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CHAPTER 1 

The Propositional Calculus I 
I THE NATURE OF LOGIC 

It is not easy, and perhaps not even useful, to explain briefly what 
logic is. Like most subjects, it comprises many different kinds of 
problem and has no exact boundaries; at one end, it shades oft'into 
mathematics, at another, into philosophy. The best way to find out 
what logic is is to do some. None the less, a few very general 
remarks about the subject may help to set the stage for the rest of 
this book. 

Logic's main concern is with the soundness and unsoundness of 
arguments, and it attempts to make as precise as possible the 
conditions under which an argument- from whatever field of study 
-is acceptable. But this statement needs some elucidation: we need 
to say, first, what an argument is; second, what we understand by 
soundness; third, how we can make precise the conditions for sound 
argumentation; and fourth, how these conditions can be independent 
of the field from which the argument is drawn. Let us take these 
points in turn. 

Typically, an argument consists of certain statements or pro
positions, called its premisses, from which a certain other statement 
or proposition, called its conclusion, is claimed to follow. We mark, 
in English, the claim that the conclusion follows from the premisses 
by using such words as ' so ' and' therefore' between premisses and 
conclusion. Instead of saying that conclusions do or do not follow 
from premisses, logicians sometimes say that premisses do or do not 
entail conclusions. When an argument is used seriously by someone 
(and not, for example, just cited as an illustration), that person is 
asserting the premisses to be true and also asserting the conclusion 
to be true on the strength of the premisses. Thls is what we mean 
by drawing that conclusion from those premisses, 

Logicians are concerned with whether a conclusion does or does 
not follow from the given premisses, If it does, then the argument 
in question is said to be sound; otherwise unsound. Often the 
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terms' valid' and • invalid' are used in place of • sound ' and 
' unsound '. The question of the soundness or unsoundness of 
arguments must be carefully distinguished from the question of the 
truth or fal sity of the propositions, whether premisses or conclu
sion, in the argument. For example, a true conclusion can be 
soundly drawn from false premisses, or a mixture of true and false 
premisses: thus in the argument 

(I) Napoleon was German; all Germans are Europeans; 
therefore Napoleon was European 

we find a true conclusion soundly drawn from premisses the first 
of which is fa lse and the second true. Again, a false conclusion 
can be soundly drawn from false premjsses, or a mixture of true 
and fal se premisses: thus in the argument 

(2) Napoleon was German; aU Germans are Asiatics; 
therefore Napoleon was Asiat ic 

a fal se conclusion is soundly drawn from two false premisses. On 
the other hand, an argument is not necessarily sound just beeause 
premisses and conclusion are true; thus in the argument 

(3) Napoleon was French; all Frenchman are Europeans; 
therefore Hitler was Austrian 

all the proposit ions arc true, but no one would say that the con
clusion followed from the premisses. 

The basic connection between the soundness or unsoundness of 
an argument and the truth or fal sity of the constituent propositions 
is the following: an argument cannot be sound if its premisses are 
all true and its conclusion false. A necessary condition of sound 
reasoning is that from truths only truths follow. This condition is 
of course not sufficient for soundness, as we see from (3), where we 
have true premisses and a true conclusion but not a sound argument. 
But, for an argument to be sound, it must at least be the case that 
if all the premisses are true then so is the conclusion. Now the 
logician is primarily interested in conditions for soundness rather 
than the actual truth or fal sity of premisses and conclusion; but 
he may be secondarily interested in truth and falsity because of 
this connection between them and soundness. 

2 

The Nature of Logic 

What techniques does the logician use to make precise the 
conditions for sound argumentation? The bulk of this book is in 
a way a detailed answer to this question; but for the moment we 
may say that his most useful device is the adoption of a special 
symbolism, a logical notation, for the use of which exact rules can 
be given. Because of this feature the subject is sometimes called 
symbolic logic. (It is someti mes also called mathematical logic, 
partly because the rigour achieved is similar to that already belonging 
to mathematics, and partly because contemporary logicians have 
been especially interested in arguments drawn from the field of 
mathematics.) In order to understand the importance of symbolism 
in logic, we should remind ourselves of the analogous importance 
of special mathematical symbols. 

Consider the following elementary alscbraic eq uation: 

(4) xt - yl = (x + y) (x - y), 

and imagine how difficult it would be t o express this proposition in 
ordinary English, without the use of variables' x', • Y t, brackets, 
and the minus and plus signs. Perhaps the best we could achieve 
would be: 

(5) The result of subtracting the square of one number from 
the square of a second gives the same number as is 
obtained by adding the two numbers, subtracting the 
first from the second, and then mult iplying the results of 
these ~wo calculations. 

Comparing (4) with (5), we see that (4) has at least three advantages 
over (5) as an expression for the same proposition. It is briefer. 
It is c1earer-at least once the mathematical symbols are under
stood. And it is more exact. The same advantages-brevity, clarity, 
and exactness-are obtained for logic by the use of special logical 
symbols . 

Equation (4) holds true for any pair of numbers x and y. Hence, 
if we choose x to be 15 and y to be 7, we have, as a consequence 
of (4), 

(6) 15' - 7' ~ (15 + 7) (15 - 7). 

If we now compare (6) with (4), we can see that (6) is obtained 
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from (4) simply by putting' 15' in place of' x' and' 7' in place 
of' y ' . In this way we can check that (6) does indeed follow from 
(4), simply by a glance to see that we have made the right sub
stitutions for the variables. But if (6) had been expressed in ordinary 
English, as (4) was in (5), it would have been far harder to see 
whether it was soundly concluded from (5). Mathematical symbols 
make both the doing and the checking of mathematical calculations 
far easier. Similarly, logical symbols are humanly indispensable if 
we are to argue correctly and check the soundness of arguments 
efficiently. 

If in the sequel it seems irritating that a special notation for 
logical work bas to be learned, the reader shouJd remember that he 
is only mastering for argumentation what he masters for calculation 
when he learns the correct use of • + " ' - " and so on. This 
device, which logic has copied from mathematics, is the logician's 
most powerful tool for checking the soundness and unsoundness of 
arguments. 

Our final question in this section is how the conditions for valid 
argument can be studied independenlly of the fields from which 
arguments are drawn: if this could not be done there wouJd be no 
separate study called logic. A simple example will suffice for the 
moment. If we compare the two arguments 

and 

(7) Tweety is a robin; no robins are migrants; 
therefore Tweety is not a migrant 

(8) Oxygen is an element ; no elements are molecular; 
therefore oxygen is not molecular, 

both of which are sound (one drawn from ornithology, the other 
from chemistry), it is hard to escape the feeling that they have 
something in common. This something is called by logicians their 
logical form, and we shall have more to say about it later. For the 
moment, let us try to analyse out in a preliminary way this common 
form. The first premiss of both (7) and (8) affirms that a certain 
particular thing, call it m (Tweety in (7), oxygen in (8», has a certain 
property, call it F (being a robin in (7), being an element in (8». 
The second premiss of (7) and (8) affirms that nothing with this 
property F has a certain other property, call it G (being a migrant 
in (7), being mol«:ular in (8». And the conclusion of (7) and (8) 
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affirms that therefore the object m does not have the property G. 
We may state the common pattern of (7) and (8) as follows: 

(9) m has F; nothing with F has 0; 
therefore m does not have G. 

Once the common logical form has been ext racted as in (9), a new 
feature of it comes to light. Whatever objec t m is picked out, 
whatever properties F and G are chosen to be, the pattern (9) will 
be valid: (9) as it stands is a pattern of a valid argument. For 
example, take m to be Jenkins, F and 0 to be the properties respect
ively of being a bachelor and being married: then (9) becomes 

(10) Jenkins is a bachelor; no bachelors are married; 
therefore Jenkins is not married, 

which, like (7) and (8), is a sound argument. Yet (9) is not tied to 
any particular subject-matter, whether it be ornithology, chemistry, 
or the law; the spedal terminology-' migrant', 'molecular', 
, bachelor '-has disappeared in favour of schematic letters' F', 
'G', 'm'. 

Form can thus be studied independently of subject-matter, and 
it is mainly in virtue of their form, as it turns out, rather than their 
subject-matter that arguments are valid or invalid. Hence it is the 
forms of argument, rather than actual arguments themselves, that 
logic investigates. 

To sum up the contents of this section, we may define logic as 
the study, by symbolic means, of the exact conditions under which 
patterns of argument are valid or invalid: it being understood thai 
validity and invalidity are to be carefully distinguished from the 
related notions of truth and falsity. But this account is provisional 
in the sense that it will be better understood in the light of what is 
to follow. 

2 CONDITIONA LS AND NEGATIO N 

When we analyse the logical form of arguments (as we did in the 
last s«:tion to obtain (9) from (7) and (8», words which relate to 
specific subject-matters disappear but other words remain; this 
residual vocabulary constitutes the words in which the logician is 
primarily interested, for it is on their properties that validity hinges. 

5 
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Of particular importance in this vocabulary are the words' if ... 
then .. :, ' ... and . . .', • either ... or .. .', and • not '. This 
chapter and the next are in fact devoted to a systematic study of 
the exact rules for their proper deployment in arguing. We have 
no single grammatical term for these words in ordinary speech, but 
in logic they may be called sentenceJormmg operators on sentences. 
I shall try to explain why they merit this formidable title. 

In arguments, as we have already seen, propositions occur; an 
argument is a certain complex of propositions, among which we 
may distinguish premisses and conclusion. Propositions are 
expressed, in natural languages, in sentences. However, not all 
sentences express propositions; some are used to ask questions (such 
as • Where is Jack? '), others to give orders (such as • Open the 
door '). Where it is desirable t () distinguish between sentences 
expressing propositions and other kinds of sentence, logicians 
sometimes call the former declarative sentences. Always, when I 
speak of sentences, it is declarative sentences I have in mind, unless 
there is some explicit denial. Now if we select two English sentences, 
say' it is raining' and' it is snowing', then we may suitably place 
• if ... then ... ', ' ... and ... ', and' either ... or ... ' to obtain 
the new English sentences: • if it is raining, then it is snowing', 
'it is raining and it is snowing', and' either it is raining or it is 
snowing'. The two original sentences have merely been substituted 
for the two blanks in • if . . . then .. .', ' ... and .. .', and' either ... 
or .. .'. Further, if we select one English sentence, say' it is 
raining ', then we may suitably place' not' to obtain the new 
English sentence: • it is not raining '. Thus, grammatically speaking, 
the effect of these words is to form new sentences out of (one or 
two) given sentences. Hence I call them sentence-forming operators 
on sentences. Other examples are: 'although ... nevertheless, , .' 
(requiring two sentences to complete it), 'because. , ., ' , .' (also 
requiring two), and' it is said that . . .' (requiring only one), 

(This book is written in English, and so mentions English sentences 
and words; but the above account could be applied, by appropriate 
translation, to all languages I know of. There is nothing parochial 
about logic, despite this appearance to the contrary,) 

In this section we are concerned with the rules for manipUlating 
' if .. , then .. .' and' not', and we begin by introducing special 
logical symbols for these operators. Suppose that P and Q are any 
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two propositions; then we shall write the proposition that if P then 
Qas: 

P+Q. 

Again, let P be any proposition; then we shall write the proposition 
that it is not the case that P as: 

-Po 

The proposition P-+- Q will be called a conditional proposition, or 
simply a conditional, with the proposition P as its antecedent and the 
proposition Q as its consequent. For example, the antecedent of the 
proposition that if it is raining then it is snowing is the proposition 
that it is raining, and its consequent is the propoSition, that it is 
snowing, The proposition - P will be called the negation of P. For 
example, the proposition that it is not snowing is the negation of 
the proposition that it is snowing. 

The letters' P " , Q', used here, should be compared with the 
variables' x', 'y' of algebra; they may be considered as a kind of 
variable. and are frequently called by logicians propoJitionai variables. 
In introducing the minus sign' -', I might say: let x and y be any 
two numbers; then I shall write the result of subtracting y from x 
as x - y. In an analogous way I introduced' -+-' above, using 
propositional variables in place of numerical variables, since in logic 
we are concerned with propositions not numbers, 

Propositional variables will also help us to express the logical form 
of complex propositions (compare the use of schematic letters ' F' 
and' G ' in (9) of Section I), Consider, for example, the complex 
proposit ion 

(I) If it is raining, then it is not the case that if it is not 
snowing it is not raining. 

Let us use' P' for the proposition that it is raining and' Q' for 
the proposition thdt it is snowing. Then, with the aid of • -+- ' and 
• -', we may write (1) symbolically as: 

(2) P+ -(- Q+ - P) 

(we introduce brackets here in an entirely obvious way). (2), as well 
as being a kind of shorthand for (1), with the advantages of brevity 
and c1arity-once at least the feeling of strangeness associated with 
novel symbolism has worn off-succeeds in expressing the logical 
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form of (I). We can see that (2) also gives the logical form of the 
quite different proposition 

(3) If there is a fire, then it is not the case that if there is not 
smoke there is not a fire: 

here P is a stand-in for the proposition that there is a fire, and Q for 
the proposition that there is smoke. 

When we argue, we draw or deduce or derive a conclusion from 
given premisses; in logic we formulate rules, called rules of derivatioll , 
whose object is so to control the activity of deduction as to ensure 
that the conclusion reached is validly reached. Another feature of 
ordinary argumentation is that it proceeds in slages: the conclusion 
of one step is used as a premiss for a new step, and so on until a 
final conclusion is reached. It will be helpful, therefore, if we 
distinguish at once between assumptions and premisses. By an 
assumption, we shall understand a proposition which is, in a given 
stretch of argumentation, the conclusion of no step of reasoning, 
but which is rather taken for granted at the outset of the total 
argument. By a premiss, we shall understand a proposition which 
is used, at a particular stage in the total argument, to obtain a 
certain conclusion. An assumption may be-and characteristically 
will be-used as a premiss at a given stage in an argument in order 
to obtain a certain conclusion. This conclusion may itself then be 
used as a premiss for a further step in the argument, and so on. 
Thus a premiss at a certain stage will be either an assumption of 
the argument as a whole or a conclusion of an earlier phase in the 
argument. At any given stage in the total argument, we shall have 
a conclusion obtained ultimately from a certain assumption or 
combination of assumptions, and we shall say that this conclusion 
rests on or depends on that assumption (those assumptions). 

Roughly, our procedure in setting out arguments will be as 
follows. Each step will be marked by a new line. and each line will 
be numbered consecutively. On each line will appear either an 
assumption of the argument as a whole or a conclusion drawn from 
propositions at earlier lines and based on these propositions as 
premisses. To the right of each proposition will be stated the rule of 
derivation used to justify its appearance at that stage and (where 
necessary) the numbers of the premisses used. To the left of each 
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proposition will appear the numbers of the original assumptions on 
which the argument at that stage depends. 

Rule of Assumptions (A) 

The first rule of derivatiou to be introduced is the rule of assumptions, 
which we call A. This rule permits us (0 introduce at QJly stage of 
an argument any proposition we choose as an assumption of the 
argument. We simply write the proposition down as a new line, 
write' A ' to the right of it, and to the left of it we put its own 
number to show that it depends on itself as an assumption. Thus 
we might begin an argument 

I (J)P->-Q A 

This means that our first step has been to assume the proposition 
P+ Q by the rule of assumptions. Or after nine lines of argument 
we may proceed 

10 (10) -Q A 

This means that at the tenth line we assume the proposition - Q 
by the rule of assumptions. 

It may seem dangerously liberal that the rule of assumptions 
imposes no limits on the kind of assumptions we may make (in 
particular there is no question of ensuring that assumptions made 
are true). This is best understood by reminding ourselves that the 
logician's concern is with the soundness of the argument rather than 
the truth or falsity of any assumptions made; hence A allows us to 
make any assumptions we please-the job of the logician is to make 
sure that any conclusion based on them is validly based, /lor to 
investigate their credentials. 

Modus ponendo pOf/ens (MPP) 

The second rule of derivation concerns the operator -+-. We name it 
modus ponendo ponens, abbreviated to MPP, which was the medieval 
term for a closely related principle of reasoning. Given as premisses 
a conditional proposition and the antecedent of that conditional, 
MPP permits us to draw the consequent of the conditional as a 
conclusion. For example, given P -+- Q and p. we can deduce Q. 
Or, to take a more complicated example, given - Q -+- (- P ... Q) 
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and - Q, we can deduce -P+Q. Written more formally, these 
two arguments become: 

1 1 (I)P+ Q A 

2 (2) P A 

1,2 (3) Q 1,2MPP 

2 (I) -Q+(-P+Q) A 

2 (2) -Q A 

1,2 (3) -P+ Q 1,2MPP 

On the first two lines of each of these arguments, we make the 
required assumptions by the rule A, numbering on the left accord
ingly. At line (3), we draw the appropriate conclusion by the rule 
MPP: the consequent of the conditional at line (I), given at line (2) 
the antecedent of that conditional. To the right at line (3) in both 
cases, we note the rule used (MPP) together with the numbers of 
the premisses used in this application of the rule. To the left at 
line (3), we mark the assumptions on which the conclusion rests
in this case again (I) and (2), which here are both premisses for the 
application of MPP and assump~ions of the total argument. 

Here are more complicated examples, using on1y the two rules A 
and MPP. I shall show first that, given the assumptions P +- Q, 
Q +- R, and P, we may validly conclude R. 

3 1 (I)P+ Q A 1 ' 
YI>.·f I'~CI.. ,Q-"'!(l \.. 

2 (2) Q+ R A 

3 (3) P A 

1,3 (4) Q 1,3 MPP 

1,2,3 (5) R 2,4 MPP 

The first three lines here merely make the necessary assumptions. 
At line (4), we draw by MPP the conclusion Q, given at line (I) the 
conditional P+ Q and at line (3) its antecedent P. Hence (I) and 
(3) are mentioned to the right as premisses for the application of 
the rule and to the left as the assumptions used at that stage. At 
line (5), we use Q, the conclusion at line (4), as a premiss for a new 
application of MPP, noting that Q is the antecedent of the con
ditional Q +- R assumed at line (2). So we obtain the desired 
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conclusion R from (2) and (4) as premisses. The numbers 2 and 4 
appear on the right accordingly. In deciding what assumptions to 
cite on the left, we note that (4) rests on (1) and (3), whilst (2) rests 
only on itself: we' pool' these assumptions to obtain (I), (2). and (3). 

Secondly, I show that, given P+-(Q+- R), P+ Q, and P, we 
may validly conclude R. 

4 (I)P+(Q+R) A I' "t~; ~P"'(Q.-~).p-,;>~11-
.-~ 

2 (2) P+ Q A 

3 (3) P A 

1,3 (4) Q+ R 1,3 MPP 

2,3 (5) Q 2,3 MPP 

1,2,3 (6) R 4,5 MPP 

At lines (4) and (5), the premisses used for the applications of 
MPP are also assumptions. so that the same pair of numbers 
appears on the right and on the left. But at line (6), the premisses 
are the conditional (4), Q +- R. and its antecedent (5). Q, neither of 
which are.assumptions of the argument as a whole: in detennining 
the numbers on the left, therefore. we • pool' the assumptions on 
which (4) and (5) rest--{t), (3) and (2), (3) respectively-to obtain 
(I), (2), and (3). 

It should be obvious that MPP is a reliable principle of reasoning. 
It can never lead us, at least, from true premisses to a false conclusion. 
For it is a basic feature of our use of • if ... then .. .' that if a 
conditional is.true and if also its antecedent is true then its consequent 
must be true too, and MPP precisely allows us to affirm as a con
clusion the consequent of a conditional, given as premisses the 
conditional itself and its antecedent. 

It will be a help to have an abbreviation for the cumbersome 
expression' given as assumptions ... , we may validly conclude ... '. 
To this end, I introduce the symbol 

" called often but misleadingly in the literature of logic the assertion-
sign. It may conveniently be read' as 'therefore '. Before it, we list 
(in any order) our assumptions, and after it we write the conclusion 
drawn. Using this notation. we may conveniently sum up the four 
pieces of reasoning above (from now on to be called proofs) thus: 
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1 P+ Q, Pf Q; 

1 -Q+(- P+Q), -Q,-P+Q; 

3P+Q,Q+R,PfR; 

4 P+(Q+R),P+Q,PfR, 

Results obtained in this form we shall call sequents. Thus a sequent 
is an argument-frame containing a set of assumptions and a con
clusion which is claimed to follow from them. Effectively, sequents 
which we can prove embody valid patterns of argument in the sense 
that, if we take the P, Q, R, ... in a proved sequent to be actual 
propositions, then, reading 'I-' as 'therefore', we obtain a valid 
argument. The propositions to the left of • 1-' become assumptions 
of the argument, and the proposition to the right becomes a con
clusion validly drawn from those assumptions. From this point of 
view, in constructing proofs we are demonstrating the validity of 
patterns of argument, which is one of the logician's chief concerns. 

The sequent proved can be written down immediately from the 
last line of the p roof.! In place of the numbers on the left, we write 
the propositions appearing on the corresponding lines; then we 
place the assertion sign; finally, we add as conclusion the proposition 
on the last line itself. To see this, the four sequents above should 
be compared with the last lines of the corresponding proofs. 

Modlls tol/cndo tollens (MTT) 

The third rule of derivation concerns both + and -. Again we use 
a medieval term for it, modw tollendo tollens, abbreviated to MIT. 
Given as premisses a conditional proposition and lhe negation of its 
consequent, MIT permits us to draw the negation of the antecedent 
of the conditional as a conclusion. 

Here are two simple examples of the use of MIT. I set the 
precedent of citing the sequent proved before the proof. 

S P+ Q, -Q' - P 

1 (I)P+Q A 

2 (2) - Q A 

1,2 (3) - P 1,2 MIT 
) Thus we take a proof as a proof of a sequent; but it is also natural to say. In 
a different sense, that in a proof a cone/usion is proved from certain assumptioOJ. 
This resultant ambiguity in the word' prove' is fairly harmless. 
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6P+(Q+R),P,-M - Q 

1 (I)P+ (Q +R) A 

2 (2)P A 

3 (3) -R A 

1,2 (4) Q+ R 

1,2,3 (5) - Q 

1,2 MPP 

3,4 MIT 

For line (5), we notice that (3), - R,is the negation of the consequent 
of the conditional (4), Q +- R, so that by MIT we may conclude 
the negation - Q of the antecedent of (4): to the rigbt, we cite (3) 
and (4), and to the left (I) and (2}--the assumptions on which (4) 
rests- and (3}--the assumption, namely itself, on which (3) rests. 

We may see the soundness of the rule MIT by ordinary examples. 
The following are evidently sound arguments: 

(4) If Napoleon was Chinese, then he was Asiatic; Napoleon 
was not Asiatic; therefore be was not Chinese. 

(5) If Napoleon was French, then he was European; Napoleon 
was not European; therefore he was not French. 

In both cases, given a conditional and the negation of its consequent, 
we deduce validly the negation of its antecedent: in (4) the conclusion 
is true, and so are both premisses; in (5) the conclusion is false, but 
so is one premiss. It should be clear that this pattern of reasoni ng 
will never lead from premisses which are alltrue to afalseconclusion. 

Double neg~tion (ON) 

The fourth rule of derivation purely concerns negation. By the 
double negation of a proposition P we understand the proposition 
--Po Intuitively, to affirm that it is not the case that it is nOl the 
case that it is raining is the same as to affirm that it is raining, and 
this holds for any piOposition whatsoever: the double negation of a 
proposition is identical with the proposition itself. Hence from the 
double negation of a proposition we can derive validly the propo
sition, and vice versa. This principle lies behind the rule of double 
negation (ON): given as premiss the double negation of a propo
sition, ON permits us to draw the proposition itself as conclusion; 
and given as premiss any proposition, ON permits us to draw its 
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double negation as conclusion. Uruike MPP and MIT, DN 
requires oruy one premiss for its application, not two. It s use is 
exemplified in the following proofs. 

7P+-Q,Q,-P 

1 (I)P+-Q A 

2 (2) Q A 

2 (3)- - Q 2DN 

1,2 (4)-P 1,3 MIT 

Note especially that, since the consequent of (I) P-+- - Q is - Q, 
we need to obtain the negation of this, i.e. --Q, before we can 
apply the rule MIT: hence we require the step of ON from (2) to 
(3) before the use of MIT at line (4). 

8 - P+Q, - Q,P 

(I) -P+ Q A 

2 (2) -Q A 

1,2 (3) --P 

1,2 (4) P 

1,2 MIT 

3DN 

Note especially that from (I) and (2) by MIT we draw as conclusion 
the negation of the antecedent of (1), i.e. - - P: hence we require 
the step of ON from (3) to (4) in order to obtain the conclusion P. 
Note also that the conclusion of an application of ON rests on 
exactly the same assumptions u its premiss. 

Conditional proof(CP) 

The rules MPP and MIT enable us to use a conditiona l pumiss, 
together with either its antecedent or the negation of its consequent, 
in order to obtain a certain conclusion, either its consequent or 
the negation of its antecedent. But how may we derive a conditional 
cone/usion? The most natural device is to take the antecedent of 
the conditional we wish to prove as an extra assumption, and aim 
to derive its consequent as a conclusion: if we succeed, we may take 
this as a proof of the original conditional from the original 
assumptions (if any). For example, given tbat all Germans are 
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Europeans, how might we prove tbat if Napoleon was German 
then he was European? We naturally say: suppose Napoleon was 
German (bere we take the antecedent of the conditional to be 
proved as an extra assumption); now all Germans are Europeans 
(the given assumption); therefore Napoleon was European (here we 
derive the consequent as conclusion); so if Napoleon was German 
he was European (here we treat the previous steps of the argument 
as a proof of the desired conditional). 

The fifth rule of derivation, the rule of conditional proof (CP). 
imitates exactly this natural procedure and is our most general 
device for obtaining conditional conclusions. Its working is harder 
to grasp than that of the earlier rules, but familiarity with it is 
indispensable. I first state it, then exemplify and discuss it. 

Suppose some proposition (call it B) depends, as one of its 
assumptions, on a proposition (call it A); then CP permits us to 
derive the conclusion A -+- B on the remaining assumptions (if any). 
In other words, at a certain stage in a proof we have derived the 
conclusion B from assumption A (and perhaps other assumptions); 
then CP enables us to take this as a proof of A -+- B from the other 
assumptions (if any). 

For example : 

9 P-+-QI--Q-+- - P 

I (I)P+Q A 

2 (2) - Q A 

1,2 (3) -P 1,2 MIT 

(4) -Q+ - P 2,3 CP 

In attempting to derive the conditional -Q -+- - P from P-+- Q. 
we first assume its antecedent - Q at line (2), and derive its 
consequent - P at line (3); CP at line (4) enables us to treat this 
as a proof of - Q -+- - P from just assumption (I). On the right, 
we give first the number of the assumed antecedent and second the 
number of the concluded consequent. On the left, the assumption 
(2) at line (3) disappears into the antecedent of the new conditional, 
and we are left with (I) alone. Always, in an application of CP, 
the number of assumptions falls by one in this manner, the one 
omitled being called the discharged assumption. 
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10 P~(Q~R)' Q~(P~R) 

I (I)P~(Q~R) A 

2 (2) Q A 

3 (3)P A 

1,3 (4)Q~R 1,3 MPP 

1,2,3 (5) R 2,4 MPP 

1,2 (6) P~ R 3,5 CP 

(7) Q~(P~R) 2,6CP 

A morc complicated example, involving double use of CP: in 
attempting to derive the conditional Q + (P + R) from 
P+(Q+R), we first assume its antecedent Q at line (2), and 
aim to derive its consequent P+ R; since this consequent is also 
conditional, we· assume its antecedent P at line (3), and aim to 
derive its consequent R. This is achieved by two steps of MPP 
(lines (4) and (5»; at line (6), we treat this by CP as a proof of 
P+ R from assumptions (1) and (2), and we cite to the right line 
(3) (the assumption of the antecedent) and line (5) (the derivation 
of the consequent). In turn, we treat this at line (7) as a proof of 
Q+(P+R) from assumption (I) alone, and we cite to the right 
line (2) (the assumption of its antecedent) and line (6) (the derivation 
of its consequent). As before, the assumptions on the left decrease 
by one at each step ofep. 

II Q~ R '(-Q~ -P)~(P~ R) 

I ( I) Q~ R A 

2 (2) -Q~ -P A 

3 (3) P A 

3 (4) - - P 3 DN 

2,3 (5) --Q 2,4 MTI 

2,3 (6) Q 5DN 

1,2,3 (7) R 1,6 MPP 

1,2 (8) P~ R 3,7 CP 

(9) (-Q~ - P)->-(P->-R) 2,8 CP 
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This proof uses all five rules of derivation introduced so far, and 
deserves study. Aiming to prove a complex conditional, we assume 
its antecedent - Q + -Pat line (2), and try to prove its consequent 
P+ R. Since this is conditional, we assume its antecedent P at 
line (3), and after a series of steps using DN, MIT, and MPP we 
derive its consequent R at line (7). Two steps of CP, paralleling 
the last two steps in the proof of 10, complete the job by discharging 
in turn the assumptions (3) and (2). 

Proofs 10 and 11 suggest a useful and important general method 
for discovering the proofs of sequents with complex conditionals as 
conclusion. After using the rule A for the assumptions given in the 
sequent, we assume also the antecedent of the desired conditional 
conclusion, and aim to prove its consequent ; if this is also a con
ditional, we assume its antecedent, and aim to prove its consequent; 
we repeat this procedure, until our target becomes to prove a non· 
conditional conclusion. If we can derive this from the assumptions 
we now have, the right number of CP steps, applied in reverse order, 
will prove the original sequent. 

I end this section with a remark on two common fallacies, so 
common that they have received names. In accordance with rule 
MPP, if a conditional is true and also its antccedent, then we can 
soundly derive its consequent. If a conditional is true and also its 
consequent, is it sOWld to derive its antecedent? The following 
example shows that it is not sound to do so: it is true that if Napoleon 
was German then he was European, since all Germans are Europeans; 
and it is true that Napoleon was European; but it is fal se, and so 
cannot soundly be deduced from these true premisses, that Napoleon 
was German. To suppose that it is sound to derive the antecedent 
of a conditional from tbe conditional and its consequent is to 
commit the fallac of a rming the conse uell/. Again, in accordance 
with rule MIT, if a conditional is true and also the negation of its 
consequent, tben we can soundly derive the negation of its antecedent. 
But it is not sound to derive the negationofa cond itional's consequem 
from the conditional itself and the negation of its antecedent, and to 
suppose that it is sound is to commit the fallac of denying the 
antecedent. The same example may be used: it is true that if 
Napo eon was German then he was European, and true also that 
he was not German; but it is not true that Napoleon was not 
European. 
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Put schematically: the sequent! 

1 P+Q,PI-Qand 

5 P+Q, - Qf-P 

are sound patterns of reasoning, as we have proved. But the 
sequents 

6P+Q,QfPand 

7P+Q,-Pf-Q 

are not sound patterns, as we have shown by finding examples of 
propositions P and Q such that the assumptions of (6) and (7) turn 
out true whilst their conclusions tum out false; for it is a neces!ijl.l)' 
condition of a sound pattern of argument that it shall never lead us 
from assumptions that are all true to a false conclusion. (6) is in 
fact the pattern of the fallacy of affirming the consequent, and (7) 
that of the fallacy of denying the antecedent. 

EXERCISES 

Find proofs for the following sequents, using the rules of derivation 
introduced so far: 

(a)P+(P+ Q), PI- Q 

(b) Q+(P+R), - R, Q I-- P 

(c)P+ --Q,PI-Q 

(d) --Q+P, - Fe-Q 

(e) -P+ - Q. QI-P 

(f)P+ - Q I- Q+-P 

(g) - P+QI- - Q+P 

(h) - P+ - Q I- Q+P 

(i)P+Q, Q+RI-P+R 

(j) P+(Q+ R) I- (P+ Q)+(P+ R) 

J (k) P+ (Q+(R+S))' R'HP+(Q+S)) 

(l) P+ Q I- (Q+ R)+(P+ R) 

(m)PI-(P+ Q)+ Q 

(n) PI-(-(Q+ R)+ -P)+(-R+ -Q) 

2 Show that the following sequents are unsound patterns of argument, 
by finding actual propositions for P and Q such that the assumption(s) 
are true and the conclusion false: 
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(a)P+-Q.-PI-Q 

(b) - P+ -Q, -Q I- - P 

(c)P+QI-Q+P 

Conjunction and Disjunction 

3 CONJUNCT I ON AND DISJUNCTION 

Of the four sentence-forming operators on sentences mentioned in 
the last section as being of importance to the logician, only two have 
so far been discussed: • if ... then .. .' and 'not'. In the present 
section, we introduce rules for arguments involving ' ... and .. .' 
and' either ... or .. .'. 

Let P and Q be any two propositions. Then the proposition that 
both P and Q is called the conjunction of P and Q and is written 

P&Q. 

P and Q are called the conjunclS of the conjunction P & Q. Similarly, 
the proposition that either P or Q is called the disjunction of P and Q 
and is written 

PvQ. 

P and Q are called the disjuncts of the disjunction P v Q. (The 
symbol' v' is intended to remind classicists of the Latin' vel' as 
opposed to • aut ': for P v Q is understood not to exclude the 
possibility that both P and Q might be the case.) 

There are two rules or derivation concerning &. the rule of 
&-introduction and the rule of &--elimination; and there are two rules 
concerning v, the rule o/v-in/roduction and the rule olv-elimination. 
Introduction-rules serve the purpose of enabling us to deri ve 
conclusions containing & or v. whilst elimination~rules serve the 
purpose of enabling us to use premisses containing & or v. We 
discuss and exempl ify these rules in turn. 

&-introduction (&1) 

The rule of &-introduction (&1) is exceptionally easy to master. 
Given any two propositions as premisses, &1 permits us to derive 
their conjunction as a conclusion. The rule clearly corresponds to 
a sound principle of reasoning; for if A and B are the case separately, 
it is obvious that A & B must be the case. The following proofs 
e:o.:emplify the use of &1. 
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12 P, Q ,p & Q 
I (I) P A 

2 (2) Q A 

1,2 (3) P & Q 1.2 &1 

At line (3), by &1 we conclude the conjunction of the assumptions 
(I) and (2). To the right, we cite (1) and (2) as the premisses for the 
application of &1; to tbe len we cite the pool of the assumptions on 
which these premisses rest-in this case themselves. 

13 (P&Q)+R,P+(Q+R) 

( I)(P & Q)+ R A 

2 (2) P A 

3 (3) Q A 

2,3 (4) P & Q 2,3 &1 

1,2,3 (5) R 1,4MPP 

1,2 (6) Q+ R 3,5 CP 

(7)P+(Q+R) 2,6CP 

In attempting to prove the conditional P + (Q -+- R), we assume 
first its antecedent P (line (2)) and second the antecedent of its 
consequent Q (line (3». A step of &1 at line (4) gives us the con
junction of these assumptions, enabling us to apply MPP at line 
(5) to obtain R. Two steps of CP complete the proof. 

&-elimination (&E) 
The rule of &-elimination (&E) is just as straightforward. Given 
any conjunction as premiss, &E permits us to derive either conjunct 
as a conclusion. Again, the rwe is evidently sound; for if A & B is 
the case, it is obvious that A separately and B separately must be 
the case. Here are examples. 

14 P & Q' P 

(I)P&Q A 
(2)P - I&E 
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15P&Q'Q 

(I) P & Q 
(2) Q 

A 

I &E 

16 P+(Q+R),(P&Q)+R 

I (I)P+(Q+R) A 

2 (2)P& Q A 

2 (3) P 2 &E 
2 (4) Q 2 &E 
1,2 (5) Q+ R 1,3 MPP 
1,2 (6) R 4,5 MPP 

I (7)(P& Q)+R 2,6 CP 

We desire the conditional conclusion (P & Q) -+- R. and so we 
assume its antecedent at line (2) and aim for R. &E is used at 
lines (3) ~nd (4) to obtain the conjuncts P and Q separately, which 
~e reqUJre~ f~r the MPP steps at lines (5) and (6). To the right, 
In an appiJcatlOn of &E. we cite the conjunction employed as a 
premiss, and to the left tbe assumptions on which that conjunction 
rests. 

The rules &1 and &E are frequently used together in the same 
proof. For example: 

17 P&Q'Q&P 

(I)P& Q 

(2) P 

(3) Q 
(4) Q & P 

18 Q+R,(P& Q)+(P& R) 

I (I) Q+ R 

2 (2) P & Q 

2 (3) P 

2 (4) Q 

A 

I &E 

I &E 

3,2 &1 

A 

A 

2 &E 

2 &E 
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1,2 (5) R 

1,2 (6)P&R 

(7) (P & Q)->-(P & R) 

1,4 MPP 

3,5 &1 

2,6 CP 

We desire the conditional conclusion (P & Q)-+-(P & R); hence we 
assume the antecedent P & Q and aim for P & R. This aim is 
translated into the aim for P and R separately, from which P & R 
will follow by &1. P follows from P & Q by &E, and so does Q, 
which can be ust:d in conjunction with line (I) to obtain R by MPP 
(line (5». When &1 is used at line (6), the premisses are (3) and (5), 
and these rest respectively on assumption (2) and assumptions (I) 
and (2). Hence the pool of Ihese-{I) and (2}-is cited to the lefl. 

v-introdrtctioll (vI) 

The rule of v-introduction wt: name vI. Given any proposition as 
premiss, vI permits us to derive the disjunction of that proposition 
and any proposition as a conclusion. Thus from P as premiss, we 
may derive P v Q as a conclusion, or Q v P as a conclusion ; and 
here it makes no difference what proposition Q is. Clearly the 
conclusion will in general be much weaker than the prcmiss, in an 
application of vI. It may, that is, be the case that either P or Q 
even when it is not the case that P. None the less, the rule is accept
able in the sense that when P is the case it must be also the case 
that either P or Q. For examplc, it is the case that Charles I was 
beheaded. It follows that either he was beheaded or he was sent 
to the electric chair, even though of course he was not scnt to the 
electric chair. A disjunction Pv Q is true if 01 least one of its 
disjuncts is true, so that rule v[ cannot lead from a true premiss to 
a fal se conclusion (though it may lead to a dull one). 

v-elimination (vE) 

The rule of v-elimination (vE) is rather more complex. I first slate 
it, then explain and justify it, and finally exemplify both it and vI. 
Let A, B, and C be any three propositions, and suppose (a) that 
we are given that A v B, (b) that from A as an assumption we can 
derive C as conclusion, (c) that from B. as an assumption we can 
derive C as conclusion; then vE permits us to draw C as a conclusion 
from any assumptions on which A v B rests, together with any 
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assumptions (apart from A itself) on which C rests in its derivation 
from A and any assumptions (apart from B itself) on which Crests 
in its derivation from B. Thus the typical situation for a step of vB 
is as follows: we have a disjunction A v B as a premiss, and wish to 
derive a certain conclusion C: we aim first to derive C from the 
first disjunct A, and second to derive C from the second disjunct B. 
When these phases of the argument are completed, we have the 
situation described in (a), (b) , and (c) above, and can apply vB to 
obtain the conclusion C direct from A v B. On the right, we 
unfortunately need to cite five lines: (i) the line where the disjunction 
A v B appears; (ii) the line where A is assumed; (iii) the line where 
C is derived from A; (iv) the line where B is assumed; (v) the line 
where C is derived from B. And on the left, the conclusion may 
rest on rather a complex pool of assumptions, derived from three 
sources: (i) any assumptions on which A v B rests; (ii) any assump
tions on which C rests in its derivation from A. though not A 
itself; (iii) any assumptions on which C rests in its derivation from 
B, though not B itself. 

Though involved to state exactly, the rule vE corresponds to an 
entirely natural principle of reasoning. Suppose it is the case that 
either A or B, i.e. that one of A or B is true; and suppose that on the 
assumption A, we can show C to be the case, Le. that if A holds C 
holds; suppose also that on the assumption B, we can still show that 
C holds, i.e. that if B holds C also holds; then C holds either way. 
For example: you agree that either it is raining or it is fine (A v B); 
given that it is raining, then it is not fit to go for a walk (from A 
we derive C); given that it is fine, then it must be very hot, so that 
again it is not fit to go for a walk (from B we derive q. Hence 
either way it is not fit to go for a walk (we conclude C). 

19PvQI-QvP 

I (I) Pv Q A 

2 (2)P A 

2 (3)QvP 2 vI 

4 (4) Q A 

4 (5) Q v P 4 vI 

(6) Q v P 1,2,3,4,5 vE 
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On line (I), we assume Pv Q; since this is a disjunction, we aim to 
derive the conclusion Q v P from the first disjunct P, assumed at 
line (2), and aJso from the second disjunct Q, assumed at line (4). 
This is achieved on lines (3) and (5) by steps of vI which should be 
obvious. At Hne (6), we conclude Q v P from assumption (I) 
dircrctly, since it follows from each disjunct separately. On the right, 
we cite line (I) (the disjunction), line (2) (assumption of first disjunct), 
line (3) (derivation of conclusion from that disjunct), line (4) 
(assumption of second disjunct), and line (5) (derivation of con
clusion from that disjunct). To the left, we cite any assumptions 
on which the disjunction rests (here (1) rests on itself, which is 
therefore cited), together with any assumptions used to derive the 
conclusion from the disjuncts apart from the disjuncts themselves 
(inspection of the citations to the left of line (3) and (5) shows that 
there are none such). This proof should reveal the importance of 
keeping accurate assumption-records on the left of proofs: lines (3) 
and (5) here give indeed the right conclusion Q v P, but not from 
the right assumption, which is (1); this is achieved on1y at line (6), 
which differs from lines (3) and (5) in the annotation on the left. 

20 Q+R,(PvQ)+(PvR) 

1 (1) Q+ R A 

2 (2)PvQ A 

3 (J) P A 

3 (4) Pv R 3 vi 

5 (5) Q A 

1,5 (6) R 1,5 MPP 
1,5 (7)PvR 6 vI 
1,2 (8) Pv R 2,3,4,5,7 vE 

(9) (Pv Q)+(Pv R) 2,8 CP 

The desired conclusion here is conditional; so we assume its 
antecedent P v Q (line (2», and aim to derive P v R; this assumption 
is a disjunction, so we assume each disjunct in turn (lines (3) and (5» 
and derive the conclusion P v R from each (lines (4) and (7). Hence 
the citation on the right at line (8) is 2,3,4,5,7. The assumptions at 
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line (8) are those on which the disjunction P v Q rests (itself, (2», 
together with any used to obtain P v R from (3) apart from (3) 
itself (none, as line (4) reveals) and any used to obtain P v R from 
(5) apart from (5) itself (namely (1), as line (7) reveals). A step of 
CP completes the proof from (1) of the desired conditional. 

ZlP v(QvR)'Qv(PvR) 

1 (I)Pv(QvR) A 

2 (2) P A 

2 (3) Pv R 2 vi 

2 (4) Qv(PvR) 3 vI 

5 (5) Q v R A 

6 (6) Q A 

6 (7) Qv(Pv R) 6 vI 

8 (8) R A 

8 (9)PvR 8 vI 

8 (10) Q v(Pv R) 9 vI 

5 (II) Qv(Pv R) 5,6,7,8,10 vB 

(12) Qv(Pv R) 1,2,4,5,11 vE 

This proof deserves detailed study, in the use both of vI and of vE. 
Careful attention to bracketing is required. The assumption is a 
disjunction, the second of whose disjuncts is a disjunction itself. 
The proof falls into two distinct parts, lines (2)-{4) and Jines 
(5Hll): the first part establishes the desired conclusion from the 
first disjunct of the original disjunction (line (4», and the second 
part establishes the same conclusion from the second disjunct 
(line (11). lhis should explain the final step of vE at line (12). 
The second part (lines (5HII», which begins with a disjunctive 
assumption, also falls into two sub-parts and involves a subsidiary 
step of vE at line (11). Lines (6)-(7) obtain the conciusion from the 
fir~t disjunct Q of (5), and lines (8)-{IO) obtain the conclusion 
from its second disjunct R. Hence the tinaJ conclusion is obtained 
no less than five times in the proof, from different assumptions each 
time. 
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Reductio ad absurdum (RAA) 

The last rule to be introduced at this stage is in many ways the most 
powerful and the most useful; it is easy to understand, though a 
little difficult to state precisely. We shall call it the rule of reductio 
ad absurdum (RAA). First, we define a contradiction. A conlradiction 
is a conjunction the second conjunct of which is the negation of the 
first conjunct: thusP & - P, R & - R,(P+ Q) & - (P+ Q)areall 
contradictions. Now suppose that from an assumption A, together 
perhaps with other assumptions, we can derive a contradiction as a 
conclusion ; then RAA permits us to derive -A as a conclusion 
from those other assumptions (if any). This rule rests on the 
natural principle that , if a contradiction can be deduced from a 
proposition A, A cannot be true, so that we are entitled to affirm 
its negation -A. 

Here afe examples. 

22 P+Q,P+-QJ- - P 

I (1) P+ Q A 

2 (2) P+ -Q A 

3 (3) P A 

1,3 (4) Q 1,3 MPP 

2,3 (5) - Q 2,3 MPP 

1,2,3 (6) Q & - Q 4,5 &1 

1,2 (7) -P 3,6 RAA 

Thi s is a typical example of the use of RAA. Aiming at the con
clusion -P, we assume (line (3» P and hope to derive from it a 
contradiction ; for, if P leads to a contradiction, we can conclude 
- P by RAA. We obtain the contradiction Q & - Q at line (6), and 
so conclude - P at line (7). On the right, we cite the assumption 
which we are blaming for the contradiction-the one whose negation 
we conclude in the RAA step, here (3)-and the contradiction 
itself, here (6). On the left, as in a CP step, the number of assump. 
tions naturally falls by one, there being omitted the one which we 
blame for the cont radiction. 
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23P+ - Pl--P 

I (I) P+ -P A 

2 (2)P 

1,2 

1,2 

(3) -P 

(4)P&-P 

(5) - P 

A 

1,2 MPP 

2,3 &1 

2,4 RAA 

Conjunclion and Disjunclion 

Again desiring -P, we assume P(line (2» and obtain a contradiction 
(line (4». Given (I), therefore, we conclude - P by RAA. The 
sequent proved is striking, and perhaps unexpected- given that if 
a proposition is the case then so is its negation. we can conclude that 
its negation is true. This is the first surprising result to be established 
by our rules, but there will be more. 

The rule RAA is particularly useful when we wish to derive 
negative conclusions. It suggests that, instead of attempting a 
direct proof, we should assume the corresponding ajfirmalil'e 
proposition and aim to derive a contradiction, thus indirectly 
establishing the negative. It can also be used, however, to establish 
affirmatives themselves, via ON. If we want to derive A, we may 
assume - A and obtain a contradiction. Hence by RAA we can 
conclude --A (the negation of what we assumed) and so by ON 
we obtain A. It is a good general tip for proof.discovery that, when 
direct attempts fail, often an RAA proof will succeed. 

So far , ten rules of derivation have been introduced : we shall need 
no new ones until Chapter 3. 

EXERCISES 

Find proofs for the following sequents: 

(a)P>Q+(P&Q) 

(b) P &(Q &R) f Q &(P & R) 

(e) (P+ Q) &(P+ R) .. P+(Q & R) 

(d)QfPvQ 

(e)P&Q .. PvQ 

".~ (f)(P+R) & (Q+ R) f (P v Q)+ R 
(g)P+ Q, R+ Sf(P & R)+(Q &S) 

.ft· S (II) P+ Q, R+ st- (P v R)+(Q v S) 
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(l)P+(Q & R) ~ (P+ Q) &(P+ K) 

U) -P+P~P 

2 Show ~~at the following sequents are unsound, by finding actual 
proposl~lons for P and Q such that the assumption is true and the 
conclUSion false: 

(a)P~P&Q 

(b)PvQ ~ P 

(c)Pv Q ~P & Q 

(d)P+Q~P&Q 

4 THE BICONDITIONAL 

!here is a sentence-forming operator on sentences, of considerable 
Importanc~ to the logician though of rare occurrence in ordinary 
~peec~, which we ~a~ not so far introduced. This is ' ... if and only 
If .... We study It m the present section. 
~o begin, with, I~t us consider the differences between' if ... then 

. .. a?~ only If ... then .. .'. Compare the following two 
propoSitIOns : 

(1) if it snows it turns colder' 
(2) only if it snows it turns c~lder. 

(1) affirms that its snowing is sufficient for it to tum colder whilst 
~2~ affirms that its snowing is necessary for it to turn colder: that if 
~t ',s to turn colder it must snow. Hence we shall say that, whenever 
It IS the case t.h~t if P then Q, P is a sufficient condition for Q, 
and, .v.:henever It IS the case, that only if P then Q, P is a necessary 
condfllon for Q. To make thiS fundamental distinction clearer, let us 
compare 

(3) if yo~ hit the glass with a hammer, you will break it; 
(4) only If you hit the glass with a hammer will you break it. 

(3) is very lik~ly true; (4) is very likely false , since there are other 
ways ofbreakmg the glass than by wielding a hammer. On the other 
hand, of the two propositions 
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(5) if you use a screwdriver, you will unSCrew that very tight 
screw; 

(6) ~nly if you use a screwdriver will you unscrew that very 
tight screw, 

The Biconditional 

(5) may very well be false (you may use the screwdriver and still not 
unscrew the screw), and (6) true, since there may be no other way of 
turning the screw than by wielding a screwdriver. Hitting with a 
hammer is (probably) a sufficient but not a n~ssary condition for 
breaking a glass; using a screwdriver is (possibly) a necessary but 
not a sufficient condition for turning a tight screw. 

In scientific and in mathematical reasoning, and consequently in 
logic, we are often interested in a condition being both sufficient and 
necessary. P will be a sufficient and necessary condition for Q in 
just the case that Q holds if and only if P holds. Hence our interest 
in '.,. if and only if . . .', It may seem, therefore, that we require 
a special symbol for' only if . .. then .. .'; but that this is not so 
may be seen as follows. 

Suppose that only if P then Q; then P is a necessary condition for 
Q, that is, for Q to be the case P must be the case; hence if Q is the 
case, so is P. For example, suppose, as before, that using a screw
driver is a necessary condition for turning the screw; then if the 
screw is turned, a screwdriver has been used. In short, given that 
only if P then Q, we can infer that if Q then P. Conversely, suppose 
that if Q then P; then for Q to be the case P must be the case, for if 
Q is the case and P not the case it cannot hold that if Q then P; 
hence P is a necessary condition for Q, that is, only if P then Q. 
These two arguments suggest that to affirm only if P then Q is to 
affirm if Q then p, Hence to express symbolically' only jf P then 
Q' we may use '-+- ' and simply write 

Q+P. 

To affirm, therefore, that Q if and only if P is to affirm that if P 
then Q and only if P then Q, which is to affirm that if P then Q 
and if Q then P; or, in symbols, 

(P+Q)&(Q+P). 

But, rather than use this complex expression, we may conveniently 
adopt a double arrow and write as an abbreviation 

P++-Q. 

(This symbol helps to emphasize the mutuality of the relationship 
between Pand Q.) We call the propositionP-+-+- Q the biconditional 
of P and Q. 

What are the properries of the biconditional in argument? We 
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could lay down rules of derivation for this operator, as we have done 
for the four operators of the previous two sections . But in fact the 
properties of' ~'follow readily from those of' &. and' -+-', in 
terms of which we have just defined the biconditional. For example: 

24 p..--Q ' Q..--P 

(I) P..-- Q A 

(2)(P+Q)&(Q+P) 

(3)P+Q 2&E 

(4) Q+P 2 &E 

(5)(Q+P)&(P+Q) 4,3 &1 

(6)Q~P 5 

Here the stcp from (I) to (2) is justified by our taking' P ~ Q ' 
as an abbreviation for '(P -+- Q) & (Q + P)': at (2) we merely 
expand what we have assumed at (I). Similarly, but in reverse, the 
step from (5) to (6) is justified: for (6) is merely an abbreviation for 
the conclusion (5). However, we need to ratify such steps more 
precisely, and to thi s end we introduce the following formal 
definition of the biconditional: 

Df~' A ..-- B ~ (A+B) &(B+A), 

This definition is to be understood as a very condensed way of 
saying: given any two sentences A and B, we may replace in a proof 
the sentence A ~ B by the sentence (A + B) & (B -+- A), an<! vice 
versa. When this definition is applied, we shall cite' Df ~ , on 
the right. Lines (2) and (6) of the last proof should in fact be so 
marked. 

The next few proofs exemplify the use of this definition. 

25 P,P..--Q,Q 

(I) P 

2 (2) P..-- Q 
2 (3)(P+Q)&(Q+P) 

2 (4)P+Q 

1,2 (5) Q 
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26 P++ Q, Q++ RI--P++ R 

I (I) P++ Q A 

2 (2) Q"-- R A 

(3)(P+Q)&(Q+P) I Df..--
(4) P+ Q 3 &E 

(5) Q+P 3 &E 

2 (6)(Q+R)&(R+ Q) 2 Df..--
2 (7) Q+R 6 &E 

2 (8) R+ Q 6 &E 

9 (9) P A 

1,9 (10) Q 4,9 MPP 

1,2,9 (II) R 7,10 MPP 

1,2 (12) P+ R 9,11 CP 

13 (13) R A 

2,13 (14) Q 8,I3MPP 

1,2,13 (IS) P 5.14 MPP 

1,2 (l6)R+P 13, 15CP 

1,2 (17) (P+ R) & (R+ P) 12, 16 &1 

1,2 (18) P..-- R 17 Df..--

To derive P -++- R by Df -++- we need to derive (P -+- R) & 
(R-+-P), and we aim at each conjunct separately. The first ~ight 
lines of the proof merely itemize the information in the assumpt ions, 
by applying Df -++- and &E. This information (lin~s (4), (5), 
(7), (8» is then used in a straightforward manner to dcnve the two 
required conjuncts (lines (9}-(12) and (13)- (16». 

27 (P&Q)..--NP+Q 

(I)(P & Q)..-- P 

I (2)«P&Q)+P)&(P+(P&Q» 

I (3) P+(P & Q) 

4 (4) P 

1,4 (5) P & Q 

A 

I Df+->-
2 &E 

A 

3,4 MPP 
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1,4 (6) Q 
(7) P+ Q 

5 &E 

4,6CP 

By Df ~. (1) is an abbreviation for (2), if we take A to be the 
sentence' P & Q' and B to be the sentence' P'. 

28 P&(P++-Q»P&Q 

(I)P&(P++-Q) A 

(2) P &((P+Q)&(Q+P» 1 Df++-

(3)P 2 &E 

(4)(P+ Q)&(Q +P) 

(5)P+ Q 
(6) Q 
(7) P & Q 

2 &E 

4&E 

3,5 MPP 

3,6 &1 

In the proofs preceding this, when Df ~ was applied. it was 
applied to a sentence as a whole, i.e. the sentence to which it wa~ 
applied was of the form A ~ B; but this is not essential: here in 
fact at line (2) it is applied to the second conjunct of the proposition 
at line (1). 

Although Df -+-+- is like the ten rules of derivation introduced so 
far, in that it justifies transitions in a proof, it should not be thought 
of as another rule on a par with the rest. Its role in proofs is to 
enable us to take advantage of a piece of symbolic shorthand, 
rather than to enable us genuinely to derive conclusions from 
premisses. It happens that, for certain ends. we are interested in 
complex propositions such as (P+ Q) & (Q + P), and to facilitate 
our study of them we agree to abbreviate our expressions for them 
to sentences such as ' P ~ Q '. This is a guide to the eye, a sop 
thrown to human weakness: were we brave enough, in place of 
27 above, for example, we might merely prove 

(7) ((P & Q) +P) & (P +(P & Q» > P+ Q; 

but the expression we have used discloses a pattern which we might 
miss in the expression of (7). Given, therefore, that we wi sh to take 
advantage of this abbreviation in proofs, we need a device for 
transforming sentences containing' -E-+- ' into sentences lacking it, 
and a reverse device for t ransformi ng sentences of the right form 
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lacking '~. into sentences containing it: that is exactly what 
Df ~ provides. To put the point in a slightly different way, any 
logical properties which '~' may seem to have are merely 
proper ties of' & • and' + ' in symbolic disguise. 

A definition such as Df ++ may be called a stipulati~'e definition, 
in that it stipulates or lays down the meaning of the symbol' -++- ' 
in terms of symbols' + ' and' & • whose meaning is known from 
the rules governing their deployment in proofs. To say that a 
definit ion is stipulative is not to say that it is arbitrary (though the 
actual symbol • ++ ' chosen is in a sense arbitrarily chosen). 
Indeed, I carefully prepared the ground for the definition by arguing 
that what we in fact understood by the proposition that Q if and 
only if P was that if P then Q and if Q then P. But formally the 
definition is stipulative in that it announces that a sign is to be taken 
in a certain way. 

EXERCISES 

Using Df~ in conjunction with the rules of derivation of sections 
2 and J, find proofs for the following sequents: 
(a) Q,P+-+-Q~P 

(b) P+ Q, Q+ P ~ P+-+- Q 

(e) P+-+- Q ~ -P+-+- - Q 

(d) -P+-+- - Q ~ P~ Q 

11,7 (e)(PvQ)+-+-P~Q+P 

(j)P+~-Q, Q+-+- -R~P~R 

2 Just as ' . .. if and only if . . .' can be defined in terms of • if ... 
then .. .' and' . .. and .. .', so • unless .. . , then .. .' can be defined 
in terms of • if ... then ... ' and' not'. For to affirm that unless P 
then Q is to affirm that if not P then Q Gustify this by taking cases). 
Let us, therefore, stiputate 

D[..:A.B --A+B. 

Using Df. in a way parallel to Df ++, find proofs for the following 
sequents: 
(a)P.QrQ.P 

(b)P. Q,P. R r P.(Q &R) 

(e) p. Q, R. - Q ~ p. R 

(d)P .P ~ P 

(e) - p. R, - Q. R,Pv Q ~ R 
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5 FURTHER PROOFS: RESUME OF RULES 

We now exemplify the use of our rules of derivation by some more 
advanced proofs. The sequents proved are themselves worth 
studying, as exhibiting some of the more basic formal properties of 
the operators concerned; the formal work deserves attention too, 
since it frequently illustrates a technique which the student should 
master as an aid to his own discovery of proofs. After many proofs 
I add notes which pick out interesting features and try to indicate 
how the proofs arc discovered. There are not, it should be re
membered, precise rules for proof-discovery; hints can be given, 
but actual practice is all-important. (To this end, the student might 
try to rediscover proofs of sequents in preceding sections.) At the 
end of the section, I add for reference purposes a statement of the 
rules introduced so far. 

29 PrP 

(I) P A 

No shorter sequent than this can be proved, and its proof is the 
shortest possible proof: yct it is worth close attention . Line (I) 
affirms that, given (1), P follows; what is (t)?- the proposition P 
itself. That is, given P, we may conclude that P, which is the sequent 
to be proved. Is this really sound? It is often thought that to infer 
P from P is unsound, on the grounds that the argument is circular, 
but this is a misunderstanding; certainly the argument is circular 
(in the popular sense), but a circular argument is entirely sound 
(though extremely dull). Given that it is raining, the safest possible 
conclusion is that it is raining. If I infer a proposition from itself, 
I do not err in reasoning, though I do not advance in information 
either. From this standpoint, the rule of assumptions is precisely 
based on the principle of the soundness of a circular argument; for 
the rule of assumptions affirms that, given a certain proposition, we 
can at least infer that proposition. 

Let A and B be two propositions such that we can prove both the 
sequent ArB and the sequent BrA; then we say that A and B 
are interderivable, and we write the fact thus: 

A-Ir B, 
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using a suggestive symbol. For example, a comparison of sequents 
13 and 16 (Section 3) reveals that (P & Q) -+- Rand P-+- (Q -+- R) 
are interderivable, so that we may write in summary: 

30 (P & Q)->-R ,f P->-(Q->- R) 

In establishing an interderivability result, the work naturally falls 
into two halves. Thus: 

31 P&(PvQ),fP 

(a)P&(Pv Q)fP 

I (I)P&(PvQ) A 

I (2)P I&E 

(b)HP&(Pv Q) 

(I) P A 

(2)PvQ IvI 

(3)P&(PvQ) 1,2&1 

In proving (31(b) that P &(P v Q) follows from P, we prove that 
each conjunct follows separately: that P follows from P is in fact 
given at line (1) (compare 29 above and the note following). 

32 Pv(P&Q),fP 

(a)Pv(P&Q)fP 

(I)Pv(P&Q) A 

2 (2) P A 

3 (3) P & Q A 

3 (4) P 3 &E 

I (5) P 1,2,2,3,4 vE 

(b)HPv(P&Q) 

I (I) P A 

I (2) Pv(P & Q) I vI 

In 32(a), to show that P follows from the disjunction P v (P & Q), 
we need to show that it follows from each disjunct in turn in 
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order to apply vE. That P follows from P is given by line (2) 
(compare again 29), and tbat it follows from P & Q is proved by 
&E at line (4). This should explain the double citation of' 2 ' at 
line (5) on the right: the first' 2 ' signifies the assumption of the first 
disjunct P at that line, and the second' 2 ' signi fies that the con
clusion P is derived from that assu.mption at the same line. 

33 PvP~I- P 

(a)PvPI-P 

1 (1) Pv P A 

2 (2)P A 

1 (3) P 1,2,2,2,2 vE 

(b) P f P v P 

(1) P A 

1 (2) P v P 1 vI 

33(a) line (3) reveals a limiting case of the use of vE. To derive P 
from P v P, by vE we need to show that P follows from each disjunct 
in turn; but the disjuncts are the same. P itself, so that the whole 
work is done by line (2): hence the four citations of' 2' to the 
right at line (3). 

J4 P, - (P & Q) f - Q 

1 (I) P A 

2 (2) - (P & Q) A 

3 (3) Q A 

1,3 (4) P & Q 1,3 &1 

1,2,3 (5) (P & Q) & - (P & Q) 2,4 &1 

1,2 (6) - Q 3,5 RAA 

To derive - Q. we proceed indirectly and assume Q, hoping to 
obtain a contradiction; this is achieved at line (5), whence RAA 
yields tbe desired sequent. The principle of reasoning associated 
with 34 has the medieval name modus ponendo tollens: if P is the 
case, and it is not the case that both P and Q, then it is not the case 
that Q. 
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3S P+Q,f - (P&-Q) 

(a) P+ Q f - (P & - Q) 

I (I) P+ Q A 

2 (2)P& - Q A 

2 (3) P 2 &E 

2 (4) - Q 2 &E 

1,2 (5) Q 1,3 MPP 

1,2 (6)Q&-Q 4,5 &1 

I (7) -(P & - Q) 2.6 RAA 

(b)-(P&-Q)fP+Q 

(1) - (P & - Q) A 

2 (2) P A 

3 (3) - Q A 

2,3 (4) P & - Q 2,3 &1 

1,2,3 (5) (P & - Q) & - (P & - Q) 1,4 &1 

1,2 (6) - - Q 3,5 RAA 

1,2 (7) Q 6DN 

(8) P+ Q 2,7 CP 

35(a): another indirect proof- we assume (line (2» P & - Q and 
aim for a contradiction. Lines (3) and (4) unpack by &E the 
information of line (2), and the desired contradiction is almost 
immediate (line (6». 36(b) is a little more complex. Aiming to 
prove P+ Q. we assume P (line (2» and t ake Q as a subsidiary 
target, relying on CP to redress the balance at the last step. There 
seems. to be no direct way of deriving Q from (I) and (2), so we 
assume - Q (line (3» and aim for a contradiction. By &1, assump
tions (2) and (3) contradict assumption (I). as we establish at line 
(5). By RAA, this yields - - Q from (1) and (2), and hence Q 
(line (8)) by DN. 

36PvQ,f- (- P& - Q) 

(a) Pv Q f ·_( - P & - Q) 

(I) P v Q A 
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2 (2) -P&-Q A 
3 (3) P A 
2 (4) - P 2 &E 
2,3 (5)P&-p 3,4 &1 
3 (6) - ( - P & _ Q) 2,5 RAA 
7 (7) Q A 
2 (8) - Q 2 &E 
2,7 (9)Q& _ Q 7,8 &1 
7 (10) -(-P & - Q) 2,9 RAA 
I (II) - (-P& _ Q) 1,3,6,7,10 vE 

(b) - ( - P & - Q) f p, Q 
I (I) - ( - P & - Q) A 
2 (2) - (Pv Q) A 
3 (3) P A 
3 (4) P v Q 3 vI 
2,3 (5) (P v Q) & - (P v Q) 2,4 &1 
2 (6) - p 3,5 RAA 
7 (7) Q A 
7 (8) Pv Q 7 vI 
2,7 (9) (P v Q) & _ (P v Q) 2,8 &1 
2 (l0) - Q 7,9 RAA 
2 (II) - P & - Q 6,10 &1 
1,2 (l2) (- P & - Q) & _(_ P & _ Q) I,ll & 1 

(13) -- (Pv Q) 2,12 RAA 
(14) P v Q 13 DN 

Both 36~a). and 36(b) ar~ instructive proofs, and merit close scrutiny. 
:he baSIC Idea of .36(0) IS proof by vE. Given a disjunctive assump. 
tlon, we assume (hne (3» the first disj unct and aim for the conclusion 
and as~ume (line (7» the second di sj unct and aim for the sam; 
conclUSIOn. In each case, the conclusion is obtained by RAA, so 
~at ~'e assume ?nce a~d for all (line (2» - P & _ Q whose negation 

e WIsh to denvt". Lmes (3)- (6) achieve the first objective. lines 
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(7)-(10) the second. The basic idea of 36(b) is proof by RAA. We 
assume (line (2» the negation of the desired conclusion, and aim for 
a contradiction. Clearly what contradicts assumption (I) is 
- P & - Q. so that the objective becomes to derive - P and -Q 
separately from (2). To derive - P, we assume P (line (3», and 
obtain a contradiction (line (5»; hence - P follows from (2) (line 
(6». In a parallel way, - Q also follows from (2) (line (10». We 
thus achieve the desired contradiction at line (12). It is worth 
noting that at line (II) of this proof we have actually proved the 
sequent - (P v Q)" - P & - Q (compare Exercise I (j) at the end 
of the section). 

The ten rules we have used hitherto enable us to prove interesting, 
and in certain cases unobvious, results concerning the interrelations 
of our sentence-forming operators on sentences. Yet they are all 
rules which after reflection we are inclined to accept as corresponding 
to sound and obvious principles of reasoning: at least, from true 
premisses we shall not be led by them to false conclusions. It 
should be clear by now that any insights we have so far obtained 
into the proper codification of arguments are mainly due to the 
adoption of a special logical notation and of ru1es the application 
of which can be mechanically checked. Indeed, if someone queries 
our conclusions, we can present him with the proofs and ask him 
to state exactly which step he regards as invalid and why. In this 
respect, the situation is like that in arithmetic: it is idle merely to 
disagree with a certain calcu1ation; you should say where the 
mistake has been made, and why you consider it to be such. There 
is a difference, however: calculations can be performed, as well as 
checked, mechanically, whilst we so far know of no mechanical 
way of generating proofs-though, once discovered, a machine 
could certify them as valid. 

SUMMARY OF RULES OF DERIVATION 

1 Rule of Assumptions (A) 
Any proposition may be introduced at any stage of a proof. We 

write to the left the number of the line itself. 

2 Modus Ponendo Ponens (MPP) 
Given A and A-+- D, we may derive B as conclusion. D depends 

on any assumptions on which either A or A -+- B depends. 
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3 Modus Tollendo Tollens (MTT) 
Given - B and A-+ B, we may derive -A as conclusion. -A 

depends on any assumptions on which either -8 or A -+ 8 depends. 

4 Double Negation (ON) 
Given A, we may derive - - A as conclusion, and vice versa. In 

either case, the conclusion depends on the same assumptions as the 
premiss. 

5 Conditional Proof(CP) 
GiYen a proof of B from A as assumption, we may derive A -+ 8 

as conclusion on the remaining assumptions (if any). 

6 &·/nfroduction (&1) 
Given A and B, we may derive A & B as conclusion. A & B 

depends on any assumptions on which either A or B depends. 

7 &-Elimination (&E) 
Given A & B, we may derive either A or B separately. In either 

case, the conclusion depends on the same assumptions as the 
premiss. 

8 v-introduction (vI) 
Given either A or B separately, we may derive A v B as con

clusion. In either case, the conclusion depends on the same 
assumptions as the premiss. 

9 v-Elimination (vE) 
Given A 'v B, together with a proof of C from A as assumption 

and a proof of C from B as assumption. we may derive C as con· 
clusion. C depends on any assumptions on which A v B depends 
or on which C depends in its derivation from A (apart from A) or 
on which C depends in its derivation from B (apart from B). 

10 Reductio ad Absurdum (RAA) 
Given a proof of B & - B from A as assumption, we may derive 

-A as conclusion on the remaining assumptions (if any). 

Note: The biconditional-sign • ~ • is introduced by the following 
definition: 

DJ. -++-: A-++- B ~ (A ->- B) & (B ->- A) 

This definition permits the replacement of A ~ B appearing in a 
conclusion by ( A -+ B) & (B -+ A),. and vice versa. 

40 

EXERCISE 

Find proofs for the following sequents: 

(a) Pv Q-/fPV Q 

(b)P&'P·n·P 

(e) P &. (Q v R) ~f. (P &. Q) v (P &. R) 

(d)pv(Q &. R) ~ f- (Pv Q) &(Pv R) 

(e) P &. Q ~f- -(P+ -Q) 

(f) -(Pv Q)<> -P&-Q 

(,) _ (P & Q) <> -Pv-Q 

(h) P & Q <> -(-Pv -Q) 
(i)P+Qf--PvQ 

, 1.., ,; U)-P+Qf-PvQ 

Resume of Rules 
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