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1 The missing data hierarchy

The levels difficulty of interpreting missing data in a model of response Y , modeled according
to a set of predictors (also known as covariates) X, are given below (Little & Rubin, 1987):

• MCAR
Data are missing completely at random. The missingness is not associated with the actual
true (but uknown) value and there are no other variables in the data that can predict
whether a missing value exists in a particular variable. This is the difference between
MCAR and MAR (below).

• MAR
Data are missing at random. The pattern or probability of missingness is associated with
other variables in the data but not with the actual missing value. This is the difference
between MCAR and MNAR (see below).

• MNAR
Data are missing not at random. The chance that the data are missing depends on the
actual missing value.

MCAR are data missing completely at random. In clinical trials measuring a response Y based
on measurements obtained from the subjects (covariates) X.

MCAR means that missing responses and/or covariate measurements are not dependent upon
other responses or covariate measurements.

An intermediate situation is missing data dependent only on values of the covariates X but
not on Y . This is called covariate-dependent missingness by Little (1995, JASA). In this case,
missing data are dependent only on the covariates X but not on the outcomes Y .

1.1 Example of covariate-dependent missingness

We first import the data in R. Recall that missing data are denoted as NA in R. The function
is.na is a very useful function that tell us if an observation is missing.
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reg = read.csv("H:/teaching/Indiana/PBHL B-582/labs/lab 7 (data analysis I)/data/reg.csv")

# Have a look at the data

reg

## unit x y

## 1 1 3.4 5.67

## 2 2 3.9 4.81

## 3 3 2.6 4.93

## 4 4 1.9 6.21

## 5 5 2.2 6.83

## 6 6 3.3 5.61

## 7 7 1.7 5.45

## 8 8 2.4 4.94

## 9 9 2.8 5.73

## 10 10 3.6 NA

is.na(reg)

## unit x y

## [1,] FALSE FALSE FALSE

## [2,] FALSE FALSE FALSE

## [3,] FALSE FALSE FALSE

## [4,] FALSE FALSE FALSE

## [5,] FALSE FALSE FALSE

## [6,] FALSE FALSE FALSE

## [7,] FALSE FALSE FALSE

## [8,] FALSE FALSE FALSE

## [9,] FALSE FALSE FALSE

## [10,] FALSE FALSE TRUE

# To see the number of missing values

apply(reg,2, function(x) sum(is.na(x)) )

## unit x y

## 0 0 1

We see that the last observation of Y is missing while X contains no missing data. To fit a
linear model we can use the function lm.

# We're interested in regressing Y on X

# Complete-case analysis (the default)

fitCC = lm(y ~ x, data = reg)

betaCC = coef(fitCC)

summary(fitCC)

##
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## Call:

## lm(formula = y ~ x, data = reg)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.7413 -0.4876 0.1951 0.3456 1.0754

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.5601 0.8565 7.660 0.00012 ***

## x -0.3662 0.3085 -1.187 0.27399

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.6389 on 7 degrees of freedom

## (1 observation deleted due to missingness)

## Multiple R-squared: 0.1675,Adjusted R-squared: 0.0486

## F-statistic: 1.409 on 1 and 7 DF, p-value: 0.274

Note that R excludes any missing data by default (as almost all packages do).

Now we move on the imputation of missing data. Assuming that the model based on the observed
data is correct, we can impute the missing observation using the fitted model.

# We carry out a single imputation

reg.singImp = reg

# Indices of missing values

mis = is.na(reg.singImp$y)

reg.singImp$y[mis] = cbind(1,reg.singImp$x[mis]) %*% betaCC

# Imputed analysis with single imputation

fitSingImp = lm(y ~ x, data = reg.singImp)

summary(fitSingImp)

##

## Call:

## lm(formula = y ~ x, data = reg.singImp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.74134 -0.44626 0.09756 0.32374 1.07543

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.5601 0.7641 8.585 2.62e-05 ***

## x -0.3662 0.2663 -1.375 0.206
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5977 on 8 degrees of freedom

## Multiple R-squared: 0.1911,Adjusted R-squared: 0.09002

## F-statistic: 1.89 on 1 and 8 DF, p-value: 0.2064

Let’s unpack the previous code. The operator %*% in the line

reg.singImp$y[mis] = cbind(1,reg.singImp$x[mis]) %*% betaCC

performs the inner product of the vector β̂′ = (6.5601,−0.3662) with the row of the design
matrix X which has the missing data (indexed by [mis], X10 = (1, 3.6)). This is

(1, 3.6)

(
6.5601
−0.3662

)
= 6.5601 + 3.6(−0.3662) = 5.2419

We see that the estimated slope has remained the same. However, the standard error of the slope
has decreased from 0.31 to 0.27. This illustrates the serious drawbacks of such an approach: it
does not account for the fact that the missing observation is random!

One solution is to simulate the missing observation many times and fit the model on the complete
data. However, to produce a reasonable standard error, we need to resample the dataset. The
function sample is very useful in doing this.

regboot = function(data, N = 1000)

{
# Data frame including the results of each iteration

results = data.frame(it = 1:N,betaHat0 = NA, betaHat1 = NA)

# Number of observations

n = nrow(data)

for (i in 1:N)

{
# Bootstrap sample

temp_data = data[sample(n,replace = T),]

# Fit the model on the complete cases

fit = lm(y ~ x, data = temp_data)

beta = coef(fit)

sd = summary(fit)$sigma

# Indices of missing values

mis = is.na(temp_data$y)

if (any(mis))

{
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# Impute the missing values; if any

temp_data$y[mis] = cbind(1,temp_data$x[mis])%*%beta

+ rnorm(1,mean = 0,sd = sd)

}

fit = lm(y ~ x, data = temp_data)

results[i,] = c(i,coef(fit))

}
return(results)

}
# Set the seed to a specific value

set.seed(1255)

sample.beta = regboot(reg)

This means that the estimate β = -0.345 with an attendant standard error se(β) = 0.330, which
is much more realistic than the one produced by the naive imputation procedure described
earlier.

Now let’s unpack the code. The code fragment

regboot = function(data, N = 1000)

creates a new function regboot. This function has two arguments: data and N=1000 the number
of bootstrapped samples to be created.

The code

# Data frame including the results of each iteration

results = data.frame(it = 1:N,betaHat0 = NA, betaHat1 = NA)

creates a blank data frame with N = 1000 rows, as many as the imputations we will carry out,
where all the data will ultimately be stored. You need to do this in order to reserve space in
the memory for the ultimate results.

The code fragment

# Bootstrap sample

temp_data = data[sample(n,replace = T),]

resamples the data. By “resamples” we mean that it creates a new data set with the same
number of rows as the one we are working with, by sampling with replacement from the indices
(row numbers) of the original data set (which is passed to our newly defined function regboot

by the argument data).

The code fragment
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# Indices of missing values

mis = is.na(temp_data$y)

if (any(mis))

{
# Impute the missing values; if any

temp_data$y[mis] = cbind(1,temp_data$x[mis])%*%beta

+ rnorm(1,mean = 0,sd = sd)

}

checks whether the line with the missing data was part of the resampled data set and imputes,
in the manner outlined in the single-imputation above, the missing y. Note that, because of
the resampling, not all resampled data sets will include the line with the missing data from the
original data set.

# Impute the missing values; if any

temp_data$y[mis] = cbind(1,temp_data$x[mis])%*%beta

+ rnorm(1,mean = 0,sd = sd)

adds a randomly distributed value ε ∼ N(0, σ2) to the imputed value, where σ2 = se(β̂) from the
original, complete-case analysis. Note also that you need to set the “seed” for the randomization
by set.seed command. If you do not, the code above will still work, but you will be generating
a different stream of random numbers each time1. In other words, we are doing the following:

ŷij = β̂0 + xβ̂1 + εij

with i = 1, · · · 10 and j = 1, · · · , N = 1000. The results are as follows. The estimated median
and mean of beta are

# The estimate of beta is the sample mean or median

apply(sample.beta,2,mean)

## it betaHat0 betaHat1

## 500.5000000 6.5216592 -0.3519784

apply(sample.beta,2,median)

## it betaHat0 betaHat1

## 500.5000000 6.4886998 -0.3437068

# The standard error is the sample SD

apply(sample.beta,2,sd)

## it betaHat0 betaHat1

## 288.8194361 0.8809348 0.2928874

The histogram of the generated betas is shown in the following figure.

1The software sets the seed borrowing a value, usually from some internal function of the computer such as
the system clock.
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# Histogram of betahat

hist(sample.beta[,3],30,main = "", xlab = expression(beta))
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Figure 1: Histogram of simulated regression coefficient of the slope

1.2 The OASIS study

To see the implications of data missing at random, we consider the following data set. We
import the data into R and the number of missing values.

ESR = read.csv("h:/teaching/Indiana/PBHL B-582/labs/lab 7 (data analysis I)/data/ESR.csv")

head(ESR)

## group status phat_MAR statmis phat_1

## 1 A 0 0.7611941 0 0.89

## 2 A 0 0.7611941 0 0.89

## 3 A 0 0.7611941 0 0.89

## 4 A 0 0.7611941 0 0.89

## 5 A 0 0.7611941 0 0.89

## 6 A 0 0.7611941 0 0.89

# Create labels
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ESR$trt = NA

ESR$trt[ESR$group == "A"] = "ET"

ESR$trt[ESR$group == "B"] = "ST"

ESR$trt = factor(ESR$trt,levels = c("ET","ST"))

# See the number of missing values

apply(ESR,2, function(x) sum(is.na(x)) )

## group status phat_MAR statmis phat_1 trt

## 0 142 0 0 0 0

Before we proceed with the analysis, consider the code fragment

# Create labels

ESR$trt = NA

ESR$trt[ESR$group == "A"] = "ET"

ESR$trt[ESR$group == "B"] = "ST"

ESR$trt = factor(ESR$trt,levels = c("ET","ST"))

This code creates a new variable trt (at first populated by missing values), and then assigns the
label ET in the observations from group A (“enhanced” treatment) and ST in the observations
from group B (“standard treatment”). It then recasts this variable as a factor variable (similar
to the SAS class variable).

1.2.1 Analysis under MCAR

First, we carry out an analysis based on the subjects with available data

# Analysis of completers (assuming MCAR)

x = table(ESR$status,ESR$trt)

x

##

## ET ST

## 0 16 11

## 1 51 78

# Proportions

prop.table(x,2)

##

## ET ST

## 0 0.2388060 0.1235955

## 1 0.7611940 0.8764045

# Fitting a logistic regression model on the complete data

fit.CC = glm(status ~ trt,data = ESR,family = "binomial")

summary(fit.CC)
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##

## Call:

## glm(formula = status ~ trt, family = "binomial", data = ESR)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.0449 0.5137 0.5137 0.7387 0.7387

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1592 0.2865 4.046 5.22e-05 ***

## trtST 0.7996 0.4311 1.855 0.0636 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 143.75 on 155 degrees of freedom

## Residual deviance: 140.24 on 154 degrees of freedom

## (142 observations deleted due to missingness)

## AIC: 144.24

##

## Number of Fisher Scoring iterations: 4

# CI for the odds ratio

exp(confint(fit.CC))

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 1.8612751 5.769456

## trtST 0.9640272 5.301382

If we perform a logistic-regression analysis, based on the subjects with known smoking status
(completers), the smoking rate at one year is pET = 0.76 and pST = 0.88 for the enhanced and
standard intervention groups respectively. The odds ratio is ψ̂ = exp(0.7996) = 2.225 (95%
confidence interval (0.96, 5.30)). Note that, from the logistic-regression output above, this is
significant at the 10% but not the 5% level.

1.2.2 Analysis under MAR

We make a single imputation assuming that that the missing smoking status is missing randomly
within each intervention group (MAR)

# Indices of missing values

sub = ESR$statmis == 1
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set.seed(1)

ESR[sub,]$status = rbinom(n = sum(sub),size = 1,

prob = ESR$phat_MAR[sub])

# Now we have a complete dataset

x = table(ESR$status,ESR$trt)

x

##

## ET ST

## 0 38 17

## 1 111 132

# Proportions under MAR

prop.table(x,2)

##

## ET ST

## 0 0.2550336 0.1140940

## 1 0.7449664 0.8859060

# Fit a logistic regression model

fit = glm(status ~ trt,data = ESR,family = "binomial")

summary(fit)

##

## Call:

## glm(formula = status ~ trt, family = "binomial", data = ESR)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.0836 0.4922 0.4922 0.7673 0.7673

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.0719 0.1879 5.703 1.17e-08 ***

## trtST 0.9776 0.3189 3.065 0.00217 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 285.03 on 297 degrees of freedom

## Residual deviance: 274.99 on 296 degrees of freedom

## AIC: 278.99

##

## Number of Fisher Scoring iterations: 4
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# CI for the odds ratio

exp(confint(fit))

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 2.041271 4.274097

## trtST 1.443359 5.072826

Under MAR, we assume that the proportions of smokers among patients who dropped out in the
two groups is identical to those who did not. From this analysis, we see that the estimated odds
ratio is ψ̂ = exp(0.9776) = 2.658 (95% confidence interval (1.44, 5.07)), which is statistically
significant at the 5% level.

The previous analysis has a significant drawback. It assumes that our guess about the smoking
status among dropouts is exactly known. Thus, the estimate of the variability of the odds ratio
will be underestimated.

To address this, we combine multiple imputation with resampling methods. First we define a
new function ERboot.

ESRboot = function(data,N = 1000, MAR = T, pmisET = NULL, pmisST = NULL)

{
# Data frame including the results of each iteration

results = data.frame(it = 1:N, pST = NA, pET = NA, OR = NA)

# Number of observations

n = nrow(data)

for (i in 1:N)

{
# Bootstrap sample

temp_data = data[sample(n,replace = T),]

if (MAR==T)

{
x = table(temp_data$status,temp_data$trt)

prop.table(x,2)

pmisET = prop.table(x,2)[2,"ET"]

pmisST = prop.table(x,2)[2,"ST"]

}

# Indices of missing values

subET = temp_data$statmis == 1 & temp_data$trt == "ET"

subST = temp_data$statmis == 1 & temp_data$trt == "ST"

if (any(subET | subST))

{
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# Impute missing values

temp_data[subET,]$status = rbinom(n = sum(subET),

size = 1,prob = pmisET)

temp_data[subST,]$status = rbinom(n = sum(subST),

size = 1,prob = pmisST)

}

x = table(temp_data$status,temp_data$trt)

x

# Proportions under MAR with imputation

prop.table(x,2)

results[i,"OR"] = x[1,1]*x[2,2]/(x[2,1]*x[1,2])

results[i,"pET"] = prop.table(x,2)[2,"ET"]

results[i,"pST"] = prop.table(x,2)[2,"ST"]

}
return(results)

}
sampleOR = ESRboot(ESR)

The analysis is as follows:

# The estimates are the sample means or medians

apply(sampleOR,2,mean)

## it pST pET OR

## 500.5000000 0.8790533 0.7509644 2.7529571

# The standard error is the sample SD

apply(sampleOR,2,sd)

## it pST pET OR

## 288.81943610 0.03489803 0.04700226 1.50385074

The histogram of the imputed odds ratios is shown in Figure 2.

1.2.3 Analysis under MNAR

In most cases, the subjects of a study who stay on observation are not representative of those
who drop out in ways that are not predictable. We say that the data are missing not at random
(MNAR). In the OASIS study, four experts were consulted and asked to provide their expert
opinion about the likelihood that the subjects who discontinued from the study continue to
abstain from smoking.
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hist(sampleOR$OR,50,main = "", xlab = "Odds ratio")
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Figure 2: Histogram of the odds ratio

We undertake the anayses based on their opinion (the “scenarios” listed below).

scenarios = matrix(nr = 2,nc = 4)

rownames(scenarios) = c("ET","ST")

scenarios[1,] = c(0.83,0.87,0.87,0.83)

scenarios[2,] = c(0.90,0.91,0.90,0.90)

sampleOR = ESRboot(ESR, MAR = F, pmisET = 0.7611941, pmisST = .8764045)

The estimated odds ratios, resulting from the (rather optimistic) analysis under MAR and those
derived from the opinion of the four experts, is show in Figure 3.

13



# Analysis under MAR

plot(density(sampleOR$OR),xlab = "Odds ratio",

xlim = c(0,6),col = "green", main="", lwd = 2,ylim = c(0,1.0))

# Scenarios according to the four experts

for (j in 1:ncol(scenarios))

{
sampleOR = ESRboot(ESR, MAR = F, pmisET = scenarios[1,j],

pmisST = scenarios[1,j])

lines(density(sampleOR$OR),lwd = 2,lty = j)

}
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Figure 3: Monte Carlo simulations under MAR (green) and the four experts .
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