
ΓΕ77
COMPUTATIONAL LINGUISTICS

Athanasios N. Karasimos

akarasimos@gmail.com

ΒΑ in Linguistics | National and Kapodistrian University of Athens

Lecture 11 | Wed 30 May 2018

PYTHON AND NLTK

A short introduction to Natural Language ToolKit

2

PYTHON AND NLP

• Python is freely available programming language for many

platforms from the Python Software Foundation:

• http://www.python.org/

• Named for the group Monty Python.

• Python is a widely used high-level programming language for

general-purpose programming, created by Guido van Rossum and

first released in 1991.

• An interpreted language, Python has a design philosophy that

emphasizes code readability, and a syntax that allows programmers

to express concepts in fewer lines of code

3

http://www.python.org/

CHARACTERISTICS OF PYTHON

• Easy-to-learn scripting language, similar in many aspects to Perl

• But with WYSIWYG block structure

• Object-oriented, with modules, classes, exceptions, high-level dynamic data

types, similar to Java

• Strongly typed, but without type declarations (dynamic typing)

• Regular Expressions and other string processing features

4

NATURAL LANGUAGE TOOLKIT (NLTK)

• A suite of Python libraries for symbolic and statistical natural language

programming

• Developed at the University of Pennsylvania

• Developed to be a teaching tool and a platform for research NLP prototypes

• Data types are packaged as classes

• Goal of code is to be clear, rather than fastest performance

• Online book: http://www.nltk.org/book/

• Authors: Edward Loper, Ewan Kline and Steven Bird

5

http://www.nltk.org/book/

USING NLTK IN NLP

• NLTK provides libraries of many of the common NLP processes at various
language levels

• Leverage these libraries to process text

• Goal is to learn about and understand how NLP can be used to process text
without programming all processes

• However, some programming is required to

• Call libraries

• Process data

• Customize NLP processes

• Programming language is Python

6

GETTING STARTED IN PYTHON

• Python can be run as an interactive system

• Type in expressions or small pieces of programs to try them out

• or as a command-line system.

• Run stored python programs

• For both, it is recommended to use IDLE, the Python development

environment

• Especially good to edit Python programs in IDLE to keep track of the indentation for

block structure

7

INTRODUCTION TO NLTK

• NLTK provides:

• Basic classes for representing data relevant to Natural Language Processing.

• Standard interfaces for performing NLP tasks such as tokenization, tagging and parsing

• Standard implementation of each task which can be combined to solve complex

problems

8

NLTK MODULES

• corpora: a package containing modules of
example text

• tokenize: functions to separate text strings

• probability: for modeling frequency
distributions and probabilistic systems

• stem – package of functions to stem words
of text

• wordnet – interface to the WordNet
lexical resource

• chunk – identify short non-nested phrases
in text

• etree: for hierarchical structure over text

• tag: tagging each word with part-of-speech,
sense, etc.

• parse: building trees over text - recursive
descent, shift-reduce, probabilistic, etc.

• cluster: clustering algorithms

• draw: visualize NLP structures and
processes

• contrib: various pieces of software from
outside contributors

9

TUTORIALS FOR PYTHON AND NLTK

• Python

• http://docs.python.org/tut/tut.html, the classic by Guido van Rossum

• NLTK is a SourceForge project at:

• http://www.nltk.org

• documentation: http://www.nltk.org/documentation,

• including book: http://www.nltk.org/book

• API: http://nltk.googlecode.com/svn/trunk/doc/api/index.html

10

http://docs.python.org/tut/tut.html
http://www.nltk.org/
http://www.nltk.org/documentation
http://www.nltk.org/book

WHY TEXT PROCESSING?

• sentiment analysis

• spam filtering

• plagariasm detection / document similarity

• document categorization / topic detection

• phrase extraction, summarization

• smarter search

• simple keyword frequency analysis

11

SOME NLTK FEATURES

• part-of-speech tagging

• chunking & named entity recognition

• text classification

• many included corpora

12

SENTENCE TOKENIZATION

• >>> from nltk.tokenize import sent_tokenize

• >>> sent_tokenize("Hello SF Python. This is NLTK.")

• ['Hello SF Python.', 'This is NLTK.’]

• >>> sent_tokenize("Hello, Mr. Anderson. We missed you!")

• ['Hello, Mr. Anderson.', 'We missed you!’]

TEXT > SENTENCE TOKENIZER > Sentence

13

WORD TOKENIZATION

• >>> from nltk.tokenize import word_tokenize

• >>> word_tokenize('This is NLTK.’)

• ['This', 'is', 'NLTK', '.’]

• >>> word_tokenize(‘Ας το δοκιμάσουμε και στα ελληνικά’)

• [‘Ας’, ‘το’, ‘δοκιμάσουμε’, ‘και’, ‘στα’, ‘ελληνικά’]

TEXT > SENTENCE TOKINIZER > WORD TOKINIZER > Word

14

WHAT'S A WORD?

• >>> word_tokenize("What's up?")

• ['What', "'s", 'up', '?’]

• >>> from nltk.tokenize import wordpunct_tokenize

• >>> wordpunct_tokenize("What's up?")

• ['What', "'", 's', 'up', '?’]

• Learn More: http://text-processing.com/demo/tokenize/

TEXT > SENTENCE TOKENIZER > WORD TOKENIZER > Word

15

PART-OF-SPEECH TAGGING

• >>> words = word_tokenize("And now for something completely different")

• >>> from nltk.tag import pos_tag

• >>> pos_tag(words)

• [('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different',

'JJ’)]

TEXT > SENTENCE TOKENIZER > WORD TOKENIZER > POS TAGGER > Word, Tag

16

WHY PART-OF-SPEECH TAG?

• word definition lookup (WordNet, WordNik)

• fine-grained text analytics

• part-of-speech specific keyword analysis

• chunking & named entity recognition (NER)

17

CHUNKING & NER

• >>> from nltk.chunk import ne_chunk

• >>> ne_chunk(pos_tag(word_tokenize('My name is Jacob Perkins.')))

• Tree('S', [('My', 'PRP$'), ('name', 'NN'), ('is', 'VBZ’),

• Tree('PERSON', [('Jacob', 'NNP'), ('Perkins', 'NNP')]), ('.', '.’)])

TEXT > SENTENCE TOKENIZER > WORD TOKENIZER > POS TAGGER >
CHUNKER > Syntactic Tree

18

NER NOT PERFECT

• >>> ne_chunk(pos_tag(word_tokenize('San Francisco is foggy.')))

• Tree('S', [

• Tree('GPE', [('San', 'NNP')]),

• Tree('PERSON', [('Francisco', 'NNP')]),

• ('is', 'VBZ'), ('foggy', 'NN'), ('.', '.')])

19

TEXT CLASSIFICATION

• def bag_of_words(words):

• return dict([(word, True) for word in words])

• >>> feats = bag_of_words(word_tokenize("great movie"))

• >>> import nltk.data

• >>> classifier = nltk.data.load('classifiers/ movie_reviews_NaiveBayes.pickle’)

• >>> classifier.classify(feats) ‘pos

TEXT >>> WORD TOKENIZER > TEXT CLASSIFIER > Label

20

CLASSIFICATION ALGORITHMS IN NLTK

• Naive Bayes

• Maximum Entropy / Logistic Regression

• Decision Tree

• SVM (coming soon)

TEXT >> WORD TOKENIZER > TEXT CLASSIFIER > Label

21

NLTK-TRAINER

• https://github.com/japerk/nltk-trainer

• command line scripts

• train custom models

• analyze corpora

• analyze models against corpora

22

TRAIN A SENTIMENT CLASSIFIER

$./train_classifier.py movie_reviews --instances paras loading movie_reviews

2 labels: ['neg', 'pos’]

2000 training feats, 2000 testing feats training

NaiveBayes classifier

accuracy: 0.967000 neg

precision: 1.000000 neg

recall: 0.934000 neg

f-measure: 0.965874 pos

precision: 0.938086 pos

recall: 1.000000 pos

f-measure: 0.968054

dumping NaiveBayesClassifier to ~/nltk_data/classifiers/ movie_reviews_NaiveBayes.pickle

23

OTHER PYTHON NLP LIBRARIES

• pattern:

http://www.clips.ua.ac.be/pages/patt

ern

• scikits.learn: http://scikit-

learn.sourceforge.net/stable/

• fuzzywuzzy:

https://github.com/seatgeek/fuzzyw

uzzy

• TextProcessing: http://text-

processing.com/

• http://www.nltk.org/book/

• http://www.nltk.org/book_1ed/

24

http://www.clips.ua.ac.be/pages/pattern
http://scikit-learn.sourceforge.net/stable/
https://github.com/seatgeek/fuzzywuzzy
http://text-processing.com/
http://www.nltk.org/book/
http://www.nltk.org/book_1ed/

