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Seven problems on the basal ganglia
Atsushi Nambu
Our knowledge on the functions of the basal ganglia has

increased enormously during the last two decades. However,

we still do not completely understand the primary function of

the basal ganglia. In this article, I review fundamental problems

on the basal ganglia that have emerged from recent findings,

and propose their solutions in the following seven topics: first,

organization of the cortico–basal ganglia loop, second,

limitations of the ‘direct and indirect pathways model’, third,

feedforward inhibition in the striatum, fourth, contribution of the

basal ganglia to cortical activity through the thalamus, fifth,

focused selection of movements and learning, sixth, firing rate

model versus firing pattern model for the pathophysiology of

movement disorders, and lastly mechanisms of stereotaxic

surgery.
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Introduction
Since 1990, our understanding on the basal ganglia has

changed substantially. The basal ganglia circuitry was

simplified as represented by the direct and indirect path-

ways, and the pathophysiology of movement disorders

was explained by firing rate changes through these two

pathways. During the last two decades since then, our

knowledge on the functions of the basal ganglia has

increased tremendously. However, we still do not have

a straight answer to the simple question, ‘What is the

primary function of the basal ganglia?’. This article will

discuss the current problems on the basal ganglia that

have emerged from recent findings. Trying to solve these

problems will lead us to better understanding of their

functions and better treatment for movement disorders.

Problem 1: how is the cortico–basal ganglia
loop organized?
The basal ganglia receive inputs from wide areas of the

cerebral cortex. The information processed in the basal
www.sciencedirect.com
ganglia returns primarily to the cerebral cortex, in particu-

lar the frontal lobe, via the thalamus, to form a cortico–
basal ganglia loop [1,2]. Additional output from the basal

ganglia descends to the brain stem. The cortico–basal

ganglia loops are composed of several parallel, segregated,

and functionally distinct, but homologous loops

(Figure 1) [1,3]. The motor loop, which controls voluntary

limb movements, originates from the motor cortices, such

as the primary motor cortex (MI), supplementary motor

area (SMA), and premotor cortex (PM), and projects to

the somatomotor territories of the basal ganglia. The

motor loop outputs from the basal ganglia terminate in

the oral part of the ventral lateral nucleus (VLo) and the

parvicellular part of the ventral anterior nucleus (VApc) of

the thalamus, which then project to the MI, SMA, and

PM. This loop has been confirmed by transneuronal

transport of viruses [3–6]. In addition to the motor loop,

the oculomotor, prefrontal, and limbic loops connect the

cerebral cortical areas (the frontal/supplementary eye

fields, prefrontal cortex, and limbic cortex, respectively)

with the corresponding parts of the basal ganglia and

thalamic nuclei. Through these multiple loops, the basal

ganglia control eye movements, higher brain functions

and emotions, as well as limb movements.

Despite their parallel organization, the cortico–basal

ganglia loops should be viewed more as a continuum

rather than subdivisions with strict boundaries. The pro-

jections from the MI, SMA, and PM partially overlap in

the striatum [7–9], and a substantial number (around one-

fourth) of striatal neurons receive convergent inputs from

the MI and SMA. The functions of this convergence

remain unknown. On the other hand, MI-receiving,

SMA-receiving, and MI + SMA-receiving striatal neurons

project to the segregated parts of the external (GPe) and

internal (GPi) segments of the globus pallidus [10]. Thus,

further convergence does not occur in the striato–GPe/

GPi projections.

Another issue is the relationship between the basal

ganglia and cerebellum, both of which control cortical

activity through the thalamus. Anatomical and physio-

logical studies have repeatedly shown that projections

from the GPi, substantia nigra pars reticulata (SNr), and

deep cerebellar nuclei (CN) terminate in different

regions of the thalamus. The CN project to the oral part

of the ventral posterolateral nucleus (VPLo), the caudal

part of the ventral lateral nucleus (VLc), and area X of the

thalamus, which then project to the MI, SMA, and PM

[3,4,6,11]. The information from the basal ganglia and

cerebellum reaches the motor cortices independently

without interactions in the thalamus. However, local
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interactions between the two inputs via thalamic inter-

neurons and the thalamic reticular nucleus cannot be

excluded. Interactions between the basal ganglia and

cerebellum via the CN–thalamo–striatal pathway have

also been suggested [12].

Problem 2: is the ‘direct and indirect pathways
model’ still reasonable?
The basal ganglia circuitry is considered to be composed

of two major projection systems: the ‘direct’ and ‘indirect’
pathways (Figure 1) [2]. The direct pathway arises from

GABAergic striatal neurons containing substance P and

dynorphin, and projects monosynaptically to the GPi/

SNr. The indirect pathway arises from GABAergic striatal

neurons containing enkephalin, and projects polysynap-

tically to the GPi/SNr by way of sequential connections

with the GPe and subthalamic nucleus (STN). In

addition, dopaminergic projections from the substantia

nigra pars compacta (SNc) differentially modulate the

activity of striatal projection neurons in the direct and

indirect pathways. Dopamine excites striatal neurons in

the direct pathway through dopamine D1 receptors

(D1Rs), while it inhibits striatal neurons in the indirect
pathway through dopamine D2 receptors (D2Rs) [2,13�].
This ‘direct and indirect pathways model’ has been widely

accepted. However, it may be oversimplified, and has

been questioned as a result of the following observations:

(1) The STN receives direct cortical inputs, and is

therefore considered another input station of the

basal ganglia, in addition to the striatum. The cortico–
STN–GPi/SNr ‘hyperdirect’ pathway conveys strong

excitatory signals from the cortex to the GPi/SNr with

faster conduction velocity than the direct and indirect
pathways (Figures 1 and 2) [14,15]. Thus, GPi activity

is influenced by signals through the hyperdirect, direct,
and indirect pathways. The detailed information that

each pathway conveys and its contribution to move-

ment remain to be elucidated. The hyperdirect
pathway seems to be important for inhibiting

irrelevant motor programs and/or changing motor

plans [15,16��,17��].
(2) This model assumes a clear distinction between the

direct and indirect pathways. A recent study has shown

that neurons in these two pathways exhibit different

properties, such as a higher release probability for the

excitatory synapses and larger N-methyl-D-aspartate

(NMDA) receptor currents in striatal neurons in the

indirect pathway than in the direct pathway [18�].
However, tracing studies have shown that some single

neurons project to the both GPe and GPi [19]. Some

striatal projection neurons express both D1Rs and

D2Rs [20].

(3) An important issue is whether striatal neurons in the

direct and indirect pathways receive similar inputs

from the cortex. Neurons in the direct pathway

receive inputs from nonpyramidal tract neurons that
Current Opinion in Neurobiology 2008, 18:595–604
have intratelencephalic projections with en passant
terminals, whereas neurons in the indirect pathway

receive collateral inputs from pyramidal tract

neurons [21]. Thus, striatal neurons in the direct
and indirect pathways may receive different inputs,

with the former receiving associative signals, and

the latter receiving corollary discharges of descend-

ing motor commands. However, a recent study

suggests that intratelencephalic neurons project to

neurons in both pathways [22�]. According to

electrophysiological experiments using monkeys,

corticostriatal neurons originate from a population of

neurons that is distinct from neurons projecting to

the spinal cord and/or brain stem, and the activity of

these corticostriatal neurons during behavior differs

from that of other MI neurons [23]. Corticostriatal

neurons are selective for specific movements,

stimuli or context, whereas pyramidal tract and

corticopontine neurons show muscle-like move-

ment-related activity. Both corticostriatal neurons

and pyramidal tract/corticopontine neurons change

their activity well before the onset of movements,

while corticostriatal neurons show later onset. To

understand these distinctions, it is necessary to

compare striatal neuronal activity in the direct and

indirect pathways during behavior. The collaterals of

pyramidal tract neurons project to the STN, and

therefore, the hyperdirect pathway may transmit

corollary discharges.

(4) Thalamic neurons send dense projections to the

striatum, suggesting a short striato–GPi–thalamo–
striatal circuit loop (Figure 1) [24]. The difference

between the information conveyed by the thalamo-

striatal projections and that by the corticostriatal

projections remains to be clarified.

(5) The GPe sends GABAergic projections not only to

the GPi/SNr, but also to the striatum and GPe itself

through local axon collaterals [25]. Thus, the GPe

may be viewed as a central nucleus projecting to

multiple sites within the basal ganglia. On the other

hand, GPe and GPi neurons show similar activity

during behavior and in response to cortical stimu-

lation [26,27��]. Thus, the GPe–GPi projections

might be weak.

(6) The STN projects to the GPe, as well as to the GPi

through axon collaterals. The STN and GPe have

intimate interconnections via the STN–GPe excit-

atory and GPe–STN inhibitory projections, and the

interconnected groups of neurons in the GPe and

STN innervate the same population of neurons in the

GPi [28,29]. Thus, the STN and GPe are coupled to

each other and may work together.

(7) Dopaminergic projections from the SNc terminate

not only in the striatum, but also in the GPe, GPi, and

STN. The basal ganglia also receive serotonergic

projections from the dorsal raphe nucleus [30] that

encode expected and received rewards [31].
www.sciencedirect.com
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Figure 1

Basic circuitry of the basal ganglia, including the Cx–STN–GPi/SNr hyperdirect, Cx–Str–GPi/SNr direct, and Cx–Str–GPe–STN–GPi/SNr indirect

pathways. Open and filled arrows represent excitatory glutamatergic (glu) and inhibitory GABAergic (GABA) projections, respectively. The gray arrow

represents dopaminergic (DA) projections. Cx, cerebral cortex; GPe, external segment of the globus pallidus; GPi, internal segment of the globus

pallidus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus; Str, striatum; Th, thalamus (modified

from Ref. [14]).
(8) In addition to fast ionotropic receptors, slow metabo-

tropic receptors, such as GABAB and metabotropic

glutamate receptors (mGluRs) transmit signals

through the basal ganglia circuitry [32,33]. The

functions of metabotropic receptors have yet to be

determined and quantitated.

Problem 3: what kind of computation does the
striatum perform?
The striatum, one of the input nuclei of the basal ganglia,

is composed primarily of projection neurons (80–95%) as

well as a small population of interneurons [34]. The

projection neurons are GABAergic medium spiny

neurons that receive glutamatergic excitatory inputs from

the cortex and thalamus, and dopaminergic inputs from

the SNc. They send their axons to the GPe, GPi, and SNr.

In addition, they have extensive local axon collaterals that

form synapses with other neighboring projection neurons.

They are usually silent and fire only when they receive

inputs, and are therefore described as phasically active

neurons (PANs) in behaving monkeys. They fire in a

somatotopically organized manner. For example, PANs in

the forelimb region fire in relation to forelimb move-

ments. The interneurons, on the other hand, lack spines

and are classified into at least four groups: first, cholinergic

large aspiny neurons, second, parvalbumin (PV)-contain-
www.sciencedirect.com
ing GABAergic aspiny neurons, third, somatostatin/nitric

oxide synthase-containing GABAergic aspiny neurons,

and fourth, calretinin-containing GABAergic aspiny

neurons. The cholinergic large aspiny neurons fire spon-

taneously at 2–10 Hz, are described as tonically active

neurons (TANs) in behaving monkeys, and show reward-

related activity. The PV-containing interneurons are

electrophysiologically characterized as fast-spiking inter-

neurons that exhibit very narrow action potentials and

repetitive firing following cortical stimulation in vivo [35].

The activity patterns, especially during behavior, of the

other interneurons in vivo remain to be elucidated.

Interneurons, as well as projection neurons, receive

inputs from the cerebral cortex, thalamus and SNc, and

synapse on projection neurons, controlling their activity.

Electrophysiological studies in vitro and computational

models suggest that the activity of projection neurons is

controlled by feedforward inhibition through GABAergic

interneurons and feedback inhibition through the axon

collaterals of projection neurons [36�]. PV-containing

GABAergic interneurons receive a powerful excitatory

input from the cortex [35] and send their axons to the cell

bodies and proximal dendrites of projection neurons.

Through these close contacts, they produce large

GABAA-mediated inhibitory postsynaptic potentials
Current Opinion in Neurobiology 2008, 18:595–604
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Figure 2

Spatial and temporal distribution of basal ganglia activity during voluntary movements. Signals through the direct pathway inhibit GPi/SNr neurons in

the center area, activate thalamic neurons by disinhibition, and finally release the selected motor program. On the other hand, signals through the

hyperdirect and indirect pathways have broad excitatory effects on GPi/SNr neurons in temporal and spatial domains, making clear initiation and

termination of the selected motor program and inhibiting other irrelevant motor programs. Open and filled neurons represent excitatory glutamatergic

and inhibitory GABAergic neurons, respectively (modified from Ref. [89]).
(IPSPs) in projection neurons, which are strong enough to

delay or inhibit action potential firings in the target

neurons [36�,37,38�]. Other GABAergic interneurons,

including somatostatin-containing interneurons, also

receive excitatory inputs from the cortex and potently

inhibit projection neurons. On the other hand, projection

neurons have extensive local axon collaterals that usually

cover the dendritic arborization of the original neurons

and other projection neurons. Most of the synapses are

formed on the dendrites and spine necks, with a smaller

portion on the somata. These connections are selectively

distributed [39�]. D2R-containing neurons make synaptic

connections both with other D2R-containing neurons and

with D1R-containing neurons, whereas D1R-containing

neurons form synaptic connections only with other D1R-

containing neurons. However, electrophysiological studies

have shown only weak functional synaptic connectivity

through the collaterals of projection neurons [36�,38�],
probably because of a small number of release sites and

distally located synapses. These electrophysiological stu-

dies suggest that collateral inhibition between projection

neurons controls local dendritic events [36�]. The func-

tions of feedforward and feedback inhibition in the stria-

tum of behaving animals should be investigated. Several

methods could be considered, including, firstly, recording

neuronal activity of striatal projection neurons and beha-

vior in awake monkeys before and after injection of GABA

receptor antagonists, and secondly, ablation of PV-contain-

ing interneurons in transgenic mice that are genetically

engineered to express a target molecule for recombinant

immunotoxins (immunotoxin cell targeting) [40].
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Although the striatum looks histologically homogeneous,

it can be divided anatomically into the m opiate receptor-

rich ‘patch’ compartment (‘striosome’) and the surround-

ing ‘matrix’ compartment. The patch and matrix have

different input and output connections. Dendritic fields

of projection neurons in the patch or matrix are confined

within each compartment and never cross the patch/

matrix border [41]. On the other hand, dendritic fields

of interneurons do cross the border. Thus, information

conveyed by projection neurons is processed within each

patch/matrix compartment, while interneurons convey

information between the patch and matrix. Projection

neurons in the patch and those in the matrix are morpho-

logically and electrophysiologically similar. The func-

tional significance of the compartmentalization is not

well understood.

Problem 4: how do the basal ganglia
contribute to the cortical and thalamic
activity?
The classical and widely accepted ‘disinhibition theory’

[42] states that inhibitory GABAergic neurons in the

output nuclei of the basal ganglia fire spontaneously at

high frequency, continuously inhibiting neurons in target

structures, such as the thalamus (Figure 2). When striatal

neurons are activated by cortical inputs, the striatal

neurons inhibit GPi/SNr activity through the striato–
GPi/SNr direct pathway. The continuous inhibition from

the output nuclei to the target structures is temporarily

removed (disinhibited), and neurons in the thalamus are

activated. These mechanisms have been investigated in
www.sciencedirect.com
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saccadic eye movements. Indeed, SNr neurons decrease

their activity in relation to saccadic eye movements, while

many GPi neurons increase their activity in relation to

forelimb movements. The increase-to-decrease ratio of

GPi neurons, which is the number of neurons that

increase their activity during movements divided by

the number of neurons that decrease their activity, is

larger than 1.0. The excitation of GPi neurons can be

explained by the excitatory inputs from the STN, as

described in the next section. The disinhibition theory

predicts that a lesion of the GPi and thalamus induces

involuntary movements and akinesia, respectively. How-

ever, such a lesion is not usually associated with severe

motor deficits, except that hypometria [43,44] or reaction

time changes are reported with a GPi inactivation. It has

also been suggested that rebound excitation after IPSPs

might be more important than inhibition [45].

The spontaneous activity of thalamic neurons in the area

receiving input from the GPi is lower than that receiving

input from the CN [46]. Continuous inhibition from the

GPi on thalamic neurons might cause the lower activity.

Microstimulation in the CN-receiving areas evokes

movements, while no movements are evoked by stimu-

lation in the GPi-receiving areas [47,48]. Both GPi-receiv-

ing and CN-receiving thalamic neurons show movement-

related activity [49]. It is a reasonable possibility that

these thalamic activity changes are caused by input from

the GPi and CN. Blockade of the GPi increases the tonic

discharge rate of thalamic neurons in the GPi-receiving

areas, but has little effect on movement-related activity

[43]. The thalamic activity may reflect not only pallidal

inputs, but also other inputs, such as cortical activity via

corticothalamic projections.

Thalamic activity finally reaches the cortex through the

thalamocortical projections. Electrophysiological exper-

iments have suggested two types of thalamocortical pro-

jections: the superficial thalamocortical projections that

terminate in the superficial layers of the cerebral cortex

(layers I and II) and the deep thalamocortical projections

that terminate in the deeper layers (layers III–V) [50].

Recent anatomical studies also support two types of

thalamocortical projections. Neurons in the thalamus

can be classified into calbindin-positive ‘matrix’ cells

and PV-positive ‘core’ cells [51]. Matrix cells project to

the superficial layers of the cerebral cortex, while core

cells project to the middle layers. Electrophysiological

studies have shown that thalamic neurons with basal

ganglia inputs terminate in the superficial layers of the

cerebral cortex [52]. On the other hand, thalamic neurons

with cerebellar inputs terminate in the deeper layers.

Cerebellar outputs have strong excitatory effects on cor-

tical neurons through deep thalamocortical projections

and may initiate movement. In contrast, basal ganglia

outputs have modulatory effects on cortical neurons and

control the overall level of cortical activity through the
www.sciencedirect.com
superficial thalamocortical projections. The difference in

the synaptic strength of basal ganglia and cerebellar

outputs on the cortex may explain the difference in

microexcitability between the GPi-receiving and CN-

receiving thalamus. The contribution of basal ganglia

output to cortical activity should be investigated by

recording neuronal activity in the MI before and after

blocking GPi activity.

The timing of basal ganglia activity in relation to move-

ment is another important issue. Activity changes in the

basal ganglia begin at movement onset, and are too late

for movement initiation [53,54]. Therefore, the basal

ganglia contribute to the control of on-going movements,

not to the initiation of movements. However, other stu-

dies have suggested that the activity changes are much

earlier [55]. The timing in activity changes of GPi-receiv-

ing and CN-receiving thalamic neurons is comparable

[49]. These data should be reinvestigated using modern

techniques.

Problem 5: what is the function of the basal
ganglia?
Focused selection of movements

Disinhibition via the striato–GPi/SNr direct pathway

releases a selected motor program. On the other hand,

signals through the hyperdirect and indirect pathways have

excitatory effects on the GPi/SNr, and therefore, have

inhibitory effects on thalamic and cortical neurons

(Figure 2) [15,16��,56]. Considering the onset timing

and conduction velocity of cortical neurons (Figure 1),

signals through the hyperdirect pathway first actively inhi-

bit thalamic neurons, then those through the direct path-

way disinhibit them, and finally those through the indirect
pathway inhibit thalamic neurons again. Thus, signals

through the hyperdirect and indirect pathways make clear

initiation and termination of the selected motor program.

In addition to a temporal aspect, the enhancement by

differential inputs through the hyperdirect, direct, and

indirect pathways may work spatially as well (Figure 2).

Anatomical studies have shown that STN–GPi fibers

arborize more widely and terminate on more proximal

neuronal elements than striato–GPi fibers. Signals

through the hyperdirect and indirect pathways activate

GPi/SNr neurons extensively, thereby inhibiting large

areas of the thalamus. Signals through the direct pathway,

however, disinhibit thalamic neurons only in the center

area. Thus, signals through the hyperdirect and indirect
pathways inhibit thalamic neurons in the surrounding

area, which are involved in other unnecessary competing

motor programs. By way of temporal and spatial inputs to

the target structure through the hyperdirect, direct, and

indirect pathways, only the selected motor program is

executed at the selected time, and other competing motor

programs are cancelled. The oculomotor, prefrontal, and

limbic loops seem to control the activity of corresponding

cortical areas in a similar manner to the motor loop.
Current Opinion in Neurobiology 2008, 18:595–604
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Learning, especially motor learning

Accumulating evidence suggests a function for the basal

ganglia in motor learning, especially procedural or habit

learning [57,58]. Dopaminergic neurons in the SNc and

striatal neurons (projection neurons and cholinergic inter-

neurons) show activity changes in the course of motor

learning. The activity of dopaminergic neurons in the

SNc may reflect a difference between a real reward and a

predicted reward, supporting a ‘reinforcement learning’

system [59], in which animals adjust their behavior to the

goal of maximizing the frequency, magnitude or both of

the reinforcing events they encounter over time. Dopa-

minergic inputs may induce plastic changes in the corti-

costriatal synapses [13�,60�]. Origins of reward

information to the SNc may include the striato–SNc

projections from the patch compartment. Recently, the

lateral habenular nucleus has been shown to transmit

negative reward signals to the SNc [61�].

The above two major hypotheses may be complementary.

Dopamine release from the SNc axon terminals changes

the efficacy of corticostriatal synapses, that is, the synaptic

weight of the direct and indirect pathways. Then, an

appropriate movement is initiated by focused selection

through the hyperdirect, direct, and indirect pathways

[62��,63]. It will be important to determine whether

dopamine released from the SNc terminals changes cor-

ticostriatal neurotransmission and striatal activity, especi-

ally reward-related activity, and finally results in the

selection of appropriate movements.

Problem 6: what is the pathophysiology of
movement disorders?
Firing rate model

Malfunctions of the basal ganglia cause movement dis-

orders, such as Parkinson’s disease, Huntington’s disease,

hemiballism, and dystonia, which are characterized by

disturbances in the execution of voluntary movements

(hyperkinetic–hypokinetic) and in muscle tone (hyper-

tonic–hypotonic). DeLong [64] has proposed that activity

imbalance between the direct and indirect pathways

changes the mean firing rate of the output nuclei of

the basal ganglia and induces hypokinetic or hyperkinetic

disorders. For example, dopamine depletion reduces

tonic excitation to striatal neurons in the direct pathway

through D1Rs and tonic inhibition to striatal neurons in

the indirect pathway through D2Rs [64,65��]. These

changes in the direct and indirect pathways induce

increased activity in GPi/SNr neurons and decreased

activity in thalamic and cortical neurons, which result

in akinesia. However, recent electrophysiological studies

using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP)-induced parkinsonian monkeys have failed to

detect an expected increase in GPi activity [32,66,67,68�].
Morphological changes, including selective elimination

of glutamatergic synapses on striatal neurons in the indir-
ect pathway [69�] and a loss of recurrent collateral con-
Current Opinion in Neurobiology 2008, 18:595–604
nections between striatal projection neurons [39�], were

reported. However, their significance remains unclear. On

the other hand, decreased GPi activity has been reported

in hyperkinetic disorders, such as dystonia and hemibal-

lism [14,70,71,72��], supporting the firing rate model.

By modifying the firing rate model, the dynamic changes

in GPi activity may explain the pathophysiology of Par-

kinson’s disease [73]. In Parkinson’s disease, this model

postulates that movement-related activity through the

direct pathway decreases, and activity through the indirect
pathway increases. These changes reduce movement-

related inhibition and enhance surrounding excitation

in the GPi, with little change in the mean firing rate,

leading to reduced movement-related disinhibition in the

thalamus and cortex, resulting in akinesia. The increase-

to-decrease ratio of GPi neurons during movements is

increased after MPTP-treatment [74�,75��]. Dynamic

changes in the hyperdirect, direct, and indirect pathways

are also suggested in the parkinsonian state [68�,76,77�].
On the other hand, in hyperkinetic disorders, excessive

inhibition in the GPi through the hyperdirect, direct, and

indirect pathways may induce uncontrollable disinhibition

in the thalamus and cortex, leading to involuntary move-

ments [14,72��]. To test this model, it is essential to

record movement-related activity in the basal ganglia

in animal models of Parkinson’s disease and hyperkinetic

disorders.

Firing pattern model

Oscillatory and/or synchronized activity is observed in the

basal ganglia of patients with movement disorders and

animal models, and disturbance of information processing

in the basal ganglia is suggested [78]. Unit activity and

local field potentials recorded from parkinsonian animals

and patients have shown oscillatory and synchronized

activity in the GPe, GPi, and STN [67,78–80,81��].
The frequency bands include the frequency of resting

tremor (4–9 Hz) and the beta band (10–30 Hz). Beta band

oscillation may contribute to akinesia, since treatment for

akinesia with drugs or stereotaxic surgery suppresses the

beta band oscillation. However, in the course of MPTP-

treatment of monkeys, the appearance of parkinsonian

motor symptoms precedes that of oscillatory activity

[75��], which does not support the firing pattern model.

The above two models can explain the pathophysiology

of akinesia, but not the mechanisms of muscle tone

disorders, such as the rigidity seen in Parkinson’s disease

and the hypotonia seen in hemiballism. The mechanism

of parkinsonian tremor is also unresolved. Tremor-related

activity is frequently recorded in the basal ganglia and the

thalamus, particularly the ventrointermediate nucleus

(Vim). A small lesion in the Vim completely abolishes

parkinsonian tremor. However, the Vim receives input

from the CN, not from the GPi. These data suggest that

tremor-related activity may originate in the basal ganglia
www.sciencedirect.com
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and be amplified by cerebro–cerebellar interactions to

manifest tremor [82].

Problem 7: how does stereotaxic surgery
work?
Recent developments in stereotaxic surgery have shown

that lesions or high frequency stimulation, that is, deep

brain stimulation (DBS), in the basal ganglia, ameliorates

the motor disabilities of movement disorders. Nuclei that

fire abnormally, such as with abnormally high or low

frequency discharges or abnormal oscillatory firings, are

the targets for surgery. Both small lesions and high

frequency stimulation show similar clinical results. In

Parkinson’s disease, the GPi and STN exhibit increased

firing rates, based on the firing rate model of movement

disorders. Indeed, pallidotomy and subthalamotomy ame-

liorate parkinsonian symptoms. On the other hand,

lesions in the anterior and posterior parts of the ventrooral

nucleus (Voa/p) of the thalamus, which are GPi-receiving

areas whose decreased activity is predicted by the model,

ameliorate parkinsonian symptoms. Thus, the firing rate

model by itself cannot explain the mechanism of stereo-

taxic surgery.

Mechanism of DBS: inhibition versus excitation

The mechanism of the effectiveness of DBS is still

unclear: DBS may inhibit or excite local neuronal

elements [83]. The inhibition theory is based on the

observation that DBS shows similar effects as lesions.

This mechanism could include: firstly, silencing

neuronal activity by a depolarization block or activation

of specific ion channels, and/or secondly, activation of

inhibitory pathways, such as afferent inhibitory inputs

and local inhibitory interneurons. GPi stimulation

induces inhibitory responses in neighboring GPi neurons

in human patients by the stimulation of GABAergic

inhibitory afferent fibers from the striatum and/or the

GPe [84]. The excitation theory is based on the fact that

high frequency stimulation excites local neuronal

elements as single stimulation does. This mechanism

could include: firstly, ‘jamming’ of the conduction of

abnormal activity or normalization of the neuronal

activity pattern [76,85–87], and/or secondly, inhibition

of output nuclei through the basal ganglia circuitry.

Indeed, STN-DBS increases GPi activity through the

excitatory STN–GPi projections, and GPi-DBS

decreases thalamic activity through the inhibitory

GPi–thalamic projections [85,86]. However, other

reports show different results [88]. Repetitive stimu-

lation of the STN produces inhibition in the GPi, while

a single stimulation pulse produces excitation. Repeti-

tive stimulation of the STN excites the GPe, which

inhibits GPi activity through the GABAergic inhibitory

GPe–GPi pathway, overcoming the excitatory STN–GPi

pathway. Taken together, these data suggest that the

mechanism of stereotaxic surgery may be an interruption

in abnormal information flow through the basal ganglia
www.sciencedirect.com
circuitry in movement disorders, not a simple increase or

decrease in firing rates.

Bilateral GPi-DBS has a dramatic effect on idiopathic

torsion dystonia including DYT1. The GPi neurons in

dystonia show low firing rates and burst and oscillatory

firings. We do not know whether GPi-DBS excites or

inhibits GPi activity, or whether the mechanism of DBS

for dystonia is the same as that for Parkinson’s disease.

Benefits take weeks to months to occur. Thus, some

plastic changes may occur, such as normalization of

GPi activity. These questions will be answered by record-

ing neuronal activity after using GPi-DBS in dystonia

models.

Conclusions
This article has discussed current problems regarding the

basal ganglia. To solve these problems, we should focus

on the information flow through the basal ganglia rather

than the information representation. The following

experiments will be important.

(1) Neuronal activity should be recorded from behaving

animals, especially from monkeys. In addition to well-

established chronic experiments, we should combine

electrical stimulation and/or local drug injection into

the vicinity of recording neurons in order to identify

the afferent inputs to recording neurons.

(2) Recording neuronal activity from animal models of

movement disorders and using stereotaxic surgery in

these models will be important. Many genetic mouse

models of movement disorders that have been

developed recently should be analyzed.

(3) Recording neuronal activity during stereotaxic

surgery of human patients will also provide important

clues in understanding the pathophysiology of the

movement disorders.
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