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The tree doesn’t close and there are no more rules to apply. We can read off the open branch a
valuation which makes the premisses true and conclusion false, and (recall) 

 

the trick is to pick a
valuation which makes the ‘primitives’ on the branch, i.e. the atoms and negated atoms, all true,

 

and which puts into the domain just enough objects to give references to every constant on the
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(3)  �x¬(¬Gx ⊃ ¬Fx)
(4) ¬(¬Ga ⊃¬ Fa)
(5) ¬Ga 
(6) ¬¬Fa
(7) (Fa ⊃ Ga)

(8) ¬Fa Ga
✼ ✼

The inference is valid and the q-validity claim is true.

3. �x�yLxy f �y�xLyx

(1) �x�yLxy
(2) ¬�y�xLyx √
(3)  �y¬�xLyx √ From 2
(4) ¬�xLax √ From 3
(5) �x¬Lax √ From 4
(6) �yLay From 1
(7) Lab From 2
(8) ¬Lab From 5

✼

The inference is valid and the q-validity claim is true.
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4. �x((Fx ∧ Gx) ⊃ Hx) f �x(Fx ⊃ (Gx ⊃ Hx))

(1) �x((Fx ∧ Gx) ⊃ Hx)
(2) ¬�x(Fx ⊃ (Gx ⊃ Hx)) √
(3)  �x¬(Fx ⊃ (Gx ⊃ Hx)) √ From 2
(4) ¬(Fa ⊃ (Ga ⊃ Ha)) √ From 3
(5) Fa From 4
(6) ¬(Ga ⊃ Ha) √ From 4
(7) Ga From 6
(8) ¬Ha From 6
(9) ((Fa ∧ Ga) ⊃ Ha) √ From 1

(10) ¬(Fa ∧ Ga) √ Ha From 9

     (11) ¬Fa ¬Ga
✼ ✼

The inference is valid and the q-validity claim is again true.

5. (�xFx ∨ �xGx) f �x(Fx ∨ Gx)

(1) (�xFx ∨ �xGx) √
(2) ¬�x(Fx ∨ Gx) √
(3)  �x¬(Fx ∨ Gx) √ From 2
(4) ¬(Fa ∨ Ga) √ From 3
(5) ¬Fa From 4
(6) ¬Ga From 4

(7) �xFx �xGx From 1
(8) Fa Ga From 7

✼ ✼

The inference is valid and the q-validity claim is again true.

6. �x(Fx ⊃ Gx), �x(¬Gx ⊃ Hx) f �x(Fx ⊃ ¬Hx)

(1) �x(Fx ⊃ Gx)
(2) �x(¬Gx ⊃ Hx)
(3)  ¬�x(Fx ⊃ ¬Hx) √
(4) �x¬(Fx ⊃ ¬Hx) √
(5) ¬(Fa ⊃ ¬Ha) √
(6) Fa
(7) ¬¬Ha √
(8) Ha
(9) (Fa ⊃ Ga) √ From 1
(10) (¬Ga ⊃ Ha) √ From 2

(11) ¬Fa Ga

(12) ¬¬Ga √ Ha
(13) Ga

The tree doesn’t close and there are no more rules to apply. We can read off each open branch a
valuation which makes the premisses true and conclusion false – in fact the same valuation, as
each branch contains the same primitives, ‘Fa’, ‘Ga’ and ‘Ha’. We want a valuation with just the

✼

✼
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object named by a in the domain and which makes each of those primitives true. So, put just the
number 0 in the domain as its sole member, and let ‘F’, ‘G’ and ‘H’ have the extension {0}. Then, as
desired, ‘�x(Fx ⊃ Gx)’ and ‘�x(¬Gx ⊃ Hx)’ are true and ‘�x(Fx ⊃ ¬Hx)’ is false.

7. �x(Fx ∧ Gx), �x(¬Hx ⊃ ¬Gx) f �x(Fx ∧ Hx)

(1) �x(Fx ∧ Gx)
(2) �x(¬Hx ⊃ ¬Gx)
(3)  ¬�x(Fx ∧ Hx) √
(4) �x¬(Fx ∧ Hx) √
(5) (Fa ∧ Ga) √ From 1
(6) Fa
(7) Ga
(8) (¬Ha ⊃ ¬Ga) √ From 2
(9) ¬(Fa ∧ Ha) √ From 4

(10) ¬¬Ha ¬Ga

     (11) ¬Fa ¬Ha
✼ ✼

The inference is valid and the q-validity claim is again true.

8. �x�y(Fy ⊃ Gx) f �y�x(Gx ⊃ Fy)

(1) �x�y(Fy ⊃ Gx)
(2) ¬�y�x(Gx ⊃ Fy) √
(3)  �y¬�x(Gx ⊃ Fy) √
(4) ¬�x(Gx ⊃ Fa) √
(5) �x¬(Gx ⊃ Fa) From 1

The only name in play is a so let’s now instantiate both universal quantifiers with this name

(6) �y(Fy ⊃ Ga) √
(7) ¬(Ga ⊃ Fa)
(8) Ga
(9) ¬Fa

Now, the tree hasn’t finished, and indeed the tree will never close if we carry on applying every
rule we can. For then we’d instantiate (6) to get

(10) (Fb ⊃ Ga) √

And instantiating both our universal quantifers with the new name b we’d get 

(11) �y(Fy ⊃ Gb) √
(12) ¬(Gb ⊃ Fb)

And now we’ve got another existential quantifier to instantiate, which introduces another name,
and off we go down an infinite tree.

But go back and look at (8) and (9). In fact a minimal valuation that makes these two primitives
true makes (6) true. So consider the valuation with just the number 0 in the domain as its sole
member, and let ‘F’ have as extension the empty set, and ‘G’ has the extension {0}. Then, this
makes the premiss of the argument true and conclusion false.

✼
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9. �x�y(Lxy ⊃ Lyx) f �xLxx

(1) �x�y(Lxy ⊃ Lyx)
(2) ¬�xLxx √
(3)  �x¬Lxx √ From 2
(4) ¬Laa √ From 3
(5) �y(Lay ⊃ Lya) From 1
(6) (Laa ⊃ Laa) √ From 1

(10) ¬Laa  Laa From 9
✼

There are no more moves to make. So consider the valuation with just the number 0 in the
domain as its sole member, and let ‘L’ have as extension the empty set. Then that makes the prem-
iss true and conclusion false.

10. �x(�yLxy ⊃ �zLzx) f �x�y(Lxy ⊃ Lyx)

(1) �x(�yLxy ⊃ �zLzx)
(2) ¬�x�y(Lxy ⊃ Lyx) √
(3)  �x¬�y(Lxy ⊃ Lyx) √ From 2
(4) �y¬(Lay ⊃ Lya) √ From 3
(5) ¬(Lab ⊃ Lba) √ From 4
(6) Lab
(7) ¬Lba
(6) (�yLay ⊃ �zLza) From 1

(10) ¬�yLay  �zLza From 9
(11) �y¬Lay Lba From 10
(12) ¬Lab ✼

✼

The inference is valid and the q-validity claim is again true.

B Using trees, show the following arguments are valid:

1. Some philosophers admire Jacques. No one who admires Jacques is a good logician. So
some philosophers are not good logicians.

�x(Fx ∧ Gx), �x(Gx ⊃ ¬Hx) ∴ �x(Fx ∧ ¬Hx)

(1) �x(Fx ∧ Gx) √
(2) �x(Gx ⊃ ¬Hx)
(3)  ¬�x(Fx ∧ ¬Hx) √ Negated conclusion
(4) �x¬(Fx ∧ ¬Hx) From 3
(5) (Fa ∧ Ga) √ Instantiating 1
(6) (Ga ⊃ ¬Ha) √ From 2
(7) ¬(Fa ∧ ¬Ha) √ From 4
(8) Fa
(9) Ga √

(11) ¬Ga ¬Ha

(12) ¬Fa ¬¬Ha
✼ ✼

✼
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2. Some philosophy students admire all logicians; no philosophy student admires any rotten lec-
turer; hence, no logician is a rotten lecturer.

�x(Fx ∧ �y(Gy ⊃ Rxy)), ¬�x(Fx ∧ �y(Hy ∧ Rxy)) ∴ ¬�x(Gx ∧ Hx)

Other translations of the ‘no’ propositions are possible. For example, we could have trans-
lated the second premiss as ‘�x(Fx ⊃ ¬�y(Hy ∧ Rxy))’ or ‘�x(Fx ⊃ �y(Hy ⊃ ¬Rxy))’. The
conclusion can be translated ‘�x(Gx ⊃ ¬Hx)’. The tree will go similarly with each combina-
tion of translations:

(1) �x(Fx ∧ �y(Gy ⊃ Rxy))
(2) ¬�x(Fx ∧ �y(Hy ∧ Rxy)) √
(3)  ¬¬�x(Gx ∧ Hx) √ Negated conclusion
(4) �x(Gx ∧ Hx) From 3
(5) �x¬(Fx ∧ �y(Hy ∧ Rxy)) From 2

We now have two existentials to instantiate: we should start with (1) — as the other
involves predicates buried inside the wffs (1) and (5).

(6) (Fa ∧ �y(Gy ⊃ Ray)) √ From 1

And now we immediately use the new name to instantiate the universal quantifier to get

(7) ¬(Fa ∧ �y(Hy ∧ Ray)) √ From 5
(8) Fa

}
Unpacking 6

(9) �y(Gy ⊃ Ray)

(10) ¬Fa ¬�y(Hy ∧ Ray)  √ Unpacking 7
(11) ✼ �y¬(Hy ∧ Ray) Pushing in the negation sign

At this point, we have three universals and an unchecked existential in play: so we now
instantiate the existential and unpack the result …

(12) (Gb ∧ Hb) √
(13) Gb
(14) Hb

We now instantiate the two universals we haven’t so far used and the rest is plain sailing:

(15) (Gb ⊃ Rab)   √
(16) ¬(Hb ∧ Rab)  √

(17) ¬Gb Rab

(18) ¬Hb ¬Rab
✼ ✼

3. There’s a town to which all roads lead. So all roads lead to a town.

�x(Fx ∧ �y(Gy ⊃ Ryx)) ∴ �x(Gx ⊃ �y(Fy ∧ Rxy))

where ‘Rab’ expresses a leads to b.

(1) �x(Fx ∧ �y(Gy ⊃ Ryx))
(2) ¬�x(Gx ⊃ �y(Fy ∧ Rxy)) √ Negated conclusion
(3)  �x¬(Gx ⊃ �y(Fy ∧ Rxy))

We’ll instantiate the first wff and unpack the result to get …

(4) (Fa ∧ �y(Gy ⊃ Rya)) √
(5) Fa
(6)  �y(Gy ⊃ Rya)

Now we’ll instantiate the other existential wff and unpack the result to get …

(7) ¬(Gb ⊃ �y(Fy ∧ Rby)

✼
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(8) Gb
(9) ¬�y(Fy ∧ Rby)
(10) �y¬(Fy ∧ Rby)

Finally, we instantiate the two universal quantifiers (6) and (10) so as to give two occur-
rences of Rba …

(11) (Gb ⊃ Rba)
(12) ¬(Fa ∧ Rba)

And now the rest is again plain sailing …  

(13) ¬Gb Rab

(14) ¬Fa ¬Rab
✼ ✼

4. Some good philosophers admire Frank; all wise people admire any good philosopher;
Frank is wise; hence there is someone who both admires and is admired by Frank.

�x(Fx ∧ Rxn), �x(Gx ⊃ �y(Fy ⊃ Rxy)), Gn ∴ �x(Rxn ∧ Rnx)

‘F’ means good philosopher, ‘n’ denotes Frank, etc.,

(1) �x(Fx ∧ Rxn)
(2) �x(Gx ⊃ �y(Fy ⊃ Rxy))
(3)  Gn
(4) ¬�x(Rxn ∧ Rnx) √ Negated conclusion
(5) �x¬(Rxn ∧ Rnx)

The obvious first move is to instantiate (2) to get ‘Gn’ as the antecedent to combine with (3) …

(6) (Gn ⊃ �y(Fy ⊃ Rny))

(7) ¬Gn �y(Fy ⊃ Rny)
✼

We now have the initial existential wff at (1) plus two universals at (5) and (7) which we haven’t
yet made use of. So we now proceed in the obvious way:

(8) (Fa ∧ Ran)
(9) ¬(Ran ∧ Rna)
(10) (Fa ⊃ Rna)

And now everything quickly closes:

(11) Fa
(12) Ran

(13) ¬Ran ¬Rna

(14) ¬Fa Rna
✼ ✼

✼

✼
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5. Any true philosopher admires some logician. Some students admire only existentialists. No
existentialists are logicians. Therefore not all students are true philosophers.

�x(Fx ⊃ �y(Gy ∧ Rxy)), �x(Hx ∧ �y(Rxy ⊃ Ey)), �x(Ex ⊃ ¬Gx) ∴ ¬�x(Hx ⊃ Fx)

(1) �x(Fx ⊃ �y(Gy ∧ Rxy))
(2) �x(Hx ∧ �y(Rxy ⊃ Ey))
(3)   �x(Ex ⊃ ¬Gx)
(4) ¬¬�x(Hx ⊃ Fx) √ Negated conclusion
(5) �x(Hx ⊃ Fx)

The first move must be to instantiate the existential quantifier (2) to give

(6) (Ha ∧ �y(Ray ⊃ Ey))
(7) Ha
(8) �y(Ray ⊃ Ey)

The obvious next move is to instantiate (5) in order to use the antecedent ‘Ha’:

(9)  (Ha ⊃ Fa)   

(10) ¬Ha Fa
✼

And we now instantiate (1) in order to use the antecedent ‘Fa’:

(11) (Fa ⊃ �y(Gy ∧ Ray))

(12) ¬Fa �y(Gy ∧ Ray)
✼

We now have an uninstantiated existential wff at (12), and two as-yet-unused universally quanti-
fied wffs at (3) and (8). So let’s proceed in the obvious way to get

(13) (Gb ∧ Rab)
(14) (Eb ⊃ ¬Gb)
(15) (Rab ⊃ Eb)

The last steps are trivial!

(16) Gb
(17)  Rab

(18) ¬Eb ¬Gb

(19) ¬Rab Eb
✼ ✼

✼
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6. Everyone loves a lover; hence if someone is a lover, everyone loves everyone!

For the translation, see E, p. 278: someone is a lover is equivalent to there is someone who
is such that there is someone that they love, so

 �x�y(�z Lyz ⊃ Lxy) ∴ (�x�yLxy ⊃ �x�yLxy)

(1) �x�y(�z Lyz ⊃ Lxy)
(2) ¬(�x�yLxy ⊃ �x�yLxy) √ Negated conclusion
(3)   �x�yLxy
(4) ¬�x�yLxy √
(5)  �x¬�yLxy

We’ve now got a lot of existentials to instantiate!

(6) �yLay √ From 3, now checked off
(7) Lab From 6
(8)   ¬�yLcy √ From 5, now checked off
(9) �y¬Lcy √ From 8
(10)  ¬Lcd From 9

Everything other than primitive wffs is now checked off, except (1), so we now need to use
that. Let’s first instantiate to get ‘Lcd’ as the consequent, to conflict with (10) …

(11) �y(�z Lyz ⊃ Lcy)
(12) (�z Ldz ⊃ Lcd)   

(13) ¬�z Ldz Lcd
(14) �z¬Ldz ✼

But now what? Well, we want eventually to make use of (7), so we’ll aim to eventually get
an occurrence of ‘¬Lab’ to contradict (7). But how are we going to get that? Presumably
by using (1) again. But the consequent of instantiations of (1) don’t involve negations: so
our needed wff will come – if at all – via the antecedent of that instantiation. Which means
that the ‘y’ variable will need to be instantiated with ‘a’. But now, if we also instantiate the
‘x’ variable in (1) with ‘d’ we’ll get an occurrence of ‘Lda’ as the consequent, which will
contradict (14). So, let’s try that line …

(15) �y(�z Lyz ⊃ Ldy)
(16) (�z Laz ⊃ Lda)   

(17) ¬�z Laz  Lda
(18) �z¬Laz ¬Lda From 17 | From 14
(19) ¬Lab ✼

✼

And we are done!

Note that the argument is intuitively valid. Assume everyone loves a lover. Then, supposing
someone is a lover, everyone loves him (because everyone loves a lover)! So everyone is a
lover. So everyone loves everyone (again because everyone loves a lover)! This double invo-
cation of the premiss in the informal argument is matched by the double invocation in our
formal tree-argument.
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7. If anyone speaks to anyone, then someone introduces them; no one introduces anyone to
anyone unless they know them both; everyone speaks to Frank; therefore everyone is intro-
duced to Frank by someone who knows him. [Use ‘Rxyz’ to render ‘x introduces y to z’.]

For the translation, use ‘Sxy’ for x speaks to y, and ‘Kxy’ for x knows y. Translation requires
a bit of thought. (a) The first premiss is plainly intended to involve a universal generaliza-
tion (that any pair of people, x, y, if x talks to y, then they’ve been introduced). (b) Being
introduced is (strictly speaking) a matter of someone (i) introducing the first to the second
and (ii) the second to the first, though it doesn’t in fact matter for the validity of this argu-
ment if you forget about (ii).

 �x�y(Sxy ⊃ �z{Rzxy ∧ Rzyx}), �x�y�z(Rxyz ⊃ (Kxy ∧ Kxz)), �xSxn 
∴ �x�y(Ryxn ∧ Kyn)

(1) �x�y(Sxy ⊃ �z{Rzxy ∧ Rzyx})
(2) �x�y�z(Rxyz ⊃ (Kxy ∧ Kxz))
(3)   �xSxn
(4) ¬�x�y(Ryxn ∧ Kxn) √ Negated conclusion
(5) �x¬�y(Ryxn ∧ Kxn)

The first move has to be to instantiate the existential quantifier (5) to give

(6) ¬�y(Ryan ∧ Kyn) √
(7) �y¬(Ryan ∧ Kyn)

We now have two names in play, ‘n’ and ‘a’: that’s not enough to make use of the triply quantified
(2), so forget that for the moment. But if we instantiate (3) with ‘a’ to get ‘San’ , and (1) with both
names we’ll get an occurrence of ‘San’ as the antecedent of a conditional, thus …

(8) San
(9) �y(Say ⊃ �z{Rzay ∧ Rzya})
(9) (San ⊃ �z{Rzan ∧ Rzna})   

(10) ¬San �z{Rzan ∧ Rzna}
✼

Obviously, we now instantiate our new existential wff to get:

(11) {Rban ∧ Rbna}
(11) Rban
(12) Rbna

We’ve now got two universals that we haven’t yet made use of, at (2) and (7). Take the simpler
one first and instantiate with ‘b’ (of course! — to give us an occurrence of ‘Rban’ in the scope of a
negation, to contradict (11)):

(13) ¬(Rban ∧ Kbn)

(14) ¬Rban ¬Kbn
✼

We now at last use (2): to get something contradicting ‘¬Kbn’, we must instantiate ‘x’ by ‘b’:

(13) �y�z(Rbyz ⊃ (Kby ∧ Kbz))

Now it should be obvious how to continue …

(14) �z(Rbaz ⊃ (Kba ∧ Kbz))
(15) (Rban ⊃ (Kba ∧ Kbn))

(16) ¬Rban (Kba ∧ Kbn)
(17)  ✼ Kba
(18) Kbn

✼
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8. Any elephant weighs more than any horse. Some horse weighs more than any donkey. If a
first thing weighs more than a second thing, and the second thing weighs more than a third,
then the first weighs more than the third. Hence any elephant weighs more than any don-
key.

 �x�y((Fx ∧ Gy) ⊃ Rxy), �x(Gx ∧ �y(Hy ⊃ Rxy)), �x�y�z((Rxy ∧ Ryz) ⊃ Rxz) 
∴ �x�y((Fx ∧ Hy) ⊃ Rxy)

(1)  �x�y((Fx ∧ Gy) ⊃ Rxy)
(2) �x(Gx ∧ �y(Hy ⊃ Rxy))
(3)   �x�y�z((Rxy ∧ Ryz) ⊃ Rxz)
(4) ¬�x�y((Fx ∧ Hy) ⊃ Rxy) √ Negated conclusion
(5) �x¬�y((Fx ∧ Hy) ⊃ Rxy)

The first move has to be to instantiate our two existential quantifiers to give

(6) (Ga ∧ �y(Hy ⊃ Ray))
(7) ¬�y((Fb ∧ Hy) ⊃ Rby) √
(8) �x¬((Fb ∧ Hy) ⊃ Rby) √
(9) ¬((Fb ∧ Hc) ⊃ Rbc)

where we’ve just instantiated the new existential at (8) too. Let’s just now unpack (6) and (9) to
give

(10) Ga
(11) �y(Hy ⊃ Ray)
(12) (Fb ∧ Hc) √
(13) ¬Rbc
(14) Fb
(15) Hc

We now have three names in play, and three universals at (1), (3) and (11) to instantiate. Obvi-
ously we should chose instantiations which neatly tie in with the primitives at (10), (13), (14),
(15), thus …

(16) �y((Fb ∧ Gy) ⊃ Rby)
(17) ((Fb ∧ Ga) ⊃ Rba)
(18) (Hc ⊃ Rac)
(19) �y�z((Rby ∧ Ryz) ⊃ Rbz)
(20) �z((Rba ∧ Raz) ⊃ Rbz)
(21) ((Rba ∧ Rac) ⊃ Rbc)  

(22) ¬Hc Rac 

(23) (Fb ∧ Ga) Rba 

(24) ¬Fb ¬Ga
   ✼     ✼  

(Rba ∧ Rac) Rbc

¬Rba ¬Rac
✼ ✼

✼
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C Redo the first three examples of §29.2 as signed trees (as in §28.2).

A �xFx, �x�y(Fy ⊃ ¬Lxy) ∴ �x�y¬Lyx

We suppose that there is a valuation q such that

(1)  �xFx ⇒q T
(2) �x�y(Fy ⊃ ¬Lxy) ⇒q T
(3) ¬�x�y¬Lyx ⇒q T

So from (3) we get

(4) �x¬�y¬Lyx ⇒q T

(1) tells us that there then there must be an extension q+ of q to cover the new name ‘a’, such that 

(5) Fa ⇒q+ T

So from (4) — since the extended valuation doesn’t change what’s in the domain or anything’s
properties, but just dubs something with a new name —we know 

(6) ¬�y¬Lya ⇒q+ T
(7) �y¬¬Lya ⇒q+ T

(1) tells us that there then there must be a further extension q++ of q to cover the new name ‘b’,
such that

(8) ¬¬Lba ⇒q++ T

Whence (why??) …

(9) �y(Fy ⊃ ¬Lby) ⇒q++ T
(10) (Fa ⊃ ¬Lba) ⇒q++ T

(11) ¬Fa ⇒q++ T ¬Lba ⇒q++ T
✼ ✼

B �x�y(Fy ∧ Lxy), �x�y(Lxy ⊃ Mxy) ∴ �x�y(Fx ∧ Mxy)

We suppose that there is a valuation q such that

(1)  �x�y(Fy ∧ Lxy) ⇒q T
(2) �x�y(Lxy ⊃ Mxy) ⇒q T
(3)  ¬�x�y(Fx ∧ Mxy) ⇒q T

So from (3) we get

(4) �x¬�y(Fx ∧ Mxy) ⇒q T

(4) tells us that there then there must be an extension q+ of q to cover the new name ‘a’, such that 

(5) ¬�y(Fa ∧ May) ⇒q+ T

whence …

(6)  �y¬(Fa ∧ May) ⇒q+ T
(7)  �y(Fa ∧ Lay)) ⇒q+ T 
(8) �y(Lay ⊃ May)) ⇒q+ T

(7) tells us that there then there must be a further extension q++ of q to cover the new name ‘b’,
such that

(9) (Fa ∧ Lab) ⇒q++ T

whence …

(10)   ¬(Fa ∧ Mab) ⇒q++ T
(11) (Lab ⊃ Mab) ⇒q++ T
(12)  Fa ⇒q++ T
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(13)  Lab ⇒q++ T

(13) ¬Fa ⇒q++ T ¬Mab ⇒q++ T

(14) ¬Lab ⇒q++ T Mab ⇒q++ T
✼ ✼

Similarly for C.

✼


