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1Chapter 7

2Gene-Gene and Gene-Environment AU1Interactions

3Andrew T. DeWan

4Abstract

5Identifying gene–gene and gene–environment interactions may help us to better describe the genetic
6architecture for complex traits. While advances have been made in identifying genetic variants associated
7with complex traits through more dense panels of genetic variants and larger sample sizes, genome-wide
8interaction analyses are still limited in power to detect interactions with small effect sizes, rare frequencies,
9and higher order interactions. This chapter outlines methods for detecting both gene-gene and gene-
10environment interactions both through explicit tests for interactions (i.e., ones in which the interaction is
11tested directly) and non-explicit tests (i.e., ones in which an interaction is allowed for in the test, but does
12not test for the interaction directly) as well as approaches for increasing power by reducing the search space.
13Issues relating to multiple test correction, replication, and the reporting of interaction result in
14publications.

15Key words Interaction, Epistasis, Environment, GWAS, Power, Replication

161 Introduction

17An AU2interaction results when the effect of one factor is only evident
18in the presence of another. These factors could be genetic markers
19and/or environmental exposures. Much has been written on the
20topic of gene-gene (also known as epistasis) and gene-environment
21interactions with several comprehensive reviews of study designs
22and methods for analyzing both gene-gene [1–3] and gene-
23environment interactions [4, 5]. But why are we interested in
24studying interactions? Both gene-gene and gene-environment and
25potentially gene-gene-environment interactions allow us to better
26describe the underlying genetic architecture of a particular trait and
27as such we can begin to fill in the missing heritability [6] for a
28particular phenotype.
29Biological interactions were originally defined as the situation
30when the phenotypic effect of one gene was only evident in the
31presence of a second gene [7]. In contrast, a statistical interaction is
32defined as a departure from a linear model combining two or more
33genetic factors (or a genetic factor and environmental factor) [8].
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34Another way to think about this is that biological interactions are
35observed at the individual level and statistical interactions at the
36population level, but this does not imply that observing evidence of
37one will lead to observing evidence of another [9]. The traditional
38method to test for statistical interactions is to use a regression-based
39model that includes main effect variables representing each genetic
40factor and an interaction term (the product of the main effect
41variables), and then testing for the significance of the interaction
42term after adjusting for the main effects. However, several other
43methods exist to test for statistical interactions and these will be
44discussed as well.
45We now have the ability to conduct very dense genome-wide
46association studies with up to five million genetic markers geno-
47typed at one time and millions more imputed using large reference
48panels from population-based sequencing projects. The combina-
49torial problem can be immense if you attempt to look at all possible
50marker combinations with little power to detect significant inter-
51actions after accounting for all interactions tested. Given the expo-
52nential improvements in computational power and the relative ease
53of parallel computing, the computational hurdles of examining all
54pairwise gene-gene interactions are not insurmountable, and
55exhaustive searches of higher order interactions will follow. How-
56ever, the immense power constraints on currently available sample
57sizes, while improving with studies routinely examining 10,000 to
58more than 100,000 subjects, are still underpowered to detect inter-
59actions with modest effect sizes (OR < 1.2) and low frequency
60variants (minor allele frequency [MAF] < 0.01). Though marker
61pruning using linkage disequilibrium can reduce this problem
62somewhat, there are several other data reduction approaches that
63will be discussed based on prior biological knowledge or statistical
64evidence for association. These can mitigate the multiple testing
65burden but depend heavily on the quality of this prior information.
66Similar to gene-gene interactions, gene-environment interac-
67tions arise when the effect of a genetic factor on a phenotype is
68dependent on the presence or absence of an environmental factor.
69Statistically, this can be tested in a similar fashion as for gene-gene
70interactions traditionally done using a regression-based model with
71main effects for the genetic factor and environmental factor and an
72interaction term and testing for the significance of the interaction
73term. This environmental factor may be one traditionally thought
74of as an environmental exposure such as smoking, indoor NO2

75levels, or sun exposure, but these could also be other potentially
76genetically influenced phenotypes such as obesity, blood glucose
77levels, or birthweight that may be influencing the effect of the
78genetic factor depending on the value of these secondary
79phenotypes.
80As outlined below, direct assessment of interactions (termed as
81“explicit” test) is often less powerful than joint tests that include
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82either an interaction term or allow for interaction but do not test
83for the significance of the interaction directly (termed as “non-
84explicit” test). This classification of tests for interactions will be
85used throughout this chapter as different approaches and tests are
86discussed.

872 Materials

2.1 Data

2.1.1 Genotype Data

88The core of both gene-gene and gene-environment interaction
89analyses is obtaining high-quality genotype data. One may use
90data generated specifically for a particular project, but there are
91also many outstanding datasets available for analysis from a number
92of online repositories.
93If samples are being genotyped for the specific project there are
94many options available. There are whole genome microarray panels
95of markers based on relatively even coverage across the genome,
96panels of markers that maximize the coverage for specific race/
97ethnic groups, and panels that allow custom markers to be added-
98on to existing panels to increase coverage of specific genes of
99interest or previously associated markers, for example. There are
100also panels of markers that target specific regions of the genome
101such as the exonic regions, cancer-associated genes, and metabolic
102genes. The selection of the right microarray will depend on your
103specific study hypotheses, type of study, and budget. Lower
104throughput genotyping can be done for single variants to hundreds
105of markers simultaneously depending again on the hypotheses and
106goals of the project.
107Genotyping known panels of markers is not the only choice for
108interaction studies. One could choose to utilize sequencing-based
109approaches to genotype unknown variants and/or low frequency
110and rare variants. Whole genome or whole exome sequencing could
111be utilized for hypothesis-free analyses or targeted sequencing if
112specific genes or pathways are hypothesized to be involved in the
113interaction(s).
114If secondary data analysis is an option, there are a plethora of
115datasets with genome-wide data available as well as extensive phe-
116notype data. Two such repositories are the database of genotype and
117phenotype (dbGaP) maintained by NCBI primarily of studies con-
118ducted in the United States (https://www.ncbi.nlm.nih.gov/gap)
119and the European Genome-phenome Archive (EGA) maintained
120by EBI primarily of studies conducted in Europe (https://www.ebi.
121ac.uk/ega/home). These databases contain hundreds of datasets
122accessible through an application to the respective data access
123committees.
124

2.1.2 Environmental Data 125The environmental factors that could be considered in a study of
126gene-environment interactions are extremely broad. These include
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127chemical (e.g., polychlorinated biphenyl (PCB)), physical (e.g.,
128airborne particulate matter), biological (e.g., viral infections), and
129lifestyle (e.g., physical activity). The measurement of each of these
130individual environmental factors is going to vary widely depending
131on the environmental factor of interest. This could range from
132measure NO2 levels in the air via chemiluminescence, measuring
133radiation exposure via a dosimeter, conducting a daily food diary to
134estimate saturated fat intake, or reviewing charts to collect data on
135BMI history. The discussion in this chapter will focus on environ-
136mental exposures at one time point, but there is some evidence that
137longitudinal environmental data may increase the power to detect
138gene-environment interactions for common diseases [10].
139

2.1.3 Biological/

Functional Data

140For analyses that are pursuing a hypothesis-driven approach and/or
141filtering based on biological information, one may want to utilize
142prior biological or functional data. There are a variety of databases
143and programs that can be accessed to provide this type of informa-
144tion. One could simply curate information from publications in the
145scientific literature through systemic reviews of publications in
146databases such as PubMed. Data on functionality of variants can
147be obtained more systematically from databases such as ENCODE
148(Encyclopedia of DNA Elements) [11] that contains a comprehen-
149sive list of functional elements at both the RNA and protein levels
150and is available for viewing or downloading from the UCSC
151Genome Browser (www.genome.ucsc.edu/ENCODE). Direct
152annotation of variants could be conducted using a program such
153as Annovar [12] to annotate variants as to their respective genes,
154coding vs. noncoding, and predicted functional consequence. An
155alternative annotation program more directly related to filtering
156variants for interaction analyses is Biofilter which allows for the
157annotation of variants based on previous association studies and
158biological knowledge, filtering variants based on specific biological
159hypotheses, and building sets of testable variant interactions based
160on implication indices compiled from available data [13].
161

2.1.4 Previous

Statistical Data

162For analyses filtering variants based on prior statistical knowledge,
163data from one’s own GWAS or single-variant association study
164could be used, results mined from previous publications or, alter-
165natively, association results obtained from databases such as the
166GWAS Catalog (http://www.ebi.ac.uk/gwas/). While results
167from previous publications or the GWAS Catalog are a convenient
168and useful resource, they have the disadvantage of being biased
169toward reporting only genome-wide significant results and other
170nominally significant results will likely not be available and should
171be kept in mind when planning the analysis approach.
172

2.2 Software 173Below are a listing of programs that can be used to conduct gene-
174gene and/or gene-environment interaction analyses with other
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175programs mentioned and described throughout the chapter. This is
176not an exhaustive list and is only an example of programs that are
177commonly used to assess interactions in genetic epidemiological
178studies. Additional programs not directly related to the interaction
179analysis such as for computing eigenvalues from principal compo-
180nents analyses (e.g., EIGENSTRAT [14]) and imputation of var-
181iants (e.g., IMPUTE2 [15]) are not listed.
182

2.2.1 PLINK 183This is a suite of tools designed to conduct genome association
184analyses, including both gene-gene and gene-environment interac-
185tions [16]. The primary interaction analyses are based on logistic
186and linear regression. They can accommodate both gene-gene and
187gene-environment interactions on the genome-wide scale or on a
188smaller number of variants by creating subsets of genetic variants to
189test again each other or the environmental factor. The program has
190the flexibility to conduct both explicit tests for interaction by
191testing for the significance of the interaction term directly in the
192regression model or a non-explicit joint test by testing the main and
193interactions effects. There is also a faster option for conducting
194genome-wide gene-gene interactions ( fast-epistasis) based on the
195Z-score for the differences in OR for SNP-SNP combinations
196between cases and controls or for cases alone (case-only test).
197

2.2.2 CASSI 198This is a software package that is specifically designed to conduct
199genome-wide gene-gene interaction analyses in a computationally
200efficient manner ([17]; https://www.staff.ncl.ac.uk/richard.
201howey/cassi/index.html). This package corrects a minor error in
202the Wu et al. statistic [18] in the calculation of the variance for
203estimated rather than observed haplotypes and in the fast-epistasis
204variance originally implemented in PLINK.
205

2.2.3 BOOST 206The Boolean Operation-based Screening and Testing (BOOST)
207program was designed to efficiently screen and then explicitly test
208for genome-wide gene-gene interactions [19]. The screening phase
209involves a non-iterative procedure to approximate the likelihood
210ratio and then all variant pairs that survive this screening are sub-
211jected to a classical likelihood ratio test in the testing phase.
212

2.2.4 MDR 213The Multifactor Dimensionality Reduction (MDR) software pack-
214age [20] is designed to conduct data mining on discrete variables
215and can be used to detect both gene-gene and gene-environment
216interactions and dichotomous outcomes [21]. The traditional
217MDR approach is a non-explicit test for interaction as it is a non-
218parametric test that combines factors that may be interacting in
219order to best discriminate the subjects among the dichotomous
220outcome. An extension of the MDR has been developed that
221incorporates a permutation-based approach that can explicitly test
222for interactions [22]. A recent extension to the MDR has
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223implemented a t-test approach that allows for quantitative out-
224comes [23]. The MDR method, however, is designed primarily
225for smaller sets of markers, but parallel computing could be utilized
226to conduct a genome-wide analysis.
227

2283 Methods

3.1 Quality Control
(QC)

229No analysis can be successful without high-quality data. The spe-
230cific steps of the genotype QA/QC will depend on the type of assay
231used to generate the genotypes. These range from single-variant
232assays based on PCR, whole genome microarray genotyping, and
233whole-exome and whole-genome sequencing. A brief outline of the
234QC steps for each is outlined below.
235

3.1.1 Single-Variant QC 236The primary steps are to assess the overall performance of the
237individual genotyping assays through examination of the variant
238call rate (variant call rate ¼ total number of genotype calls/total
239number of individuals genotyped) and Hardy-Weinberg Equilib-
240rium (HWE). While the thresholds chosen to eliminate variants can
241be arbitrary, typically one would look for variant call rates >98%
242(which should be examined in cases and controls separately if con-
243ducting a case-control analysis to ensure no bias due to differences
244in call rates between cases and controls) and HWE p-values >10"4

245which if conducting a case-control study are assessed only in con-
246trols. Without the benefit of genome-wide genotype data it is
247impossible to assess the data for population stratification, but
248adjustments can be made in the analysis (if using regression-based
249methods) for relevant covariates that may capture potential stratifi-
250cation such as self-reported race/ethnicity.
251

3.1.2 Microarray QC 252As with single-variant QC, one will examine both the individual
253variant call rates and HWE to ensure that each variant probe is
254generating high-quality genotype data with similar thresholds
255applied as mentioned above. However, additional steps can and
256should be taken into account. The individual subject call rates
257should be examined first to determine if there were general pro-
258blems with the individual array and/or DNA. These call rate
259thresholds may range from 93% to 98% and are often suggested
260by the array manufacturer-based past performance of the array
261(subject call rate ¼ total number of genotype calls for an individual
262subject/total number of variants attempted to be genotyped).
263Poorly performing subjects should be removed prior to any down-
264stream QC steps. Population stratification should be assessed using
265a genome-wide procedure such as principal components analysis to
266determine if there are slight variations in the genotype frequencies
267between subpopulations within your dataset. This procedure can
268detect any systematic differences that may be due to differences in
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269allele frequencies arising ancestry differences, but also due to exper-
270imental/processing differences (e.g., plate effects). If significant
271principal components (PCs) are detected it is suggested that these
272PCs be adjusted for in the analysis. If the analysis assumes unrelated
273subjects it is suggested that the dataset be examined for cryptic
274relatedness using a procedure such as estimate pairwise identity-by-
275decent (IBD). This pairwise measure that is often used is bpi . Again,
276the threshold for identifying cryptically related subjects is arbitrary
277one often chooses a threshold ranging from 0.125 to 0.2 and then
278eliminates one of the two subjects in this cryptically related pair.
279This can be done randomly, or one may want to eliminate the
280subjects based on the subject call rate (eliminating the subject
281with a fewer genotype calls) or if it is a case-control study and a
282cryptically related pair is comprised of a case subject and a control
283subject it may be beneficial to eliminate the control if cases are in
284short supply.
285To assess whether or not the QC steps that have been taken are
286successful prior to conducting an interaction analysis, it would be
287beneficial to conduct a genome-wide single-variant analysis and
288examine QQ plots and/or estimate λ from the data after
289adjusting for PCs and other covariates. QQ plots can be generated
290using an R script such as qqman.r (https://CRAN.R-project.org/
291package¼qqman) and λ estimated using PLINK. Deviations from
292the expected line on the QQ plot are not expected except at the tail
293(i.e., the true positives) and with deviations along much of the
294expected line being an indication of residual population stratifica-
295tion. λ estimates greater than 1.05 are routinely seen as indicators of
296population stratification and additional PCs should be adjusted for
297until the lambda value falls below this threshold. This assessment is
298typically done in single-variant analyses prior to any interaction
299analyses.
300

3.1.3 Sequencing QC 301Specific workflows for alignment, variant calling, and variant
302QA/QC and filtering are described in detail elsewhere (see Ref.
30324 for a detailed step-by-step pipeline covering the major sequenc-
304ing analysis tools). Briefly, a standard analysis pipeline would start
305by aligning the FASTQ raw sequence reads to a reference genome
306using the Burrows-Wheeler Aligner (BWA, [25]).Then converted
307to BAM format, sorted, indexed, PCR duplicates marked and then
308merged into AU3one BAM file using SAMtools [26]. Finally, the align-
309ments in the BAM file can be locally realigned around insertion/
310deletions, recalibrated and variants called using HaplotypeCaller in
311the Genome Analysis Toolkit (GATK, [27, 28]).
312Variant QC can utilize a variety of different metrics, but an
313example of one approach is how we conducted our QC in our
314whole-exome sequence analysis of a family segregating asthma [29].
315Variants were flagged (and not considered further in our analysis) if
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316theymet any of the following criteria: three ormore variants detected
317within 10 bp; four or more alignments map to different locations
318equally well; coverage of less than five reads; quality score <50; low
319quality for a particular sequence depth (variant confidence/unfiltered
320depth <1.5); and strand bias (Phred-scaled p-values using Fisher’s
321Exact Test>200). There are many variations that can be employed in
322your QC pipeline, but the most important aspect is achieving the
323highest quality set of variants to retain in your analysis.
324

3.1.4 Linkage

Disequilibrium Pruning

325Reducing the number of variants considered in the analysis, regard-
326less of genotyping method, can be accomplished by linkage dis-
327equilibrium (LD) pruning. LD is an indication of the correlation,
328or non-independence, between variants and can be measured using
329r2 or D’. A typical r2 threshold used to prune variants is 0.8, but a
330lower threshold can be used to eliminate more variants at the risk of
331excluding some that are independently informative. This procedure
332is particularly important when conducting a case-only gene-gene
333interaction analysis (discussed in Subheading 3.2.12) as the variants
334must not be correlated with each other.
335

3.2 Gene-Gene
Interaction Analysis

336The basic analysis is straightforward, the assessment of a deviation
337from an additive or multiplicative model containing two or more
338variants. This is traditionally assessed through regression-based
339modeling but many different methods are available and several
340different methods will be discussed below to exemplify this
341approach. One could divide these approaches into explicit vs. -
342non-explicit tests for interactions, with explicit tests determining
343if the null hypothesis of the sum on the additive/linear scale or the
344product on the multiplicative scale of the joint effects of the two
345variants is contributing to the outcome with the alternative hypoth-
346esis being that the joint effect of the two variants is greater or less
347than the expected. Non-explicit tests are able to determine if the
348grouping of variants is associated with the outcome, but not neces-
349sarily that the variants together deviate from an additive or multi-
350plicative model. Different inheritance models can be imposed on
351the genetic variants in the interaction models (see Note 1) and the
352issue of outcome scale is also an important consideration when
353interpreting interactions (see Note 2).
354Regression-based approaches are attractive not only for their
355ability to explicitly detect interactions in the data, but because of
356the ability to adjust for multiple covariates. In a genome-wide
357setting this is important so that significant principal components
358can be adjusted to remove population stratification, but other
359potential confounders can be adjusted as well, including age, sex,
360etc. depending on the outcome of interest.
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3613.2.1 Logistic Regression 362For dichotomous outcomes, a logistic regression model is one of
363the most straightforward approaches for testing an interaction,
364either explicitly or non-explicitly. In the following logistic regres-
365sion model we are modeling the probability of our dichotomous
366outcome ( p) using an intercept (β0), two genetic variants (SNP1
367and SNP2, for example) and their respective main effects (β1 and
368β2) and their interaction effect (β3):

log
p

1" p

! "
¼ β0 þ β1SNP1þ β2SNP2þ β3SNP1$ SNP2

369In this model, we can test for the significance of the interaction
370effect of the two variants by testing the null hypothesis that β3 ¼ 0.
371This is an explicit test for interaction in that we are testing for an
372interaction after adjusting for the main effects (i.e., independent
373effects) of the two genetic variants. This model will produce an
374effect estimate (β3) which can easily be converted to an OR by
375expβ3. It should be noted that the main effects should not be
376interpreted as the main effect of the variants (or the variant and
377the environmental factor) since they are adjusted for the interaction
378term in the model.

379Alternatively, we can test for the significance of the joint effects
380of the two variants by using a 2 degree of freedom likelihood ratio
381test of the full model against a model in which there is neither an
382interaction term nor main effect term for one of the SNPs:

log
p

1" p

! "
¼ β0 þ β1SNP1

383While this model contains an interaction term this is a
384non-explicit test for interaction as we are testing the significance
385of the main effect of one of the SNPs and interaction term com-
386bined. This may be seen as a less desirable test but this can be more
387powerful for detecting significant signals [30]. However, this joint
388test can be significant if either of the main effects is strong enough
389or if both main effects are strong enough without a significant
390interaction term (β3). As will be discussed later, one may want to
391screen combinations of variants for joint effects and then follow up
392for explicit tests of an interaction only on the limited set of variants
393demonstrating significant joint effects.

394When reporting the results of regression-based analyses, it is
395important to report not only the significance of the interaction ( p-
396value), but also the parameter estimate of the interaction as well as
397those of the main effects (see Note 3).
398

3.2.2 Linear Regression 399For continuous outcomes, linear regression can be used to test for
400interactions in much the same way as logistic regression for dichot-
401omous outcomes. βs are not converted to ORs, but are rather
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402interpreted directly with the sign of β3, an indication of the direc-
403tion of the interaction, and the p-value for the likelihood ratio test
404of the full model versus one without the interaction term an indi-
405cation of the significance of the interaction term. A two degree of
406freedom joint test can also be constructed.
407

3.2.3 Nonparametric

Analyses

408The most popular nonparametric method for interaction analysis
409are the multidimensional reduction methods. These are based on
410the idea that across a contingency table of two or more genetic
411variant genotype combinations or genotype and discrete environ-
412mental factor combinations, each square in the contingency table
413can be divided into increasing risk and decreasing risk in the context
414of the phenotype. These collapsed contingency tables can then be
415tested for association with the phenotype. This is typically done by
416splitting the data into a training set (to build the collapsed contin-
417gency table) and a testing set to determine the classification error.
418The data are split multiple times and the model is assessed by the
419classification error and prediction error estimated from these mul-
420tiple cross-validations [21]. Due to the fact that this is a nonpara-
421metric method, a p-value is obtained for the set of factors included
422in the model, but an effect estimate is not. The significance of the
423model is interpreted as the significance of the group of factors
424(genetic variants or genetic variant(s) and environmental factors)
425but cannot be interpreted as direct evidence of an interaction.
426The model-based MDR (MB-MDR) methodology is an exten-
427sion of the classic MDR framework that allows for the direct testing
428of interactions through the use of the Wald statistic on high and
429low-risk genotype categories [22, 31]. The significance of the
430interaction is then tested using permutation testing of the maxi-
431mum Wald statistic and can be considered an explicit test of an
432interaction.
433

3.2.4 Multiple Test

Correction

434One of the biggest challenges in conducting genome-wide analysis
435in general, and more specifically interaction analysis, particularly
436gene-gene interactions, is the multiple testing problem. Given that
437hundreds of thousands or millions of variants are considered in
438most genome-wide studies, the chance of detecting a false positive
439is immense. This is even more apparent when multiple environmen-
440tal factors are considered and most problematic when all pairwise
441variant interactions are considered in an exhaustive gene-gene
442interaction search. Traditionally, genome-wide studies have
443adopted a Bonferroni correction to adjust for the number of var-
444iants analyzed, but this can be overly conservative, especially for
445dense maps of markers in high LD. However, other procedures
446such as the False Discovery Rate (FDR; [32]), LD-based variant
447counting to account only for the number of independent tests [33]
448and permutation testing [34, 35] have been adopted. Permutation
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449testing, while attractive because it accounts for the number of
450independent tests by maintaining the LD structure in the permuted
451data, is computationally intensive, even more so when all pairwise
452variant combinations need to be considered in thousands of per-
453muted datasets. Therefore, the FDR or LD-based methods are
454more attractive alternatives.
455

3.2.5 Genome-Wide

(Exhaustive) Approaches

456A typical genome-wide association study will genotype between
457100,000 and 1,000,000 singe-nucleotide polymorphisms. While
458exponential advances in computational power mean that the com-
459puting power to run the analysis on the pairwise tests required for a
460panel of 500,000 SNPs (2.5 $ 1011 tests) is not insurmountable
461and with parallel computing relatively quick, the major hurdle is
462power. While large multi-center consortium studies mean that the
463number of subjects for many subjects has greatly increased, with
464studies reaching 50,000 or more subjects depending on the fre-
465quency of the disease or phenotype, these may still not be powerful
466enough to detect significant interactions on the genome-wide scale.
467In a study of genome-wide data obtained from the Resource for
468Genetic Epidemiology Research on Adult Health and Aging
469(GERA), using 45,171 subjects for ten phenotypes and conducting
470an exhaustive search for interactions, we failed to identify any
471genome-wide significant interactions, suggesting that we were
472underpowered to detect interactions with apparently weak effect
473sizes [36].
474As demonstrated in Table 1, for a genome-wide gene-gene
475interaction study of 200,000markers using an exhaustive approach,
476requires more than 30,000 cases and 30,000 controls to achieve
477genome-wide significance for two loci each with anMAF of 0.2 and
478an interaction OR of 1.2. All power calculations presented in this
479chapter were performed in Quanto [37]. The power calculations
480assumed a population risk of the disease of 0.1 and a log-additive
481mode of inheritance and a main effect of each variant of 1.2. For a
482case-control study with 5000 cases and 5000 controls, a reasonably
483sized case-control GWAS, and 200,000 markers genotyped, the
484minimal detectable OR is just over 1.6 (Table 2). For an interaction
485OR of 1.5, the number of markers considered would need to be
486reduced to around 2000 to detect a significant interaction among
487all pairs of interactions (4,000,000) and at an interaction OR of
4881.2, only one interaction can be considered as only a nominally
489associated interaction is detectable (Table 3).
490This lack of power can be daunting, but as detailed in the
491following sections there are several ways to increase power by
492reducing the number of tests through filtering or using biologically
493informed combinations of variants.
494
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3.2.6 Data Reduction

Approaches

495In order to overcome the multiple testing burden of a genome-
496wide screen for all gene-gene interactions, it may be advantageous
497to focus on a subset of SNPs that may have a one or more properties
498that may make the interaction analysis more likely to detect a
499significant interaction. If we reduce our set of 200,000 SNPs
500down to 2000 we can now detect an interaction OR of 1.5 using
501a set of 5000 cases and 5000 controls (Table 3). Below I outline a
502series of methods to reduce the set of SNPs considered.
503

Filtering by Allele

Frequency

504The simplest method to increase power to detect interactions is to
505impose a filter by minor allele frequency (MAF). Depending on
506the sample size and subsequent power estimates, it may be advan-
507tageous to filter out all SNPs with MAFs less than the power to
508detect a reasonable interaction effect size (e.g., all SNPs with an
509MAF <0.2).
510

t:1 Table 1
Power of interaction analysis

Number of cases and controlst:2

Interaction type 5000 10,000 20,000 30,000 40,000 50,000t:3

G-G 0.000 0.003 0.164 0.654 0.940 0.995t:4

G-E 0.024 0.032 0.317 0.717 0.928 0.988t:5

t:1 Table 2
Power of case-control and case-only gene-gene interaction analyses

intOR Case-control Case-onlyt:2

1.1 0.000 0.000t:3

1.2 0.000 0.013t:4

1.3 0.004 0.547t:5

1.4 0.076 0.992t:6

1.5 0.388 1.000t:7

1.6 0.782 1.000t:8

1.7 0.961 1.000t:9

1.8 0.996 1.000t:10

1.9 1.000 1.000t:11

2.0 1.000 1.000t:12
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Filtering by Marginal

Effects

511While a significant marginal and/or main effect is not required to
512detect a significant interaction, there are few reports of significant
513interactions without also having detectable main effects. Therefore,
514it may be advantageous to filter based on marginal effects (i.e.,
515single-variant effect) and only include those variants that have, for
516example, a single-variant association p-value of <0.05 (nominal
517significance threshold). This should reduce the number of SNPs
518to approximately 5% of the starting number (for our 500,000 SNPs
519this would result in 6.25 $ 108 tests). This approach may be too
520stringent, as it requires both variants be nominally significant. An
521alternative approach would be to select a set of SNPs reaching a
522predefined significance threshold (e.g., p < 10"4) and testing this
523set of SNPs against all other SNPs. In our example with 500,000
524SNPs we would select ~50 SNPs with p < 10"4 and test for an
525interaction with the remaining 499,450 for a total of 2.5 $ 10"7

526SNPs. This balances the requirement that there be some marginal
527effect of one of the SNPs with being able to detect interactions with
528SNPs showing no marginal effects but having a significance effect
529on disease only in the presence of a second SNP.
530

Candidate Gene

Approaches

531Filtering based on prior evidence of a gene’s involvement in a
532particular disease is another approach to reducing the search space
533for interactions. Candidate genes could be selected by systematically

t:1Table 3
Power of gene-gene interaction analysis by interaction OR and number of
markers

# Markers intOR ¼ 1.2 intOR ¼ 1.4 intOR ¼ 1.5 t:2

200,000 0.000 0.076 0.388 t:3

100,000 0.000 0.107 0.465 t:4

20,000 0.000 0.221 0.649 t:5

10,000 0.001 0.289 0.724 t:6

2000 0.004 0.488 0.869 t:7

1000 0.008 0.584 0.914 t:8

200 0.037 0.793 0.975 t:9

100 0.066 0.864 0.988 t:10

20 0.219 0.966 0.999 t:11

10 0.337 0.986 1.000 t:12

5 0.488 0.995 1.000 t:13

2 0.713 0.999 1.000 t:14

1 0.865 1.000 1.000 t:15
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534reviewing the literature or for some diseases databases of candidate
535genes exist based on association studies, linkage analyses, and/or
536expression studies. For example, there are databases for preterm
537birth [38], preeclampsia [39], and non-syndromic hearing loss
538[40] for which one can obtain lists of candidate genes. By annotat-
539ing variants to their respective genes using programs such as Anno-
540var [12] only those SNPs annotated to the set of candidate genes can
541be selected for inclusion in the interaction analysis. As for the
542marginal effects, it may be advantageous to consider those SNPs
543within candidate genes against all other SNPs genotyped. In this
544way, it is possible to detect interactions with SNPs in novel genes not
545previously identified to be associated with the disease of interest.
546

Filtering by Function 547Filtering by the effects of specific variants is another approach to
548reducing the search space. Again, variants can be annotated, but
549now the selection may be made based on being a coding variant or a
550splicing variant that is more likely to be functional. Other biological
551information could also be utilized such as examining interactions
552between SNPs in genes known to be involved in protein-protein
553interactions with the rationale being that SNPs in these biologically
554interacting genes are more likely to also show evidence of a statisti-
555cal interaction. Similarly, one could examine interactions between
556variants within transcription factors and those within their binding
557sites.
558

3.2.7 Multistage

Approaches

559In order to maintain a genome-wide approach but overcome the
560hurdle of the immense multiple testing problem, it may be benefi-
561cial to employ a multistage approach. This is possible in situations
562in which a study has a large sample size, but still not adequately
563powered to detect significant interactions genome-wide. In a study
564of asthma, we first screened all pairwise interactions (9.1$ 1010) in
565a small subset of the data and then carried through all interaction
566with a suggestive significance (p < 10"5) to a follow-up stage of
567independent subjects and then attempted to replicate the top SNPs
568in a third set of independent subjects [41]. While this approach did
569not identify any genome-wide significant interactions, it did iden-
570tify a candidate interaction between SNPs in two regions of the
571genome. The major advantage of this type of approach is that it
572allows for an unbiased examination of the SNPs without relying on
573previously reported biological and/or association data.
574

3.2.8 Gene-Based

Interaction Tests

575Another approach to reduce the multiple testing burden and com-
576bine information across multiple variants is to conduct a gene-
577based test of interaction. By considering each gene as a unit in the
578interaction rather than each individual variant, the total number
579of interactions considered is significantly reduced, thus increasing
580power. One such approach combines interaction p-values across all
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581combinations of genetic variants in two genes into a single
582gene-gene interaction p-value that also accounts for linkage
583disequilibrium [42].
584It should be appreciated that these gene-based tests can be
585applied to the setting of rare variant which are increasingly being
586studied. Extensions to rare variant tests to incorporate gene-gene
587and gene-environment interactions have been developed and
588include SKAT [43] which can handle gene-gene interactions and
589iSKAT [44] and rareGE [45] for gene-environment interactions.
590

3.2.9 Replication 591Regardless of the analysis approach taken to identify gene-gene
592interactions, the gold standard is to conduct a replication analysis
593using an independent dataset. While fairly common for single-
594variant association studies, this is less routinely followed for gene-
595gene interaction analyses, as demonstrated in our systematic review
596of asthma gene-gene interactions where only 15.2% of interactions
597were attempted to be replicated [46]. The challenge is often iden-
598tifying an appropriate replication dataset in which both variants
599were genotyped. Through the use of imputation the variant to be
600replicated could be imputed if they were not directly in the inde-
601pendent dataset.
602A challenge for any replication of a genetic effect is the direc-
603tionality of the effect. Differences due to the populations selected
604that can alter the minor allele frequencies and linkage disequilib-
605rium structure can result in differences in both the magnitude and
606direction of effect [47]. This is amplified when looking at two or
607more loci as the probability of subtle differences can result in
608differences in the direction of effect when looking at interactions.
609

3.2.10 Meta-Analysis 610This data analysis technique is commonly used to pool data across
611multiple studies and increase evidence for an association with a
612genetic variant. Meta-analysis is an attractive analytical technique
613because it can be used to increase power by substantially increasing
614the total sample size. While relatively straightforward for single-
615variant analyses using either fixed or random effects models [48] or
616by combining p-values [49], this is not always the case for gene-
617gene and gene-environment interactions. Differences in the analyt-
618ical strategy and the way in which the results are presented may
619make meta-analyses more challenging. The p-value approach does
620not take into account the effect estimates, but this may be a better
621first approach as it can be used on a much broader set of analytical
622strategies such as MDR, regression-based approaches, and Random
623Forrest methods, for example. Meta-analysis methods that account
624for the effect estimate are more attractive because they can account
625for heterogeneity in both the effect estimates and between
626populations.
627
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3.2.11 Case-Only

Approach

628The case-only study design to detect interactions was first described
629for gene-environment interactions [50, 51]. This design is pre-
630mised on the idea that the variant is independent of the environ-
631mental exposure in the population. In the presence of a gene-
632environment interaction, there would be an association between
633the variant and the environmental exposure among cases only and
634this can be most easily tested using the regression-based approaches
635described above (linear or logistic depending on the environmental
636exposure being investigated); however, it should be noted that
637when using the case-only design the main effects of the variant
638and the environmental exposure cannot be determined as this is
639only possible using a case-control design.
640The case-only design is more powerful than the case-control
641design (Table 4; 5000 cases and 5000 controls for case-control and
6425000 cases for case-only, main effects ORs of 1.2 for both the
643environmental factor and genetic variant, a frequency of the envi-
644ronmental exposure of 0.25 in the population and MAF of 0.2,
645population risk of disease of 0.1 and 200,000 genetic markers). The
646major caveat is that there is an assumption that there is indepen-
647dence between the genetic variant and the environmental factor,
648i.e., that there is no association between these factors among the
649source population. Violation of this assumption can lead to biased
650estimates of the OR and there is a recommendation that a case-only
651gene-environmental interaction analysis only proceed for environ-
652mental factors with population-specific data [52]. This indepen-
653dence may be difficult to establish in population-based data, so
654independence could be tested for among controls (e.g., when a

t:1 Table 4
Power of case-control and case-only gene-environment interaction
analyses

intOR Case-control Case-onlyt:2

1.1 0.000 0.001t:3

1.2 0.002 0.063t:4

1.3 0.038 0.564t:5

1.4 0.211 0.962t:6

1.5 0.541 1.000t:7

1.6 0.829 1.000t:8

1.7 0.959 1.000t:9

1.8 0.994 1.000t:10

1.9 0.999 1.000t:11

2.0 1.000 1.000t:12
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655case-only analysis is being conducted among a case-control study)
656or replication of the finding among an independent case-control
657study. This is of particular importance when the environmental
658factor could be under genetic influence such as BMI. The substan-
659tial power gain of the case-only study makes this analysis strategy
660relatively attractive, but this is somewhat diminished by the strong
661independence assumption and the need to test this assumption in a
662set of population-based samples.
663The case-only approach can also be utilized to detect gene-gene
664interactions [53]. In the presence of an interaction between two
665genetic variants there will be an association between these genetic
666variants among cases. This is most easily tested using a logistic
667regression model using one of the genetic markers as the dependent
668variable. As with case-only gene-environment interaction analyses,
669only the interaction can be examined and not the main effects of the
670genetic variants. Independence of the genetic variants in the source
671population is assumed, but this is much easier to achieve given the
672large amounts of genome-wide genotype data available for many
673diverse populations (e.g., HapMap [54]) or the use of LD pruning
674among controls, if available (see Subheading 3.1.4).
675

3.2.12 Three or More

Variants

676Gene-gene interactions are not limited to pairwise interactions.
677Higher order interactions involving three or more variants have
678been reported (e.g., renin-angiotensin system SNPs and hyperten-
679sion [55]) and can be modeled in the regression framework. The
680problem is that as higher order interactions are considered the data
681become more and more sparse and the power to detect a significant
682interaction decreases. One approach to detecting higher order
683interactions would be to use a nonparametric, non-explicit method
684such as MDR to screen for potential higher order combinations of
685variants and then subsequently explicitly test for the interaction on
686a subset of the best performing combinations using a regression-
687based method.
688

3.3 Gene-
Environment
Interaction Analysis

689At the core, the analysis of gene-environment interactions does not
690fundamentally differ from gene-gene interactions. The analysis can
691be conducted using the regression-based or nonparametric
692approaches described above with the same caveats for testing for
693explicit vs. non-explicit interactions in the dataset. Joint, or non--
694explicit, tests may be used to screen the data to detect potential
695interactions, followed by explicit tests to determine if an interaction
696exists between the identified variant and the environmental factor.
697In the logistic regression framework, one of the genetic variant
698variables is replaced by the environmental exposure of interest and
699the significance of the interaction β is tested in the model. Using the
700non-explicit MDR approach, the environmental variable is entered
701into the algorithm with the caveat that the environmental factor
702must be categorical in order for the reduction algorithm to work.
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703The power to detect gene-environment interactions suffers
704from the same lack of power on the genome-wide scale as gene-
705gene interactions. More than 30,000 cases and controls are
706required to detect an interaction OR of 1.2 (Table 1) under similar
707parameters as the gene-gene interactions analysis (main effects of
708OR ¼ 1.2 for gene and environmental factors, MAF of 0.2, envi-
709ronmental prevalence of 0.25, population risk of disease of 0.1 and
710200,000 genetic markers tested). Using 5000 cases and 5000 con-
711trols, the smallest detectable OR is just under 1.6 (Table 4). The
712same approaches to increase power by reducing the search space can
713be applied to the search for gene-environment interaction analyses,
714through all of the data reduction techniques described for gene-
715gene interactions.
716It cannot be stressed enough that replication is the key to
717describing true positive gene-environment interactions, as was dis-
718cussed for gene-gene interactions. As mentioned previously for
719gene-gene interaction replication, if the exact genetic variants are
720not directly genotyped in the independent dataset, imputation can
721be used to estimate the genotypes to be replicated. While this will
722work for the genetic variants in gene-environment interactions to
723be replicated, this is not the case if there is not comparable environ-
724mental data in the independent dataset. This can make the identifi-
725cation and selection of an appropriate dataset for replication more
726challenging for gene-environment interactions, but makes the rep-
727lication of the findings no less important.
728

3.3.1 Modifiable

Environmental Factors

729One attractive aspect of identifying and describing gene-environment
730interactions for a complex disease is that this gives us the possibility of
731potentially modifying one contributing factor to a disease. At this
732point in time, inherited genetic variants are not modifiable, but if, for
733example, a significant gene-environment interaction were identified
734for obesity with a genetic variant and high saturated fat diet, indivi-
735duals carrying the risk variant could be more strongly encouraged to
736reduce their saturated fat intake.Despite the general benefit we could
737all gain from reducing our saturated fat intake, this may be more
738effective if it were targeted to individuals basedon their genetic profile
739and increased risk for obesity when both factors are present (beyond
740the additive main effects).
741

3.3.2 Gene-Gene-

Environment Interactions

742We should not think of gene-gene and gene-environment interac-
743tions as being mutually exclusive. As with higher order gene-gene
744interactions, interactions involving multiple genetic variants and an
745environmental factor are possible to model. The same issues with
746power due to sparsity of data and the number of unique combina-
747tions of factors apply, but given sufficient sample size these types of
748interaction models can be tested. It may be more important in this
749setting to attempt a screening step using a non-explicit approach
750and then apply an explicit test only to the set of interactions that
751surpass an initial significance threshold.
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7523.4 Conclusions 753I have outlined several methods for conducting interaction analysis
754to detect both gene-gene and gene-environment interactions.
755However, it should be clear that there is no optimal method to
756detect either type of interaction. The method(s) chosen are often
757dictated based on the type of data you have available (e.g., case-
758control, case-only), the number of markers you have genotyped,
759and the number of subjects you have included. I strongly recom-
760mend reporting the results of explicit tests for interaction as this will
761greatly improve ability of other groups to attempt to replicate your
762results and meta-analyze where appropriate, but the use of
763non-explicit tests for interaction can be extremely useful to initially
764screen large numbers of interactions and when sample sizes are
765limited. We must continue to invest time and resources into identi-
766fying interactions in genome-wide data as this will help us to fill in
767the missing heritability gap and better understand the genetic
768architecture of complex traits.
769

7704 Notes

7711. Inheritance models: It should be noted that as with single-
772variant approaches, inheritance models can be imposed on the
773variants that include additive, multiplicative, dominant, reces-
774sive, and overdominant. These inheritance models can be
775imposed on the variants in the interaction model independently
776and can be considered in a combinatorial fashion for variant
7771 and variant 2 (e.g., additive $ additive, additive $ multiplica-
778tive, additive $ dominant, etc.). However, if this is done, care
779must be taken to account for this additional multiple testing.
780These models can be problematic when they are misspecified as
781they can reduce power which makes nonparametric approaches
782attractive.

7832. Scale: The scale on which the outcome is measured or evaluated
784can influence whether or not an interaction exists between two
785variants or between a variant and an environmental factor. It
786needs to be kept in mind that there may be a monotone trans-
787formation of the outcome that could remove the interaction.
788For example, on the odds ratio scale, an interaction may exist
789between two SNPs (coded dichotomously as in a dominant
790model) in which the OR for having dominant alleles at both
791SNPs is greater than the sum of the ORs for having one domi-
792nant allele at each SNP. However, on the log(OR) scale this
793interaction is removed and termed a removable interaction. If
794there is no monotone transformation that can remove this inter-
795action it is termed essential. The method to detect these types of
796interactions is described in a paper by Wu et al. [56].
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7973. Reporting of interaction results: As was previously outlined in
798our paper [46], there are several recommendations for how
799results of interaction analyses are reported in order to increase
800the interpretability and replicability of the interaction. Effect
801estimates should be provided so that both the strength and
802direction of the interaction can be assessed. If a regression-
803based approach is used, parameter estimates of the main effects
804and the interaction term should be provided. If a nonparametric
805approach is used, such as MDR, effect estimates are not pro-
806duced, however, counts of cases and controls for the contin-
807gency table of genotype combinations should be provided. This
808will allow for a better assessment of the interaction and the
809possibility to incorporate the data into a meta-analysis.
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