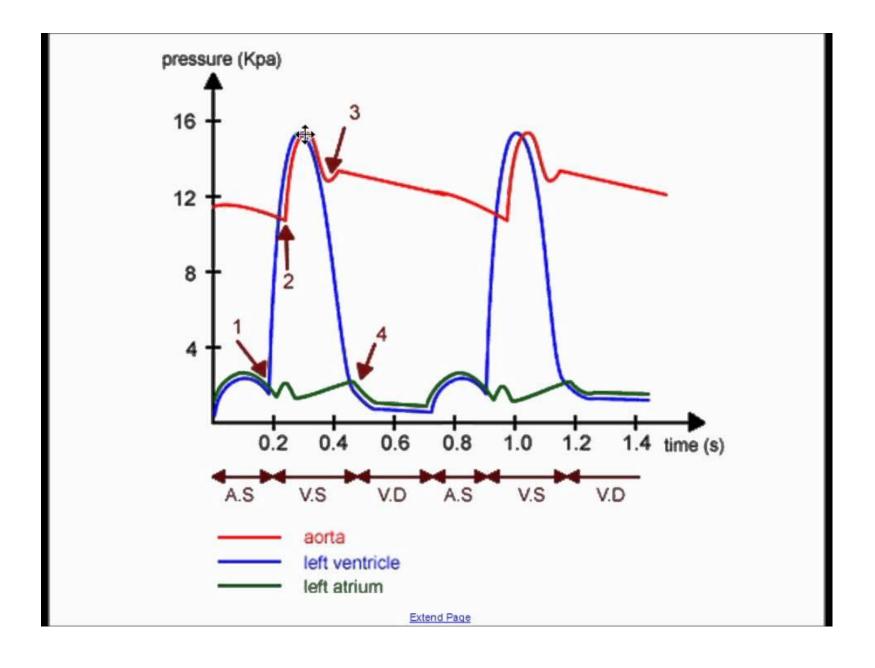
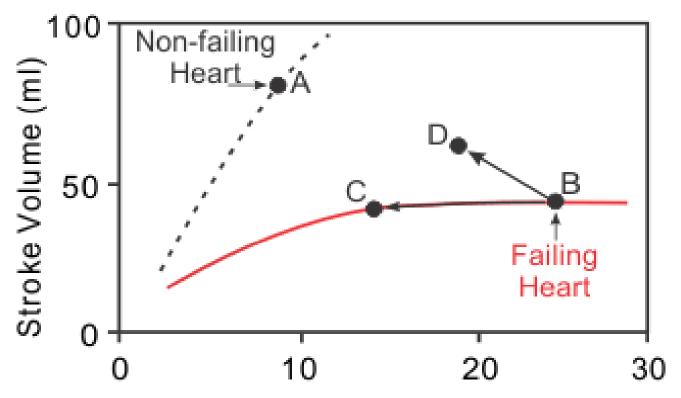

## ΚΑΡΔΙΟΓΕΝΕΣ ΠΝΕΥΜΟΝΙΚΟ ΟΙΔΗΜΑ


#### ΙΩΑΝΝΗΣ ΑΛΕΞΑΝΙΑΝ ΜD, PhD


Επιμελητής Καρδιολόγος Καρδιολογική κλινική ΓΝΑ «Ο Ευαγγελισμός»

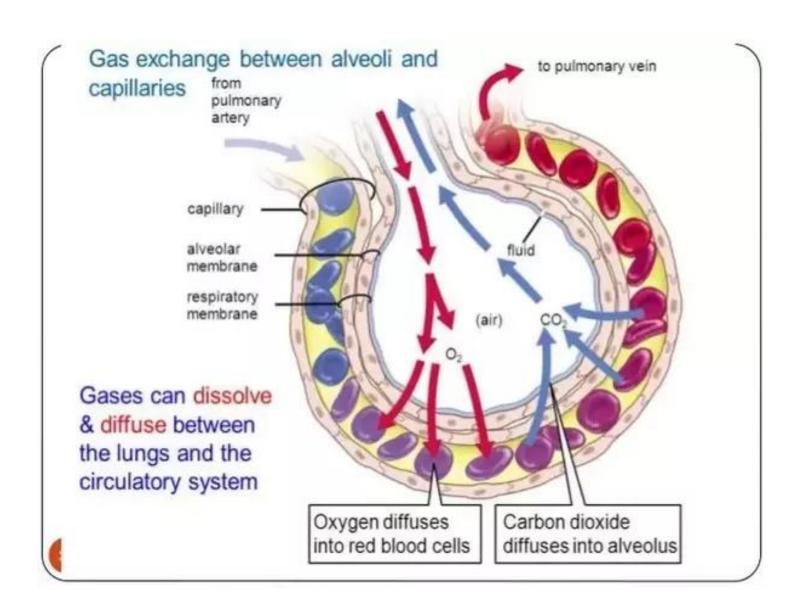


#### **Normal Heart**








Left Ventricular End-Diastolic Pressure (mmHg)

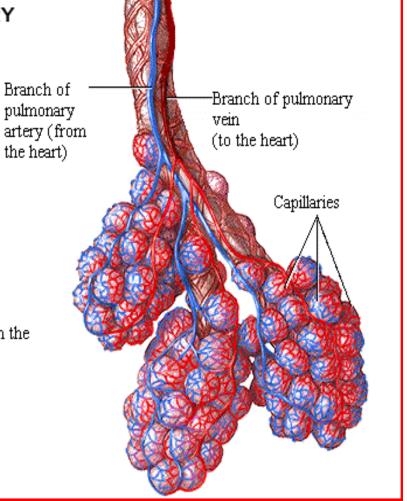
A = operating point for non-failing heart

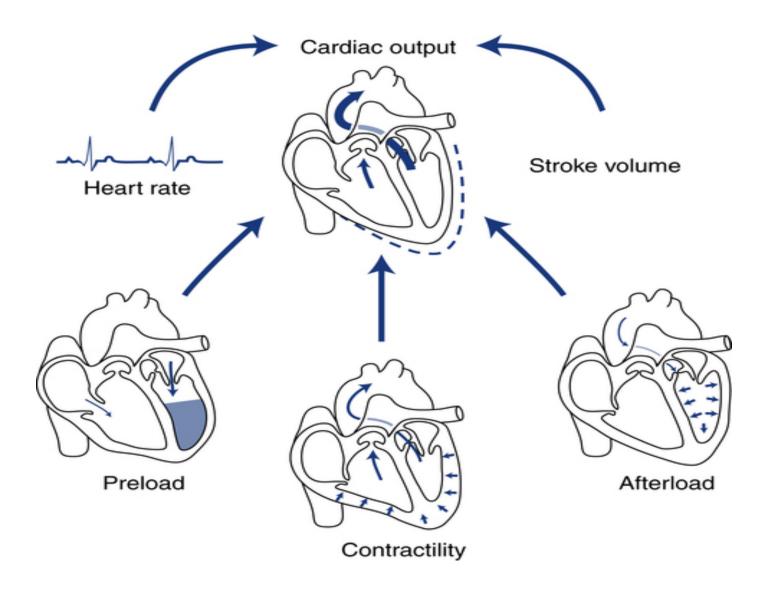
B = operating point for failing heart

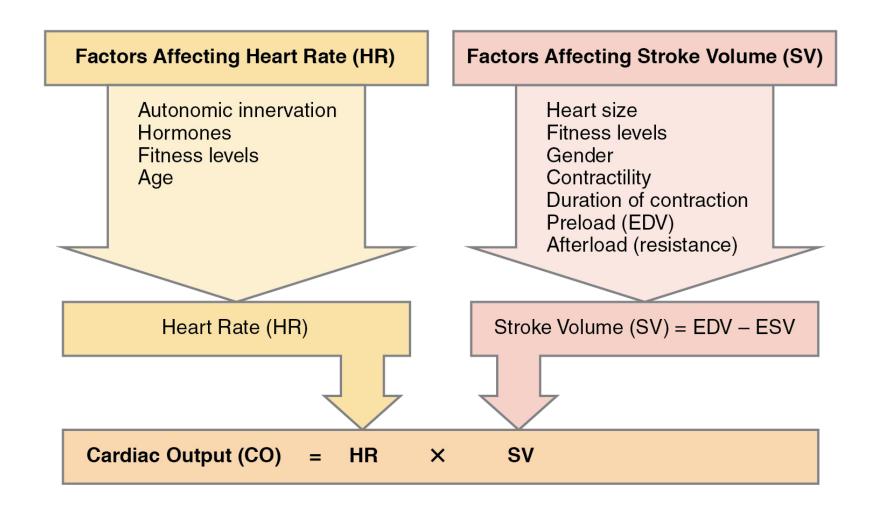
C = effects of a diuretic or venodilator

D = effects of mixed vasodilator or inotropic drug

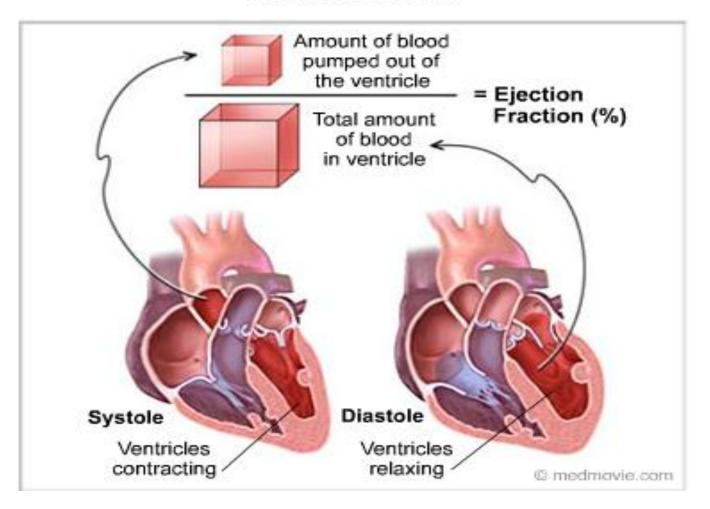



## ALVEOLI AND PULMONARY CAPILLARIES

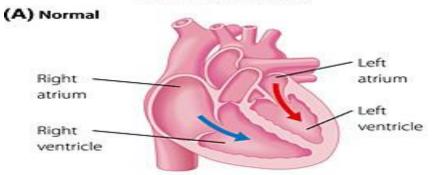

The pulmonary arteries carry blood which is low in oxygen from the heart to the lungs.


These blood vessels branch repeatedly, eventually forming dense networks of capillaries that completely surround each alveolus.

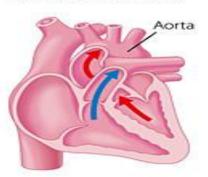
Oxygen and carbon dioxide are exchanged between the air in the **alveoli** and the blood in the pulmonary capillaries.


Blood leaves the capillaries via the pulmonary veins, which transport oxygenated blood back to the heart.

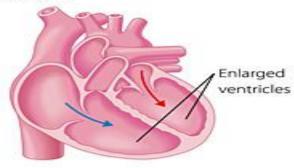




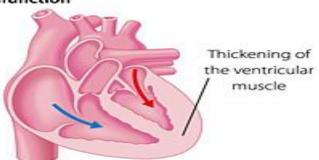


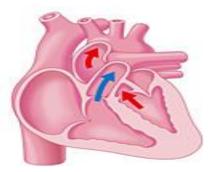


#### **Ejection Fraction**




#### Diastole (relaxation)



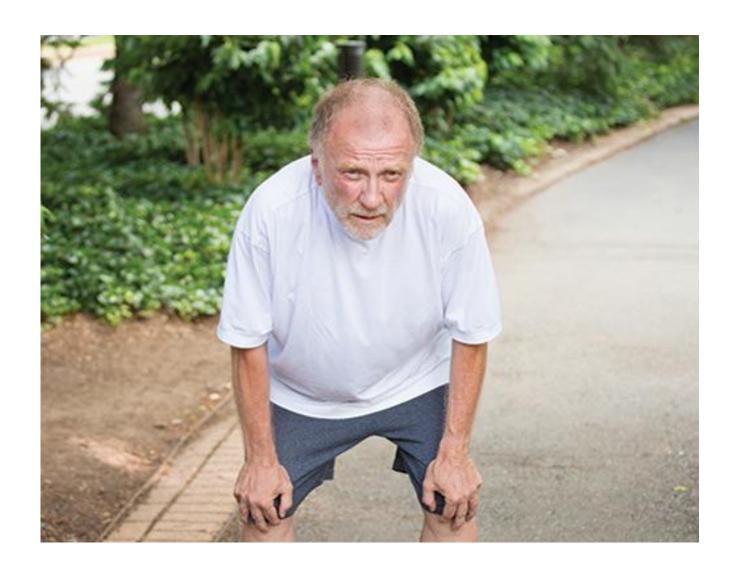

#### Systole (contraction)




(B) Systolic dysfunction



(C) Diastolic dysfunction






# Definition of heart failure with preserved (HFpEF), mid-range (HFmrEF) and reduced ejection fraction (HFrEF)

| Type of HF |   | HFrEF             | HFmrEF                                                                                                                                                                                                                 | HFpEF                                                                                                                                                                                                                  |
|------------|---|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | ı | Symptoms ± Signs* | Symptoms ± Signs*                                                                                                                                                                                                      | Symptoms ± Signs <sup>a</sup>                                                                                                                                                                                          |
| RIA        | 2 | LVEF <40%         | LVEF 40-49%                                                                                                                                                                                                            | LVEF ≥50%                                                                                                                                                                                                              |
| CRITER     | 3 | -                 | Elevated levels of natriuretic peptides <sup>b</sup> ;     At least one additional criterion:     a. relevant structural heart disease (LVH and/or LAE),     b. diastolic dysfunction (for details see Section 4.3.2). | Elevated levels of natriuretic peptides <sup>b</sup> ;     At least one additional criterion:     a. relevant structural heart disease (LVH and/or LAE),     b. diastolic dysfunction (for details see Section 4.3.2). |

- Left atrial volume index (LAVI) >34 mL/m2 or a left ventricular mass index (LVMI) ≥115 g/m2 for males and ≥95 g/m2 for females.
- Functional alterations are an E/e'≥13 and a mean e' septal and lateral wall <9 cm</li>





Edema (swelling) of the ankles and feet



Shortness of breath



Swelling of feet & legs



Chronic lack of energy

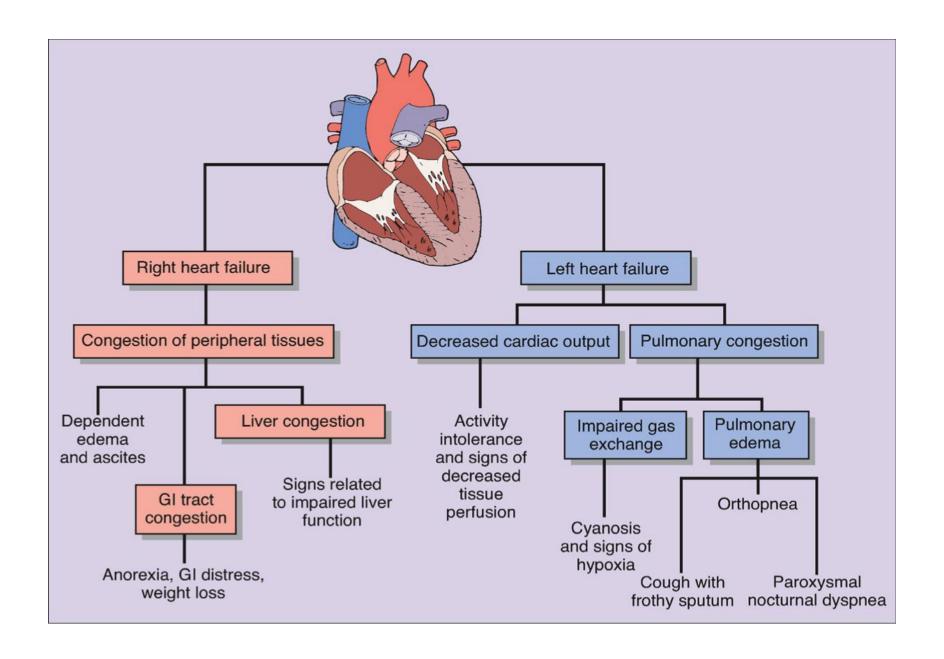


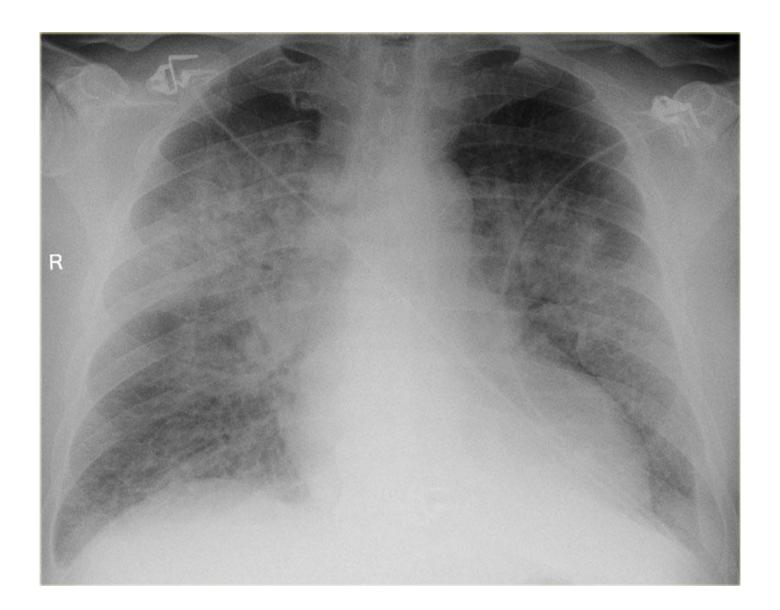
Difficulty sleeping at night due to breathing problems



Swollen or tender abdomen with loss of appetite




Cough with frothy Sputum




Increased urination at night



Confusion and/or impaired memory





## Common Chest Xray abnormalities in HF

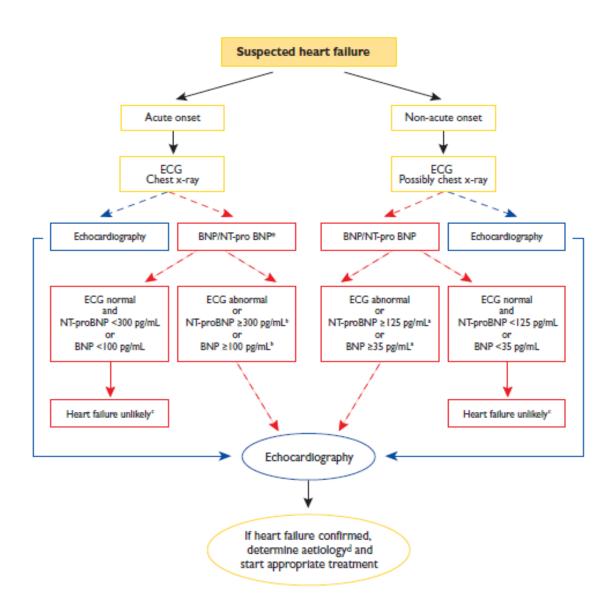
- Cardiomegaly
- Ventricular hypertrophy
- Pulmonary venous congestion
- Interstitial oedema
- Pleural effusions
- Kerley B lines

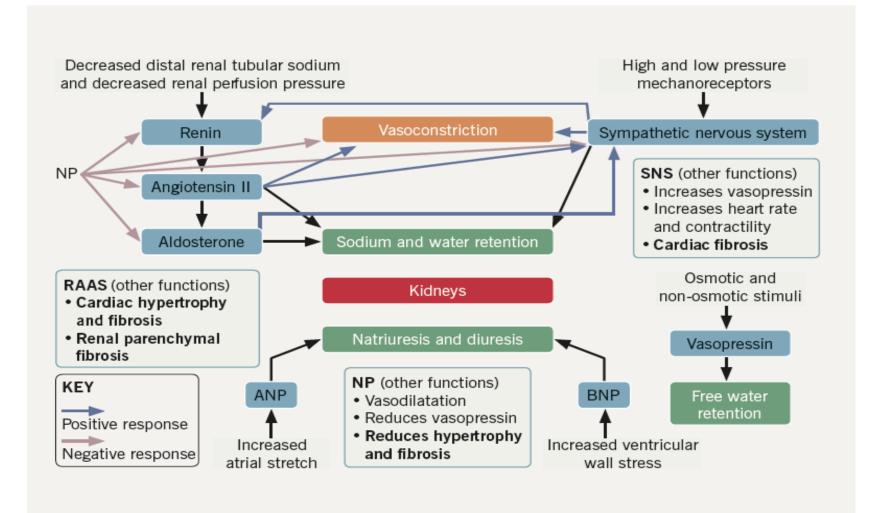
# Laboratory tests abnormalities in HF

- Creatinine ↑
- BUN个
- Anaemia
- Na
- K 个
- Glu
- BNP / NT-proBNP 个
- Albumin
- AST/ALT 个
- Troponin 个
- Thyroid tests
- Urinalysis
- INR
- CRP 个
- WBC个

# New York Heart Association (NYHA) functional classification based on severity of symptoms and physical activity

| Class I   | No limitation of physical activity. Ordinary physical activity does not cause undue breathlessness, fatigue, or palpitations.                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class II  | Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in undue breathlessness, fatigue, or palpitations.           |
| Class III | Marked limitation of physical activity. Comfortable at rest, but less than ordinary physical activity results in undue breathlessness, fatigue, or palpitations. |
| Class IV  | Unable to carry on any physical activity without discomfort. Symptoms at rest can be present. If any physical activity is undertaken, discomfort is increased.   |

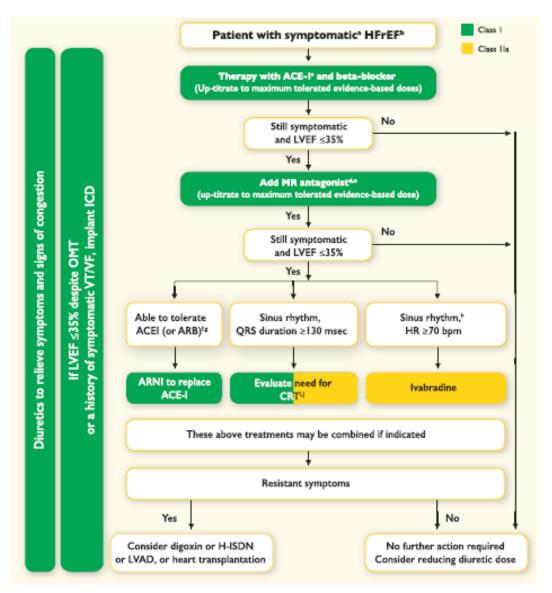

### **AETIOLOGIES OF HEART FAILURE**


| DISEASED MYOCARDIUM        |                                    |                                                                                                                                                                                                                                        |  |  |
|----------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ischaemic heart            | Myocardial scar                    |                                                                                                                                                                                                                                        |  |  |
| disease                    | Myocardial stunning/hibernation    |                                                                                                                                                                                                                                        |  |  |
| · ·                        | Epicardial coronary artery disease |                                                                                                                                                                                                                                        |  |  |
|                            | Abnormal coronary microcirculation |                                                                                                                                                                                                                                        |  |  |
|                            | Endothelial dysfunction            |                                                                                                                                                                                                                                        |  |  |
| Toxic damage               | Recreational substance abuse       | Alcohol, cocaine, amphetamine, anabolic steroids.                                                                                                                                                                                      |  |  |
| ·                          | Heavy metals                       | Copper, iron, lead, cobalt.                                                                                                                                                                                                            |  |  |
|                            | Medications                        | Cytostatic drugs (e.g. anthracyclines), immunomodulating drugs (e.g. interferons monoclonal antibodies such as trastuzumab, cetuximab), antidepressant drugs, antiarrhythmics, non-steroidal anti-Inflammatory drugs, anaesthetics.    |  |  |
|                            | Radiation                          |                                                                                                                                                                                                                                        |  |  |
| Immune-mediated            | Related to infection               | Bacteria, spirochaetes, fungi, protozoa, parasites (Chagas disease), rickettsiae, viruses (HIV/AIDS).                                                                                                                                  |  |  |
| and inflammatory<br>damage | Not related to infection           | Lymphocytic/giant cell myocarditis, autoimmune diseases (e.g. Graves' disease, rheumatoid arthritis, connective tissue disorders, mainly systemic lupus erythematosus), hypersensitivity and eosinophilic myocarditis (Churg-Strauss). |  |  |
| Infiltration               | Related to malignancy              | Direct infiltrations and metastases.                                                                                                                                                                                                   |  |  |
| '                          | Not related to malignancy          | Amyloidosis, sarcoidosis, haemochromatosis (iron), glycogen storage diseases (e.g. Pompe disease), lysosomal storage diseases (e.g. Fabry disease).                                                                                    |  |  |
| Metabolic<br>derangements  | Hormonal                           | Thyroid diseases, parathyroid diseases, acromegaly, GH deficiency, hypercortisolaemia, Conn's disease, Addison disease, diabetes, metabolic syndrome, phaeochromocytoma, pathologies related to pregnancy and peripartum.              |  |  |
|                            | Nutritional                        | Deficiencies in thiamine, L-carnitine, selenium, iron, phosphates, calcium, complex malnutrition (e.g. malignancy, AIDS, anorexia nervosa), obesity.                                                                                   |  |  |
| Genetic abnormalities      | Diverse forms                      | HCM, DCM, LV non-compaction, ARVC, restrictive cardiomyopathy (for details see respective expert documents), muscular dystrophies and laminopathies.                                                                                   |  |  |

### **AETIOLOGIES OF HEART FAILURE**

| ABNORMAL LOADING CONDITIONS                   |                |                                                                                                  |  |
|-----------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|--|
| Hypertension                                  |                |                                                                                                  |  |
| Valve and<br>myocardium<br>structural defects | Acquired       | Mitral, aortic, tricuspid and pulmonary valve diseases.                                          |  |
|                                               | Congenital     | Atrial and ventricular septum defects and others (for details see a respective expert document). |  |
| Pericardial and endomyocardial                | Pericardial    | Constrictive pericarditis Pericardial effusion                                                   |  |
| pathologies                                   | Endomyocardial | HES, EMF, endocardial fibroelastosis.                                                            |  |
| High output states                            |                | Severe anaemia, sepsis, thyrotoxicosis, Paget's disease, arteriovenous fistula, pregnancy.       |  |
| Volume overload                               |                | Renal failure, iatrogenic fluid overload.                                                        |  |
| ARRHYTHMIAS                                   |                |                                                                                                  |  |
| Tachyarrhythmias                              |                | Atrial, ventricular arrhythmias.                                                                 |  |
| Bradyarrhythmias                              |                | Sinus node dysfunctions, conduction disorders.                                                   |  |

# DIAGNOSTIC ALGORITHM FOR A DIAGNOSIS OF HEART FAILURE

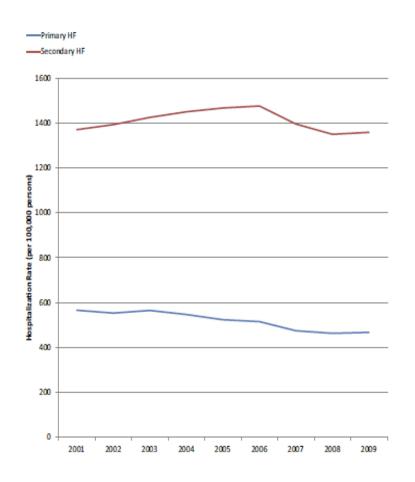


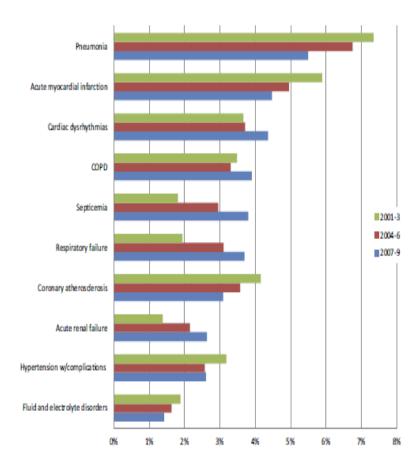



**Key:** ANP = atrial natriuretic peptide; BNP = brain natriuretic peptide; NP = natriuretic peptide; RAAS = renin-angiotensin-aldosterone system; SNS = sympathetic nervous system

Adapted from Kalra et al.6

# THERAPEUTIC ALGORITHM FOR A PATIENT WITH SYMPTOMATIC HFREF

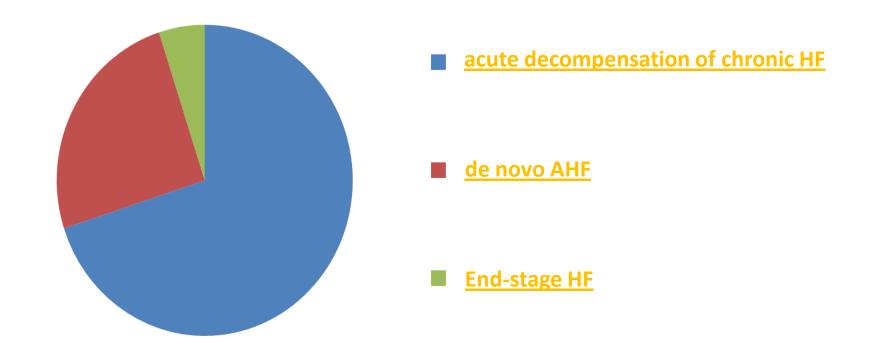




# Evidence-based doses of disease-modifying drugs in key randomized trials in HFREF

|                              | Starting dose (mg) | Target dose (mg) |  |  |
|------------------------------|--------------------|------------------|--|--|
| ACE-I                        |                    |                  |  |  |
| Captopril <sup>a</sup>       | 6.25 t.i.d.        | 50 t.i.d.        |  |  |
| Enalapril                    | 2.5 b.i.d.         | 20 b.i.d.        |  |  |
| Lisinopril <sup>b</sup>      | 2.5-5.0 o.d.       | 20–35 o.d.       |  |  |
| Ramipril                     | 2.5 o.d.           | 10 o.d.          |  |  |
| Trandolapril <sup>a</sup>    | 0.5 o.d.           | 4 o.d.           |  |  |
| Beta-blockers                |                    |                  |  |  |
| Bisoprolol                   | 1.25 o.d.          | 10 o.d.          |  |  |
| Carvedilol                   | 3.125 b.i.d.       | 25 b.i.d.d       |  |  |
| Metoprolol succinate (CR/XL) | 12.5–25 o.d.       | 200 o.d.         |  |  |
| Nebivolol <sup>c</sup>       | 1.25 o.d.          | 10 o.d.          |  |  |
| ARBs                         |                    |                  |  |  |
| Candesartan                  | 4-8 o.d.           | 32 o.d.          |  |  |
| Valsartan                    | 40 b.i.d.          | 160 b.i.d.       |  |  |
| Losartan <sup>b,c</sup>      | 50 o.d.            | 150 o.d.         |  |  |
| MRAs                         |                    |                  |  |  |
| Eplerenone                   | 25 o.d.            | 50 o.d.          |  |  |
| Spironolactone               | 25 o.d.            | 50 o.d.          |  |  |
| ARNI                         |                    |                  |  |  |
| Sacubitril/valsartan         | 49/51 b.i.d.       | 97/103 b.i.d.    |  |  |
| lf-channel blocker           |                    |                  |  |  |
| Ivabradine                   | 5 b.i.d.           | 7.5 b.i.d.       |  |  |

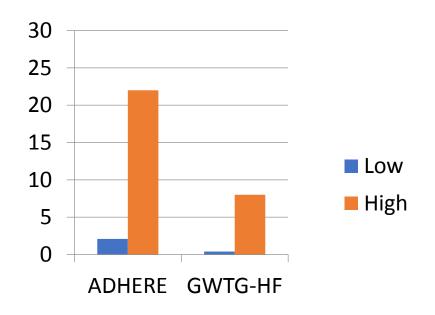
## **ACUTE HEART FAILURE**

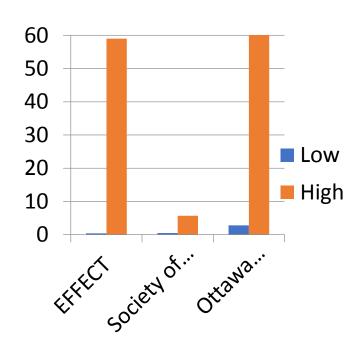
## HEART FAILURE-ASSOCIATED HOSPITALIZATIONS IN THE UNITED STATES






#### DEFINITION OF ACUTE HF


- AHF refers to rapid onset or worsening of symptoms and/or signs of HF.
- It is a life-threatening medical condition requiring urgent evaluation and treatment, typically leading to urgent hospital admission.


 AHF may present as a first occurrence (<u>de novo</u>) or, more frequently, as a consequence of <u>acute decompensation of</u> <u>chronic HF</u>, and may be caused by primary cardiac dysfunction or precipitated by extrinsic factors, often in patients with chronic HF



#### **IN-HOSPITAL MORTALITY**

#### **30-DAY MORTALITY**





#### FACTORS TRIGGERING ACUTE HEART FAILURE

Acute coronary syndrome.

Tachyarrhythmia (e.g. atrial fibrillation, ventricular tachycardia).

Excessive rise in blood pressure.

Infection (e.g. pneumonia, infective endocarditis, sepsis).

Non-adherence with salt/fluid intake or medications.

Bradyarrhythmia.

Toxic substances (alcohol, recreational drugs).

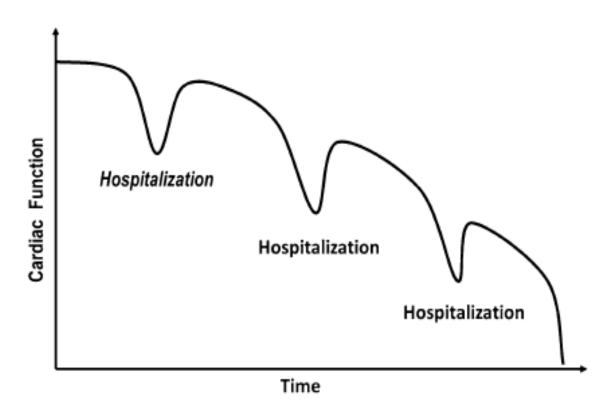
Drugs (e.g. NSAIDs, corticosteroids, negative inotropic substances, cardiotoxic chemotherapeutics).

Exacerbation of chronic obstructive pulmonary disease.

Pulmonary embolism.

Surgery and perioperative complications.

Increased sympathetic drive, stress-related cardiomyopathy.


Metabolic/hormonal derangements (e.g. thyroid dysfunction, diabetic ketosis, adrenal dysfunction, pregnancy and peripartum related abnormalities).

Cerebrovascular insult.

Acute mechanical cause: myocardial rupture complicating ACS (free wall rupture, ventricular septal defect, acute mitral regurgitation), chest trauma or cardiac intervention, acute native or prosthetic valve incompetence secondary to endocarditis, aortic dissection or thrombosis.

### NATURAL HISTORY OF ADHF

effects of repeated hospitalizations on cardiac function over time



With each successive hospitalization, myocardial damage may occur secondary to disease progression and untoward effects of therapies (e.g., currently available inotropes) resulting in decreased coronary perfusion.

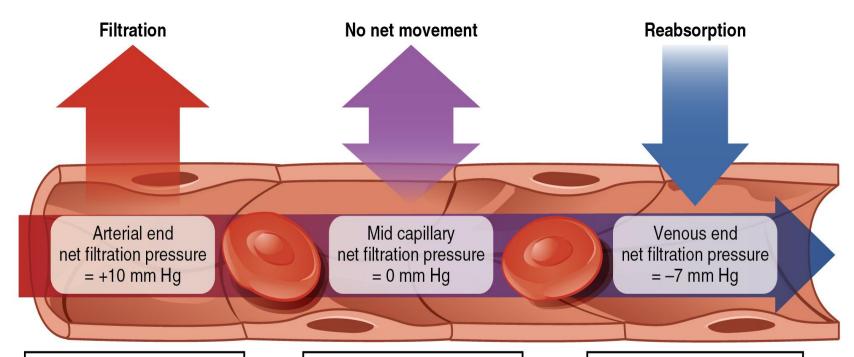


$$\dot{Q}_f = K_f[(P_c - P_{is}) - \sigma(\pi_{pl} - \pi_{is})] \times A$$

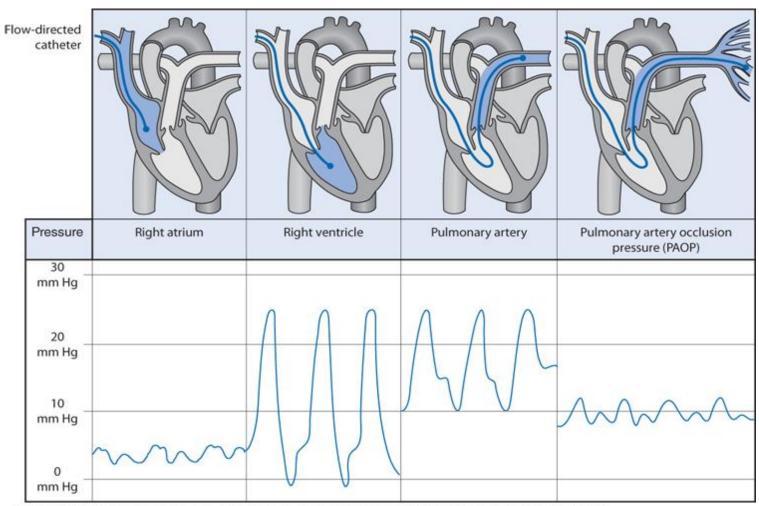
where  $\dot{Q}_f$  = net flow of fluid

K<sub>f</sub> = capillary filtration coefficient; this describes the permeability characteristics of the membrane to fluids

 $P_c$  = capillary hydrostatic pressure


 $P_{is}$  = hydrostatic pressure of the interstitial fluid

 $\sigma$  = reflection coefficient; this describes the ability of the membrane to prevent extravasation of solute particles


 $\pi_{\rm pl}$  = colloid osmotic (oncotic) pressure of the plasma

 $\pi_{is}$  = colloid osmotic pressure of the interstitial fluid

A = the surface area of the alveolar-capillary barrier



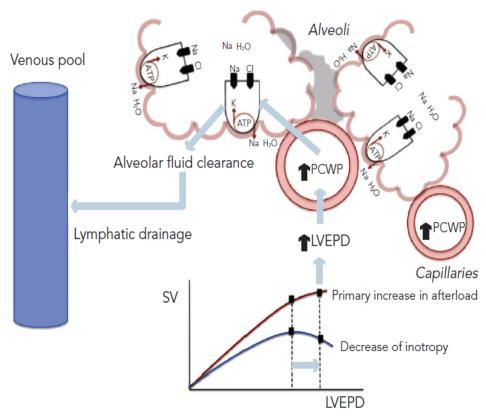
Fluid exits capillary since capillary hydrostatic pressure (35 mm Hg) is greater than blood colloidal osmotic pressure (25 mm Hg) No net movement of fluid since capillary hydrostatic pressure (25 mm Hg) = blood colloidal osmotic pressure (25 mm Hg) Fluid re-enters capillary since capillary hydrostatic pressure (18 mm Hg) is less than blood colloidal osmotic pressure (25 mm Hg)



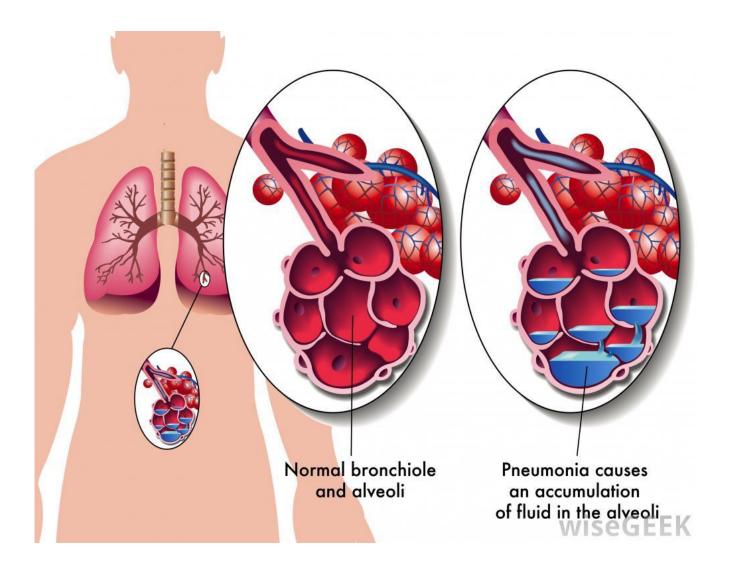
Source: Michael R. Foley, Thomas H. Strong, Jr., Thomas J. Garite: Obstetric Intensive Care Manual, 4th Ed. www.obgyn.mhmedical.com
Copyright © McGraw-Hill Education. All rights reserved.

**Table 1.** Hemodynamic monitoring with a pulmonary artery catheter: Normal pressures and resistance values.<sup>27</sup>

|                                    | Mean                           | Range                              |
|------------------------------------|--------------------------------|------------------------------------|
| Right atrium                       | 3 mm Hg                        | 1–5 mm Hg                          |
| Right ventricle                    |                                |                                    |
| Peak-systolic                      | 25 mm Hg                       | 15–30 mm Hg                        |
| End-diastolic                      | 9 mm Hg                        | 4–12 mm Hg                         |
| Pulmonary capillary wedge pressure | 9 mm Hg                        | 4–12 mm Hg                         |
| Systemic vascular resistance       | 1100 dyne-sec∙cm <sup>-5</sup> | 700–1600 dyne-sec∙cm <sup>-5</sup> |
| Pulmonary vascular resistance      | 70 dyne-sec∙cm <sup>-5</sup>   | 20–130 dyne-sec∙cm <sup>-5</sup>   |


### Hemodynamics of Shock

#### LearnTheHeart.com


| Red arrow indicates<br>primary abnormality | PCWP<br>(preload) | Cardiac<br>Output | SVR<br>(afterload) | Treatment                      |
|--------------------------------------------|-------------------|-------------------|--------------------|--------------------------------|
| Hypovolemic shock                          | <b>\</b>          | 1                 | 1                  | IV fluids                      |
| Cardiogenic shock                          | 1                 | <b>↓</b>          | 1                  | Inotropes<br>Revascularization |
| Distributive shock<br>(septic, neurogenic) | <b>\</b>          | 1                 | <b>\</b>           | Pressors<br>IV fluids          |

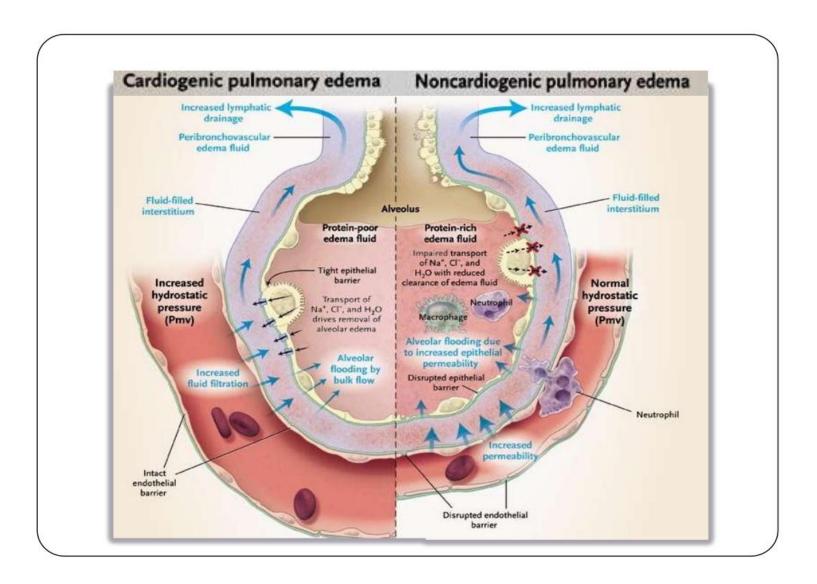
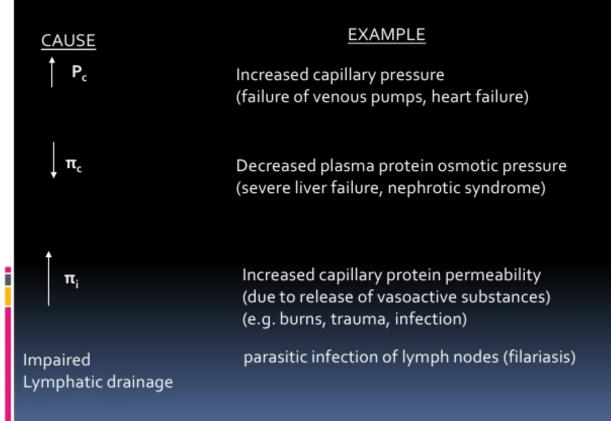
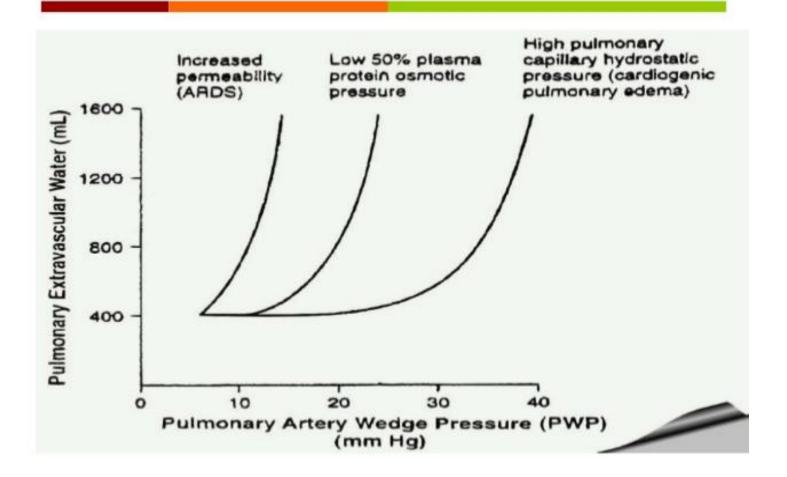

PCWP = pulmonary capillary wedge pressure SVR = systemic vascular resistance

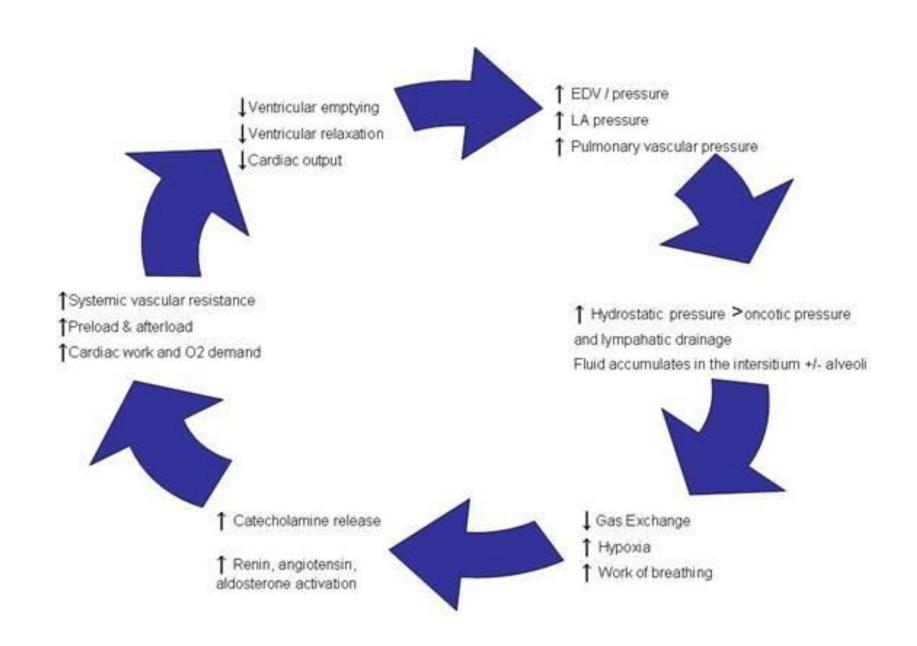
Figure 1: Illustration of Pressure-dependent- and Pressure-independent Mechanisms Responsible for Pulmonary Oedema Formation and Resolution





Acute increase in afterload increases fluid transfer across alveolo-capillary membrane. Alveolar epithelial cells are involved in fluid formation and fluid clearance by regulation of sodium and chloride transfer via active signalling processes. Pulmonary oedema resolution depends on active sodium reabsorption as well as on capacity of intact lymphatics to drain fluids out of alveoli into systemic veins. LVEDP = left ventricular end diastolic pressure; PCWP = pulmonary capillary wedge pressure; SV = stroke volume.

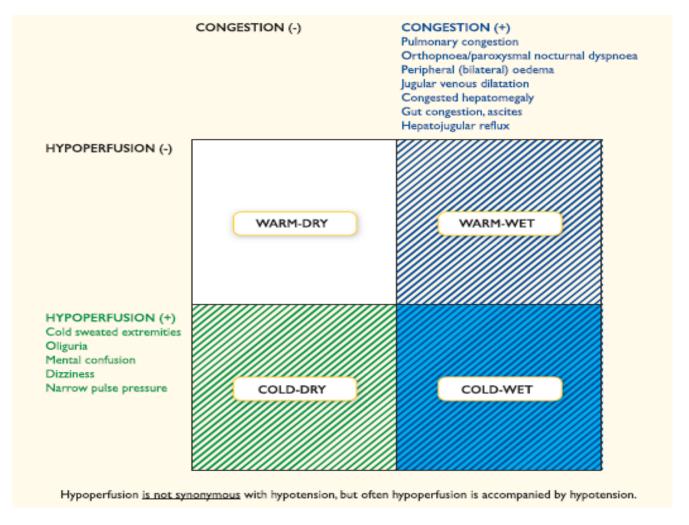




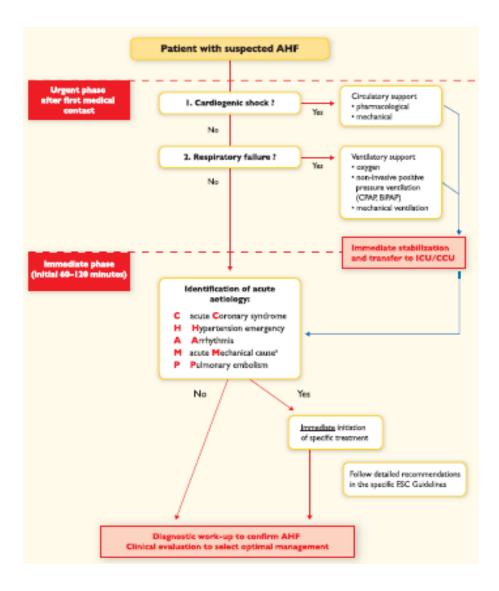

### Mechanisms of edema formation






## Non-cardiogenic and Cardiogenic Pulmonary Edema

- Non-cardiogenic pulmonary edema (ARDS)
  - Pulmonary or systemic insult to the alveolar-capillary unit with release of inflammatory mediators
  - Intubate if hypoxemia is refractory to high inspired oxygen concentrations
- Cardiogenic pulmonary edema
  - Elevated pulmonary capillary pressure results in fluid accumulation in lung interstitium
  - Ventilatory support
  - Support cardiovascular function
    - Preload reduction
    - Afterload reduction
    - · Decrease myocardial metabolic demand






### Clinical profiles of patients with acute HF based on the presence/absence of congestion and/or hypoperfusion



## Initial management of a patient with acute heart failure

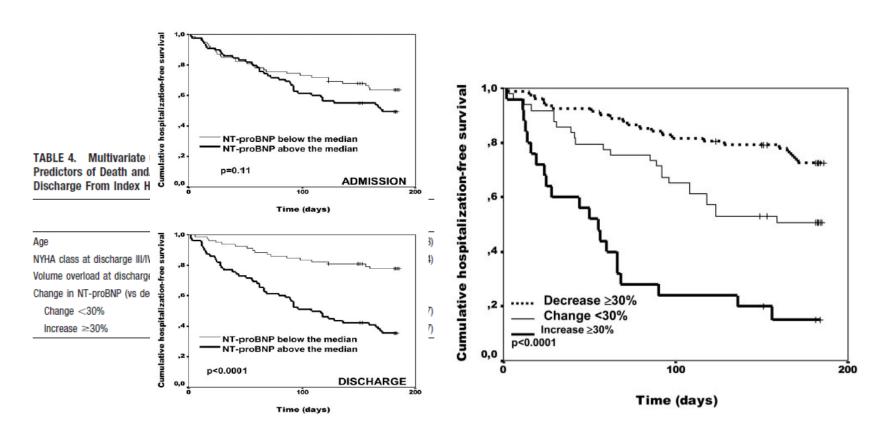


### The diagnostic workup in AHF

It is recommended that initial diagnosis of AHF should be based on a thorough history assessing symptoms, prior cardiovascular history and potential cardiac and non-cardiac precipitants, as well as on the assessment of signs/symptoms of congestion and/or hypoperfusion by physical examination and further confirmed by appropriate additional investigations such as ECG, chest X-ray, laboratory assessment (with specific biomarkers) and echocardiography.

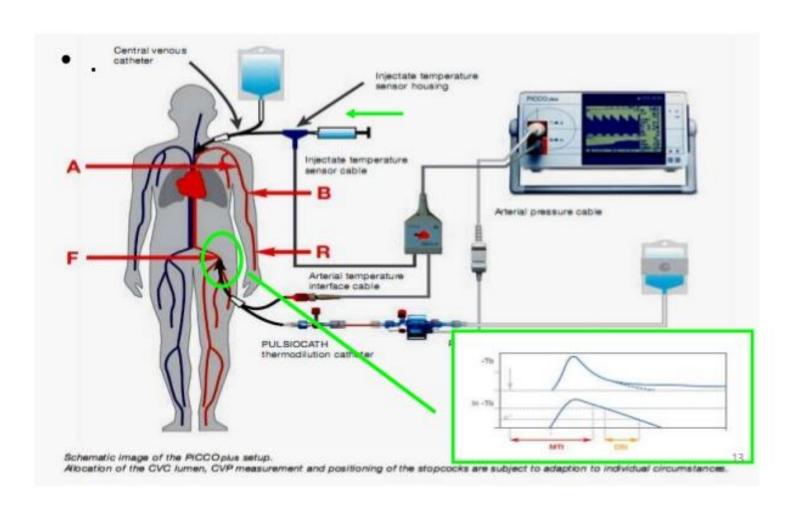
Upon presentation to the ED or CCU/ICU, a plasma NP level (BNP, NT-proBNP or MR-proANP) should be measured in all patients with acute dyspnea and suspected AHF to help in the differentiation of AHF from non-cardiac causes of acute dyspnea. NPs have high sensitivity, and normal levels in patients with suspected AHF makes the diagnosis unlikely (thresholds:

- BNP <100 pg/mL</li>
- NT-proBNP <300 pg/mL</li>
- MR-proANP <120 pg/mL</li>


Assessment of **procalcitonin** levels may be considered in patients with AHF with suspected coexisting infection, particularly for the differential diagnosis of pneumonia and to guide antibiotic therapy

### regarding monitoring of clinical status of patients hospitalized due to acute heart failure

| Recommendations                                                                                                                                                                                                                | Class | Level |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Standard non-invasive monitoring of heart rate, rhythm, respiratory rate, oxygen saturation and blood pressure is recommended.                                                                                                 | I     | C     |
| It is recommended that patients should be weighed daily and have an accurate fluid balance chart completed.                                                                                                                    | I     | C     |
| It is recommended to evaluate signs and symptoms relevant to HF (e.g. dyspnoea, pulmonary rales, peripheral oedema, weight) daily to assess correction of fluid overload.                                                      | I     | C     |
| Frequent, often daily, measurement of renal function (blood urea, creatinine) and electrolytes (potassium, sodium) during i.v. therapy and when renin-angiotensin-aldosterone system antagonists are initiated is recommended. | I     | С     |
| Intra-arterial line should be considered in patients with hypotension and persistent symptoms despite treatment.                                                                                                               | IIa   | C     |
| Pulmonary artery catheter may be considered in patients who, despite pharmacological treatment present refractory symptoms (particularly with hypotension and hypoperfusion).                                                  | IIb   | C     |


## NT-proBNP Predicts Outcome After Hospital Discharge in Heart Failure Patients

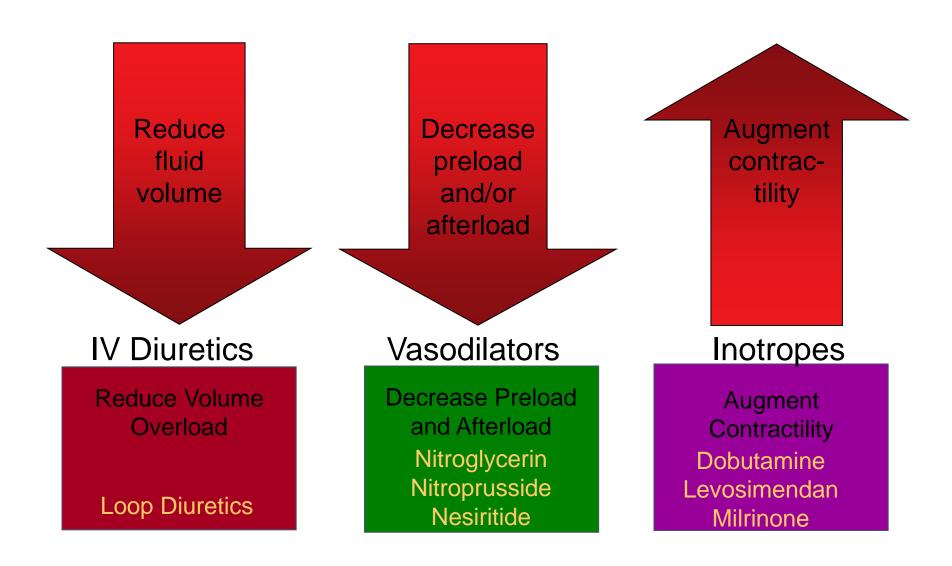
#### 6-month death or readmission

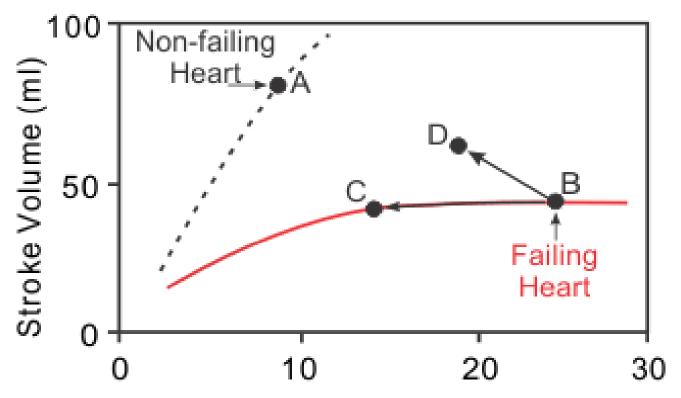


### Transpulmonary thermodilution-PICCO

### and Edward / Volume ViewTM




## Parameters Measured with the PiCCO-Technology


| Thermodilution parameters               |      |
|-----------------------------------------|------|
| Cardiac output                          | CO   |
| Global end-diastolic volume             | GEDV |
| Intrathoracic blood volum               | ITBV |
| Extravascular lung water                | EVLW |
| Pulmonary vascular permeability index   | PVPI |
| Cardiac function index                  | CFI  |
| Global ejection fraction                | GEF  |
| Pulse contour parameters                |      |
| Pulse contour cardiac output            | PCCO |
| Arterial blood pressure                 | AP   |
| Heart rate                              | HR   |
| Stroke volume                           | SV   |
| Stroke volume variation                 | SVV  |
| Pulse pressure variation                | PPV  |
| Systemic vascular resistance            | SVR  |
| Index of left ventricular contractility | dPmx |
|                                         |      |

- Extra vascular lung water index (ELWI)
- Pulmonary vascular permeability index (PVPI)

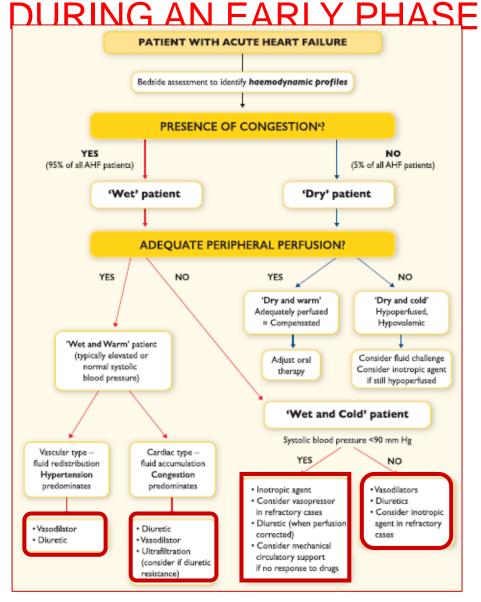
# THERAPY OF ACUTE HEART FAILURE

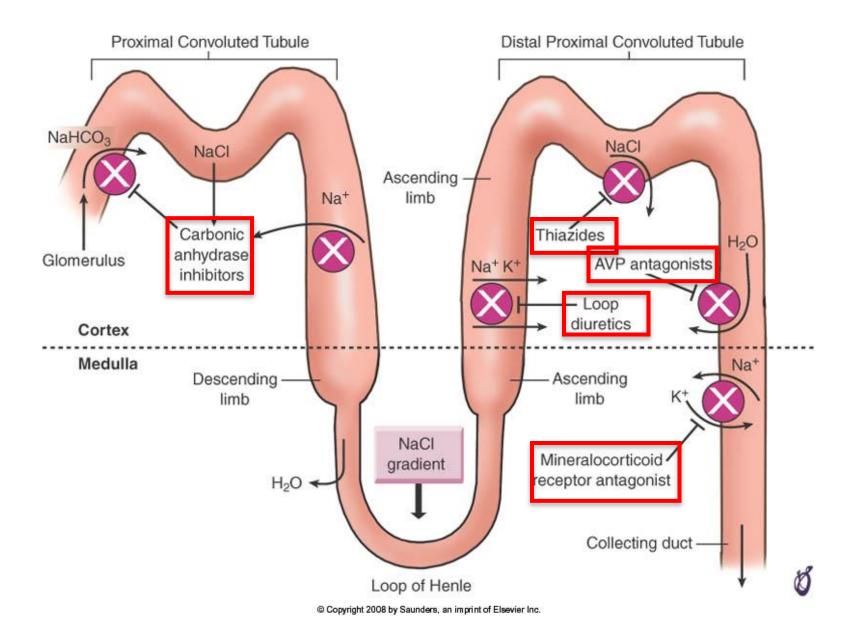
## CONVENTIONAL TREATMENTS OF ACUTE HEART FAILURE





Left Ventricular End-Diastolic Pressure (mmHg)


A = operating point for non-failing heart


B = operating point for failing heart

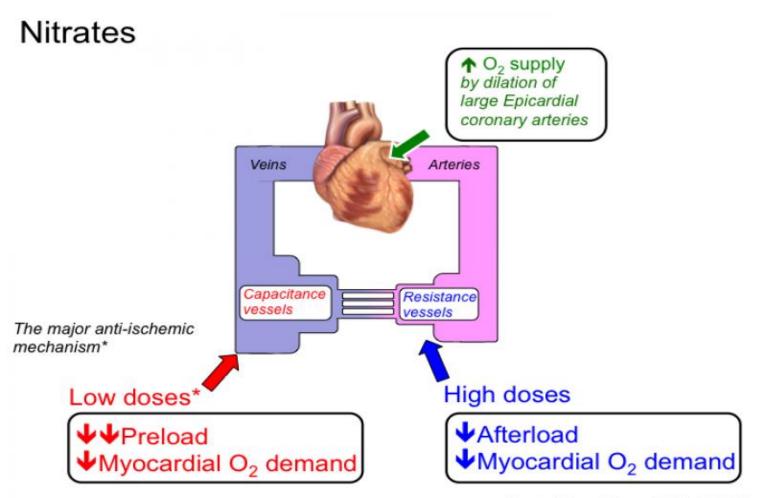
C = effects of a diuretic or venodilator

D = effects of mixed vasodilator or inotropic drug

MANAGEMENT OF PATIENTS WITH ACUTE HEART FAILURE BASED ON CLINICAL PROFILE






## Doses of diuretics commonly used in patients with heart failure

| Diuretics                     | Initial dose (mg) Usual daily dose (mg) |                | ly dose        |                |  |
|-------------------------------|-----------------------------------------|----------------|----------------|----------------|--|
| Loop diuretics <sup>a</sup>   |                                         |                |                |                |  |
| Furosemide                    | 20-40                                   |                | 40–240         |                |  |
| Bumetanide                    | 0.5-1.0                                 |                | I-5            |                |  |
| Torasemide                    | 5–10                                    |                | 10–20          |                |  |
| Thiazides <sup>b</sup>        |                                         |                |                |                |  |
| Bendroflumethiazide           | 2.5                                     |                | 2.5–10         |                |  |
| Hydrochlorothiazide           | 25                                      | 25 12.5–100    |                | 0              |  |
| Metolazone                    | 2.5                                     | 2.5—10         |                |                |  |
| Indapamide <sup>c</sup>       | 2.5 2.5–5                               |                |                |                |  |
| Potassium-sparing di          | iuretics <sup>d</sup>                   |                |                |                |  |
|                               | +ACE-I/<br>ARB                          | -ACE-I/<br>ARB | +ACE-I/<br>ARB | -ACE-I/<br>ARB |  |
| Spironolactone/<br>eplerenone | 12.5–25                                 | 50             | 50             | 100–<br>200    |  |
| Amiloride                     | 2.5                                     | 5              | 5–10           | 10–20          |  |
| Triamterene                   | 25                                      | 50             | 100            | 200            |  |

## INTRAVENOUS VASODILATORS USED TO TREAT ACUTE HEART FAILURE

| Vasodilator             | Dosing                                                  | Main side effects                | Other                       |
|-------------------------|---------------------------------------------------------|----------------------------------|-----------------------------|
| Nitroglycerine          | Start with 10–20 μg/min, increase up to 200 μg/min      | Hypotension, headache            | Tolerance on continuous use |
| Isosorbide dinitrate    | Start with I mg/h, increase up to 10 mg/h               | Hypotension, headache            | Tolerance on continuous use |
| Nitroprusside           | Start with 0.3 µg/kg/min and increase up to 5 µg/kg/min | Hypotension, isocyanate toxicity | Light sensitive             |
| Nesiritide <sup>a</sup> | Bolus 2 μg/kg + infusion 0.01 μg/kg/min                 | Hypotension                      |                             |

### Mechanism of nitrates



Adapted From Chong & Michel (2012)

## Established and investigational inotropic agents

#### Inotropic mechanism

#### **Drugs**

#### **Currently used**

Sodium-potassium-ATPase inhibition

Beta-Adrenoceptor stimulation

Phosphodiesterase inhibition

Calcium sensitization

Digoxin

Dobutamine, dopamine

Enoximone, milrinone

Levosimendan

#### Investigational

 Sodium-potassium-ATPase inhibition plus SERCA activation

Acto-myosin cross-bridge activation

SERCA activation

SERCA activation plus vasodilation

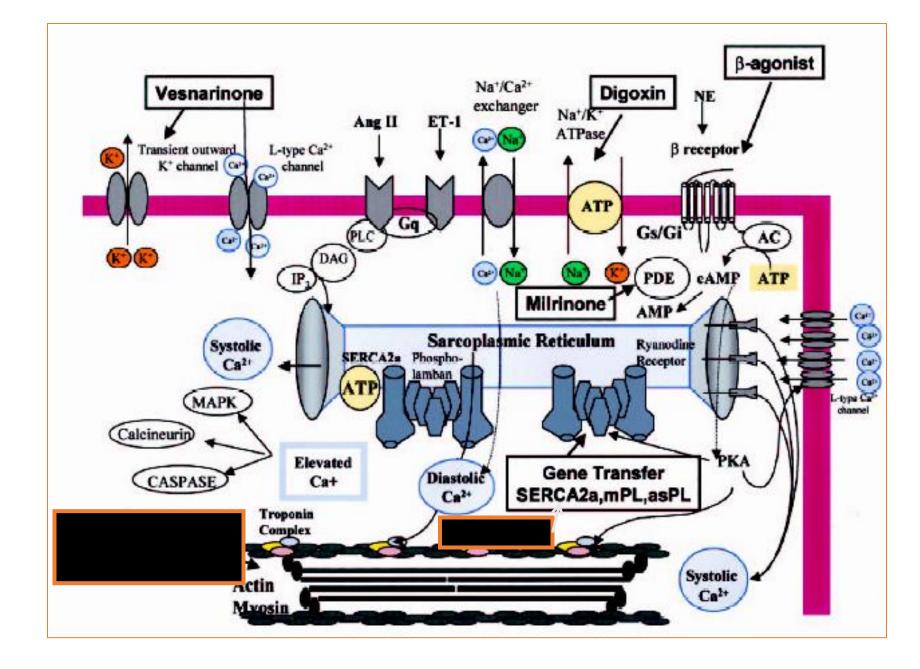
Ryanodine receptor stabilization

Energetic modulation

Istaroxime

Omecamtiv mecarbil

Gene transfer


Nitroxyl donor; CXL-1020

Ryanodine receptor stabilizer; \$44121

Etomoxir, pyruvate

# Mechanism of Action and Hemodynamic Effects of Common Vasoactive Medications in CS

|                      |                                                   |                                                               | Recepto | r Binding       |                 | Hemodynamic      |
|----------------------|---------------------------------------------------|---------------------------------------------------------------|---------|-----------------|-----------------|------------------|
| Medication           | Usual Infusion Dose                               | α,                                                            | β,      | β2              | Dopamine        | Effects          |
| Vasopressor/inotrope | 25                                                |                                                               |         |                 |                 |                  |
| Dopamine             | 0.5–2 μg·kg <sup>-1</sup> ·min <sup>-1</sup>      | -                                                             | +       | -               | +++             | ↑CO              |
|                      | 5–10 μg·kg <sup>-1</sup> ·min <sup>-1</sup>       | +                                                             | +++     | +               | ++              | ↑↑CO, ↑SVR       |
|                      | 10–20 μg·kg-1·min-1                               | +++                                                           | ++      | -               | ++              | ↑↑SVR, ↑CO       |
| Norepinephrine       | 0.05–0.4 μg·kg <sup>-1</sup> ·min <sup>-1</sup>   | ++++                                                          | ++      | +               | -               | ↑↑SVR, ↑CO       |
| Epinephrine          | 0.01–0.5 μg·kg-1·min-1                            | ++++                                                          | ++++    | +++             | -               | ↑↑CO, ↑↑SVR      |
| Phenylephrine        | 0.1–10 µg·kg-1·min-1                              | +++                                                           | -       | -               | -               | ††SVR            |
| Vasopressin          | 0.02-0.04 U/min                                   | Stimulates V <sub>1</sub> receptors in vascular smooth muscle |         |                 | ↑↑SVR, ↔PVR     |                  |
| Inodilators          |                                                   |                                                               |         |                 |                 |                  |
| Dobutamine           | 2.5–20 μg·kg-¹·min-¹                              | +                                                             | ++++    | ++              | -               | ↑↑CO, ↓SVR, ↓PVR |
| Isoproterenol        | 2.0–20 μg/min                                     | -                                                             | ++++    | +++             | -               | ↑↑CO, ↓SVR, ↓PVR |
| Milrinone            | 0.125–0.75 μg·kg <sup>-1</sup> ·min <sup>-1</sup> | PD-3 inhibitor                                                |         | ↑CO, ↓SVR, ↓PVR |                 |                  |
| Enoximone            | 2–10 μg·kg <sup>-1</sup> ·min <sup>-1</sup>       | PD-3 inhibitor                                                |         |                 | ↑CO, ↓SVR, ↓PVR |                  |
| Levosimendan         | 0.05–0.2 μg·kg-¹·min-¹                            | Myofilament Ca²+ sensitizer, PD-3 inhibitor ↑C                |         |                 |                 | ↑CO, ↓SVR, ↓PVR  |

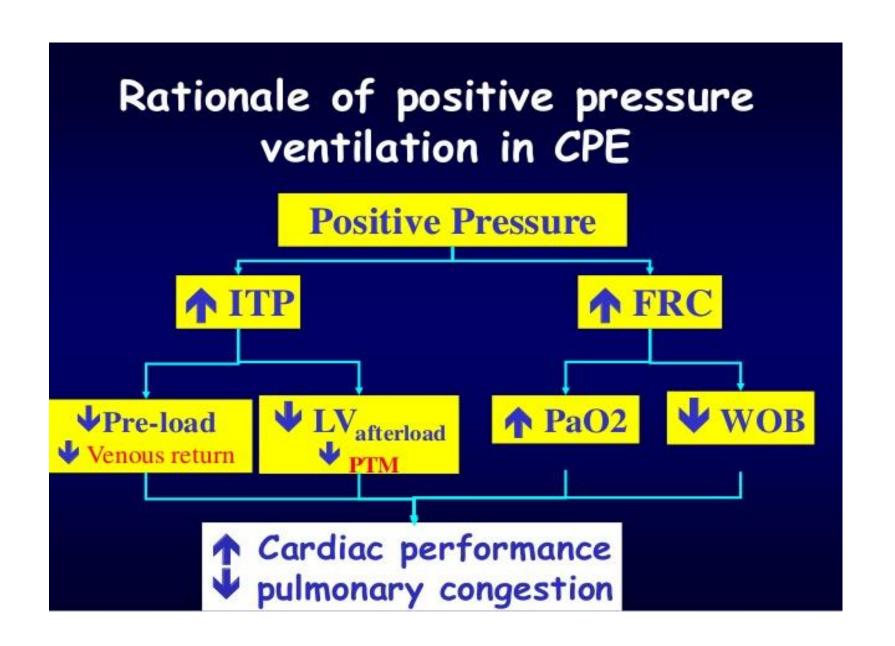


## POSITIVE INOTROPES AND/OR VASOPRESSORS USED TO TREAT ACUTE HEART FAILURE

| Vasodilator               | Bolus                                                                                     | Infusion rate                                                                     |
|---------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Dobutamine <sup>a</sup>   | No                                                                                        | 2–20 μg/kg/min (beta+)                                                            |
| Dopamine                  | No                                                                                        | 3–5 μg/kg/min; inotropic (beta+)                                                  |
|                           |                                                                                           | >5 µg/kg/min: (beta+),<br>vasopressor (alpha+)                                    |
| Milrinone <sup>a,b</sup>  | 25–75 μg/kg<br>over 10–20 min                                                             | 0.375–0.75 μg/kg/min                                                              |
| Enoximone <sup>a</sup>    | 0.5–1.0 mg/kg<br>over 5–10 min                                                            | 5–20 μg/kg/min                                                                    |
| Levosimendan <sup>a</sup> | 12 μg/kg over<br>10 min (optional)                                                        | 0.1 μg/kg/min, which can be<br>decreased to 0.05 or increased<br>to 0.2 μg/kg/min |
| Norepinephrine            | No                                                                                        | 0.2–1.0 μg/kg/min                                                                 |
| Epinephrine               | Bolus: I mg<br>can be given<br>i.v. during<br>resuscitation,<br>repeated every<br>3–5 min | 0.05–0.5 μg/kg/min                                                                |



## Noninvasive Ventilation in Acute Pulmonary Edema


#### **Respiratory Benefits**

-increases tidal volume -unloads respiratory muscles -decreases dead space ventilation



Hemodynamic Benefits
-alters cardiac transmural
presures

- -Decreases venous return (preload)
- -decreases afterload
- -no change or increase in cardiac index



### The management of patients with acute heart failure: pharmacotherapy (1)

| Recommendations                                                                                                                                                                                                                                                                           | Class | Level |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Diuretics                                                                                                                                                                                                                                                                                 |       |       |
| Intravenous loop diuretics are recommended for all patients with AHF admitted with signs/symptoms of fluid overload to improve symptoms. It is recommended to regularly monitor symptoms, urine output, renal function and electrolytes during use of i.v. diuretics.                     | 1     | С     |
| In patients with new-onset AHF or those with chronic, decompensated HF not receiving oral diuretics the initial recommended dose should be 20–40 mg i.v. furosemide (or equivalent); for those on chronic diuretic therapy, initial i.v. dose should be at least equivalent to oral dose. | I     | В     |
| It is recommended to give diuretics either as intermittent boluses or as a continuous infusion, and the dose and duration should be adjusted according to patients' symptoms and clinical status.                                                                                         | I     | В     |
| Combination of loop diuretic with either thiazide-type diuretic or spironolactone may be considered in patients with resistant oedema or insufficient symptomatic response.                                                                                                               | ПР    | C     |



### The management of patients with acute heart failure: pharmacotherapy (2)

| Recommendations                                                                                                                                                                                                                                                                                 | Class    | Level |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| Vasodilators                                                                                                                                                                                                                                                                                    |          | s     |
| i.v. vasodilators should be considered for symptomatic relief in AHF with SBP >90 mmHg (and without symptomatic hypotension). Symptoms and blood pressure should be monitored frequently during administration of i.v. vasodilators.                                                            | IIa      | В     |
| In patients with hypertensive AHF, i.v. vasodilators should be considered as initial therapy to improve symptoms and reduce congestion.                                                                                                                                                         | IIa      | В     |
| Inotropic agents – dobutamine, dopamine, levosimendan, phosphodies (PDE III) inhibitors                                                                                                                                                                                                         | terase I | 11    |
| Short-term, i.v. infusion of inotropic agents may be considered in patients with hypotension (SBP <90 mmHg) and/or signs/symptoms of hypoperfusion despite adequate filling status, to increase cardiac, increase blood pressure, improve peripheral perfusion and maintain end-organ function. | пр       | С     |
| An intravenous infusion of levosimendan or a PDE III inhibitor may be considered to reverse the effect of beta-blockade if beta-blockade is thought to be contributing to hypotension with subsequenthypoperfusion.                                                                             | IIb      | С     |
| Inotropic agents are not recommended unless the patient is symptomatically hypotensive or hypoperfused because of safety concern.                                                                                                                                                               | ш        | A     |

### The management of patients with acute heart failure: pharmacotherapy (3)

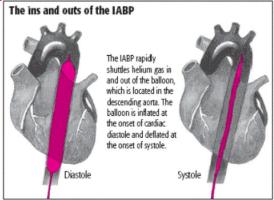
| Recommendations                                                                                                                                                                                                               | Class | Level |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Vasopressors                                                                                                                                                                                                                  |       |       |
| A vasopressor (norepinephrine preferably) may be considered in patients who have cardiogenic shock, despite treatment with another inotrope, to increase blood pressure and vital organ perfusion.                            | IIb   | В     |
| It is recommended to monitor ECG and blood pressure when using inotropic agents and vasopressors, as they can cause arrhythmia, myocardial ischaemia, and in the case of levosimendan and PDE III inhibitors also hypotension | I     | C     |
| In such cases intra-arterial blood pressure measurement may be considered.                                                                                                                                                    | IIb   | C     |
| Thrombo-embolism prophylaxis                                                                                                                                                                                                  |       |       |
| Thrombo-embolism prophylaxis (e.g. with LMWH) is recommended in patients not already anticoagulated and with no contra-indication to anticoagulation, to reduce the risk of deep venous thrombosis and pulmonary embolism.    | 1     | В     |
| Other drugs                                                                                                                                                                                                                   |       |       |
| For acute control of the ventricular rate in patients with atrial fibrillation:                                                                                                                                               |       |       |
| <ul> <li>a. digoxin and/or beta-blockers should be considered as the first-line<br/>therapy;</li> </ul>                                                                                                                       | IIa   | C     |
| b. amiodarone may be considered.                                                                                                                                                                                              | IIb   | В     |
| Opiates may be considered for cautious use to relieve dyspnoea and anxiety in patients with severe dyspnoea but nausea and hypopnea may occur.                                                                                | IIb   | В     |

### Regarding renal replacement therapy in patients with acute heart failure

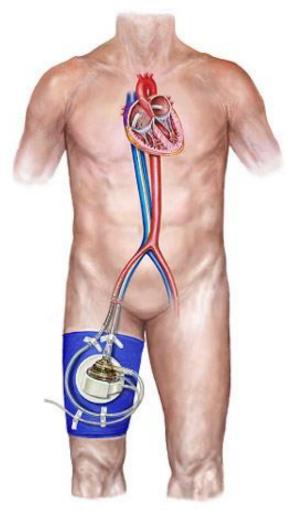
| Recommendations                                                                                                                | Class | Level |
|--------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Ultrafiltration may be considered for patients with refractory congestion, who failed to respond to diuretic-based strategies. | IIb   | В     |
| Renal replacement therapy should be considered in patients with refractory volume overload and acute kidney injury.            | IIa   | C     |



### Regarding oral evidence-based disease-modifying therapies in patients with acute heart failure


| Recommendations                                                                                                                                                                                | Class | Level |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| In case of worsening of chronic HFrEF, every attempt should be made to continue evidence-based, disease-modifying therapies, in the absence of haemodynamic instability or contra-indications. | I     | С     |
| In the case of de novo HFrEF, every attempt should be made to initiate these therapies after haemodynamic stabilization.                                                                       | I     | С     |




## Regarding management of patients with cardiogenic shock

| Recommendations                                                                                                                                                                                                                          | Class | Level    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| In all patients with suspected cardiogenic shock, immediate ECG and echocardiography are recommended.                                                                                                                                    | I     | C        |
| All patients with cardiogenic shock should be rapidly transferred to a tertiary care center which has a 24/7 service of cardiac catheterization, and a dedicated ICU/CCU with availability of short-term mechanical circulatory support. | 1     | С        |
| In patients with cardiogenic shock complicating ACS an immediate coronary angiography is recommended (within 2 hours from hospital admission) with an intent to perform coronary revascularization.                                      | Í     | C        |
| Continous ECG and blood pressure monitoring are recommended.                                                                                                                                                                             | I     | C        |
| Invasive monitoring with an arterial line is recommended.                                                                                                                                                                                | 1     | <b>©</b> |
| Fluid challenge (saline or Ringer's lactate, >200 ml/15-30 min is recommended as the first-line treatment if there is no sign of overt fluid overload.                                                                                   | I     | C        |
| Intravenous inotropic agents (dobutamine) may be considered to increase cardiac output.                                                                                                                                                  | ПР    | C        |
| Vasopressors (norepinephrine preferable over dopamine) may be considered if there is a need to maintain SBP in the presence of persistent hypoperfusion.                                                                                 | IIb   | В        |
| IABP is not routinely recommended in cardiogenic shock.                                                                                                                                                                                  | III   | В        |
| Short-term mechanical circulatory support may be considered in refractory cardiogenic shock depending on patient age, co-morbidities and neurological function.                                                                          | IIb   | C        |

## CIRCULATORY MECHANICAL SUPPORT







