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4Abstract

5While genome-wide association studies have been very successful in identifying associations of common
6genetic variants with many different traits, the rarer frequency spectrum of the genome has not yet been
7comprehensively explored. Technological developments increasingly lift restrictions to access rare genetic
8variation. Dense reference panels enable improved genotype imputation for rare variants in studies using
9DNA microarrays. Moreover, the decreasing cost of next generation sequencing makes whole exome and
10genome sequencing increasingly affordable for large samples. Large-scale efforts based on sequencing, such
11as ExAC, 100,000 Genomes, and TopMed, are likely to significantly advance this field.
12The main challenge in evaluating complex trait associations of rare variants is statistical power. The choice
13of population should be considered carefully because allele frequencies and linkage disequilibrium structure
14differ between populations. Genetically isolated populations can have favorable genomic characteristics for
15the study of rare variants.
16One strategy to increase power is to assess the combined effect of multiple rare variants within a region,
17known as aggregate testing. A large number of methods have been developed for this. Model performance
18depends on the genetic architecture of the region of interest.

19Key words Low frequency variants, Rare variants, Sequencing, Association study, Aggregate test,
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211 Background

22The discovery of genetic variants contributing to the heritability of
23complex traits has boomed in recent years. Hundreds of associa-
24tions, mostly of common variants with small effects, have been
25identified for outcomes such as anthropometric measures, blood
26biomarkers, and common diseases. However, rare variants are likely
27to play an important role in the genetics of many of these traits.
28Identifying variants with large effects could be particularly useful
29from a clinical perspective. In the context of disease, the accuracy of
30predicted risks of carriers of such variants can significantly improve.
31Furthermore, trait associations with such variants can lead to
32important biological insights and novel treatments for diseases.
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33A number of empirical findings demonstrate the importance of
34rare variants and illustrate their clinical potential. Several of these
35success stories relate to lipid traits. For example, targeted sequenc-
36ing of data from the Dallas Heart Study revealed an association
37between low-density lipoprotein (LDL) cholesterol and rare non-
38sense mutations in PCSK9 AU2[1]. This gene encodes a protein that is
39involved in the regulation of LDL cholesterol levels. These LDL-
40decreasing mutations were also shown to lead to a significant
41reduction in risk of coronary heart disease (CHD) [2]. Monoclonal
42antibodies targeting this molecule were developed to reduce CHD
43risk and these lowered LDL levels beyond what could be achieved
44by statins alone [3, 4]. As another example, a study using samples
45from a cosmopolitan UK population [5], as well as studies in
46isolated populations [6–8], identified several rare variants in the
47apolipoprotein C-III (APOC3) gene affecting levels of triglycerides
48in blood with evidence for a cardioprotective effect of these alleles
49[8–10]. An antisense oligonucleotide was developed to lower
50APOC3 levels and it also led to decreased triglycerides in patients
51with high-baseline levels [11].
52One of the main technical challenges for the discovery of rare
53variant associations has been the limited coverage of rare variation
54by DNA microarrays commonly used in genome-wide association
55studies (GWAS) (see Subheading Technology AU3). However, the
56decreasing cost of whole exome and whole genome sequencing
57make these technologies increasingly affordable for larger sample
58sizes (Table 1). The first large genome sequencing project was the
591000 Genomes Project [13], followed by the UK10K Project
60[14]. These efforts have significantly advanced the field of geno-
61mics. Large numbers of additional variants were discovered and
62insights into population genetics gained. These projects enabled
63hundreds of other studies to operate in a very cost-effective way by
64using DNA microarray genotyping and carrying out genotype
65imputation with the haplotypes from the sequencing efforts as
66reference panels. Recognizing the potential of genomics for medi-
67cine, governments in the UK and USA seized the opportunity of
68more affordable sequencing. The precision medicine initiative,
69launched by US President Barack Obama in 2015, aims to advance
70personalized medicine through the Trans-Omics for Precision
71Medicine (TOPMed) programme which involves whole-genome
72sequencing of 62,000 individuals, possibly up to 100,000 at a
73later stage [15]. The focus of this programme is on heart, lung,
74blood, and sleep disorders. There is also a large-scale initiative in
75the UK, the 100,000 Genomes Project [16]. It involves whole-
76genome sequencing of germline and tumor DNA of 25,000 cancer
77patients and also of DNA of 50,000 individuals to study rare dis-
78eases. The aim of this programme is to implement genomic medi-
79cine in routine clinical practice for rare diseases and cancer
80[17]. The maximum potential of such initiatives can be realized
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81when data from different sequencing projects are combined. This
82has recently been done for whole exome sequencing studies. The
83Exome Aggregation Consortium (ExAC) project, a collection of
84exome data from more than 60,000 individuals, yielded important
85findings with implications for the pathogenicity of mutations in
86coding regions [18]. These large sequencing projects could signifi-
87cantly advance our understanding of the role of rare genetic
88variation.
89In the next section, we discuss differences between populations
90with respect to variant frequency and linkage disequilibrium pat-
91terns and how these affect design considerations for studying rare
92variants. The subsequent part is devoted to the measurement of
93rare variants and compares DNA microarray genotyping with DNA
94sequencing technologies. The final part of this describes different
95statistical analysis techniques to assess trait associations of rare
96variants. The focus lies on aggregate tests that assess the combined
97effect of multiple variants in order to improve the power
98limitations.
99While rare structural variants play an important role for some
100complex traits, this chapter only covers single nucleotide variants.
101The term “low frequency” is used for variants with minor allele
102frequencies (MAF) between 1% and 5% and “rare” for variants with
103MAF less than 1%.

1042 Population-Specific Differences in Genetic Variation

105Genetic diversity and linkage disequilibrium (LD) structure differ
106between populations. Some alleles are common in one and rare in
107another population and some variants are only present in some
108populations. It is vital to put consideration into the choice of

t:1Table 1
Overview of essential features of different genotyping technologies

GWAS Chip Exome Chip WES 1! WGS
High depth
WGS t:2

Region covered Genome Mostly exome Exome Genome Genome t:3

Discovery of novel variants No No Yes Yes Yes t:4

Bioinformatics and QC workload Small Smalla Mediuma Large Large t:5

Cost compared to of a full genomeb 4% 6% 20% 30% 100% t:6

t:7aExome AU4Chip and WES QC do not have access to genome-wide genotypes, and thus some QC metric are not available
when using these technologies
bThe price of a genome ($1245 in October 2016) was estimated from [12]. The fraction represents an approximate
estimation from prices in our laboratory
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109population for a given study, especially for rare variant association
110studies. Differences in LD structure mean that tagging properties
111of variants on GWAS arrays can differ greatly between populations
112resulting in differences in the accuracy with which the signal of a
113variant can be captured. Variant frequency and imputation accuracy
114affect statistical power to detect an association. The effect of a
115variant might also differ between populations due to different
116environments or epistasis. Several genetic associations with com-
117plex traits were found to be population-specific, such as the associ-
118ation of the MTNR1B locus with glucose metabolism in European
119populations but not in East Asian populations [19].
120A number of factors shape the genetic make-up of a population
121including population size, historical bottlenecks, and natural selec-
122tion [20]. A bottleneck is a period of time stretching across several
123generations where the population shrinks at the start of the bottle-
124neck and remains stable within the bottleneck. Bottlenecks can be
125caused, for example, by a famine, pest, or geographical narrow
126passageway. The effects of a bottleneck are long lasting. After a
127bottleneck the genetic make-up of the population is composed
128exclusively of the genetic variation from the lineages that survived
129the bottleneck while some variants present in the original popula-
130tion are lost. When the population starts expanding again, the
131variation from the surviving lineages will remain frequent to a
132much higher extent than variation introduced into the population
133after the bottleneck. The underlying LD pattern in the surviving
134linages will be maintained in the expanding population, only bro-
135ken up by new recombination events [20].
136As a consequence, genetic diversity and LD structure are mark-
137edly different between Sub-Saharan African and European popula-
138tions, with higher levels of genetic diversity in the African
139populations and longer spans of LD in the European populations
140[21]. This is mainly due to the fact that the European populations
141share a historic bottleneck, the migration out of Africa, while the
142populations of Africa consist of several smaller populations, without
143a common historic event, that continuously admixed, splitting up
144the LD blocks and allowing for more genetic diversity [21].

2.1 The Special Case
of Isolated Populations

145An isolated population is a small population that has undergone a
146bottleneck in its history and remained isolated from other popula-
147tions after the bottleneck. Due to the genetic drift some variants
148have risen in frequency and there are higher levels of relatedness and
149longer LD blocks compared to non-isolated population
150[22]. Greater environmental and phenotypic homogeneity are
151often observed as well. Taken together, this gives rise to greater
152statistical power to detect associations of rare alleles that have
153drifted to higher frequency, which makes isolated populations par-
154ticularly attractive for studying rare variants. However, note that in
155isolated populations only a subset of the rare variants seen in the
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156general population, from which the isolate was derived, will be
157present, limiting the association testing to those variants.
158A number of recent locus discoveries in population isolates have
159highlighted these properties [7, 23–26]. As an example, the Green-
160landic population is a small isolated population with high degrees of
161relatedness, large LD blocks, fewer rare variants in total, but with
162higher allele frequency in the average for observed variants
163[27]. These features were exploited by Moltke et al. who found
164an association between the nonsense p.Arg684Ter variant in
165TBC1D4 and postprandial hyperglycemia, impaired glucose toler-
166ance, and risk of type II diabetes [28]. This variant is extremely rare
167in the general population (only one allele was found in the 1092
168individuals of the 1000 Genome project), but common in the
169Greenlandic population (MAF ¼ 17%). To observe the same num-
170ber of alleles seen in the Greenlandic cohort in an outbred popula-
171tion, one would have had to sample over 400,000 individuals. This
172highlights important considerations regarding the study of rare
173variants in isolated populations. Rare variants can rise to higher
174frequencies leading to increased statistical power for discovery,
175but observed associations may be limited to the isolated population
176because the variant is not present or extremely rare in other popula-
177tions. This does not diminish the relevance of the locus discovery,
178however, as these findings can point to biological pathways
179involved in complex traits that would otherwise have been
180overlooked.
181

1823 Genotyping Technologies for Rare Variants

183Here, we discuss two types of genotyping technologies, DNA
184microarrays, and sequencing. We explore the pros and cons of
185applying these technologies when investigating rare variants. We
186further differentiate between whole exome sequencing (WES) and
187whole genome sequencing (WGS).

3.1 DNA Microarray
Genotyping

188DNA microarray genotyping, also known as chip genotyping, is a
189comparably cheap and versatile technology, with prices down to
190$50 per sample for a genome-wide chip. The technology has been
191widely used and advanced software has been designed to ease the
192workload of bioinformatics (Table 1).
193DNAmicroarrays are based on known variants and use a calling
194algorithm based on clustering. Clustering is a method to automati-
195cally draw clusters around similar genotype calls, based on the
196intensity of the colored light used by the high-throughput micro-
197array genotyping machine. Clustering is dependent on the total
198number of samples in each cluster. This means that the clustering
199algorithms perform best for common variants where the three
200clusters, homozygotes wild-type, heterozygote, and homozygote
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201derived, are of similar size. Clustering often performs poorly when
202only a few samples can be gathered into one cluster which is the case
203for rare variants.
204Genome-wide DNA microarrays are designed on the basis of
205tagging which exploits the fact that variants are inherited in
206LD-blocks. Variants are selected for inclusion on the chip in such
207a way that each LD block is represented. Tagging reduces the
208number of variants needed to adequately cover the majority of
209genetic variation down to thousands. Using genotype imputation
210one can then make use of the information contained in multiple
211typed variants to infer the genotypes of the variants missing from
212the array. This requires a reference panel of genomes that contain
213the variants missing on the chip, so that their relation to typed
214variants can be inferred. There are general GWAS chips that were
215designed to capture maximal genetic information with a limited
216number of variants. There are also custom arrays that were designed
217to target regions of the genome that are of interest to a specific
218disease or trait, such as the MetaboChip or OncoArray.
219GWAS arrays generally have very good coverage of common
220genetic variation. However, rare variants are on average in lesser LD
221with other variants than common variants, resulting in lower cov-
222erage. In the context of single SNP association analysis, Yang et al.
223showed empirically that 81% of common and 25% of rare
224(MAF # 1%) variation can be captured by the best tagging SNP
225using the CoreExome array in combination with imputation to the
2261000 Genomes Project reference panel [29]. Recently, large refer-
227ence panels from the UK10K study [14] and The Haplotype Ref-
228erence Consortium [30] have become available and have increased
229the power to impute rare variants from DNA microarrays [29].
230There are several strategies to improve access to rare variation
231through chip genotyping. The Exome Chip [31] was designed to
232capture rare coding variants based on exome sequencing and has
233since been used to genotype millions of samples in different associ-
234ation studies which successfully identified rare variant associations
235with various traits and diseases [26, 32, 33]. The Exome Chip
236offers a very cost-effective solution for large-scale genotyping of
237rare variants in exons (Table 1). However, the focus on rare exonic
238variants also represents an important limitation because the major-
239ity of complex trait associations identified so far were with noncod-
240ing variants. Furthermore, the array is targeted to European
241populations and is not suited to discover de novo mutations. For
242this, exome sequencing is a better option.
243

3.2 Next Generation
Sequencing

244Generally, genotype sequencing is more expensive than DNA
245microarrays, but has several advantages, especially in the context
246of low frequency and rare variants. Prices for whole exome sequenc-
247ing are around three times cheaper than for whole genome
248sequencing which cost ~1200$ AU5. However, the costs have been
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249decreasing continuously as the technology matures (Table 1).
250There are options to make sequencing more cost-effective. One
251common approach is to lower the depth, the average number of
252overlapping sequence fragments, called reads, mapped to the same
253position. Alternatively, one can opt to cover only specific regions,
254such as candidate genes.
255Advanced software is available for researchers working with
256sequencing data. However, the bioinformatics workload involved
257in the quality control (QC) and analysis of sequencing data is more
258taxing than for DNA microarrays (Table 1).

259

3.2.1 Whole Exome

Sequencing

260Whole exome sequencing (WES) is a common strategy to investi-
261gate rare variants while keeping the cost down. This is done by
262limiting the regions that are sequenced to only the exome, without
263compromising the sequencing depth. This allows for accurate call-
264ing of rare variants in regions where they are likely to have an effect.
265WES also enables the detection of novel variants, which is not
266possible with DNA microarrays.
267Focusing on the exome is motivated by the fact that missense
268variants found in an exon of a gene can be disruptive to the protein
269sequence and can therefore have an effect on the function of the
270protein. Mendelian diseases represent an extreme case of this where
271the disease can be caused by a single missense variant. Evolutionary
272conservation has therefore restricted the frequency of exonic var-
273iants. WES is recommended when investigating the effects of rare
274variants on monogenetic diseases. However, the majority of previ-
275ously identified associations identified for complex traits were for
276noncoding variants [34].
277

3.2.2 Whole Genome

Sequencing

278Whole-genome sequencing (WGS) offers the potential to access
279the entire genetic information of an individual. It enables the
280discovery of novel variants, and makes it possible to access rare
281variants outside as well as within coding regions. As WGS covers
282the whole genome, it also enables the mapping of the underlying
283genetic architecture of complex polygenetic traits and the study of
284large structural variations, such as copy-number variations (CNV).
285The amount of data generated per individual is considerably
286larger than for WES or chip genotyping. For example, in compari-
287son with a chip-based GWAS, WGS requires about 1000 times
288more space to store the post-QC genotype information for chro-
289mosome 1 (~2 million WGS variants and ~ 58,000 GWAS
290tag-SNPs) for 1200 individuals (~13 GB, in a compressed
291VCF-file [12], for the WGS genotypes versus ~20 MB, in binary
292plink-files, for Omni Exome Chip genotypes of the same indivi-
293duals). Processing of these files requires more computational
294resources, is more time consuming, and requires technical exper-
295tise. Furthermore, control of type I error requires consideration as a
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296larger number of statistical tests are carried out (see Subheading
297Significance Thresholds).
298The biggest drawback of WGS is its cost. It is considerably
299more expensive than WES and DNA Microarray genotyping.
300While cost can be lowered by using a low read depth, this is at the
301expense of quality of the genotype calls. Using a low depth, e.g., an
302average depth of one read per position, known as 1!WGS, will lead
303to more errors in calling variants. This can affect the discovery of
304novel variants in particular. One strategy to improve on this is by
305using imputation with large reference panels. A strict QC pipeline,
306especially when investigating novel rare variants, is needed to avoid
307type I errors. Overall, low depthWGS offers a cost effective method
308for studying rare variants.
309While it is a significant advantage of WGS over WES to be able
310to access noncoding variation, the interpretation of the findings can
311be much less straightforward in comparison with associations of
312mutations affecting protein sequence. Understanding regulatory
313effects is considerably more complex and represents a very active
314area of research. One approach to ease interpretation of association
315findings is to use annotation scores that represent the likelihood of
316a given variant to affect protein expression. This has been done
317using different sources of information for coding as well as non-
318coding variants, e.g., for the Eigen [35], GWAVA [36], or CADD
319scores [37].
320As the technology develops and genome annotations improve,
321the challenges involved in sequencing will become easier to meet,
322and WGS will become more feasible for increasingly large
323sample sets.
324

3254 Association Analyses Methods for Rare Variants

4.1 Single Variant
Association Tests

326Fast and efficient estimation procedures have been developed to
327carry out association tests for large numbers of variants. Most
328genetic association studies assume an additive genetic model
329where the SNP effect is estimated per copy of the effect allele.
330Usually, either linear or logistic regressions are used to estimate
331and test SNP associations for continuous or dichotomous out-
332comes, respectively. Increasingly, linear mixed models are applied
333which allow for the inclusion of relatives and account for possible
334population stratification by adjusting for genetic similarity between
335individuals. Details are described elsewhere is this book (see Chap-
336ters 3 and 4). These methods are also applicable to low frequency
337and rare variants. However, in case-control studies for variants with
338small numbers of carriers of the rare allele, the p-values of asymp-
339totic logistic regression tests can be inaccurate [38, 39]. In this
340context, the minor allele count (MAC) has been established as a
341more useful metric than the minor allele frequency (MAF) because
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342it is the absolute number of alleles that affects the performance of
343the test [38]. It has been shown that logistic regression tests can
344perform poorly for variants with MAC of less than 400 which can
345be used as a guidance for choosing an appropriate test.
346One solution to the problem is to use Fisher’s exact test instead
347which represents the gold standard to assess an association between
348categorical variables with small counts [40]. However, it is rarely
349used in this context because it cannot adjust for covariates. Alterna-
350tive methods include Firth regression which is a penalized
351likelihood-based method that has been shown to perform well for
352rare variants [38, 41]. Permutation approaches have also been
353proposed [39]. Finally, a computationally efficient resampling
354approach for score tests has been developed [42].

355

4.1.1 Effect of Population

Stratification,

Non-normality and Outliers

356Association testing for rare variants can be less robust to violations
357of assumptions. Rare variant association analyses (both single vari-
358ant and aggregate tests) can be more strongly affected by
359non-normality, outliers and population stratification than associa-
360tion analyses for common variants [43]. With respect to outliers, it
361should be taken into account that extreme values of a trait could
362also be observed as the result of a rare high penetrance mutation, as
363seen in Mendelian diseases. Therefore, exclusions of outliers and
364variable transformations need to be considered carefully. Further-
365more, association tests are particularly sensitive to population strat-
366ification because even small levels of stratification can lead to
367different frequencies of rare variants [44–49]. Therefore, quality
368control has to be particularly thorough. However, adjusting for
369fine-scale patterns of population stratification can be difficult with
370traditional methods when stratification for rare variants differs from
371that of common variants. For more details see Chapter 3.
372

4.1.2 Significance

Threshold

373For single variant association testing, multiple testing is an impor-
374tant consideration. In GWAS and sequencing studies, the associa-
375tions of hundreds of thousands or even millions of genetic variants
376are evaluated, leading to a high multiple testing burden. Most of
377these variants are unlikely to causally affect the trait of interest so
378that the prior probability of association is small for each variant. The
379majority of previously published genetic association studies used an
380adjusted p-value threshold to account for the number of indepen-
381dent tests. Because many variants are in LD with each other and
382therefore not independent, a Bonferroni adjustment for the total
383number of variants tested would be too conservative. For chip-
384based genome-wide association studies, a p-value threshold of
3855 ! 10–8 has been established and is used routinely as it has been
386demonstrated to be valid for manyGWAS arrays [50–52].However,
387this threshold is not valid for whole exome or whole genome
388sequencing. The addition of many rare variants that tend to be in
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389less strong LD with other variants leads to an increased number of
390independent tests.
391The significance threshold for rare variant studies depends on
392the genotyping technology used, MAF threshold for variants con-
393sidered (related to sequencing depth) and the population as that
394affects the genomic LD structure (see Subheading Populations).
395For samples from cosmopolitan populations of European ancestry
396it has been demonstrated that a threshold of 1 ! 10–8 for whole-
397genome and 3 ! 10–7 for whole exome sequencing provide a level
398of adjustment for variants with MAF > 0.001 that is equivalent to
399the adjustment of the 5 ! 10–8 threshold for common variants
400[53]. There is a higher burden of multiple testing for samples of
401African ancestry due to greater genetic diversity. Isolated popula-
402tions on the other hand have longer shared haplotypes and there-
403fore require adjustment for a smaller number of independent tests
404which renders them particularly suitable for the analysis of rare
405variation (see Subheading Populations).
406

4.1.3 Statistical Power to

Identify Novel Associations

407Due to the high multiple testing burden, one of the main chal-
408lenges for genetic association studies is to provide sufficient statisti-
409cal power to detect novel associations with a trait of interest. For
410the identification of associations of low frequency and rare variants,
411statistical power is an even greater challenge. Factors impacting the
412power to detect a trait association include frequency and effect size
413of a variant and how well it can be imputed in case it was not
414genotyped or sequenced directly [54]. As discussed in Subheading
415Genotyping Technologies, in GWAS the average imputation accu-
416racy for rare variants is lower than for common variants due to their
417reduced linkage disequilibrium. Therefore, the power to detect
418associations of rare variants can be low in GWAS.
419Low frequency of variants can severely limit statistical power to
420find trait associations. For example, given a disease prevalence of
42110%, a sample size of 10,000 cases and 10,000 controls, an OR of
4221.2 (additive effect), the power to detect an association at
423p< 5! 10–8 for a common variant with MAF¼ 0.4 is 98% whereas
424the power for a low frequency variant with MAF ¼ 0.05 is 16%. As
425Fig. 1 demonstrates, given a moderate effect size (e.g., OR ¼ 1.5)
426variants with MAF ¼ 0.01 require more than 30,000 samples while
427variants with MAF ¼ 0.001 require more than 300,000 samples to
428achieve sufficient discovery power (>80%). This demonstrates that
429in this setting, associations of rare variants are realistically discover-
430able only if the variants have moderate to large effect sizes.
431Therefore, an important question concerns the effect size dis-
432tribution of rare variants. If effect sizes are consistently small, then
433even large studies have limited power to detect rare variant associa-
434tions. For many health-related complex traits it is now firmly estab-
435lished that almost all associated common variants have relatively
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436small effects (i.e., OR < 1.5). Despite very high statistical power,
437common variants with large effects have not been discovered. Sim-
438ilar conclusions cannot be drawn with respect to the rare variants.
439As the power calculations demonstrate, much larger samples are
440needed to identify associations of rare variants given the same effect
441size as common variants. Moreover, all genetic association studies
442with more than 100,000 samples that have been published to-date
443used GWAS genotyping and had therefore limited coverage of rare
444variants (see Subheading Genotyping Technologies). For traits
445under selection it is likely that variants of moderate to large effect
446are rare. In line with this, rare and low-frequency variants are
447strongly enriched for functional and deleterious variants
448[55–57]. However, genetic architecture differs between traits and
449is an ongoing field of research.
450

4.2 Aggregate
Testing

451In order to increase statistical power to detect rare variant associa-
452tions, analysis methods have been developed to test the combined
453effect of several variants. These tests are known as aggregate or
454gene-based tests. There are several arguments supporting the use of
455aggregate methods. These include the observations that recent
456population expansion may have led to high numbers of functional
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Fig. 1 Power to detect a variant association with OR¼ 1.5 (additive) at p < 5 ! 10–8 in a case-control study
with a 50:50 ratio of cases to controls and a disease prevalence of 10%
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457variants, that a combination of variants can be necessary to create a
458phenotype, and that an increasing number of genes have been
459discovered with multiple common and/or rare associated variants.
460Finally, a number of previous successful discoveries from gene-
461based tests provide proof of principle [58]. Variants are usually
462combined within genes. An alternative unit can be sliding windows
463across the genome to assess the combined effect of variants located
464close to each other. Combining variants from genes in a common
465pathway has also been suggested [59].
466A number of different approaches have been developed for
467aggregate testing. In general, decisions involved in aggregate test-
468ing include the unit of aggregation (e.g., gene, region of a certain
469size), the coding scheme for the genotypes (e.g., score, carrying any
470vs no rare alleles, recoding of variants with effects in the opposite
471direction), variant filtering (e.g., frequency, functional annotation),
472weighting scheme (e.g., frequency, predicted functional effect,
473imputation accuracy), and whether to include covariates (e.g.,
474principle components). The following sections describe different
475aggregate testing methods. Please note that meta-analysis methods
476for aggregate tests are described elsewhere in this book.

477

4.2.1 Collapsing Tests 478In collapsing tests the numbers of rare alleles carried are summed
479up for all variants within a specified region (e.g., gene). Each variant
480can be weighted. The association between this aggregate and the
481trait of interest is then tested through regression:

f yi
! "

¼ αþ β
X

j

wj gij

482where yi is the phenotype of individual i, gij is the genotype of
483individual i for variant j, wj is an optional weight for variant j, f()
484represents AU6the link function and is the logit for dichotomous traits
485and linear for continuous traits. Note that there is just one regres-
486sion coefficient β for the aggregate effect rather than separate ones
487for individual variants.

488Several different implementations of the collapsing approach
489have been developed. RVT can be used for continuous as well as
490dichotomous outcomes [60]. It can estimate the effect per addi-
491tional minor allele carried or compare individuals who carry at least
492one minor allele with those who do not. The Cohort Allelic Sums
493Test (CAST) [61], Combined Multivariate and Collapsing (CMC)
494[62], and Weighted Sum Statistic (WSS) [63] were designed spe-
495cifically for dichotomous outcomes and differ in terms of their
496coding of the genotypes, variant filtering, and weighting. For
497regions that contain a mix of causal and non-causal variants, the
498CMC test had highest statistical power among these methods
499[62, 64].
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500It has been demonstrated that for studies based on GWAS chip
501genotyping, imputation of variants improves power to detect gene-
502based associations [65]. There are several modified versions of the
503collapsing tests that can use imputed variants and account for
504variant quality. The cumulative minor allele test (CMAT) [66]
505and GRANVIL [67], an implementation of RVT, can use dosages
506for imputed variants. The Accumulation of Rare variants Integrated
507and Extended Locus-specific test (ARIEL) is another adaptation of
508RVT that can also use weights to adjust for variant quality
509scores [68].
510In order to overcome some of the limitations of collapsing
511tests, modifications have been developed that adapt to properties
512of the data. The data adaptive test (aSum) [64] involves two stages.
513Results from a marginal model evaluating single SNP associations
514are used to recode variants. An extension, the step-up test [69], can
515be used to filter variants if their marginal test provides little evi-
516dence for association. The estimated regression coefficient test
517(EREC) [70] is another two-stage procedure that uses the regres-
518sion coefficients from the marginal test as weights for the collapsing
519test. It adds a small constant to each weight because regression
520coefficients from single variants tests tend to be unstable for rare
521variants. The Kernel-based adaptive cluster method (KBAC) [71]
522uses Kernel-based adaptive weighting in order to select likely causal
523variants. The variable threshold (VT) approach [72] changes the
524MAF thresholds for each region in order to identify the optimal
525variant selection.
526Most of the original collapsing methods are less powerful when
527the associations of the rare alleles of different variants are in oppo-
528site directions [73–75]. In the presence of different directions of
529effect, the data-adaptive approach performed well while the VT
530method performed well in the case of consistent direction of effect
531but existence of non-causal variants [74, 76]. However, adaptive
532methods tend to be computationally intensive because most of
533them require permutation tests in order to obtain p-value
534estimates.
535

4.2.2 Variance-

Component Methods

536The most widely used variance-component method is SKAT
537[77]. It assumes a multiple regression model with variants as pre-
538dictors and variant-specific regression coefficients so that the direc-
539tion and magnitude of the association of each variant can vary. A
540mixed model is fitted assuming a random effect for genotype with
541βj~N(0, wjτ) where τ is the variance component. The overall effect
542of the variants can then be assessed by testing whether τ ¼ 0 via a
543variance-component score test. Covariates are incorporated as fixed
544effects. It is also possible to include interaction effects. For a
545dichotomous outcome without covariates SKAT and the C-alpha
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546test [73] are equivalent. Without weights, SKAT reduces to the sum
547of squares of the marginal score statistics, SSU test [78].
548There are a number of modified versions of SKAT. For exam-
549ple, C-SKAT was designed to estimate aggregate effects for both
550common and rare variants [79]. AP-SKAT is an implementation
551that avoids deriving p-values from an asymptotic distribution which
552can lead to bias while reducing the computational load from
553permutation [80].
554

4.2.3 Combined Tests 555SKAT is a popular choice because it accounts for differences in
556direction and magnitude of effect between variants. Moreover, it
557outperforms most adaptive testing methods in terms of computa-
558tional efficiency because it does not require permutation testing.
559However, which one of the models has the highest statistical power
560depends on the underlying genetic architecture of the region and
561trait under consideration. Collapsing methods have higher power
562when the majority of variants are causal and have the same direction
563of effect [74, 77]. In practice, there usually is little prior knowledge
564about the genetic architecture. Therefore, SKAT-O [81] has been
565developed. It combines variance component and collapsing
566approaches in order to maximize power for different scenarios.
567Alternative unified approaches include MiST [82] and CCS for
568case control studies [83]. CCS models the variant distributions in
569cases and controls and can account for ascertainment by using a
570retrospective likelihood approach. It has been shown to perform
571favorably when samples sizes are small, variants are rare, and when
572there is a high proportion of non-causal variants [83]. In a recent
573simulation study, unified approaches had higher power than col-
574lapsing and variance component tests given a range of genetic
575architectures [84].
576A general framework has been developed that enables combin-
577ing any gene-based tests of choice into a unified approach
578[85]. This strategy provided higher statistical power than running
579tests separately and using Bonferroni correction.
580One potential problem with both collapsing and variance com-
581ponent methods is that these tests can yield inflated type I error
582levels [86]. Therefore, inflation should be assessed.
583

4.2.4 Bayesian

Approaches

584Several Bayesian approaches have been developed. One advantage is
585that they can make use of prior information regarding variants
586[87, 88]. The exponential combination (EC) approach [89] uses
587a quadratic score term for the aggregate effect of variants and is
588particularly powerful when the proportion of causal variants is low.
589However, it requires permutation in order to estimate p-values and
590is therefore computationally demanding. The Variational Bayes
591discrete mixture test (VBDM) [90] on the other hand is very
592computationally efficient because it is based on Bayes approximate
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593inference. VBDM explicitly models non-causal variant and there-
594fore performs particularly well in a scenario with many non-causal
595variants.
596

4.2.5 Functional Data

Analysis

597In the framework of functional data analysis, the genomic region of
598interest is conceptualized as a sequence of variants which was the
599result of a stochastic process that depends on linkage and linkage
600disequilibrium and the genetic effects are therefore a function of
601variant location [91]. While variance component methods only
602account for LD between pairs of variants, this approach makes
603optimal use of the LD structure between multiple genetic variants
604in the region. Moreover, it is possible to include rare as well as
605common variants. Aggregate tests have been developed within this
606framework for continuous [91, 92] and dichotomous traits
607[93–95]. Using the same simulation setup as the original studies
608for variance component methods, these functional linear model
609approaches were shown to have higher statistical power than vari-
610ance component methods in most of the tested scenarios [91, 92,
61196, 97].
612

4.2.6 Relatedness 613Most of the methods described so far assume that samples are
614independent. However, including relatives can increase statistical
615power to detect a genetic association [98]. For family-based studies
616with known pedigrees there are transmission-based tests
617[99, 100]. There is also a pedigree-based option for SKAT for
618continuous traits, famSKAT [101]. Other models use a genetic
619relatedness matrix rather than pedigree structures. This provides
620more flexibility for incorporating complex or unknown family
621structures. These methods are also applicable when there is a mix
622of related and unrelated individuals. Pedgene [102] offers rapid
623collapsing as well as variance-component tests for dichotomous and
624continuous traits and so do famrvtests for continuous traits
625[103]. There are other family-based modifications of SKAT, includ-
626ing FFBSKAT [104] and ASKAT [105]. MONSTER is a generali-
627zation of SKAT-O that accounts for relatedness [106]. Finally,
628there is also a modification of the functional linear model approach
629to use data from related individuals [107].
630

4.2.7 Survival Analysis 631Some studies assess associations of genetic variants with time to an
632event within a survival analysis framework. A modified version of
633collapsing tests and SKAT, the CoxBT and CoxSKAT likelihood
634ratio tests were developed for this setting [108]. Other variance
635component implementations exist [109, 110]. There is also an
636extension of the functional linear model approach to assess
637region-based associations using Cox regression [111].
638
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6395 Conclusion

640Method development for aggregate testing of rare variants is a
641dynamic area of research. One of the advantages is that tests have
642been developed for a variety of different study designs. On the
643other hand, it can be difficult to navigate this field and identify
644the optimal test for a given study. The statistical power of each
645method is dependent on the genetic architecture of the trait (and
646region) of interest and the ranking of tests changes for different
647scenarios. In situations with little prior knowledge regarding the
648genetic architecture of the trait of interest, unified approaches
649incorporating methods that perform well given high as well as
650low proportions of causal variants can be a good choice.
651As in single variant association testing, hits from aggregate tests
652also require confirmation using an independent replication sample.
653However, the locus needs to be validated rather than a single
654variant. There are different strategies to do this that may need to
655involve targeted sequencing of the locus [112].
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