Future Trends in Blood and Marrow Transplantation

REMEMBERING

DR. E. DONNALL THOMAS

1920 - 2012

1990 Nobel Laureate Father of Bone Marrow Transplantation

Evgenios Goussetis

- History of hematopoietic stem cell transplantation (HSCT)
 - From first human studies to current developments
- Overcoming HLA-Barriers
- Adoptive T-cell therapy
- Synthetic Immunology
- Stem Cells
- Gene Therapy
- Future directions of SCT

Highlights in HSCT

- 1957: marrow infused intravenously
- 1958: reports of successful identical twin transplants
- 1958: HLA
- 1979: First unrelated donor
- 1989: peripheral blood stem cells
- 1990: first cord blood transplant
- 1996: first non-ablative transplant
- 2005: Haploidentical SCT
- 2007: iPSCs
- 2017: CAR-T cell therapy
- 2018: Gene therapy for βthalassemia

Thomas et al J Clin Invest 1959

HSCT

Type of HSCT

- Allogeneic HSCT
 - 1. Identical twin (Syngeneic)
 - 2. HLA identical sibling donor
 - 3. HLA identical related (other than sibling) donor
 - 4. HLA matched unrelated donor
 - 5. HLA-Haploidentical related donor
- Autologous HSCT

Source of Graft

- Bone Marrow
- Peripheral Blood Stem Cells
- Cord Blood Stem Cells

Indications for HSCT

- Cancer:
 - Leukemia
 - Myelodysplasia
 - Lymphoma
 - Breast cancer
 - Testicular cancer
 - Ovarian cancer
 - Brain tumors
 - Pediatric tumors
 - Multiple myelomas
 - Sarcomas
 - Kidney cancers

- Non Cancers:
 - Aplastic Anemias
 - Metabolic disorders
 - Autoimmune diseases
 - Rheumatoid arthritis
 - Juvenile and adult
 - Multiple Sclerosis
 - Scleroderma
 - Systemic Lupus
 - Immune deficiency
 - Sickle cell anemia
 - Thalassemia

Elements of HSCT

- Selection of donor
 - Based on tissue typing of 6-10 HLA antigens in allogeneic transplantation
 - Tissue typing unnecessary in autologous transplantation
- Harvest of stem cells from donor
 - Bone marrow harvest or apheresis of peripheral blood
- Preparative regimen
 - Chemo-radiation for ablation and immune suppression
- Stem cell infusion
- Post-transplant supportive care
 - Autologous 100 days
 - Allogeneic 180 days or longer for tolerance to develop

HLA and HSCT

- Histocompatibility Locus Antigens (HLA) are determinants of immunologic "self" and "not-self"
 - Immunologic "password"
 - Allows for effective immune response against infections, cancer
- T cell reaction to foreign HLA molecules (donor) is a major problem of transplantation (alloreactivity)
 - Need good donor and recipient match for HLA sites
 - Cause of acute rejection in organ transplant, and of GVHD in BMT.

HLA Typing in HSCT

- Family members typed with patient for HLA A, B and DR
 - Likelihood of 6/6 or 5/6 match depends on frequency of recipient HLA haplotype
- Likelihood of unrelated donor match related to haplotype frequency in general population
 - Some HLA combinations more frequently found among ethnic groups
 - Ethnic sequestration phenomenon

8	b	C	d	
A1	A2	A3	A25	
B8 B8	B44	B7 DB2	B18	
DI IO O	O DIT	Ditt	O DIT!	
A1,2;B8,4	4;DR3,4	A3,25;	87,18;DR2,7	
FAT	FATHER		MOTHER	
SIBLINGS:				
ac	a	d	bc	
A1 A3	A1 🔒	A25	A2 A3	
B8 B7	B8	B18	B44 B7	
	DH3	OR7		
bd	a	c		
A2 A25	A1	A3		
B44 B18	B8	B7		
DR4 🛛 🖾 DR7		DR2		

Probability of having compatible HSC donor

Increasing Donor Pool Essential

- Time from search to unrelated donor: 4 months
 - Often relapse prevents coming to transplant
- Greater efforts are needed to increase participation and minority representation in the volunteer donor pool (NMDP)
 - Education regarding safety and need
- Increasing cord blood donation may help some
 - Everyone has umbilical cord blood they won't use
 - No risk to donate
 - Better reflects the local population demographics

Preparation for SCT

- Immune suppression *and* myeloablation required
 - Bone marrow failure states require more immunosuppression
 - Immune deficiency without empty marrow leads to rejection.
 - Chemotherapy induces aplasia to allow engraftment
- Additional merits of marrow ablation
 - Provides marrow "space"
 - Eradicates malignant cells
 - Reset of the recipient immune system
- Preparative regimens before transplant provide aplasia *and* immune suppression

Classification of Pediatric Conditioning Regimens

Decreasing Reliance on GVT

* These two regimens have been associated with lower rates of transplant-related mortality compared with standard myeloablative approaches and are often referred to as reduced toxicity myeloablative regimens.

Hematopoietic Reconstitution

- Bone marrow cellularity decreased months post transplant
- Immunologic reconstruction over 100 days post transplant
 - Graft-vs.-host disease (GVHD) delays immune reconstitution
- Immune deficits expected:
 - T cell and B cell dysfunction.
 - Low Ig levels for three months, normal IgG and IgM by one year, IgA by two year
 - Predisposes to fungal, viral and bacterial infection

Complications

Pancytopenia	Neutropenia				
	Thrombocytope	nia			
Regimen-related toxicities	Mucositis				
	VOD				
	Idiopathic	pneumonia			
Graft-vs-host disease	Acuto CV/H	D			
	Acute GVH	D	Chi	ronic GVHD	
Infections	Gram positive Gram negative				
Bacterial			Encapsulate	ed bacteria	
Fungal	Candida		Lineapoulai		
	Asp	ergillus			
Viral	HSV				
	C	MV and adend	ovirus		
				VZV	
	L		//	//	
Da	y0 Day30	Day 60	Day 90	Day 180	Day 360

Outcome in pediatric ALL

Outcome in **B-Thalassemia**

Bone Marrow Transplantation (2012) 47, 1061 - 1066 © 2012 Macmillan Publishers Limited All rights reserved 0268-3369/12

npg

www.nature.com/bmt

ORIGINAL ARTICLE

HLA-matched sibling stem cell transplantation in children with β -thalassemia with anti-thymocyte globulin as part of the preparative regimen: the Greek experience

E Goussetis¹, I Peristeri¹, V Kitra, G Vessalas, A Paisiou, M Theodosaki, E Petrakou, MN Dimopoulou and S Graphakos

The limits of success today

- HLA-Barrier
- Relapse
- GVHD
- Infections
- Regimen related mortality

What We Learned Over the Decades HLA mismatches are prohibitively toxic

Disease State/Type of Donor†	No.	TRM (%)	P*
Early			
HLA-identical sibling	805	21 ± 2	_
1-Antigen mismatched related	104	53 ± 5	< .001
2-Antigen mismatched related	24	55 ± 11	< .001
Matched unrelated	181	53 ± 4	< .001
1-Antigen mismatched unrelated	40	69 ± 8	< .001

IBMTR Szydlo et al *JCO* 1997

Ex vivo T-cell depletion

T-cell depleted haploidentical Transplantation in children with acute leukemia

Blood 2017 Aug 3;130(5):677-685

Development of Post-Transplant Cy Back to the future (Santos & Owens, 1960s-70s)

- Cy post alloBMT prevented GVHD in mice (Santos/Owens - 1960s)
 - Only high doses (150-300 mg/kg) effective
 - Lower doses limited activity
- Standard Hopkins prophylaxis (1975-1984)
 - Low dose 7.5 mg/kg/d x 4 because of hematologic toxicity fears
- Randomized trial less effective than CsA (Santos et al Clin Transplant 1986)

Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia

Stefan O. Ciurea,¹ Mei-Jie Zhang,^{2,3} Andrea A. Bacigalupo,⁴ Asad Bashey,⁵ Frederick R. Appelbaum,⁶ Omar S. Aljitawi, Philippe Armand,⁸ Joseph H. Antin,⁸ Junfang Chen,² Steven M. Devine,⁹ Daniel H. Fowler,¹⁰ Leo Luznik,¹¹ Ryotaro Nakamura,¹² Paul V. O'Donnell,⁶ Miguel-Angel Perales,¹³ Sai Ravi Pingali,¹ David L. Porter,¹⁴ Marcie R. Riches, Olle T. H. Ringdén,¹⁶ Vanderson Rocha.¹⁷ Ravi Vii.¹⁸ Daniel J. Weisdorf.¹⁹ Richard E. Champlin,¹ Mary M. Horowitz,² Ephraim J. Fuchs,¹¹ and Mary Eapen² **Blood. 2015;126(8):1033-1040**

However, it is now time to unlearn

Less GVHD with Haplo/PTCy

Table 5. Multivariate analysis (subset): risks of acute and chronic GVHD, nonrelapse mortality, relapse, and OS by donor type

	Transplant conditioning regimen intensity			
Outcome H	Myeloablative* Hazard ratio (95% CI)	Reduced intensity† Hazard ratio (95% CI)		
Grade 2-4 acute GVHD				
Matched unrelated donor	1.00	1.00		
Haploidentical donor	0.37 (0.23-0.61) P = .0001	0.71 (0.44-1.15) P = .16		
Grade 3-4 acute GVHD				
Matched unrelated donor	1.00	1.00		
Haploidentical donor	0.33 (0.14-0.81) P = .02	0.21 (0.05-0.86) P = .03		
Chronic GVHD				
Matched unrelated donor	1.00	1.00		
Haploidentical donor	0.44 (0.29-0.66) P = .0001	0.45 (0.28-0.71) P = .0006		

Are VUD transplants levelling off

	Donor type			
	Identical Sibling	Haploidentical family	Unrelated	
Income group				
Very high	390	77	978	
High	283	106	321	
Upper	102	16	16	

Transplant rates per 10 million inhabitants (TR) over the years 2012–2016 by donor choice and income group

Relapse and infections still remain...

Cellular therapies:

Adoptive transfer of viral-specific T-cells Donor Cell (T-cells or NK cells) Infusions Recipient or allogeneic CAR-T or CAR-NK cell infusions

Cell therapy for HSCT - The vision

Transplant CD34 cells unmanipulated / T cell depleted

Immunosuppression

Viral specific T-cytotoxic cells

IFNγ capture method IFNγ

Saglio et al, 2014

CliniMACS Prodigy Cytokine Capture System

Third party recipients

CAR-T Cells

Signaling of conventional and CAR-T cells

Eliana clinical trial: Results

N Engl J Med. 2018 February 01; 378(5): 439-448.

The rates of event-free survival and overall survival were 73% and 90%, at 6 months and 50% and 76% at 12 months

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors

N ENGLJ MED 382;6 NEJM.ORG FEBRUARY 6, 2020

Types of Stem Cells on the basis of their Differentiation Potential

Totipotent:

 potential to become any cell type in the body including placenta.

Pluripotent:

 potential to make any differentiated cell in the body

Multipotent:

 produce only cells of a closely related family of cells e.g. hematopoietic stem cells.

Unipotent

 produce only one cell type, but have the property of self-renewal

Where do pluripotent stem cells come from?

Embryonic stem cells

Disease specific iPSCs for the study and therapy

Original Article

CELLULAR REPROGRAMMING Volume 16, Number 6, 2014 © Mary Ann Liebert, Inc. DOI: 10.1089/cell.2014.0050

Generation of Human β-Thalassemia Induced Pluripotent Cell Lines by Reprogramming of Bone Marrow–Derived Mesenchymal Stromal Cells Using Modified mRNA

Ioanna Varela,^{1,5} Angeliki Karagiannidou,¹ Vasilis Oikonomakis,² Maria Tzetis,² Marianna Tzanoudaki,³ Elena-Konstantina Siapati,⁴ George Vassilopoulos,⁴ Stelios Graphakos,¹ Emmanuel Kanavakis,^{2,5} and Evgenios Goussetis¹

Gene therapy in the clinic

Nienhuis et al, Cold Spring Harb Perspect Med 2012;2:a011833

"Off-the-shelf" lymphocytes for the treatment of cancer

