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Abstract
Several diseases have been successfully modeled 
since the development of induced pluripotent stem cell 
(iPSC) technology in 2006. Since then, methods for 
increased reprogramming efficiency and cell culture 
maintenance have been optimized and many protocols 
for differentiating stem cell lines have been successfully 
developed, allowing the generation of several cellular 
subtypes in vitro . Gene editing technologies have also 
greatly advanced lately, enhancing disease-specific 
phenotypes by creating isogenic cell lines, allowing 
mutations to be corrected in affected samples or inserted 
in control lines. Neurological disorders have benefited 
the most from iPSC-disease modeling for its capability for 
generating disease-relevant cell types in vitro  from the 
central nervous system, such as neurons and glial cells, 
otherwise only available from post-mortem samples. 
Patient-specific iPSC-derived neural cells can recapitulate 
the phenotypes of these diseases and therefore, 
considerably enrich our understanding of pathogenesis, 
disease mechanism and facilitate the development of 
drug screening platforms for novel therapeutic targets. 
Here, we review the accomplishments and the current 
progress in human neurological disorders by using 
iPSC modeling for Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease, spinal muscular atrophy, 
amyotrophic lateral sclerosis, duchenne muscular 
dystrophy, schizophrenia and autism spectrum disorders, 
which include Timothy syndrome, Fragile X syndrome, 
Angelman syndrome, Prader-Willi syndrome, Phelan-
McDermid, Rett syndrome as well as Nonsyndromic 
Autism. 
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modeled using induced pluripotent stem cell (iPSC) 
technology. Neurological disorders are frequent targets 
of iPSC-disease modeling for its ability to generate in 
vitro disease-relevant cell types from the central nervous 
system, such as neurons and glial cells. Patientspecific 
iPSC-derived neural cells can recapitulate the phenotypes 
of these diseases, unveiling mechanisms and providing 
drug screening platforms for novel therapeutic targets. 
Here, we review the accomplishments and the current 
progress achieved in human neurological disorders by 
using iPSC modeling for Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease, spinal muscular atrophy, 
amyotrophic lateral sclerosis, duchenne muscular 
dystrophy, schizophrenia and autism spectrum disorders.
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INTRODUCTION
Induced pluripotent stem cell (iPSC) technology was 
first described in 2006 by Takahashi and Yamanaka[1], 
when murine fibroblast cells were reprogrammed to a 
pluripotent stage, with the protocol being successfully 
applied to human fibroblast cells on the following year 
by the same group[2]. Since then, iPSCs have been 
greatly used by many laboratories for pathobiology 
studies, discovery of disease mechanisms and potential 
drug-screening platforms[3,4]. 

Neurological diseases have benefited enormously 
from iPSC technology for it allowing in vitro production 
of human cells that wouldn’t be accessible otherwise, 
such as the brain, and protocols for generating well-
defined neural cell types are already available, being 
used by several research groups. In our laboratory, the 
protocol described by Marchetto et al[5] for generating 
cortical neurons has been successfully reproduced. The 
steps for neuron generation are represented in Figure 1.

In this review, we introduce an overview of the use 
of iPSC technology for Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington disease, Spinal 
muscular atrophy (SMA), amyotrophic lateral sclerosis 
(ALS), duchenne muscular dystrophy (DMD), autism 
(syndromic and nonsyndromic) and schizoprhenia as 
well as its application as a drug screening platform and 
potential therapeutic application.

AD
AD is the most common progressive neurodegenerative 
disease affecting the aging population in which patients 
display gradual memory loss and cognitive impairment. 
AD can be classified as sporadic late onset (S-AD), 
which mostly occur after the age of 65 and accounts for 

95% of the cases, or more rarely familiar early onset 
(F-AD), developing in patients in as early as their 30 
s. Both occurrences present similar clinical features 
and pathological phenotypes. For familial cases of AD, 
mutations in amyloid precursor protein (APP), presenilin 
1 and 2 (PS1, PS2) were identified[6].

The amyloid hypothesis of AD pathogenesis stems 
from the accumulation and aggregation of plaques in 
the brain comprised of β-amyloid (Aβ) peptides and a 
hyper phosphorylated form of microtubule associated 
protein Tau. Point mutations in PS1 or PS2, which form 
the major component of the γ-secretase complex, affect 
the γ-secretase-mediated processing of APP, increasing 
formation of Aβ42 within the neurons, wielding a toxic 
effect, obstructing neuronal communication and causing 
oxidative stress[7-9]. Nevertheless, it has been reported 
contradictory results in animal models for the role of APP 
in AD[10] and most drugs candidates in clinical trials have 
failed, implying that to prevent functional and cognitive 
decline, aiming Aβ alone may not be enough. Utilizing 
iPSCs in AD modeling allow to further investigate if the 
cause of neurodegeneration is due to accumulation of Aβ 
and provide a new method to relate S-AD pathogenesis 
and newly identified genetic risk variants[11]. 

Several groups have already successfully generated 
AD patient specific iPSC-derived neuron lines, providing 
a novel strategy to investigating the pathogen pathways 
of the disease[12-14]. Yagi et al[12] first generated neurons 
from iPSCs from F-AD patients carrying PS1 or PS2 
mutations, which revealed elevated levels of Aβ, thus 
confirming the amyloid cascade hypothesis. Israel et 
al[14] generated iPSC from two F-AD patients harboring 
duplications of the APP gene and two S-AD patients 
and found higher levels of the pathological marker 
Aβ40, phosphorylated tau (Thr231) and active glycogen 
synthase kinase-3β, when compared to matched control 
iPSCs, in both F-AD patients and one S-AD patient. 
Further treatment of the cells with β-secretase inhibitor 
improved levels of Thr231 and GSK-23, indicating an 
APP-tau relationship. Although only one of the S-AD 
lines recapitulated F-AD phenotype (APP duplication), 
the autosomal-dominant mechanism forms of F-AD 
may provide insight into the pathogenesis of S-AD in 
future studies. Nevertheless, larger numbers of samples 
will be required in order to fully access their genetic 
heterogeneity.

Additional studies approaching drug and toxicity 
screenings in AD, used neuronal cells-iPSC derived, posi-
tive for forebrain markers and able to secrete functional 
proteins involved in Aβ, as well as APP, β-secretase and 
γ-secretase[15]. After treatment with β- and γ-secretase 
inhibitors, differences in susceptibility to drugs between 
the early and late differentiation stages of the cells were 
reported. Another group used AD iPSC-derived neurons 
to test for molecules effective against Aβ42 toxicity 
and revealed that cyclin-dependent kinase 2 inhibitor 
block Aβ toxicity in the differentiated neural cells[16]. 
Both studies show the potential that iPSC technology 
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represents in modeling AD and allow to examine patient-
specific phenotypes in vitro reflecting the familial and 
sporadic forms of Alzheimer’s disease, as they are often 
indistinguishable clinically.

PD
PD is the second most common neurodegenerative 
disease, behind only to AD, and it’s characterized by 
progressive loss of dopaminergic neurons (DA) from 
substantia nigra. Patients display progressive motor 
dysfunction, such as tremor, rigidity, akinesia and brady-
kinesia. Most cases of PD are sporadic, but about 20% 
of patients display familial monogenic forms of the 
disease[17]. Pathological hallmarks of PD are characterized 
by presence of Lewy bodies composed of alpha-synuclei 
(α-syn) protein beyond the nigra and the cortex.

The first dominantly inherited familial PD genetic 
cause identified was linked to alpha synuclei encoded 
by the SNCA gene[18], with four mutations currently 
described[19-22], which causes a misfolding of the protein 
leading to neuronal dysfunction. Alpha-synuclei is 
believed to participate in pre-synaptic functions of DA 
neurons, though the complete actual role of α-SYN is 
still unknown. DA neurons were generated from iPSCs 
from a family who carried a triplication of the SNCA 
locus and expressed double the amount of α-SYN when 
compared to healthy controls[18]. Further analysis on 
iPSC-derived DA neurons from the same family, showed 
increases in mRNA for genes associated with oxidative 
stress, such as haemoxygenase 2 and monoamine 
oxidase, and when these neurons were exposed to 
hydrogen peroxide, increased activation of caspase-3 

was detected, suggesting that high levels of α-SYN may 
present a toxic effect on DA neurons under stress[23]. 

Another mutation, in A52T SNCA gene, was corrected 
using zinc finger nuclease (ZFN) technology, both in 
mutated and control iPSC lines in order to correct the 
mutation and generate isogenic control lines, respec-
tively. However, the iPSC-derived DA neurons generated 
were not evaluated, but authors showed the proof of 
principle that isogenic cell lines are important to evaluate 
consequences of mutated genes[24]. 

Two other dominant forms later characterized were 
linked to mutations in glucocerebrosidase and leucine 
rich repeat kinase 2 (LRRK2) genes[25-27]. Mutations in 
LRRK2 gene, usually G2019S, are the most common 
cause of familial PD, being intensively investigated with 
use of iPSC technology[28-32]. Increased expression of 
alpha-synuclein in iPSC-derived DA neurons from LRRK2-
mutant lines was found[28], fact observed by other 
studies[29,32], suggesting a connection between these 
risk genes, as well as increased expression of oxidative 
stress genes and increased activation of caspase-3 after 
treatment with H2O2. Another study used ZFN technology 
in G2019S-iPSC and health control iPSC lines to correct 
and add the G2019S mutation, respectively, observed 
the reversal of the pathogenic phenotype associated with 
the G2019S mutations[33].

There are three early onset autosomal recessive 
forms of PD, caused by mutations in Parkin (PARK2), 
PTEN induced kinase 1 (PINK1) and DJ1 (PARK7)[34-36]. 
Parkin is believed to mediate mitophagy on a system 
dependent on PINK1 and account for most cases of 
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Figure 1  Steps for neuronal and glial differentiation protocol. NPCs: Neural progenitor cells; iPSC: Induced pluripotent stem cells; EBs: Embryoid bodies.
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early-onset PD[37]. Studies done by different groups 
in PD iPSC-derived neurons found impaired Parkin 
recruitment after mitochondria depolarization and 
observed indications that mutations in PARK2 may 
predispose neurons to oxidative stress, though details 
of the exact phenotype remains unclear[38-41].

Huntington’s disease
Huntington’s disease (HD) is an autosomal dominant 
neurodegenerative disease, affecting approximately 
1:10000 persons[42]. Mutations in the huntingtin gene 
(HTT) lead to poliglutamine repetitions (CAG), causing 
psychiatric and physiologic alterations[43,44]. Patients 
with HD display progressive motor and cognitive impair-
ments, change in personality, loss of function along 
with a decrease in number of neurons, among other 
symptoms[44,45]. 

The development of iPSC technology applied to 
human cells[2] helped elucidate the mechanisms of 
several devastating neurologic diseases, as HD. Cells 
from HD patients were first reprogrammed into iPSC in 
2010[46], and alterations in electrophysiology, cell meta-
bolism, adherence and toxicity were reported. Expansion 
of a CAG repeat alters the transport and release of BDFN 
and increases glutamate receptors, producing toxicity 
and oxidative stress in neuron and glial cells[44,46,47]. HD 
iPSC-derived astrocytes displayed 34% more vacuoles 
when compared to healthy control astrocyte cell lines[42] 
and on HDN177-82Q mice model, it was observed 
that mutation in gene HTT causes severe neurological 
phenotypes and dysfunction in glia cells[48].

Another study created genetically corrected HD iPSCs 
lines and further differentiated them into neural stem 
cells (NSC), which displayed normalized pathogenic 
TGF-β and cadherin signaling pathways. When these 
genetically corrected NSCs were transplanted into a 
transgenic HD mice model, it was observed that they 
were able to populate the striatum after a two week 
post-transplantation period, uncovering advancements 
for a potential stem cell replacement therapy[49]. 

SMA
SMA is an autosomal recessive neurodegenerative disease 
caused by mutations in survival of motor neuron gene 
(SMN-1), characterized by a selective and progressive 
loss of lower motor neurons resulting in degeneration of 
motor neurons in the spinal cord and muscular atrophy 
on limbs and trunk[50-52].

In order to uncover what is really happening from an 
inside perspective of the patient’s body, iPSC technology 
can be used to elucidate this disease mechanism[53]. 
This was first demonstrated by Ebert et al[50] using 
fibroblast cells from SMA patients, which were repro-
grammed into iPSCs by lentiviral infection carrying 
Oct4, Sox2, Nanog and Lin28 factors. When these 
iPSCs were further differentiated into motor neurons, 
it was observed they displayed smaller soma size and 
incomplete synapses formation. Valproic acid (1 mmol/L) 

and Tobramycin (320 umol/L) drugs, both previously 
described in the treatment of SMA patients[54], were 
tested and appeared to increase the production of SMN 
protein in iPSC-derived motor neurons. Valproic acid 
and anti-sense oligo treatment help improve defects in 
AChR clustering, increasing levels of SMN transcripts[55].

The neuronal differentiation of SMA iPSCs show 
reduced capacity to produce motor neurons[51], there-
fore, applying gene correcting technology may aid 
in overcoming these methodological shortcomings. 
The correction of SMN gene, using single-stranded 
oligonucleotide, was shown to restore the SMN gene 
profile in neurons derived from SMA-iPSC, converting 
SMN2 in SMN1[56]. Furthermore, these corrected-gene 
cells were transplantated in SMA rat models, improving 
the animals’ disease phenotype and life extension. 
The possibility of generating genetically corrected, 
patient-specific SMA-iPSC derived motor neurons and 
the positive results observed from transplantation in 
this study, open the path for therapeutic application of 
autologous cell therapy for SMA patients[57]. 

ALS
ALS is a late adult onset neurodegenerative disease 
characterized by a progressive degeneration of motor 
neurons in the cortex, brainstem and bone marrow[58,59]. 
ALS is a devastating disease; the loss of motor neurons 
and muscle atrophy confine patients to a wheelchair very 
rapidly, followed by respiratory failure. The cause of ALS 
is not yet elucidated, however, mutations in genes SOD1, 
C9orf72, TDP-43, FUS/TLS, angiogenin, Matrin 3[60-65] 
and others, have been associated with ALS. Moreover, 
familial inheritance accounts for about 10% of the cases 
of patients diagnosed with ALS[65].

Several studies using reprogrammed cells generated 
from patients of different diseases have been described 
since 2008[66,67] and they have and still contribute to 
the understanding, from a physiological point of view to 
prospective treatments, of these diseases. The first group 
to generate ALS-derived iPSCs reprogrammed fibroblast 
cells and further differentiated them into motor neuron 
cells, opening the path to studies on ALS pathogenesis, 
yield in a model for testing novel compounds and for 
autologous cell replacement therapy[67].

iPSC-derived motor neuron cells have been shown to 
be physiologically active in vitro after reprogramming[68,69] 
and were immunopositive for ISL+ (motor neuron 
marker)[68], MNX1 (motor neuron and pancreas homebox 
protein 1)[69] and also, displaying a phenotype for 
cholinergic transmitters, positive for ChAT (acetylcholine 
marker)[68,69].

Neural progenitor cells, which can be generated from 
iPSC, have become a promising source for cell therapy 
for ALS. These cells have been transplanted in the lumbar 
spinal cord in ALS mice models, further differentiated into 
neurons and astrocytes, and were shown to be able to 
improve the quality and lifespan of these mice[70,71].

Recently, the world has drawn attention to the ALS 
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“Ice bucket” campaign[72], gaining scientific research 
strength and raising public awareness about the disease. 
ALS iPSC research can contribute as a platform to deve-
loping new therapeutics, clinical application with cell and 
gene therapies, enabling new opportunities for future 
patients’ treatments.

DMD
Mutations in the dystrophin gene, located on X chro-
mosome in region p21, lead to dysfunctions in the 
production of dystrophin, resulting in a misfolded protein. 
Partial expression or total loss of the dystrophin cause 
weakness and progressive degeneration of skeletal 
muscles, reported symptoms of the DMD, whose 
prevalence is high, affecting approximately 1 in 3300 
males[73].

Dystrophin provides support between the actin fila-
ments and cell membrane (sarcolemma) in muscle 
cells but may also be found in other cellular types, such 
as in the retina, liver, heart, brain, etc.[74]. Moreover, 
dystrophin appears to act in the central nervous 
system. Some studies have reported that DMD patients 
have difficulties in tests requiring attention and verbal 
repetition, as well as deficits in speech processing 
and reading, suggesting DMD may be a cerebellar 
disorder[75,76]. Approximately one third of DMD patients 
show cognitive impairment[77,78], in which the mutations 
in the dystrophin gene seem to alter the efficiency of the 
brain-cerebellum path, as well as change the neuronal 
and brain architecture, leading to cognitive deficits in 
these patients[75-77].

Modeling DMD in vitro will help disclose the neuro-
logical mechanism of this disease and even allow to 
correct the dystrophin deficit in the muscle. To date, 
cardiomyoblast cells, muscle cells and neurons have 
been generated from iPSC cells[79-82]. The first group to 
reprogram cells from DMD patients was Park et al[66] 
in 2008, followed by other groups modeling DMD in 
vitro and whose primary objective was to correct the 
dystrophin in muscle cells. Furthermore, studies applying 
human artificial chromosome, CRISPR/Cas9 and 
TALEN technologies[82-84] reported to have restored the 
expression of dystrophin, observed in vitro and in vivo.

Neuromuscular diseases like DMD have been the 
focus of iPSC modeling disease studies, which allow the 
creation of platforms to correct genetic mutations as 
well as for drug discovery, opening doors to personalized 
medicine.

AUTISM 
Autism spectrum disorder (ASD) is a group of com-
plex neurodevelopmental disorders, affecting 1% of 
the world’s population, characterized by qualitative 
communication impairment, atypical social interaction 
and restricted and repetitive patterns of behavior[85-87]. 
Autism can be categorized in syndromic and nonsyn-
dromic types. Syndromic autism is definied by an 
identified neurological disorder, harboring a set of 

associated phenotypes, where the genetic cause is 
known and gene mutation is identified. Syndromic 
forms of ASD are Timothy syndrome (TS), Fragile X 
syndrome (FXS), Angelman syndrome (AS), Prader-Willi 
syndrome (PWS), Phelan-McDermid and Rett syndrome 
(RTT)[5,88-91]. Studies using iPSC technology have already 
been reported for all of these diseases. Nonsyndromic 
autism, or simple called ASD, is a group of comorbidities 
whose genetic cause is not well defined yet, although 
some genes involved are known, and accounts for the 
majority of autism cases.

TS
TS is a rare genetic disorder caused by de novo missense 
mutation in the CACNA1C gene[92,93] and it is associated 
with developmental delay and autism[92]. This gene 
encodes the α-subunit of the voltage-gated calcium 
channel Cav1.2. This channel plays a central role in 
regulating and signaling network that is essential for 
neuronal function[94-96]. 

Cortical neuronal precursor cells and neurons were 
first differentiated from iPSCs generated from patients 
with Timothy syndrome by Pasca et al[88]. Intracellular 
calcium (Ca2+) signals were examined in these cells 
and a significant increase in TS neurons was observed. 
Furthermore, TS patient specific-iPSCs were generated 
to study the effects of the mutation on dendritic arbors. 
The results found in these cells were then compared to 
a TS rodent model and revealed an aberrant activity-
dependent dendritic retraction in both human derived 
neurons and animal neurons[97].

Mutations in ion channel genes have been ass-
ociated with cardiac arrhythmias and TS, but the 
pathophysiological process is little known. TS iPSC-
derived cardiomyocyte cells displayed an erratic and 
slow contraction behaviour when compared to healthy 
controls, as well as abnormal calcium handling and 
irregular and prolonged action potential patterns[98]. 

FXS
FXS is the most common form of syndromic ASD and 
mental retardation[89]. FXS is caused by loss of expression 
of the fragile X mental retardation gene 1 (FMR1) 
located in the X-chromosome, where an expanded CGG 
repeats in the 5’-untranslated region of the FMR1 gene 
is present[89,99]. FXS has no cure and patients display 
developmental impairment, learning and cognitive 
disabilities, as well as physical and behavioral phenotypes 
such as stereotypic movements[100,101]. 

FMR1 gene is associated with synaptogenesis and the 
FMRP protein can be detected at synapses and dendritic 
spines[102]. The first FXS iPSC model was derived from 
fibroblasts and described by Urbach et al[89]. Their 
findings reported the FMR1 gene remained inactive and 
highlighted crucial differences between ES and iPS cells. 
Another study reported variable levels of FMR1 silencing 
and expression in multiple FXS iPSC lines. Furthermore, 
these lines showed reduced FRM1 expression during 
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neuronal differentiation[99]. 
FMRP expression works as an indicator for drug 

discovery for FXS. In a recent drug screening study, 6 
compounds were shown to increase FMR1 gene expres-
sion in neural stem cells differentiated from a FXS iPSC 
line. Despite none of these compounds resulted in 
clinically relevant levels of FMR1, these findings support 
the idea this assay can be used as a drug screening 
platform for FXS[101]. 

Another study showed that iPSC-derived neurons 
from FXS patients displayed fewer synaptic protein 
levels and synapses, reduced neurite length and abnor-
mal functionality, with increased calcium transients[103]. 
Reduced neurite was also observed in forebrain neurons 
derived from FXS iPSCs[104]. 

AS and PWS
AS and PWS are neurodevelopmental disorders asso-
ciated with autism caused by deletions in chromosome 
15q11-q13[105]. AS is caused by reduced expression of 
the ubiquitin-protein ligase E3A gene (UBE3A) of the 
maternal chromosome[106-108] whereas PWS occurs by 
the same deletion on the paternally inherited allele[109]. 
They both share same behavioral and neurological 
phenotypes. However, cognitive and neurologic impair-
ments are more severe in AS, including seizures, while 
behavioral problems are more severe in PWS[109].

The first study to model AS and PWS using iPSC-
derived from patients was done by Chamberlain et al[105]. 
Although the authors found no phenotypic differences 
between AS and control neurons, they observed the 
UBE3A imprinting occurred during neuronal differentiation 
in AS cells. 

Recently, iPSCs from a PWS patient with an atypical 
microdeletion on paternal chromosome 15q11-q13 were 
generated[90], revealing they expressed UBE3A-ATS, 
typically restricted to neurons as is, consequently, the 
imprinted expression of UBE3A observed in these iPSCs, 
as well[90]. 

Another study generated iPSCs from patients with 
duplications of chromosome 15q11-q13.1 (Dup15q synd-
rome) and were further differentiated into functional 
neurons. Gene expression analysis was performed and 
compared to AS neurons, revealing they shared common 
neuronal pathways disrupted in both Angelman and 
Dup15q syndromes[110]. 

Phelan-McDermid syndrome
Phelan-McDermid syndrome (PMDS) is a rare disorder 
associated with deletions in chromosome 22q13[91,111]. 
PMDS is a monogenic form of ASD with a frequency 
of at least 0.5% of ASD cases and is resulted by 
deletions in SH3 and multiple ankyrin repeat domains 
3 (SHANK3)[112]. This gene plays an important role in 
synaptic function and is involved in the organization 
of postsynaptic density[113,114]. PMDS patients display 
some autistic features as severe language delay and 
intellectual disability[115]. Animal models for ASD carrying 

SHANK3 mutations display synaptic dysfunction, 
abnormal social behavior, repetitive and communication 
behavior patterns and deficient learning and memory[116]. 

Recently, Shcheglovitov et al[117] generated iPSC-
derived neurons from individuals with PMDS carrying 
large 22q13 deletions that included SHANK3. These 
neurons displayed fewer synapses and altered 
electrophysiology. The group reported that excitatory 
synaptic transmission in PMDS neurons can be corrected 
by restoring SHANK3 expression or by treating neurons 
with insulin-like growth factor 1[117].

RTT
RTT is a progressive neurodevelopmental disorder caused 
by mutations in the X-linked gene methyl CpG-binding 
protein 2 (MeCP2)[5,118]. RTT syndrome affects more 
females with an incidence of 1 in 10000[118]. Rett patients 
display a normal development until 18 mo of age, but 
thereafter, progressive neurological abnormalities begin 
to emerge[119]. Neurologic pathologies as autistic behavior, 
stereotypies, loss of speech, microcephaly, seizures and 
hypotonia have been described in RTT patients[120].

Several studies utilizing RTT-derived iPSC have been 
published in the past years. The first RTT-derived iPSC 
lines were generated by the Ellis group[121], however, the 
first group to make use of iPSC for disease modeling of 
RTT syndrome was by Marchetto et al[5]. In this work, 
iPSC-derived neurons from four different RTT patients 
were generated. Neuronal phenotypes displayed 
reduced dendritic spine density, smaller soma size, 
altered electrophysiology, alterations in Ca2+ influx and 
fewer synapses. Furthermore, insulin-like growth factor 
1 (IGF-1) was able to rescue the synaptic defects in 
these neurons after treatment[5]. Reduced soma and 
nuclear size phenotypes from RTT iPSC-derived neurons 
were also observed by another group[122] as well as 
defects in neuronal maturation[123]. 

IPSC-derived neurons from heterozygous Mecp2308 
mice showed defects in glutamatergic synaptic transmis-
sion and generation of action potentials and decreased 
action potential amplitude. These phenotypes were 
observed in neurons derived from WT and hemizygous 
mutant iPSC lines, indicating that these deficits are 
caused by MeCP2 deficiency[124]. 

The first isoform-patient specific iPSC model of RTT 
was reported by Dijuric et al[125]. iPSC-derived neurons 
from RTTe1 maintain an inactive X-chromosome 
and express only the mutant allele. Mutant neurons 
exhibited reduced dendritic complexity, decreased soma 
size and cell capacitance.

Recently, astrocytes derived from RTT iPSCs were 
generated by William et al[126]. The group demonstrated 
that these mutant astrocytes can affect directly the 
neurons and induce abnormalities. IGF-1 and GPE (an 
IGF-1 peptide) can partially rescue the morphological 
defects[126].

RTT syndrome has become a popular target for iPSC 
studies and this technology has greatly contributed to a 
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better understanding of the disease.

Nonsyndromic autism 
Research on syndromic autism provides us with data 
that can contribute to the understanding of nonsyn-
dromic autism cases, where the genetic causes are still 
unknown. Furthermore, animal models provide valuable 
information on ASD, with recent studies showing similar 
synaptic phenotypes in nonsyndromic and syndromic 
mouse models of autisms[127].

The first iPSC model of nonsyndromic autism 
was recently generated by Griesi-Oliveira et al[128]. In 
this study, the group investigated the molecular and 
cellular phenotypes in iPSC-derived neurons from an 
ASD individual carrying a mutation in the TRPC6 gene, 
which encodes for protein channel transient receptor 
potential Canonical 6. TRPC6 protein operates in a 
calcium channel in the brain, controlling the functioning 
of neurons, in particular neuronal synapses[128]. In vitro 
analysis revealed that this mutation leads to a reduction 
of synapses and morphological changes in mouse 
neurons. These data showed phenotypes in common 
with findings from syndromic autism[5,88,89,105,117], where 
the studies demonstrated neuronal abnormalities 
such as altered morphology and synaptic deficits. The 
group was also able to rescue some of the neuronal 
abnormalities using candidate drugs as, IGF-1 and 
hyperforin. This study brings valuable information to the 
understanding of autism disorder, despite this mutation 
occurs in less than 1% of patients with ASD and the 
genetics of autism is quite complex and involves several 
genes[129]. 

Schizophrenia 
Schizophrenia (SCZD), like nonsyndromic autism, is 
a complex neurological disorder where the genetic 
causes are still unclear, affecting a large number of 
individuals (1.1% of the world’s population)[130,131]. It 
is considered to stem from a polygenic basis, with an 
estimated heritability of approximately 80%[130,132,133], 
and genetic and epigenetic processes underlying the 

disease, as it was observed in a discordant monozygotic 
twin study[133]. Moreover, environmental stressors like 
drug use, being cannabis the most frequently studied, 
birth complications, maternal immune response, among 
others, may contibute to SCZD[134-137].

People with SCZD have a lower life expectancy 
average, mostly to increased health problems and 
higher suicide rate, and individuals may experience 
symptoms like hallucinations, delusions, abnormal 
social behavior (inability to speak, express emotions 
or find pleasure) and cognitive impairment (deficits in 
attention, memory and planning)[131,132]. 

The very first study published with iPSC derived 
from SCZD patients did not produce neurons[138]. A 
different group published that same year a study using 
iPSC technology for SCZD modeling. In this study, 
iPSC-derived neurons were characterized and revealed 
defects in neuronal connectivity, reduced outgrowth 
from soma, reduced PSD95 dendritic protein levels and 
some altered gene expression. Furthermore, phenotypes 
in SCZD neurons were ameliorated after treatment with 
Loxapine, an antipsychotic drug[139].

Another work using SCDZ iPSC-derived neurons 
carrying 22q11 deletions observed a high L1 copy 
number in these cells, confirmed by neuronal genome 
analysis, validating the use of iPSC technology in the 
study of SCZD condition[140]. Notwithstanding these 
evidences and taking into consideration SCZD hete-
rogeneity, more studies should be carried out bearing 
in mind the use of more homogeneous populations, 
by selecting subjects with rare genetic variants or with 
similar clinical manifestations[141].

Perspectives 
The path for disease treatment and prevention is 
through the unveiling of pathogenesis and physiological 
mechanisms that ultimately result in the phenotypic 
symptoms of diseases. Analysis of live and post-mortem 
samples, as well as animal models, are great sources 
for disease study outlines. Despite the importance and 
relevance of the use of animal models in research, 
they sometimes are inadequate to fully recapitulate the 
pathology as it is in humans, and consequently, many 
drug candidates that once showed to be therapeutically 
promising in animal models, failed in clinical trials in 
humans[142].

The development of iPSC technology has come to 
aid to fill in the gap between pathogenesis and in vivo 
phenotypes. Since the first human iPSC line was esta-
blished, this methodology has been used by many 
laboratories for the study of neurological and psychiatric 
disorders. 

Neuroscience research has taken a significant step 
with iPSC disease modeling. The possibility of gene-
rating patient-specific cell lines and differentiating them 
into various cellular subtypes in vitro, allow the creation 
of future personalized therapeutical treatments. This 
procedure is represented in Figure 2. 
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Figure 2  Scheme of neurological disease modeling using induced pluri
potent stem cell technology for future personalized treatments. NPC: 
Neural progenitor cells; iPSC: Induced pluripotent stem cell.
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Although iPSC technology holds great potential for 
disease modeling and research, it is still in its initial 
phase. This promising technology provides a useful 
platform for a better understanding of neurological 
diseases mechanisms, drug discovery and future 
therapeutical applications.
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