Is an Acoustic Neuroma an Epiarachnoid or Subarachnoid Tumor?

BACKGROUND: There are arguments about whether acoustic neuromas are epiarachnoid or subarachnoid tumors.

OBJECTIVE: To retrospectively examine 118 consecutively operated-on patients with acoustic neuromas to clarify this point.

METHODS: Epiarachnoid tumors are defined by the absence of an arachnoid membrane on the tumor surface after moving the arachnoid fold (double layers of the arachnoid membrane) toward the brainstem. In contrast, subarachnoid tumors are characterized by the arachnoid membrane remaining on the tumor surface after moving the arachnoid fold. Based on this hypothesis, we used intraoperative views and light and electron microscopy to confirm the existence of an arachnoid membrane after the arachnoid fold had been moved.

RESULTS: The tumors were clearly judged to be subarachnoid tumors in 86 of 118 patients (73%), an epiarachnoid tumor in 2 patients (2%), whereas a clear judgment was difficult to make in the remaining 30 patients (25%).

CONCLUSION: The majority of acoustic neuromas are subarachnoid tumors, with epiarachnoid tumors being considerably less common.

KEY WORDS: Acoustic neuroma, Arachnoid membrane, Neurinoma, Surgery, Vestibular schwannoma

In 1977, Yasargil et al described an acoustic neuroma occurring in the epiarachnoid space in the internal auditory canal (IAC) that pushed the arachnoid membrane toward the cerebellopontine cistern during growth. Since this description, many articles have been published that follow this concept, and, as a consequence, many neurosurgeons consider acoustic neuromas to be epiarachnoid tumors. The reason that this concept is widely accepted is considered to be the presence of an arachnoid fold (double layers of the arachnoid membrane) seen on the tumor surface via a lateral suboccipital retrosigmoid or translabyrinthine approach. This arachnoid fold is one of the features every surgeon pays attention and is also called arachnoidal duplication or double plane of the arachnoid.

However, we often encounter cerebrospinal fluid intensity at the fundus on strong T2-weighted magnetic resonance imaging (MRI) in patients in which the fundus is not filled with an acoustic neuroma and also in patients with a healthy IAC (Figure 1).

In 2002, Lescanne et al reported a cadaveric anatomic examination in which they proved that the arachnoid membrane covers the entire IAC including the fundus, leading them to conclude that an acoustic neuroma originating from a vestibular ganglion must be a subarachnoid tumor. There has been considerable debate as to whether acoustic neuromas are epiarachnoid or subarachnoid tumors. In the current study, we focused on this question by performing a clinical study of patients with acoustic neuromas using both intraoperative observations and pathological methods.

PATIENTS AND METHODS

We retrospectively examined 118 consecutive patients with acoustic neuromas who underwent surgery via the lateral suboccipital approach at Tokyo Metropolitan Police Hospital between February 2007 and May 2008 and verified whether the neuromas were...
epiarachnoid tumors using operative views and light and electron microscopy. First, we made the following hypotheses (Figure 2). If an acoustic neuroma was classified as an epiarachnoid tumor, we observed no arachnoid membrane remaining on the tumor surface after the arachnoid fold had been drawn to the brainstem side. In contrast, if the acoustic neuroma was a subarachnoid tumor, the arachnoid membrane continued toward the IAC and remained on the tumor surface after the arachnoid fold had been moved. Therefore, if the arachnoid membrane on the tumor surface was confirmed either intraoperatively or pathologically, the acoustic neuroma was theoretically proven to be a subarachnoid tumor.

During the operation, we observed the tumor surface closely using the highest magnification of an operating microscope and determined whether the arachnoid membrane remained after moving the arachnoid fold toward the brainstem. In some cases, we also used the Valsalva method to prove the existence of a subarachnoid space on the tumor.

FIGURE 1. Strong T2-weighted magnetic resonance images usually seen (left: healthy left side IAC, right: left acoustic neuroma). In both cases, the intensity of cerebrospinal fluid is clearly seen at the fundus acousticus.

FIGURE 2. Our hypotheses: schemas of a right acoustic neuroma approached by the lateral suboccipital approach in the park bench position (coronal view): epiarachnoid tumor (left) and subarachnoid tumor (right). A surgeon can recognize an arachnoid fold (*) after retraction of the cerebellum using a brain spatula. We consider that the tumor is a subarachnoid tumor when we identify an arachnoid membrane on the surface of the tumor (small arrow) after moving the arachnoid fold toward the brainstem (right). Large arrow, direction of the surgeon’s view. AICA, anterior inferior cerebellar artery.
was used to divide the tumors into 4 size-based categories: A: 63, B: 14, C: 9. A: 24, B: 4, C: 2. B: 1, C: 1.

Summary of This Study

<table>
<thead>
<tr>
<th>VOLUME 68</th>
<th>NUMBER 4</th>
<th>APRIL 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>KONNO ET AL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pathological investigation in this study was relatively small. However, the focal investigation in this study was performed under the microscope and observed under Hitachi 7200 and 7500 transmission electron microscopes (Hitachi, Tokyo, Japan). Cryosection thin sections were prepared and stained with uranyl acetate and lead citrate and observed under Hitachi 7200 and 7500 transmission electron microscopes (Hitachi, Tokyo, Japan). The pathological features of all the sections were analyzed under low-power magnification. In the electron microscopy study, small parts of the specimens were fixed with 2.5% glutaraldehyde, post-fixed in 1% osmium tetroxide, and embedded in Epon 812. Ultrathin sections were prepared and stained with uranyl acetate and lead citrate and observed under Hitachi 7200 and 7500 transmission electron microscopes (Hitachi, Tokyo, Japan).

The number of patients in whom we performed pathological investigation was relatively small. However, the focal investigation in this study was that of the intraoperative microsurgical findings, and we considered it sufficient to simply prove the existence of the arachnoid membrane on the tumor surface in the complementary pathological approach.

RESULTS

Table: Summary of This Study

<table>
<thead>
<tr>
<th></th>
<th>Subarachnoid Tumor, n = 86</th>
<th>Undetermined, n = 30</th>
<th>Epiarachnoid Tumor, n = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>14-76 y (mean, 43.4 y)</td>
<td>22-71 y (mean, 44.5 y)</td>
<td>55 and 38</td>
</tr>
<tr>
<td>Laterality</td>
<td>Right: 45, Left: 41</td>
<td>Right: 16, Left: 14</td>
<td>Right: 2, Left: 0</td>
</tr>
<tr>
<td>Tumor size</td>
<td>I: 3, II: 13, III: 28, IV: 42</td>
<td>III: 2, IV: 28</td>
<td>III and IV</td>
</tr>
<tr>
<td>Extension into the IAC</td>
<td>A: 63, B: 14, C: 9</td>
<td>A: 24, B: 4, C: 2</td>
<td>B: 1, C: 1</td>
</tr>
<tr>
<td>Number of NF2 patients</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*IC, internal auditory canal; NF2, neurofibromatosis type 2.

The reasons for the subarachnoid tumor classifications were as follows: (1) apparently existing in the subarachnoid space (Figure 3), (2) definite confirmation of the arachnoid membrane remaining after moving the arachnoid fold (Figures 4-6), and (3) identification of a subarachnoid space on the tumor surface proven by inflow of cerebrospinal fluid during the Valsalva method (Figure 7).

On the other hand, in the 2 patients with tumors judged to be epiarachnoid tumors, the tumors did not extend to the fundus,
and after dissecting the intrameatal part of the tumor, the nerves were observed to be covered by the arachnoid membrane behind the tumor (Figure 8). The first patient was a 55-year-old male with an acoustic neuroma of maximum diameter 17 mm, which extended into the cistern. He had a 4-month history of tinnitus and hearing loss in the right ear (pure tone average: 45 dB; speech discrimination score: 70%). The second patient was a 38-year-old female with a 24-mm acoustic neuroma. She had an 8-year history of right tinnitus (pure tone average: 18.8 dB; speech discrimination score: 100%). In these 2 patients, the superior and inferior vestibular nerves were partially outside the subarachnoid space in the IAC, respectively. We were unable to clearly evaluate the relationship between the arachnoid fold and the tumor surface in the cerebellopontine angle cistern. In both patients, the
FIGURE 5. Despite a small left acoustic neuroma, the arachnoid fold (*) was recognized intraoperatively via the lateral suboccipital approach. After we moved this arachnoid fold toward the brainstem, the arachnoid membrane (arrows) was found to cover the tumor and continued from the arachnoid fold toward the internal auditory canal.

FIGURE 6. In the case of a larger right acoustic neuroma, after we moved the arachnoid fold (*) toward the brainstem, the arachnoid membrane (arrow) was recognized on the tumor surface continuing from the arachnoid fold.
pathological findings of the tumors revealed that they were a mixture of Antoni type A and B schwannomas. These findings were consistent with those of other acoustic neuromas.

Of the 118 patients, the microscopic operative findings for 5 patients with neurofibromatosis type 2 did not reveal any specific differences from those of the nonhereditary common acoustic neuromas.

Light Microscopic Findings

In 10 of 13 cases, those we submitted the specimen of the tumor surface to optical microscopic examination, we confirmed that the surface had a membranous structure, with all 4 specimens adding immunostaining showing S100 negative and epithelial membrane antigen–positive cells on immunohistochemistry. Accordingly, these surfaces were classified as an arachnoid...
membrane (Figure 9). In 2 of these 4 cases, we also carried out immunostaining for the progesterone receptor and observed positive staining—a finding that corroborated the presence of the arachnoid membrane.

Electron Microscopic Findings

Arachnoidal cells and membrane were observed in only 4 of the 11 cases examined using an electron microscope (Figure 10) although in 10 of the 11 cases, precut light photomicrographs showed a membranous structure considered to be an arachnoid membrane on the dens layer, which was suspected of being the perineurium of the vestibular nerve (Figure 10).

DISCUSSION

Previous Arguments

Since the description of Yaşargil et al., acoustic neuromas have generally been considered to be epiarachnoid tumors. This concept is based on the presence of the usually identifiable arachnoid fold (double layers of the arachnoid membrane), with the tumor being exposed after drawing this arachnoid fold toward the brainstem by using the lateral suboccipital or translabyrinthine approach. However, in recent years, this concept has been reconsidered with popularization of MRI and advancement of techniques such as microneurosurgery. Ohata et al. published their original concept using many schemas that acoustic neuromas originate subarachnoidally and grow epiarachnoidally. Nevertheless, their explanation of a tumor with a subarachnoid origin that grows epiarachnoidally is somewhat difficult to understand. Lescanne et al. performed a cadaveric study on 44 IACs and demonstrated that the arachnoid membrane covers the entire IAC, including the fundus and vestibular ganglion where acoustic neuromas occur and that all vestibulocochleofacial complexes exist in the subarachnoid space (acousticofacial cistern). In the same issue, there was a very interesting argument between Lescanne et al and Yaşargil. Yaşargil commented that it was possible that their study on cadavers may have included conditions different from the actual pathological type, whereas Lescanne et al insisted...
that acoustic neuromas be considered subarachnoid tumors irrespective of the part of the vestibular nerve in which the tumor occurred. However, they were not able to study and comment on the double layers of the arachnoid membrane because their study included patients with normal anatomy. Thereafter, they performed a cadaveric study by using temporal bones from 18 patients with acoustic neuromas; they were unable to identify any layer between the tumor and the intrameatal contents. Therefore, they concluded that these observations contradicted the descriptions concerning the epiarachnoid origin of acoustic neuromas.

Regarding operative findings, Neely12 stated that there was no cleavage between the cochlear nerve and the tumor, whereas Luetje et al13 stated that the surgical plane between the facial nerve and the tumor was difficult to locate. In addition, cell-level intermingling was pathologically confirmed between the tumor and nerves other than the nerve where the tumor had originated.12-14 These reports provide evidence that there are no arachnoid membranes between tumors and the cranial nerves VII and VIII, which is compatible with the findings obtained with subarachnoid tumors. Furthermore, these findings are observed routinely by surgeons during daily operations.

Our research therefore provides additional information by using operative videos, photographs, pathology, and, in particular, electron microscopy.

Pathology of Acoustic Neuromas

Many articles have been published about light microscopy findings on acoustic neuromas.15-17 Stewart et al17 reported there was no clear capsule formation in the circumference of 5 acoustic neuromas with diameters of 4.5 mm or less that were discovered by chance in the IAC of pathology specimens obtained at autopsy. The photographs in their article showed no relationship between each tumor and the arachnoid-like membrane in the IAC, with this finding being considered evidence of a subarachnoidal origin of the acoustic neuromas. Neely et al16 reported that the tumors and nerves from which the tumor originated were covered by a thin perineurium in the small acoustic neuroma and that these 2 structures were separated by a delicate fibrous tissue except for a partial borderless area.
Kuo et al performed pathological examinations of the surface of acoustic neuromas collected at surgery, and described that the tumors were covered with a 3–5-μm-thin membrane. They suggested that this was an arachnoid membrane, expressing “a particular attractive explanation for its origin was draping of arachnoid sheets.” Ohata et al described that the tumor surface was covered by “floss,” which they suspected to be reactive tissue from the dura mater, although they did not provide any pathological verification. According to our results, we suspect that this “floss” covering the tumor surface seen by Ohata et al may actually be a thinned arachnoid membrane. We therefore consider our concepts and those of Ohata et al to be fundamentally based on the same operative findings. As a reference, spinal neuromas have quite different tumor surface structures as evidenced by the findings of Hasegawa et al, who showed that the tumor capsule consisted of 3 layers containing the nerve.

Regarding the electron microscopy findings, although Neely and Sterkers et al paid attention to both tumors and nerves, they provided no description of tumor surfaces. In our study, although a membranous structure was recognized on the layer considered to be the perineurium on the tumor surface in 10 of the 13 cases examined by light microscopy, arachnoidal cells and membrane were observed in only 4 of the 11 cases examined by electron microscopy (Figure 10). We therefore suspect that it is possible that the arachnoid membrane may be peeled off and lost when superthin samples are made when there is only weak adhesion between the tumor and the arachnoid. This emphasizes the fact that light microscopic examination is more suitable than
electron microscopy for identifying the arachnoid membrane on tumor surfaces.

Mechanism of Forming an Arachnoid Fold

Ohata et al. proposed their idea that the keys for the formation of an arachnoid fold were a brain retractor as well as adhesion between the tumor and the arachnoid membrane at the porus acusticus. According to their theory, an acoustic neuroma occurs in the subarachnoid space in the IAC and grows gradually, adhering to the arachnoid membrane mainly at the porus acusticus. The adhesion then moves toward the brainstem as the tumor grows, resulting in the formation of an overlap of the arachnoid membrane. Finally, retraction of the cerebellum by a brain spatula in the operative field results in a surgeon recognizing the arachnoid membrane as a double layer (arachnoid fold) on the tumor in the cerebropontine cistern. Intraoperatively, we often observe adhesion between not only the tumor and the arachnoid membrane, but also between the dura mater and the arachnoid membrane at the porus acusticus (Figure 11). In agreement with the concept of Ohata et al, we speculate that movement of this adhesion toward the brainstem as the tumor grows exposes the arachnoid fold (Figure 12). In our study, there was a tendency for this adhesion and arachnoid fold to be smaller in small tumors and larger in large tumors.

Surgical Procedures and Techniques

Based on the results of our study, changes in surgical strategy, procedures, and techniques are not necessary in acoustic neuroma surgery. First of all, in common with the practice of most neurosurgeons, we grasp the arachnoid fold and move it toward the brainstem and then cut the tumor surface and decompress the tumor. After reduction of the tumor volume, we continue moving the arachnoid fold toward the brainstem. By this method, tumor dissection is performed without injuring the nerves and vessels in the subarachnoid space. However, the arachnoidal fold cannot be kept throughout, and there is a point when we enter the subarachnoid space as described by Ohata et al. We consider that this point is the moment for breaking the continuity between the arachnoid fold and the arachnoid membrane on the tumor surface.

Is an Acoustic Neuroma an Epiarachnoid or Subarachnoid Tumor?

From our results, the majority of acoustic tumors are subarachnoid tumors, although we were not able to make a definitive classification in 25% of the cases. However, we experienced 2 cases in which the acoustic neuroma originated from the epiarachnoid space, although the fundus acusticus was vacant on the preoperative MRI (Figure 8). In both these cases, the MRI scans showed tumor distribution along the posterior wall of the IAC without extension of the tumor to the fundus acusticus; although this is interesting, we have not yet been able to explain these findings. The authors can only describe that there are rare cases in which the vestibular nerve runs partially exterior to the subarachnoid space.

Therefore, our clinical study proved theoretically that most acoustic tumors occur subarachnoidally and also that there are some exceptions to the conclusion of Lescanne et al from a cadaveric study that the arachnoid membrane covers the entire IAC in all cases.
CONCLUSION

From the results of intraoperative and pathological findings in our study, the majority of acoustic neuromas are considered to occur in the subarachnoidal space and grow subarachnoidally. The formation of the arachnoid fold is considered to be caused by adhesion between the tumor and the arachnoid membrane around the porus acusticus. Surgical procedures and techniques need not be modified, and it is important to grasp and move the arachnoid fold toward the brainstem to avoid injury to nerves and vessels.

Disclosure

The authors have no personal financial or institutional interest in any of the drugs, materials, or devices described in this article.

REFERENCES

Acknowledgments

The authors thank the neurosurgeons, medical engineers, and medical technologists at Tokyo Metropolitan Police Hospital for their assistance in the surgeries for acoustic neuromas.

COMMENTS

This study of the microanatomy of the arachnoidal coverings of the acoustic tumors is relevant for microsurgery. The subject has been extensively disputed between prominent neurosurgeons in recent years. This article indicates that extra-arachnoid is the dominating type of growth. This does not resolve the debate, but adds important new data obtained with optical and electron microscopy on the position of arachnoid in relation to acoustic schwannoma. The possibility of inaccuracies could result from the existence of both intra- and extra-arachnoid growth of the tumor, but also from the retrospective character of the analysis of video-recorded surgical procedures, which does not comply with the methodological consistency in all cases and could be a source of artifacts.

Tamasz Trojanowski
Lublin, Poland

Marco S. Tatagiba
Tübingen, Germany

In 1976, Yasargil et al1 detailed the arachnoid membranes in relation to the surface of VSs and stated that VSs originate extra-arachnoidly in the internal auditory meatus and push the arachnoid membrane of the cerebellopontine cistern medially, thereby causing an arachnoid duplication (or even a triplication) between the tumor and the brainstem. This superposition of layers creates a surgical cleavage plane. The original description of Yasargil et al remains a major reference and is still found in numerous textbooks on surgical technique. However, in 2002, Lescanne et al2 performed a microanatomical cadaver study and challenged the concept that VSs are extra-arachnoid tumors. The current study by Kohno et al is designed to address this issue.
The study is a retrospective study of 118 consecutive patients with VS, which is quite a sizable population. The authors contrast the 2 classic hypotheses, namely, that a VS is a subarachnoidal tumor or an extra-arachnoidal tumor. The authors made their conclusions based on direct intraoperative microscopy in the majority of cases. In all the patients, the operations performed under a microscope were routinely recorded on DVDs. After observing the presence of the arachnoid membrane on the tumor surface, the tumor surface was carefully studied before beginning to operate on the tumor. Retrospective analysis was possible by viewing the surgical procedure recorded on the DVDs.

The VSs were determined to be subarachnoidal in 86 patients, extra-arachnoidal in 2, and indeterminable in 30 patients using this technique. Only in 13 cases (presumably out of the 30 indeterminable cases) were specimens sent to pathological examination with specific focus on the membranous surface. It is somewhat unclear from the text how many of these 13 cases ended up being classified as extra-arachnoidal.

The study by Lescanne et al. showed that the arachnoidal layer doubles the dura mater of the meatus along its entire length. As a result, the vestibular and cochlear nerve fibers penetrate the arachnoid very early, as soon as they enter the meatus. This fixes the position of the vestibular ganglion in the subarachnoid space. Neuromas that arise at this level are thus all contained in the acousticofacial cistern. The current study by Kohno et al. support these findings, and the authors go on to illustrate this with a nice drawing.

The authors focus on the majority of patients in whom the VSs were subarachnoidal, but fall short of presenting an explanation for the ones that were either deemed to be extra-arachnoidal or indeterminable. The authors stress that the results of their current study do not warrant a change in the surgical technique.

Torstein Meling
Iver A. Langmoen
Oslo, Norway
