CHAPTER I

To the Threshold of Greek Mathematics

Plan of the Chapter

This chapter is introductory. I first survey, in a quick sweep, mathematics
before Greece. This is followed by the historical context for the rise of
mathematics in Greece itself (a discussion heavy with historiographical
problems because so much is speculative). Finally, I conclude with a
picture of the earliest known Greek mathematics.

I start with a section titled “Before Greece” — indeed, before any
organized science at all. What are the universally shared bits of mathemat-
ics known even to simple societies? We find considerable but shallow
knowledge. Familiarity with numbers and shapes is nearly universal —
but does it amount to mathematics? “Empire and the Invention of
Mathematics” brings in the rise of the state and with it, I argue, mathe-
matical knowledge; “Beginning in Babylon” zooms in on the most impor-
tant antecedent to the Greeks: the mathematics of Mesopotamia.

This, then, provides one kind of introduction. Another has to do with
the Greeks themselves. The section titled “The Greeks: Standing Apart?”
brings in the basic historical context: the unique characteristics of early
Greek civilization. But where and how does mathematics emerge in
Greece? “Greek Mathematical Myths” argues against some traditional
narratives (most important: Pythagoras the mathematician was, I argue,
indeed a myth). Another problematic context is that of Mesopotamian
mathematics, and the following section, “Greeks and the Near East:
A Historiographical Detour,” tries to delineate a possible account of the
debt owed by the Greeks to their predecessors.

With all of this in place, we may finally get to “The Threshold of
Mathematics,” which I identify as the mathematics attested to Hippocrates
of Chios, and I conclude with “Assessing the Threshold”: the historical

meaning of this new Greek invention of mathematics.
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Before Greece

Throughout this book, I will argue that Greek mathematicians had
achieved something quite unprecedented. But of course, people every-
where know some mathematics, and the Greeks specifically must have
owed something to past cultures. They did not start from scratch!

All of this sounds nearly obvious. In fact, we’ve merely started — and
have already entered a minefield. The question of the cognitive universals
underlying mathematics is invested with political meaning,

The issue can be stated quite simply, and it should be stated right as we
begin. Students from disadvantaged backgrounds do much worse in math-
ematical tests. The response to this fact varies. Some take comfort. (They
see the results of mathematical tests as proof of their belief in their group’s
superiority over others.) Most, aware of the enormous difference that social
conditions make to cognitive growth, are less surprised that the under-
privileged are also the mathematical underachievers. The explicit racist
position is, frankly, preposterous, but it is stated by some and perhaps
harbored by many. And so it is right that I should address it, head-on, right
at the beginning. Consider the following two statements: (A) “The Greeks
invented mathematics because they were white,” and (B) “John is good at
math because he is a white boy.” If A strikes you as implausible, so should
B. And if A does not strike you as implausible. ... Well, this is, in part,
why I've written this book.

So, what to do with mathematical tests? Some would say that they
should not matter. Do math for the intellectual satisfaction it brings, not
to get a good grade! But mathematical educators do not have the luxury of
retreating into such fantasies. They have to go and teach in a world where
mathematical tests do matter, and so the urgent task is this: How can we
make mathematics more accessible to underprivileged students?

Now, this brings us back to the history of mathematics and to the
question of universals. This question — how to make mathematics more
accessible to the underprivileged — became especially acute in the global
scene in the aftermath of decolonization in the 1960s and 1970s. New
states in the Third World aimed to make education universal; however,
this newly available education, more often than not, did not empower
students but instead instilled in them a sense of helplessness and depen-
dency. The mathematics was alien and forbidding, and so the best educa-
tors looked for ways to make it grow directly out of the students’ own
culture. Paulus Gerdes, for instance, as a young mathematics teacher in
Mozambique, noticed that fishermen prepare their haul for sale by drying
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their fish near a fire built in the sand by the seashore. To make sure all the
fish become dry at the same time, they follow a certain procedure. First,
plant a stick in the ground, then attach a rope, and with a second stick
attached at the other side of the rope, draw a circle in the sand. At this
point, place all the caught fish along this drawn line, and finally, build the
fire at the center. Gerdes’s idea was revolutionary — and straightforward:
Instead of starting with some abstract definitions, would it not make more
sense to teach the children of those fishermen the concepts of “circle,”
“center,” and “circumference” based on this procedure?’

Multiply this kind of example hundreds of times, and you have the
discipline of ethnomathematics. Anthropologists, even apart from any
application to the education of mathematics, came to be interested in
the mathematical ideas available to preliterate societies; cognitive psychol-
ogists soon came to appreciate the significance of this research for the study
of the universal human mind.

Thanks to the work of the ethnomathematicians, several observations
emerged. First, numbers are pretty much universal. To be clear: it has been
observed that the Piraha tribe in the Amazon has no words for numerals.
(There is some scholarly debate over this: Do the Piraha words 447 and hoi
mean “one” and “two,” respectively, or do they mean — as the best experts
now seem to believe — merely something like “small” and “larger”™?) It is
extremely interesting to cognitive psychologists if, indeed, even a single
language could fail to develop numerical terms — and so, perhaps, number
is not directly hardwired into the human brain.* However, from the point
of view of the anthropologist or of the historian, the example of the Piraha
is striking primarily for its freakish rarity. Everywhere you go around the
globe, languages possess varied systems of counting. A few might be more
impoverished (in particular, the Amazon has a number of less numerical
societies, of which the Pirahi are an extreme and relatively well-studied
case). But more often, simple societies have highly sophisticated numerical
systems, with addition, multiplication, and iteration encoded into lan-
guage itself. (Only one among these is the base-ten numerical systems now
used by nearly all humans; it is nearly universal, perhaps, because it is, if
anything, mathematically simpler than many of its alternatives.)

" This example and more like it are detailed in P. Gerdes, “Conditions and Strategies for
Emancipatory Mathematics Education in Undeveloped Countries,” For the Learning of
Mathematics 5 (1985): 15—20.

* For a fascinating account, see M. C. Frank, D. L. Everett, E. Fedorenko, and E. Gibson, “Number as
a Cognitive Technology: Evidence from Piraha Language and Cognition,” Cognition 108 (2008):
819-824.
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Second, geometrical terms are not as universally verbalized, but once
again, one of the most persistent features of almost all cultures is some kind
of attention to patterns — molded, painted, tattooed, drawn in the sand.
Those patterns often display symmetries and occasionally involve more
precisely drawn geometrical shapes. Does this amount, in and of itself, to
geometry? Is any of this mathematics?

Authors in the tradition of ethnomathematics often elide this question,
and one sometimes has the impression that they try to impute to indigenous
cultures geometrical knowledge concerning figures, where in fact, all that
those cultures have is the habit of producing those figures. Some ethno-
mathematicians probably are overenthusiastic in this sense, but mostly this is
a misleading framing. Once again, let us take an example from Paulus
Gerdes. He describes the following pattern in Mozambique weaving baskets:

Figure 1

A nice geometrical pattern! But more than this, Gerdes observes, we
may share this pattern in class and then proceed to discuss, with our
students, how we may find here a relation between the various areas. In
fact, with a little manipulation, we can derive, from this pattern,
Pythagoras’s theorem itself! (The main idea is that we see a big square —
composed of four identical right triangles — and a smaller square enclosed
in the middle. It is likely, I believe, that Pythagoras’s theorem was indeed
discovered around such drawings — by Babylonian teachers, working in a
very different milieu. We shall return to see this in the discussion that
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follows.) Now, Gerdes does not mean that African basket-weavers are
aware of Pythagoras’s theorem; but it is nonetheless likely that the near-
universal presence of patterns, of one form or another, is a significant
precondition for the rise of geometrical reflection.

However, let us not get carried away. This is not yet reflective of
explicit knowledge of geometrical properties, nor is the presence of a
numerical vocabulary tantamount to the explicit knowledge of arithmetic.
The discipline of ethnomathematics is useful for its scope — as well as for its
limits. All humans, everywhere, talk about quantity and operate with
shapes. But they almost never reflect on them explicitly, let alone develop
a specialized craft of talking about numbers and figures. The discipline of
mathematics and the profession of the mathematician are extremely rare.

Ethnomathematics is, of course, part of ethnography, and ethnogra-
phers tend to focus on what people do — how people interact, form kinship
structures, cook, talk, sing. Anthropologists are trained to observe action,
and so ethnomathematicians, quite properly, observe actions that are rich
in mathematical meaning: counting, calculating, patterning. Those actions
are real and form the background for the history we are about to explore in
this book. Still, we should try to draw a line between an action that can be
explained, &y us, through our own mathematical understanding and the
actors’ own mathematical knowledge. Fishermen in Mozambique draw
lines in the sand to dry their fish, and it is right and proper that we describe
those lines in terms of circle, center, and circumference. It is also impor-
tant to draw the conclusion that those fishermen have what it takes to
create geometry. And finally, it is reasonable to say that the fishermen act
in a geometrically intelligent way, without possessing any knowledge of a
theoretical field such as geometry.

Many of you would probably agree that drawing a circle in the sand
does not display, yet, knowledge of the theoretical field of geometry.
I would say that the same is true about drawing a route, from point A to
point B, along a straight line. This is a geometrically intelligent practice —
but not a display of geometrical theory. I would also say the same about
the building of a straight canal of irrigation leading to your fields. If you
construct such a canal, then it is still the case that you may, or may not,
have some theoretical understanding of “lines.” I would also say the same
about a straight road, faced by straight walls that form rectangular houses.
And T would continue to say the same even if the houses become very
imposing and perhaps assume the more complicated forms of various
temples and pyramids. A pyramid, in and of itself, implies no more science
than a line drawn for drying fish on the sand.
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All of this is relevant to the question of the rise of mathematics as a
theoretical discipline. We can find extremely sophisticated architecture and
town planning around the globe — from the imperial cities of China to
those of the Aztecs — and it is often assumed, especially by nonspecialists,
that such imposing structures must involve theoretical mathematical
knowledge. They certainly could, but the buildings, themselves, are not
dispositive. And in fact, when we do find mathematics emerging, the
context seems to be somewhat different.

Empire and the Invention of Mathematics

We can locate several historical moments where mathematics was inde-
pendently invented. Taking them together, we may form certain conclu-
sions about the natural context of such an invention — which brings us
back to politics.

The Inca empire, ruling over a vast region of the Andes in South
America, left behind many monuments — but no writing. From the very
beginning, Western observers noted a puzzling and rather humble artifact.
Known as the “quipu,” this is a system of knotted threads (often made of
cotton) that can usually be spread out as pendants — one main thread, with
many others hanging on the main one; occasionally, this can become a
many-layered object. Each of the threads has a pattern of knots attached to
it, and throughout the twentieth century, as more of these artifacts were
surfaced and analyzed, the system came to be understood as essentially
numerical (and base ten). Roughly speaking, the knots on a cord form
clusters. To simplify things a little, it works like this: if you have a cluster
of three knots, a space, and then a cluster of two, this can stand for “32.”
Such individual numbers on the hanging cords are summed up as the
number recorded on the main cord. This, then, seems like an accounting
device. The research leading up to this basic decipherment, based purely
on a mathematical analysis of the extant quipus (of which there are now
several hundred), can be found in the work of Ascher, Code of the Quipu
(1981). I mention this because Ascher is also one of the most brilliant
scholars in ethnomathematics and the author of the basic monograph in
the field, Ethnomathematics: A Multicultural View of Mathematical Ideas
(1991). For her, quipus are an example of ethnomathematics: an indige-
nous culture’s preliterate display of mathematical sophistication. We
should, in fact, note an ambiguity: Is that display, strictly speaking,
preliterate? Or was the quipu, instead, simply the Inca form of literacy?
As more evidence came to light in the last generation, based on more
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careful excavations, we came to understand better the original function of
the quipu. As was often suspected in the past, it seems to represent a tax
system based on geographical allocation through subdivisions. We find
that several quipus replicated each other (a guarantee of accounting con-
sistency), and some quipus may be identified as summing up the results
in other quipus (apparently, this represents lower and higher layers of
the geographical subdivision). Most spectacularly — a veritable Rosetta
Stone — a very late set of quipus from after the Spanish conquest was seen
to match a Spanish written list of tributes from across many villages. It
now seems likely that the colors of the threads were also meaningful,
perhaps encoding geographical regions — thus, quipus were an even
more informative system than we had ever assumed. The upshot of this
research is that the Inca empire produced a specialized class of quipu
masters whose job was to maintain information on the tribute required
from across the empire. Now, as a matter of fact, we cannot really say
how much “mathematics” those quipu masters knew, precisely because the
Inca produced no writing. Whatever education was involved in the per-
petuation of the quipu-master technique was purely oral and is now lost.
But some education of this kind certainly existed, and so we can say this: in
the Andes, prior to Pizarro, there must have been some mathematics
actively produced, with people explicitly discussing rules of calculation
and accounting.

And another remarkable observation: numeracy was so central, in this
particular civilization, that it completely supplanted literacy. To explain:
the tool that the state needed was some kind of numerical record. This was
efliciently achieved by the quipu, and this did not give rise to literacy as a
spin-off.

In other places, of course, states did rely much more on writing. Once
again, it is useful to start from as far away from Greece as possible: let us
get a sense of the entire range of possibilities. We may begin with China,
where finally, we see a very clear tradition of theoretical mathematics. Here
it is useful to focus on a relatively late work, The Nine Chapters on the
Mathematical Art, a work that may have reached something like its current
form under the Han dynasty (perhaps in the second century ck?). The
Chinese court always required a large retinue of scholars, the bulk of whom
were masters of religious rituals, but many specialized in fields such as
astrology or other forms of scientific knowledge. It seems that at the latest
by the Middle Ages, but perhaps even in the very earliest times, some were
trained, and examined, based on their knowledge of the Nine Chapters —
which is appropriately, then, seen to concentrate around accounting-like
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needs.” The measurement of fields and of heaps of rice and grain, taxation,
and distribution by proportion — all brought under a set of general, well-
understood algorithms, which then become a subject of study in their own
right. The needs of the state, generalized — and turned into a mathematical
art. Once again, our evidence in this case is late, and it is hard to tell how
mathematics first emerged in China. But more recent archeological exca-
vations do provide us with more context and push the evidence further
back. One dramatic find is that of “The Book on Numbers and
Computation,” a set of inscribed bamboo strips that a civil servant took
to his tomb, sometime early in the second century BCE. Much earlier,
then, in Chinese imperial history — but still well after the formation of the
first Chinese states — yet we see here the same kind of material as that
found in the Nine Chapters. Problems that relate to concrete bureaucratic
needs — solved with considerable general sophistication.

Beginning in Babylon

This brings us to the best-documented and most significant emergence of
mathematics — and also, much closer to Greece itself. To the extent that
the emergence of Greek mathematics was in debt to previous civilizations,
it was to Babylonian mathematics.

This begins very early, along the shores of the Tigris and the Euphrates,
and especially near their southern marshes.* This is one of the origins
of urban civilization, and from the beginning, we find a system of
accounting — not unlike that of the Quipu, perhaps — based, this time,
on clay. (In the steep Andes, transportation is at a premium, and one looks
for light tools; in the flat, river-based civilization of Mesopotamia, heavy
but durable inscriptions are favored.) Archeologists have noted small,
variously shaped pieces of clay found in many sites from the late
Neolithic. Schmandt-Besserat was the first to offer a general account of
those tools, and although she is not without her critics, very few doubt her
basic interpretation (Schmandt-Besserat’s critics mostly point out that the

-

For the relation between mathematics and administration in the early Chinese state, see K. Chemla
and B. Ma, “How Do the Earliest Known Mathematical Writings Highlight the State’s Management
of Grains in Early Imperial China?” Archive for History of Exact Sciences 69, no. 1 (2015): 1—53.
Chemla and Ma, remarkably, are able to extract detailed information on the working of the
administrative state, based on theoretical mathematical writings!

The history of Mesopotamia is complicated: not a single state but a plethora of city-states and
kingdoms, whose kaleidoscope kept shifting over millennia. I skip all the details (this is a history of
Greek mathematics!), but read, for instance, N. Postgate, Early Mesopotamia: Society and Economy at
the Dawn of History (New York: Routledge, 1994).

IS
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small pieces of clay could have been used for a variety of purposes beyond
those she emphasizes; this is a reasonable critique). Most likely, different
shapes stood for different commodities — so, for instance, could it have
been a particular shape, say, for one head of cattle? Economic obligations —
in the form of contracts or even taxation — could have been certified by an
archive of such small tokens. This is all still ethnomathematics, a direct
reliance on basic calculation and simple tools. And then, Schmandt-Besserat
noted, something dramatic happened: it was realized that one could make
impressions on clay, whose shape resembled the actual tokens. Late in the
fourth millennium BCE, people in Mesopotamia began to use such tracings
as economic records. A new idea, then: visual traces to mark numerical
quantities. Pretty soon, instead of being tied to particular commodities,
symbols emerged to represent number as such, and at this point, it took a
mere step (or, if you will, a leap of genius) to begin to record other
linguistic elements as well — at first, names of the objects counted
and, very soon, language itself with its full vocabulary. By the end of the
fourth millennium BCE, one of the major Mesopotamian languages —
Sumerian — became fully written, the first ever. Literacy emerged, piggy-
backing on numeracy.

Skipping many centuries of Mesopotamian history, we may look at the
same shores of the Tigris and the Euphrates almost a millennium later.
They are now dominated by different people, speaking a different language
(Akkadian, a Semitic language that is somewhat similar to Hebrew or
Arabic), still using the same script, the same inscriptions on clay. The
technical knowledge of the Sumerians was not lost, in this and in other
matters. The rivers themselves required constant attention — digging the
canals and irrigating the fields. A lot of engineering, planning, and control
was necessary, and throughout, Mesopotamia saw the rise of strong central
authorities, powerful temple centers, and kings and their retinue. In the
late third millennium, we see clear evidence for a specialized bureaucracy.
Scribes were trained in writing, keeping accounts, and advising the rulers.
What is most important: they did not just use the basic techniques of
writing and calculation; they took pride in becoming genuine masters in all
of those. Thus, besides simply writing down bureaucratic records in
Akkadian, they also transcribed (a much harder task) the old literary legacy
in Sumerian. And they did not just calculate, say, how many workers were
required to dig a canal or how much tax should be levied on a field — they
also invented particular fictional problems of a more abstract character,
where one calculated volumes, plane areas, and work rates. In the Chinese
Nine Chapters (or in the somewhat earlier “The Book on Numbers and
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Computation”), we see the end result of, perhaps, a similar trajectory:
bureaucratic training becoming its own raison d’étre, giving rise to the
problem-set version of a mathematics, which, although quite elementary,
is already sophisticated. In Mesopotamia, our evidence is much more
plentiful (early Chinese writing used a variety of delicate surfaces, such
as the bamboo strip; from Mesopotamia, we have the clay tablet, history’s
most robust writing material). And so we get a closer sense of the
entire transition: tokens, then writing, a bureaucracy, and this, finally —
sublimated into mathematics. We have massive evidence, from the end of
the third millennium to the beginning of the second millennium BcEg. The
evidence stops quite abruptly a little after 1800 BCE, for reasons we cannot
quite fathom (for indeed, we no longer have substantial evidence!). It
appears that the same old cities came under different sets of rulers and
that the scribal traditions were disrupted. Little is known, then, for over a
millennium — but clearly, there was some continuity. Beginning in the
eighth century BCE, we find, once again, Mesopotamian palaces — pre-
serving masses of clay tablets and a lot of the ancient culture. There is little
mathematics to be found, though, in this later material (but plenty of
astronomy; we shall return to this in Chapter ). The object we study,
then, is fantastically distant in time: the mathematics produced early in the
second millennium BCE, or roughly four thousand years ago.

Just what is this mathematics? Let me paraphrase a very simple tablet
(BM 13901 #1):

I have it that the surface of the square, and its side, taken together, are
three quarters.

[Implicitly, our task becomes to find the numerical values of the side and
area of this square. We're no longer just calculating taxes on fields; we’re
doing clever problems that build off such calculations! I attach Figure 2;
notice that here, as in most cases, we do not have a figure on the clay tablet

itself.]
Here is what you should do. Make one as a projection to the side.

[We now have in Figure 2 an elongated rectangle, divided into two parts, of
which the right one is the original square, and the left one is a rectangle, one
of whose sides is the original side of the square, its other side — one. The
area of this left rectangle, then, is equal to 1 X the original side of the
square, so its area is taken to be equal to the original side of the square. At
this point, we can say that the entire elongated rectangle is equal to the
original square plus the original side of the square. This is all equal to three-
quarters, then.]
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Break [the left rectangle] into two equal parts.

[And it is also implicitly understood that the broken left rectangle is now
rearranged as in Figure 2, in the shape of a gnomon, a square minus a
square. This gnomon, too, is equal to three-quarters].

Multiply half by half [to get a quarter].

[This is the area of the small square “implied” inside the gnomon because
its side is the broken-into-two one, that is, 1/2].

Add the quarter to three-quarters, so you get I.

[This, 1, is the area of the big square we would form from “completing the
gnomon” and is also therefore the side of the big square.]

Take away the one-half in the inside, and one-half remains.

[Take away the side of the small square “implied” inside the gnomon, and
you have, obviously, the side of the original square that we set out to find.]

R — Y

2
1 1
2 T
Figure 2

And this is how mathematics first emerges in the historical record: the
simple, clever games accompanying the education of bureaucrats.

We have come a long way from the fishermen drawing a circular line on
the sand. Here, surely, is mathematics. And it is precisely here that
mathematics is to be found, in this particular variation on bureaucratic
education. The Egyptian builders of pyramids may have been no more
than the makers of glorified lines in the sand. Babylonian schoolmasters,
however, created theoretical knowledge. And the difference is clear. As one
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builds a pyramid, one engages, throughout, in a concrete endeavor. There
is no occasion to abstract away from the actual slabs of limestone to purely
geometrical prisms: the slabs are what you handle throughout. But in the
schoolroom, for instance, in the calculation example cited earlier, one no
longer deals with actual measured fields. One deals with rules of calcula-
tion for the measurement of objects such as a square field. The schoolroom
is at a remove from the field itself, and so its subject matter is not the
concrete objects under calculation but, rather, the terms for calculation
itself. Paulus Gerdes’s project, setting out on his campaign for ethno-
mathematics, was to use the concrete knowledge of the fishermen of
Mozambique as a starting point for the teaching of theoretical knowledge
in the classroom. And in this, he traced the very same movement through
which mathematics first emerged, four thousand years before.

The Greeks: Standing Apart?

This is nearly universal to humans: an ability to calculate with integers, the
manipulation of shapes and patterns. Complex states give rise to bureau-
cracies, and this, occasionally, may give rise to the training of a scribal elite,
which, finally, provides the context for the explicit statements of mathe-
matical facts. And so, at last, you do not just calculate or draw patterns
without reflection. Instead, you produce rules for calculation and for the
measurement of areas.

This is a valid broad outline of the rise of mathematics in many parts of
the world, but it has to be qualified. Even the human universals have
a great deal of variety in them — perhaps the Piraha don’t even have
numbers! — and the same may be true for the rise of state bureaucracies.
In fact, even the three cases just mentioned — the Andes, China, and
Mesopotamia — show considerable variety. We have no evidence for a
more reflective geometry in the Andes. In China, reflective mathematics
seems to postdate empire; in Mesopotamia, mathematics emerged almost
simultaneously with the market economy itself. It might be argued that all
of this is a matter of the different sources of our evidence. In the Andes,
one relied less on bulky artifacts, and so we have merely the threads of the
quipu to tell our stories; presumably, much more oral lore circulated and is
now lost. The Chinese bamboo strip is only slightly more robust than the
quipu; we must have lost a lot from the initial stages of Chinese mathe-
matics. Mesopotamian clay, finally, is extremely durable, providing us, in
such a way, a much more detailed panorama of early Mesopotamian
civilization. All of this is true but perhaps misses the point. The various
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societies used different media because state bureaucracy was not always the
same. Mesopotamia really was — at least at times and in certain places — a
heavily regimented society, recording the tiniest details of property and
labor. It used an abundant, robust form of writing because this is what it
required. Writing is not some kind of ornament; it may be built into the
very fabric of society, defining its overall practices and achievements.

And so let us approach the Greek evidence in an open-minded way.
Did the Greeks have bureaucratic state mathematics? Were they
like Mesopotamians? At first, they seem so. Indeed, once again, we find
the very same medium already familiar from Mesopotamia, that of the
clay tablet.

Since the beginning of the twentieth century, excavations have discov-
ered extremely ancient temples and palaces in Greece and, in particular, in
Crete. Dating from the fifteenth to twelfth centuries BCE, several of those
sites also yielded written tablets. For a long time, it was not even clear
which civilization — or language group — occupied, in such ancient times,
the lands now known as “Greek.” It was only after the decipherment of
Linear B in the 1950s — a triumph of linguistic deduction made by Alice
Kober and Michael Ventris’ — that the language of the tablets was
identified as Greek. In some other ways, we can say, the decipherment
produced an anticlimax. The contents of the tablets, themselves, were very
mundane pieces of accounting. All this linguistic brilliance put in by Kober
and Ventris — and then: “two tripod cauldron of Cretan workmanship . ..
One tripod cauldron with a single handle . . .”

An anticlimax, perhaps, but also a meaningful result. Early Greek
civilization, in the Bronze Age, blended together with that of the ancient
Near East as a whole. Not just the tool of the clay tablet — we find an entire
cultural practice shared and perhaps transmitted: centers of political
authority, where detailed numerical accounts are written down and stored.
The implied sociology — the rise of some kind of state power (kings or
king-priests?), with its bureaucrats, is clear enough. Did this go together
with a more explicit training in numeracy? Was there, then, Bronze Age
Greek mathematics? If so, it left no traces in writing. This is not where our
story begins, and — the more general point — this is not, really, where the

> In the Suggestions for Further Reading, I go on to recommend John Chadwick’s book from 1958,
detailing the decipherment of Linear B. John Chadwick is a very fair and reliable narrator, and he
does give proper credit to Alice Kober, but reception at the time was such that only Ventris’s
contribution was etched into shared historical memory (this is all very similar to Rosalind Franklin’s
place in the discovery of DNA). Kober’s major contribution was A. E. Kober, “The Minoan Scripts:
Fact and Theory,” American Journal of Archacology 52 (1948): 82-103.
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Greek story begins, in general. What the archeological evidence suggests,
instead, is dramatic rupture. At about 1200, early Greek civilization comes
nearly to a halt. Palaces fall down; plunderers set in. The writing stops,
seems to be forgotten; cities and their civilization shrink and disappear.
This rupture is not isolated and is instead seen across the Near East, where
many states seem to fail at about the same time: the rare event of a
civilizational near-extinction. Well, elsewhere in the Near East, the habits
of the state were perhaps more powerful, and the rupture was not as total.
But in the Greek-speaking world, the year 1200 could well have been a
kind of year zero. The culture of Linear B would have been as puzzling to
the Greeks of the year 800 as it would be, many centuries later, to Kober
and Ventris.

But then, at about the year 800, something new began to stir. And
here, finally, we come to our proper topic. To clarify the contrast: eatlier,
in the second millennium BCE, we clearly found state formation in the
Greek-speaking world, along the familiar lines of kings or king-priests
setting up strong centers of power. This early state formation is knocked
out by the crisis of the twelfth century, and when the state begins to
reemerge, it seems to take a different shape from that of the previous
temples and palaces and that of the other early empires noted in
this chapter.

What was remarkable about the reemerging Greek state? That it was
weak and small. The usual tale of state formation is that as societies
become more complex, they become more unequal. A few individuals
emerge as the powerful rulers, and if lucky, they manage to consolidate
power over ever-larger groups. Eventually, state becomes empire. This was
definitely the case in the pre-Columbian Andes and in China, and
although Mesopotamian states often controlled no more than a mere
region (sometimes, not much more than a single city), control was often
centralized, a king, priests, their retinue — and a mass of subjects. Greek
cities just did not go along such a route. Emerging from the rubble of the
post-1200 collapse, villages gradually grew in size, but they never reached a
very large extent. Greece, quite simply, was not a great river civilization. It
was always marked by steep mountains, sharply cutting into the sea,
isolating small islands and tiny valleys. At its height, centuries later,
Athens would have hundreds of thousands of residents; but for now, in
the eighth or seventh century, even larger settlements would have no more
than a few thousand residents. The people whose voice mattered for
any kind of political or cultural life — the more or less self-sufficient male
adults — would number much fewer, surely no more than a few hundred.
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To start with, those settlements were not very rich, and thus even the
rulers could not be very rich themselves. (If you rule over a couple hundred
small-scale farmers, how much wealth can you amass?) And so: scale
creates habits, which can then become self-sustaining. Instead of relying
on smaller armies of noble horsemen and charioteers, one relied on the
larger standing army of the entire polis (polis is the Greek word for “city,”
which we will use from now on; the Greek term evokes a distinctive
cultural model). It is fitting that those soldiers are armed with the cheaper
and more widespread material of iron — not the expensive, specialized
bronze of predecessor states. Kings in the ancient Near East counted their
wealth in heavy ingots of precious metals. Citizens of the Greek polis
would begin to use a more manageable currency, the coin. Invented in Asia
Minor, or present-day Turkey, in the seventh century, the coin would
become a hallmark of the Greek world: small pieces of metal, widely
owned across the social strata, easy to transport and manipulate. Also, in
Mesopotamia and in Egypt, literacy was a scribal specialty, sometimes
monumental, always based on arcane, difficult systems of writing. The
Greeks borrowed the cheapest and most portable writing surface available
from Egypt — the papyrus roll — and they borrowed the simplest and
easiest-to-learn writing system from Phoenicia: the alphabet. Writing, for
the Greeks, was never a matter of some rarified scribal elite.® Not that it
mattered all that much in the eighth or seventh century. Culture, quite
simply, did not belong to any inward-looking court, with its established
retinue of bureaucrats. There was nothing like that in early Greece. Culture
belonged to the open spaces of the polis — perhaps in a festival, the youth
singing together as they walk in procession; perhaps in a public square, a
professional bard reciting an epic; sometimes, the richer folk, relaxing
together and singing in a symposium with their guests from other poleis
(because, in such a world of small poleis, there are always many other poleis,
not far away, their people coming and going through your own).

The thread running through all of this is being spread out. It is the
opposite of the concentration of Mesopotamia. The ancient Near East had
a few expensive bronze chariots; hard-to-decipher hieroglyphs and cunei-
form scripts; and rare, heavy ingots of gold; its culture was reproduced
among a tiny group of trained scribes. Greece had plentiful iron spear tips

¢ It seems likely that the alphabet was, to begin with, the invention of subaltern groups that
appropriated to themselves, in a much-simplified form, the complex systems of scribal elites. See
O.Goldwasser, “How the Alphabet Was Born from Hieroglyphs,” Biblical Archaeology Review 36
(2010): 40-53.
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and relatively accessible alphabetic writing on papyrus, and eventually, it
would have plenty of tiny silver coins — and it had the culture of the open
polis, which could be shared with almost all members of the community.
The political and demographic forces that made for shared culture became
entrenched in tools that had a way, in turn, of maintaining the features of
this culture, even as states did become, eventually, somewhat more pow-
erful. Silver coins would tend to preserve a market economy, just as iron
spear tips would tend to preserve military and political order based on the
citizen body, fighting side by side. Public performance — recorded in
widely accessible script — would become the most stubbornly entrenched
of all those cultural habits. We still read Homer.

Without any specialized bureaucracy, archaic Greeks surely did not
develop any specialized scribal schools. It is, in fact, very hard to recon-
struct anything about Greek mathematical education in the archaic era.
(I shall return to this topic in Chapter 4, which discusses Greek mathe-
matical education in the Hellenistic era and later, where some evidence is
available.) All we can say is that the Greeks knew little, and what they
knew must have come from elsewhere. But surely, if we want to under-
stand the rise of Greek mathematics, we ought to make some guesses
concerning the contents of such knowledge!

To get there will require a double detour, into the historiography of
early Greek science and philosophy and into the historiography of the
ancient Near East. Why “historiography”? Because in those early mists of
history, so little is known, and so much is based on speculation, that it is
impossible to discuss the past in separation from the way in which modern
historians have interpreted it. And so, Thales and Pythagoras, and
then, Babylon.

Greek Mathematical Myths

When Heath wrote his own history of Greek mathematics a century ago,
he thought he could give a very detailed survey on the question of origins,
of first steps. Following his initial introductory chapter and a second
chapter, “Greek Mathematical Notation and Arithmetical Operations,”
the titles of his Chapters 3, 4, and s are, respectively, “Pythagorean
Arithmetic,” “The Earliest Greek Geometry. Thales,” and “Pythagorean
Geometry.” Heath’s picture was essentially of a few isolated geniuses, such
as Thales and Pythagoras, coming up with a new kind of science that
eventually led to the great achievements of Greek mathematics.
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When I lecture on Greek mathematics, I am often asked about
Pythagoras (Thales, not so much), who still occupies a central role in the
cultural imagination, and so this is a point I need to emphasize. Thales and
Pythagoras were real historical persons, both active in the sixth century
BCE (Thales somewhat earlier, Pythagoras somewhat later). However,
although different scholars take different views on this question, the
standard view is that 7hales and Pythagoras did no mathematics whatsoever.
This is all a myth. To be sure, it was a myth started by the Greeks
themselves — who did like to invent stories, projecting their contemporary
achievements into the distant past. But those later stories tell us more
about the agenda of later Greeks than they do about the Greek culture of
the Archaic era.

I have already mentioned that early Greek civilization was all based on
public performance, and what comes to mind, first of all, is the public
performance of recitation and song. Alongside the bard, the early Greeks
also had the sage: the man respected for his words of wisdom and advice,
words that might ring paradoxical and yet impress for their kernel of truth,
often touching on the political life of the community but sometimes
reaching beyond that, to speculation about the cosmos, about the human
condition, about truth itself.” Such wise words could sometimes be noted
and commemorated, and eventually — in the fifth century — a wise man
even could decide, occasionally, to write down a book. But it was all about
the public performance of wisdom — as it would still be all the way down to
Socrates. Thales and Pythagoras certainly put nothing down in writing,
and it is not clear that they had a “something” — a clearly articulated body
of doctrines — for which “putting down in writing” would be the appro-
priate exercise. The sense that they had such a thing is a later construct that
we can see emerging very clearly from the works of Aristotle. One of
Aristotle’s favorite techniques was to go through past views on a particular
topic so as to see them as approximations — but no more — of Aristotle’s
own views. Thus, past philosophers, according to Aristotle, only looked for
the material cause, “the stuff out of which things are made,” unlike
Aristotle, who developed a complex, nuanced understanding based on
different kinds of causes. And so past sayings attributed to past figures
were shoehorned into the model of material cause, and so also, whatever

7 The claim here — that Archaic Greek sages should be understood alongside other public performers —
is based on R. P. Martin, “The Seven Sages as Performers of Wisdom,” in C. Dougherty and
L. Kurke (eds.), Cultural Poetics in Archaic Greece: Cult, Performance, Politics (Cambridge: Oxford
University Press, 1993), pp. 108—128.
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sage words were attributed to Thales concerning the cosmos got trans-
formed, in Aristotle’s telling, to “Water is the Material Cause,” which still
survives as the first thing one usually reads in a general history of philos-
ophy: “Thales was the first philosopher, and he said that all is water.”®

It is reasonable enough that Thales, the wise man, would talk about the
cosmos, and so we may perhaps be justified in saying that he probably did
like to mention water in whatever it was he was saying. It is not entirely
clear if he, or Pythagoras, had anything to say specifically about mathe-
matics. Consider, for instance, the tradition concerning the most famous
piece of such early mathematics: Pythagoras’s theorem itself. It all goes
back to a story of Pythagoras’s pride in the finding of this theorem, a story
that we find in many sources. The earliest of these, however, is Cicero.’
A first-century BCE Roman figure, Cicero was active about five hundred
years later than Pythagoras. Cicero and others later than him all seem
to rely on a piece of verse, written about a century or two earlier than
Cicero — so we are getting closer — but this piece of verse, by a certain
Apollodorus, was apparently intended to be funny. The background is the
following (it’s an awful thing — I have to explain a joke now; by the time
I’'m done, there will be nothing funny left). Pythagoras, the wise man,
did, in fact, promulgate a code of conduct demanding a certain kind of
purification, of which one of the key demands was vegetarianism. Further:
Greeks often thought of a remarkable achievement in terms of the religious
ritual to celebrate it. The more remarkable the achievement, the more
spectacular the ritual. And so the anecdote relayed by Apollodorus in his
verse: Pythagoras celebrated the discovery of the most famous theorem by
slaughtering one hundred bulls. This, I repeat, is meant to be funny.
(A vegetarian — slaughtering bulls!) When Apollodorus writes it down, his
audience perfectly understands the intention, and no one thinks that any of
this is the literal historical truth. It does show two things, indeed.

First, in the time of Apollodorus, what we know as “Pythagoras’s
theorem” was already a well-known result, perhaps the most well-known
mathematical result of all. This is not surprising: this result is widely

% The argument that Aristotle is an unreliable narrator of the earlier history of philosophy was made
forcefully already by H. F. Cherniss, Aristotle’s Criticism of Pre-Socratic Philosophy (Baltimore, MD:
John Hopkins Press, 1935). Most scholars today believe that Aristotle aimed to be faithful to his
sources while being completely shaped by the assumptions and agendas of his own time and place.
Is this not true of all historians?

? Cicero alludes to the story in On the Nature of the Gods 11.88. (He comments, pedantically, or
perhaps mock-pedantically, that the story is impossible.) The verse itself is cited by several sources,
beginning with Plutarch (first century cg), Moralia 1094b.
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assumed in the educational documents we have, and it is referred to as the
“schoolchildren result” by Polybius, a historian writing at about the same
time as Apollodorus (I return to all of this in Chapter 4). In the Hellenistic
era, and probably even before, Greeks knew “Pythagoras’s theorem” as a
basic part of their education.

Second, in the time of Apollodorus, it was already widely assumed that
Pythagoras made contributions to mathematics. To cut a long and com-
plicated story short: in the late fifth and early fourth centuries, there were
authors, such as Philolaus and Archytas, active in the same geographical
region that resonated with Pythagoras’s fame (we will see much more of
those authors in the next chapter). Such authors were all interested in
mathematics, and they also shared something of the otherworldly, purity-
seeking approach of Pythagoras’s original type of wisdom. Aristotle (who,
once again, is our main source) thought of Philolaus and Archytas as
“Pythagorean”; they probably did so themselves. We shall revisit all of
that in the following chapter. The point, for now, is that it is through
association with those authors that the image of Pythagoras as a mathe-
matician likely emerged.

We can go, in such a way, through the traditions concerning the various
pieces of mathematics attributed to early mathematicians prior to the end
of the fifth century. The evidence is extremely late. Very often, our earliest
sources are from Late Antiquity (when, indeed, a mathematizing version of
Platonism  becomes very widespread and is often considered
“Pythagorean”; we return to this in Chapter 6). Aristotelian guesses,
amplified by later readers, Roman, late ancient — all constructing a myth
that remains embedded in the Western historical narrative, all the way
down, indeed, to Heath’s History of Greek Mathematics.

Aristotle had very few sources to work from as regards Thales and
Pythagoras, but the point, concerning the nature of the evidence, is not
merely methodological. The point has to do with the underlying historical
reality itself. The world of Thales and Pythagoras had relatively little use
for extensive writing, and so whatever knowledge they uttered would have
to be oral. This is why they were “wise men.” Preliterate knowledge,
preliterate science — wisdom. Thus, the same must be true for mathemat-
ical knowledge as well. Whatever the Greeks knew, back then, in the field
of mathematics, would have to be understood along the terms of oral
knowledge. This is not a matter of scientific doctrine but of shared
cultural lore.

But where did this shared cultural lore first emerge? I believe it did,
ultimately, in Babylon. But for this, yet another detour is called for.
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Greeks and the Near East: A Historiographical Detour

So far, we have considered the mathematics of the ancient Near East
essentially as a contrast to the Greeks (Mesopotamia had centralized
bureaucracies; the Greeks did not). But can there be, instead, some kind
of a /ink? That we even raise this question puts us, already, ahead of Heath.
In 1921, historians of Greek mathematics knew essentially nothing of the
mathematics of the earlier civilizations of the ancient Near East. It is
significant that this changed — and changed so rapidly.

Otto Neugebauer was born in Innsbruck, Austria, in 1899. In 1922, he
became a graduate student in, arguably, the best department of mathematics
in the world: Géttingen. It was a time and a place where mathematicians were
intensely engaged with the very foundations of their discipline. This concern
with foundations brought Neugebauer, as a student, to a concern with origins.
Finding himself fascinated by Egyptian archeology (a common enough
fascination), he realized that there was something deeply significant about
the fact that the very early civilizations developed abstract, symbolic systems
for the representation of number. Mathematics — always looking for deeper
abstractions. Throughout the 1920s, he produced important interpretations
of the arithmetical systems in Egyptian papyri, followed by an account of the
origins of the base-sixty system in Mesopotamia. Neugebauer stayed on in
Gottingen after completing his studies, and he became the first lecturer, ever,
in a mathematics department, to specialize in the history of mathematics
itself. In Neugebauer’s hands, the history — even the most distant one —
looked forbiddingly impressive, and relevant, to contemporary mathemati-
cians, in its abstraction. Then, in January 1933, the Nazis came to power.
Not Jewish himself, Neugebauer could simply go on as before, but when
German university teachers were required to declare loyalty to the regime, he
refused — very few had this courage, made this sacrifice — thus giving up his
position at the best department in the world and leaving Germany for good.

The University of Copenhagen saw the opportunity and offered him a
professorship. (Eventually, he would get, in 1939 — another lucky break —
to Brown University, which, for half a century, would become the center
for research in the ancient exact sciences.) And so, in the year 1935, Otto
Neugebauer, a Copenhagen professor, began to publish his Mathematische
Keilschrifi-Texte (Mathematical Cuneiform Texts).'® This was the first

'® For more on Neugebauer’s fascinating intellectual trajectory — much more complicated than my
brief outline suggests — see A. Jones, C. Proust, and J. M. Steele (eds.), A Mathematician’s Journeys:
Otto Neugebauer and Modern Transformations of Ancient Science (Betlin: Springer, 2016).
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significant scholarly resource with which one could begin to make sense of
the mathematics of the ancient Near East. Bear in mind: it was only in the
nineteenth century that even the script of the clay tablets — cuneiform — was
deciphered. At first, scholars were busy looking for the literary evidence for
the biblical world, and only gradually did they come to consider the great
bulk of numbers in cuneiform. Even here, the emphasis, to begin with, was
on metrology: What were the units? What do these tell us about the society,
the economy, and the history of antiquity? Some tablets did not yield that
many interesting economic details and instead were more purely numerical
—and these, in turn, were very obscure. I cited earlier a Babylonian text, but
I did so through the useful interpretation now produced by Jens Hoyrup.
Imagine how obscure this was without any interpretation. I cite it again,
now trying to preserve the sense of the original difficulty:

My surface and the-equal-to-itself I added: 45’. 1, the beyond, you posit.
Half of 1 you break, 30’ you make hold. 15’ to 45’ you add: 1. 1 is side. 30/,
which you made hold, take away inside 1: 30', the-equal-to-itself.

In this passage, I simplified the fractions to modern form, but in the original,
they were sexagesimal, or in base sixty, so that 45’ is three quarters, 30’ is a
half, and 1 can be thought of as 60": we may comprehend this easily enough
by thinking of minutes as fractions of an hour. (As an aside, this is not an
accident: our minutes and hour reach us from Greek astronomy, which, in
turn, depended on its Babylonian antecedents; more in Chapter s.)

But the sexagesimals are relatively easy! The hard part is to make sense
of the very point of the mathematical exercise. Neugebauer realized that
the surface in question must be that of a square; “the-equal-to-itself” must
be its side. However, there is no geometrical meaning to adding together a
square and its side. This, then, so Neugebauer understood, must be a more
algebraical formulation, dressed in geometry: geometrical algebra. The
problem, at its core, takes the following form:

x*+x=a. (In this case, the value is =45, and so the value of x is 30.)

And Neugebauer argued that the Babylonians knew how to solve this
algebraic problem in general, using particular numerical examples for the
display of their general algorithms.

And so, according to Neugebauer, mathematics was always looking for
deeper abstractions. The earliest mathematics, of the cuneiform tablets,
was also essentially a piece of sophisticated science. Those individuals were,
quite simply, professional mathematicians, pursuing the numerical solu-
tions of algebraic equations. It was Gottingen on the Euphrates.
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It is extremely rare that a field of scholarship passes so dramatically, so
quickly, from obscurity to clarity. Babylonian mathematics barely existed
as a field of study before 1935. Following Neugebauer’s publication, it was
grounded in a substantial number of texts, now thoroughly understood.
We can readily imagine the authority that Neugebauer rightly assumed
over his field, and indeed, for many years, no one would doubt
his interpretation.

Now add this: in the 1930s and for many decades hence, the scholarly
consensus was also to accept, at face value, the testimonies, such as those of
Proclus and Aristotle, concerning the earliest Greek mathematics. Heath,
we recall, had three full chapters on the mathematics of Thales and
Pythagoras! The implication of that consensus would be, essentially, that
even early on, the Greeks had the equivalent of professionalized mathe-
matics, authors whose goal was to promote theoretical mathematical
understanding. Put this side by side with Neugebauer’s theoretical math-
ematicians of Babylon, and you have a continuity.

More than this: an interpretation presents itself almost immediately,
indeed, was assumed already by Neugebauer himself, even as he was
making his very first proposals concerning Babylonian mathematics. It
has been central to later reconstructions of early Pythagoreanism that this
philosophy somehow involved an early mysticism of number, as if some-
how, integer numbers underlay the very structure of the cosmos. It is
evident that such a mysticism would sit awkwardly with the discovery of
irrationality. If the side and diagonal cannot both be expressed with
rational numbers (for which, see pages 78—81), then it becomes impossible
to describe the entire cosmos with such rational numbers. But it is clear
that very early on, the Greeks did discover irrationality! So this should be
difficult for Pythagoreanism, if indeed we believe in its existence as an early
mathematical doctrine based on rational numbers. Such a belief began in
antiquity itself — perhaps as early as Aristotle — and by Late Antiquity,
some authors speculated that the discovery of irrationality could cause a
crisis for Pythagoreanism.

The Géttingen era of Neugebauer’s mathematical education was con-
sumed by the crisis of foundations. If you try to base mathematics on set
theory, this could easily lead to paradoxes; thus, one required special
axiomatic assumptions to make a consistent mathematics even possible.
The debate ranged further: Does mathematical existence require explicit
construction? If so, are we to allow infinite constructions? Is mathematics
purely formal? Is it even theoretically possible, formally, to axiomatize all
of mathematics? (In 1931, Kurt Gédel — an Austrian mathematician
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working in Vienna — proved certain surprising results that made such a
goal appear impossible, but throughout the 1920s, while Neugebauer was
formed as a mathematician, Géttingen was consumed by the dream of a
fully grounded, axiomatic mathematics.)

And so, it was tempting and natural to project a crisis of foundations,
with its consequences, on the earliest history of mathematics. Babylonians
came up with the algebraical study of numerical relations. But then their
Greek followers discovered the phenomenon of irrationality and therefore
realized that it is impossible to describe all relations in purely numerical
terms. One therefore needed to formulate algebra in a strictly geometrical
way — hence the mature geometry of Euclid’s Elements.™”

This account, then, in outline, was shared by scholars for decades. It
came under pressure only very gradually. This happened in many stages.
First, in 1962, the German philologer Walter Burkert published Weisheit
und Wissenschaft: Studien zu Pythagoras, Philoloas und Platon, which —
especially following its English translation from 1972, Lore and Science
in Early Pythagoreanism — would come to define scholarship into
Pythagoras. Here was a more careful, professionalized classical philology,
keen to understand the authors we read not as mere parrots, repeating their
sources, but instead as thoughtful agents who shape and retell the evidence
as suits their agenda. Pythagoras, under such a reading, crumbles to the
ground: almost everything — as noted earlier — comes to be seen as the
making of later authors from Aristotle on.

Never mind: the historians of mathematics went on as before (and
Burkert, with all his skepticism, did not consider himself an expert in
the history of mathematics; he did not engage directly with this part of the
Pythagorean legend). But there were other considerations, from within the
discipline of the history of mathematics itself. The history of science, in
general, was becoming more professional. It was no longer acceptable to
pursue the history of science as an abstract, disembodied history of ideas,
completely at a remove from any sense of historical context. In 1975, in his
article “On the Need to Re-Write the History of Greek Mathematics,”
Sabetai Unguru made a very modest plea: mathematical texts should be
understood on their own terms, not in some kind of translation to an
abstract, ahistorical symbolism. The Greeks did not study equations; they
studied geometrical configurations inside diagrams. The plea was modest,
but Unguru framed it as a radical critique — which it was — of the dominant

™" For this supposed crisis of foundations — the evidence and a spirited discussion — see D. H. F.
Fowler, The Mathematics of Plato’s Academy (Oxford: Clarendon Press, 1987), pp. 294—308.
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approach to the history of mathematics. It touched a nerve. He was
savagely attacked by some of the most prominent historians of mathemat-
ics, even mathematicians, of the time. Well, the discipline paid attention.
And in the end, the authority of Unguru’s detractors made no difference.
The need to historicize, to read texts in context, was much too powerful.

Burkert was circumspect and did not seek to dethrone the early
Pythagoreans from their mathematical pedestal, but later historians of
mathematics, following his lead, had fewer compunctions. In general, it
became clear that the very effort to reconstruct the earliest stages of Greek
mathematics was fraught with speculation. In Unguru’s wake, this
endeavor largely went out of fashion. Indeed, until the 1980s, most
scholarship in Greek mathematics went into the reconstruction of the
earliest mathematics and its interaction with philosophy. Since the
1980s, almost no one kept writing on this topic. Scholarship moved on
to the interpretation of later mathematics, based on the firmer grounds of
our extant texts from the fourth century BCE onward, texts that one could
fully understand in historical context. The tendency was to be agnostic
about any earlier Greek mathematics; through the years, scholars became
more comfortable with the idea that Greek mathematics, in fact, did not
start till quite late. While no one looked, Pythagoras and Thales were
quietly removed from the museum."”

Meanwhile, things changed in Babylonian studies, as well.
Professionalization would, at the end, overrun the authority even of
Neugebauer himself. In a series of publications from the 1980s onward,
Hoyrup went back to the cuneiform texts, paying closer attention to the
fine detail of vocabulary. For instance, why does the tablet quoted earlier
talk about multiplication as “make hold”? Why is the subtraction it
mentions taking from “inside” Paying attention to such detail, Hoyrup
succeeded in reconstructing a concrete reference to all those seemingly
abstract manipulations of numbers. In fact, Neugebauer had it upside
down. This was not Babylonian algebra, later to be turned, by the
Greeks, into geometry. The Babylonians, already, dealt with concrete
geometrical configurations. It was all about measurement, calculation,
patterns. It is simply that in the Babylonian case, the diagrams (or their
more concrete, manipulated equivalent) were lost. The clay tablet con-
tained directions for operation, referring to an external object that was

'* This transformation was noted already by K. Saito, “Mathematical Reconstructions Out, Textual
Studies In: 30 Years in the Historiography of Greek Mathematics,” Revue dhistoire des
mathématiques 4 (1998): 131-142.
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operated upon concretely. Hoyrup evoked a vivid sense of Babylonian
mathematics in action — moving stuff about, tearing pieces of fabric or
wood apart. He still wrote, however, strictly as a historian of science (albeit
with extraordinarily wide-ranging knowledge and curiosity!). More
recently, the study of Babylonian science has become even more profes-
sionalized, and scholars such as Eleanor Robson, active since the 1990s, are
now fully trained not just as historians of science but also as social
historians and archeologists. Robson is now able to put the vivid practice,
recovered by Heyrup, in the context of the Babylonian school. And so, we
now understand how those tablets came about. These are not at all
professional mathematicians a la Géttingen, pursuing theoretical knowl-
edge for its own sake. These are teachers in scribal schools, engaging with
problems that are at a certain remove — but never entirely divorced from —
their practical application.

But if Babylonian mathematics was always strictly a scribal school
practice, how exactly did it even endure? The implicit assumption under-
lying Neugebauer’s account of the ancient exact sciences was that there was
something, such as a theoretical understanding of algebra, perhaps written
down and since lost but, at any rate, circulating, in some form, through the
generations, crossing eventually from Babylon to Greece. But this is clearly
wrong and, in fact, directly contradicted by the pattern of our evidence.
We do not see a theoretical continuity anywhere. What we see is that in
several cities across Mesopotamia, centuries and even millennia apart, we
find new foundations of scribal schools with their own flavor of mathe-
matical education. And here is the thing: we can trace a continuity
between problems set out in tablets from the twenty-first century BCE
and, say, the eighteenth century BCE, and this is of a kind that can be
traced even between distant cities. But the schoolmasters of a given city did
not learn about their distant predecessors by the reading of tablets (which,
by the eighteenth century, were already covered with dust, to be dug up
only four millennia later!). Although, of course, tablets did travel around to
be copied, this was not their main function. These were local tools of the
trade, not at all the same as a book. No: whatever tradition there was had
to be oral. At the first instance, it was not tablets that traveled, but people.

More than this: there is a set of numerical values and problem types that
can be traced across an even wider geographical and chronological range.
Once again, we owe the following observation to Jens Hoyrup. Now, in
the simple example of Babylonian mathematics quoted earlier, we are
given the sum of a square area and its side. A much more specific type
of question is where we are given the sum of the square area and its four
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sides, taken together. Remarkably, Hoyrup found the exact same problem
asked, and solved, in nearly the exact same manner, in Babylonian, Greek,
Arabic, and Italian sources. How do problems travel? Well, the story of
Cinderella, too, is told far and wide. When people meet, Hoyrup explains,
they share stories. A mathematical riddle is just that — a riddle, something to
tell and to solve. Apparently, this happened frequently enough, throughout
history, so as to preserve a certain minimal layer of shared mathematical
knowledge. The likeliest account of mathematical transmission between
cultures, then, is nearly the opposite of that implied by Neugebauer’s
account. It is not that some theoretical understanding was transmitted from
the Babylonians to the Greeks. Instead, it was the problems themselves —
puzzles and riddles, freed from their original school context — that came to
be more widely shared. And the very idea of a “Babylonian influence over
Greece” is misleading. Not that it ever made any sense to seek the impact of
eighteenth-century BCE clay tablets from southern Mesopotamia on the
words of a wise man in southern Italy twelve centuries later. There was a
continuity, but it must have been, precisely, along a continuum. Somehow
— even through the major disruption of Mesopotamia from 1800 BCE
onward — some kind of mathematical lore survived. Some teaching must
have continued; there must have come about a kind of folk koine shared
by practitioners of various crafts. It owed its birth to the scribal schools of
past empires. But something did survive their demise, a more humble
practice — but one freed, perhaps, from the court?

This is all lost: away from the courtly scribal schools, we just do not have
the evidence. But we can surmise the presence of real mathematical
progress. Let me outline how this could have come about.

The riddles that Hoyrup detects, permeating across cultural and lin-
guistic borders, generally take the form of a challenge: If you know X, can
you also know Y? He looks specifically at the following riddle:

If you know the sum of the square area with the square’s four sides, can you
tell the side of the square?

And we have earlier cited the following riddle:

If you know the sum of the square area with one of the square’s sides, can
you tell the side of the square?

A slightly more complicated puzzle is the following:

If you know the difference between the two sides of a rectangle, and you
also know the area of the rectangle, can you tell what the two sides are?
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This riddle was solved by the Babylonians with a technique directly
analogous to that cited on pages 10-11: Because you know the difference
between the two sides, you can mark the difference on the longer side as a
projection beyond a square. And now you have the situation where you
know the area of a square plus its projection. For instance, suppose the area
is 60, and the difference between the sides is 7 (yes, you know the answer
already, but please wait till the end of the example).

Because the difference is 7, I can break it into two equal parts and
transpose one of the resulting triangles. I get a gnomon, whose area is szi// 60.

This gnomon has a small gap, a square, whose side is 3.5. The area of
this small square, then, is 3.5* = 12.25.

Add this to the gnomon, and we have a larger square whose area is
72.25.

So, its side is 8.5.

This is simply the middle between the greater and smaller sides of the
rectangle, when their difference is 7. Add 3.5 and remove 3.5, and you
have the two sides: 5 and 12.
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Figure 3

To repeat, what this approach shows us is how we can solve a riddle: given
the difference between the two sides of a rectangle, and the area of the
rectangle, to find what the two sides are.

At some fairly late stage in the history of Babylonian mathematics, the
thought suggested itself to some schoolmaster to improve on this type of
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riddle by considering the pattern — noted by Gerdes in Mozambique
weaving! — such as this:

Figure 4

That is, we may consider a square and the diagonals of four equal
rectangles drawn on it obliquely. Note that if we draw all four rectangles,
we have a small gap, a square, in the middle. This small square stands on a
side that is, in fact, the difference between the two sides of the rectangle:

Figure 5
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Suppose you have taught your students a hundred times already how, if
they are assigned the difference between the two sides, as well as the area of
the rectangle, they can find the two sides. It dawns on you that you can
have a new way to find this difference because the small gap, the small
square, is, in fact, the difference between the slanted square across the
figure and four triangles — which are the same as two recrangles.

Figure 6

The four triangles are equal to two rectangles, whereas the slanted square
is simply the square on the diagonal of the rectangle. Now, in the riddle we
are most familiar with, we are given the area of the rectangle and the
difference between the two sides of the rectangle. We have now realized
that if we are given the area of the rectangle, and we are also given the length
of the diagonal, we can find the difference between the two sides!

This will provide us with a much neater, much more impressive riddle:

If you know the area of the rectangle, and you also know its diagonal, can
you tell its two sides?

Wow! And in fact, this is directly doable: take the square on the diagonal,
and subtract from that 2 x the area of the rectangle. You come up with the
area of the small square in the middle. Find the root of this square. This is
the difference between the two sides. So now we’ve made it to the position
where we know the area of the rectangle, and we also know the difference
between its two sides — and this, we know already!
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This is as far as our evidence leads us. Babylonian geometrical problems
are typically related to the measurement of surfaces. They are never entirely
detached from, well, the measurement of fields — from which it all began.

However, this riddle did exist, and apparently someone, in the lost mists
of time, thought of an extension of the same technique to derive a related
riddle, one no longer connected to the measurement of the areas themselves:

If you know the two sides of the rectangle, can you tell the length of the
diagonal?

The approach to this riddle should now be obvious. By multiplying the
two sides, we get the area of the rectangle. Double this, and we get two
rectangles, or four triangles. Next, by subtracting the smaller from the
greater side, we get the side of the small square in the middle. Add up the
four triangles and the small square, and we have the slanted square; find its
root, and we get the length of the diagonal.

Finally, if you have some experience with the numerical finding of roots
and squares (a technique quite central to this schoolmasterish tradition), you
are aware that if you have two values, then the result of multiplying them,
and doubling that, and then adding to this the square on their difference, is
nothing else than the sum of their squares. As we would put this:

2ab+ (a — b)* = & + b*

And so, this riddle is rather elegantly solved: if you are given the two sides
of the rectangle and you want to know the length of the diagonal, simply
square each side, add them up, and look for the root of the sum — and
there, you have the length of the diagonal. To repeat: this last riddle is a
reconstruction. It was probably not offered by the year 1800 BCE. But it
appears that it did enter the mathematical koine, the shared template of
familiar mathematical riddles, out of which Mediterranean civilizations
could — if they wanted to — build up their education. And so, Pythagoras’s
theorem. Not the fruit of some theoretical reflection by an isolated Greek
genius. Rather, the outcome of the school practice and the mathematical
folklore of riddling, through the centuries. As we imagine the beginnings
of Greek mathematics, we must imagine it against the background of this
kind of widely shared, elementary knowledge.

The Threshold of Mathematics

There is no turning back from the empire to the tribe. In simple societies,
there is usually a language for counting and practices of calculation, as well
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as pattern-making. People do things, but they do not produce theoretical
reflections on such activities. Empires give rise to bureaucrats, and those
(often) give rise to teachers, and teachers, finally, do produce theoretical
reflections. And at this point, they begin to do something new. They
engage in practices of writing, they impart rules, and they share riddles.
And these, finally, will tend to reproduce outside the closed environment
of the classroom. Babylon was gone. But the ancient Near East, even
post-Babylon, would not have the same mathematical practice as that of
an isolated tribe in the Amazon. The riddles were already out in the
wild, reproducing.

What is described here is oral knowledge that, by definition, can no
longer be uncovered. How many people knew just what? All we can do is
point at the overall parameters. Certainly, as Greek democracy grew, more
Greeks had access to education. From what we have seen in the foregoing
discussion, it is likely that such an education included a modicum of
mathematics. We may then follow Hoyrup’s lead and suggest that math-
ematical knowledge spread through a few orally shared examples/riddles,
and we might also suggest, then, that this knowledge, as it spread through
the Greek world and became entrenched in elementary mathematical
education, included the basic rules of area measurement, up to and
including Pythagoras’s theorem.

Peering back into their earliest history, Greeks felt that they had to
attribute the beginnings of their mathematical knowledge to particular
named Greek authors: hence, the invention of Thales and Pythagoras as
mathematical authors. But this was a category error, on the behalf of Greek
historians as well as their modern followers. The earliest mathematical
knowledge shared by the Greeks was neither authored nor Greek. It was,
instead, the reflection in oral teaching of past Mesopotamian scribal
schools. (Which, to be fair, many Greeks sensed, as well; Herodotus, for
instance, was quite explicit that Greek knowledge of mathematics came
from the East!)

And yet, the very need to attach cultural achievements to the names of
their authors is telling — and specifically Greek. We do not pause
to consider this as such because this habit — the reliance on named authors
— has become so natural to us. But it is, in fact, a specific historical
invention, happening only in some civilizations. We do not have an author
for the epic of Gilgamesh, for the Chinese Book of Odes, for the
Mesoamerican Popol Vuh. Indeed, Greek bards, too, recited epic stories
of the siege of Troy, never attributing them to any named author. As in so
many other civilizations, these were just the stories being told.
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A Babylonian teacher, imparting the rule whereby one finds the sides of
the rectangle from the combination of area and diagonal, did not invoke
the “author of the rule.” It was just a rule: teachers knew how to apply it.
Similarly, a Greek, singing the song of Achilles’s wrath, did not invoke the
“author of the poem.” It was just an epic poem: bards knew how to sing it.

And then, a few Greeks started to make a name for themselves. Instead of
just reciting a well-known set of epic poems, widely shared among profes-
sional bards, some Greeks started to sing more personal songs, produced
from a personal angle. Others repeated those poems, still attributing them
to their original authors. In this new tradition, what made a particular
poem effective was precisely that one could imagine, in concrete detail, a
particular person — say, Sappho or Hesiod — in a particular place, say,
Lesbos or Boeotia, authoring the song. So much so that soon enough,
people began to imagine a concrete person, the author of the epic poems
themselves! Perhaps at some point in the sixth century, “Homer” was
invented. The Greeks started to believe that there was one particular
person who was responsible for just those two epics, the /liad and the
Odyssey.”> And now we can see: Thales and Pythagoras became, as it were,
the “Homer” of mathematics. They were retrospectively reinvested with a
new identity; they were reidentified as the authors of what was, in fact, an
unauthored oral tradition.

For indeed, there was no turning back now. All Greek culture, from
now on, would have a named author. This was a new, exciting departure,
in many ways specific to the Greeks: through literature, one could make a
lasting reputation for oneself.

This invention of the author is also the direct background for a new
development in the late fifth century: a proliferation of writing. The real —
that is, historical — Thales and Pythagoras were sages, performing orally.
Sages do not write; they proclaim. Throughout the fifth century, a handful
of sage-like figures began to add a book to their résumés. The proclama-
tions, attached to a name, would spread far and wide. Such are the wise,
surprising proclamations of Parmenides, Anaxagoras, Philolaus: a single
book, distilling a life of wisdom. Right near the end of the fifth century,
this practice of book writing becomes an avalanche. Suddenly, many
authors try to make their name in prose, and several produce not one
book but many. “Author” becomes, in such cases, the key identity. And so,
more and more figures of the author emerge. The genres muldiply. These

'3 This reconstruction must be speculative, but see M. L. West, “The Invention of Homer,” Classical
Quarterly 49 (1999): 364—382.



The Threshold of Mathematics 33

were exciting times, and many turned to the writing of history. Political
speech mattered a lot: many wrote speeches, and some produced manuals
of rhetoric; teachers of speech-making, they wrote about the practice of
speech — as many others now did, writing about their craft. Physicians
wrote about health and disease; artists wrote about the proportions of their
statues; architects, about the proportions of their buildings. And so, a few
wrote on mathematics, as well. Our history proper begins here.

Let us, then, lay out the evidence. So far in this chapter, we have
measured our narrative in centuries, even millennia. Now, decades matter.
It is the invention that we now need to understand, and so we try to isolate
a very precise group: authors likely to have circulated mathematical texts
throughout the last few decades of the fifth century.

The list of such attested authors is, in fact, very small. A couple of
astronomers are mentioned for Athens — Euctemon and Meton — and we
will return to discuss them in Chapter 5. As I will explain there, it is at least
possible that their brand of astronomy was not the kind we would
recognize as mathematical. Meton, at least, is well dated: he is mocked
by Aristophanes in a comedy dated to the year 414. Others are much less
well dated. Theaetetus was commemorated by Plato, in the dialogue
carrying his name, and we get to know the precise historical circumstances
of his death in battle. We can independently date this to 369 BCE. In the
same dialogue, we find that as a youth, Theaetetus studied with the
mathematician Theodorus of Cyrene. Theactetus, apparently, did not
die in old age, so he could not be Theodorus’s student that many years
before 369. The dialogue does have Socrates conversing with both
Theodorus and Theaetetus, a conversation set just as Socrates’s trial is
about to begin, in 399; but perhaps not too much is to be made of this
because Plato did allow himself considerable historical license, and the
moment of the trial was one he returned to for dramatic effect. The
likelihood remains that Theodorus was active very late in the fifth century
or very early in the fourth.

Another name we must mention is that of Democritus: the first genu-
inely prolific prose author in Greek. Many dozens of works are attributed
to him, and ancient catalogues identified an entire set of works on
mathematical topics, for instance, On the Contact of Circles and Spheres.
This, presumably, was a study not of the tangency of a circle with a sphere
but, rather, a study of the general question of how straight lines touch
curvilinear lines. There is one concrete mathematical result that we can
certainly ascribe to Democritus — because we can do so on the authority of
Archimedes himself. What we learn from Archimedes is that Democritus
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asserted — although without proof — that cones are one-third of the
cylinder in which they are enclosed, and also that pyramids are one-third
of the prism in which they are enclosed.

We can pursue this report a little further. First of all, the key piece of
background: the one thing we know for sure about Democritus is that he
was the central figure in early atomism. One of the main topics for
paradoxical, wise statements about nature, among early authors, was the
very makeup of the universe: What are its ultimate constituents? Atomists
contended that the world is made of microscopic, unbreakable pieces.

Now, there is a well-known passage where Plutarch, a philosopher and
belletrist of the imperial era, quotes Chrysippus, a Hellenistic Stoic phi-
losopher. Chrysippus cites a puzzle raised by Democritus: if you cut a cone
by a plane parallel to the base, you get two circular faces, one at the top of
the lower cut, the other at the bottom of the upper cut. The interpretation
of this passage is contested, but my own understanding is that Chrysippus
implies that Democritus said as follows: surely the two faces are not equal
to each other — for otherwise, we would have not a cone, but a cylinder.
Hence, what appears to us as the smooth surface of a cone must, in reality,
be a terraced, jagged surface, made by microscopic steps. This, then, is
consistent with atomism. The world is not a continuum but is instead, so
to speak, rough at the (invisible) edges: our impressions of smoothness are
no more than an illusion. We now see how discussions of the surface of the
cone, or of the sphere, can easily belong to such philosophical debates.”* It
seems that Democritus did assert an intuition — which is, in fact, mathe-
matically correct: that the cone in the cylinder is essentially the same as the
pyramid in a prism. He probably meant, however, not some kind of
theoretical mathematical observation, but instead a philosophical one: his
argument was that the cone in the cylinder simply was a pyramid in the
prism. It is possible, then, that the evidence for Democritus does not imply
any original mathematical activity, although it does imply familiarity with
a mathematical lexicon and probably also some mathematical results (it
seems that Democritus did know, already, that a pyramid is one-third of
the prism containing it — an elementary, although not a trivial, result). But
this does not add much to our knowledge of the relevant chronology.
Democritus was probably born around 460, but he certainly had a very
long and very productive life. The implication, then, is that if we consider

** For an account of Democritus’s discussion of the cone — and of Democritus’s atomism as a whole —
see N. D. Sedley, “Atomism’s Eleatic Roots,” in P. Curd and D. W. Graham (eds.), 7he Oxford
Handbook of Presocratic Philosophy (Oxford: Oxford University Press, 2008), pp. 305—332.
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an arbitrary work by Democritus, it likely originates in the late years of the
fifth century or even the beginning of the fourth. Can we not push the
evidence any earlier?

We may, in all likelihood — with just two outstanding names. These are
Oenopides of Chios and Hippocrates of Chios (not to be confused with
that other Hippocrates — of Cos! — the father of medicine). That the two
come from the same island may or not may be significant: our evidence
hangs on a thin thread. But could mathematical literature — at the moment
of its very inception — perhaps be a local phenomenon?

The evidence for Oenopides is tantalizing, meager — and significant.
Three observations stand out.

First, Oenopides is consistently credited with some astronomical dis-
covery having to do with the ecliptic. As I will return to explain in
Chapter 5, the motion of the sun, moon, and planets takes place on a
thin strip, a circle located on the sphere of the fixed stars, called the
“ecliptic,” and it happens to be set at a particular oblique angle to the
equator: roughly twenty-three degrees. It seems likely that Oenopides
made some statement concerning the obliquity of the ecliptic. This sug-
gests an interest in some kind of explicit geometrical model of the sky.

Second, this interpretation can be supported by a couple of very late
citations produced by Proclus, the fifth-century author mentioned earlier
concerning his testimony for Thales and Pythagoras.”> What Proclus
claims, in his commentary to Euclid’s Elements 1, is that Oenopides first
discovered the construction of a perpendicular to a given line (Elements
1.12), as well as the construction of an angle equal to a given angle
(Elements 1.23). As usual, everything has to be taken with a grain of salt,
but the report seems significant for several reasons. Concerning 1.23,
Proclus claims that his testimony is based on Eudemus — a follower of
Aristotle who composed a history of geometry (which is now, unfortu-
nately, lost; it is our best source for early Greek mathematics, but we rely
on a few scattered quotations by authors later than Eudemus). Concerning

> T will frequently refer, in this book and especially in this chapter, to Proclus’s commentary to
Eudlid’s Elements (discussed in the “Proclus and the Philosophical Schools” section in Chapter 6).
This has an excellent English translation: G. R. Morrow, Proclus: A Commentary on the First Boom of
Euclid’s Elements (Princeton, Nj: Princeton University Press, 1970/1992). Note that it is customary
to make references inside the work not according to the page numbers in Morrow’s translation but
according to the scientific edition from the nineteenth century. Pages 65—68 are especially useful
because they contain a brief history of early Greek mathematics, which Proclus apparently had on
the authority of the early historian Eudemus.
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1.12, Proclus claims that this result was used by Oenopides for the sake of
astronomy, and he also adds — which provides the report with extra
credibility — that Oenopides used a particular archaic term for “perpen-
dicular” (“at a gnomon,” which in itself may or may not carry a specific
astronomical implication). The reference to the precise language used
suggests quite clearly that Proclus, ultimately, relies on a source who could
read Oenopides’s own writing. Oenopides, then, was a writer! And in all
likelihood, this report, too, ultimately went back to Eudemus.

To bring all this into an appropriate context, it should be noted that
scholars have long concluded that Eudemus may have based his history,
in part, on his own rational reconstructions. That is, Eudemus would
ascribe to past mathematicians knowledge of such things that was
required for the sake of what he knew they actually did know. If result
A is logically demanded by result B, and Eudemus found evidence that a
mathematician asserted B, Fudemus would then claim also that the
mathematician knew A. Eudemus, further, seems to have structured his
own work primarily as a survey of “first discoveries”; that is, he looked for
evidence, however indirect, concerning the identity of the first authors
who knew about particular results.”® Add to this Proclus’s own purpose.
He does not write a summary of the history of Eudemus; he takes from it
such tidbits that are relevant for Proclus’s own commentary to Euclid’s
Elements 1.

Bring all of the evidence together, and a likely account emerges:
Oenopides may have been the first author to produce a geometrically
motivated account of the sky, for which — quite naturally — he relied on
various assumptions concerning the construction of angles. All of this is
important, and we shall return to it in Chapter s.

But why do I even trust any of this? Why should I not dismiss the
evidence, as I did for Thales and Pythagoras? Why assume that Oenopides
was a fully fledged author and not just a wise man, proclaiming his
thoughts concerning the stars and the earth?

The main reason has to do with dates. Oenopides is said, by Proclus, to
have been somewhat younger than Anaxagoras. This is in the context of a
quasi-chronological list of early Greek geometry, and Oenopides is fol-
lowed by Hippocrates of Chios, who is in turn followed by Theodorus of

" T won’t go into this historiographical detail at length, but Eudemus is indeed a central pillar to our
history. See L. Zhmud, “Eudemus’ History of Mathematics,” in I. Bodndr and W. W. Fortenbaugh
(eds.), Eudemus of Rhodes (New Brunswick, Nj: Routledge, 2002), pp. 263—306.
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Cyrene. Nothing here inspires huge confidence (the pairing of Anaxagoras
and Oenopides seems to depend on a forged dialogue by Plato, 7he Lovers,
where the two are mentioned side by side). But we recall that Theodorus
was likely active near the very end of the fifth century; Anaxagoras was a
philosopher reported to have been close to Pericles, and thus he was active
not long after the middle of the fifth century. With Oenopides and
Hippocrates of Chios, then, we likely find authors active in the last few
decades of the fifth century: two authors, close to each other in time and in
place. And so, to the extent that we find that Hippocrates of Chios was
likely the fully fledged author of a mathematical book, we are probably
justified to assume the same for Oenopides.

And there is, in fact, very little room for doubt: Hippocrates of Chios
must have been a fully fledged author because — finally! — we have a very
substantial fragment of his original writing still extant. Well, “extant” is —
as you would expect by now — a relative term. We have a report from a late
commentator to Aristotle, called Simplicius (very late, from the sixth
century CE!). He tries to account for a passage in Aristotle where
Hippocrates of Chios is briefly mentioned. And to do so, Simplicius makes
a lengthy quotation from the very same Eudemus, the early historian of
geometry. The quotation certainly includes many interpolations by
Simplicius himself, but past scholars have identified certain linguistic hints
that allow us to separate Eudemus’s original text from that of Simplicius.
The result is that we can read, at the very least, a nearly unadulterated
citation from Eudemus, which seems to hew closely, at least in parts, to
Hippocrates’s own words.

This, then, is our first substantial glance at Greek mathematics. It is our
first extended close-up, and it is a pivotal moment; we should linger here
for a while.

In Eudemus’s own presentation, Hippocrates produced four separate
results. I will cite the first two in full and then only briefly mention the
third and the fourth. In what follows, the assumption is that we translate a
text by Eudemus. The word /e refers to Hippocrates of Chios:"”

He first proved by what method a quadrature was possible, of a lunule
having a semicircle as its outer circumference. He did this after he circum-
scribed a semicircle about a right-angled isosceles triangle and, about the

7 What follows is my own translation. The entire passage may be read in I. Thomas, Greek
Mathematical Works (Cambridge, ma: Harvard University Press, 1939), pp. L.234-I.252. (This is
a translation of selected passages of Greek mathematics, designed to complement Heath’s history.)



