$
62
166^{1}
2 divided by 95

95	

gm	60	1
2i i 2		

$\backslash 40$

380
570
4
6
${ }^{1} 166$ was written for 186 . See note to 2 divided by 43 .
${ }^{2}$ The fractional dot may have existed on a missing fragment of papyrus.
${ }^{3}$ The fragment on which appears what is probably a portion of the 500 is at present incorrectly placed in register 3, at the edge of B. M. 10058, where the right hand edge of it may be seen at the left in our photograph VIII. It is partly concealed under the frame, so that the number on it is not visible in Photograph VIII, and the fragment itself does not appear in Photograph IX. For the hidden outline Peet, in his Plate E, has followed the British Museum Facsimile (Plate VII, register 3), without, however, reproducing more of the number than he was able to see on the fragment. Our reproduction on the opposite plate dots shown in the Facsimile tend to support Peet's placing of the ${ }^{4}$ We have placed here a N the opposite plate follows that of Peet.
${ }^{4}$ We have placed here a New York fragment on which is a part of the fraction $1 / 6$. The part of a stroke in red appearing in the upper right hand corner agrees well enough with a preceding 70 , but it is surprising not to see our scribe's curved stroke. The fragment is too small and isolated to permit of relying on any resemblance there 10058 near this point migres and those of the nearest fragment to the left. A comparison with the fibres of B. M. at least he has not reproduced it among those Apparently Peet was not furnished with a tracing of this fragment; at least he has not reproduced it among those which he left unplaced.

2 DIVIDED BY 93 AND 95

$$
\begin{aligned}
& \geq 1 . \\
& \text { i } 1 \\
& \underset{i}{\Rightarrow} \quad \text { …กกñ } 9
\end{aligned}
$$

2 divided by 97

2 divided by 99

gm		
Find		
	0	66
2	198	$1 \dot{2}$

${ }^{1}$ The 9 and the portions of figures that follow are on the New York fragments. The 670 is on a fragment that is incorrectly placed at the edge of B. M. 10058, in register 4, adjoining 2 divided by 95 , frame, so that it is only partly shown on Photographs VIII and IX. It is shown in full in extending under the Facsimile, Plate VII, which Peet has on Photographs VII and IX. It is shown in full in the British Museum
${ }^{2}$ We have been able to place three more New reproducing the parts now hidden by the frame.
among Peet's unplaced fre place three more New York fragments in $1 / 108$, practically completing it. These appear lso completed the fragments on his Plate E opposite registers 6,4 (reversed), and 1, respectively. We have also completed the following $1 / 2$ by placing another small fragment. Peet seems not to have had a tracing of this.

2 DIVIDED BY 97 AND 99

Photograph viiI, Registers 5-6 \quad B. M. Facsimile, Plates VI-VII Also Photograph ix, N. Y. Historical Society Fragments

2 divided by 101

[Call 2^{2} out of 101

Table of division by 10

10	3 304
5	3 10 з 0
5 io	3\% 5 304
3 i5	
2	
210	

${ }^{1}$ At the top of the fragment bearing the opposite plate are all from the New York fragments. 101." It is permaps a position of šsm.t in the preceding appears the end of a stroke in black ink not
in these is perhaps a low-placed dot betwe preceding examples one would suppe thisk ink not reproduced on
${ }^{2}$ Mr. Glanville of the in 2 divided by 3 .
the recto. This is perhaps part of the last informs us that part of a red ${ }^{3}$ This fraction has been omitted in unit stroke of the 3 in 16 a red stroke is visible on B. M. 10057 .
of answers at the has been omitted in Peet's t.
'The $3 / 30$ in line 1 is correctly restored. It is shown as survivin appears on his Plates D and E. A appears correctly on Peet's Plate F , whered on Peet's Plate E but an his Plate E and in his text.
makes the 1 in the line

2 DIVIDED BY IOI; THE NUMBERS I-9 DIVIDED BY IO

Photograph ${ }_{\mathrm{Ix}}$, Registers 1-2 N. Y. Historical Society Fragments

Problem I

Problem 2

Example of dividing loaf 1 for man 10. Make [thou

ir.t t; $\quad \mathrm{n}^{7} \quad{ }^{3} \mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad$ w;h-tp

The making of loaf [2] for [man 10] Make thou the multiplication [: $1 / 5$ times 10]. $\mathrm{ir} \cdot \mathrm{t}^{3}$ my hpr
the $w-[t p]^{5} \mathrm{~m}$ i0 $\mathrm{sp}^{3} 10$
e multiplication : 110 times 10 .
ir•t my
The doing as [it occurs]:

$[1$	$\dot{5}]$
2^{s}	$\dot{3}$ i5
$[4]$	$\ddot{3}$ i $0 \dot{3} 0$
8	$1 \dot{3} \dot{5}]$ i 5
	pw
[Total	$\left.2 ; i t,{ }^{9}\right]$ this is.

$\left.\begin{array}{l}3 \\ 15 \\ \hline\end{array}\right]$
ӟ io 30°
[Total
2;it, ${ }^{9}$] this is.
dmd 1^{3} myt.t pw
Total 1 ; the same, this is.

The portions of these problems lying on the right on the opposite plate are from the New York fragments. See Photograph IX. The fragment shown
attached to the edge of B. M. 10057 in register 2 in the British Museum Facsimile Plate VII, York fragments. See Photograph IX. The fragment shown in Photograph IX
${ }^{1}$ We have been unable to find among the New York fragments the small piec
ord and numbered 14 on Peet's Plate E, where, however, the line of jull piece bearing part of the letter \check{y} and part of the papyrus-roll determinative of this Plate have been able to place two New York fragments bearing parts of then with fragment 4 is not clearly indicated. We have followed Peet in reproducing it
${ }^{3}$ The blank space appearing opposite the line between registers 1 and 2 . rom the top
at some time before the papyrus into register 5 . Then some small fragments were lost fronally. At some time a long crack appeared in this region running was noticed that from the edges of this crack in registers 4 and 5 . When repairs were made missing from any signs in regist papyrus. A long patch was therefore inserted whice was a slight lacuna in registers 4 and 5 and it was apparently assumed The patch has been disregarded on 2 and 3 along the line of this crack, and if the upper panly have been placed in registers 4 and 5 . There is almost nothing

A trace of the r is just visible opposite plate.
${ }^{5}$ Part of the stroke of $t \mathrm{p}$ and on the edge of the fragment. See Photograph IX
${ }^{6}$ Fractional dot omitted.
解
${ }^{8}$ The reader will of the nearest fragment to the right and it could scarcely fit which we believe belongs to this n. The fibres of the original correspond which normally would be in the same line with on the opposite plate and on Photograph IX is considerably near the fragment on his Plate E opposite register 5. phrase ir.t t. w as it appears in the first lines of Pre multiplier. It seems impossible to avoid this in and the lower part of the t-ligature in Problem 2, it in Photograph IX. On the other hand, the occurrence of the fragment containing the multiplier 2, could scarcely bests that the fragment bearing the t of ir.t which clearly belongs to Problem 2, appears to fix the of what can be nothing else but the register line at the be placed much lower than we have placed usual (unit dots elsewhere in the Rhind papyrus are position of this latter fragment. We can only assume that them of the fragment containing the $1 / 31 / 15$, above and dropped them lower than was necessary generally near the base of the line), found himself in danger the scribe, having placed his 2 higher than ${ }^{2}$ See Problem 4, footnote 8 .

PROBLEMS I AND 2

10
III

Photograph x, Registers 2-3 B. M. Facsimile, Plate vII Also Photograph ix, N.Y. Historical Society Fragments

```
Problem }
    ir[ft] trew2
The making of loaves 6 for man [10]. Make thou the multiplication : [1/2] 1/10 times 10.
```

 ir.t my
 The doing as [it occurs]:
[1
\qquad
N2 1] 5^{3}
2] 3 is
4 [3̈ io 30^{4}
dmd $\quad 6$ my $[t \cdot t]$
Total 6; the same, this is.
The main portion of this problem and the next, as well as about hall of Problem 5, are from the New York fragments.
This verb as used in setting out Problems 2.6 means "
necessary to repeat the longer heading of Problem 1 . ${ }^{2}$ This word is written throughout the papyrus with
generally used is equivalent to English "bread" and in Egyptian many words for foods loaf is mentioned. The reason for this is that the word as strokes although they are not actually plural. Words modififed by mumberds for foods are considered as collectives and are therefore written with that t t as used in the Rhind was thought of as singular throughout. Howevere found in the singular form as often as in the plural and it may be the modifying number is greater than 2, and have translated the word as a plural transliterating we have added the plural termination whenever ${ }^{3}$ The original shows a somewhat faint fractional

- The scribe omitted the fractional dot.

PROBLEM 3

Photograph x, Register 4 B. M. Facsimile, Plate viI Also Photograph ix, N. Y. Historical Society Fragments

Problem 4

The making of loaves 7 for man 10. Make thou: $3 / 3130$ times 10 ; there result 7 .

ir $\cdot \mathrm{t}$	$\mathrm{my}[\mathrm{t} \cdot \mathrm{t}]^{3}$
The producing of the same:	
[1]	${ }^{3} \mathrm{3}$ [30]
¢ ${ }^{2}$	1] ${ }^{6} \mathrm{i}$ ¢
4	23 io 30
\backslash	$5 \dot{2}$ io
dmd	$7 \mathrm{n} \cdot \mathrm{t}^{8} \mathrm{pw}$

The scribe has omitted the fractional dot in the $1 / 30$ in the multiplication.
The fragment of the papyrus shown on the opposite plate which bears the numbers 30 and $1 / 10$ and the word $n \cdot t$, from the third, fourth and fifth lines of this problem, is at present inverted and attached to the edge of B. M. 10057 in register 4 (see B. M. Fac
simile, Plate VII).
${ }^{1}$ We have been able to place here a New York fragment bearing part of the ir-sign and of the register line above it. Peet reproduces this among the unplaced fragments on his Plate E opposite registers 5 and 6 .
${ }^{2}$ The scribe forgot that he had made the hieratic sign which includes with the bpr-sign a complementary r , and added a redundant r .
Gunn, 1926, page 129), it may have been used deliberately because of thead of being an error here and in Problem 5 for ir.t my bpr (as suggested by result of the following multiplication. No such statement has surved presence in these two problems, just before this phrase, of a statement of the of the other four problems of this group of six. The phrase ir.t my the my-sign in the second line indicates that the phrase is the same for is present in Problems 2 and 6 , and in Problem 3 the complementary y after
*We have been able to place here a small New York fragment bor we know of no writing of the noun myt.t with complementary y.
line above it. Peet reproduces this among the unplaced fragment
We have been able to place a New York fragment bearing the his Plate E opposite register 6.
${ }^{6}$ We have placed here a small New York fragment bearing the check of the multiplier 2. It is not reproduced among Peet's unplaced fragments. but the appearance of the fragment makes it seem more likely to breater part of a $1 / 3$-sign. This fraction is also missing from Problems 1 and 2 ${ }^{7}$ Here and in Problem 6 this word is written only with the oval loaf whe. It is not reproduced among Peet's unplaced fragments.
${ }^{8}$ The dot preceding the feminine t has been omitted on the plate which elsewhere in the papyrus serves as its determinative.
the likelihood that n.t may also have occurred there. The scribe has used myt. We have based our translation of the last phrase in Problem 2 on used n.t in Problems 4 and 6, which suggests that he may also have used it.t in the corresponding phrases in Problems 1, 3, and 5, while he has same word as the feminine form of the genitive adjective n (originally ny) in Problem 2. The word n.t (originally ny.t) is an abstract noun, the papyrus. Both the genitive n and n.t are derived from the preposition $n, t o$, for. A freer rent, which occurs in lines 1 and 3 of the Title-page of the it is", so that the sentence would read, "This (pw) is what it is".

PROBLEM 4

Photograph x, Register 5 B. M. Facsimile, Plate viI Also Photograph ix, N. Y. Historical Society Fragments

```
Problem }
    ir[.t] t:|.w 8 n s 10 ir.br c k
        w:h-tp
```



```
            myt-t 1
[The producing] of the same:
    1
        \
        31030
        12 2
        35]
        63 i5
    dmd ti.w 8 myt.t pw
    Total loaves 8; the same, this is.
```

The scribe has omitted the fractional dot in the $1 / 30$ in the multiplication.
8, and the word dmd, as well as certain signs in Problem 4, is misplaced bears part of the word s , parts of the numbers $1 / 30$ and
B. M. Facsimile B. M. Facsimile, Plate VII.
${ }_{2}^{1}$ See Problem 4, footnote 3. ${ }^{2}$ A trace of t
opposite plate.

PROBLEM 5

$$
\begin{aligned}
& \left.\begin{array}{lllll}
20 & 0 & 1111 \\
w p & 0 . T 4 m & 8 & 111 & 111 \\
\text { w.3t } & 0 \\
d m d
\end{array}\right\} 4
\end{aligned}
$$

Problem 6

ir.t $\mathrm{t} \cdot \mathrm{w} 9 \mathrm{n}$ s 10
The making of loaves 9 for man 10 .
ir•t my hpr ir•br $\cdot \mathrm{k} \quad$ w'hु-tp m $\quad 3 \quad \dot{5} \dot{3} 0 \mathrm{sp} \quad 10$
The doing as it occurs. Make thou the multiplication: $2 / 31 / 5150$ times 10
$\begin{array}{rl}1 & \ddot{3} \dot{5} 30 \\ 2 & 1 \ddot{3} \text { io } 30 \\ 4 & 3 \dot{2} \text { io }\end{array}$
$4 \quad 3 \dot{2} 10$
7
dmd ti. w ${ }^{1} 9^{2} n \cdot t$ pw
Total loaves 9; it, this is.
The scribe has omitted the fractional dot in the $1 / 30$ in the multiplication (twice).
${ }^{1}$ See Problem 4, footnote 7.
${ }^{2}$ By a misprint Peet's text has 8 here. The number is correct on his Plate F .

PROBLEM 6

$$
\begin{aligned}
& n \quad \geq 1 \text { 简 } 1111
\end{aligned}
$$

Problem 7

tp n skm•t
Example of making complete.
$\begin{array}{ccc}1 & \dot{4} & \dot{28} \\ & 7 & 1 \\ \dot{2} & \dot{8} & 56 \\ & 3 & \dot{2} \\ \dot{2} \\ \dot{4} & \dot{1} & \\ & 1 & \dot{2} \dot{4} \\ & \dot{4} 2 \\ \text { dmd } & \dot{2} & \\ \text { Total } & & \end{array}$

The scribe omitted the fractional dot in $1 / 66$.

PROBLEM 7

Photograph x, Register $2 \quad$ B. M. Facsimile, Plates viI-viII

The scribe omitted the fractional dots in $1 / 56$ and $1 / 16$ in Problem 7B, and in $1 / 9$ in Problems 8 and 10 .
There is a curious mistake running through Problems $10,11,12$, and 14 . $1 / 9$ was written as a half of $1 / 2$, and then repeated halving gave $1 / 18,1 / 36$ and $11 / 2$. Afterwards some one ${ }^{2}$ discovered the mistake and attempted to correct it, but succeeded only in part. In Problem 11 he put in the correction $1 / 44$ but did not erase the $1 / 6$, and left the $1 / 1 /$ unchanged. In Problem 12 he started with both $1 / 1 /$ and $1 / 1 / 14$, corrected the second line, changing $11 / 8$ to $1 / 28$, but left the third line $1 / 36$. In Problem 14 he made no correction in the partial products, and so these read consistently $11 / 1$, $1 / 36$, and $1 / 12$, but not as intended, $1 / 28,1 / 56$, and $1 / 112$. In each of the four the total is correct for the numbers obtained by halving from $1 / 2$. It may be that some of these mistakes were made in copying.
${ }^{1}$ The unit figures 4, 8, and 6 of the partial products are omitted in the British Museum Facsimile, the fractions there being $1 / 10,1 / 20$, and $1 / 50$. come at the edge of a plate of the Facsimile, and Peet, in checking the Facsimile with the papyrus, did not notice that being $1 / 10,1 / 20$, and $1 / 50$. These fractions ${ }^{2}$, and thus was led to omit them from his Plate G and from his text.
${ }^{\text {A }}$ According to Peet (pages 55-56) these corrections are in lighter ink on the papyrus. Peet treats these examples independently, and the corrections that these fractions are applied, the " "erent

PROBLEMS 8, 9, 7B, AND IO

Photograph x, Register $3 \quad$ B. M. Facsimile, Plates viI-viII

Problem II

$\dot{1}$	$\dot{7}$	
$\dot{2}$	$\dot{9}$	i4
$\dot{4}$	$\dot{1} 8$	
dmd	$\dot{4}$	
Total		

$$
\begin{array}{cl}
\text { Problem I2 } & \\
1 & 9 \dot{14} \\
\dot{2} & \dot{28} \\
\dot{4} & 36 \\
\text { dmd } & \dot{8}
\end{array}
$$

Problem I3

dmd
Total
14

1	16	112
	124	4
$\dot{2}$	32	224
	$2 \dot{4} 8$	8
4	64	448
md	$\begin{gathered} \dot{4} \dot{8} \text { i } 6 \end{gathered}$	16

dmd
Total
12 see note on the page opposite Plate 40 .

PROBLEMS II, I2, AND I3

Photograph x, Register $4 \quad$ B. M. Facsimile, Plates viI-viII

			Problem I6			
Problem 14		Problem 15		228	1	$\dot{2}$
1	18	1	$2 \dot{4} \dot{8}$	8	3	6
		2	64	456	dmd	1
i	36 2		4816	16	Total	
4	72	4	128	912		
	4		81632			
dmd	16		16			
Total		Erroneous. Total				

${ }^{1}$ This notation, made by some ancient scribe (perhaps the copyist of the Rhind himself), shows that the errors of Problem 15, at least, were recognized.

PROBLEMS IA, IF, AND IO

$$
\begin{aligned}
=\pi \dot{0} \\
=10 \cdot x \\
=0
\end{aligned}
$$

$$
\begin{aligned}
& =1- \\
& \cdots-x
\end{aligned}
$$

$$
4
$$

$$
\begin{aligned}
& \begin{array}{l}
71 \\
12 \\
12
\end{array}
\end{aligned}
$$

PROBLEMS I7, I8, I9, AND 20

Photograph x, Registers 5-6 \quad B. M. Facsimile, Plates viI-viil

Problem $2 I$

dd $\mathrm{n} \cdot \mathrm{k} \quad$ skm $\mathrm{m}^{1} \ddot{3}$ is m 1
It said to thee, Complete $\quad 3 / 3 / 15$ as 1.
101
dmd 11 di•t m 4 wih-tp m 15 r $\mathrm{gm} \cdot \mathrm{t}$ Total 11, remainder : 4. Operate on 15 for the finding of 4 .

15	15
10	$1 \dot{2}$
$\dot{5}$	3
i5	1
dmd	4
Total	

hr 5 is m w'h hr.f
Therefore $1 / 51 / 15$ is : to be added to ${ }^{2}$ it.
tp n syty 3
Example of proof.

ky $\quad \dot{1}$ io $\mathrm{m} \quad \mathrm{w}: \mathrm{h}^{4}$ Another, $1 / 51 / 10$ is : to be added.
${ }^{1}$ This is an enclitic particle occasionally found after imperatives. It cannot be said to have an English equivalent. The arm written with the bird does not indicate a second consonant; it is here, as often, complementary to the m represented by the bird, for the arm itself came to have the value m and, especially in later times, was frequently written with the bird. In hieroglyphic texts the arm having this value is generally shown with ${ }^{2}$ Literally upon.
${ }^{3}$ It is extremely doubtful whether this phrase belongs in this problem. See Peet, pages 58-59.
${ }^{\text {- These words }}$ and numbers have crept in through error. See Peet, pages 58-59, for conjectures as to the cause of their presence here.

PROBLEM RI

$$
\begin{aligned}
& \text { 1. } \lim _{\substack{11 \\
5 i}}^{\operatorname{lin}_{51}^{\prime \prime}} \text { ! }
\end{aligned}
$$

```
Problem 22
    skm m 3̈ 30 m 1
    Complete 3/31/30 as 1.
        20 1
    dmd ';w'l f m9 w:h-tp m 30 r gm[t] 9
    The total of the excess of it is : 9. Operate on 30 for the finding of 9.
        1
            1
            dmd
            Total
hr 510 m wih hr.f
Therefore \(1 / 51 / 10\) is : to be added to it.
\(\begin{array}{llllllll}\mathrm{hr} & \mathrm{km} & \ddot{3} & 5^{2} & \text { io } & \dot{3} 0 & \mathrm{r} & 1\end{array}\)
Therefore is complete \(\begin{array}{lllll}20 & 6 & 3 & 1\end{array}\) up to
```

favors translating it "majority" here.
2The scribe words meaning "great" and "to be great." Gunn (1926, page 130)
${ }^{2}$ The scribe omitted the fractional dot.

PROBLEM 22

$$
\begin{aligned}
& \text { "."" }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cccc}
1 & 111 & 111 & \cap \\
1 & 111 & \cap \\
1 & 6 & 02
\end{array} \\
& \begin{array}{ll}
111 & 0 \\
3 & 0 i
\end{array} \\
& \begin{array}{l}
1 \cap \\
102
\end{array}
\end{aligned}
$$

Photograph xi, Register $2 \quad$ B. M. Facsimile, Plate viII

Problem 23

$\begin{array}{ccccccc}\dot{4} & \dot{8} & 10 & 30 & 45 & \text { skm m } & \ddot{3} \\ 1 / 4 & 1 / 6 & 1 / 10 & 1 / 30 & 1 / 45 ; & \text { Complete as } & 3 / 3 .\end{array}$
$\begin{array}{lllll}11 & 5 & 4 & 1 & 1 \\ 4 & 2 & j & j & \end{array}$
$42 \quad 2 \quad 2$
$h^{1} \quad \dot{9} \dot{4} 0 \mathrm{~m}$ wih hr f ir \quad ir
Therefore $1 / 91 / 40$ is : to be added to $i t$, making $3 / 3$
$\begin{array}{cccccccc}\dot{4} \dot{8} & \dot{9} & \text { io } & 30^{2} & \dot{4} 0 & 45 & \dot{3} & \text { ir } 1 \\ 115 \dot{2} & 5 & 4 & 1 \dot{2} & 1 \dot{8} & 1 & 15\end{array}$ making
${ }^{1}$ The scribe inadvertently added a stroke above the r, giving to the sign the appearance of the papyrus-roll.
${ }^{2}$ The scribe omitted the fractional dot.
This fraction appears as $1 /$ donal dot.
This fraction appears as $1 / 4$ on Peet's Plate H but is correct in his text.

PROBLEM 23

PROBLEM 24

「約
 $4 \Delta \leq \pm x \|^{\circ}$
 $1 \mathrm{LI}>1 \ddot{2}^{\prime 3}$

 $\prod_{\substack{111 \\ i \\ 8 \\ 4}}$

$$
\bigoplus_{\substack{111 \\ i}}^{=1111}
$$

$\begin{array}{cc}111 \cap & 11 \\ 61 & 2\end{array}$ he
\qquad

 $1 / 11$
 $\left.\}_{1}^{1}\right\}_{2}^{2}$
$\Longrightarrow \quad \begin{array}{ccc}11 & 1111\end{array} \quad 1111=$
$1=$
$\left.\prod_{\substack{111 \\ i}}\right\}+$

Problem 25

PROBLEM 25


```
    Problem 2\sigma
        'h' 4. .
```



```
    w:h-tpm 5 r gm.t 15 Operate on 4; make thou 1/4 of them, namely, 1; the total is 5
    w:h-tp m 5 r gm.t 15
        1
    hpr(r)
    There become 3.
        5
bpr.br
    w:h m3 sp.w 4
    Multiply:3 times 4.
    hpr.br 4
There become 12.
    'h' 12 4. f f 3 dmd 15
The quantity is 12, 1/4 of it is 3, the total is 15.
\({ }^{1}\) Redundant \(r\). See Problem 4, footnote 2.
```


PROBLEM 26

Photograph xiI, Register 3 B. M. Facsimile, Plate Ix

Problem 27

A quantity, 'h. f hr.f hpr • f m 21
A quantity, $1 / 5$ of it added to it, becomes it $: 21$.

$$
\begin{array}{cc}
1 & 5 \\
\dot{5} & 1 \\
\text { dmd } & 6 \\
\text { Total } &
\end{array}
$$

$\backslash 1$	6
$\backslash 2$	12
$\grave{2}$	3
dmd	21
Total	

[^3]'h' $17 \dot{2} \quad \dot{5} \cdot f \quad 3 \dot{2}$ dmd 2
The quantity is $171 / 2,1 / 5$ of it is $31 / 2$, the total is 21 .
\[

$$
\begin{aligned}
& { }_{12}^{n} \underset{i m d}{ } \underset{i}{111}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \begin{array}{cc}
1111 & 11 \\
111 & 1 \\
7 & 2
\end{array} \\
& { }_{11} \cap 1111
\end{aligned}
$$

Photograph xiI, Register $4 \quad$ B. M. Facsimile, Plate Ix

Problem 28

Problem 29

3 is : to be added, $13 / 2$ is : to be subtracted, 10
bpr.br 1 di.t m9 $\quad \mathbf{3}$.f m 6 m 'k hr.f there becomes 1 ; the remainder is : 9. $2 / 3$ of $i t$, namely 6 , is : to be added to it; dmd $15 \quad \dot{3} \cdot f \quad \mathrm{~m} 5$ in 5 pr ${ }^{3}$ di't m 10
ir.t my hpri

1	10
$\dot{4}$	$2 \dot{2}$
i0	1
dmd	$13 \dot{2}$
Total	
$\ddot{3}$	9
dmd	$22 \dot{2}$
Total	
$\dot{3}$	$7 \dot{2}$
dmd	30
Total	
$\ddot{3}$	20
$\dot{3}$	10

${ }^{1}$ Literally: to go in . . . to go out. Here the scribe has used only the determinatives of two verbs as convenient symbols, so that, as Peet indicates (pages 63-64), it is not perfectly certain what verb is represented by the first pair of legs.
${ }^{2}$ This appears to be that finite form of the verb called by Erman "pseudo-participle" and by Gardiner "old perfective" (1927, page 234). The reader ${ }_{3}$ will notice that, unlike other finite forms, it follows, instead of preceding, its subject.
${ }^{3}$ Participle. The construction is the same as that of the last sentence of the Title-page.
${ }^{4}$ The scribe has omitted the proof here and the statement of the next problem. See volume 1, page 70.

PROBLEMS 28 AND 29

$$
\begin{aligned}
& \text { (11) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 要以 \& }
\end{aligned}
$$

$$
\begin{aligned}
& =\| \cap \\
& \begin{array}{lll}
n \\
n & \pi & 1_{n}^{n} \rightleftharpoons
\end{array} \begin{array}{lll}
1 & 1 \\
1 & 1 & \pi
\end{array} \\
& 02 \quad 3 \quad \text { z } 22 \mathrm{dmd} 9 \text { i }
\end{aligned}
$$

```
Problem }3
    ir dd n k k š̌ bpr\cdotn+1 iom \dddot{3 ion m sdm f f}
    If says to thee the scribe, Has become 1/10: 3/3 1/10 of what? Shall hear he:
    ir.br.k #̈ io r gm
Make thou 3/3 1/10 for the finding of 10.
\begin{tabular}{rr}
1 & \(\ddot{3}\) io \\
2 & 135
\end{tabular}
        4 3 15
        8 6 i0 302
        dmd 13
        Total
    ir\cdott j
The making of 1/30 times 1/23 for the finding of 2/3 1/10. The total is the quantity saying it, 13 1/23.
    11 1323
    \ . 8\dddot{3}46\dot{138}
    \i0 152i0 2 30
    dmd
    10
Total
```

The final sentence of this problem is inconsistent in its meaning with the setting-out. Either the phrase "saying it" should have been omitted or the setting-out should take a form analogous to that of Problems $35-37$ in which the required quantity itself is represented as stating the problem.
${ }^{1}$ This n is one of several particles used in making up certain of the forms of the Egyptian verb. The so-called " n -form" generally indicates past time. We have already met it in the form sphr.n.tw at the top of line 2 of the Title-page, where it is accompanied by the passive particle $t w$.
${ }_{2}^{2}$ The scribe omitted the fractional dots in these places.
${ }^{3}$ This is the third person singular masculine of the pronoun to which Gardiner has given the name "dependent" (see 1927, page 45). Its chief use is to express the direct object of all forms of the verb except the infinitive, with which the suffix pronoun is employed. As Gunn notes (page 131), it is surprising to find the masculine form here. We should expect the form st, which often has a neuter meaning.

PROBLEM 30

㹡山今

Problem $3 I$

1
$\backslash 2$
$\backslash 4$
$\backslash 8$
$\dot{2}$
$\backslash \dot{4}$
dmd
32
 $\dot{2}$
The total is $321 / 2$, the remainder is $1 / 2$.

$17 \dot{4}$	$3 \dot{2} \dot{4}$	21

The calculations by which $171 / 4$, and then $31 / 1 / 4$ are obtained belong directly after the result of the first multiplication. The calculation of 97 (incorrectly written 99) is placed in the papyrus at the end of Problem 38, but belongs here.
${ }^{1}$ The scribe omitted the fractional dots in these places.

PROBLEM 3I

The total is $11 / 21 / 4$, the remainder is : $1 / 4$.

12	$\dot{114}$	$\dot{2} 28$	$\dot{18}$	$\dot{3} 6$	$\dot{3} 42$
76	8	4	$50 \ddot{3}$	$25 \dot{3}$	$2 \dddot{3}$
$\dot{6} 84$	$\dot{3} 4$	$\dot{4} 8$	$\dot{4} 56$	$\dot{9} 12$	
$1 \dot{3}$	38	19	2	1	

'h'

1	12
2	24
4	48
$\backslash 8$	96
dmd	144
Total	

In carrying out the multiplications at the beginning the scribe places next to his partial products their values as applied to 144 , beginning with 228 , but the of these multiplications are placed after the partial multiplications of the to 144 is equal to 228 is followed by the multiplication of 12 by 12 to get 144 , and both course of his proof, introducing his interruption with the word ""h h,", which here may mean "stope," discovered his omission at this point and so interrupted the
the multiplications the multiplications of his proof he does not check the partial products that he is going to use, but writes them for the insertion of something. When he takes up again multiplications in their proper places.
${ }^{1}$ The scribe omitted the fractional dots in these places.
${ }^{2}$ Here there is a fractional dot in
44 , and 46 .

PROBLEM 32

Photograph xiII, Registers I-6 B. M. Facsimile, Plates Ix-x

Problem 33

[^4] These are whole numbers, but are marked with the fractional dot in the original. See Problem 32, footnote 3 .

PROBLEM 33

 $11 \cdot$ 天…11III．标…
以果
1． 11 上边

行 $50191 \quad e^{2 i}=1=$
 $7=7,3$ ，Th1

$$
1 \rightarrow \hat{1}
$$

Photograph xiv，Registers 5－6 \quad B．M．Facsimile，Plates $\mathrm{x}-\mathrm{xI}$
Problem 34
A quartity
$1 \quad 12$

dmd
$\begin{array}{llll}5 \dot{2} & 7 & 14\end{array}$
The total is the quantity $51 / 21 / 11414$.
tp n syty
Example of proof.
$1 \quad 5 \dot{2} \dot{7} \dot{1} 4$
$\begin{array}{ll}1 & 2 \dot{2} \dot{4} 14 \dot{2} 8 \\ 4 & 1 \dot{4} \dot{8} 2\end{array}$
dmd $9 \dot{2} \dot{8} \quad$ di.t m 48
The total is $91 / 21 / 8$, the remainder is : $1 / 418$.

$\dot{7}$	14	14	28	28	56^{1}
8	4	4	2	2	1
$\dot{4}$	m	14			
$\dot{8}$	$:$	7			
dmd					
Total		21.			

${ }^{1}$ The scribe omitted the fractional dot in this place.

PROBLEM 34

Photograph xv, Registers 5-6 \quad B. M. Facsimile, Plate xı

kwy is the first person singular termination of the pseudo-participle or old perfective. This is the only finite form of the Egyptian verb showing endings for the various persons, and therefore not employing the suffix-pronouns (but the ending w for the third person is often not written, as in the case of wd: in Problem 28). The old perfective is here introduced by the auxiliary iw. We have already met this auxiliary on the Title-page (see Title page, footnote 2). There it was followed by the principal verb in the n-form and had no expressed subject of its own, but where it is followed by the old perfective it must have its subject expressed, the subject in the present instance being the suffix-pronoun y.

Old perfective.
Participle. Literally the one saying.
This word may have originally read sšr.
Special hieratic signs for fractions of a hekat are represented in this translation by numbers in fractions. See volume 1, pages 31 and 175.

PROBLEM 35

约

[^5]

PROBLEM 36

Problem 37

Go down I times 3 into the hekat-measure, $1 / 3$ of me is added to me, $1 / 3$ of $31 / 3$ of $m e$ is added to $m e, 3 / 9$ of $m e$ is added to me; return I, filled am I.
in m dd sw Sdm . fl^{1}
Then what says it? Shall hear it:

${ }^{1}$ That is, Let it hear. The "it" which is the subject of this clause apparently refers to the quantity that is represented as stating the problem. But it is also possible that the scribe became confused and thought for a moment that this problem, like Problem 30, began, "If the scribe says."
${ }^{2}$ The scribe omitted the fractional dots in these places.

PROBLEM 37

 $43 \doteq \therefore$ Ea $\sum=\dot{x} x>111$

兹 $\| \lambda$ (

$$
\begin{array}{ccc}
d & 0 & 1 \\
2 \dot{3} & 4 & 1 \\
\Delta \Delta & 11 \\
6 i & i & 2 \\
& \Delta & \# 1 \\
23 & 6 i & \dot{3}
\end{array}
$$

Photographs xiv-xv, Register 3 B. M. Facsimile, Plates xxxi

Problem 38

tp n syty
xample of proof.

dmd
Total

1. the finding of the series of fractions above.
$\begin{array}{lllllllll}6 & 6 & 3 & 3 & 2 & 1 & 1 & 22^{4}\end{array}$

3/2) is mulliplied, etc. The translation of these of omitted in writing. In the normal English word-order these two observations would berin.
We are now inclined to follow Gunn (page 131) in thinking that it is mage 83, first paragraph of the note, was based on the would begin: This means that $3 / 4$ (or
${ }^{2}$ The scribe omitted the fractional dots in these places.
${ }^{3}$ The primary meaning of the word is b these places.
-This is a whole number but is marked with a fractional evidently thought of as a series of vertebrae.

PROBLEM 3^{8}

＂55

（i）《デイン 4

21\％出

Photographs xiv－xv，Register $4 \quad$ B．M．Facsimile，Plates x－xı

Problem 39

tp n ir.t

1	4	1	6
10	40	2	12
2	8	4	24
\vdots	2	8	48
		$\dot{3}$	2

$12 \dot{2}$
$12 \dot{2} 8$
$12 \dot{2} 8 \dot{3}$
$8 \dot{3}$
$8 \dot{3}$

twnw

[^6]
PROBLEM 39

Photographs xvi-xviI, Register I B. M. Facsimile, Plates xi-xII

Problem 40

ti.w 100 n s $5 \dot{7} \mathrm{n} \quad 3$ hry.w n s 2 hry.w pty twnw
Loaves 100 for man 5, 34 of the 3 above to man 2 those below. What is the difference of share?
ir•t my bp
The doing as it occurs. The difference of share being 5

$\searrow 1$	23
$\backslash 1$	17
$\backslash 1$	12
$\backslash 1$	6
$\backslash 1$	1
dmd	60
Total	
$\backslash 1$	60
$\backslash \ddot{3}$	40

$\mathrm{ir} \cdot \mathrm{h}[\mathrm{r}] \cdot \mathrm{k}$		w'h-tp m $1 \dddot{3}$	
Make thou the multiplication : $13 / 3$			
r sp	23	hpr.br.f	m $38 \dot{3}$
$u p$ to time		becomes	
"	172	"	296
"	12	"	20
"	62	"	$10 \dddot{3} 6$
.	1	"	$1 \ddot{3}$
dmd	60	dmd	100.
Total		Total	

PROBLEM 40

Problem $4 I$

sp.w 8 hpr.hr 64 ir.br $\cdot \mathrm{k}$ $\mathrm{sp} \cdot \mathrm{w} 8 \quad \mathrm{hpr} \cdot \mathrm{hr} \quad 64 \quad \mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k} \quad$ wih-tp
times 8 ; there become 64 . Make thou the multiplication
m 64 r
sp 10 hpr•hr•f m 640
dy $\dot{2}$ 8. Multiply : 8 up to
dy $\dot{2}$. f hr.f hpr.br.f m 960
rht - f4 m hirfw
$\mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k} \quad 20$ n 960 : 64 up to times 1

ky n	Sšm•t . f	1	64
Manner of the reckoning of it.		10	640
1	8	$\backslash \dot{1}$	320
2	16	dmd	960
4	32	Total	
\8	64	10	96
		$\backslash 20$	48.

${ }^{1}$ That is, in this case, calculating the content of.
${ }^{2}$ Gunn (page 131) would prefer here to say volume or space. He quotes a passage containing a word ${ }^{5}{ }^{\prime}{ }^{\prime}$, which, because of the context, must mean something like space, and which cannot be translated by the name of any concrete container. He notes, however, that the word in the passage referred to has for

${ }^{3}$ The circle drawn by the scribe around the 9 evidently represents a circular section of the granary and indicates that the 9 is the diameter and not the height.
${ }^{4}$ After rbt.f one would expect the word pw, so that the sentence would read, the content of $i t$, this is, in khar, as in Problem 43. The word rbt means literally number, amount.
${ }^{5}$ Since numerals in Egyptain are written after the nouns which they modify, we cannot here read 48 hekat. In hieratic hundreds of hekat are expressed by writing before the word hekat the number of hundreds required. In hieroglyphic any sign followed by the required number written out in full. See volume 1, pages 31-32.

PROBLEM 4I

$w \cdot r 3 \mathrm{~h} m \mathrm{~m}$

Photograph xviII, Registers 1-2 \quad B. M. Facsimile, Plates xII-xIII

Problem 42

79108324 sp 10 hpr.br.f m 790 is $27 \dot{5} 4$ dy $\dot{2}$. f hr.f $\operatorname{bpr}\left(\mathrm{r}^{1}\right) \cdot \mathrm{br} \cdot \mathrm{f} \mathrm{m} 185$ wih-tp m 118520 7911081324 times 10; becomes it: $7901 / 181 / 271 / 54$. Put $3 / 2$ of it to it; becomes it : 1185. Operate on $1185,1 / 20$ is m 59 4 h; $3 \cdot \mathrm{t}$ pw r$\cdot \mathrm{fm} \quad$ 4-hki.t
$: 591 / 4$; what
šs 5900 hki.t $\dot{4}^{2}$
ky n sšm•t . f Manner of the reckoning of it.

1	$8 \ddot{3}$ ¢ 18	1	
2	1739^{3}	10	79108324
4	$35 \dot{\text { 2 i }} 8$	$\stackrel{1}{2}$	790182754 $39536^{3} 54108$
-8	719	dmd	1185
$\backslash \ddot{3}$	536^{3} 18 27	Total	
\%	23 ӟ 6 12 $36^{3}{ }^{\text {S }} 4$	10^{3}	
6^{3}	$1 \dot{3}$ i2 24 خे2 $^{\text {i }} 08$	$\backslash{ }^{10}$	$\begin{array}{r} 1182 \\ 594 \end{array}$
is	ذ $\dot{9} \dot{27} 108 \dot{3} 24$		
dmd	$79108 \dot{3124}$		
Total			

${ }^{1}$ Redundant r in the original.
${ }^{2}$ In hieratic the fractions $1 / 2$ and $1 / 4$, following the word hekat, and written in the ordinary way and not in the Horus-eye notation, reprewhich includes the special way of writing hundreds of hekat in as fractions of 100 hekat and this method of writing them is a part of the system
${ }^{3}$ The scribe omitted the fractional dots in these places.

PROBLEM 42

\[

\]

$$
\begin{aligned}
& -72 \bar{\lambda}=\boldsymbol{\lambda}
\end{aligned}
$$

Problem 43

A granary round of cubit 9 in the height of $i t, 6 \mathrm{in}$ the breadth of $i t$; what is that which goes into it in grain?
ir•t my hpr

The doing as it occurs:
 Take away thou 1 from 9 ; the remainder is 8 . Operate on 8 , make thou $1 / 3$ of it to it; becomes it : $103 / 3$. Multiply : $103 / 3$
sp $10 \ddot{3}$ hpr-hr $\cdot \mathrm{fm} 113 \ddot{3}$ 9 ir
ir wih-tp
w'h-tp m $113 \ddot{3} \dot{9}$
r
sp.w $4 \dddot{3}$ pw
n
mḥ 6 nty 3
m times $10 \frac{2}{3}$; becomes it : $1133 / 31 / 9$. Make the multiplication: $1132 / 33 / 9$ up to times $4 ; 3 / 3$, this is, of the cubit 6 , which is :
 the breadth; becomes it : $4551 / 9$; the content of it, this is, in khar. Find thou $1 / 20$ of the content of it in khar; becomes it :

$221 / 21 / 41 / 45$; what goes, this is, into it in quadruple hekat: grain, 2200 hekat $50251 / 21 / 321 / 642$ ro $1 / 21 / 41 / 36$.

ky	n	
Manner of working out:		
1 - 8		
$\ddot{3} \mathrm{~m} \quad 5 \dot{3}$		
:		
$\dot{3} \quad 2 \ddot{3}$		
dmd $\quad 10 \ddot{3}$		
Total		

1	$10 \ddot{3}$
$\backslash 10$	$106 \ddot{3}$
$\backslash \ddot{3}$	$7 \dot{9}$
dmd	$113 \ddot{3} \dot{9}$

4559 $45 \dot{2} 90$ $22 \dot{2} \dot{4} \dot{4} 5$.

In the statement of the problem the given dimensions are transposed. See volume 1, page 88.
${ }^{1}$ Peet (page 85) and Gunn (page 133, footnote) prefer to read Sbw here, an older form from the same stem, presumably because they doubt that the noun wśh, meaning breadth, was in use at the time the Rhind papyrus was written down. There is no doubt, however, that the cup used in writing this noun wśb, meaning breadth, was in use at the time the Rhin
${ }^{2}$ The scribe first omitted the word tp and later inserted it above the line.
${ }^{2}{ }^{2}$ This is a relative adjective formed from n.t, the feminine of the genitive n. The feminine of nty is nt.t, which occurs on the Title-page in its frequent sense of that which is, or, more freely, what exists, or, existing things.

- This should be 180 .
${ }^{5}$ The words in parenthesis crept in through an error of the ancient copyist.

PROBLEM 43

 un (3s.1" 96

Photographs xVIII-xIx, Registers 5-6
B. M. Facsimile, Plates xII-xIII
Problem 44

hi;.t r.f m šs
that which goes into it in grain?
w:ḥ m 10 sp 10 bpr-br.f m 100
Multiply : 10 times 10 ; becomes it $: 100$
wih-tp m 100 sp 10 bpr-br f fm 1000
ir.br $\cdot \mathrm{k} \quad \dot{2} \mathrm{n} 1000$
m 500
hpr-hr f f m 1500
rht • f pw
$\mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k} \quad 20 \mathrm{n} 1500$ hpr-br$\cdot \mathrm{fm} 75$
$h ;: t$
pw
$\mathrm{r} \cdot \mathrm{f} \mathrm{m}$
4-hbl; t
quadruple hekat; šs (hki•t) $7500 \mathrm{hk} \cdot \mathrm{t}$

tp n š̌m•t

Example of working out:

1	10	1	1000
10	100	$\dot{2}$	500
1	100	1	1500
10	1000	10	150
		20	75

1	75
10	750^{6}
20	1500
io	150
10 n io	15
of	
3 n io n io $: \mathrm{f} \cdot \mathrm{m}$	10.

it also definitely means ${ }^{2}$ This word is derived from the stem of fdw, the Egyptian word for the process is a calling forth of the result (Gunn, page 125).
equal parts are intended then the parts must be angles, for the word appears to be used only of rectangularething with four parts. If we assume that four sides.
${ }^{3}$ As Peet explains (page 85), the scribe became confused between two methods of
10 in the breath of it, etc.; but instead he changed to: the length of it 10 , the breadth of it 10 , etc. He might have continued as he began: of 10 in the length of it, ${ }^{5}$ Here, as also in Problems 26 and 0 ,
w:h hr means put upon, and hence, in mathematics, add to wih-tp, in non-mathematical h-tp. The principal meaning of wih is put down, place, and (pages 13-14) that nodding the head was a natural operation in primitive counting, and thatical uses, means put down, or bow the head. Peet suggests operations. Gunn, however (page 124), puts forward the idea that w:h-tp in mathematics therefore the phrase w:h-tp came to be used for mathematical meanings add for $w: h$, and case, inslance, example (as in the first line of the in mathematics may not mean count, but may mean add a case or instance; for the mean prut down or add with 10 ten times, and the presence of tp would of this problem) for tp, are well established. A multiplication, such as the above, would mean put down or add with $\begin{aligned} & \text { applies to the division formula, which is wih-tp } \mathrm{m} x \mathrm{r} \text { gm.t } y \text {. }\end{aligned}$ applies to the division formula, which is wih-tp $\mathrm{m} x \mathrm{r}$ gm.t y.
${ }^{5}$ Redundant.
${ }^{6}$ The scribe seems inadvertently to have put here what looks like a fractional dot. See Problem 32, footnote 2.

PROBLEM 44

$$
\begin{aligned}
& \text { 3sui, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nn n }
\end{aligned}
$$

```
Problem 45
    A š;" h;'n šs r.fm 4-hk;\cdott 75 n-swa
    A granary, has gone grain into it in quadruple hekat 75[00 hekat].1 Of, it is, how much by how much?
    ir\cdothr.k w:h-tp m 75 r sp 20 bpr.hr.fm }150
```



```
        1 75
        10 750
        20 1500
    mk stwty . f pw
Behold the content of it this is.
```



```
3n}\textrm{n}0\textrm{n}10.f\mp@code{m 10.
    of of of it :
```

 Make thou the multiplication : 75 up to times 20 ; becomes \(\mathrm{m} 1500 \quad \mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k} \quad\) wihh- \(\mathrm{tp} \mathrm{m} 1500 \quad \mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k}\) io . f
 Make thou the operation on 1500 , make thou \(1 / 10\) of \(i\),
 ${ }^{1}$ The scribe, as Peet indicates, forgot to write the
hekat. In the preceding problems of this group (41-44) we have been dealing regularly which, when restored, gives us the regular hieratic method of writing 7500 ${ }^{2}$ The compound word n-stw, which is really a phrase meaning he, or $i t$, is of of or belonging thith hundreds of hekat. and the genitive adjective n (originally ny as on plate), which is the predicate of the pelonging to, is composed of
${ }^{3}$ An interrogative adjective, apparently from the same stem as the word meaning great.
${ }^{4}$ This is the common This is the common preposition generally rendered to, for etc.

PROBLEM 45

 514 " $130 i \rightarrow i-7 \because 14 i-i \pi, i \because 5 \cdot 73 \Lambda^{4}$

Problem 46

A granary, has gone grain into it in quadruple hekat 2500 hki.t pty 2500 hekat. What are the ret ${ }^{1}$. f
ir-hr $\cdot \mathrm{k}$
wih-tp
m 25 r

$\stackrel{\text { rbt }^{1}}{ } \cdot \stackrel{f}{f}$
Make thou the multiplication : 25 up to times 20 ; becomes it : 500 ; the content of it this
$\mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k}$
wih-tp m 500
it this is. Make thou the operation on 500 ; make thou $1 / 10$ of it, namely, 50 ; $3 / 20$ of f , nam 25 io n io . $\mathrm{f} \quad \mathrm{m} \quad 5 \quad \ddot{3} \mathrm{n} 10 \mathrm{n}$ io $\cdot \mathrm{f} \quad \mathrm{m} \quad 3 \dot{3} \mathrm{n}-\mathrm{sw}$ 10 r 10 r $3 \dot{3} \mathrm{p}$; «;
10 by 10 by 3 3/3, the granary.

${ }_{2}^{1}$ Literally, amount, number. This is the word which in Problem 41 and elsewhere has a meaning approximating the English word content. ${ }^{2}$ The photograph (Photograph XIX) seems to show a fractional dot written here by mistake. See Problem 32, footnote 2 .

PROBLEM 46

Problem 47
$i^{1}{ }^{1}$ dd $n \cdot k$
sš
dy $\cdot \mathrm{k}$
rh.y io
hpr • f m
ぶ;
dbn
r:-pw

were only fractions the we 1, page 32, the word ro (r) was written alone for 1 ro, and fractions
ninth line $1 / 21 / 18$ ro.
${ }^{1}$ See Problem 62, footnote 7
this problause is unnecessary as Griffith noted (volume 16, page 336).
No word meaning with the preceding six thought of as rectangular unless otherwise describi ${ }^{\prime}$ dbn as a circular granary as in Problems end of the phrase and the determinative of dbn, which seems inconwill notice that the rectangular figure. The word dbn is here a noun whose probably used in Problem 44 only to mark the chang Problems 45 and 46 that ši: was will notice that the determinative of dbn as adjective in Problems whose meaning and context require it to be trans the change from problems involving a cylinder
descriptive of 42 was descriptive of its nature as an enclosed space or structure. Thems 42 and 43 is a circle. With the noun, however, thanslated by a noun and adjective. The reader Egyptian from using it in this connection. Note that in Egyptian that the general determinative used happens the Egyptian scribe prefers to use a determinative Egyptian the conjunction or comes after instead of between alternatives.

PROBLEM 47

Photographs xix-xx, Register $5 \quad$ B. M. Facsimile, Plates xiII-xIv

Problem 48

1		$\begin{aligned} & \text { Sti:t } \\ & \text { setat } \end{aligned}$	8	\1	$\begin{aligned} & \text { Sti•t } 9^{2} \\ & \text { setat } \end{aligned}$	
2	1	"	6^{1}	2	1	" 8
4	3	"	2	4	3	" 6^{1}
$\backslash 8$	6	"	4.	$\backslash 8$	7	" 2
				dmd	8	" 1.
				Total		

This problem compares the areas of a circle of radius 9 and the circumscribing square
The number before the word st $\underline{i} \cdot \mathrm{t}$ denotes the number of times ten setat. Thus the second line of the first table represents 16 setat, the third line 32 setat, and so on. See volume 1, page 33. The writing of multiples of ten setat in this way is explained by the fact that ten setat is equivalent to the old Egyptian unit called a "thousand-of-land" equal to a thousand cubit-strips or cubits-of-land (see volume 1, page 33). Griffith and Peet consider these numbers as representing so many thousands-of-land (Griffith, volume 16, page 236; see also volume 14, pages 410-415. Peet, page 25 and under Problems 48-55).
${ }^{1}$ The numeral sign here which resembles the ordinary sign for 60 is probably a special sign used in writing both The numeral 9 here is a special sign used in writing both 9 setal and 9 hekat. See Problems 53 and 84.

PROBLEM 48

Problem 49

tp n is.t ;h.t my ${ }^{2}$ dd $\mathrm{n} \cdot \mathrm{k}$ ifd n ;h.t n ht 10 r ht 2^{4} pty ;h.t.
Example of reckoning area. If is said to thee, A rectangle of land, of khet 10 by khet 2, what is the area of it?
ir•t my hpr
The doing as it occurs:

1	1,000	
10	10,000	
100	100,000	
$\mathrm{n} 100,000 \mathrm{~m}$	10,000	
of \quad :		
n io $\cdot \mathrm{f}$	m	$1,000$.
of of it	:	

nt•f ${ }^{5}$ pw
m ;h.t
It, this is, in area.
${ }^{1}$ The stem of this word was originally is, not is, and the second sign in the word as written in this problem had primarily the value is. Before this papyrus was written, however, the letters s and s had come to be used interchangeably and some scholars make no distinction between them in transliteration. The word, unknown elsewhere, is perhaps related to the word isw (Gunn, page 132), recompense, exchange, substitution, and is.t may mean the converting of dimensions into area
${ }^{2}$ As we have seen, this word primarily means like, as, but in the phrase given here it can hardly be translated by any English word but if.
${ }^{3}$ Land, field, are the commonest meanings of this word, but in the Rhind it generally means area.
${ }^{4}$ The solution is for 1 khet instead of 2
${ }^{5}$ This word is made up of the word n.t, the feminine of the genitive adjective n, belonging to, and the third person suffix pronoun f. It might be translated its belonging. It is also in frequent use as a pronoun meaning $h e, i t$, in the series called by Gardiner "independent pronouns." See Problem 4, footnote 8.

PROBLEM 49

Problem 50

. What is the amount of it in area?
hb $\cdot \mathrm{hr} \cdot \mathrm{k} \quad \dot{9} \cdot \mathrm{f} \quad \mathrm{m}$
Take away thou $1 / 6$ of it, namely, 1; the remainder is : 8. Make thou the multiplication 8 , 8 sp 8 hpr-hr $\cdot \mathrm{fm} 64$ rht f pw m :h.t 60^{2} sti.t 4
the amount of it, this is, in area, 60 setat 4.

${ }^{1}$ The w suggested by the plural strokes has been omitted on the plate. The same omission occurs on the figure in Problem 51, and in Problem
52 , ine 2 .
${ }^{2}$ The scribe has by mistake written here either the number 60 or the special form for 6 used in Problem 48 in writing 6 selat. He may have the abstract number 60 a moment before at the end of the multilicich, however, would not properly be written in this way), and he had written 6 , but used the special sign instead of the ordinary numeral.

PROBLEM 50

そa解3音品

两比

Problem $5 I$

$$
\text { tp-r:4 } 4
$$

$$
\mathrm{m} \text { tp-r;4. \& pty ;h.t. }
$$

$$
\text { in the base of } i t \text {, what is the area of it? }
$$

irtt my bpr
The doing as it occurs:
1400
200
11,000
2 2,000.
:h.t. s pw 2
The area of it this is: 20 setat.
$\mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k}$ in $4 \quad \mathrm{~m} \quad 2$ r rd•t ifd . s
Make thou $1 / 2$ of 4 , namely, 2 , for the giving of the rectangle ${ }^{5}$ of i.
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad$ wih-tp m $10 \quad \mathrm{r}$
Make thon the
sp ;h.t. \& pw
Make thou the multiplication : 10 up to times 2; the area of it this is.
${ }^{1}$ The stem means sharp, pointed.
${ }^{2}$ The genitive n.t is in the feminine to agree with spd.t.
${ }^{3}$ Literally a quay or sea-wall. For a discussion of its .t.
Literally example of mouth or simply mouth. The word tp is prefixed to a 1 , pages $36-37$, and references there given.
the meaning of the other word. Peet has suggested (page 91) that in a triangle of this typer ef nouns to form compounds, but often scarcely affects
between two jort between two jaws.
${ }^{5}$ It is possible to translate the phrase r rd.t ifd.s here a
page 132, citing Sethe, 1916, page 119). This construction following rd.t is the same ause that it become rectangular, taking ifd as a verb (Gunn, Problem 47 and elsewhere. The verb dy is simply an abbreviated form of the verb rdy.

PROBLEM 5I

Problem 52

 Example of making a cut-off triangle of land. If is said to thee, A cut-off triangle of land of n khet 20
hr mry.t . \& ht 6 m tp-r; . s bt $4 \mathrm{hr} \mathrm{p;} \mathrm{h:k}^{1}$ pty ih.t o s
on the side of $i t$, khet 6 in the base of $i t$, khet 4 on the cut-off; what is the area of $i t$?
dmd $\cdot \mathrm{hr} \cdot \mathrm{k} \quad \mathrm{tp}-\mathrm{r} ; \quad$. S hr p; h:k $\quad \mathrm{hpr} \cdot \mathrm{hr} \quad 10 \quad \mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k} \quad \dot{2} \mathrm{n} \quad 10 \quad \mathrm{~m} \quad 5 \quad \mathrm{r} \quad \mathrm{rd} \cdot \mathrm{t}$ Add thou the base of it to the cut-off; there become 10. Make thou $1 / 2$ of 10 , namely, 5 , for the giving of
ifd - $\leqslant \quad \mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k}$
w:h-tp
m 20 r sp.w 5
bpr•br

ih.t . s pw
ir-t my bpr
The doing as it occurs:

1	1,000
$\dot{2}$	500

ir m;h.t 20^{5} rht . s pw m;h.t
making in area 200 setat; the amount of it, this is, in area.

[^7]PROBLEM 52

For explanation and statement of numerical mistakes, see volume 1, page 94
In this problem and in Problems 54 and 55 we find the special signs used for fractions of the setat. In hieratic the sign for $1 / 4$ in this series is the same as the ordinary sign for $1 / 4$.
${ }^{1}$ The scribe has here by mistake written the multiplier $1 / 2$ in the special notation for $1 / 2$ setat.
${ }^{2}$ Here and in Problem 54 mb 10 is represented by a sign exactly like 30. Peet (page 96) considers this a special sign for 10 cubit-strips. Griffith representing 30, while a writing of mh 10 (1909, page 66, footnote 1) suspected a mistake. Apparently this sign occurs nowhere else except as If the signs in Problems 53 and 54 are errors thending to that of other numbers of mh appears in Problem 55 and in a papyrus from Illahôn. working mechanically, may have the careless or rubbed mh-signs in an earlier copy of the work. Copyists, the matter uncertain.

解
finger-tips being the origin of the cubit measure. cubit, but also for the cubit-strip, originally meant forearm, the length from the elbow to the
Rhind papyrus, come to be used as the weak demonstrative whose masculine is p: and plural n : The word had already, at the time of the where in the Rhind papyrus except here and in the phrite article, its regular use in later times. It may be translated by the English article every-
${ }^{1}$ This should be 1 sti:t 5, etc. The setat sign is placed pi pw in Problems 57,58, and 60, and n: pw in Problem 67.

PROBLEM 53

Problem 54

Wb-t blat ih.t 10
The taking away of the area [setat 7]' from fields 10.
$\begin{array}{rr}1 & 10 \\ \backslash 2 & 5 \\ \backslash & 2\end{array}$

1 $\backslash 2$

4
8

${ }^{28} \mathrm{mbh}_{\text {cubit-strip }} 7 \dot{2}$			
Sti $\cdot \mathrm{t}$	$1 \dot{4} \dot{8}$	"	$2 \dot{2}$
setat			
	$2 \dot{\mathbf{2}}^{\mathbf{2}}$	"	5
	$5 \dot{2}$	"	

10^{3}

For an explanation of this problem and the next see note to Problem 55 in volume 1 (page 96).
${ }^{1}$ Omitted by the scribe.
${ }^{2}$ There should be a $\dot{4}$ here also.
${ }^{3}$ Like the numeral 30. See Problem 53, footnote 2.

PROBLEM 54

Problem 55

$\mathrm{hb} \cdot \mathrm{t}$

hr gm.hr $\cdot \mathrm{k}$ t; ;h.t m st; t 3
Thus findest thou the area, namely, setat 3 .
${ }^{1}$ This should have been simply the number 5 instead of sti.t 1 . Compare the preceding problem.

PROBLEM 55

Problem 56

Example of reckoning a pyramid. $360 \mathrm{mr} \quad$ wh;-tb $\quad \mathrm{t} \quad 250 \mathrm{~m} \quad \mathrm{pr}-\mathrm{m}-\mathrm{ws} \mathrm{n} \cdot \mathrm{f}$ imy $^{2} \quad \mathrm{dy} \cdot \mathrm{k} \quad \mathrm{mb} \cdot \mathrm{y}$ skd - f
the seked ${ }^{1}$ of it.
ir•hr $\cdot \mathrm{k}$ in 360 hpr-hr•f m 180
ir.br $\cdot \mathrm{k}$
w:h-tp m 250 r
gm•t
180
hpr-hr $\dot{2} \dot{5} \quad \dot{5} 0$
Make thou $1 / 2$ of 360 ; becomes it : 180. Make thou the operation on 250 for the finding of 180 ; there becomes $1 / 21 / 51 / 50$
n mh iw mh $\mathrm{pn}^{3}[\mathrm{~m}]$ šsp 7 ir.br
of a cubit. Is cubit this : palm 7. ir.ar $\cdot \mathrm{k}$ wih-tp m 7

The seked of it is palm $51 / 25$.
${ }^{1}$ See volume 1, pages 37-38.
of the face of the pyramid). Gunn (page 134) has suggested the probabse the of the base, the altitude, and the ratio of the two (which is, as Peet says, the batter right of the figure represents this. The pr-m-w's is what goes up from the ws (a chamber beneath the pyr whi-tb.t is what the base requires (literally sole, ${ }^{2}$ The phrase n.f imy found in Problems $56-60$ is may be the origin of the Greek rupaui's. The stkd is the). One wonders whether the vertical line at the from the preposition m , in. So far as we know $56-60$ is simply an involved method of expressing the possessive: the turning or deflection from the vertical.
${ }^{3}$ This is a cursive form of pn which occurs it found only in this construction. Though differing in form it its per-em-us. Apparently, imy is an adverb derived scribe to omit the preposition which we havurs also in Problem 58 and twice in Problem 67 . A certain resemblats to resemble in meaning the common adverb im. 58 and 62 , see Gunn, page 134. As G henne placed after pn. For another possible emendation, making this sence between this sign and may mave caused the ' Fractional dot omitted. As Gunn suggests, this statement is included to show that the unit is the royal cubit and not the beginning with iw ir in Problems號

PROBLEM 56

Photographs xxı-xxit, Register i \quad B. M. Facsimile, Plate xv

```
Problem }5
```



```
Mr,
mk mh pw wih-tp m 10 2 \dddot{3 n 10 j}
```



```
ir \(\quad \ddot{3} \mathrm{n} 140 \mathrm{~m} \quad 93 \dot{\mathrm{j}} \mathrm{mk}\)
    pr-m-w's pw n\cdotf imy
Make 3/3 of 140, namely,93 1/3;}\mathrm{ ; bhold the pr-m-ws pw n-em-us, this is, to it therein.
```

 \({ }^{1}\) See Problem 53, footnote 3.
 ${ }^{2}$ The scribe first omitted $p w$ and then added it above the line.

PROBLEM 57

Problem 58

mr pr-m-ws n f imy m 933 dy k rh.y skd.f iw 140 m whi-tb.t A pyramid, the per-em-us to it therein is : 931/3; cause thou that know I the seked of it; there are 140 in the ukha-thebet.
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \dot{2} \mathrm{n} 140 \quad \mathrm{~m} \quad 70 \quad \mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad$ wh h-tp m $93 \dot{3} \quad \mathrm{r} \quad \mathrm{gm} \cdot \mathrm{t} \quad 70 \quad \mathrm{w}: \mathrm{h}-\mathrm{tp} \mathrm{m} 93 \dot{3} \quad \dot{2} \cdot \mathrm{f} \quad 46 \ddot{3}$ Make thou $1 / 2$ of 140, namely, 70. Make thou the operation on $931 / 3$ for the finding of 70 . Operate on $931 / 3,1 / 2$ of it is $462 / 3$,
 1 pi pw $1 / 4$ of it is $231 / 3$. Make thou $1 / 21 / 4$ of a cubit. Operate on $7 ; 1 / 2$ of it is $31 / 2,1 / 4$ of it is $11 / 21 / 4$, the total is palm 5 finger 1 ; that this is:

Skd n•f imy
the seked to it therein.

The total is palm 5 finger 1; the seked this is.

[^8]
PROBLEM 58

Photographs xxI-xxII, Register 3 B. M. Facsimile, Plate xv

Problem 50

mr
A pyramid, the pr-m-ws $\mathrm{n} \cdot \mathrm{f}$ imy $\mathrm{m} 12^{1} \quad$ whi-tb.t $\mathrm{n} \cdot \mathrm{f}$ imy $\mathrm{m} 8^{1}$
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k}$ w:ḥ-tp $m 8$ \qquad $\mathrm{gm} \cdot \mathrm{t}$

62 pw
pr-m-wś Make thou the operation on 8 for the finding of $6 ; 12$, this is, of the pr-m-ws.ems. $\begin{array}{rl}1 & 8 \\ \backslash 2 & 4 \\ \backslash \dot{4} & 2\end{array}$
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \dot{2} \dot{4} \mathrm{n} 7 \mathrm{mk} \mathrm{\prime} \mathrm{mh} \mathrm{pw}$ Make thou $1 / 21 / 4$ of 7 ; behold a cubit this is.

my n m ${ }^{3}$

Problem 59B

$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad \mathrm{mr}^{4} \mathrm{n} 12^{1} \quad$ skd . f m šsp 5 Make thou a pyramid of 12 ; the seked of it is : palm 5 finger 1 ; $\mathrm{dy} \cdot \mathrm{k} \quad$ rb $[\cdot \mathrm{y}] \quad \mathrm{pr}-\mathrm{m}-\mathrm{w} / \mathrm{n} \cdot \mathrm{f}$ imy cause thou that know I the per-em-us to it therein.
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad \mathrm{w}$:h-tp m $\quad 5 \quad 1$ sp 2 r Make thou the operation on [palm] 5 finger 1 times 2 for the
gm t mh mk^{5} šsp $7 \mathrm{pw} \quad \mathrm{hpr} \cdot \mathrm{hr} \cdot \mathrm{fm} 10 \dot{2}$ finding of a cubit; behold palm 7 this is. Becomes it : $101 / 2$;
$\ddot{3} \cdot \mathrm{f} \mathrm{m} 7$ ir wih-tp m $12 \quad \ddot{3} \cdot \mathrm{f} \quad \mathrm{m} 4^{6}$ $3 / 3$ of it is : 7. Make the operation on $12 ; 33$ of it is : 4 ;
mk pr-m-ws pw
behold the per-em-us this is.
${ }^{1}$ In Problem 59 the given dimensions were transposed. In 59B, the inverse of 59 , wbi-tb.t was omitted in connection with 12, perhaps intentionally.
${ }_{3}$ These signs are difficult to explain. Gunn suggests (page 134) that the expression may be a corruption of the phrase myt.t pw which occurs in Problems $1,3,5$, and 46 .
${ }^{4}$ The determinative of this word on the plate was copied from the British Museum Facsimile before the photographs were available. The makers of the Facsimile apparently saw a
clear sign resembling the determinative of mr in Problem 58, which has a single line at the base. Peet (Plate Q) indicates that this sign is at present not clear, and this is borne out by Photoclear sign resembling the determinative of mr in
graph XXII. However, at the point where the sign occurs the papyrus was patched on the back in ancient times by fragments of a papyrus of accounts (constituting Number 80
隹 graph XXII. However, at and since the Facsimile was made, the position of these fragments has been changed to bring them into proper relation with one another. It is not unlikely that this operation reduced the legibility of the sign.
${ }^{5}$ The hyphen on the plate indicates that a part of this word is in one line and a part in the next.
${ }^{-}$Mistake for 8.

PROBLEMS 59 AND 59B

Problem 60

> iwn 1 n mh 15 m snt.t². f 30 m kiy.f-n-hrw ${ }^{3}$ dy $\mathrm{k} \quad$ rh.y skd . f A pillar (?) of cubit 15 in the sentet of $i t, 30$ in its kay-en-heru; cause thou that know I the seked of it.
Operate on $15 ; 1 / 2$ of it is : $71 / 2$. Operate on $71 / 2$ for the finding of 30 ; becomes the result of it : 4,
p; pw skd n-f imy that this is: the seked to it therein.
sšm \cdot t
Working-out:

1	15	1	$7 \dot{2}$
$\grave{2}$	$7 \dot{2}$	2	15
		4	30.

${ }^{1}$ The word means column, pillar, or support in general, including the figurative sense. Peet (page 101) is inclined to believe that a cone may be intended. In this connection note that the figure illustrating this problem differs from those of the pyramid problems preceding in that its base consists of a single line. But this may be a mere accident.
${ }^{2}$ The stem of this word was originally written śnt. It means base and applies well enough to a cone, for whose base we need only one dimension. That is true also of a figure with square base and this would include the pyramid. But the use of iwn and the new terms here employed seem to rule out the pyramid. The true sign for the stem snt, represented here by a simple diagonal stroke above the papyrus-roll, is a coil of rope in several loops (Gardiner, 1927, page 506). In hieratic the stroke was sometimes substituted for elaborate signs.
'The phrase k:y-n-brw means height of the top and was evidently a technical term used of the iwn and probably also of other structures. The term pr-m-wś may have been confined to pyramids or perhaps to sepulchral monuments in general.
'See Problem 44, footnote 4.
${ }_{5}$ The scribe has by mistake inserted the result in the statement of the operation.
${ }^{5}$ This is the word which we have translated content in Problems 45 and 46.

PROBLEM 60

Problem $6 I$

The table and rute on the page not a part or the rext

Problem 6IB

ir.t $\ddot{3} \mathrm{n}$ ty.t gb.t my dd $\mathrm{n} \cdot \mathrm{k}$ pty $\ddot{3} \mathrm{n} \dot{5}$

The making of $3 / 3$ of a fraction uneven ${ }^{6}$. If is said to thee, What is $3 / 3$ of $1 / 5$?
$\mathrm{ir} \cdot \mathrm{b}[\mathrm{r}] \cdot \mathrm{k} \quad \mathrm{sp} \cdot \mathrm{f} 2 \mathrm{sp} \cdot \mathrm{w} 6 \cdot \mathrm{f} \ddot{3} \cdot \mathrm{f} \mathrm{pw}$ mk
ir•tw ${ }^{7}$ make thou times of it 2 , times 6 of it; $3 / 3$ of it this is. Behold does one according to myt:t r ty:.t nb.t gb-t hpr-ty. sy^{8}. the like for fraction every uneven which may occur.

The table and rule on this page are not a part of the text. They are somewhat more hastily written and were evidently jotted down for reference in the blank margin to the right of the point where the text on the verso was to begin. The lost lines seem to have hastily written and were evidently jotted down for reference in the blank margin
${ }^{1}$ The scribe omitted the fractional dot. As to 42 and 44 , see note to 2 divided by 21 .
The special sign for $1 / 6$ normally includes a dot above, and where the dot is omitted, as here, we have represented the sign by the whole number 6 . The sign seems to be a ligature of Rhind sign (also found and in earlier papyri two such ligatures, each with a dot, represented the fraction 3% (Möller 1909, volume 1, page 65). Griffith (volume 16, page 169) believes of ${ }^{3}$ This (also found in a XX dynasty papyrus) to be an abbreviation of the earlier sign.

8 could be written in the form of lines $1-4$ and we originally written by the scribe according to the form of $\dot{9} \mathbf{3} \mathrm{f} \mathrm{m}$ i8 54 , used in the ninth and following lines. Afterwards he saw that lines
${ }^{4}$ The sign here used resembles the sign for 6 used in 2 divided by the second fraction in each of these lines and partly erased the f. See note to this problem in volume 1.
the account papyri from Illahûn (Griffith 1897, XIV, 9, 10; XVI, 16, 18; XVII, 8; XXIII, 19, 22), and it also resembles, but less closely, the similar sign which occurs half-a-dozen times in the account papyri from Illahûn (Griffith 1897, XIV, 9, 10; XVI, 16, 18; XVII, 8; XXIII, 19, 22), and it also resembles, but less closely, the sign used at the end of line 4 above and often the scribe's pen. It was possible for thenty used ane the else in writing a fraction. Without consulting the original we cannot determine whether the apparent stroke over the sign is due to exist. Possibly that is the case for rarely that the Rhand 2.3 , and 4 , and that his pen (actually a stiff brush) ju 3 , and 4, and that his pen (actually a stiff brush) jumped while he was making the ligature.
 form used in lines 1-4.

See volume 1, page 25 , footnote 1.
${ }^{7}$ This indefinite pronoun is the same word as the particle used to form the passive of verbs. Examples are spbr.n.tw on the Title-page and in.tw in Problem 62, line 2. In its use to form the passive it loses its pronominal function and is followed by a noun or pronoun as subject of the verb. See Gardiner, 1927, pages 41 middle and 46 bottom.
${ }^{8}$ A variant writing of the ty. t in line 1
'This is a kind of verbal adjective with a future meaning. It is formed by adding to the verb stem the particle ty and a final suffix which has forms for gender, person, and number agreeing with the noun or pronoun modified, in this case tyi.t. See Gardiner, 1927, page 280, $88363-364$.

PROBLEMS 6I AND 6ib

Photograph xxir, Right Half \quad B. M. Facsimile, Plate xvi

Problem. 62

iw in ${ }^{4} \mathrm{tw} \mathrm{krf} \cdot \mathrm{t} \mathrm{tn}{ }^{3} \mathrm{hr}$ s'ty $^{6} 84$ pty nt•t $\mathrm{n}^{7} \quad$ i.t $\quad \mathrm{nb}$
is bought bag this for sha'ty 84. What is that which there is to precious metal each?
iw $4 \mathrm{ir}^{8}$ dd ${ }^{9}$ t hr nb dbn s'ty 12 pw
hd s'ty 6 pw
dhty dbn šty 3 pw
號, for lead, a deben, sha'ty 3 this is.
 gm-t s'ty 84
. Make thou the 21 for the finding of sha'ty $84, ~$
what was bought, this is, in bag this; there become m 4 dd ${ }^{12}$: $\mathrm{k} \quad \mathrm{n}$ '.t nb-t
ir.t my hpr
The doing as it occurs.

For a somewhat different interpretation of this Problem see Perpelkin, 1929.
${ }^{1}$ That is, reckoning.
${ }^{2}$ This preposition is often used to express the ideas of containing, possessing, supporting, etc.
${ }^{2}$ The preposition m has this form before suffixes. Compare Problems 66 , liness the ideas of containd 80 , line 1 .
This is the feminine singular form corresponding to the masculine saingular pn. in the other case a mere particle as in Problem 58, a, last line.
A unit of value, nine singular form corresponding to the masculine singular pn .
a cord.
T We should expect the genitive here between two nouns and because n meaning $t o$ is almost never found before inanimate objects. On the other hand, we here used is rarely found for the genitive. Gardiner (1906, page 47) translated regularly follows feminine nouns (Problems $51,52,68,69,70$, and 84) and the sign Gardiner's rendering as an alternative. The particle ir is an older form of
the English if. See Problems 30 and 47.
Imperfect participle of the verb dy. The doubling of a consonant in this and certain other forms occurs in certain classes of verbs (see footnote 12 below)
A participle used in this way without a definite antecedent is regularly feminine.
${ }^{10}$ The scribe should have written dbn here, not s'ty.
${ }^{11}$ The complementary r in bpr is omitted on Peet's Plate R.
A inite form from the verb dy which has the doubled consonant. We have followed Gardiner (1906, page 47) and Peet (page 105) in translating this as though
were the so-called imperfect relative form. Gunn (page 135) believes this to be another form of the verb which also has the reduplication.
${ }^{13}$ The w of $t w$ has been omitted by the scribe as in Problems 38 and 64.
For this use of pw compare Problem 38, footnote 1, and see Peet, pages 105-106, and Gardiner, 1927, page 143, $\$ 189$.
${ }^{15}$ Following the b in this word the scribe first made a vertical stroke and afterwards wrote over $i t$, without erasure, the t and the two diagonal strokes.

PROBLEM 62

O而 20

乡白15s2 2 3 \＆

$$
-13
$$

Photographs xxili－xxiv，Registers $1-3$

$$
\begin{aligned}
& \text { p } \\
& \text { wp fothn } 84 \mathrm{~m} \text { bnnbenpb } 21 \text { ps } n 4 \text { [w]ptoni }
\end{aligned}
$$

Problem 63

[Example of dividing] ti:w $700 \mathrm{n} \quad \mathrm{s} \quad 4 \ddot{3} \mathrm{n} 1 \quad \dot{2} \mathrm{n} \quad$ ky
dy $\cdot k$
rh $\cdot \mathrm{y}$
$h r \cdot t^{2} \quad w^{\prime} w^{3} \quad$ im $n b$ the share of one thereof each

$$
\mathrm{hr} \cdot \mathrm{t} \quad \mathrm{w}^{\prime} \mathrm{w} \text { im nb }
$$

the share of one thereof each.

The beginning of the first three lines of this problem and a part of each line near the end were concealed by patches in ancient times (see Photographs XXIII and XXIV). After that a scribe restored what he thought was necessary on the patches. He was justified in omitting the preliminary words of
the problem but scarcely in failing to complete the second line. the problem but scarcely in failing to complete the second line.
${ }^{1}$ Note that the first two signs in ti.w have been made separately instead of as a ligature. See Problem 72, footnote 2
${ }^{2}$ Literally, what is under a man, that is, what he receives for his support.
${ }^{4}$ The scribe who wrote on the patches omitted to restore this $1 / 2$, which may well have been written originally.

PROBLEM 63

k.rh.dmd bn mi wcw

$$
\ddot{3} 662 \mathrm{~m} 004 \mathrm{n} \ddot{3} \text { k•rh.ri } 004 \mathrm{~m} 007 \mathrm{n} \quad 4 i \quad i \quad k \cdot r h \cdot r i \quad 4 i \quad i \quad 4
$$

$$
\begin{array}{lllll}
0 & 1 & 9999 & \text { anm } & 111 \\
001
\end{array} \quad 1 \quad 004 \quad n \quad 1
$$

$$
\left.\begin{array}{rrr}
2999 & 0 & 0 \\
999 & 11100 \\
007 & & \text { thr } \\
9999 & 1110 & n
\end{array}\right\}
$$

$$
\begin{aligned}
& 9999 \\
& 999 \\
& 007
\end{aligned}
$$

$$
\underset{\text { dmd }}{\infty}
$$

然会-3

9.
夕高くら，

Problem 64

m it h.k.t $\dot{8}^{4}$ pw in barley, hekat $1 / 8$ this is.
psš't ${ }^{5} \mathrm{mtr} \cdot \mathrm{t} \quad \mathrm{m}$ hki't $\dot{2}^{7}$
The share average ${ }^{6}$ is : hekat $1 / 2 \quad$ hb 1 hnt 10 di•t m 9 ir tw ${ }^{8} \quad \dot{2} \mathrm{n} \quad$ prw $\mathrm{m} \quad$ i6 The share average ${ }^{6}$ is : hekat $1 / 2$. Take away 1 from 10 ; the remainder is: 9. Is made $1 / 2$ of the difference, namely, $1 / 16$.
 Make up to times 9 ; there becomes hekat $1 / 21 / 16$. Add on to the share average. Take away thou the hekat $1 / 8$ for man each to
Sht hry phwy
include the one under the end.

> ir.t my hpr
> The doing as it occurs:

> dmd 10
> Total 10 hekat.

The ' h '-sign at the end of line 1 on the Plate is probably a form of the verb meaning stand, stop, and was perhaps placed here by the scribe, after he had begun to write the page containing Problems 65-70, to remind him, when he reached the last register, not to begin too closely to Problem 64, which had extended somewhat further to the left than had been expected. See Photograph XXIV. For a probably similar use of 'h 'see Problem 32, line 14.
${ }^{1}$ Literally dividing, and so translated in Problem 1. The diacritical mark on the šis not clear in the transliteration on the opposite plate.
${ }^{2}$ More literally excess, from the verb stem meaning go forth.
${ }^{2}$ That is, neighbor or next one. The stem śn is the word for two; nw is the ordinal ending. See Problem 68.

- Horus eye fraction. See Problem 35, footnote 5.

Derived of course from psš, to divide.
${ }^{6}$ Literally regular.
${ }^{8}$ The passive particle tw written without the w. See Problem 62, footnote 13.

Mistake for 1.

${ }^{2}$ The one under or having the end is of course the last one.

PROBLEM 64

Problem 65

Example of making loaves 100 for man 10; a boatman, a foreman, one at the door ${ }^{1}$, with double
Sšm•t . f dmd.hrek nin ${ }^{3}$ rmt 4 'pr hpr.hr 13 wih-tp m 13
The working-out of it: Add thou the people supplied ${ }^{5}$; there hecome 13 wih-tp $\mathrm{m} 13 \mathrm{r} \quad \mathrm{gm} \cdot \mathrm{t} \quad \mathrm{t} \cdot \mathrm{m}^{6} \mathrm{t} \cdot \mathrm{w} 100$

$$
\text { hpr.hr } \quad 7 \dddot{3} \quad \dot{3} 9 \quad \text { dd } \cdot \mathrm{hr} \cdot \mathrm{k}
$$

wnm pw n pi s
nfw

finding of the loaves 100 ;

1 That is, a door-keeper. The first part of the word, iry, is an adjective derived from the preposition $\mathrm{r}, t o$, at.
= The presence of : in this word is not certain, but it has been inferred from the
used here. The sign represents part of an animal's intestine. The plural of the weak demonstrative and article was
-This word is commonly written without the alphabetic m (Gardiner, 1927, page 52, 859) . Howe down to the time of our papyrus. Later the n was omitted. number of fuller writings and from Coptic. Peet (page 109) and Gunn (page 135) seem to assume . However, the presence of the m in the stem is certain from a ${ }^{\text {s }}$ That is, supplied
${ }^{\text {' }}$ The article or demonstrative accompanying a word modified by a numeral is always exceptions are the cases where the numeral is 100 (feminine), as here, or 1000 (masculine). In these cases the arcticle or demonstrative takes the gender of the umeral. See Problems 72 and 74 and Gardiner, 1927, page 193.
${ }^{7}$ The scribe omitted the fractional

PROBLEM 65

 =

Problem 66

'd h.ki.t 10 pry n rnp.t pty hr.t. ${ }^{2}$ hrw im.f
Fat, hekat 10, goes out ${ }^{1}$ for a year; what is the share of a day therein?
 The working-out of it: Make thou the fat, hekat 10, in ro; there become 3200. Make thou the year in days; there become 365
nys'hr $\cdot \mathrm{k} 3200$ hnt 365 hpr.hr $8 \ddot{3}$ io $2190 \quad \mathrm{ir}^{4} \quad \mathrm{mr} \cdot \mathrm{w}^{5} \mathrm{~m} \quad \dot{6} 4 \quad 3 \mathrm{r} ; \ddot{3}$ io 2190 hr t hrw pw
ir.t my hpr

The doing as it occurs:

1	365
2	730
4	1460
$[8$	$2920]$
$\ddot{3}$	$243 \dot{3}$
10	$36 \dot{2}$
2190	6

$$
\begin{aligned}
& \text { dmd } 8 \ddot{3} \text { io } 2190 . \\
& \text { Total }
\end{aligned}
$$

irr^{6}. k m myt. dd• $\mathrm{t}^{7} \quad \mathrm{n} \cdot \mathrm{k}$ nb-t my tp pn Shalt do thou according to the like in relation to what is said to thee, all, like example this
${ }^{1}$ That is, is issued. The form is the pseudo-participle (old perfective). See Problems 28 , footnote 2, and 35, footnote 1
${ }^{2}$ Literally, that which is under (that is, supports) a day. See Problem 63, foolnole
${ }^{2}$ The scribe first omitted hki.t 10 and then adt) a day. See Problem 63, footnote 2.

- Gardiner (1927, page 341, 8422, 3) belien added it above the line.
equally consistent with that of the perfective active participle, or it might also be the pseudo-participle (in n is a finite form in the passive, although its form is
also in Problems $35,37,38,52,68$ the also in Problems 35,37,38,52, 68 twice, 72, 74, 75, 76, 82 four times, 82 B twice, 83 , and 84 four times; and the ir occurring twice in prone these phrases occurs
the same form.
' The phrase $m \mathrm{r}$ 'w is not accurately used since we have first a fraction of a hekat.
For the form used here see Gardiner the transliteration on the plate. The verb is not
${ }^{7}$ Passive participle. The phrase 1927 , page $353,8440,3$
Passive participle. The phrase dd.t $\mathrm{n} \cdot \mathrm{k}$ nb.t means anything that is said to thee.

PROBLEM 66

Problem 67

tp n hisb bik.w n mnyw ist grt iy.n mnyw pn r irw ${ }^{2}$ hr iw'. w 70 dd•n nysw pn Example of reckoning the dues ${ }^{1}$ of a herdsman. Now then came herdsman this to the cattle-numbering under ${ }^{3}$ cattle 70. Said accountant this
 of cattle to herdsman this, Small indeed is cattle-amount (?) this that hast brought thou. Is then where the cattle-amount (?) of thine great?
 Said herdsman this to him, What have brought I to thee is : $3 / 3$ of $1 / 3$ of the cattle which hast committed thou to me. Count for me and
gm . k wy $\mathrm{km} \cdot \mathrm{kwy}^{11} \quad$ ir•t my bpr
wilt find thou me complete am I. The doing as it occurs:

nys.br $\cdot \mathrm{k} 1$ bnt 6^{12} is
Call thou 1 out of $61 / 18$.

1	6^{12} i8
2	$\dot{3} 9^{13}$
4	$\ddot{3} 6^{12} \dot{18}$
\backslash	$\dot{9}$

1	315
$\ddot{3}^{17}$	210
$\dot{3}^{17}$	105
$\ddot{3} \mathrm{n} \dot{\mathbf{3}} \cdot \mathrm{f}$	70.

315
210
$\ddot{3} \mathrm{n} \dot{3} \cdot \mathrm{f} \quad 70$
n; pw in $\cdot \mathbf{n}^{9}$. f
These, this is, which brought he.
${ }^{1}$ Dues seems to us a better word than produce used by Griffith (volume 16, page 239) and Peet (page 110). Produce in terms of living animals would seem to mean only the young born since the animals were farmed out, or since the last payment of dues.
${ }^{2}$ From the stem of the verb make, do. This word has several meanings (Erman and Grapow, 1925, Wörterbuch, volume 1, pages 113-114) and it is generally held that the ox wich accompanies it in this use is determinative only. ${ }^{3}$ That is, having with him
-The sign here read iw: could also be read ih. The only phonetic writing of a word for cattle in the Rhind papyrus is iw: in Problem 84 , line 2
From the same stem as the verb nyś, call.
The particle wy is sometimes added to adjectives for emphasis. Gardiner suggests (1927 , page 47849) that it is probably the masculine dual ending, which would make the This word is unknown elsewhere and the reading is a patch and the extra stroke in the d of ' n is the thumb of the original sign visible above the patch

See Problem 56, footnote 3. Peet (Plate T and note c) notes the resemblance to pn in line 3 . ctive the n of the stem of this verb is dited in the transliteration on the opposite plate.
ikely, and the abbreviated writing is is doubled, if it perfective the particle n (originally the preposition) is present. These forms each case we have a relative form; if it is imper ${ }^{10}$ Perfective relative form. Periective relative form.

The pseudo-participle (old perfective). For this use see Gardiner, 1927, page 240, §315. See buy of Problem 62 is not common.
dot with this sign elsewhere (in 2 divided by 9 and 17, and in dots with three of these signs, but refers to the first three instead of the last three. He does not note footnote 1 .
dot with this sign elsewhere (in 2 divided by 9 and 17 , and in Problems $17,18,31-33,38,42,61$, and 70).
${ }^{4}$ This phrase may be merely a false start by three instead of the last three. He does not note the absence of th
13
Fractional dot
$\begin{array}{ll}{ }^{16} \text { This phrase may be merely a false start by the scribe, and, in any case it may read ir.tw 70, one multiplies 70. } \\ { }^{16} \text { Participle. Through confusion with the } 100 \text {-sign Pet has } & { }^{13} \text { Fractional dot omitted. } \\ \text { is Redundant } r \text {. }\end{array}$
${ }^{17}$ Through confusion with the 100-sign Peet has placed an f after this

PROBLEM 67

Photographs xxiv-xxv, Register 3 B. M. Facsimile, Plates xviI-xviII

Problem 68

tpy	s 12
The first	man
sn-nw ${ }^{\text {b }}$	8
The second	
bmt-nw	6
The third	
fdw-nw	4
The fourth	
dmd	30
Total	

1	3	$\dot{4} 16 \underline{64} \mathrm{r} ; \ddot{3}$
2		
-	13	4i664 " 4 \%
$\mathrm{l}_{\text {dmd }}$		
dmd	41	28323 " 3

	1	$3 \mathbf{4} \mathbf{1 6 6 4}\left[\mathrm{r}^{\mathbf{3}}\right]^{13}$
	2	
	$\backslash 4$	$13 \dot{4} 1664$ " ${ }^{\text {\% }}$
dmd	fdw n w	$13 \dot{4} \mathbf{1 6 6 4}$ " $\left.{ }^{3}\right]$

shwy $n n^{14}$

$$
\stackrel{\text { tsw.w }}{\text { Fannown }}
$$

List of these:
 $\dot{4} 15$
ro
20
$13 \quad 4 i 664 \quad$ " $3 \quad 13 \dot{3}$
100 hki.t
hekat
100
${ }^{1}$ See Problem 62, footnote 8.
This hekat-sign is superfuous since the word has already been written. Moreover, in combination with an ordinary numeral the hekat-sign should early became interchangeable. Compare Problem 49 , footnote 1 .

- An adjective from the word for head. Unlike other ordinals it is not derived from the stem of the corresponding cardinal, which is wat-Sign should precede, not follow, the numeral. See footnote 16 below.
- The ligature surely includes the w-bird in three of the writings of sn.nw in this problem. It is omitted in Peet's transcription (Plate T).
- The short stroke to the right of this k is doubtless part of an earlier k now largely concealed by a patch. ${ }^{\text { }}$ ' See Problem 66, footnote 4.
' See note to Problem 47.
'See note to Problem 47.
${ }^{10}$ The writing of 6 hekal in this problem and in Problem 82 resembles the abstract number no horizontal stroke in the letter phere.
years later, and the scribe may have intended the special sign for 6 hekat which occurs in Problem 84 , line 3, and in the Illahûn papyri (see Möller, 1900, But this is not a common form for abstract 6 until some 300
${ }^{11}$ When the papyrus was patched at this point the scribe did not notice that the vertical strokes of the tp-sign were visible, and instead of, 1909, volume 1 , page 66), where it resembles the ordinary writing of 60
${ }^{12}$ Photograph XXV shows traces of finger-prints on a patch at this point. Whether they are ancient or modern even an examination of of merely adding a loop he rewrote the sign completely on the patch
${ }^{13}$ The scribe who wrote on the patch here omitted $13 / 2 \mathrm{ro}$, and he also omitted $3 / 2$ ro at the end of the total below. The signs may not have been missing originally.
but allows it to appear as restored in
" We have followed Peet in translating nn as though used in its absolute sense (Gardiner, 1027. page 86, 8111), but we believe that it is als
seem to dietate a choice. The fact that nn ends the phrase in red ink is not important, nor, apparently, is the space between sbwy nn and ssw.w, for the latter appars these foremen. The arrangement of words does not ${ }^{16}$ The the line above.
their nouns except those in the hundred hekat notation, which precede the hekat-sign. See, for example, Problems 41-44, 46. Whole numbers of ro preceded, not followed, the 100 -sign, since numerals are written after

PROBLEM 68

 21 sm ypt t.n t.si wi oor $[t] .3 \mathrm{ct} \cdot \mathrm{skh}-\mathrm{t}$
 ~ 03 m pt-h. $\mathrm{h} \omega$ k.uh. M1110 签9.02

Problem 69

nd hkj.t 3 i ir m ti.w 80 dy k rb. y rht $\mathrm{w}^{4} \cdot \mathrm{t}^{1}$ im m nd $\mathrm{dy} \cdot \mathrm{k}$ rh.y pfsw ${ }^{2}$. sn Meal, hekat $31 / 2$, made into loaves 80. Cause thou that know I the amount of a unit therefrom in meal, cause thou that know I the pefsu of them.
ir.br $\cdot \mathrm{k}$
Make thou the operation m $32 \begin{array}{lllll} & \mathrm{r} & \mathrm{gm} \cdot \mathrm{t} \quad 80\end{array}$
Make thou the operation on $31 / 2$ for the finding of 80 .

	1	$3 \dot{2}$
	10	35
	$\backslash 20$	70
	\backslash	7
	苂	$2 \dot{3}$
	$\backslash 21$	6
	\backslash	2
pfsw	223	21^{3}

$\backslash 1$		
$\backslash 2$	$45 \dot{3} \dot{4} 14 \dot{2} 8 \dot{4} 2$	
$\backslash 1$	$11 \dot{3} \dot{14} 4 \dot{4} 2$	
\1	320	
\backslash	640	
$\backslash \dot{2}$	160	
dmd	$1120 \mathrm{~m} \mathrm{r} \cdot \mathrm{w}$	
Total	in ro	
1	$\dot{3} 2$	4 r
2	1664	
4	$\dot{8} \dot{3} 264$	
8	41632	
$\backslash 16$	288 16	
32	14884	3 "
$\backslash 4$	$2 \dot{2} \dot{4} \dot{3} 264$	
hpr nd hki.t $3 \dot{\mathbf{2}}$There becomes meal : hekat $31 / 2$.		

ir
$\mathrm{w}^{\prime} \cdot \mathrm{t} \mathrm{n} \cdot \mathrm{t} \quad \mathrm{t} \cdot \mathrm{w} \mathrm{m}$ nd $\dot{\mathbf{3}} 2 \mathbf{4} \mathrm{r}$;
As for the amount of a unit of the loaves in meal, $1 / 324$ ro [this is].s
1 The sign here transcribed t seems the same as that which we read as w in Problems 63 , lines 2 and 5,83 , line 3, and 86 , lines 5 and 6 , and one could read one thereof here
ut we believe that $w^{\prime} \cdot t$ was intended since it 0 curs in the statement of the answer in this problem and is shown to have lowing feminine genitive adjective n.t, alth agh in both the latter cases the sign for t resembles that used here. Peet is been intended in Problem 70 , lines read one thereof here. Problem 70, line 2, but has a dot in $d 3$ where t seems required. Where t would not be expected Peet has w (Problem 83 , lin 3), in his transcription of the sign 4 ,
 ${ }^{2}$ We have followed Peet in transliterating all the consonants used in writing this word. The stem was originally written ffs. Later the the units.
involving other consonants also p was added, although the f was retained in writing. Late writings show psiw, with the unpronounced the pronunciation of the first consonant prob-
${ }^{2}$ Here should follow the operations designated d (proof meaning of pefsu in Problems $69-78$ see volume 1, page 105 .

- The patch at this point may conceal an earlier t.

PROBLEM 69

Photographs xxiv-xxv, Register 5 B. M. Facsimile, Plates xvir-xviII

Problem 70

 $\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k}$ wih-tp m $7 \dot{2} \dot{4} \dot{8}$ gm.t $\quad 100$
Make thou the operation on $7 \begin{array}{llllll}1 / 2 & 1 / 4 & 1 / 8 & \mathrm{r} \text { for the finding of } 100\end{array}$
$15 \dot{2} \dot{4}$
312
63
dmd $99 \dot{2} \dot{4} \quad \mathrm{~d}$
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad \mathrm{w} \cdot \mathrm{h}-\mathrm{tp}^{8} \mathrm{~m} 100 \mathrm{r} \quad \mathrm{gm} \cdot \mathrm{t} \quad 2520$
Make thou the
The total is $99 \quad 1 / 2414$, the remainder is $1 / 4$.

$$
\begin{array}{ccc}
\text { Make thou the operation on } 100 \text { for the finding of } 2520 . \\
1 & 100
\end{array}
$$

Double the fraction for $1 / 4$.
$42126 \quad \dot{4}$
pfsw m $12 \ddot{3} \dot{4} 2 \dot{1} 26$
The pefsu is : $123 / 31 / 421 / 126$.

ir
100
$10 \quad 1000$

10	2000
5	

$\begin{array}{lr}5 & 500 \\ 5\end{array}$
As for the hr.t w't n•t ti.w m nd i6 $\quad \mathbf{6} 4 \dot{5} \quad \mathrm{pw}$

A special hieratic sign is used here and in Problems 75 and 84 for 7 hekat, and in Problem 53 for 7 selo
This is the word which we have translated share in Prober

- An adverb derived from the have translated share in Problems 63 and 66. See Problem 63, footnote 2

An adverb derived from the preposition m . It occurs also in Proble 60. Ser Problem 63, footnote 2.
the word for which it would stand, is repeated.
 ${ }^{-}$See Problem 61, footnote 2.
${ }^{7}$ See note to this problem in Volume 1. In the writing of 500 in 2520 one would expect to see the
not clear on Photographs XXIV and XXV and does not appear in the British Museum Facsimile.
'The short vertical stroke below and to the left of the tp-sign seems accidental.

$$
\begin{aligned}
& 12 \ddot{3} \dot{4} 2 \dot{1} 26 \\
& 25 \dot{3} \dot{2} 1 \dot{6} 3 \\
& 50 \ddot{3} 14 \dot{2} 1 \dot{1} 26 \\
& 6 \dot{3} \dot{8} 4 \dot{2} 52 \\
& 36^{6} 16855^{0} 4 \\
& 1 \dot{2} \text { i } 2 \dot{3} 36 \dot{1008}
\end{aligned}
$$

PROBLEM 70

[^9]
Problem $7 I$

Beer, des $1 ; 1 / 4$ of it has been poured off, then has been it diluted with water. Has been weakened it to pefsu what? ir hr $\cdot \mathrm{k} \mathrm{p}$; ds 1 m bšo \qquad bš: $\dot{2}^{10}$

$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \dot{4} \dot{8} \quad \mathrm{r}$
$\mathrm{gm} \cdot \mathrm{t} \quad 1$
$2 \ddot{3}$
pfśw ${ }^{7} \mathrm{~m}^{11} 2 \ddot{3} \mathrm{pw}$
Make thou $1 / 41 / 8$ for the finding of 1 ; there become $23 / 3$; a pefsu of $23 / 3$ this is
${ }^{1}$ In late times the word for beer was masculine and had the
beginning, being for some reason omitted in the writing. However, the call h, n, k. The n may either have intruded into the stem or have existed from the have little force here, as it seems to us. But see Gardiner 1927, page 52, $\$ 59$, and
${ }^{2}$ A vessel of fixed capacity used as a liquid measure (Peet, page 117). The ordinary writing
diagonal strokes of the y see Wörterbuch, volume 1, page 552, under psw.
The stem is sty but the y is omitted as is usual in most forms of
This verb, which we have met in Problems 32 and 64 (see the general notems ending in y. The form appears to be the pseudo-participle (old perfective) forms of the principal verb, in this case the pseudo-participle (old perfective.) See Gardiner 1027 problems), is often used as an auxiliary and is followed by variou ${ }^{6}$ Griffith (1924 [1923], page 104) cites another occurrence of this stem in Paeyrus Aner 1927, page 391 §476, and page 394, § 482 .
the word in in British Museum, Plate CI, line 5). He suggests that the man hastasi V, of a date some 400 years later than the Rhind papyrus (Selec - We have followed Gunn (pages 135-136) in translating this rare word
${ }^{7}$ We have rendered the determinative of pfsw here ang in rare word
Problems 73, 74 (first occurrence), 75 , and 77 by plural strokes only instead of by the loaf with
The interrogative m is not an adjectiv
${ }^{\circ}$ The sign generally read $\mathfrak{s}:$, as in this word and in se considered here as in apposition to pf 5 w (Gunn, page 136 ; see also Gardiner 1927, page 406, $\S 496$). the first season of the Egyptian year, but the hieratic sign in $h \cdot \mathrm{~b} \cdot \mathrm{t}$ in this papyrus differs sharply from the sign when read as 2 , and Number 87), the name of represented by a horizontal line in the former case. This difference appears also in earlier papyri but is not noticeable after the the three lotus blossoms being
${ }^{10}$ As Peet points out (page 117), the scribe, after writing the determinative of bš farlier papyri but is not noticeable after the time of the Rhind
used the ordinary sign for $1 / 2$ instead of the Horus-eye notation.
${ }^{1 "}$ As Gunn shows (page 135, middle), this is the use of m verbless sentence as does the m in the phrase di:t $m \dot{4} \dot{\delta}$ above

PROBLEM TI

Problem 72

$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k}$ 'iw w^{6}
bpr.br 35 ir.br a k 10 r
$\mathrm{gm} \cdot \mathrm{t}$
m.t 35 bpr.br 3 i ir.br $k 100$

Make thou the excess of 45 r 10 ir.br k 10
inding of 35 ; there bp
wih.hr $\mathrm{k} \quad 100 \mathrm{hr} \cdot \mathrm{s}^{8}$ hpr. $\mathrm{hr} \quad 450 \mathrm{dd} \cdot \mathrm{hr} \cdot \mathrm{k}$
Add thou 100 to it. there become 450 Sdy db: ${ }^{\circ} \mathrm{pw}$
t:10 ti.w
10 r $100 \mathrm{~m} \quad$ ti.w
Make thou 100 up sp.w 3 hpr.hr
till ti-w
45 r 450
$\mathrm{ir}^{11} \mathrm{~m}$
wdy.t ${ }^{12}$
10.
, 100, with loaves of 45,450 , making in wedyet-flour 10 hekat.
is not always the case when the last of the consonants represented by the sign is one of the complementary letter corresponding to the last of the
line 2 , in 's there is a con
${ }^{2}$ See Problem 63, footnote 1 . This is the and in wsir there is a complementary ś but no r. 'Here for 100 loares of pefsu 10 is writhe method of writing this word employed by the scribe
45. Similar expressions occur in Problems 73-78. In the text a dot or a sign like the letter r between the numbers, Ines. See also Problem 73, line 1.
${ }_{W}$ appears that the full form of this phrase read t t.w m pfsw X text we have used the letter r , but in the tramsliteration the same way, near the end of this proble ${ }^{3}$ That is, for.
Worterbuch, volume 1, page 552. In certain cases in the Rhind (Problems 77 and 78) ine baking are so many from the hekat, the plates we have left a blank space between the nums for 450 loaves of pefsu and 20 , lines 1 and 2. 5 The third 1 and 2 .
after the word for loaves, and the pefsu-indicator follows with the b-like the number indicating the pefsu. In the Golenishchev nd 36. See Wörlerbuch, volume 1, pere and in Problems 76 and 78 seems much more like a feminine t tha strokes with may be an erased vertical stroke after sp as Pest and W) reads the sign as the determinative found with ' b ' in the earlier used as determinative of the word ' h ' which occurs in Problems $24-27$, $30,-3$. ${ }^{5}$ The feminine suffix is , line 3, and those with pfsw in Problems (Plate V, note b) but in any case there seem to be plural strokes written with a ligature which 'See Problem 22, footnote 1 .
${ }^{\circ}$ Peet (page 118, bottom) and because its antecedent is thought of as 100 , a feminine noun) multiplied Problem 78.

lis is the exchange, namely, the 100 loaves, etc.
"Note that the
 51, 856 , and references given. It should be borne in mind that the ordinary hieratic wis is mermally be the case with an alphabetic complement to the footnote 4 .
the Title-page (sfdw, line 2 , and

 77 line 2) or possibly two (Problem 75 lin lines 3 and 5, and 77 lines 2 and a1, as Peet has noted. Compare also outside the Rhind) and do occur with it in Problems 73 line 2 below. But the position of the stroke grain-measure, not only where the word grain-measure, not only where the word hekat may have occurred earlier in the Problem, with a following hekat-sign resulting in omission. Finally, in Problem 74 line 1 . In only one of these instances (Problem

PROBLEM 72

 7.... 2 垂 13 ,

Problem 73

my dd $\mathrm{n} \cdot \mathrm{k} \quad \mathrm{t} \cdot \mathrm{w}^{1} 10 \mathrm{r} 100^{2} \mathrm{db} ; \quad \mathrm{m}$ pfśw $\mathrm{w}^{3} 15 \quad \mathrm{wr}^{4} \quad \mathrm{pw} \mathrm{r} \quad \mathrm{db}$. s^{5} If is said to thee, Loaves of 10,100 , exchanged with pefsu 15 ; how many is this for the exchange of them?
$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad$ hr•t $\quad \mathrm{t}^{\prime 6} \mathrm{t} \cdot \mathrm{w}$ r $100 \mathrm{~m} \quad \mathrm{wdy} \cdot \mathrm{t} \quad \mathrm{m} \quad(\mathrm{ky} \mathrm{t} \cdot \mathrm{w} 10)^{7}$
Make thou the basis of the loaves 100 in wedyet-flour, namely,
dd br $\cdot \mathrm{k} \quad \mathrm{db}$; s pw
Say thou, The exchange of them this is.

| ir•t $\cdot \mathrm{my}$ | hpr | $\mathrm{t} \cdot \mathrm{w}$ | 10 | r | 100 |
| :---: | :--- | :--- | :--- | :--- | :--- |$\quad \mathrm{db}: \quad \mathrm{m} \quad \mathrm{t} \cdot \mathrm{w} \quad 15[\mathrm{r}] 150$

${ }^{1}$ See Problem 63, footnote 1, and 72, footnote 2.
${ }^{3}$ See Problem 71, footnote 7.
${ }^{5}$ See Problem 72, footnote 8, and compare Problem 65, footnote 6. 'This word occurs also in Problem 45, line 1.
${ }^{7}$ The words in the parenthesis do not belong here. On the plate the parenthestem 65 , footnote 6 .
from which the Rhind was copied the words " m wdy.t m " came at the end of a line and that the first linumer 10. Peet ingeniously suggests (page 119) that in the papyrus on into 76 before realizing his mistake, and then forgot to erase these words and to insert " 10 hekat." In this omission was very close at the left so that the copyist wrote abstract number 10 copied from Problem 76.

PROBLEM 73

Problem 74

$$
\text { Šm } \text { Egyptian barlery }_{200 \mathrm{hk} \cdot \mathrm{tt}}^{200 \text { dd } \cdot \mathrm{br} \cdot \mathrm{k}}
$$

irb.r.k in $200 \mathrm{hk} \cdot \mathrm{t} \quad \mathrm{m} \quad 100 \mathrm{hk} \cdot \mathrm{t} \quad$ ir•br$\cdot \mathrm{k} \quad 100 \mathrm{hk} \cdot \mathrm{t} \quad \mathrm{sp} \quad 10$ hprbr 1000
 ir.br.k pi ${ }^{7} 100$ hki.t r sp 20 bpr.br 2000 rbt pw n pfsw 20
Make thou the 100 hekat up to times 20 ; there become 2000 , the amount, this is, of pefsu 20.
ir t my bpr
The doing as it occurs
${ }^{1}$ See Problem 72, footnote 4.
ti•w 5 r 1000 ir ${ }^{8} \quad \mathrm{~m}$ wdy.t 200 hkj.t Loaves of 5, 1000, making in wedyet-flour 200 hekat;

| db;
 the exchange:
 " | 10 " 1000 | 100 " |
| :---: | :---: | :---: | :---: |
| 20 " 2000 | 100 " | |

${ }^{2}$ Masculine singular suffix and article to agree with the number 1000 . Compare Problems 72 , footnote 8 , and 65 , foaves of pefsu 10 as might be thought.
${ }_{4}$ This appears to be the verb which
plate read y for w as the last consonant. It is unnecessary to write f in the the word pfsw is derived, but having here a special reversed meaning, to reduce to grain. On the 5 This is the equivalent of the more common it šm ${ }^{\prime}$. Cory to write f in the stem here since the alphabetic sign does not occur in the original.
${ }^{5}$ This is the equivalent of the more common it šm'. Compare it mh in Problem 83, lines 5 and 6.
${ }^{7}$ The scribe wrote the masculine article here although both the numeral and the noun following are feminine.
${ }^{6}$ See Problem 71, footnote 7.
agrees with the masculine numeral 1000. See footnote 3 above.
perhaps still had in mind the article in line 1, which ${ }^{8}$ See Problem 66, footnote 4.

$$
\begin{aligned}
& \text { Another. Loaves of 5, 1000, exchanged with } 10 \text { and } \stackrel{\text { r }}{202} \text { pty what is the exchange of them? } \\
& \text { psy }{ }^{4} \cdot \mathrm{br} \cdot \mathrm{k} \quad \mathrm{p}^{3}{ }^{3} \mathrm{t} \cdot \mathrm{w} \quad 5 \mathrm{w} 1000 \quad \text { bpr-br } \\
& \text { hpr.br šm's }
\end{aligned}
$$

PROBLEM 74

Problem 75

ky ti.w 20 r $155^{2} \quad$ db; m pfśw 30
Another. Loaves of 20,155 , exchanged with pefsu 30 .

Make thou the loaves of 20, 155, in wedyet-flour; hekat $7 \frac{1 / 2}{} 1 / 4$ this is. Make up to times 30; there become $2321 / 2$
ir.t my bpr
The doing as it occurs:

$$
\text { ti.w } \quad 20 \text { r } 155, \quad \text { ir } r^{5} \quad \text { m } \quad \text { wdy t } \quad 7 \dot{\mathbf{2}} \quad \dot{4}
$$

$$
\text { Loaves of } 20, \quad 155, \text { making in wedyet-flour } 71 / 21 / 4 \text {, }
$$

$$
\mathrm{db} ; \quad \mathrm{m} \quad 30 \times 232 \dot{2}
$$

exchanged with
${ }^{1}$ The horizontal stroke in the hieratic representing the plural strokes is omitted in the British Museum Facsimile and Peet was thus led to omit the strokes on
his Plate V. $\quad{ }^{2}$ See Problem 72. footnote 4.
See Problem 71, footnote 7. The phrase pfsw 30 here stands for a number of loaves of pefsu 30.
'See Problem 65, footnote 6 .
'See Problem 65, footnote 6.

PROBLEM 75

> 9ロ00 $\omega p \dot{4} \dot{z} 7$ t.3kh t.y $\mathrm{d} \omega \mathrm{m} \quad 551$ o2 w.3t 3p k.rh.ri

$$
\begin{aligned}
& \text { 0 }{ }^{0000}
\end{aligned}
$$

Problem 76

ky $\mathrm{t} \cdot \mathrm{w} 10 \mathrm{r} 1000^{\prime} \mathrm{db} ; \mathrm{m} \quad$ 'h't ${ }^{2} \quad \mathrm{t} \cdot \cdot \mathrm{w} \quad 20 \quad 30 \quad \mathrm{sdm} \cdot \mathrm{f}$
Another. Loaves of 10, 1000, exchanged with a number of loaves of 20 and 30. Shall hear he ${ }^{3}$.

$\mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad$ hr-t $\mathrm{p}^{4} \mathrm{t} \cdot \mathrm{w} 1000 \mathrm{~m}$ wdy.t m hki.t 100 hki.t ir sp 12 hpr•t ${ }^{5}$ im pw 1200 Make thou the basis of the loaves 1000 in wedyet-flour, in hekat: 100 hekat. Make times 12; what results therefrom this is: 1200
db: f. f4 m 20
The exchange of it is : 20 and 30 .
${ }^{1}$ See Problem 72, footnote 4.
${ }^{3}$ That is, the scribe, although none has been mentioned.

- See Problem 74, footnote 3
${ }^{\text {' }}$ 'The diagonal stroke at the base of the sign for 5 hekat is a mistake.
$\begin{array}{cccc}\mathrm{t} \cdot \mathrm{w} \quad 10 \mathrm{r} & 1000 \quad \mathrm{ir}^{6} \mathrm{~m} \quad \text { wdy } \mathrm{t} & 100 \mathrm{hk} \cdot \mathrm{t} \\ \text { Loaves of } 10, & 1000, \text { making in } \text { wedyet-flour } & 100 \text { hekat. }\end{array}$

20	1200	$\dot{2}$	10
30	1200	$\dot{4}$	15^{7}

${ }^{2}$ See Problem 72, footnote 5.
${ }^{6}$ See Problem 66, footnote 4.

PROBLEM 76

$\begin{array}{lll}17 . & \delta & \pi \\ 11 \times, ~ & 5 & \cdots\end{array}$

Problem 77

tp n db; hk.t m ti.w my dd $n \cdot k$ hk.t ds $10 \quad$ db; m pfśw 5
Example of exchanging beer with loaves. If is said to thee, Beer, des 10 , exchanged with pefsu 5 .
$\mathrm{ir} \cdot \mathrm{br} \cdot \mathrm{k} \mathrm{p}^{; 2}$ hk.t ds 10 m wdy.t $5 \mathrm{pw} \quad \mathrm{ir} \cdot \mathrm{hr} \cdot \mathrm{k} \quad$ hki.t 5 sp.w 5 bpr.hr
$25 \mathrm{dd} \cdot \mathrm{hr} \cdot \mathrm{k}$
db: $\mathrm{f}^{2} \mathrm{pw}$ Make thou the beer des 10 in wedyet-flour, 5 this is. Make thou the hekat 5 times 5 ; there become 25. Say thou the exchange of it this is
ir.t my bpr
The doing as it occurs:

h.k.t	ds $10 \quad$ wdy•t h.j.t 5
Beer,	des 10 , wedyet-flour, hekat 5 ,

db: m ti.w 5 r 25°
exchanged with loaves of 5,25 ,

[^10]10
1

$$
90^{\circ} \circ \square_{0}
$$
$$
\omega p 5 \text { t.ydw mol sd t.kh 3p K.rh.ri } 5 \text { wsfp } m \quad 3 b d
$$

Problem 78

Example of exchanging loaves with beer. If is said to thee, Loaves of 10,100 , exchanged with a quantity of beer of 2 .
ir $\cdot \mathrm{br} \cdot \mathrm{k}$
$10 \mathrm{r} 100 \mathrm{~m} \quad$ wdy.t
Make thou the loaves of 10 r 100 m wdy.t $10 \quad \mathrm{pw}$
$\mathrm{db}^{4} \cdot \xi^{5} \mathrm{pw}$
the exchange of it this is.
1 The scribe first omitted the word db: and then added it above the line.
${ }^{2}$ See Problem 72, footnote 4 .

- The British Museum Facsimile omits the curved stroke of See Problem 72, footnote 5.
${ }^{6}$ Feminine to agree with thimile omits the curved stroke of the db i-sign.
Feminine to agree with the number 100, a feminine noun. See Problem 65, footnote σ.

PROBLEM 78

Problem 79

$w^{4} \cdot t^{1}$	imy $\cdot \mathrm{t}-\mathrm{pr}(\text { ? })^{2}$	pr.w	7
A	house-inventory (?)	houses	
1	2,801	myw.w	49
2	5,602	cats	
4	11,204 ${ }^{3}$	pnw.w	343
		mice	
Total	19,607.	bd.t	2,301
		spelt	
		h.k't	16,807
		hekat	
		dmd	19,607.
		Total	

${ }^{1}$ This heading is very corrupt. The phonetic part of $w^{\prime} \cdot t$ is clear but either the usual stroke determinative is absent or the imy-sign is not here. We agree with Peet (page 122) that $w^{\prime} . t$ imy.t-pr is as likely a reading as anything that or the imy-sign is not here. We agree with Peet (page 122) that $\mathbf{w} \cdot t$ imy.t-pr is as likely a reading as anything that can account for the hieratic as it stands, but we do not see how the stroke and the imy-sign can both be present as on Peet's Plate W. When the word w^{*}, one, precedes its noun the two are always connected at this period by the genitive n and one wonders whether the light horizontal stroke of the sign tentatively read imy is possibly an n added later. This would, of course, make the reading imy.t-pr impossible while it would restore the stroke to w.t. 8 , where it has here would be most unusual for imy at this time.

2 The wnm) the sign has two vertical strokes. The compound means hat adjective from the preposition m .
he first part of the word is an
${ }^{3}$ Note the sign for 10,000 .

PROBLEM 79

Problem 80

[^11]to the heading of the problem. It may be vessel known as dbh may have contained a hickat, which would give point middle kingdom tomb-reliefs and funerary models, for the cylindrical hekat-measure which appears in the old and words. That the dbb is of wood is shown by its determinative, whinhic writing of the word hekat and many other words. That the dbb is of wood is shown by its determinative, which represents the limb of a tree with lopped
branches. This sign has also the phonetic value bt in many words, Problems 49-52. ${ }^{2}$ This is prob
337 bottom and page 340 top. A passive participle might form without expressed subject. See Gardiner, 1927, page $286, \S 369$), but it should be the imperfective (h:1.w) of customary here (Gardiner, 1927, page 293, \& 376, and page normal English word-order the phrase would read, the vessel woith which it is mee Gunn, page 136, footnote 1. In the the last sign in biy.w, as Gunn suggests (page 136, footnote 2), one would measured or with which one measures. Fo seems to be the plural written (influenced doubtless by the frequency of their occurrence as determinative, but what ${ }^{3}$ The y of the adjal strokes.
are attached to the rooms or offices. Compare iry-: in Problem 65 .

PROBLEM 80

\doteqdot =
検 $\stackrel{x}{\bullet}$
忟え,
Problem 8 I

$3{ }^{\text {pw }}$		As for hekat $1 / 2$ 1/4 $1 / 8$		
		hk; .t	$2 \dot{4}$	+
33 this is of a hekat:				
$\dot{5}$	"	a hekat:	i8	
3	"	".	$\dot{4} 8$	
خ		." .	${ }^{2} \dot{2} \dot{3} 2$	4 r
				ro
5			4	
-			816	4 "
[6]		.	[8] $\dot{3} 2$	$3 " \dot{3}$

> There are manv numoricol wis.

z The scems likely from its non-appearance in Photograph IV
${ }^{\text {a }}$ See note to Problem 47 . - See note to Problem 47.
expression above. These signs may edge of the papyrus, Peet observed (page 123, fot
${ }^{6}$ Peculiar form. Perhaps the scribe first Photograph XXVI at the lower edge near the left, and they have upper part of the signs for $3 / 16$ hekat and
'Peculiar form. Perhaps the scribe first wrote 20 and then corrected to 30 .
Following this the scribe first wrote $r i \dot{3}$ and then crossen corrected to 30 .
\qquad ${ }^{7}$ The scribe omitted the fractional dot.

PROBLEM BI

$1333 m \times 1 / 4$

Photographs xxvi-xxviII, Register 6 B. M. Facsimile, Plates xviII-xx

Problem 82

htr
r: šd 3 wnm ${ }^{4}:$ pd 10
Goose fatted eats, bird 10 ,
ir ${ }^{5}$ n hrw 10
Making for day 10
ir n hrw 40
Making for day 40
nt.t ${ }^{6} \quad \mathrm{r}$ nd made in loaves as the portion of a day

That which is to be ground to produce (?) it is spelt hekat 100 hekat $501061 / 21 / 81 / 32 \quad 3$ ro $1 / 3$,
nt-t $\quad \mathrm{r}$ hb.t hft io
That which is to be taken away according to $1 / 10$ is

$$
\underline{d}: \cdot t
$$

\qquad rd•t
The remainder, which is to be given, is
ir m šs mhk.t.
Making in grain in hekat,
ir m 2-hki:t
Making in double hekat,

wdy-t	$2 \dot{\mathbf{2}}$
wedyet-flour	$21 / 2$;
	$\dot{4}$
	$25 ;$
	100 hk; t
	100 hekat.

$100 \mathrm{hk} \mathrm{k} \cdot \mathrm{t}$
100 hekat.

t ${ }^{\text {a }}$	$348{ }^{10}$	$416 \quad 64 \quad$ r: 3

$\begin{array}{llllll}4 & 16 & 64 & r\end{array}$
$1 / 41 / 16^{1 / 64}$ ro 75.
$\begin{array}{lllll}\dot{\mathbf{2}} & \dot{8} & \dot{3} 2 & \mathrm{r}: \dot{\mathbf{3}}\end{array}$
$1 / 21 / 81 / 32 \quad 3$ ro $1 / 3$.
$10^{11} \dot{4} 8 \quad \dot{4} \quad \mathbf{i} 6 \quad 64 \quad$ r: $\quad \ddot{3}$ $5010258 \quad 1 / 41 / 16^{1 / 64} \quad$ ro $3 / 3 ;$
$\begin{array}{llllllllll}\dot{2} & 10^{11} & \dot{4} 8 & 8 & \mathbf{1} 6 & 64\end{array}$ r: 3
$5010258 \quad 1 / 4^{1 / 16} 1 / 64 \quad$ ro $3 / 3$;
$20^{11} \dot{4} 2 \quad \quad \dot{\mathbf{2}} \dot{4} \dot{6} 4 \quad 3 \mathrm{r}$ ris
$20252 \quad 1 / 21 / 41 / 64 \quad 3$ ro $1 / 3$

Problem $82 B$

ir^{3}				
n hrw	10			
Making for day 10		10	2	$\dot{4}:$
40	10	2	$1 / 4 ;$	
40	$\dot{2}$			
		$50 ;$		

ir n šs m 2-hki.t
Making of grain in double hekat,
$10103 \dot{\mathbf{2}} \dot{\mathbf{4}} \dot{\mathbf{8}} 4 \mathrm{r}: \dot{\mathbf{4}} \dot{\mathbf{6}} \dot{\text { or }}$ $1010 \quad 3 \quad 1 / 2 \quad 1 / 41 / 84$ ro $1 / 41 / 61 / 6$.
fowl-yard was a rectangular enclosure of poles, bets. The reading nmt.t-ipd-w was suggested by Griffith (in his review listed in the Bibliography under Peet, 1923, 1). As we know from the tomb-reliefs the ${ }^{2}$ Translated share and basis in other Problems. See Problem 66, footnote 2.
${ }^{\text {L }}$ Literally nourished. The stem is actually y sdy. We know from the tomb-reliefs that geese were often fattened by forcible fer
${ }^{4}$ As to ir here and below see Problem 66, footnote 4.
feeding.
${ }^{\circ}$ See Problem 43, footnote 3. The 1 Psiciple (old perfective).

${ }^{3}$ If the latter two signs having been made as a ligature which was misread as part of the writing of nd We should then have had nd rir holdig a tool, determinative of nd, with the preposition If bd.t was intended the ligature following the word-sign is
1927, page 198, example 17) is a small circle over plural strokes. The word bk:.t following bd.t and sw.t has been omitted from the transiter. Peet's reading of the ligature (given also in Gardiner,
This word was originally written sw.t, with the other s.
${ }^{\circ}$ Here and in lines 9,10 , and 15 below occurs the special sign for 8 hekat.
${ }^{41}$ Note that in these places the sign for 10 hekat precedes the $1 / 4$-sign used for 25 hekal.
"Or the relative n-form of the verb from the same stem, which it eats, in which case one would expect for determinative the man with hand at his mouth which Peet suggests was intended here.

PROBLEMS 82 AND 82B

Problem 83

1 From a stem btm meaning to close, seal. The above word appears to be a collective noun, but, as Gunn says (page 136), it may mean pen or coop. The reference is presumably to geese fattened in a coop and not allowed the freedom of the fowl-yard. ${ }^{3}$ See Problem 66, footnote 2
That is, of the Delta. The writing of the compound word is evidently corrupt here. It is on a patch.
69, footnote 1.
${ }^{6}$ It is perhaps more likely that the stick and grain-measure in these two lines represent the word hki.t than that they are pagn shows ducks' heads protruding from a pond.
borne out in the second line, where we should certainly expect bki.t to end the statement. The first grain-measure in this line must of the writing of it mh, as suggested on the plate. This is ${ }^{7}$ See Problem 66, footnote 4.
${ }^{8}$ The sun-disk has been omitted by Peet in his transcripsion of a part of the word it.
${ }^{12}$ A goose is used as general
ects.
${ }^{4}$ Pseudo-participle (old perfective).
${ }^{2}$ I A scribe has transposed the first consonants in these two words, which are properly sir and s.t.
${ }^{14}$ A total, probably of hekat, has been omitted by the Rhind scribe, and perhaps was lacking also in the text from which he copied.

Problem 84

htr kw md.t n•t iw: w
Estimate of the food of a stable of oxen.
$\mathrm{d}^{1} \quad ; \cdot \mathrm{t}^{2} \quad \mathrm{t} \cdot \mathrm{w} \quad \mathrm{hk} \cdot \mathrm{t}$
Put down (?), loaves ${ }^{3}$ of a hekat.
iw; wnm ${ }^{4}$
Ox, that which eat
nn wnm ${ }^{7}$
That which eats dmd
Total

204
fine one, Upper Egyptian ox šm'
Upper Egyptian ox (?)

202
202
202
20
(?)
$\operatorname{areign}(?)$ ox

204 hekat

20
20
20
20
20
$8^{8} 6$
86
9^{10}
$\begin{array}{lll}9 & & \\ \dot{2} & \dot{4} & 105\end{array}$
5025105
$200 \mathrm{hk} \cdot \mathrm{t}^{15}$
200 hekat
$\dot{2} 101 \dot{2} \dot{8} 3 \mathrm{r}$;
$501011 / 21 / 83$ ro
d 'š; hki't
Put down common food by the hekat.

Making in double heka

One can only agree with Peet (page 127) that "with this problem the papyrus reaches its limit of unintelligibility and inaccuracy."
Peet's readings and explanations (page 127) that "with this problem the papyrus reaches its limit of unintelligibility and inaccuracy." We have in the main followed Pet's readi.n, but. have made certain gucs wifer from his.
${ }^{1}$ This form is conceivably from wdy, put, which is often written with alphabetic d alone. It is perhaps an imperative or an infinitive with passive meaning. Masculine infinitives of this verb are known, although it belongs to the class of verbs having for their third radical a weak consonant, which normally have a feminine infinitive. If d is a form from wdy these two sentences might be freely rendered in English as Given X . . Given Y for the alternative kinds of food.
${ }^{3}$ If the reading loaves is correct it is in line with Problem 82, where another kind of grain-eating domestic animal receives what is Perhaps the name of a special kind of food.
This is likely to be the relative form of the verb, though one would expect the feminine t to be present since there is no definite antecedent.
${ }^{5}$ The special sign for 6 hekat.
It be placed under the lizard and an interrogation mark should represent the transliteration of the to be read which corresponds to šm' above. On the plate the letters of ' \mathfrak{s} : should be placed under the lizard and an interrogation mark should represent the transliteration of the unknown word written with the stick and the ox

有 intended this, since he had room to write nn wnm in the same line with dmd; moreover, nn wnm, though unnecessary, is parallel with wnm in line 2 .
${ }^{10}$ The special sign for 9 hekat.
0 For this and the three similar form special sign for ${ }^{11}$ The special sign for 7 liekat.
The plural ending has been omitted in the transliteration on the plate.
${ }^{13}$ The hieratic sign here and in the line below is the equivalent of ditto. It is found also in Number 86 and in other papyri. Its hieroglyphic counterpart is not known. On the plate we have followed Peet as to the form used in the hieroglyphic transcription.
${ }_{4}$ The figures for a month and in the resolution into double hekat are obviously incorrect.

PROBLEM 84

 "ll R才,

Photographs xxvil-xxviII, Registers 1-3 \quad B. M. Facsimile, Plate xx

```
Number 85
    wh' . k t; hpy.t ...s... f my rh.t.n . f
Interpret thou the strange thing
he, according to what knew he.
```

The text is written in what is known as "cursive hieroglyphic," with signs made more carefully than in hieratic. Gunn seems to have rightly recognized it as an example of the so-called "enigmatic writing." It appears to be the only known inscription of the kind which is earlier than the XVIII dynasty. The other known examples belong to the XVIII-XXI dynasties. The existence of this "secret writing" was first discovered between 1825 and 1830 by J. F. Champollion, the decipherer of Egyptian hieroglyphic writing, when he noticed such inscriptions in the tombs of the kings at Thebes, and he published in his Grammaire égyptienne, Paris, 1836, lave been T. Devéri whed, with a correct statement of their secret values. Other students of the writing 2, Paris, 1897, pages 49-80, Bibliothèque égyptor least as early as 1866 (see his Mémoires et Fragments, volume , Paris, 1897, pages 49-80, Bibliothèque égyptologique, volume 5), Brugsch (see his Index des hiéroglyphes phonétiques, Leipzig, 1872), Le P. Renouf (Zeitschrift für ägyptische Sprache, volume 12, 1874, pages 101-105), 1908, pages $3^{*}-12^{*}$). Decipherers of these tex (in Northampton, Report on some Excavations . . ., London, royal tombs at Thebes are accompanied by parallel versions in the fact that certain of the inscriptions in the commentary see Gunn, pages 136-137. It is inl versions in the ordinary hieroglyphic writing. For detailed by the application of a patch, but Phe it is impossible to say just how long is the lacuna in Number 85 caused long as the surviving portion of the first laph XXIX shows that it could not have been more than half as ideographic and partly phonetic, using a system general it may be said that the enigmatic writing is partly consonants are used to represent only the first consoreby signs normally standing for a group of two or three weak ones.

NUMBER 85

Photograph xxix \quad B. M. Facsimile, Plate xxı

Number 87

hi:t-sp 11 ibdz 2 šmw 'K.tw 'Iwnw
Year1 11, month 2 of Shômus, was entered 'Iwnw $\hat{O} n$ '.

5sw 25 Sdm - tw r dd 'k Tirw
Day 25, heard one to say, is entered \bar{Z} aru.

Regarding the text see volume 1, page 43 and footnote 4. Nearly all scholars agree that this entry was made not long after the completion of the Möller (1909, volume 1, page 18) suggests that it was written meteorological events recorded took place during the period of the Hyksos domination referred to Peet's discussion of the implications of the text (pages 129-131)
${ }^{1}$ Literally, Beginn
yearly and the expression became the that is, the 11th time of taking the census of cattle in the reign of the king in question. This was an event which occurred ${ }^{2}$ See Title-page, footnote 3.
This is the Biblical Ôn.
See Title-page, footnote 4 and Problem 71 , footnote 9 . - Originally imy-r: mš', he who is in the , ootnote 9.
his footnote is equivalent to oversecr, chief, etc. Peet's translation (page 120) 80 , footnote 3). The phrase imy-r: (often abbreviated to mr as here) is common tion reads, net mr mist binn king Mr-ms whose statues were usurped by one of the Apophises of the Hys such as we have adopted, and he refers also in more like pn than it , but pn-rsy (?), a rendering equally likely to be correct so far as the hieratic is concerned; in falt, the his Plate Y, however, Peet's transcrip${ }^{3}$ Photograph XXI seems. Compare the certain pn at the end of line b 2 .
simile from which the hieratic on show the short stroke which is to be expected at the top of thesign in line b 1 . It issent from
${ }^{8}$ This is one of the less common pand less weoll ied. Compare the same sign at the beginning of line $b 3$.
to the stem of the word. In normal End less well understood verbal forms (Gardiner, 1927, pages 316-322, $\$ 8401-409$). It pris
${ }^{\text {o This }}$ Thord is perhans to

- This word is perhaps to be read by.t at the time of the Rhind papyrus.

NUMBER 87

453

Number 86

$$
\begin{aligned}
& \cdots \text { 'nh d.t rht wnm m Hbnty } \\
& \text { living forever. A mount of the food in Hebenty } \\
& \begin{array}{c}
\text { [pily } \cdot \mathrm{f}^{2} \mathrm{sn} \mathrm{mr} \text {-pr } \mathrm{r}^{3} \mathrm{~K} ;-\mathrm{msw} \mathrm{w}^{4} \\
\text { his brother }
\end{array} \\
& \text { his brother the steward Ka-mosè } \\
& \begin{array}{l}
\cdots \mathrm{n} \text { rnp.t. } \mathrm{f} \text { hd } 50 \mathrm{sp} 2 \mathrm{n} \text { rnp.t } \\
\text { of year hiss; silver } 50 \text { times } 2 \text { to a year }
\end{array} \\
& \text {. . . iw'(?) } 2 \mathrm{~m} \text { hd } 3 \mathrm{~m} \text { rnp.t . . . } \\
& \begin{array}{l}
\text { ox } 2 \text {; in silver } 3 \mathrm{~m} \text { in a year }
\end{array}
\end{aligned}
$$

$\begin{aligned} & \text {. [h]nw } 12 \text { m hd } \dot{4} \text { w'w } \mathrm{n} h[\mathrm{nw}] \text {. . . } \\ & \text { hinu } 12 \text {; in }\end{aligned}$
hînu 12; in silver $1 / 4$ one hînu
silver 5 price their therefor fish (?) 120 sp $2 \ldots$
silver 5 price their therefor fish 120 times 2
year barley quadruple hekat 5025105 ; spelt 100 hekat
. . . [rnp.t(?)] it

> 14612 it 100 hkarley 100 i 410 bd.t 300 hkj.t (?). . .
> $1461 / 2$; barley 100 hekat 502510 ; spelt 300 hekat
> ... 2 sy(?) $\cdot t w^{8} \quad \operatorname{irp}$
> $1 / 2$ was brought wine, donkey (-load) 1
> . . hd 2 (?) 4 m hd
> silver $1 / 2$ 4; in silver
> . . . 14 'd hnw 36 m hd
> 11/4, fat hînu 36; in silver
> 100 hkj.t $\dot{2}$ i 201 bd-ts it 400 hki.t $10 \ldots$
> 100 hekat 502520 1; spell barley 400 hekat 10
its left end to strengthen it. Grifith (volume 16 , plate opposite page 230) has incorrectly indicated the place of these friagments on there pasted on the back of the papyrus near
reproducing Grifith's sketch (page 3), and on page position of these fragments as they were when the papyrus was discovered isfith's statement regarding their place (see our diagram on his sketch-plan of the papyrus, and Peet in originally bore to one another before they were used as patches. The last fhown in the British Museum Facsimile. They have on page xince been and notes thereto). The relative
On the sign On the sign, used for ditto in those lines see Problem 84, footnote. The last four lines of the original are mere repetitions of the preceding line and are in the relation which they

The The possessive eadjective, composed of the demonstrative p ', t ', n ') and the pseudo-participle (old perfective); d.t is the noun elernity used adverbially,
${ }^{1}$ 'The ordinary abbreviated writing of imy-ri pr hue that the adjective follows its noun.
of many personal names in ancient Esypt. In spirit or personality is born, a remark probably made by the fothe house. See Number 87 , footnote 6 .
: The apparent writing of $1 / 6$ twice here, In the first part of the name a better vocalization than the the father at his first view of the new-b
that $\%$ only was intended in either , here, and the same thing at the end of Problem 82 , suggests the more familiar $K a$ is probably $K u$. See Problem 62, fio
See Problem 62, footnote 4 .
At this point may be seen line 14. this point may be scen in Photograph XXXI a small fragment of papyrus with two horizontal ? We
s Perhaps a better reading for the verb-stem is sby, if our transcrint double horizontal line appears above or not the word it occurs, bd.t is the first word in this line intends to associate with bd.t in his translation, page 129 . He has m is sby, if our transcription is correct.
more easily for the presence of the stick following bd.t, for the stick in this position is impossible as a part of that the and it not it but 4 -bk interct, with wed the words spell and barley, for, whether
\qquad

NUMBER 86

BIBLIOGRAPHY

of

EGYPTIAN AND BABYLONIAN MATHEMATICS

SUPPLEMENT
TO THE BIBLIOGRAPHY IN VOLUME I

The following material consists of notes assembled during the past two and onehalf years which, for one reason or another, seemed appropriate as a Supplement. The recent notable extension of our knowledge of Babylonian mathematics will enable us more adequately to characterize the mathematical achievement of the Egyptians.

Augusl, 1929.

Hincks, E.. "Cunciform inscriptions in the British Museum," The Literary Gaxelte, vol. 38, 5 August 1854, p. 707.

One paragraph of this article, on various documents, is devoted to an Akkadian tablet numbered Kioo in Bezold's Catologue of the Cuneiform Tablets in the Kouyunjik Collection of the British 1/useum, vol. 1, 1889, p. 24. Hincks believed that it contained estimates of the portions of the moon visible on each of the first 15 days of the month: $5,10,20,40,80,96,112, \ldots, 224,240$. The first five of the numbers are in geometric, the last ten in arithmetic progression. ${ }^{1}$ Further details are given by Hincks in Royal Irish Academy, Polite Literature. Transactions, vol. 22, 1855, p. 407. With reference to this source Cantor 1907 (1880) repeats the above mentioned interpretation. Other writers such as Karpinaki (1926) and Tropike 1924 (1902) have noted the same interpretation. Nevertheless a very different one. given by Sayce over 50 years ago, pointed out that the tablet contained a table of the lunar longitudes for each of the 30 days of the month the last 15 (not given by Hincks) being a record of the retrograde motion. The cablet was discussed by Lenormant (1868) in "Notes" pp. 104-111, 144-148. Sec also F. Lenormant, Choix de lextes cunáformes inédits on incomplelement publits, fasc. I, Paris, 1873, no. 22, pp. 80-8ı. A. H. Sayce's intergretation was first given in his article "The astronomy of the Babyloni:ma," Nature, vol. 12, October 7, 1875, p. 490. See further "Table of lunar longitudes." Yeilschrifl fïr A syyriologic, vol. 2, 1887, pp. 337-340. (Quotations: (p. 337) "As Lenormant's copy is not quite accurate, and he has omitted the last 6 lines which are written in Neo-Babylonian characters, I give the whole inscription." (P. 340) "It is clear from this text that the circle was divided into 480 parts. The moon's daily motion is reckoned at 16 parts as is roughly really the case."] See also R. II. M. Bosanquet and A. H. Sayce, "Babylonian astronomy," Roysal Astronomical Society, Monthly Notices, vol. 40, 1880, "Divinion of the circle. - Reckoning of longitude," pp. 108-110. Quotation: "The divimions of the circle which we find employed are those into 8, 12, 120, 240 , and 480 parts. Thas been assumed that the division of the circle into 360 parta war commonly practised by this ancient prople. There is, however, no authority in the ins:riptions for this assumption. It seems to have been derived originally from Achillen Tatius (almont 450 A.D.); and the preconceived idea thus intrexluced appears to have caused even those most conversant with the inmeriptinns to we the division of the circle into 360 in matters which do not involve it. An example of this is in the sexageamal reckoning of numbers, which in one of the common methode used in the inscriptions. It is hardly doulteful that the division of the circle as practised by Ptolemy, and in modern timen, wain all outgrowth of the eexagreimal method of the inscriptions. But the latter doen not contain the former,'
I A series of numbers in yeometric progreanion determined by divisors of what is possibly Mato'n geomotric mumber 1a, ${ }^{\prime}(10,000$, on a tabiet of about 2200 13.C., is described in Hil-

1868

Lenormant, F., Essai sur un document mathématique chaldéen, et à cette occasion sur le systême [sic] des poids et mesures de Babylone, Paris, 1868. Lithographed, $5+179+$ "Notes," 148 pp.

The document in question is a British Museum tablet, no. 92680 (or $\mathrm{K}_{3} 168$ in C. Bezold's Cetalogue . . ., vol. 2, 1891, p. 510), dating back, possibly, to 1900 B.C. It was found in a tomb at Senkereh by W. W. Loftus and a part of it was translated by H. C. Rawlinson, in Royal Asiatic Society, Journal, vol. 15, 1855, pp. 218-220. See also H. C. Rawlinson, Cuneiform Iniscriptions of Western Asia, London, vol. 4,1875 , plate 40 (there isalsoa table of cube roots on thisplate: in the second edition, 1891, the contents of the plate, now no. 37, are somewhat modified); F. Lenormant, Choix de textes cunEiformes inédits oll incomplétement publiés, no. 84, in fasc. 3, Paris, 1875, pp. 219-220 (more exact text than in the Essai): A. H. Sayce, "Babylonian augury by means of geometrical figures." Society of Biblical Archaeology, Transactions, vol. 4, 1876, pp. 311-314; and G. Rawlinson, The five greal monarchies of the Ancient Eastern World, London, 1862, vol. 1, pp. 129-131; fourth ed. New York, 1880, pp. 103-104. The tablet evidently contained originally the results of squaring all the integers $\mathbf{1 , 2 , 3}$.
., 60; or rather it was stated that these numbers are the square roots of certain numbers given. In introductory matter Lenormant gives considerable material of mathematical interest, although some of it is naturally out of date. See also Oppert (1872) pp. 418-419. Reference may be given also to another article by Oppert, "Six cent cinquante-trois: les carrés mystiques chaldéens," Académic des inscriptions et belles lettres, Comples Rendus, Paris, 1902, pp. 457-468; also "Sechshundert drei und fünizig. Eine babylonische magische Quadrattafel" Zeilschrifl für Assyriologie, vol. 17, 1903, pp. 60-74.

1872

Oppert, J., "L'étalon des mesures Assyriennes, fivé par les textes cunéiformes," Journal Asiatique, series 6, vol. 20, August-September, 1872, pp. 157-177; series 7, vol. +, October-November, 1874, pp. 417-486. Reprinted as a separate, Paris, $1875,90 \mathrm{pp}$.
The long review by M. Cantor (Zeilschrift fïr Mathematik und Physik, Historischliterarische Ablheilung, vol. 20, 1875, pp. 149-165) dwells particularly on the features of the monograph which are of special interest to the mathematician.

1882

Bertin, G., "The assyrian numerals," Transactions of the Society of Biblical Archaeology, vol. 7, 1882, pp. 370-389.
First paragraph: "In this paper I have tried to bring together all that is non known about the Assyrian numerals, comparing them with those of other Semitic dialects, without having in view any special theory; and though I

BIBLIOGRAPHY

1908

Cantor, M., "Babylonische Quadratwurzeln und Kubikwurzeln," Zeitschrifı für Assyriologie, vol. 21, 1908, pp. 110-115.

1909
Pinches, T. G., "Some mathematical tablets of the British Museum," Assyriologische und Archaeologische Shudien. Hermann V. Hil precht zu seinem fünfındzuanzigsten Docıorjubiläım und zu seinem fünfzigsten Geburtstage gewidmel, Leipzig, 1909, pp. 71-78.
These are cuneiform documents numbered 80150 (formerly Bu.:91-5-9, 263) and 7795t (formerly 85-4-30, 144) translated by the aid of similar tablets explained in Hilprecht (1906). It consists of a table of various fractional parts of ,296,000; compare Hilprecht (1906). Pinches refers to another possible mathe matical inscription described in British Museum, Assyrian Antiquities, Guide the Nimroud Central Salon, London, 1886, p. 74, no. 44, now no. DT72 (C Bezold's Calalogue, vol. 4). On pages 304-309 of the same Studien is an article by F. X. Kugler on "Die Symbolik der Neunzahl bei den Babyloniern."

1911

Delaporte, L., "Document mathématique de l'époque des rois d'Our," Revue d'Assyriologie el d'Archéologie Orientale, Paris, vol. 8, 1911, pp. 131-1 33 .
References to Hilprecht (1906), to Pinches (1909) and to a similar tablet K2069 in the library of Assurbanipal (C. Bezold, Calalogue of the Cuneiform Tablets in the Kouyunjik Collection of the British Museum, London, vol. I, 1889, p. 400). The tablet in question, dating from about 2200 B.C., was found at Tello in 1898 and is no. M1O 7375 in vol. 3 of Inventaire des tabletles de Tello conser vées au Muscé impérial ottoman. It contains the result of dividing 60 succes sively by the integers $1,2,3,4$, . ., $60 ; 7,11$, . ., 59 are indicated as impossible divisors.

Gardiner, A. H., Egyptian Hieratic Texts Transcribed, Translated and Annotated. \qquad Series 1: Literary Texis of the New Kingdom. Part 1, The Papyrus Anastasi I and the Papyrus Koller together with the parallel texts. Leipzig, 1911. Pp. ${ }^{*}{ }^{-}{ }^{*} 34+1-8 \mathrm{I}$.
The papyrus Anastasi I, purchased by the British Museum in 1839 from Anastasi, Swedish consul in Egypt, is numbered Pap. Br. Mu. 10247, and dates from the reign of Sethos II, about 1200 B.C. It was translated by F. J. Lauth in his Moses der Ebräer, Munich, 1868; and earlier studied by J. F. Chabas in his Voyage d'une Egyptien en Syrie, en Phenicie, en Palestine, elc. aut XIVm Siecle avant notre ìre; Iraduclion analytique, d'un papynus du Musé Britannigue, comprenant le fac-simile du texte hiératique el sa transcription completc en hiéro glyphes et en lellres coptes. . . Avec la collaboration de Ch. Wicliffe [sic] Goodwin.

Chalon-sur-Saone, $1860.8+420 \mathrm{pp} .+13$ plates. Folio. This was reviewed by H. Brugsch in Reue Critique d'Histoire el de Litároture, Paris, vol. 2, 1867, pp. 97-105, 145-154. Quotation, p. 97: "Nous aurons meme at demontrer que 11. Chabas a méconnu entièrenent liarrangement du texte et la vraie intention de son auteur." In reply to this there followed F. J. Chabas, Voyage d'un Egyptien en Syrie . . . Réponse d la critique, Châlon-sur-Sàne, 1868, 104 pp. olio. l.Also in F. J. Chabas, Geures Dieerses, Paris, vol. 3. r003. pp. 203-340 (Bibliothique Egyptologique, vol. 11). English tranglation by S. M. Drach, Records of the Past, L.ondon, n. d., w. 2, pp. 107-116.]
The parts of Anastasi I of particular interest to us are the technical problems (14. 2-17,2), pp. $3^{*}-34^{*}$, discussed by Gardiner in an Appendix. These prob. lems are: 1. The building of a brick ramp, compare Bibliography, Ungnad (1916), of unusually large dimensions; 2 . The number of men needed to trans. port an obelisk: 3. The erection of a colossal statue or obelisk by the removal of a great quantity of sand. Indeed all of these questions may bave arisen in connection with the erection of a single obelisk, although Cardiner's reading seems opposed to this. Compare also F. M. Barker, "An ancient Esyptian mechanical problem. Papyrus Anastasi I. About is00 B.C.," The Open Court. Chicago, vol. 26. December, 1912, pp. 705-716. There are quoted here some remarks made in this connection. in 1903, by Erman. "This is the oldest known instance of the use of sandboxes which are now often utilized for sinking and transferring heary weights. In this comnection a relerence may be given to an interesting and authoritative work by an Englishman, the director of the Egyptian Museum at Cairo, R. Engelbach, The Problem of the Obelisks from a Study of the Unfinished Obelisk at Aswan, london, 1923. There are numerous illustrations and diagrams in the volume.

1915
Kewitsch, G., "Zur Entstehung des 60-Systems," Zeitschrift für Assyriologie, vol. 29, 1915, pp. 265-283.
Headings in the article are "Zählen geht vor Messen," "Wie zählt der Urmensch?," "Zählen geht vor Schreiben," "Zählen geht vor Richten," "Zählen geht vor Rechnen," "Das Zählen ist cine ethnologische Frage, keine mathematische." There are references in the article to: G. Kewitsch, "Die Entstehung des 6o-Systems," Uilterrichlsblëtter für Mathematik urd Naturwissenschaften" vol. 15. 1900, pp. 122-128 (a lecture, with 30 items in a Bibliography); E. Hoppe, "Das Sexagesimalsysten und die Kireisteilung," Archiv der Mathematik und Physih, series 3, vol. 15, 1909, pp. 304-313 (comment on this by G. Kewitsch, "Zur Entstehung des 60-Systems, vol. 16, 1910, p. 277 E. Hoppe, "Bemerkungen zu der vorstehenden Arbeit des Herrn Kewitsch." pp. 278-299); E. Läffer. "Die arithmetischen Kentnisse der Babylonier und das Sexagesimalsystem," Archiv der Mathematik und Physik, s. 3, vol. 17. 1911, pp. 135-144; F. Thureau-Dangin, [part of a review of a work by Halevy], Revue d'Assyriologie, et d'Archéologic Orientale. vol. 10, 1913. pp. 195-196. A quotation, without footnotes, from the first page of this article is as follows: "Bien des hypothèses ont ête proposées pour expliquer l'origine de ce système.

La plus ancienne et la plus kénéralement adoptée le rattache au nombre dea jours de l'annte moins des épagomenes. Kewitsch a montre d'un facon que je crois irrefutable, l'invraikemblance et meme l'impossibitite de cette hypo. thèse, comine de toutcs les hypothèges attribuant au système sexagésimal une origine astronomique. Comme il le dit fort bien, "Zählen geht vor Meseen." l.e système sexagésinual existait dans la numération avant d'être applique à la division du cercle, à celle du jour et a la métrologie. Fait bien singulier les Assyro-Babyloniens avaient deux systèmes de numerations: ils avaient, commes tous les Semites, un systéme strictment decimal et ils avaient en outre un systeme sexagesimal. S'ils avaient été les inventeurs des chiffres qu'ils emphoyaient, leur écriture aurait eu le chiffe 100 et le chiffre 1000 . cormme leur langue avait le nombre cent et le nombre mille. Or leurs chiffes appartiennent au second système qui, étant sexagesimal, exclut le cent et te mille. [r00 $=$ $60+10 \times 4: 1000=600+60 \times 6+10 \times 41 \ldots$ Ie système sexagésimal est lun des traits les plus originaux de la civilisation assyro-babylonienne. Or il n'est pas, il ne peut pasêtre un invention sémitique.'

References may be given to another article, by G. Kewitsch, "Zweifel an der astronimischen und geometrischen Grundlage des 6o-Systems," Zeilschrif! für Assyriologic, vol. 18, 1904, pp. 73-95; and to F. F. K. Lehmann-Haupt, "Ueber protobabylonische Zahlwörter," Zeikshrif! für Assyriologie, vol. 1, 1886, pp 222-228. For Babylonian astronomy, and hence somewhat for mathematics, the following work is of importance: F. X. Kugler, Die Babylonische Mondrechnung. Zuei Systeme der chaldöer uber den Lauf des Mondes and der Sonne. Freiburg in Breisgau. $1000.15+215$ pp. +13 plates. Also P. Schnabel. "Kidenas, Hipparch und die Entdeckung der Präzession." Leitschrift für A ssyriologie, n. s., vol. 3. April. 1926, pp. 1-60; see also F. Cajori. Science, n. s. vol. 65. Feb. 18, 1927. p. 184

1925

Erman, A. and Grapow, H., editors, Wörterbuch der Aegyplischen Sprache, im Auftrage der deulschen Akademien. Leipzig, Lieferungen 1-6, vols. 1-3. 1925-1929. $20+583+16 \mathrm{pp}$; 506; 489; most of the text being lithographed. Vol. I complete, dated 1926. This great work is the result of contributions from more than 30 scholars of Europe and America. It will be completed in 8 Lieferungen or 4 volumes, with supplementary volumes containing "Belegstellen" and other material. Part of the Belegstellen already issued is of value for its references to documents (in particular, those which are mathematical) where different characters may be found. A comparatively snall Aegyptisches Handuōrlerbuch ($8+232 \mathrm{pp}$) by Erman and Grapow was published at Berlin in 1921. In 1920 appeared the large work of E.A.W. Budge, An Egyplian IFieraglyphic Diclionarywith an Index of English words, King list and Geographical list with indeves, List of hicroglyphic charocters, coptic and semitic alphabets, elc., London, $154+1356 \mathrm{pp}$. The ms. of Budge's work was ready for printing in 1914. The method of transliteration here employed is not generally used by egyptologists and it is difficult to iden tify the consonants.

Pratt, I. A., Ancient Egypt; Sources of Informalion in the New York Pablic Library. New York, $1925.15+486$ pp.
In this admirable general bibliography, of material owned by the Library in May, 1924. Miss Pratt has brought together, among hundreds of others, 65 titles under the heading "astronomy." 24 under the head of "mathematics," 60 under "metrologs;" 16 under "numerals," and 103 under "calendar." In her Assyria and Babylonia, a List of References in the New York Public Library, (New York, 1918. ++143 pp .) there are titles under "calendar and chronol ogy" (pp. 27-30), and "astronomy, astrology, and mathematics" (pp. 57-6I)

Speleers, L., Recueil des Inscriptions de l'Asie Antérieure des Musées Royaux du Cinquantenaire à Bruxelles. Textes sumériens, babyloniens et assyriens. Brussels, 1925, nos. 268-274, pp. 29, 94-95. Seven multiplication tables from cunciform inscriptions acquired at Brussels within the past twenty years. 268 is a table of 1% times $5,6, \ldots, 20,30,40$ 50; 269 is a table of 7 times $1,2,3,4, \ldots 20,30,40,50 ; 270-274$ are table of the same series of numbers multiplied successively by $10,12 \%, 16,24$, and 25. The tables of Tablets 269 and 271 are identical with those in the Royal Ontario Museum of Archaeology: compare Mercer (1928).

1926

Rey, A., (1) "Coups d'oeil sur la mathématique egyptienne"; (2) "Nouveau coup d'oeil sur la mathematique egyptienne," Revice de Synthèse Historique, (1) vol. 41, June, 1926, pp. 19-62; (2) vol. 43. June, 1927. pp. 27-35.

The first paper is a popular review of material contained in Peet (1923. 2). There are a number of minor slips in statements and nothing especially new is suggested. The second paper is a sort of supplement to the first with special relerence to Karpinski (1926), and nos. 40, 64, 79 of the Rhind papyrus.
Reviewed by K. Vogel in Ifiteilungen zur Geschichte der Medizin und der Naturacissenschnften. vol. 27. 1928, pp. 378-383.

1927
Chace, A. B., Mansimg;, H. P., Bull. L. S., and Archibald, R. C., The Rhind Mathematical Papyrus, Brilish Musenm 10057 and 10058 . Volume I: Free Translation and Commentary by A. B. Chace with the assistance of H. P. Manning. Bibliography of Egyptian Mathematics by R. C. Archibald. Volume II: Pholographs, Transcription, Transliterution, Lileral Translation by A. B. Chace, L. S. Bull and H. P. Manning. Bibliography of Egyptian Mathe matics, Supplement by R. C. Archibald. The Mathematical Leather Roll in The Brilish Museum by S. R. K. Glanville. Oberlin,

Ohio, vol. 1, [July] 1927, 10 + 210 pp. Royal 8vo. Vol. II, 1929. 288 unnumbered (except i-xvi) pp. Oblong folio.
This sumptuous work is a publication of The Mathematical Association of America. It contains the first published photographic facsimile of the Rhind papyrus (31 pages, on one of which is the reproduction of a photograph of end parts of the papyrus in the British Museum with the New York fragments in place between them. ${ }^{2}$) The major part of the second volume enables the reader to trace back from the literal translation through the transliteration and hieroglyphic transcription to the original hieratic. In this work are to be found: the first transliteration since Eisenlohr's of more than 50 years ago; the first literal translation since Eisenlohr's; new readings of nos. 4 and 5; the first correct publication of no.9 on which all other writers have gone wrong through omissions in the B. M. "facsimile." The Bibliography occupies 86 pp . in volume I and 22 pp . (of similar size) in volume II.

Cianville, S. R. K., "The mathematical leather roll in the British Museum," Journal of Egyptian Archaeology, vol. 13, [November], 1927, pp. 232-238 + plates LVIII-LXII.
There is an addendum, pp. 238-239, by Dr. Alexander Scott, director of scien tific research at the British Museum. This addendum is practically identical with Scott's article listed below. Glanville's paper is a study of the leather roll 10250 briefly described in the "Prefatory Note" of my Bibliography; it was acquired by the British Museum in 1864. The plates picture the rol before and after unrolling, its fragments, and its hieroglyphic transcription See also Glanville 1929 [1927].

Neugebalier, O., "Zur Entstehung des Sexagesimalsystem," Gesellschaft der Wissenschaften, Göttingen, Abhandhugen, Mathe-matisch-physikalische Klasse, n.s., vol. 13, no. 1, 1927. $4+55 \mathrm{pp}$ "Einleitung," pp. 1-5; "Die nat ilrlichen Zahlen," pp. 6-20; "Die Masssysteme," pp. 20-43: "Uber den Aufbau des 'Sexagesimalsystems', pp. 43-50: "Ge schichtliche Uberblick. pp. 51-52; "Literaturverzeichnis, pp. 53-55. This monograph is the basis of the following article by F. Thureau-Dangin, "L'ori gine du système sexagesimal," Revue d'Assyriologic et d'Archeologie Oricntale. vol. 25. 1928, pp. IIS-1 18; "Un post-scriptum," vol. 26, 1929, p. 43. Stripped of footnotes the following is a quotation from page 115 : " A propos de la numération sumérienne, j'ai essayé de montrer (dans R. A. X, 195 et XVIII, 123 ss.) comnient se pose le problème de l'origine du système sexagesimal, mais
${ }^{3}$ Photograph IX shows practically all of about to fragments, in the New York Historical Society's library, appropriately placed. This is the first published photograph of the which came into the possession of the Society with the Rhind fragments appear not to belong to the papyrus. The authors have placed a dozen more fragments than Peet (who had no opportunity for examining the originals), including several not reproduced among the inisplaced fragments on Peet's Plate E.
riai pas cru pouvoir en suggerer une solution. La question vient d'être reprise au point où je l'avais laissé, par O. Neugebauer qui, dans un mémoire for intéressant et instructif. intitulé, 'Zur Entstehung des Sexagesimalsystems, cherche dans la métrologic l'origine de la numération sexagesimale. Ce mc noire, plein de vues pénetrantes et ingénieuse, eclaire certains aspects du problème et ouvre une voie nouvelle ou peut-ettre il sera possible d'en trouver ta solution; mais, a mon sens, il laisec un residu inexplique." This article is followed immediately (pp. 119-121) by another of Thureau-Dangin, "Le système ternaire dans la numération sumérienne." The "post-scriptum" is mainly a quotation from a communication of Neugebauer to the author The first of the articles referred to above by Thureau-Dangin (in "R. A. X") is listed above under Kewitsch (1915) and the second under 1906 in the Bibliography.

Scott, A. and Hali, H. R., "Laboratory notes: Egyptian leather rol of the seventeenth century B. C.," The British Musenm Quarterly, vol. 2, September, 1927, pp. 56-57 +1 plate.
See under Clanville (1927) above. Scott's paper occupying one and two thirds pages describes the interesting method, by means of a celluloid solution and butter muslin, of unrolling the excessively britule leather roll. The plate contains a photograph of the roli (without the fragments) before and after unrolling. It is curious that in an official publication of this kind there should occur an error in the statement of the date of the Muscum's acquisition of the oll, "1875" for 1864. Except for the omission of its last sentence the note of Dr. Hall. keeper of Egyptian and Assyrian Antiquities in the British Museum s as follows: "The roll, now that it has been unrolled by Dr. Scott, has not juscified the hepe that it might prove to contain material of importance, no lusciked is simp a serics of text is simply a series of sums of additions of fractions, repeated twice over apparently a seholar's exercise. In one place at least the scribe has committed an error of addition. The roll is said to have been found with the great Rhind
papyrus, and this account is confirmed by the fact that the writing is of the papyrus, and this account is confirmed by the fact that the writing is of the
same period as that of the papyrus, and that the contents are of a character same period as that of the papyrus, and that the contents are of a character
found in it. Probably it is connected in some way with the papyrus. Both were bought tegether by Mr. Rhind, from whom they came to Mr. Bremner, and from him to the British Museum."

1928

Ciprlani, P., Nuove rivelazioni sulle grandi piramidi di Giza. Cheope e Chefren. Notevole relazione ciclometrica scoperta nel quadrato di Ahmes. Rovigo, 1928, 83 pp.
Another item in the literature of mysticism associated with Egyptian mathematics and monuments. There are among others reierences to: Smyth (1867), Bruguch (1868), Cantor (1875), Gunther (1876), Schiaparelli 1876 (1875). Favaro 1876 (1875]. Eiacnlohr (1877), GUnther (1878), Favaro (1879), Petrie (1883), Fazzari 1907 (1903l, Klerpisch 1921 (1910), Borehardt (i922). There
are also several references to K. Kleppisch, Willkür oder mathomotische Uberlegung beint Bat der Cheopspyramide? Munich, 1927. $5+38 \mathrm{pp}$.
If in a triangle $A B C, A B=5$ units, $B C=3 . C A=4$, and if, furthermore the perpendicular from C on $A B$ meets $A B$ in D, then $A D$ is efual to 8% of the diameter of the circle with $B D$ as radius; or, the area of the square on $A D$ (the "quadrato di Ahmes") is approximately equal to that of the circle.

FRANK, C. "Strassburger Keilschrifttexte in sumerischer und babylonischer Sprache," Scliriflen der Sirassburger Wissenschaftlichen Gesellschafl in FIeidelberg, neue Folge, 9. Heft, Berlin and Leipzig, 1928. $36 \mathrm{pp} .+20$ plates.

The 50 documents here deale with are in the Bibliotheque universitaire et regiomate at Strasbourg. Of these, six (numbered 362-364. 366-368, in the collection, and, $6-11$ in Frank's article, are mathematical texts from Warka, Babylonia, and date back to alsout 2000 B.C.; they are transcribed and translated on pages 19-23 and plates IV-1X. The lack of commeutary prevented a clear understanding of the details of the problems. This has been partly supplied by O. Neugebauer, in his "Zur Geschichte der babylonischen Nathematik," Quellen und Studien sur Geschichte der Mathematik, Abteilung B: Studien. Berlin, March, 1929. pp. 67-80. The results are of great interest. Problem G, in lirank's numbering, deals with the division of a certain cuantity of silver among 10 brothers; in problem 7 there are calculations of areas; problems 8 and to may be regarded as calculations in connection with a triangle or parts of a triangle, and it is with them that Neugebaucr's article deals. He believes that these calculations show that nearly four thousand years ago the Babylonians were in possession of what was equivalent to our formula for one root of a certain type of a three-term quadratic equation.

Gillain, O., "La notation fractionnaire clef de l'arithmetique egyptiennc," Mathesis, vol. 42, November and Decemier, 1928, pl) 405-413.
Last paragraph: "En réalite, l'application des méthodes egsptiennes à certains resultats grees demeures obscurs, jette une grande clarte sur les procedes qui ont do y conduire. Et non seulement le calcul fractionnaire, tel que nous le révèlent les papyrus, est la clef de l'arithmetique des scribes, mais elle est aussi cetle des mystères encore insondés de la science hellênique."

Mercer, S. A. B., "Two Babykonian multiplication tables," Bulletin of the Royal Ontario Museum of Archaeology, no. 7, 1928, 1pp. 3-6. Reprinted in Art and Archaeology, Washington, D. (., vol. 26, 1928, pp. 145-146, with a change in an illustration.

Bab. Tab. 767 and 711 in the Royal Ontario Musewn of Arehacology, Toronto: photographic reproxluction, transcription, translation and commentary. These are tables of 7 and 12% multipliwd 1 y $1,2,3, \ldots, 20,30,40,50$. Both tables
were published earlier in Speleers (1925) to which Mereer refers; but Mercer's comment is not such as to lead one to suspect that nothing new was contained in his own article. Not only that, but such a statement as the following has no foundation in known facts: "As early as 3000 B.C. there existed two separate and highly developed systems of mathematics, the Babylonian and the Egyptian." Presumably the tablets are no older than those described by Spelecrs.
Nelgebalier, O., "Zur Geschichte des Pythagoräischen Lehrsatzes," Gesellschaft der Wissenschaft, Göttingen, Nachrichten, mathe-matisch-physikalische Klasse, 1928, pp. 45-48.
This paper is based upon Weidner (1916), Zimmern (1916), and Ungnad (1916). Since I wrote the note on the first of these Ductor Weidner has kindly informed me that the document he discussed was a part of no. VAT6598 in the Vorderasiatische Abteilung of the Prussian State Museumin Berlin. He stated also that the original had not yet been published.
Thureal-Dangin, F., "La division du cercle," Revue d'Assyriologie et d'Archéologie Orientale, vol. 25, 1928, pp. 187-188.
Sets forth the idea that the division of the circle into 360 parts by the Babylonians was "natural," but that the further seragesimal division of the degree, minute, and second, was for them unnatural. It is argued that the Babylonians made use of the division of the circle as learned from the Sumerians. D. Sidersky in "La division de la circonférence en 360 parties," Revue d'd ssyrinlogie, vol. 26, 1929, pp. 31-32, surmises how the Sumerians with ruler and compasses might have divided a circle, with center O and radius $O A$, into 360 equal parts. Having placed the cord $A C=A O$ he bisects it in F, and $O F$ produced meets the circumference in E. Drawing the cord $A C=A F$ the author renurks that $G E$ is to a high degree of approximation the are subtending one degree at 0 .
Vetter, Q. Z minulosti Počtarskych Základü. (Zvláštní otisk \%. cyklu prednášek Počtárske Profily.) [About the past history of mathematical principles. (Reprint from the series of mathematical suctions.)] Brünn, 1928. 16 pp .
Inimportant in this connection

1929

Hall, H. R., Egypt-Sciences: "Astronomy," "Mathematics," Encyclopzdia Brilannica, 14th ed., Iondon and New York, 1929, vol 8, pp. 56-57.

Nelgebaler, C., "OUber vorgriechische Mathematik," Hamburgische Liniversitảt, Ablandlurgen aus dem mathemalischen Seminar,
vol. 7, 1929, pp. 107-124. Also as no. 8 of Hamburger mathematische Einselsciriften, 18 pp.
The mathematics of the Egyptians and Babylonians before 600 B.C. is here considered under three main headings: I. Number-systems; 2. Arithmetic technique: 3 . Geometrs:

Nelgebauer, O., "Zur ägyptischen Bruchrechnung," Zeitschrift für Agyptische Sprache, vol. 64, 1929, pp. $4+-48$.
First paragraph: "In Bd. 13 des Journal of Egyptian Archacology (S. 232 ff.) hat Glanville einen auf einer Lederrolle des British Museum stehenden mathematischen Text publiziert, der (in doppelter Ausfertigung) eine Reihe von Rechnungen mit Brüchen enthilt, allerdings ohne jeden erklărenden Text was den Herausgeber zur der resignierten Bemerkung veranlasst hat: "From the scientific point of view it can hardly be denied that the dissemination of the knowledge of this chemical treatment of the leather (zum Z wecke der. Aufrollung) is of greater value than the publication of the contents inscribed on it." Ich morchte im folgenden zu zeigen versuchen, dass ein so pessimistisches Cirteil vielleicht doch nicht ganz am Platze ist "

Neugebaler, O. and Struve, V. V., "Uber die Geometrie des Kreises in Babyionien," Quellen und Sludien sur Geschichie der MIathematik. Abteilung B: Studien, vol. 1, part 1, March, 1929, pp. 81-92.
In the discussion of chords of a circle, with special reference to part 1X of Cuncifornt Texts from Babylonian Tablets, ôt., in the British Muscum, see Ung nad (1916), it seems to be definitely suggested that Babylonians were familiar not only' with the Pythagorean theorem but also with the fact that the angle in a semicircle is a right angle. For a brief article based mainly on the present article, on Frank (1928), and on Neugebauer 1929 (1928) see R. C. Archibald, "Babylonian mathematics," Science, n. s., vol. 69, July 19, 5929, pp. 60-67. Review by H. Wieleitner of Studien, part 3, Archio für Geschichte der Muthematik der .Vaturecissenschafien und der Technik, vol. 12. Aug., 1929. pp. 105-107.

Perpepelkin, J. J., "Die Aufgabe 62 des mathematischen Papyrus Rhind," Quellen und Studien sur Geschichte der Mathematik. Abteilung B: Sludien, vol. I, part 1, March. 1929, pp. 108-112.
First paragraph, except for the omission of a footnote: "Wie schon T. E. Peet in sciner Neubearbeitung des mathematischen Papyrus Rhind sagt, bereitet die Interpretation der Ausgabe Nr. 62 dieses Tertes in mathematischer Hinsicht keine Schwierigkeiten (S. 105). Aber es erscheint auch ihm noch nicht möglich zu sein, zu einer 'endg uitigen und absolut sicheren Ubersetzung' au gelangen. Es soll nun im folgenden versucht werden, diese noch ausstehende inhaltiche hommentierung nachzutragen, die ubrigens auch geeignet scheine. zll unseren geringen Kentnissen der Tauschverhaltnisse in alten Agypten einen kleinen Beitrag zu liefenen, der meines "issens neu ist."

Vogel, K., "Enweitert die Lederrolle unsere Kenntnis ägyptischer Mathematik?," Archio für Geschichte der Mathematik, der Naturuissenschaflen und der Technik, vol. 11, May, 1929, pp. 386-407. Quotation: "Ich möchte . . . den Inhalt als höchist bedeutsam ansehen, trovedem er lediglich in 36 Stammbruchsummen (in doppelter Ausföhrung) besteht." Detailed references to the literature are given in the discussion. Q. Vetter has a brief note in his "Kozenysvitek matematickeho obsahu " Britiskem museu rozinut" (Leather roll of mathematical content unrolled in the Bricish Museuml, Casopis pro PEstordini Matematiky a Fysiky, vol. 58 . p. 382, 1929. There are references to Glaniille (1927). Neugebauer (1929). and Vogel (1929).

1930

Struve, V. V. [The Golenishchev Mathematical Papyrus of the Moscow Museum of Fine Arts transcribed and translated into German with commentary and notes), Quellen und Studien zur Geschichte der Mathematik, Abteilung A: Quellen. Berlin, 1930. About 144 pp. +25 plates.
In edition of an extraordinarily interesting papyrus of about 1850 B.C. which appears to have been copied from an older work, possibly as early as 2000 B.C. Certain facts connected with the papyrus have been already discussed in my notes on Turaev (1917) and Tsinserling (1925). Only five of its 25 problems had been previously published, and four of these $(6,7,14,17)$ were geometrical. Of the remaining geometrical problems, nos. 4 and 10, no. 10 seems to be just as remarkable as no. 14 which, as we have seen, appeared to suggest that the Egyptians certainly knew the formula for the volume of the frustum of a square pyramid in terms of the lengths of the sides of the square bases and the distance between the bases. No. to seems with like certainty to indicate that the Egyptian of 2000 B.C. knew the formula for the area of a hemisphere, a result supposed till recently to have originated with Archimedes. This problem is to find the area of a hemisphere whose diameter is $41 / 2$ and the successive steps are equivalent to substituting in the formula

$$
[(2 d-162 d)-16(2 d-162 d)] d=2.259 / 81 . r^{2},
$$

if d is the number of units in the diameter of the hemisphere and r the number of units in the length of the radius. The number ${ }^{256} / \%_{1}$ is exactly the value which we would think of as corresponding to x in the calculations of no. $4 x$ of the Rhind mathematical papyrus.
Problems 5. 8, 9, 12, 13, 15, 16, 20, 22, 24, have their parallel in the pefsu problems of nos. $69-78$ of the Rhind papyrus. No. 4 is identical in conditions and similar in expression to no. 51 of the Rhind. There are also rule-of-three questions (nos. 11 and 23).
No. 7 contains a special word, Idb, for ratio, an idea of which Peet (1923, 2), p. 60 believed the Egyptians innocent; and no. II has an expression for the square of a quantity, sn. In no. 14 the square of a number is indicated by a pair of legs which are also used for addition in no. 28 of the Rhind papyrus. In no.

44 of the Rhind and in nos. 7 and 17 of the Golenishchev papyrus the words iw and $w s b$ are respectively used for length and breadth, or sides, where a rec tangle or a right angled triangle is in question. Since different Egyptian words mry.t and tp-r' are used, possibly for altitude and base, in no. 51 of the Rhind and in no. 4 of the Golenishchev papyrus, Struve argues with force, as Gunn r026 [1923] did, that the terms no longer refer to two sides, and that the area of an isosceles triangle is being considered in each one of these problems; the drawings alike bear out this interpretation. The sign for square root used in nos. 6.7. and 17 of the Golenishchev papyrus is also found in other contemporary documents. I am greatly indebted to Professor Struve for generously supplying me with the detailed information given above concerning the papy rus, long in advance of its publication. This unpublished work is the only publication listed in $m y$ Bibliography which I have not personally inspected.
It is not without interest to add that the Rhind and Golenishchev mathematical papyri both seem to have been found in Thebes and very near to one another. We are told that the Rhind papyrus was found in a small building near the Ramesseum. The following statement made by Golenishchev on 25 June 1929, in a letter to Doctor L. S. Bull, suggests that his papyrus was found only a few hundred yards away:
"En réponse à la demande, que vous m'adresser, je ne puis malheureusement vous donner qu'un bien maigre renseignement. À un voyage, que je fis en Egypte, si je ne me trompe, en 1892/3 (ou bien en 1893/4), jai eu l'occasion d'acheter le petit papyrus mathematique chez Abd el-Rasoul, un des frères, qui autrefois avaient détenu le secret de la cachette royale de Deir el-Bahari. C'était, si je m'en souviens bien, l'ainé des frères, notamment celui qui, après une bonne bastonnade, avait dévoilé le secret, du temps de Mr. Maspero. et qui, ayant plus tard resu, pour le petit dérangement subi, une somme d'argent de la part du Gouvernement Egyptien, s'était bâti une maisonnette au pied de la colline de Sheikh Abd el-Qourna. Un jour, en revenant d'une visite aux tombeaux de Qourna, je m'arrêtai chez Abd el-Rasoul, que je connaissais de longue date, et c'est lui qui, au moment des adieux, m'offrit pour une somme assez modique ce petit manuscrit. Lorsque je m'en rendis acquereur, le papyrus n'etait pas encore déroulé et c'est en relevant légèrement l'extrémité libre du petit rouleau, que dès le premier moment j'ai pu me rendre compte de l'intérèt exceptionnel qu'il présentait. Au dire du vendeur, ce manuscrit devait provenir de la nécropole de Dra Abou'l Negga, ce qui etait assez plausible autant par rapport a la paléographie du papyrus, que par rapport a l l'age de la nécropole de Dra Abou'l Negga. Mais, comme ordinairement dans des cas analogues, il ne faut pas prendre a la lettre les assertions des fellahs, car tout naturellement ils tachent de dissimuler l'endroit de leurs fouilles clandestines et ils cherchent à dépuister celui qui leur achète des antiquités.
"Voild . . . ce que je puis vous dire sur la provenance du papyrus mathématique qui m'avait appartenu autrefois et qui, avec toute ma collection d'objets égyptiens a passe en 1912 à Moscou, contre une rente viagère, que le Gouvernement Russe s'etait engagé de me payer ma vie durant." ${ }^{1}$
' We understand that the "rent viagere" has not been paid since the fall of the Imperial Government in 1917.

ARCHIBALD

ADDITIONS AND CORRECTIONS

q In the 1923 edition of Erman ($\mathbf{1 8 8 5}$). for "pp. 423-428" rcad "pp. 396, 420-428."
Q Under Hulstsch (1895) for "Gesellschaft der Wissenschafi" read "Gesellschaft der Wissenschaften." Corresponding changes are to be made in the Index.
Q In line 15 of the commentary on Grenfell ($\mathbf{t} 903$) for "equal to 3 " read "equal to 3 :".
Q In Hilprecht (5906) there is a reference to "Hilprecht (1903, 1906);" for this read "Hilprecht (1906)," since the 1903 publication was only a general lecture (German ed. 1903, English ed. 1904) containing comparatively litte of mathematical interest.
a In Grifith (r907) I referred to the fact that a sign for square root had been first found in Kahun papyri, plate VIII, line 40. It was this same sign which was the subject of the note Ruska (1908). The hieroglyphic sign in question is $\sqrt{ }$, which reminds one of our modern symbol for square root but there is no connection (see F. Cajori, History of Mathematical Notations, vol. 1, 1928, pp. 360-369). In shape the symbol is a gnomon discussed at length in Cantor (1907) p. 161 f ; and Heath (1921), vol. 1, pp. 77-82. The same sign for square root is used in the Berlin papyrus 6619 (ShackSchackenburg (1900), p. 136, plate IV, and Schack-Schackenburg (1902), p. 65), and, in the Golenishchev mathematical papyrus (problems 6, 7 and 17). These three papyri all belong to the period about 1850 B. C.

C Of Möller (1909) there was in 1927 a " 2 . verbesserte Auflage" of vols. I ($8+76$ pp.) and $2(4+i 4 \mathrm{pp}$.). In reality, however, the new edition is nothing but a reprint, (on both sides of each sheet instead of on one side only), with a few listed corrections. In the second last line of the note on Möller (1909) substitute "pp. 16-18" for "pp. 18."
q Of Loffler (1912) there is a third edition: Zifern und Zifernsysteme. 1. Teil: Die Zahleeichen der alen Kullurvölker. 3. durchgesehene Auflage. Leipzig, 1928, 54 pp.
© Add to the Subject Index: "Goellingische gelehrte Anzeigen 1916 [1916]." Also: "Gesellschaft der Wissenschaft, Gelehrle Anseigen, see Goetlingische gelehrle Anseigen." ldd also: Smith, S. [1916].
(In connection with Gunn's review of Peet (1923, 2) I referred to a forthcoming publication of Gunn; a more exact reference is as follows: Service des Antiquites de I'Egypte. Excavations at Sagqara, Teti Pyramid Cemetries by C. M. Firth and B. Gunn. Cairo, 1926. Vol. 1, text, pp. 147-148, 271-272; vol. 2, plates, plate 3. These references are only to Gunn's part of the work. The particular document here is a mastala tomb of the sixth dymasty (alout 2500 B.C.), part of inscriptional material excavated at Saqqara during the seasons 1920-22.
© In my comment on Tsinserling (1925) I referred to five problems by numbers occurring in the article. They seem to have been the numbers assigned by Turaev. These numbers, together with the corresponding columns of the papyrus, were given as follows: 1 (col. I), 2 (col. II), 9 (col. XX-XXI), 12 (col. XXV-XXVI), and 15 (col. XXIX-XXX). In Struve's standard edition of 1930, however, these numbers are respectively: 6 (col. VIII), 7 (col. IX), 14 (col. XXVII-XXIX), 17 (col. XXXIII-

BIBLIOGRAPHY

XXXIV), and 21 (col. XXXVIII-XXXIX). Struve's no. \dagger (cols. 1-II) was regarded by Turaèv as a fragment; Struve's no. 5 (cols. VI--:II) and 20 (col. XXXVII) were not listed by Turaev at all. According to Struve's present count there are in the Golenishchev mathematical papyrus 45 columns containing 25 problems. The text and foot-notes in this Bibliography for both Turaev (1917) and Tsinserling (1925) will need to be revised, as indicated above, in order to be in conformity with the Struve edition.
But furthermore, in Tsinserling (1925) I called special attention to the fact that 1/6 $31101 / 240$ was used in problem 17 (cols. XXXIII-XXXIV), instead of $3 / 31 / 15$, as the equivalent of 2 divided by 5 . Struve now gives $1 / 5 / 15$ as the translation; how the other one was ever arrived at is a mystery.
In the last foot-note, line 3 , the words mryt and $\ell p-r$ should be interchanged, if they are to correspond respectively to "length" and "breadth." Moreover to conform with the forms used in [r930] and elsewhere they should be tp-r: and mry.t.

COf Neugebauer (1926) there is an interesting review by Wieleitner in Archiv für Geschichte der Mathematik, der Naturwissenschaften und def Technik, July, 1927, vol. 10, pp. 233-237. Last two sentences: "Man kann nicht nur zu viel in alte Texte und Verfahren hincinlesen, sondern auch zu wenig. Ich glaube, dass Neugebauer das letztere in etwas weitgehendem Masse getan hat."
a Under Gardiner (1927) there is a reference to the third edition of the Ägyptische Grammatik of Erman, the father of scientific Egyptian philology. The fourth edition appeared in 1928 as volume 15 in "Porta linguarum orientalium," and with the following title: Ägyptische Grammatii. Mit Schriftuafel, Paradigmen und Übungsstūcken sum Selbsstudium und zum Gebrauch in Vorlestungen. 4. völlig ungestaltcte Auffage. Berlin, 1928. $16+309$ lithogr. pp. +10 pp . The sections on numbers, paragraphs 240-247 are much more condensed than Gardiner's, as indeed the whole grammar is, but there is further information and there are certain points of disagreement with Gardiner.
The principal Coptic grammars are the following: A. Mallon, Grammaire Copte avec Bibliographie, Chrestomathie et Vocabulaire. Third edition, Beyrouth, 1926; $18+$ $325+192 \mathrm{pp} .+1$ plate with the cursive forms of the coptic numbers (numerals and calendrical matters are treated pp. 72-84). G. Steindorff, Koptische Grammatik mit Chrestomathie, Wörterverzeichnis und Literatur. ("Porta linguarum orientalium," vol. 14.) Zweite gănzlich umgearbeitete Auflage, Berlin, 1904: $20+242+104 \mathrm{pp}$. (numerals treated, paragraphs 81-82, 175-184). W. Till, Achmimisch-Koptischc Grammatik mil Chrestomathie und Wörterbuch. Seeipzig, 1928, autographed; $3+21+312+$ 29 pp. (numerals treated pp. 98-104).

व For the entry Gillain (1927) the following is to be substituted:
Gillain, O., La Science Égyptienne. L'Arithmétique au Moyen Empire. Avec une préface de H. Bosmans. Brussels, 1927. $16+$ 326 pp .
The preface by Bosmans (pp. v-svi), dated October, 1927, was published also as a supplement to Malhesis, vol. 42, January, 1928. In Gillain's bibliography pp. $321-324$ are 58 of the titles given in my bibliography, which, except for the

ARCHIBALI)

aupplement, was printed but not issued to the public, before the appearance of Gillain's mork.
Review by R. C. Archibald, Isis, vol. 11, December, 1928, pp. 395-398 (containing 2 new solution of no. 64 of the Rhind papyrus).
Review by T. L. Heath, Narure, vol. 122, August 11, 1928, pp. 195-197.
Revier by [F. Petrie], Ancient Egypl, December, 1928, pp. 123-125.
Review by D. E. Smith, Bulletin of the American Mfathematical Sociely, vol. 35. May-June, 1929, pp. 40;-408.

Review by H. Wieleitner, l(illeilung aur Geschichte der Medizin und der Nathr sissmsehaften, vol. 27, May, 1928, p. 150.
(In the "Chronological List of Documents Discussed:" (a) under date " 1315 B.C.," for "Anastasy papyrus" read "Papyrus;" (b) of course the words "wholly unpublished" in the first footnote 3 are not true at the present time.

CHRONOLOGICAL LIS' OF DOCUMENTS

 TO WHICH REFERENCE IS MADE| Approximate | | |
| :---: | :---: | :---: |
| Dates | Documents | Localions |
| B. C. | | |
| 2500 | Tomb inscription (hieroglyphic) | Cairo |
| 2200 | Tablet M. I. O. 7375 (cuneiform) | Constantinople |
| 2000 | Clay tablet VAT 6597 from Akkad (cunciform) | Berlin |
| 2000 | Tablets 362-368 (cuneiform) | Strasbourg |
| 1900 | Tablet of Senkereh, no. 92680 (cuneiform) | London |
| 1900 | Tablets Bu.: 91-5-9, 263 (now no. 80150) (cunciform) | London |
| 1850 | Golenishchev mathematical papyrus (hieratic) | Moscou: |
| 1850 | Kahun papyri (hieratic) | London |
| 1850 | Thebes papyrus 6619 (hieratic) | Berlin |
| 1650 | Rhind mathematical papyrus 10057, 10058 (hieratic) | London |
| 1650 | Leather Roll (hieratic) | London |
| 1460 | Tablets 268-274 (cuneiform) | Brusscls |
| 1460 (?) | R. O. M. A. Bab. Tab. 711 and 767 (cunciform) | Toronto |
| 1200 | Papyrus Anastasi I (hieratic) | London |
| 650 | Tablet BU85-4-30, 144 (now no. 77951) (cunciform) | London |
| 650 | Tabiet K90 from Akkad (cuneiform) London | London |

${ }^{1}$ This date was kindly furnished to me, in a letter dated 26 September 1929, by Mr. C. J. Gadd of the Department of Egyptian and Acsyrian Antiquities in the British Museum: "Kgo is in the Kuy0njik collection, the remains of Ashur-bani-pal's library, and therefore of the 7th century B.C." Mout writers who refer to the matter placed the date much carliet, about 2000 B.C.

BIBLIOGRAPHY

INDEX

The abbreviations are similar to those used in the main part of the Bibliography. AC preceding a reference in the present index indicates that it refers to the Additions and Corrections of this Supplement. The authors and subjects are here combined in one index.

Abd el-Rasul [1930]
Académie des Inscriptions et belles lettres, Comples Rendus [1868]
Achilles Tatius [r854]
thmes 1928, [1928]
Akademie der Wissenschaften, Vienna, Denkschriften [1900]
Ikkad, see Babylonian Mathematics
American Mathematical Society, Bulletin AC [1927]
Amiaud, A 1889
Anastasi [igit]
Ancient Egypt ACr928 [1927]
Archibald, R. C. 1927, 1929, [1929]. AC1928 [1927]
Archimedes [1930]
Archio der Mathematik und Physik 1915 (2)
Archiv für Geschichte der Mathematik, der Naturuissenschaften und der Technik 1929, [1929], AC [1926]
Art and Archaeology 1928
:ssyrian mathematics 1872, 1882, 1889, 1909
Babylonian Expedition of the University of Pennsylvania 1906
Babylonian mathematics 1854, 1868, 1898, [1906], 1908, [1909], 1911, 1915, [1925].
1927, 1928, [1928]. 1929, [1929]
Barker, F. M. 1912 [r911]
Beilräge zur Assyriologic 1808
Berlin Museum [1928]
Bertin, G. 1882
Bezold, C. 1889 [1854], 1891 [1868], [1909], 1889 [1911]
Bibliographies 1925. 1927. 1929 [1927]
Borchardt, L. [1928]
Bosanquet, R.H.M. 1880 [1854]
Bosmans, H. AC1927, AC[1927]
Breadth [t 930], $\mathrm{AC}[1925$]
Bremner, D. [1927]
British Museum [1868], 1909, [1909], [1911] (2), [1927] (7). [1929] (2)
British Musenm Quaterly 1927
Brugsch, H. K. 1867 [19nI], [1928]
Brussels, Mustes royaux du cinquantenaire 1925
Budge, E. A. W. 1920 [1925]
Bull, L. S. 1927, [1930]
Bulletin of the American Mathematical Society AC[1927]
Bulletin of the Royal Ontario Mruseum of Archaeology 1928
Cajori, F. ACri28 [1907], 1927 [1915]

ARCHIBALD

Cantor, M. [1554], 1575 (18;2], 2505, [1928], $1 \mathrm{AC}[1907$)
Casopis pro Pestondni Matematiky a Fysiky [1929]
Chabas, F. J. 1866 [1911], 1868 [1911], 1903 [191I]
Chace, A. B. 1927
Chaldaean mathematics 1868
Chronology, Esyptian 1901, [1901]
Cipriani, P. 1928
Circle [1854], [1915], 1928, [1928], 1929
Clay, A. T. 1906
Coptic grammar AC[1927]
Cube root [1868], 1908
Cuneiform Tablets, sec Tablets, Cuneiform
Cuneiform Texts from Babylonian Tabkets, \&c., in the British Museum [1929]
Delaporte, L. 1911
Division [19n]]
Dra Abu'l Negga [1930]
Drach, S. M. [19II]
Egyptian dictionaries 1925, [1925] (2)
Egyptian grammar AC[1927]
Eisenlohr, A. [r927], [1928]
Encyclopadia Britannica, 1929
Engelbach, R. 1923 [19nt]
Erman, A. 1912[1911], 1925. 1921 [1925], AC1923 [1885], AC1928 [1927]
Favaro, A. [1928] (2)
Fazzari, G. [1928]
Firth. C. M. AC1926 [1923]
Fractions 1898, [1898], [1909], [1927], 1928, 1929, AC [1925]
Frank. C. 1928, [1929]
Gardiner, A. H. 1911, AC192-
Gesellschaft der Wissenschaften, Güttingen, Abhandlungen 1927; Nachrichuen [1901] 1928
Gesellischaft der Wissenschaften, Göttingen, Gelehrle Anseigen, see Goellingische gelehrle Anzeigen
Gesellschaft der Wissenschaften, Leipzig, see Sächsische Gesellschaft der Wissenschai ten
Gillain, O. 1928, ACi927
Ginzel, F. K. [1001]
Giza 1928
Glanville, S. R. K. 1927 (2), [1927] (2), (1020]
Goellingische gelehrte Anseigen AC1916
Golenishcher, V. S. $\{1030]$
Goodwin, C. W. 1866 (1911]
Goodwin, C. W. 1860 (1911]
Grapow, H. 1925, 1921 (1922
Greek mathematics [1928]
Greek mathematics (1928)
Crenfell. B. P. AC1903
Grenfell, B. P. AC1903
Griffith, F L. ACıgot
Griffith, F L. AC1907
Cínther, S. [1928] (2)

BIBLIOGRAPHY-INDEX

Gunn, B. [1930], $\mathrm{ACl}_{1926 \text { [1923] }}$
Hall, H. R. 1927, 1929
Hamburger mathematische Einzelschriften, 1929
Hamburgische Universitat, Abhandlungen aus dem mathematischen Seminar, 1929
Heath, T. L. AC[1907], AC1928[1927]
Hemisphere, area [1930]
Hemisphere, area (1930]
Hieratic documents, see Papyri
Hilprecht. H. V'. [1909]. [1911), ACigot
Hincks, E., 1854, [1854]
Hoppe, E. 1909 [1915]
tultsch, F. ACi895
Isis AC1928(1927]
Journal Asiatique 1872, 1889
Journal of Egyptian Archaeology 1927, [1929]
Journal of the Royal Asiatic Sociely, see Royal Asiatic Socicty, Journal
Karpinski, L. C. [1854], [1926]
Kewitsch, G. 1915, 1909 [1915) (2)
Kleppisch, K. 1927 [1928], [1928]
Kugler, F. X. (1900), 1900 [1915]
Lauth, F. J. 1868(1911]
Leather roll (hieratic) 1927(3), [1927], 1929, [1929]
Lehmann-Haupt, F. F. K. 1886 [1915]
Length [1930], AC[1925]
Lenormant. F. 1873 [1854]. 1868, 1875 [1868]
Literary Gazelle 1854
Loffier, E. 1911 [1915], AC1928[1912]
Loftus, W. W. [1868]
Mallon, A. ACr926[1927]
Manning, H. P. 1927
Mastaba tomb AC[1923]
Mathematical Association of America [102̄]
Mathesis 1928, ACi928(1927]
Measures 1868, 1872
Mechanical problems [1911]
Mercer, S. A. B [1925], 1928
Meynard, B. de 1889
Milteilungen zur Geschichte der Medizin und der Naturivissenschaften [1926], AC[1927] Müller, G. ACig2z[1009]
Multiplication [1025], 1928
Nature, [1854], AC[1927]
Neugebauer, O. 1927, [1927], 1928, 1929[1928], 1929(3). [1929], AC1926
New York Historical Society [1927]
New York Public Library 1925, [1925]

Nippur 1906

Numerals 1882, 1889, 1898, [1909], [1911], (1915], [1927], AC1928[1912], ACi904[1927].
AC1926[1927], AC1928[1927] (2)
Open Court [1911]

ARCHIBAID

Oppert. J. 1902[1868], [1868], 1872
Ottoman Museum [1911]
x approvination [1930]
Papyri
Anaslasi I 1911, (1911]
Berin 6619. AC[1907]
Golenishcheo [1930], AC[1907], AC[1925]
Kahun AC[1907]
Rhind [1926], 192;- [1927], 1929, [1929], [1930]
Rhind, particular problems (40, 64, 79) [1926]. (4, 5, 9) [1927], (28, 41. 44, 51.
71, 76) [1930]. (64) AC(1927], "Chronological List"
Peet. T. E. [1926], (1927). [1929], [1930], AC[1923]
Pefsu problems [1930]
Pennsylvania, University of, Babylonian Expedition 1900
Perepelkin. J. J. 1929
Petrie, F. [1928]. AC1928[1927]
Pinches. T. G. 1909, [1911]
Porta Linguarum Orientalium AC[1927] (2)
Pratt, I. A. 1925. 1918 [1925]
Progressions, Arithmetic, Geometric 1854
Pyramids 1928, [1928], [1930]
Pythagorean theorem 1928, [1929]
Quellen und Studien Eur Geschichte der Wathematik (1928], 1929 (2), 1930
Ramesseum [1930]
Ramp [1911]
Ratio (1930)
Rawlinson, G. 1862[1868], $1880[1868$]
Rawlinson, H. C. 1855[1868], 1875[1868], 1891[[8688]
Retue Critique d Fitstoire et de Literalure [191I]
Reoue d'Assyriologic el Archeologie Orienlale 191
Reoue de Synthese Historique 1926, [1926]
Revue Sémilique 1897 [1898]
Rey, A. 1926
Rhind, A. H. [192;]
Royal Asiatic Society;, Journal [1868]
Royal Astronomical Society, Monthly Notices [1854]
Royal Irish Academy, Transactions, Polite Literature, 1854
Royal Ontario Museum of Archaeology (1925). 1928
Rule of three [1930]
Ruska, J. AC[1907]
ächsische Gesellschaft der Wissenschaften, Berichte, philologisch-historische Klasse ACi895, 1901
Sayce, A. H 1875 (1854], 1880 (1854), 1887 (1854)

BIBLIOGRAPHY-INDEX

Schack-Schackenburg, H. AC[1007] (2)
Schiaparclli, G. V. (1928)
Schnabel, P. 1926[1915] .
Schriften der Strassburger :vissenschaflichen Gesellschaft in Heidelberg 1928
Scicuce [1915l, [1929]
Scott, A. 1927, [1927]
Senkerch [s868]
Service des Antiquites de l'Egypte AC[1923]
Sexagesimal System 1927
Sethe. K. 1919[1901], 1920[1901]
Sethos II (1911)
Sidersky, D. 1929[1928]
Smith, D. E. AC1929(1927)
Smith, S. AC[1916]
Smyth, C. P. [1928]
Society of Biblical Archacology; Transactions 1876, 1882
Spelecrs, L. 1925, [1928]
Square root [1868], 1908, [1930], $\mathrm{AC}[1907]$
Squaring (1868), (1930]
Steindorff, G. ACr904[1927]
Strasbourg, University of (1928)
Struve, V. V. 1929, 1930, [1930], AC[1925]
Tablets, Cuneilorm 1868, 1906, 1909, [1900)], 1911, [1911], 1925. [1925], 1928, 1929.
(1929)

Thureau-Dangin, F. 1898, 1897(1898], 1913[1915], 1928[1927], 1929[1927], 1923
Till, W. AC1928[1927]
Time divisions 1901, [1901]
Torczyner, H. 1913 [1906]
Triangic, area [1930]
Tropfke, J. [1854]
Tsinserling, D. P. [1930], AC1925
Turace, B. A. [1930], AC[1925]
Ungnad [1911], [1928], [1929]
Unterrichthblüler für Malhemalik und Naturwissenschaften [1915]
Vetter, Q. 1928, [1929]
Vogel, K. 1928[1926], 1929, [1929]
Weidner, E. F. [1928]
Weill, R. 1926[1901], 1928(190:)
Wicleitner, H. AC1927[1926], AC1928[1927), 1929[1920
Wicleitner, H. AC1927(1926), AC1928\{1
Zcilschifit fir Äryptische Sprache 1929
Zcilschrift fïr Aggptische Sprache 1929
Zeitschrift für Assyriologic [1854], 1903, 1908, 1915, [1915] (3)
Zeilschrift fuir Mathematik und Physik [18;2]
Zimmern, H. 1901, [1928]

THE MATHEMATICAL LEATHER ROLL BRITISH MUSEUM 1025°

THE MATHEMATICAL LEATHER ROLL IN THE BRITISH MUSEUM ${ }^{1}$

By S. R. K. Gianvidie, M.A.

?
THE hicratic leather roll, B.M. 10250, of which a photograph is shown on the opposite page, is published in full in the Journal of Egyptian Archaelogy. The following note will explain the photograph. The roll was acquired by the Trustecs of the British Museum, with a number of others from the collection of Mr. A. II. Rhind, in 1864. Owing to its extremely brittle state it was impossible to unroll it at the time, and its contents have necessarily remained inaccessible till the present day. The process by which Dr Alexander Scott, F.R.S. succeeded in unrolling the manuscript is fully described elsewhere. ${ }^{2}$

The roll is said to have been found with the Rhind papyrus, and by its writing is shown to have been of much the same date.

It consists of a serics of sums in addition of fractions, in duplicate. This reduplication makes possible the almost certain restoration of the right-hand column, the great part of which has been broken away. Certain errors in the second copy of the series all appear to have occurred in the first, indicating that the former was copied, figure for figure, from the latter, without reference to the calculations.

Some of the sums are too complicated to have been worked out without some preliminary jottingsto judge from our experience of the Rhind papyrus and other extant mathematical works-and we may therefore assume that these examples are abbreviated statements of problems which were stated more fully elsewhere. Now in essence our sums exhibit the same mathematical processes as those involved in the skmexamples of the Rhind papyrus; and as a matter of fact the twelfth sum in our list exactly corresponds to Peet's Number 11. We may therefore conclude that the scribe of the leather roll was making himself a table (in duplicate-perhaps eventually to be cut in half) from a series of skm-examples contained in some larger text-book. In other words the leather roll is a small book of tables for practical reference in the hands of the student or scribe; in contradistinction to which the papyrus is seen to be a text-book for the teacher.

Undoubtedly the chief interest of the leather roll is in its relationship to the Rhind papyrus.

- Mr. Glanville's note was written in September, 1927. That the roll may have greater significance than he at first thought is suggested in papers by Neugebauer and Vogel, listed in the Biblingraphy under 1929.-R. C. A.
${ }^{1}$ The roll is discussed at length by me, with transcription and translation in the Journal of Egyptian Archoeology, vol. 13, Nov., 1927. 2 British Afuseum Ouarterly, vol. 2 (1927) no. 2; J.F.A., ibid The photograph on the opposite page is similar to the one reproduced in the Quorterls. In the reproduction in the Jaurnal a number of fragments have leen added, especially in columin 1 .

LEATHER ROLL, B.M. IO2 50

INDEX OF SELIECTEI R E(;YPTIAN WORDS

I number alonc, or the first one of a reference, stands for the number of a problem. The Title.pange of the Rhind pajyrus is denoted by "T." and references to the table of the division of 2 by odd numbers are in the form, "2 divided by 3." References to the Preface and Introduction of this volume are by page (a small roman numeral). When a particular line of a problem is to be indicated the reference is in the form. "24:2" (for Problem 24, line 2), or sometimes " 2402 ." The line number always refers to the lines on the plate; the correaponding position on the opposite page, often with an explanatory footnote, is casily found. For "footnote" the abbreviation "ft" has been used; plural, "Its." For most of the words listed all of the occurrences in this papyrus are given. Only rone or two references are given to the Supplementary Bilsliography, as this has a full index of its ows

iv, kngth, 4t: mee Struve, 1930 .

sb.t. area, land, field, 49-52, 54, 55 .
if.t, akhel, first meason of the ycar, T, 87 : see 7 If 9 .
l, y, use of in this book, xii; y represented by a man with hand forsuard, xii; y final, often omitted, 71 ft 3.
ii:s, series of fractions, 38 ct ft 3 .
14. error, 15 .
iy, come, (iy.n) 67 .
in, come, relurn, 35-38.
iw, be, 5 5h.3. $58.1,67.3,68.2$; auxiliars; T. 1, 35-38, 62.2; the construction iw ir $X, Y \mathrm{Pw}$ occurs in 58a5, 62.4, and $86.5(\mathrm{f})$.
iwt, ox, 67, 84, 86; written phonetically only in 84-2.
iwn, pillor, perhaps cone, 60.
Ibd, month, T, B3.8, 84.9, 87.
ifd, rectangle, rectangular. from the same atem as fdw, 44, 49, $5 \mathrm{fb2}, 52.3$.
im, form of the preposition in before aurfixes, 62, 66, 80 .
im, therefrom, adverb) from the preposition m, 69, 79, 76, 78.
Imy, preceded by n with suffix $t 0$ exprese pomession, 56-60; may be related to the preporition $\mathrm{m}, 56$ ft 2.
imy.t-pr, house-inventory, 79.
in, 60, T.3. 28.4: In m, then what? 35, 37. iny, bring. 67 (in.n);buy, 62 (in.tw, iny.t).
lr, as for, 6ocs. 70d3, 80.8, 81-2, a1, br,
83.1. 4; iw Ir, 38a5, 62.4, 86.5(i); ir, if, 30, 47, 62 ft 8,68 .
ir(y), make, do; ir.t my bpr, 2, 6, 24, etc.: Ir.t myt-t in 4 and $5,4 \mathrm{ft} \mathrm{3ifr} \mathrm{m} ,\mathrm{ir} \mathrm{n}$, conatruction, 66 ft 4 ; Ir.i, finite form, ${ }^{8} 7$ it 8 (the infinitive fr t occurs many times).
ry, adjective from the preposition $r, 86.7 \%$ iry-'; door-kecper, 65 ; iry-w-',wt, func tionaries, 80.
irw, callle-numbering, 67.
th, catle, 67 ft 4 .
l4, reckon (?), 49.1; unknown elsewhere
st grt, now, now then, T, 67 .
It, barley, 64, 68e3, 83, 86; sec sm^{\prime}.
'iw, excess, 22, 72.
'pro, supply, equip, 65.2
'nd, few, small, 67,2.
' b ', stand, stop, used apparently as marginal direction by the scribe, $32 \cdot 14,64$ end of line i, note; ' h '-n, auxiliary verb, 71.
'b', guantity, 24-27, 30-34, 36.
' b '.t, number, quantily, 72, 76, 78.
's', parious, 62; greal (cattle-amount) 67.3; common, ordinary, 84.
'13, enter, 83 ; passive, was entered (of a city), 87 ; accrue, be added, 28.
' kw , food, 82, 83, 84.
w, abbreviated sign, xii, 72 ft 12; plural ending, x : in tw often omitted, 38 ft 1 , $62 \mathrm{ft}_{13}$.
wih m (instead of wib-tp m), mulliply, 26, 44; operate on, 60; see 44 ft 4: wit br, add to, 21-23, 64, 72; wib-tp m, mulliply, 41, 43, ctc.; operate on, 21. 22, etc.
$w y$, particle added to adjectives for em-
phasis, 'nd.wy, 67.2.
$w^{\prime} w$, one, 63, 79 and ft 1,83 ft 4, 86.
w't, unit, 69 ft $t, 70$.
wnm, eal, 82~84.
w'am, food, 65, 86.
wnm-t, food, 82 13.
wr, how much, how many, 45, 73.
whi-lb.t, whha-thedet, line at the base of
a pyramid, $56-59$, see 56 ft t .
w 86 , breadh, 43, 44, see Struve, 1930.
wdy, see d.
wdi, remain, 28
wdy-t, wedyct, a kind of four, 72-78, 82 ;
position of w, plural strokes, 72 ft 12 .
bik.w, dues, 67.
byı, besha, a kind of grain, 71 .
bd.t. spell, 79, 82, 84, 86.
pl, feminine ti, plural n ', weak demonstra tive and definite article, precedes its noun, $x, 30.3,32.9$, etc., see 53 ft 3 : $\mathrm{p}^{t} \mathrm{pw}$, that this is, $57.4,58.4,60 \cdot 3$.
p'r.t, guail (?), 83 .
pw, this, x, occurs many times; (lhis means) 38,62.
pisw (psw), pefsu, baking or brewing ratio, from páy, 69-78, $69 \mathrm{ft} 2,71 \mathrm{ft} 7$.
p, this, feminine tn, plural nn , singular follows, plural precedes its noun, T, 28 , 46, 66, 67, 87; cursive form, 56, 58, 67 .

pnri, mouse, 79.

pr, house, 79.
pry, go out, be subtracted, 28; be issued, 66 pr-m-w4, per-em-us, vertical height of a pyramid, 56-59, see 56 ft I.
prw, exicess, differenec, 64.
p8y, cook, with a special meaning: value what is baked or brewed in terms of the grain that went into it. 74.

psw, see pfaw.

pax, divide, 1, 64.
pag.t, share, 64 .
fdw.nw, fourth, from the same stem as ifd, 68.
m, preposition, x; in, 64,2, 6gc5, 70d4; of, consisting of, 71.3 end; m of eguiva-
lence, represented by a colon in the literal translation, x.
m_{1} what? $30 \cdot \mathrm{I}$, 71 it 8 ; see under in.
m_{1} enclitic particle after imperatives, 21 ft t.
my, like, as, 66; if, 49, 51, 52, 61B, 62, 64, 72, 73, 77, 78 .
myt.t, the like, the same, (myt-t pw) 1,3. 5. 46.5, sec 4 ft 8 .
myw, cal, 79.
mnw.t, dove, 83.
mr , pyramid, 50-59; its determinative, 59B ft 4.
mry.t, side of a triangle, 51, 52 .
mb, cubit, 43, 46, 56-60; cubil-strip, 5355; special sign (?) for 10 cubit-strips, 53 ft 2,54 .
mb, fill, (mb-kwy) 35-38.
$\mathrm{mb}(\mathrm{y})$, Lower Egyptian, (it mb) 83.
mtr, average, (in pss.t mtr.t), 64.
n, to, for, written with arms, 1, 3, 4, 6, 39, 40, 60, 62, 63, 65, 66, 68, 80, 83 .
$n(y)$, genitive adjective, 62 ft $7 ; n \cdot t$ (fem inine), 51, 52, 68.2; n-6w, it is of, 45.1 2, $46 \cdot 2 ; \mathrm{n} \cdot \mathrm{t}$, noun, (n.t pw) 4 it $8,6$.
n-form of verb (ly, 'b', h'y, bpr 30, syp. 6pbr, 6bn (sbn), dp, dd 67). generally indicates past time, $x, 30 \mathrm{ft}:$.
n , the, plural of p^{\prime}; with $\mathrm{n}, 65 \cdot 2$; used ab. solutely, these, 67 cz , d.
nys.
bnt, call
out of, 2 di vided by 3 ft 1 , occurs at the top of each page of the table of the division of 2 by odd numbers, and in 35, 37, 38, 63.3, 66.3, 67a5; nys.
$35,37,38$,
bft, $57 \cdot 2$. nys, reckoning, (tp n nyチ) 44. 56.
nys, reckoning, (tp
nybw, accounlant, 67.
nw, ordinal ending (with \{dw, bmit, in).
nmt.t-1pd.w (?), fowl-yard, 82.
nm , these. plural of $\mathrm{pn}, 65,84$
at-f, its belonging (the same nord as the pronoun ntif), 49a3 ft 5
nty, which. 45 ft 3 : fem. nt.t, that which (is). T. 62, 82.
nd, grind, 82.
nd, mrol, 69, 70.
r-like sign, ditto, si, 47, St ft 13.86.
r-like sign in pxfsu-problems, 72-74, 76, see 72 ft 4 .
r. part, as in fractions; some write it r, \mathbf{x}, x.
r:, ro. unit of capacity, $1 / 320$ of a hekat, 35. 38, 43, 47, 66, 68-70, 81-84, method of writing. 47 note.
$r:$ goose, 82, 83.
ri-pw, or, placed after both of the words which it connects, 47.
\mathbf{R}^{\prime}, the sun-god $\mathrm{Re}^{\mathbf{4}}$; in proper names, Tift 5 .
fint. people, 65 fit 4.
mp.t, year, 66, 86; see b:tt-sp.
rbt, amount, content, dimensions, 41, 43. 44, 46, 50, 52, 53, 62, 63, 69, 74, 82B 86.
dy, see dy.
hiy, go in, go down, T (hitt), 35-38 (h:s.kwy), 41-44 (hilt), 45. 46 (hi.n)
hnw, hinu, Ho of a hekat, 80, 81, 83, 86.
b-t-sp, year of reign, T, 87, see rnp-t.
bik, cut-of line parallel to the base of a triangle, 52.
hik.t truncaled Iriangle or trapezoid, 52. hsb, reckon, count, 67, 81; tp-bsb, accurate reckoning, T.
bls:t. hekat, fundamental unit of capacity (about half a peek), 35, 37, 38, 41 47, 64, 66, 68-70, 72-77, 79-84, 86; Horus eye fractions of a hekal, 35, 37 , 38. 43. 47, 64, 66, 68-71, 75, 80-84: special signs for five, 47, 68, 76, 77, 83: 84, 86, for six, 68, 82, 84, for seven, 70, 84, 86, for six, 68, 82, 84, for seven, 70,
75, 84, for eight, 82, for nine, 84, for 75, 84, lor cighl, 82, for nine, 84, for
ten, 64, 66, 68, 72, 73, 76, 78, 82-84, 86; 2en, 64, 66, 68, 72, 73, 76, 78, 82-84, 86;
2-hb:t, 82, 84; 4-hk:t, 41-47, 68, 86;
imple hekal written with stick and grain-measure, $64.1,2,66.1,2,69.1$, O.I. e3, 82.6, 7, 10, 83.5, 6, 84.1, 7 all the writings of double and quad ruple hekat include these signs.
bitr, estimate, 82, 84.
b:y, nucasure, 80.
hb, take aunay, subtract, 41-43. 50. 53-55, $64,71,82$.
bnit-nw, third. 68 ,
br, with verbs, hortatory, x.
ht, khed, linear unit equal to 100 cubits. 49-52.
htmy $\cdot t$, cooped $-u p$ foul (collective), 83.
h. the alphabetic sign ha does not occur in this papyrus, xiii.
b:r, khar, unit of capacity, equal to 20 simple hekat, 41, 43. 44.
hr, preposition, under, 62, 67,
hiry, the one under, from the preposition br, 64.
fr.t, share, basis, portion, from the preposition lir, 63. 66, 70, 73, 76, 82, 83 .
s and s interchangeable, xiii.
snt-t (snt.t) scmet, line at the basc of a iwn, 60 .
si (sr), ser-goose, 83
5, see s.
s.t (s.t), set-duck, 83 .
syp, commil, (syp-n, sypy) 67
kyty, proof, tp n Syty, 21, 32-35, 37, 38.
sw, it, dependent pronoun, 30, 32, 35-37 n-Sw, see under $n(y)$
sw-t (sw-t), wheal, 82
sphr, copy, write, (splor-n) T; on the plor sign see 70 ft 5 .
spd t, triangle, 51.
6n-nw, secoul 68; neighbor, next one, 64.
Sbwy, list, 68.
sibn (sbn), enfold, receive, (sin-n) 68.
frm.t (s instead of 6 in 42), working-auf, occurs at the top of each page of the table of the division of 2 by odd numbers, and in 41-44, 46, 58, 60, 65, 66.
strd, seked, ratio in a pyramid, 56-60, see. 56 ft I.
skm, complece, 7, 21-23.
sty, pour, 7 I .
stwets, content, result, 45, 46,60
tit:t, sctat, unit of area ${ }^{\text {a }}$ squar
$\cdot \cdot t$, scial, unit of area, a square khet,
$48,50-55$; signs for $1 / 2,4,18$ of a setat, 48. 50-55: signs for $12,4,18$ of a setat. 23-55; special sign for six, 48 , see 50 ft way of writing tens of a setal, 48, 50-53.
si', granary, 41-47; on the si:-sign see 71 ft 9.
s'ty, sha'ty, unit of value (?), 62.
Sm^{4}, Upper Egyplian barley ((t sm'), 74: Upper Egyplian ox, 84.
Smw, sh6mu, third scason of the year, 87 ; sce Tft 4.
in', pranary, 80.
Ssp, palm, unit of length, 56-59.
\$s (ssr?), grain, 35, 37, 38, 41-47, 68, 82.
sd, wourish, fallch, 82, 83 .
k'y-n-brw, height of top, 6o; k:w, height, 43.41.
kib. double, 65. 70; on the $k: 1 \mathrm{l}$-sign see 70 ft 5 .
hy, fashion, method, 41-43.
krf.t, bag (?), 62.
kwy, pseudo-participle ending, first person singular, 35-38, 67.
km, be complete, 21, 22, 67; add, 37 .
sb, in ty.t glet, tucven fraction, 6ib. gm , find, used in the table of the division of 2 by odd numbers for all the numbers not multiples of 3 after 41 except perhaps 101, and with 93 and 99 (see 2 divided by 43, note), and in 43, 55, 67: divided by 43, note), and in 43,55, 67 rent, $38,55-60,62,65,68-72,76$.
t and t interchangeable in some words, xiii.
t, feminine ending, x.
4, loaf, bread, some write it t, x; occurs in 1-6 and in many other problems; thw may be singular, 3 ft 2: writing of $\mathrm{t} \cdot \mathrm{w}$ on patelies, $6_{3} \mathrm{ft} 1,72 \mathrm{ft} 2$.
(:, the, femianine of 0:, 38, 55, 75, 72, 73: this, 53 .
ty, particle (in bpr-ty-6y), 6tB.
ty-t, tyit.t, fraction, 61, 70.
tw, passive particle or indefinite pronoun.
T, 38, 61B ft 7, 62, 64, 86.II; the w
sometimes omitted, $38 \mathrm{ft} 1,62 \mathrm{ft} 13$. 64 ft 8.
twn, allack (?), 87.
twnw, diference of share, 39, 40.
tp bsb, accurate reckoning. T.
tp-ri, base (of a triangle), $51,52$.
tpy, first, 68.
th. feminine of pn, this, 62 twice.
t, see t; the \underline{t}-sign occurs in the papyrus only in the words mits. tny, and trp.
tny, where?. 67.
ITP, terp-goose, 83 .
d and d interchangeable in some words. xiii.
d (from wdy ?), put, s. 1 and ft 1
dy, abbreviated form of rdy. give, etc.:
cndow, T: add, 41, 42 (translated put):
assign, 62; cause, 47, 56, 58-60, 63, 69.
87: give, 51, 52, 82; dd, reduplicated form, 62 (see (ts 9 and 12).
dbn, round, 41-43. 47. 50; on the dbn-
sign sec 70 ft 5 . sign see 70 ft 5 .
dbn, deben, a unit of weight, 62.
dhh, vessel for measuring, 80.
dp, make mild, weaken (?), (dp.n.tw) 7 . din, dilute, 71.
ds, dsy, des, vessel of fixed capacity, 71 , 77.
dd, reduplicated form of the verb $\mathrm{dy}, 62$.
d, see d.
di.t, cranc, 83 .
dlat, remainder, 2 divided by 17, 19, 23.
etc., many times
dibr, c:xchange, 72-78.
6 and 36 special signs, 61 fts 2 and +67 ft 12.
60 written for 80,2 divided by 43, note.
$1 / 10$ fractional dot sometimes omitted because 40 has already one dot, 2 divided by 21 note.

GENERAI. INDEX TO VOLUME II

For the explanations see the beginning of the preceding index.

Akhes, first season of the year, T, 87.
Alphabet, xii-xiii; alphabetic comple. ment. ix, (with bi- and tri-literal signs) 72 ft 1 .
Area problems, 48-55: see also Circle Hemisphere.

Bariey; 64, 86-8-10, 14: Lower Egyptian
83. Upper Egyptian, 74 ft 5.

Besha. a kind of grain. 71.2 .
Circle, area, 41-43, 50.
Collectives, written with plural strokes, 3 ft 2.
Cubit, unit of length, 43, 46 end, $56-60$ cubit-strip, unit of area (100 square cubits). 53-55

Day, 66, 82-84, 87,
Des, vessel of fixed capacity, used for beer, $71,7 \%$.
Determinatives, ix.
Diagram of the Rhind papyrus, xvi.
Ditto, r-like sign for, xi, $47,84 \mathrm{ft} 13,86$.
Dots used in hieratic, xi-xii, in the trans
literation, xii; used to denote fractions, v. often omitted, xi, notes to 2 divided by 9, 17, 21; used by mistake with whole numbers, 32 ft 2 ; case of expressjons representing two multiplications 2 divided by 7 note; expressions with $\mathrm{gm}, 2$ divided by 43 note.
Love, $^{8} 3$.
Enigmatic writing, 85.

Finger, $1 / 4$ of a palm, 57-59.
Finger-prints, 68 ft 12.
Fractions, method of writing in Egyptian and in our transliteration, v ; fractions of a hekal and of a selat, special signs, xi. Fragments, New York, placing, 2 divided by 89-10s fis, Problems I-5 fts.

Gender of article or demonstrative with 100 and $1000,65 \mathrm{ft} 6,72$ it 8, 74 fts 3 and $7,78 \mathrm{ft} 5$.
Genitive adjective, 51 ft 2,62 ft 7; after $w^{\prime}, 79$ ft 1,83 ft 4; after pw, 72 ft 9.
Goose as a general determinative, 83 ft 12 . Granary problems, 41-46.
Ilekal, fundamental unit of capacity used for measuring grain (about half a peck, see volume 1 , page 31), $35,37,38,41$ -$47,64,66,68-84,86 ;$ double, 82, 84: quadruple, great quadruple, 41-47,68, 86; hundreds of, 41-47, 68, 74, 76, 82, 84,$86 ; 1 / 2$ and $1 / 4$ of a hundred hekal, 42 76, 82, 84, 86; Horus eyc fractions, 35 $37,38,43,47,64,66,68-71,75,80-84$; special signs for numbers and fractions, xi; sce ro, khar, hinut.
Heliopolis, 87 ft 4.
Hemisphere, see Struve, 1930.
Hieratic, hieroglyphic, x.
/Iinu, 1/10 of a hekat, 80, 81, 83, 86
Idcograms, ix.
Khar, $1 / 20$ of a hekal (see volume 1 , page 32), 41, 43, 44.

Khet, linear unit, equal to 100 cubits, 49-52.
L.oaves for feeding animals, 82, 84

Lower E.gyptian barley, 83.
Measures: area, see cubit-strip, setat; canacity, see hekal, hinu, khar, ro; length, sec cubit, finger, khel, palm time, see day, month, year
Month, T, 83.8, 84.9, 87
Multiplications, expressions representing two, 2 divided by 7 and 17 notes.

Names with Re', T fts 5 and 6.

Numbering of problems, lines, etc., v.
Numbers, hieratic and hieroglyphic, signs xi ; of hekat and setat, special signs, xi.

Palm, unit of length, $1 / 7$ of a cubit, 56-59 Passive, impersonal use, 80 ft 2.
Patches on the papyrus, 1 ft $3,59 \mathrm{ft} 4$, $67 \mathrm{ft} 6,68 \mathrm{fts} \mathbf{6 , ~ I I , ~ J 3}$, and $14,69 \mathrm{ft} 4$. 86 note.
Pcfsu, baking or brewing ratio, pefst problems, 69-78; special way of expressing the pefsu, 72 ft 4.
Per-em-us, vertical height of a pyramid 56-59.
Perfective, old, see pseudo-participle.
Pillar, 60.
Plural strokes, $x, 3$ ft 2, 71 ft 7,72 fts 7 and 12.
Pronunciation of Egyptian words, xii-xiii
Pseudo-participle or old perfective, $x, 28$
ft 2, 35 fts I and 2,67 ft II.
Pyramid problems, 56-60.
Quail, 83.

Rectangle, rectangular, 44-47, 49, 51, 52
Relative form, 67 ft 9, 84 ft 4.
Rhind papyrus, diagram, xvi.
Ro, 1320 of a hekat, 35, 38, 43, 47, 66, 6870, 8t-84.

Scasons of the year, T $\mathfrak{f t} 4,87 \mathrm{ft} 3$
Seked, ratio in a pyramid, 56-60.
Sentet, line at the base of a pillar, 60
Ser-goose, 83.
Sel-duck, 83 .
Setut, unit of area, equal to a square khet 48, 50-55; special signs for numbers and fractions, xi, 53-55: special way of writing lens, 48, 50-53.
Sha' $1 y$, unit of value, 62 .
Shomu, third season of the year, 87, T ft 4. Signs, phonetic, non-phonetic, ix; special signs for 6 and $1 / 6,61$ fts 2 and 4,67 It 12 , see hekal, selat.
Spelt, 79, 82, 84, 86.
Terp-goose, 83.
Trapezoid (cut-off triangle), 52 .
Triangle, 51, 53, Struve 1930 .
C'kha-thebet, line at the base of a pyramid, 50-59.
Upper Egyptian barley; 74; ox, 84
Wedyel-flour, 72-78, 82.
Wheat, 82.
Y'ear, 86: 365 days, 66 ; of reign, T, 87.
100, 1000, gender of article or demonstrative with, $65 \mathrm{ft} 6,72$ ft 8, if fts 3 and $7,78 \mathrm{ft} 5$.

ADDITIONS AND CORRECTIONS

Numbers at the beginning of the paragraphs under volume I refer to pages; otherwise abbreviations are as explained at the beginning of the Index to Egyptian Words.

Vollare I

4 ft 3, near the end. For "page 20, footnote 2." read "page 20, lootnote 3." 7 ft 2 , end. The reference should be Bail let. 1892. page 19.
9. fourth paragraph. The reference to Rodet should be 1881 , Reprint page 37.

35 ft . We should perhaps think of 57 as the inverse of 58 , rather than 58 as the inverse of 57 .
47 ft 1 . The first reference should be to Problem 35, footnote 4, not to Problem 41.
2 divided by 25 . The last fraction should be $3 / 3$, not $3 / 2$.
59. 2 divided by 93 . Insert the word "Find" before " $2 \leqslant 3$ ".
80, line 15. Omit the comma after ".
83, third line of the last paragraph of note. The Horus eye fractions $1 / 4,1 / 10$ and $1 / 32$ should be in black-faced type.
95, line 2. For $63 / 00$ read 63 ico.
96 ft 1 . This footnote is not very clear. The quotient (multiplier) is obtained by adding certain of the trial multipliers as Pect says, and these are mere numbers. But first certain partial products are picked out that will make the given product, and these and the product may all be things of some kind. The chief fault. however, of Peet's logic is in his use of the word "Thus." There is no connection between the division of 3 selat by 5 selat and the marking of 3/3110 as setat.
112. last paragraph. The reference to Rodet should be 1881, 1, Reprint. page 111.
13. Omit the footnote.

117, Problem 84. Insert note, "See the literal translation and note in volume 2 ."

118, third paragraph. The first statement is true only of Number 86 .

Volume II

On the second title-page of the book there should be a comma after the word "Transcription."
x, Demonstratives, second paragraph. In sert after "except," "in the phras br $\mathfrak{c} m$ rbt in Problem 33, and": and to the list of problems where Peet tran lates p: by this add Problem 46
ni. Fractions, third line. The reference not 1926.
xii, paragraph beginning on line 4 at the left. To the list of cases where dots ar used in the transliteration should $1 x$ added, "before the ordinal ending nn (Problems 64 and 68)."
xii, next to the last line at the right. In the word heseb for h read b.
siii. The second line at the right should read, "Originally y: Probably also long vocalic i. At the beginning of words it often became :,"
xiii. Add a footnote to the s-sign, "The hieroglyphic form of the alphabetic sign $\$$ used in the words stt and $\$$ sidw on Plate 1 , and in the word pss on Plate 34 , is less appropriate to the period of this papyrus than the plain rectangle given here and used on Plates 86, 107, and 108. The two diag onal lines within the rectangle are very late adaptation from hieratic forms."
T.1. The word h.t is an infinitive with the feminine termination t. The stem is hly. Triliteral verbs with a final y have feminine infinitive in the writing of which, as with most forms of such verbs, the final y is omitted. Compare Problem 71, footnote 3.
r.1. On the word nt.t see Problem 43. footnote 3.
T.2. On śphr.n.tw see Problem 30, foot note 1.
T-2. On the word $h:-t$-sp see Number 87 footnote 1. The ordinary word for year is mp.t, which occurs in Problem 66.
T.2. On the title King of Upper and Lowuer Egypt see Gardiner, 1027, page 51. $\$ 55$.
T.3. The stem of the word 15w.t was orig inally isw with the other s, and the second sign of the word had the value is. Compare Problem 49, footnote 1.
T ft 6 . The royal name is perhaps more likely to mean Of. Truth is, Ré'; that is, Truth is of Ré, the construction being similar to that of $n(y)$-sw in Problems 45 and 46 . The stroke in the word [m : $]^{6} \cdot t$ in the royal name should be oblique in the transcription on the oblaque in the transcription on the plate as in the hieratic, instead of verrepresenting the scated female figure of representing the scated iemale figure of
the goddess of Truth, Ma'et. Compare the goddess of Trath, Mact. Compare and see footnote 2 to that problem.
2 divided by 3. end of footnote. Fo "papyrus" read "Table of the division of 2 ."
divided by 81 . The number 162 appear as 182 on Peet's Plate C. It is correct in his text.

1. On wib-tp see Problem H4, footnot 4.
2. To the note add. "In Problem 15 the scribe wrote 228. $\mathbf{4 5 6}$. 912 , for 224 448, 896.
3. Footnote 3 should have been omitted Peet made the correction referred to in his Errata, page 136.
4. In the third multiplication the scribe wrote 15 for 14 .
28.2. Add footnote, "In the phrase Yíc of this 10 the scribe first placed a fractional dot by mistake over the whole number 10 and then parily crased it. The traces of this dot are visible in Photograph XII but are not reproduced on our plate."
5. On the writing of m, what?, see Problem 21, footnote 1, on the writing of the enelitic particle m.
30.2. In regard to the scribe's erroneous statement $1 / 30 \times 1 / 33=3 / 3 K_{0}$ see note to this problem in volume 1, page 72.
6. In the third line of the first multipli cation the scribe wrote i8 for 14
7. In Peet's explanation (page 67, line 7), "multiply $1+2+1 / 2+1 / 4$ to find 97 " hould be "multiply 97 to find $1+2+$ $1 / 2+1 / 4.0$
32.14. The scribe wrote 3 for 1
32.29. Peet on his Plate K reads the total in red as " 128 sic," but reads 228 in his text. The dot near the hundred-sign is bove it so that the number could b rad as $1 / 22$ instead of 228, but it ould scarcely be read as the whole number 128.
8. The scribe wrote i 184 for i 164 33b9. The diagonal stroke of the red hier atic $\%$ following 64 has been printed in black on our plate.
33b13. Instead of 12 as in the origina Peet reads 13 on his Plate K and in his ext. 13 of course is mathematicall correct.
9. Add to footnote 1, "Doubling of the consonant is rare in the pseudo participle (old perfective)
10. To the first iw add the footnote. "The suggestion is made by Gardiner (1927 page 35.829) that the verb iw , be, is ultinnately derived from the verb iw.
return, which occurs in the first liness of Problens 35-38.
37if. The fractional sign has been phacer in our transcription and transliteratio on the first multiplier $\dot{9}$.f of this line. original.
3s. The word ir.tw, which occurs twice in this problem. might better be trans lated one makes or one mulliplies rathe than as a passive with the number a subject. It is unlikely that $p w$ in this construction intercenes between the above the word "passive" and the last three words should be deleted from footnote 1.
11. The first occurrence of the phrase tp in syty should ha
as on the plate.
38 c 2 . For 6 read 6 as on the plate. See Problem 61, footnote 2.
38 cs . The forms br-t (originally bry-t) at the end of this line and bry.w in Probem 40. line 1, are adjectives: and hrw in Problem 60. line $!$ (in $k: y-n-h r w)$.
is a noun. These words ane derivet from the preposition br, on, abowe 38 g 4 . The doc following the 1 near the cnd of the tine appears in the B. M. Facsimile. and Peet on his Plate M calls special attention to it with his "sic:" but it is not visible on Photograph XI' 41 ft 2 . last sentence. For "He notes" read "Note."
41.5 and 42 vertical line at the right. The word Ssmet (written ssmet in Problem 22) should be translated s instead of s in this word in 42 shows the interchangeability of these letters. The word should have been written with an son the page opposite Problem 42 also, to agree with this writing on the plate.
12. In the last two multiplications and in the statement that precedes the multiplications certain fractions were omitted by the scribe. Sec this problem in vol ume 1, page 87 .
42 it 2 . For "footnote 4" at the end read "footnote 5."

45 fi 2. Add. "In writing this word the hyphen as in the tevt is preferible to a dot as on the plate." "(cotnote 47 ft 1 For "footnote 8."

47 ft 2 . The reference to Griffith should ise to page 236, not 336 .
48. Before "Peet" at the end of the note there should be a semicolon instead of a period.
50.3. The plural ending of sp.w has been 50.3. The plural ending of sp.w has bee
omitted in our text and on our plate. s8bt. The scribe wrote 14 instead of 124.

58 it 1 . For "footnote 3 " at the end read "footnote 4."
61.14. On his Plate R Peet has omitted the preposition m near the end of the line.
64 r. Peet has omitted the three grains of the it-sign on his Plate S. He notes in his Errata his omission of the plural strokes in this word.
$68 e 3$. Peet has omitted the three grains of the it-sign on his Plate T.
70 ft 3. For "footnote 2" read "footnote
71. Peet says (page 13). that the pefsu of beer in the Rhind is 2,234 , and 5 But the pefsu of becer is always 2 in this papyrus except for a certain diluted in Problem 7 for which it is $2 / 3$. ft 5 , end
after 30.
77.3. Peet omits the grain-measure in the word at the beginning of this line.
81d3. Peet has Horus eye 4 on his Plate W instead or 2 . It is correct in his text
Vol. II (Bibliocrapuy)

Hincks (1854), 1. 16 of note, and I.enormant (1868), 1. 8 of note, for "incomplétemen." read "incompletement."
Cardiner (1911). 1. 5-6 of note, for "une," read "un." for "Siectle" read "siecle"; "Littéralure."
Kewitsch (1915), 1. 8 from end of the first paragraph of note, for "strictment" read "strictement."
Erman and Grapow (1925), 1. 5 of note, for "characters" read "uses of words."

[^0]: The numerical operations are placed on these pages only once and are to be regarded as a part of the analiteration.
 "It is a curious fact that the dot is occasionally found in modern times as a fraction symbol, as in the case of 2 and 4 for $1 / 2$ and $1 / 4$ in English copy-books of the 18th century." D. E. Smith, History of Mathe matics, Boston, 1925, volume 2, page 210. Hultech writes the Egyptian fractions in this way (1895, page 16).

[^1]: ${ }^{1}$ Gunn, page 126. We have no reference for an occurrence of the special sign for 5 selat.

[^2]: A computation was omitted by the scribe from Problem 3^{1} and misplaced at the end of Problem 38. See Photograph XV, lines $1-4$ of register 4 at the left.

[^3]: $\begin{array}{cc}\backslash 1 & 3 \dot{2} \\ 2 & 7 \\ 4 & 15\end{array}$

[^4]: The fractional dots in these places are omitted in the original. The calculation of 97 may be found with Problem 31. See note to that problem

[^5]: Photograph xiv, Registers 1-2
 B. M. Facsimile, Plate x

[^6]: 46
 ${ }^{1}$ More literally excess according to Gunn (131), The difference of share is $41 / 6$

[^7]: ${ }^{1}$ hik.t seems to be the word for a trapezoid, thought of as a truncated triangle. The hik is the line along which the triangle is cut, the shorter of the two bases of the trapezoid. The two words come from a verb-stem meaning cut off, especially cut off a tail; hence the end of an animal's tail was used as determinative.
 ${ }^{2}$ The scribe has repeated the word n.t by mistake.
 ${ }^{3}$ See Problem 50, footnote 1.
 'See Problem 51, footnote 5.
 ${ }^{6}$ The answer should be 100 selat, which the Egyptian would write simply 10 , just as in the preceding problem he writes 20 setat as 2 , but by mistake he wrote 20 instead of 10 , or he added a stroke above for the setat-sign, forgetting that he was dealing not with simple setat, but with tens of setat.

[^8]: This is the verb be which occurs in line 1 above and elsewhere in the papyrus. It is best left untranslated here. See Problem 62, footnote 3 .
 ${ }^{2}$ See Problem 56 ,

[^9]: Photographs xxiv-xxv, Register 6 B. M. Facsimile, Plates xvii-xviif

[^10]: 1 See Problems 71, footnote 7, and 75, footnote 3.
 ${ }^{2}$ Masculine to
 ${ }^{2}$ Masculine to agree with ds. See Problem 65, footnote 6.
 ${ }^{3}$ See Problem 72, footnote 4.

[^11]: -

