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Abstract
Patients with cerebellar damage often present with the cerebellar motor syndrome of dysmetria,
dysarthria and ataxia, yet cerebellar lesions can also result in the cerebellar cognitive affective
syndrome, including executive, visual-spatial, and linguistic impairments, and affective
dysregulation. We have hypothesized that there is topographic organization in the human cerebellum
such that the anterior lobe and lobule VIII contain the representation of the sensorimotor cerebellum;
lobules VI and VII of the posterior lobe comprise the cognitive cerebellum; and the posterior vermis
is the anatomical substrate of the limbic cerebellum. Here we analyze anatomical, functional
neuroimaging, and clinical data to test this hypothesis. We find converging lines of evidence
supporting regional organization of motor, cognitive, and limbic behaviors in the cerebellum. The
cerebellar motor syndrome results when lesions involve the anterior lobe and parts of lobule VI,
interrupting cerebellar communication with cerebral and spinal motor systems. Cognitive
impairments occur when posterior lobe lesions affect lobules VI and VII (including Crus I, Crus II,
and lobule VIIB), disrupting cerebellar modulation of cognitive loops with cerebral association
cortices. Neuropsychiatric disorders manifest when vermis lesions deprive cerebrocerebellar limbic
loops of cerebellar input. We consider this functional topography to be a consequence of the
differential arrangement of connections of the cerebellum with the spinal cord, brainstem, and
cerebral hemispheres, reflecting cerebellar incorporation into the distributed neural circuits
subserving movement, cognition, and emotion. These observations provide testable hypotheses for
future investigations.
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1. Background
It has now become apparent that the cerebellum is critical for many functions other than the
coordination of movement, and is engaged also in the regulation of cognition and emotion
(Baillieux et al., 2008; Leiner et al., 1986; Schmahmann, 1991, 1996, 1997; Schmahmann and
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Sherman, 1998). In contrast to the understanding of the regional cerebellar anatomy for motor
control (see Manni and Petrosini, 2004, for review), the putative functional topography of the
cerebellar modulation of cognition and emotion remains unclear. The cerebral cortex can be
parcellated on the basis of architectonic heterogeneity (Brodmann, 1909), but the main
components of the cerebellar cortex are essentially uniform throughout (Ito, 1984), although
differences are found in the preferential distribution of unipolar brush cells in the
vestibulocerebellum and in the molecular identities of cerebellar cortical neurons (see Schilling
et al., 2008 for review). A central question therefore emerges when considering this newly-
appreciated wider role of the cerebellum in the nervous system: which parts of cerebellum are
engaged in these different functions?

We have previously hypothesized that there is a functional dichotomy between the anterior
lobe (lobules I-V) and lobule VIII that are predominantly sensorimotor; and lobules VI and
VII (including Crus I and II and lobule VIIB) that contribute to higher-level processes
(Schmahmann, 1991, 1996, 2004; Schmahmann et al. 2009b). Lobule IX is considered essential
for the visual guidance of movement (Glickstein et al., 1994), although functional connectivity
magnetic resonance imaging (fcMRI) data indicate that it contributes to the default mode
network (Habas et al., 2009). Lobule X has long been thought to be the substrate of the
vestibulocerebellum. Here we consider anatomical, functional imaging, and clinical data to
test the hypothesis of topographic organization in the cerebellum of sensorimotor control,
cognition and emotion.

2. Anatomical evidence for cerebellar motor-nonmotor dichotomy
2.1 General organization of the cerebellum

Figure 1 provides an overview of the general organization of the cerebellum into ten lobules
(I-X) (Bolk, 1906;Larsell and Jansen, 1972;Schmahmann et al., 2000c). The cerebellum has
traditionally been recognized as having three anterior-posterior divisions: the anterior lobe
(lobules I – V) is separated from the posterior lobe by the primary fissure, and the posterior
lobe (lobules VI – IX) is separated from the flocculonodular lobe (lobule X) by the
posterolateral fissure. The lateral cerebellar hemispheres have expanded massively through
evolution (Larsell and Jansen, 1972), in concert with the cerebral association areas and the
ventral part of the dentate nucleus (Dow, 1942,1974;Leiner et al., 1986;Whiting and Barton,
2003). Much of this lateral cerebellar region (the neocerebellum) comprises the hemispheric
extensions of lobules VI and VII.

There is rich heterogeneity in the variety, complexity, and functional specialization of the areas
of spinal cord, brainstem and cerebral hemispheres with which the cerebellum is
interconnected. A brief overview of these connectional patterns provides insights into the
functional organization of the cerebellum.

2.2 Spinal and olivary inputs to cerebellum differentiate motor versus nonmotor regions
The cerebellum receives extensive projections carrying cutaneo-kinesthetic information from
the limbs directly via the spinocerebellar tracts and from the face and head via the
trigeminocerebellar tracts, and indirectly via the nuclei of the inferior olivary complex relaying
afferents conveyed in the spino-olivary tracts. In cat the dorsal and ventral spinocerebellar
tracts terminate in the anterior lobe and lobule VIII (Brodal, 1981); the trigeminocerebellar
projections terminate in the face representation principally in lobule VI, with some extension
into lobules V and sparse involvement of lobules VII and VIII (Carpenter and Hanna, 1961;
Hesslow, 1994; Ikeda, 1979; Snider, 1950). The medial and dorsal accessory olivary nuclei
relay their spinal inputs through climbing fibers to these same cerebellar lobules (lobules I-V;
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VI; VIII) as well as to the interpositus nuclei (Brodal, 1981; Oscarssson, 1965; Voogd,
2004).

In contrast, the principal olivary nucleus, which has little or no spinal cord input (Sugihara and
Shinoda, 2004), sends climbing fibers to lobule VII and the dentate nucleus, and to a smaller
degree to lobule VI, but not to the anterior lobe or lobule VIII. This double dissociation in the
olivo-cerebellar connections is evident in now-classical anatomical studies (Brodal, 1981;
Oscarsson, 1965) as well as in contemporary anatomical investigations (see Azizi, 2007 for
review), and provides part of the anatomical substrate for our proposed cerebellar motor-
nonmotor dichotomy.

2.3 Motor, cognitive, and limbic loops in the cerebrocerebellar system
The cerebellum is linked to the cerebral cortex via two-stage feedforward and feedback
systems. Input from cerebral cortical regions terminates on nuclei in the basis pontis, which in
turn convey mossy fiber efferents to the cerebellum. Feedback projections from the cerebellar
cortex travel via the deep cerebellar nuclei and terminate in the thalamus, which then sends
projections back to the cerebral cortex. The organization of the cerebro-cerebellar system
indicates that information from sensorimotor vs. association cortices is processed in different
regions of the cerebellum.

2.3.1 Cortico-ponto-cerebellar projections—Histological tract-tracing studies in
monkeys have defined the topographically arranged projections to the basis pontis from
sensorimotor, association and paralimbic cortices.

Motor-related cortices project preferentially to pontine neurons situated in the caudal half of
the pons, and these motor corticopontine projections are somatotopically arranged (Brodal,
1978; Hartmann-von Monakow et al., 1981; Nyby and Jansen, 1951; Schmahmann et al.,
2004a,b; Sunderland, 1940). From here, pontocerebellar fibers travel through the opposite
middle cerebellar peduncle to terminate mostly in the contralateral cerebellar anterior lobe.
Association cortex projections from prefrontal, posterior parietal, superior temporal,
parastriate, parahippocampal and cingulate regions also show topographic organization in the
pons (see Schmahmann, 1996; Schmahmann and Pandya, 1992, 1997). Prefrontal fibers
terminate more medially and rostrally, whereas projections from the posterior cerebral
hemisphere favor the dorsal, lateral and ventral pontine nuclei. These associative
corticopontine inputs are conveyed in the middle cerebellar peduncle to the cerebellar posterior
lobe.

Physiological studies have shown that, in contrast to arm and leg sensorimotor representations
in the anterior lobe and lobule VIII, with face representation additionally in lobule VI (Snider
and Eldred, 1951), the anterior cingulate region projects to medial parts of Crus I and II.
Association cortices project to the posterior lateral cerebellar hemispheres (Allen and
Tsukahara, 1974), and in particular parietal lobe cortex is linked with lobule VII, including
Crus I, Crus II and paramedian VIIB (Sasaki et al., 1975). Trans-synaptic viral tract-tracing
studies provide confirmation of these physiological observations, demonstrating that whereas
the motor cortex is linked with cerebellar lobules IV, V, and VI, prefrontal and posterior parietal
cortices are reciprocally interconnected with cerebellar lobules Crus I and Crus II, the
hemispheric extensions of lobule VIIA (Hoover and Strick, 1999; Kelly and Strick, 2003).
Diffusion tensor imaging of the cerebral peduncles indicate that in the monkey the majority of
corticopontine fibers are from the motor system (centrally situated in the peduncle), but in the
human brain there are larger numbers of fibers from prefrontal regions (situated more medially
in the peduncle; Ramnani et al., 2006).
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In addition to corticopontine afferents from motor and nonmotor regions, the cerebellum also
receives inputs from the medial mammillary bodies engaged in memory (Aas and Brodal,
1988; Haines and Dietrichs, 1984) and multimodal deep layers of the superior colliculus. It
also has reciprocal connections with the hypothalamus (Dietrichs, 1984; Haines and Dietrichs,
1984) and with brainstem areas (ventral tegmental area, periacqueductal gray, and locus
ceruleus) that are linked with limbic and paralimbic regions (Snider and Maiti, 1976).
Paralimbic cortices in the cingulate gyrus concerned with motivation, emotion and drive
(Devinsky et al., 1995; Paus, 2001) communicate with the cerebellum via their projections to
the pontine nuclei (Brodal et al., 1991; Vilensky and Van Hoesen, 1981), and the caudal inferior
parietal lobule, multi-modal regions of the superior temporal gyrus, and the posterior
parahippocampal formation that are interconnected with paralimbic structures also contribute
to the cortico-pontine projection (see Schmahmann, 1996; Schmahmann and Pandya, 1997).

Anatomical studies have not conclusively identified the vermis as the principal target of such
limbic connections, but physiological and behavioral studies provide support for the postulated
relationship between the cerebellar midline structures and the modulation of emotion (Heath,
1977; Schmahmann, 1991, 2000a). For example, stimulation of the cerebellar vermis
modulates firing patterns in hippocampus, amygdala, and septum (Babb et al., 1974; Berman
et al., 1997; Bobee et al., 2000; Moruzzi, 1947; Zanchetti and Zoccolini, 1954), and vermal
stimulation can ameliorate aggression in patients (Heath et al., 1978).

2.3.2 Cerebello-thalamic-cortical projections—The feedback projections from the
cerebellum to the cerebral cortex close the cerebro-cerebellar loops to motor and nonmotor
(cognitive and affective) regions. Output to the thalamus from the cerebellar deep nuclei is
directed to both motor (ventrolateral nucleus; nucleus X) and nonmotor (intralaminar, centralis
lateralis and paracentralis; centromedian-parafascicular; and mediodorsal) thalamic nuclei.
Different subdivisions of the cerebellar nuclei target motor and prefrontal cortices: motor
cortex receives projections from neurons in the interpositus and dorsal parts of the dentate
nuclei, whereas prefrontal cortex area 46 is targeted by the evolutionarily-newer ventrolateral
dentate nucleus (Middleton and Strick, 1994, 1997). Further, neurons situated dorsally in the
dentate nucleus project to the supplementary motor area (SMA), which in turn projects to the
primary motor cortex and spinal cord; ventrally-located dentate nucleus neurons project to the
pre-SMA, which is densely interconnected with prefrontal regions (Akkal et al., 2007).

2.4 Anatomical summary
In sum, spinal cord, brainstem (inferior olivary nucleus and neurons of the basis pontis), and
cerebral cortical areas concerned with sensorimotor processing are linked with the cerebellar
anterior lobe (lobules I – V) and lobule VIII, and to a smaller degree with lobule VI, together
with the interpositus nuclei (globose and emboliform). In contrast, cerebral association areas
and nuclei of the inferior olive and basis pontis that receive nonmotor inputs target lobules VI
and VII and the dentate nucleus. Available evidence points to limbic-related structures being
interconnected with the cerebellar vermis and fastigial nucleus. These anatomical connections
provide the structural basis for the theoretical formulation of the sensorimotor vs. cognitive/
affective functional dichotomy in the cerebellum.

3. Neuroimaging in humans
Neuroimaging studies report cerebellar activation during a multitude of tasks, including studies
of motor control, and higher-level tasks in which activation due to overt responses is eliminated
through subtraction analyses. Our recent activation likelihood estimate (ALE) meta-analysis
of functional activation patterns within the cerebellum (Stoodley and Schmahmann, 2009a)
found converging evidence for activation in anterior lobe (lobule V) and lobules VI and VIII
during sensorimotor tasks, and posterior lobe (lobules VI and VII) activation during language,
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spatial, executive, working memory and affective tasks. Here we present an overview of studies
that demonstrate cerebellar activation during sensorimotor, cognitive, and affective processing.

3.1 Sensorimotor cerebellar activation
The somatotopic representations of the human body have been demonstrated using functional
MRI during sensorimotor tasks (Bushara et al., 2001; Grodd et al., 2001, 2005; Nitschke et al.,
1996; see also Takanashi et al., 2003; Thickbroom et al., 2003). These are reflected in a body
map in the anterior lobe and lobule VI with a second representation in lobule VIII of the
posterior lobe, corresponding well with electrophysiological studies in the cat (Snider and
Eldred, 1951). Movement of the hand localizes to ipsilateral lobules V and VIII (Grodd et al.,
2001); tactile stimulation of the hand activates lobule V ipsilaterally with a second area of
activation in lobules VIIIB and IX (Bushara et al., 2001). Leg and foot sensorimotor
representations are observed in lobules II and III (Nitschke et al., 1996), whereas orofacial
movements activate paravermal anterior lobe regions extending into medial parts of lobule VI
(Dresel et al., 2005; Urban et al., 2003). Our meta-analysis corroborated selected aspects of
the somatotopy identified in these and other studies; activation patterns for sensorimotor tasks
involving the right index finger were localized to the anterior lobe (lobule V), with a secondary
focus in lobules VIIIA/B (Stoodley and Schmahmann, 2009a).

3.2 Cerebellar activation during cognitive tasks
Activation of the cerebellum in cognitive tasks was first demonstrated in positron emission
tomography (PET) studies of language (Petersen et al., 1998; Raichle et al., 1994). Subsequent
evaluations showed cerebellar activation in a variety of nonmotor tasks including sensory
processing (Gao et al., 1996), appreciation of timed intervals (Jueptner et al., 1995),
anticipatory planning and prediction (shifting attention tasks) (Allen et al., 1997; though see
Bischoff-Grethe et al., 2002), verbal working memory (Desmond et al., 1997), and mental
imagery (Ryding et al., 1993). Since these early studies, cerebellar activation has been found
consistently during language, working memory, visual spatial and executive function tasks.

Verbal fluency, verb-for-noun generation, semantic judgment, and word stem completion tasks
reliably activate the cerebellum in healthy populations (Buckner et al., 1995; Desmond et al.,
1998; Frings et al., 2006; Gurd et al., 2002, Herholz et al., 1996; Hubrich-Ungureanu et al.,
2002; Lurito et al., 2000; McDermott et al., 2003; Noppeney and Price, 2002; Ojemann et al.,
1998; Raichle et al., 1994; Schlosser et al., 1998; Seger et al., 2000; Tieleman et al., 2005;
Xiang et al., 2003). These studies controlled for articulation or employed paradigms that did
not require subjects to verbalize their responses, and found activation in the posterior lobe,
including lobules VI and VII (Crus I/II). In particular, language-related tasks activate the right
posterolateral cerebellum in right-handed individuals, in concert with left prefrontal regions
(Buckner et al., 1995; Desmond et al., 1998; Fiez and Raichle, 1997; Gurd et al., 2002; Ojemann
et al., 1998; Palmer et al., 2001; Petersen et al., 1998; Schlosser et al., 1998). Laterality of
cerebellar activation varies according to cerebral hemisphere dominance for language – right
cerebellar activation occurs during verbal fluency (word generation) and working memory
tasks in right-handed subjects (Hubrich-Ungureanu et al., 2002; Jansen et al., 2005; Ziemus et
al., 2007), whereas the left cerebellum activates during these tasks in left-handed subjects
(Jansen et al., 2005). Our meta-analysis (Stoodley and Schmahmann, 2009a) provided further
evidence that language-related activity is focused in lateral, posterior cerebellar regions,
including lobules VI and Crus I/II. Notably, the cerebellar anterior lobe is not active when the
motor components of speech (articulation) are excluded, although it has been argued that
cerebellar activation during cognitive tasks reflects inner speech or subvocal rehearsal (e.g.,
see Ackermann et al., 2007).
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Also reflecting these contralateral cerebro-cerebellar connections, cerebellar activation
patterns during spatial tasks tend to be more left-lateralized, consistently involving posterior
lobe regions, particularly lobule VI (Stoodley and Schmahmann, 2009a). This is exemplified
by line bisection tasks that involve the right parietal cortex and left cerebellum (Fink et al.,
2000). Mental rotation and spatial transformation tasks also tend to activate posterior regions
in lobules VI / Crus I (e.g., Bonda et al., 1995; Jordan et al., 2001; Parsons et al., 1995;
Vingerhoets et al., 2002; Zacks et al., 2002).

Working memory paradigms, such as the n-back task, activate bilateral regions of the cerebellar
posterior lobe (Honey et al., 2000; LaBar et al., 1999; Tomasi et al., 2005; Valera et al.,
2005). Chen and Desmond (2005a,b) have proposed that the superior cerebellum (lobules VI/
Crus I) is involved in the articulatory control aspect of this task while the inferior cerebellum
(lobules VIIB/VIIIA) is important for phonological storage. Cerebellar posterior lobe
activation is also found during executive function tasks, such as the Tower of London, random
number generation and complex decision-making tasks (Blackwood et al., 2004; Daniels et al.,
2003; Harrington et al., 2004; Jahanshahi et al., 2000; Schall et al., 2003), and tends to
specifically involve regions within lobules VI/Crus I and VIIB on the left (Stoodley and
Schmahmann, 2009a).

A consistent feature of the cerebellar activation by tasks of cognitive processing such as
language, working memory, spatial and executive tasks is that it is located in the posterior lobe
and does not involve the anterior lobe.

3.3 Cerebellar regions active during affective processing
Functional imaging of affective / emotional processing in healthy controls also highlights
posterior cerebellar regions. Viewing emotional vs. neutral images from the International
Affective Picture Scale (IAPS; Lang et al., 2005) activates cerebellar regions in the posterior
lobe, including lobules VI and VII (Bermpohl et al., 2006; George et al., 1993; Hofer et al.,
2007; Lane et al., 1997; Lee et al., 2004; Paradiso et al., 1997, 1999, 2003; Takahashi et al.,
2004). The act of identifying emotional intonation produces cerebellar activation in midline
lobule VII and the lateral posterior hemisphere (lobule VI bilaterally and right Crus I) both
during fMRI (Wildgruber et al., 2005) and PET imaging (Imaizumi et al., 1997).

Cerebellar vermis activation is seen in neuroimaging studies investigating panic (e.g., Reiman
et al., 1989), sadness and grief (Beauregard et al., 1998; Gundel et al., 2003; Lane et al.,
1997). Autonomic processing (Parsons et al., 2000), including the autonomic cardiovascular
arousal that occurs during both exercise and mental arithmetic stressor tasks (Critchley et al.,
2000), and air hunger (Evans et al., 2002) result in activation of posterior cerebellar regions in
both the midline and lateral hemispheres. The cerebellum is also active during painful
stimulation (Becerra et al., 1999; Borsook et al., 2007; Ploghaus et al., 1999; Singer et al.,
2004) – anterior regions are activated by the experience of pain, whereas posterior regions are
active during the anticipation of pain (Ploghaus et al., 1999). Further, different cerebellar
regions are involved when processing one’s own painful experience (posterior vermis) as
opposed to experiencing empathy for another’s pain (lobule VI; Singer et al., 2004). The
activation of hemispheral lobule VI and vermal lobule VII is quite consistent across these
studies of emotionally salient stimuli (Stoodley and Schmahmann, 2009a), and like the
activation patterns seen within the cerebellum for cognitive tasks, the focus of the cerebellar
activation varies according to the demands of the task. It is possible that hemispheric lobule
VI and VII activation reflects more cognitive components of task performance (e.g., empathy),
due to the connections of these regions with association cortices, and more “limbic” tasks
(including autonomic processing) may particularly involve the posterior vermis, our putative
limbic cerebellum.
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3.4 Functional neuroimaging summary
Data from neuroimaging studies in healthy subjects indicates that the anterior lobe, lobules VI
and VIII are engaged in tasks involving overt motor processing (finger tapping, articulation)
whereas lobules VI and VII activation is evoked during language, spatial tasks, executive
function and affective processing. Recent studies of resting-state functional connectivity
between the cerebellum and cerebral cortices support these findings, showing that activity in
the anterior lobe and adjacent parts of lobule VI is correlated with sensorimotor regions of the
cerebral cortex, as opposed to activity in lobule VII that correlates with association areas in
the prefrontal cortex, posterior parietal region, and superior and middle temporal gyri (Habas
et al., 2009; Krienen and Buckner, 2009).

4. Clinical findings
4.1 Motor symptoms and anterior lobe damage

The cerebellar motor syndrome is most commonly characterized by impairment of balance and
gait ataxia, limb dysmetria, dysarthria, and oculomotor disorders (Babinski, 1899; Holmes,
1939). The progressive motor disability that accompanies the neurodegenerative cerebellar
ataxias in particular can be so prominent as to overwhelm other aspects of the clinical
presentation, and may account for the long-held view that the cerebellum is purely a motor
control device. The motor syndrome has an anatomical signature, however, as determined by
studies of patients with focal cerebellar lesions.

Balance and gait impairment result from lesions of the anterior superior cerebellar vermis in
alcoholic cerebellar degeneration (Baloh et al., 1986; Diener et al., 1984; Mauritz et al.,
1979; Victor and Adams, 1953), and in children and adults with tumors involving the fastigial
nucleus, anterior lobe vermal lobules I – III, and lobules VIII and IX of the posterior lobe (Ilg
et al., 2008; Konczak et al., 2005; Schoch et al., 2006).

Lesion-deficit correlations in cerebellar stroke patients reveal that limb and gait ataxia are more
strongly associated with stroke in superior cerebellar artery (SCA) territory than in the posterior
inferior cerebellar artery (PICA) territory (Kase et al., 1993; Richter et al., 2007b; Tohgi et al.,
1993). However, it is important to note that the SCA and PICA territories do not obey lobular
boundaries. The SCA irrigates more anterior regions, but also lobules VI and Crus I, and the
dorsal portion of the dentate nucleus (Schmahmann, Hurwitz, Luft and Hedley-Whyte in
Schmahmann, 2000b; Tatu et al., 1996). The PICA irrigates more posterior regions, including
lobule VIII and the ventral aspect of the dentate nucleus (Schmahmann, 2000b; Tatu et al.,
1996). Voxel-based morphometric evaluation in 90 patients with cerebellar lesions (Schoch et
al., 2006) showed significant correlations between scores on the International Cooperative
Ataxia Rating Scale (ICARS; Trouillas et al., 1997) and damage to the anterior lobe, including
lobules II-V, with some involvement of lobule VI of the posterior lobe, supporting the idea
that the anterior lobe and lobule VI are involved in sensorimotor processing.

We have shown that there is a motor – nonmotor dichotomy in the clinical manifestations of
patients in the acute and subacute stages following cerebellar stroke (Schmahmann et al.,
2009b). We studied thirty-nine patients with infarction confined to the cerebellum and grouped
them according to lesion location, which was determined by analysis of MRI or CT scans using
the MRI Atlas of the Human Cerebellum (Schmahmann et al., 2000c). A modified and validated
version of the ICARS (Modified ICARS, or MICARS; Storey et al., 2004; Schmahmann et al.,
2009a) was used to show that subjects with anterior lobe involvement (n=20) had significantly
higher MICARS scores (mean ± standard deviation, 19.1 ± 11.2) than subjects with damage
confined to lobules VII-X (2.5 ± 2.0; p < 0.0001), who scored within the normal range. Patients
with strokes involving lobule VI experienced minimal motor impairment. In this study there
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was no significant effect of nuclear involvement on MICARS scores. These findings showed
that focal but sizeable cerebellar lesions do not necessarily result in motor deficits – a clinical
test of the notion that there are regions within the human cerebellum that are neither necessary
nor sufficient to support normal motor performance.

Dysarthria occurs when lesions involve anterior cerebellar areas irrigated by the SCA,
including lobule VI (Ackermann et al., 1992; Amarenco and Hauw, 1990; Amarenco et al.,
1991). Patients with infarction in the territory of the PICA and anterior inferior cerebellar
arteries may also be dysarthric, but analysis of lesion location on MR reveals that the anterior
lobe is consistently involved in these cases, particularly at the rostral paravermal region (Urban
et al., 2003). This same area is activated in healthy controls by movements of the tongue and
orofacial muscles (Urban et al., 2003).

These findings provide clinical support for the assertion that the cerebellar motor signs of
ataxia, dysmetria and dysarthria do not always result from insult to the cerebellum, but rather
the motor deficits are a consequence of injury to sensorimotor cerebellar regions located within
the cerebellar anterior lobe and regions of lobule VI. The precise contribution to motor function
of lobule VIII, the putative cerebellar second somatosensory area (Snider, 1950; Snider and
Eldred, 1951; Snider and Stowell, 1944; Woolsey, 1950), remains to be shown.

4.2 Cognitive and affective symptoms from posterior lobe damage
If damage to lobules VI and VII largely spare motor function, what are their functional roles?
Clinical findings provide support for regional functional specialization in cerebellum of
cognitive and affective processes, and they point to the posterior lobe, not the anterior lobe, as
being critical in this regard (e.g., Exner et al., 2004; Schmahmann et al., 2009b; Schmahmann
and Sherman, 1998; Tavano et al., 2007).

4.2.1 Cognitive deficits after cerebellar damage—The recognition of the cerebellar
cognitive affective syndrome (CCAS; Schmahmann and Sherman, 1998) established the
clinically relevant parameters of the nonmotor aspects of cerebellar function. This syndrome
is characterized by a range of executive, visual-spatial, linguistic and affective deficits in
patients with cerebellar damage. It was apparent from the outset that the CCAS occurs
following lesions of the cerebellar posterior lobe but not the anterior lobe. This constellation
of cognitive and neuropsychiatric impairments has been replicated in subsequent studies in
adults and children, and the observation that the syndrome results from lesions of the cerebellar
posterior lobe has also withstood scrutiny (Exner et al., 2004; Levisohn et al., 2000; Molinari
et al., 2004; Neau et al., 2000; Rapoport et al., 2000; Riva and Giorgi, 2000; Schmahmann et
al., 2007b; Steinlin et al., 2003). One study (Neau et al., 2000) found no difference in cognitive
scores between patients with SCA and PICA strokes, but this likely reflects the fact that SCA
strokes rarely spare lobule VI (Schmahmann et al., 2009b; Tatu et al., 1996), which is activated
by many cognitive paradigms in functional imaging studies (see Section 3, above).

A critical test of the concept of a sensorimotor-cognitive dichotomy in cerebellar organization
is whether the CCAS occurs in the absence of motor impairment. In a study reporting impaired
phonemic fluency in 19 patients with pathology restricted to the cerebellum, only three patients
had substantial motor deficits (Leggio et al., 2000) – two had infarcts in the AICA territory,
and one had a medulloblastoma. Further, language and cognitive difficulties can persist after
cerebellar stroke, even after the cerebellar motor syndrome has resolved (Fabbro et al., 2004;
Marien et al., 1996), and cognitive and affective symptoms can occur in the absence of motor
difficulties (Paulus et al., 2004). In a study of children following surgery for cerebellar
astrocytomas, neuropsychological deficits were present in all children, but only 60% had motor
symptoms or signs (Aarsen et al., 2004). Further, in a study of adults with cerebellar damage,
there was no correlation between neuropsychological measures and patients’ motor skills
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(Gottwald et al., 2003). Similarly, the small cerebellar volumes in very preterm babies correlate
significantly with performance on cognitive measures, but not motor tasks (Allin et al.,
2001). These observations add weight to the original evidence (Levisohn et al., 2000;
Schmahmann and Sherman, 1998) that focal cerebellar lesions may result in cognitive and
emotional deficits in the absence of the cerebellar motor syndrome.

Projections between the cerebral and cerebellar cortices are largely (though not exclusively)
contralateral (Brodal, 1979), leading to the prediction that the right cerebellum is more
concerned with linguistic processing, whereas the left cerebellar hemisphere is more relevant
for spatial information. This prediction is supported by functional neuroimaging findings that
language and spatial functions are lateralized within the cerebellum (see above), and clinical
reports that language impairments such as impaired verbal fluency (Akshoomoff et al., 1992;
Appollonio et al., 1993; Gasparini et al., 1999; Gebhart et al., 2002; Hassid, 1995; Leggio et
al., 1995, 2000; Levisohn et al., 2000; Molinari et al., 1997; Richter et al., 2007b; Riva and
Giorgi, 2000; Schmahmann and Sherman, 1998) and agrammatism (Ackermann et al., 2004;
Kalashnikova et al., 2005; Marien et al., 2001; Schmahmann and Sherman, 1998; Silveri et al.,
1994; Zettin et al., 1997) generally arise following right cerebellar hemisphere lesions. In
contrast, visual-spatial difficulties are more likely to occur after left cerebellar damage (see
Botez-Marquard et al., 1994; Fiez et al., 1992; Gebhart et al., 2002; Gottwald et al., 2004;
Gross-Tsur et al., 2006; Hokkanen et al., 2006; Levisohn et al., 2000; Riva and Giorgi, 2000;
Scott et al., 2001; Wallesch and Horn, 1990), although these findings are less consistent than
the link between the right posterolateral cerebellum and language.

The suggestion that language problems are primarily due to motor (articulatory) impairment
is not supported by patient studies. We have found that patients with cerebellar degeneration
show poorer performance on verbal fluency and word stem completion tasks even when the
effect of their slower articulation speed is accounted for (Stoodley and Schmahmann, 2009b).
Our results are in agreement with several reports that cerebellar patients are impaired on verbal
but not semantic fluency (see Brandt et al., 2004; Leggio et al., 2000), tasks which have
equivalent motor demands but are thought to tap different processing streams (see Borowsky
et al., 2006).

Some studies have failed to demonstrate that cerebellar patients have language or spatial
deficits. One group found no difficulties on a verb generation task in adults with cerebellar
degeneration (Richter et al., 2004) and stroke (Richter et al., 2007a), or in children following
removal of cerebellar tumors (Frank et al., 2007; Richter et al., 2005b). Other studies have
shown preserved learning on a verb generation task in cerebellar patients (Helmuth et al.,
1997), and absence of language difficulties in children (Frank et al., 2007; Richter et al.,
2005b) or adults with cerebellar damage (Gomez-Beldarrain et al., 1997; Richter et al.,
2007b). In addition, spatial deficits have not consistently been observed in patients with
cerebellar lesions (e.g., Appollonio et al., 1993; Dimitrov et al., 1996; Frank et al., 2007;
Gomez-Beldarrain et al., 1997; Richter et al., 2005b). It is possible that these negative findings
may be accounted for by location of the cerebellar injury, as most studies make group
comparisons between patients and controls without sub-grouping patients according to lesion
location.

4.2.2 Affective processes after cerebellar damage—The dysregulation of affect noted
in the CCAS included hypometric symptoms such as passivity, blunting of affect, and
withdrawal on the one hand, and hypermetric emotional lability, disinhibition and inappropriate
behavior on the other; these could cycle rapidly in the same person, or indeed coexist
simultaneously (Schmahmann and Sherman, 1998). Children surviving surgical excision of
cerebellar tumors show a range of abnormal affective symptoms and personality changes when
the lesions include damage to the vermis, whereas children without extensive vermal damage
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do not demonstrate emotional dysregulation (Levisohn et al., 2000). Vermis damage following
cerebellar tumor removal is associated with postoperative mutism that evolves into speech and
language disorders and behavioral disturbances (Catsman-Berrevoets et al., 1999; Ozgur et al.,
2006; Pollack et al., 1995; Riva and Giorgi, 2000), including apparent increased
thoughtfulness, anxiety and aggression (Richter et al., 2005a), with children demonstrating
evidence of both hyperspontaneous, disinhibited behavior, and hypospontaneous, flattened
affect (Aarsen et al., 2004). Malformations and agenesis of the posterior vermis are associated
with a range of cognitive impairments and emotional symptoms (Chheda et al., 2002; Tavano
et al., 2007), and preterm infants with vermal damage have behavioral profiles indicative of
pervasive developmental disorder and significant scores on autism screening questionnaires
(Limperopoulos et al., 2007). These posterior vermal regions are also among the brain areas
showing structural differences in autism spectrum disorders (Bauman and Kemper, 2005;
Courchesne et al., 1988; Penn, 2006).

The posterior vermis is implicated in the genesis of affective symptoms in adults with cerebellar
stroke (Paulus et al., 2004), and pathological laughing and crying is noted in patients with
cerebellar pathology from stroke (Parvizi et al., 2001), tumors (Famularo et al., 2007), and
multiple system atrophy – cerebellar type (Parvizi et al., 2007; Parvizi and Schiffer, 2007).
Clinical evaluation of a series of patients with cerebellar disorders designed to further elucidate
the nature of the affective dysregulation in the CCAS allowed the identification of five domains
of impairments (Schmahmann et al., 2007b). These were categorized as disorders of attentional
control, emotional control, autism spectrum, psychosis spectrum and social skill set. Within
each of these domains, we recognized evidence of both positive (overshoot/hypermetria) and
negative (undershoot/hypometria) symptoms of the affective dysmetria.

This wealth of evidence from contemporary studies in patients indicating that the cerebellar
vermis is engaged in the modulation of emotional processing provides support for the clinical
relevance of cerebellar-limbic connections, and is in agreement with earlier clinical (Heath et
al., 1979) and electrophysiological studies (Nashold and Slaughter, 1969) in patients that led
to the first indication of the cerebellum as an “emotional pacemaker” (Heath, 1977). The role
of the posterior vermis as the substrate for the putative limbic cerebellum is further
substantiated by the finding that patients with cerebellar stroke involving vermis or
paravermian regions (Figure 1 in Turner et al., 2007) have increased PET activation in
prefrontal regions and decreased activation in limbic structures in response to unpleasant
stimuli, and by the observation that the posterior vermis shows activation in substance abusers
during reward-related tasks (Anderson et al., 2006).

4.3 Clinical summary
Data from clinical populations provide evidence that the cerebellar motor syndrome results
from lesions principally affecting the anterior lobe, whereas cognitive deficits occur following
posterior lobe damage. Additionally, converging lines of data suggest that the posterior vermis
is a critical substrate for neuropsychiatric impairments.

5. Summary and Future directions
The results of investigations across different disciplines in neuroscience indicate that there is
a level of organization in the cerebellum such that sensorimotor control is topographically
separate from cognitive and emotional regulation. This new understanding of the cerebellum
represents a major departure from conventional wisdom. Given the available evidence, we
conclude that the anterior lobe and parts of medial lobule VI, together with lobule VIII of the
posterior lobe and the interpositus nuclei constitute the sensorimotor cerebellum. Lobule VII
and parts of lobule VI, which together with the ventral part of the dentate nucleus has expanded
massively in the human, constitute the anatomical substrate of the cognitive cerebellum. The
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limbic cerebellum appears to have an anatomical signature in the fastigial nucleus and the
cerebellar vermis, particularly the posterior vermis. Little is known of the possible cognitive
role of lobule IX, although early fcMRI data provide some insights into its potential
incorporation into the default mode network (Habas et al., 2009). Lobule X remains an essential
node in the vestibular system. This functional heterogeneity, determined by functional imaging,
physiological/behavioral studies, and clinical observations, is matched by the intricate
connectional heterogeneity between different cerebellar regions and the spinal cord, brainstem
and cerebral cortex. Further identification of the precise arrangement within the cerebellum of
the multiple different aspects of cognitive and emotional processing is the focus of ongoing
investigations.

This wider role of the cerebellum in cognition, emotion, social intelligence and mental health
may be viewed within the context of the anatomical substrates that constitute the distributed
neural circuits subserving all domains of neurological function. The demonstration across
modalities that the cerebellum is incorporated into the neural circuits governing many
behaviors, and not only motor control, begs the question as to what it is the cerebellum
contributes to these behaviors. This important question is discussed elsewhere (see
Schmahmann, 1997; Schmahmann and Pandya, 2008), but the question itself is predicated on
the focus of the present report, namely, the recognition that there are indeed distinct
cerebrocerebellar loops linked with motor, cognitive, and emotion circuits, and that this
anatomical arrangement leads to organization within the cerebellum that is functionally and
clinically relevant.

A number of avenues of investigation are available to test the hypothesis that there are separate,
topographically-organized cerebellar subsystems involved in processing sensorimotor,
cognitive and affective information. Advances in imaging technologies hold promise for
defining the structural and functional anatomy of the cerebrocerebellar loops in humans. For
example, diffusion tensor imaging (Ramnani et al., 2006) and diffusion spectrum imaging
(Granziera et al., 2009) have the potential to elucidate details of these cerebrocerebellar
pathways. Functional connectivity analyses (Allen et al., 2005; Booth et al., 2007; Habas et
al., 2009; Honey et al., 2005; Krienen and Buckner, 2009) and magnetoencephalograpy (Kujala
et al., 2007) make it possible to examine functional relationships between cerebellar and
cerebral cortical activity; already these techniques suggest that the cerebellum contributes to
the functional networks underlying cognitive tasks such as reading (Kujala et al., 2007).
Functional MRI can be used to examine topography within the cerebellum by studying
cerebellar activation during a range of different tasks within individuals to determine whether
the motor-nonmotor dichotomy, and the patterns of activity suggested by previous studies, can
be seen at an individual level.
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Figure 1.
Figures showing three-dimensional reconstructions from MRI of the external surfaces of the
cerebellum with the fissures that demarcate the lobules identified in color in A, anterior view,
and B, posterior view. C, Table identifying the relationships between lobules in the vermis and
hemispheres. The cerebellar fissures are color-coded as in the illustrations in A and B. (From
Schmahmann et al., 2000c).
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