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Th e maintenance of the body weight at a stable level is a major determinant in keeping the 
higher animals and mammals survive. Th e body weight depends on the balance between the ener-
gy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged 
time period results in an obesity. Th e obesity has become an important worldwide health problem, 
even at low levels. Th e obesity has an evil eff ect on the health and is associated with a shorter life 
expectancy. A complex of central and peripheral physiological signals is involved in the control 
of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, 
and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of 
the signals that control food intake and energy balance may open a new therapeutic approaches 
directed against the obesity and its associated complications, as is the insulin resistance and others. 
In conclusion, the present review summarizes the current knowledge about the complex system of 
the peripheral and central regulatory mechanisms of food intake and their potential therapeutic 
implications in the treatment of obesity.
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Th e maintenance of the body weight at a stable 
level is a major determinant in keeping the higher 
animals and mammals survive (Jequier and Tappy 
1999). As a compensatory mechanism, hunger in-
creases and energy expenditure decreases the weight 
loss. However, opposite responses are triggered when 
body weight increases. Body weight can change only 
when energy intake is not equal to energy expendi-
ture over a given period of time (Bray et al. 2012). A 
complex physiological control system is involved in 
the maintenance of the energy balance. Th is system 
includes aff erent signals from the periphery about the 
state of the energy stores and eff erent signals that af-
fect the energy intake and expenditure (Sandoval et 
al. 2008). Th is regulatory system is formed by mul-
tiple interactions between the gastrointestinal tract 

(GIT), adipose tissue, and the central nervous system 
(CNS). It is infl uenced by behavioral, sensorial, auto-
nomic, nutritional, and endocrine mechanisms (Bo-
guszewski et al. 2010).

Satiety and adiposity signals

Th e food intake control includes a short-term 
regulation, which determines the beginning and the 
end of a meal (hunger and satiation) and the interval 
between the meals (satiety) and a long-term regula-
tion with factors (signals of adiposity), which help 
to regulate the body energy depots (Cummings and 
Overduin 2007).

Th e satiation means a suppression of the hunger 
and termination of the food intake aft er ingestion of 
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a certain amount of food (Smith 1998). Th e mecha-
nisms controlling satiation determine the size of the 
meal. Satiety is a period of time between the meals 
with no hunger (Strubbe and Woods 2004). Th is time 
period is variable and its termination coincides with 

the refeeling of the hunger accompanied by the con-
sumption of the next meal, thus resuming the cycle 
of the food intake (Hargrave and Kinzig 2012) (Fig-
ure 1).

Th e mechanisms, which control the size of the 
meal (satiation) and those controlling the intervals 
between the meals (satiety), diff er (de Graaf et al. 
2004; Benelam 2009). Th e satiation is determined by 
physiological and psychological mechanisms, which 
trigger the aff erent signals to brain from multiple 
sites in the GIT, including the stomach, the proximal 
small intestine, the distal small intestine, and the co-
lon (Ritter 2004; Keenan et al. 2015).

Th e satiety is aff ected by short-term signals from 
GIT (Zac-Varghese et al. 2010) and long-term signals 
from the body energy store (Woods 2005). Th e sig-
nals from GIT are transmitted primarily via the vagal 
and spinal nerves to the nucleus of the solitary tract 
(NTS). Transection of all the gut sensory vagal fi bers 
has been shown to increase the meal size and its du-
ration (Schwartz 2000; Powley et al. 2005). However, 
the stimulation of the vagus nerve did not result in a 
weight gain (Koren and Holmes 2006). Th e long-term 
signals (adiposity signals) reach the arcuate nucleus 
(ARC) via the median eminence or by crossing the 
blood-brain barrier (BBB). Th ere exists, however, a 
large number of integrations and convergences be-
tween these signals mediated by neural connections 
between the ARC nucleus, NTS, and the vagal aff er-
ent fi bers (Boguszewski et al. 2010).

Th e hypothalamus role in the food intake control

Th e hypothalamus plays a major role in the control 
of the appetite. In the hypothalamus, aff erent signals 
from the gut and brain stem relied and eff erent sig-
nals for the food intake control are processed. Within 
the hypothalamus, there are many nuclei and neu-
ronal circuits involved in the food intake regulation, 
such as the ARC, a key hypothalamic nucleus in the 
appetite control, the paraventricular nucleus (PVN), 
the dorsomedial nucleus (DMN), the ventromedial 
nucleus (VMN), and the lateral hypothalamic area 
(LHA) (Wynne et al. 2005).

Arcuate nucleus (ARC) contains two neuronal 
populations with opposing eff ects on the food in-
take, i.e. neurons, which stimulate the food intake 
co-expressing neuropeptide Y (NPY) and agouti re-

lated peptide (AgRP), and neurons, which suppress 
the feeding co-expressing pro-opiomelanocortin 
(POMC) and cocaine- and amphetamine-regulated 
transcript (CART). Both types of the neurons proj-
ect to the hypothalamic areas, which are involved in 
the control of appetite including the DMN, PVN, and 
LHA (Suzuki et al. 2010) (Figure 2).

Neuropeptide Y is the most abundant neurotrans-
mitter in the brain. Th e hypothalamic NPY neuro-
peptide levels increase during the fasting and de-
crease aft er the feeding (Wynne et al. 2005). Th e NPY 
integrates a large family of peptides that includes 
peptide YY (PYY) and pancreatic polypeptide (PP), 
the eff ects of which are mediated via the six G-pro-
tein-coupled receptors named Y1 to Y6. Th e orexi-
genic eff ect of NPY is mediated by stimulation of the 
hypothalamic Y1R and Y5R, in addition to the local 
inhibition of the POMC neurons in the ARC. In addi-
tion, AgRP acts as a selective antagonist at MC3R and 
MC4R in the PVN (Suzuki et al. 2010).

Activation of NPY may explain the easy recovery 
of weight observed in the obese individuals under-
going treatment, since weight reduction leads to a 
decrease in the leptin, activation of NPY, and conse-
quently to hyperphagia and reduced energy expendi-
ture (Boguszewski et al. 2010). Regain of the weight, 
following the weight loss, can be a result of the modi-
fi ed adipose tissue cellularity, endocrine function, 
and energy metabolism (Ochner et al. 2013).

Th e anorexigenic eff ect of POMC has been proven 
by an increase in the food intake and adiposity as a 
result of POMC gene mutations in humans (Krude 

Figure1. Food intake cycle.
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et al. 1998) and gene deletion in canine (Raff an et al. 
2016). In the ARC nucleus, the cleavage of POMC 
results in the production of melanocortin peptides 
including adrenocorticotropic hormone (ACTH) and 
α-melanocyte-stimulating hormone (α-MSH) that 
exert their eff ects by binding to G-protein coupled 
melanocortin receptors (MC-Rs). From fi ve, two 
melanocortin receptors are expressed in the brain, 
MC4-R and MC3-R. Hyperphagia and obesity result 
from the targeted deletion of MC4-R in mice (Huszar 
et al. 1997). Th e higher fat content that have been 
noticed in MC3-R knockout mice (Chen et al. 2000) 
refl ects the importance of these two receptors in 
controlling the appetite. Th e inhibitory eff ect of the 
melanocortinergic neurons is antagonized by AgRP 

at MC4-R and MC3-R (Bagnol et al. 1999). Th e prod-
ucts of POMC cleavage, the fi ve diff erent subtypes 
of G-protein-coupled receptors, and the endogenous 
antagonists, AgRP and Agouti constitute the mela-
nocortin system that is involved in many important 
physiological processes. In addition to food intake, 
the melanocortin system is involved in the regula-
tion of pigmentation, adrenocortical steroidogenesis, 
natriuresis, erection, and exocrine secretion (Cone 
2005; Wynne et al. 2005).

Majority of the neurons that express POMC also 
co-express CART mRNA. Th e fasting decreases 
CART expression (Kristensen et al. 1998). Animal 
studies have shown a decrease in the food intake 
upon the intracerebroventricular (ICV) administra-

Figure 2. Short and long signals for food intake control. Abbreviations: ARC – arcuate nucleus; NPY/AgRP – neuropeptide Y and 
agouti related peptide; POMC/CART – pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript; PVN – para-
ventricular nucleus; LHA – lateral hypothalamic area; DMN – dorsomedial nucleus; VMN – ventromedial hypothalamic nucleus; 
ME – median eminence; AP – area postrema; GLP-1 – glucagon-like peptide-1; CCK – cholecystokinin; PP – pancreatic polypep-
tide; PYY – peptide YY; OXM – oxyntomodulin; BBB – blood-brain barrier; MCH – melanin-concentrating hormone; α-MSH 
– alpha melanocyte stimulating hormone; BDNRF – brain derived neurotrophic factor; CRH – corticotrophin releasing hormone; 
NTS – nucleus tractus solitaries; DVC – dorsal vagal complex; TRH – thyroid releasing hormone; MC4-R – melanocortin receptor 
4; MC3-R – melanocortin receptor 4; Y1R & Y5R – neuropeptide Y receptors 1 & 5
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tion of CART (Aja et al. 2001; Rohner-Jeanrenaud et 
al. 2002) and its increase aft er ICV injection of CART 
antiserum (Kristensen et al. 1998). However, recent 
studies have shown an increase in the food intake af-
ter injection of CART into the hypothalamic nuclei 
in streptozotocin-diabetic rats (Hou et al. 2010). Th is 
suggests that CART can be orexigenic or anorexigen-
ic, based on the neural circuit that is stimulated. It has 
been suggested that decreased expression of CART 
mRNA in ARC and PVN regions may contribute to 
the development of high-fat diet-induced obesity in 
mice. In addition, CART in the DMN and LH may be 
involved in the activation of the orexigenic eff ect (Yu 
et al. 2008).

Neurotensin (NT), a peptide expressed in the brain 
and GIT, plays a role in the regulation of food intake 
as evidenced by the inhibition of the food intake fol-
lowing the central and peripheral NT administration 
(Ratner et al. 2016). Transient increase in the food in-
take has been shown following pharmacological NT 
antagonism in a rat Roux-en-gastric bypass model 
(Ratner et al. 2016). It has been shown that periph-
eral NT administration inhibits the food intake by 
increasing the POMC mRNA in the ARC (Ratner et 
al. 2016). Th e anorexigenic eff ect of NT is mediated 
by neurotensin receptor-1 (Ntsr1), as it has been evi-
denced by Kim and Mizuno (2010). Other peptides 
that act on Ntsr1 and inhibit food intake include neu-
romedin U (Kim and Mizuno 2010) and xenin, a pep-
tide that is released from the small intestine (Sterl et 
al. 2016).

Th e hypothalamic paraventricular nucleus 
(PVN) contains several neurons that secrete anorexi-
genic substances such as corticotropin-releasing hor-
mone (CRH), oxytocin, and thyrotropin-releasing 
hormone (TRH). Each of these peptides acts to de-
crease food intake, increase the metabolic rate, or 
both (Morton et al. 2012; Blevins et al. 2015; Moore 
et al. 2015). Th e CRH is a 41 amino acid peptide, 
which is widely distributed throughout the brain, but 
is particularly abundant in the medial parvocellular 
division of the PVN (Sawchenko et al. 1985). In addi-
tion to its role in controlling the activity of the pitu-
itary adrenal axis, CRH controls the food intake too. 
Within the brain, CRH with its two receptor types, 
CRH type 1 (CRH1-R) and CRH type 2α (CRH2α-R), 
its binding protein, and its closely related peptide 
urocortin, forms a network of neuronal pathways 
that is capable of interacting with other circuitries 
controlling the food intake (Mastorakos and Zapan-
ti 2004). It has been shown that CRH mediates the 
anorexigenic eff ect of α-MSH in fi sh (Matsuda et al. 
2008) and ELABELA in the adult mouse (Santoso et 

al. 2015). ELABELA, a novel hormone consisting of 
32 amino acid peptides, found in humans and other 
vertebrates, is considered to play an important role in 
the circulatory system. It has been shown that ICV 
injection of ELABELA reduces food intake and acti-
vates the arginine vasopressin (AVP) and CRH neu-
rons in the PVN in a dose dependent manner (San-
toso et al. 2015).

A defect in the synthesis and release of the CRH 
has been implicated in the development of the obe-
sity in laboratory animals (Mastorakos and Zapanti 
2004). Moore et al. (2015) have reported a benefi cial 
eff ect of CRH1-R antagonism in the attenuation of 
the stress-induced consumption of palatable diets in 
female rhesus monkeys. It has been suggested that 
anorexigenic eff ect of CRH is conferred by CRH1R 
(Hotta et al. 1999). However, it has been observed that 
CRH is able to decrease the food intake in CRH1R 
knockout mice as much as in wild type littermates 
suggesting that both CRH1-R and CRH2-R may me-
diate the food intake inhibitory eff ect of CRH and 
urocortin but at diff erent time course (Sekino et al. 
2004).

Oxytocin, a hypothalamic peptide, is released into 
the circulation through the posterior pituitary and 
also directly acts on the central nervous receptors. 
In addition to its role in regulation of reproductive 
functions, such as mother–infant interaction and 
lactation, it is a potent modulator of social behaviors 
including attachment and sexual behavior (Meyer-
Lindenberg et al. 2011). Moreover, animal studies 
and pilot experiments in humans have indicated that 
oxytocin might have a role in the regulation of eat-
ing behavior and metabolism in normal weight as 
well as with diet-induced obesity. Oxytocin adminis-
tration in animals and humans inhibits food intake, 
increases energy expenditure, and reduces glucose 
levels (Morton et al. 2012; Ott et al. 2013; Blevins et 
al. 2015; Lawson et al. 2015). Interestingly, there are 
experiments, which suggest that the metabolic eff ects 
of oxytocin may be even enhanced in diet-induced 
obese in comparison to control weight (Th ienel et al. 
2016) with absent or minimal side eff ects. Th is makes 
oxytocin a promising pharmacological intervention 
in obesity (Blevins and Baskin 2015; Zhang et al. 
2013). A recent study has shown that central oxyto-
cin acts via an oxytocin receptor that is expressed in 
the nucleus accumbens core to decrease food intake 
driven by hunger and reward in rats off ered a meal in 
a non-social setting (Herisson et al. 2016).

Galanin-like peptide (GALP) is a neuropeptide 
expressed in several brain areas including hypotha-
lamic nuclei involved in the appetite regulation such 
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as ARC, PVN, and median eminence (Wodowska 
and Ciosek 2015). GALP seems to be a promising 
peptide in the obesity treating. GALP administration 
has been eff ective in ameliorating the obesity in mice, 
where it has been shown that brain uptake of GALP is 
higher aft er intranasal than intravenous administra-
tion (Hirako et al. 2016; Kageyama et al. 2016). Ad-
ministration of GALP in mice, but not rats, resulted 
in an acute orexigenic eff ect that may be explained by 
an NPY input to GALP neurons from the ARC NPY-
containing neurons and orexin-containing neurons 
in LHA, in addition to fi bers that project from GALP 
neurons to orexin and melanin-concentrating hor-
mone (MCH) ones in the LHA (Takenoya et al. 2005). 
However, this orexigenic eff ect was transient and fol-
lowed by a chronic anorexigenic eff ect and decrease 
of the body weight. It has been suggested that GALP 
expression is regulated by leptin and insulin as evi-
denced by the presence of leptin receptors in more 
than 85% of GALP neurons (Hirako et al. 2016). Th e 
expression of GALP in the brain has been found to be 
increased aft er administration of the leptin in fasted 
rats as compared with controls (Lawrence and Fraley 
2011). GALP expression has been found to be restored 
in diabetic rats aft er insulin administration (Fraley et 
al. 2004).

Th e lateral hypothalamic area (LHA). Orexin A 
and B, a pair of neuropeptides, are produced in cells 
located in the hypothalamic lateral and perifornical 
areas. Orexin A has been found to enhance the food 
intake when injected into certain hypothalamic nu-
clei such as LHA, PVN, DMN, and the perifornical 
area. However, orexin B has been found to be ineff ec-
tive when injected to any of the hypothalamic nuclei 
(Dube et al. 1999). Hypocoretin-1 (HC, Orexin A) is 
a neuropeptide that is involved in the regulation of 
many physiological functions, such as sleep, appetite, 
and arousal. Recently, a study on rats has shown an 
increase in the food consumption aft er intranasal 
administration of HC (Dhuria et al. 2016). In addi-
tion to orexin expressing cells, LHA contains MCH 
expressing cells that extend in a wider area. Th ese two 
types of cells are targets for NPY and AgRP projec-
tions coming from the ARC (Broberger et al. 1998).

Th e ventromedial nucleus (VMN). In addition 
to the large population of glucoresponsive neurons 
in the VMN, the brain-derived neurotrophic factor 
(BDNF) is also highly expressed. Central infusion of 
BDNF reduces food intake and induces weight loss in 
rats (Pelleymounter et al. 1995). Th e VMN receives 
NPY, AgRP, and POMC neuronal projections from 
the ARC and it is thought that POMC neurons from 
the ARC play a role in activating BDNF neurons in 

VMN to decrease the food intake (Xu et al. 2003).
Th e dorsomedial nucleus (DMN) contains a high 

level of NPY and α-MSH terminals originating in the 
ARC. From DMN, α-MSH fi bers project to the TRH-
containing neurons in the PVN (Mihaly et al. 2001). 
Destruction of the DMN results in hyperphagia and 
obesity (Bernardis and Bellinger 1986).

Role of the brainstem

Th e dorsal vagal complex (DVC), located within 
the brainstem, is a crucial in the interpretation and 
relaying of peripheral signals from the gut to the 
hypothalamus. Th e DVC consists of the dorsal mo-
tor nucleus of the vagus (DVN), the area postrema 
(AP), and the NTS within which POMC neurons 
exist (Schwartz 2010). Receptors for a variety of hor-
mones controlling food intake have been found to 
be expressed in the brainstem vagal aff erent neu-
rons including cholecystokinin (CCK) 1R and CCK 
2R at which both CCK and gastrin act (Moriarty et 
al. 1997), insulin receptors, GLP-1 (Nakagawa et al. 
2004) and GLP-2R (Nelson et al. 2007), growth hor-
mone secretagogue receptor (GHS)-R1 at which ghre-
lin acts (Date et al. 2002), the orexin receptor, OX-R1 
(Burdyga et al. 2003), and leptin (Burdyga et al. 2002).

Role of the reward system

Diff erent brain circuits involved in the reward, as 
the hippocampus, amygdala, pre-frontal cortex, and 
midbrain, have been found to be activated by food 
and food-related cues (Palmiter 2007; Kenny 2011). 
Dopamine is a neurotransmitter that is released from 
the neurons in the mesolimbic system and mediate 
emotions and pleasure (reviewed by Nutt et al. 2015). 
It has been demonstrated that with food intake do-
pamine release is enhanced in the circuits that me-
diate the pleasurable aspects of the eating (Volkow 
et al. 2011). However, decreased body weight aft er 
chronic food deprivation has been shown to be as-
sociated with a decrease of dopamine levels (Pothos 
et al. 1995). Th is suggests that increased food intake 
aft er chronic food deprivation and weight loss may 
represent a compensatory mechanism to restore the 
baseline dopamine levels (Cota et al. 2006).

Th e endogenous opioid and endocannabinoid sys-
tems play important role in the reward-related feed-
ing (Pomorska et al. 2016). Th e endogenous opioid 
peptides such as β-endorphins derived from POMC, 
which is a precursor of opioids, bind to opioid recep-
tors that are distributed in the hypothalamic regions 
controlling the food intake (reviewed by Kenny 2011). 
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Some studies have shown that infusions of μ-opioid 
receptor agonists stimulate feeding behavior in rats, 
while opioid receptor antagonists infused decrease 
the consumption of the preferred food without af-
fecting the intake of the less palatable alternatives 
(reviewed by Goodman 2008). In addition, systemic 
injection of a μ-opioid antagonist prevents the stimu-
latory eff ect of palatable food on dopamine release in 
the nucleus accumbens, which confi rms the excitato-
ry eff ects of opioids on the dopamine system (Tanda 
and di Chiara 1998).

Role of the endocannabinoid system

Th e plant-derived cannabinoids such as 
Δ9-tetrahydrocannabinol (THC) as well as their 
synthetic analogues, act in the organism by activat-
ing specifi c cell-surface receptors that are normally 
engaged by a family of endogenous ligands; the en-
docannabinoids. Th e fi rst endocannabinoid discov-
ered was named anandamide (AEA), the amide of 
arachidonic acid (AA) and ethanolamine (Et) (Dev-
ane et al. 1992). A second arachidonic-acid deriva-
tive is the 2-arachidonoylglycerol (2-AG) that binds 
to cannabinoid receptors was subsequently described 
(Mechoulam et al. 1995).

Endocannabinoids are produced by a variety of 
cell types including endothelial cells (Gauthier et 
al. 2005), adipocytes (Pagano et al. 2008), glial cells 
(Gonthier et al. 2007), macrophages (Di Marzo et al. 
1999), and Purkinje cells (Maejima et al. 2001). Th e 
endocannabinoid system (ECS) consists of the en-
dogenous cannabinoid ligands, the enzymatic ma-
chinery involved in their synthesis uptake and degra-

dation, the G-protein-coupled cannabinoid receptors 
type 1 and 2 (CB1 and CB2) (Kogan and Mechoulam 
2006; Quarta et al. 2011). CB1 has been found to be 
widely and abundantly distributed in tissues involved 
in the energy homeostasis, including the hypothala-
mus, brainstem, mesolimbic region, and peripheral 
tissues such as the GIT, fat, liver, muscle, thyroid, and 
pancreas (Matias et al. 2006). CB2 is well known in 
his immune modulatory eff ect (Cabral and Griffi  n-
Th omas 2009). However, recently it has been found 
that CB2 plays a role in the energy homeostasis and 
food intake (Verty et al. 2015) (Figure 3).

Th e ECS is involved in the regulation of food in-
take and energy balance as evidenced by the follow-
ing: 1) binding of endocannabinoids to CB1 receptors 
results in an increased appetite, weight gain, lipogen-
esis, and lower insulin sensitivity (Horvath 2003); 2) 
an increased food intake aft er central administration 
of cannabinoids mediated by CB1 activation (Jam-
shidi and Taylor 2001; Verty et al. 2005) and its sup-
pression by blocking the cannabinoid receptor that 
has been found to have a direct participation of sym-
pathetic nervous system, ghrelin, or leptin (Alen et al. 
2013; Silvestri and Di Marzo 2013); 3) increased en-
docannabinoid hypothalamic levels in rodents with 
diet-induced or genetic obesity (Quarta et al. 2011). 
Th e endocannabinoids increase the production of the 
hypothalamic appetite stimulating transmitters and 
reduce the production of the appetite-suppressing 
signals. In the reward center of the mesolimbic re-
gion, the endocannabinoids promote the motivation 
to eat palatable food (Di Marzo and Matias 2005).

Food intake has been found to be suppressed by 
genetic deletion or pharmacological CB1 block-

Figure 3. Th e endocannabinoid system.

ade in the lean and obese 
starved animals (Verty et 
al. 2009; Quarta et al. 2010; 
Quarta et al. 2011; Rorato 
et al. 2013). However, other 
studies have shown that 
CB1 blockade may result in 
a food intake independent 
decrease in fat mass mainly 
through lipolysis (Jbilo et al. 
2005; Nogueiras et al. 2008; 
Quarta et al. 2010). As a con-
sequence, CB1 blockade has 
been shown to be eff ective 
in ameliorating the obesity-
related metabolic disorders 
(Cota et al. 2003; Ravinet 
Trillou et al. 2004; Quarta et 
al. 2011).
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Th e activation of ECS has been found to promote 
energy storage (Bermudez-Silva et al. 2010; Quarta et 
al. 2010; Bermudez-Silva et al. 2012). Physiologically, 
ECS is activated in response to stressful stimuli help-
ing the aff ected tissues to restore their steady state 
(Pagotto et al. 2006). Ingestion of food, CCK and oth-
er gastric peptides decrease the activity of the ECS. 
In contrast, increased circulating levels of ghrelin in 
situations of the food deprivation are associated with 
higher endocannabinoid activity, suggesting that the 
orexigenic eff ect of ghrelin occurs, at least in part, by 
activation of the endocannabinoid system (Bogusze-
wski et al. 2010). Leptin produced from the adipose 
tissue reduces the levels of endocannabinoids due to 
interference with 2-AG synthesis and increased anan-
damide degradation (Di Marzo and Matias 2005).

Is the over-activity of ECS a cause of obesity?
Th e sustained hyperactivity of the ECS could lead 

to hyperphagia with a progressive and excessive ac-
cumulation of fat and subsequent development of 
obesity (Ravinet Trillou et al. 2004), insulin resis-
tance, and disturbed lipid profi le (Foster-Schubert 
and Cummings 2006). Obesity has been found to 
be associated with a dysregulation of the ECS. CB1 
has been found to be less in obese and returned to 
the normal aft er weight loss (Bennetzen et al. 2011). 
Blocking of CB1 in humans using rimonabant, as a 
treatment for obesity, resulted in psychiatric side ef-
fects, which resulted in withdrawal of the drug (Lee 
et al. 2009). However, targeting the peripheral CB1 
receptors has been found to safely alleviate the car-
dio-metabolic disorders associated with the obesity 
(Tam et al. 2010).

Th e eff ectiveness of CB1 receptor blockade in de-
creasing body weight and amelioration of the obe-
sity related metabolic disorders may be mediated by 
elimination of ECS eff ects on the appetite, increase 
in adiponectin levels, which is thought to result in 
increased fat metabolism and an improvement in 
glucose metabolism (Scheen et al. 2006) and increase 
in the mitochondrial biogenesis in white adipocytes 
by inducing the expression of nitric oxide (NO) pro-
duced by endothelial NO synthase (eNOS), which is 
linked to the prevention of high-fat diet-induced fat 
accumulation, without concomitant changes in food 
intake (Tedesco et al. 2008).

Role of the gastrointestinal tract peptides

Th e gastrointestinal (GI) tract is the largest endo-
crine organ in the body where many hormone genes 
are expressed and bioactive peptides are produced 
(Rehfeld 1998). Many of these hormones and peptides 

are involved in the peripheral control of the food in-
take by controlling the initiation and termination of 
the meal. Besides the role of peptides in satiation and 
satiety, gastric distension has a satiating eff ect that 
forms the basis of gastric balloon use in humans as a 
treatment for obesity (Martin et al. 2007).

Cholecystokinin (CCK) was the fi rst gut hormone 
shown to modulate the food intake (Bray and York 
1972). CCK is secreted postprandial from I cells of 
the small intestine into the circulation with a plas-
ma half-life of a few minutes. CCK levels rise rapidly 
reaching a peak within 15 minutes aft er a meal. It is 
also reported to reduce food intake in humans and 
rodents (Liddle et al. 1985). Th e action of CCK is 
mediated by two CCK receptor subtypes: CCK1 and 
CCK2, which are widely distributed in the brain in-
cluding the brainstem and the hypothalamus (Moran 
et al. 1998). Th e anorectic action of CCK has been 
found to be mostly mediated through CCK1R on va-
gal aff erents (Moran et al. 1997). Th ere are various 
forms of CCK with various eff ects on the meal size 
and the intervals between meals. While CCK 58 and 
CCK-8 both stimulate satiation, thereby reducing 
meal size, CCK-58 consistently exerts a satiety eff ect 
(Overduin et al. 2014). Similar results have been re-
ported with CCK-33, which has been found to reduce 
the food intake by prolonging the inter-meal interval 
(Washington et al. 2011; Lateef et al. 2012).

Peptide tyrosine tyrosine (PYY) is a member of 
the pancreatic polypeptide (PP) family (Lin et al. 
2004). Th ere are two circulating forms of PYY re-
leased by L cells in the distal gut: PYY (1–36) and 
PYY (3–36). PYY (3–36), the major circulating form, 
is produced by cleavage of the N-terminal Tyrosine-
Proline residues from PYY (1–36) by the enzyme di-
peptidyl-peptidase-IV (DPP-IV) (Wynne et al. 2005). 
Currently, the DPP-IV inhibitors are being evaluated 
for their eff ects on the obesity and metabolic traits 
(Martin et al. 2015).

PYY (3–36) binds with highest affi  nity to the hy-
pothalamic Y2R causing a reduction in food intake. It 
also binds to other Y receptors, although with much 
lower affi  nity. In addition to PYY’s anorectic eff ect on 
food intake, it also increased the energy expenditure 
(Boey et al. 2008) and delayed gastric emptying in 
mice (Talsania et al. 2005). Th e low level of PYY in 
obese subjects and their blunt increase aft er a meal 
possibly results in impaired satiety and hence greater 
food intake (le Roux et al. 2006). However, this was 
not supported by the fi ndings of another study that 
has shown no diff erences in the levels of PYY between 
lean and the obese (Pfl uger et al. 2007). Weight re-
gain aft er Roux-en-Y gastric bypass (RYGB) has been 
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found to be attributed to the failure to sustain a high 
level of PYY indicating that combining RYGB with 
pharmacologic stimulation of PYY secretion in pa-
tients aft er RYGB who exhibit inadequate PYY con-
centration may increase long-term success of surgical 
weight reduction in morbidly obese adults (Meguid 
et al. 2008).

Pancreatic polypeptide (PP) is a hormone released 
from the pancreas in response to food ingestion. PP 
plasma levels are reduced by obesity and increased 
by anorexia nervosa. Th e peripheral administration 
of PP has been shown to decrease the food intake in 
rodents and humans (Batterham et al. 2003; Jesuda-
son et al. 2007). PP is thought to reduce food intake 
through the following mechanisms 1) stimulation 
of Y4 and Y5 receptors in the dorsal vagal complex, 
including the area postrema (AP), the nucleus of the 
solitary tract (NTS) and the dorsal motor nucleus of 
the vagus (DMV) (Whitcomb et al. 1997; Lin et al. 
2009); 2) sending anorexigenic signals via the brain-
stem and hypothalamic neuropeptides (Hankir et al. 
2011); 3) modulation of the expression of other pe-
ripheral peptides such as ghrelin, and 4) delay in gas-
tric emptying that seemed to occur only in animal 
models and not in humans. Th e anorectic eff ects of 
PP and PYY (3–36) are abolished in abdominal va-
gotomised rats, suggesting that PP and PYY (3–36) 
induce anorexia via vagal aff erent nerves (Iwasaki et 
al. 2013).

Enterostatin and apolipoprotein A-IV. Enter-
ostatin is a peptide secreted from the exocrine pan-
creas in response to fat intake to facilitate its digestion 
(Cummings and Overduin 2007). Both peripheral 
and central enterostatin administrations have been 
found to decrease dietary fat intake in animals, con-
versely enterostatin-receptor antagonists have been 
found to do the opposite (Okada et al. 1992). Apoli-
poprotein A-IV (APO AIV) is a glycoprotein secreted 
from the intestine in response to fat absorption and 
chylomicron formation to be used in packaging of di-
gested lipids in transit through lymphatic to blood. 
It has been hypothesized that APO AIV represents 
a link between the short- and long-term regulations 
of lipid-related energy balance (Qin and Tso 2005) 
based on the following fi ndings: 1) APO AIV is pro-
duced in the hypothalamic arcuate nucleus (Tso et al. 
2004) and 2) exogenous administration of APO AIV 
has been found to decrease meal size, food intake, 
and weight gain in rats, whereas APO AIV–specifi c 
antibodies have been found do the opposite (Fujimo-
to et al. 1993).

Glucagon-like peptide-1 (GLP-1). Th e pro-gluca-
gon gene is cleaved into diff erent products by the en-

zymes convertase 1 and convertase 2, a process that 
varies among the tissues. In the pancreas, the main 
product of this cleavage is glucagon, whereas in the 
intestine the GLP-1 and GLP-2. GLP-1 is released into 
the circulation aft er meals, physiologically acting as 
an incretin that promotes increased pancreatic insu-
lin secretion and consequently infl uences the glucose 
homeostasis (Holst 2004).

DPP-IV degradation and renal clearance rapidly 
inactivate and remove GLP-1 from the plasma circu-
lation, resulting in a half-life of 1–2 minutes (Men-
tlein et al. 1993). GLP-1 has two biologically active 
forms, GLP-1 (7–37) amide and GLP-1 (7–36) amide, 
the latter being the major circulating form in hu-
mans. GLP-1R expression is widely distributed par-
ticularly in the brain, GIT, and pancreas (Baggio and 
Drucker 2014). Circulating GLP-1 levels rise aft er a 
meal and fall in the fasted state. GLP-1 reduces food 
intake (Parker et al. 2013), suppresses glucagon secre-
tion (Hare 2010), and delays gastric emptying (Little 
et al. 2006).

Oxyntomodulin (OXM) is another product of the 
proglucagon gene, which is released from the intesti-
nal cells into the circulation in proportion to caloric 
intake (Ghatei et al. 1983). OXM has been found to 
reduce the food intake and promote increased energy 
expenditure resulting in negative energy balance that 
supports the role of oxyntomodulin as a potential 
anti-obesity therapy (Cohen et al. 2003; Wynne et 
al. 2006). Th e most likely mechanism of OXM action 
on energy homeostasis is through its binding to the 
GLP-1 receptor as GLP-1 receptor antagonists have 
been found to reduce the food intake (Dakin et al. 
2004). Although OXM binds the GLP-1 receptor with 
lower affi  nity than GLP-1 by approximately 50 fold 
less strongly than GLP-1, they are equally eff ective in 
causing anorexia. Th us, diff erences in the biological 
eff ects of OXM and GLP-1 may be due to variations 
in the tissue penetration, degradation, or intracellu-
lar signaling pathways (Fehmann et al. 1994; Baggio 
et al. 2004).

Glucagon is produced by alpha cells of the pan-
creatic islets. In contrast to GLP-1 and insulin, hy-
poglycemia causes an increase in the glucagon secre-
tion resulting in hepatic glycogenolysis. Peripheral 
as well as central administration of glucagon in rats 
reduced food intake and meal size in addition to re-
ducing body weight gain (Geary et al. 1993; Honda et 
al. 2007). Combination of glucagon and GLP-1 ago-
nists has been found to be benefi cial as a treatment of 
obesity rodents have been demonstrated (Pocai et al. 
2009) as GLP-1 prevented the hypoglycemia induced 
by glucagon (Parker et al. 2013).
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Insulin and amylin. Insulin, a peptide secreted 
from beta cells of the pancreas aft er a meal and its 
amount along with leptin has been found to be di-
rectly proportional to white fat (Considine et al. 
1996) that may refl ect the important role of both as 
an adiposity signals from adipose tissue to the hy-
pothalamic centers controlling energy balance. Al-
though there is a controversy in the issue weather 
insulin can cross the blood brain barrier and weather 
it is synthesized by the brain itself (Woods et al. 2003; 
Gerozissis 2004). It has been found that central ad-
ministration of insulin caused a decrease in food in-
take and weight loss in animals (Woods et al. 1979; 
Riedy et al. 1995) whereas opposite eff ect has been 
found when insulin antibodies were administered in 
or near the mediobasal hypothalamus (McGowan et 
al. 1992) where insulin receptors are highly expressed 
(Halmos and Suba 2011).

Amylin is a peptide co-secreted with insulin, in-
hibits gastric emptying, gastric acid and glucagon 
secretions, and reduces food intake and meal size in 
animals (Young and Denaro 1998). Th e anorectic ac-
tion of amylin has been found to be mediated by de-
creasing the expression of orexigenic neuropeptides 
(Lutz 2009). Th e eff ect of chronic administration of 
amylin in increasing energy expenditure has been 
demonstrated (Wielinga et al. 2007). Acute adminis-
tration of amylin agonist, salmon calcitonin but not 
amylin signifi cantly stimulated energy expenditure 
in fasted animals (Roth et al. 2006).

Ghrelin is the only known orexigenic gut peptide 
secreted mainly from the stomach. Th e pre-prandial 
elevation of ghrelin levels and its fall aft er meals led 
to the notion that ghrelin is a ‘hunger’ hormone re-
sponsible for meal initiation. Ghrelin is involved in 
short-term regulation of the food intake and long-
term regulation of bodyweight through decreasing fat 
utilization (Castaneda et al. 2010). Th e eff ect of ghre-
lin on food intake is mediated through the growth 
hormone secretagogue receptor 1a (GHS-R1a), which 
is highly expressed in the hypothalamic cell popula-
tions that regulate the feeding and the body weight 
homeostasis. Th is was evidenced by lack of the orexi-
genic eff ect of ghrelin in GHS-R knocked out mice 
(Sun et al. 2004). Ghrelin’s orexigenic eff ect is medi-
ated by specifi c modulation of AgRP/NPY neurons in 
the ARC without demonstrated change in the mRNA 
levels of the other feeding–promoting neuropeptides 
such as melanocyte stimulating hormone (MCH) and 
pre-pro-orexin (OX) (Cowley et al. 2003). Recent data 
have indicated that the orexigenic eff ect of ghrelin 
is mediated by its modulation of the hypothalamic 
adenosine monophosphate (AMP)-activated protein 

kinase (AMPK) enzyme activity (Kola et al. 2008). 
Th e detection of the ghrelin receptors on the vagal af-
ferent neurons in the rat suggests that ghrelin signals 
from the stomach are transmitted to the brain via the 
vagus nerve (Date 2012). However, the fi ndings re-
garding eff ect of vagatomy on the orexigenic eff ect of 
ghrelin in animal models and humans is not univer-
sal. Th e vagal aff erents cut was not necessary for the 
orexigenic eff ect of the peripherally injected ghrelin 
in rats (Arnold et al. 2006) as well as gastrectomy in 
humans accompanied by vagatomy did not prevent 
the orexigenic eff ects of ghrelin treatment, indicating 
that intact vagus is not required for its orexigenic ef-
fects (Adachi et al. 2010). Th e orexigenic and lipogen-
ic eff ect of ghrelin provide a potential use of ghrelin 
antagonists or reverse agonists in the treatment of the 
obesity (Alvarez-Castro et al. 2013). However, studies 
in this area have shown confl icting results (Costan-
tini et al. 2011; Abdel-Hakim et al. 2014).

Role of peripheral adiposity signals

Adiposity signals are signals that inform the brain 
about the mass of the adipose tissue. Basal levels of 
insulin and leptin are widely accepted to be adiposity 
signals. Amylin, ghrelin, and peptide YY have been 
hypothesized to be adiposity signals (reviewed by 
Hillebrand and Geary 2010).

Leptin is a peptide hormone produced by the ob 
gene and secreted mainly by the adipose tissue, play-
ing a key role in the energy homeostasis (Klok et al. 
2007). Th e production of leptin is higher in the sub-
cutaneous than in visceral fat, and its level in the 
blood correlate directly with the amount of body fat. 
Th e secretion of leptin is reduced during periods of 
fasting and increased aft er meals. It is infl uenced by 
several metabolic and hormonal factors (Friedman 
2004).

Leptin is transported across the BBB by a saturable 
system and exerts its anorectic eff ect in the ARC via 
inhibition of NPY/AgRP neurons and activation of 
POMC/ CART neurons resulting in reduced food in-
take and increased energy expenditure. Th e Ob-Rb 
receptor, which is highly expressed in the hypothala-
mus, is thought to be the main receptor involved in 
the appetite regulation. Ob-Rb receptor belongs to 
the type I cytokine receptor family and exists in fi ve 
distinct isoforms (splice variants) named as Ob-Ra, 
Ob-Rb, Ob-Rc, Ob-Rd, and Ob-Re. Only the Ob-Rb 
isoform contains a long intracellular domain essential 
for the biological actions of leptin (Suzuki et al. 2010).

Human obesity is generally associated with high 
serum levels of leptin and less effi  cient transport 
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across the BBB, consistent with a state of central re-
sistance to leptin. Th is resistance may be secondary 
to obesity or vice versa, and genetic factors, age, diet, 
sedentary lifestyle, and stress might contribute to 
the development of defects in the transport of leptin 
across the BBB or might lead to abnormalities in 
leptin signaling (Paz-Filho et al. 2009).

Adiponectin and resistin. Th e adipose tissue 
produces numerous other factors that may directly 
or indirectly infl uence the energy balance and body 
weight. Adiponectin is one of these factors. Th e 
physiological eff ect of adiponectin is to increase en-
ergy expenditure and to protect against insulin resis-
tance and atherosclerosis (Trujillo and Scherer 2006). 
Studies have shown that adiponectin activates signal 
transduction pathways similar to leptin and insu-
lin in the hypothalamus, reinforcing its role in the 
central control of energy homeostasis (Coope et al. 
2008). In humans, serum adiponectin levels are in-
versely related to adiposity and insulin resistance, in-
creasing aft er weight loss induced by diet or bariatric 
surgery (Ahima and Lazar 2008). In contrast, resistin 
is a peptide produced by adipocytes and increases in-
sulin resistance via paracrine actions. Serum levels of 
resistin are increased in obesity (Banerjee et al. 2004).

Other adipocytokines involved in energy bal-
ance. Tumor necrosis factor-α is correlated with the 
amount of body fat, inhibits feeding, increases meta-
bolic rate, and induces cachexia (Galic et al. 2010). 
Another potential adipocytokine involved in energy 
homeostasis is interleukin-6 (IL-6). Several data have 
suggested a potential protective role of IL-6 against 
the development of obesity (Wallenius et al. 2003). 
However, the data are not consistent between diff er-
ent research groups and the actual involvement of 
IL-6 in controlling the energy balance requires ad-
ditional studies (Ahima and Lazar 2008). In addition, 
it has been demonstrated that atrial natriuretic pep-
tide (ANP) is expressed and secreted by human pre-
adipocytes. ANP is not only a strong hypotensive, but 
also a lipolytic compound (Garruti et al. 2008).

Role of catecholamines

Norepinephrine (NE), synthesized in both the 
central and peripheral nervous system, is involved in 
food intake regulation of both mammals and chick-
ens. NPY, a potent orexigenic peptide, is co-localized 
with NE in the central and peripheral nervous sys-
tem, suggesting an interaction (Katayama et al. 2010). 
Th e eff ect of NE on the food intake is a point of great 
controversy. Some studies have demonstrated an in-
crease in the food intake following central NE injec-

tion in the anterior and medial hypothalamus, and 
explained the increase in feeding following ovariec-
tomy by increase in NE (Simpson and Dicara 1973). 
In contrast, several studies have demonstrated a dose-
dependent decrease in food intake following ICV in-
jection of NE in rats and chickens (Katayama et al. 
2010). Another study evidenced that noradrenergic 
neurons in the area postrema mediate at least part of 
the hypophagic action of amylin (Potes et al. 2010).

In the lateral hypothalamus (LH), Leibowitz (1978) 
has found that epinephrine, NE or dopamine had an 
anti-feeding eff ect. Beta-adrenergic or dopaminer-
gic drugs injected into the LH tend to inhibit feed-
ing. Similarly, drugs that release catecholamines also 
inhibit feeding (Hoebel 1985). Several studies have 

Table 1
Summary of central and peripheral orexigenic 

and anorexigenic hormones/ peptides
Orexi genic hormones/ 
peptides

Anorexigenic hormones/ 
peptides

Central Peripheral Central Peripheral

NPY Ghrelin POMC CCK

AgRP CART PYY

Orexin A BNDF PP

MCH ACTH Enterostatin

Dopamine
”Reward- related 
feeding”

α-MSH Apolipoprotein 
A-IV

Endogenous 
opioids “Reward- 
related feeding”

Neurotensin Neurotensin

CRH GLP-1

Oxytocin Oxyntomodulin

TRH Glucagon

ELABELA Insulin

GALP Amylin

Leptin
Abbreviations: ACTH – adrenocorticotropic hormone; 
NPY – neuropeptide Y; AgRP – agouti related peptide; 
CRH – corticotrophin releasing hormone; TRH – thy-
roid releasing hormone; POMC – pro-opiomelanocor-
tin; CART – cocaine-amphetamine regulated transcript; 
CCK – cholecystokinin; MCH – melanin- concentrat-
ing hormone; PYY – peptide tyrosine tyrosine; PP – 
pancreatic polypeptide; GALPn – galanin-like peptide; 
GLP-1 – glucagon-like peptide 1; BDNF – brain derived 
neurotrophic factor; α-MSH – alpha melanocyte stimu-
lating hormone
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suggested that the anorexic action of amphetamine is 
mediated by releasing of catecholamines in LH (Lei-
bowitz 1978) and so amphetamine loses its eff ect aft er 
killing the catechobamine terminals in the LH with 
6-hydroxydopamine. Without these LH catechol-
amines the animal a) overeats; b) self-stimulates fast-
er; c) becomes moderately obese, d) is less responsive 
to amphetamine treatment (Hoebel 1985).

In the medial hypothalamus (MH), NE input does 
the opposite. It inhibits the satiety. In front of the 
MH, the PVN, which lies along the sides of the third 
ventricle, is the most sensitive site for eff ect of NE on 
feeding where injection of NE or NE mimetics will 
initiate and also prolong the meal. Amphetamine-in-
duced feeding may sound paradoxically, but it is eas-
ily observed and explained when the amphetamine is 
applied locally into the PVN, where it could inhibit 

satiety (Leibowitz 1978). Summary of central as well 
as peripheral orexigenic and anorexigenic hormones/
peptides are shown in Table 1.

Conclusion

Food intake is controlled centrally by the hypo-
thalamus, brainstem, reward system, and endocan-
nabinoids. Th e peripheral control of the food intake 
includes signals from the gastrointestinal tract and 
adipose tissue. Th e GIT hormones aff ecting food in-
take include ghrelin, an orexigenic peptide that act 
to increase food intake and anorexigenic hormones 
that act to decrease food intake and leads to satiation. 
Th e agonists for the anorexigenic and antagonist for 
the orexigenic peptides have been investigated in the 
treatment of obesity.
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