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INTRODUCTION

The aim of this book is to present the basic aspects of the concentration of measure
phenomenon. The concentration of measure phenomenon was put forward in the
early seventies by V. Milman in the asymptotic geometry of Banach spaces. Of
isoperimetric inspiration, it is of powerful interest in applications, in various areas
such as geometry, functional analysis and infinite dimensional integration, discrete
mathematics and complexity theory, and especially probability theory. This book is
concerned with the basic techniques and examples of the concentration of measure
phenomenon with no claim to be exhaustive. A particular emphasis has been
put on geometric, functional and probabilistic tools to reach and describe measure
concentration in a number of settings.

As mentioned by M. Gromov, the concentration of measure phenomenon is
an elementary, yet non-trivial, observation. It is often a high dimensional effect,
or a property of a large number of variables, for which functions with small local
oscillations are almost constant. A first illustration of this property is suggested
by the example of the standard n-sphere S' in Rn+1 when the dimension n is
large. One striking aspect of uniform measure o" on Sn in high dimension is that
it is almost concentrated around the equator. More generally, as a consequence of
spherical isoperimetry, given any measurable set A with, say, an(A) > 2, almost
all points (in the sense of the measure an) on S' are within (geodesic) distance
from A (which becomes infinitesimal as n -> oo). Precisely, for every r > 0,

an(A9.) >_ 1 - a (n-1)r2/2

where Ar = {x E Sn; d(x, A) < r} is the neighborhood of order r > 0 of A for the
geodesic metric on Sn.

This concentration property on the sphere may be described equivalently on
functions, an idea going back to Levy. Namely, if F is a continuous function on sn
with modulus of continuity wF(77) = sup{IF(x) - F(y)I; d(x, y) < zj}, then

an({IF - mFI ? WF(77)}) <
2e-('n-1)972

where mp is a median of F for an. Therefore, functions on high dimensional spheres
with small local oscillations are strongly concentrated around a mean value, and are
thus almost constant on almost all the space! This high dimensional concentration
phenomenon was extensively used and emphasized by V. Milman in his investigation
of asymptotic geometric analysis.

Vii



viii INTRODUCTION

As yet another interpretation. the concept of observable diameter as consid-
ered by M. Gromov is a "visual" description of the concentration of measure phe-
nomenon. We view the sphere with a naked eye which cannot distinguish a part of
Sn of measure (luminosity) less than n > 0 (small but fixed). A Lipschitz function
F may be interpreted as an observable, that is an observation device giving us the
visual image measure of al by F. In this language, Levy's inequality on Lipschitz
functions expresses that the "observable diameter of Sn" is of the order of -L as n
is large, in strong contrast with the diameter of S'n as a metric space.

In probability theory, the concentration of measure is a property of a large
number of varibales, such as in laws of large numbers. A probabilistic description
of the concentration phenomenon goes back to E. Borel who suggested the follow-
ing geometric interpretation of the law of large numbers for sums of independent
random variables uniformly distributed on the interval [0, 1]. Let pn be uniform
measure on the n-dimensional cube [0,1]n. Let H be a hyperplane that is orthog-
onal to a principal diagonal of [0, 1]n at the center of the cube. Then, if H, is the
neighborhood of order r > 0 of H, for every e > 0, pn(H£,/n) - 1 as n - oo.
Actually, the relevant observable is x E [0,1]n H n E=1 xz E [0, 1], which concen-
trates around the mean value 2. The normal projection of the cube to the principal
diagonal identified with [0, /n] thus sends most of the measure of the cube to the
subsegment

2 2

In fact, -V/n- may be replaced by any sequence rn - oo as follows from the central
limit theorem.

A related description is the following. Let X1, X2,. .. be a sequence of inde-
pendent random variables taking the values ±1 with equal probability, and set, for
every n > 1, Sn = X1 + + Xn. We think of Sn as a function of the individual
variables X, and we state the classical law of large numbers by saying that Sn is
essentially constant (equal to 0). Of course, by the central limit theorem, the fluc-
tuations of Sn are of order which is hardly zero. But as Sn can take values as
large as n, this is the scale at which one should measure Sn, in which case Sn/n is
indeed essentially zero as expressed by the classical exponential bound

P({ nnl > })
ar <2e-n' /2, r>0.

In this context, and according to M. Talagrand, one probabilistic aspect of measure
concentration is that a random variable that depends (in a smooth way) on the
influence of many independent variables (but not too much on any of them) is
essentially constant.

Measure concentration is surprisingly shared by a number of cases that gen-
eralize the previous examples, both by replacing linear functionals (such as sums
of independent random variables) by arbitrary Lipschitz functions of the samples,
and by considering measures that are not of product form. It was indeed again
the insight of V. Milman to emphasize the difference between the concentration
phenomenon and standard probabilistic views on probability inequalities and law
of large number theorems by the extension to Lipschitz (and even Holder type)
functions and more general measures. His enthusiasm and persuasion eventually
convinced M. Talagrand of the importance of this simple, yet fundamental, concept.



INTRODUCTION ix

It will be one of the purposes of this book to describe some of the basic exam-
ples and applications of the concentration of measure phenomenon. While the first
applications were mainly developed in the context of asymptotic geometric analysis,
they have now spread to a wide range of frameworks, covering areas in geometry,
discrete and combinatorial mathematics, and in particular probability theory. Clas-
sical probabilistic inequalities on sums of independent random variables have been
used indeed over the years in limit theorems and discrete algorithmic mathemat-
ics. They provide quantitative illustrations of measure concentration by so-called
exponential inequalities (mostly of Gaussian type). Recent developments on the
concentration of measure phenomenon describe far reaching extensions that pro-
vide dimension free concentration properties in product spaces which, due to the
work of M. Talagrand during the last decade, will form a main part of these notes.

The book is divided into 8 chapters. The first one introduces the notions and
elementary properties of concentration functions, deviation inequalities and their
more geometric counterparts as observable diameters. We also briefly indicate a
few useful tools to investigate concentration properties. The second chapter de-
scribes some of the basic and classical isoperimetric inequalities at the origin of
the concentration of measure phenomenon. However, we do not concentrate on
the usually somewhat delicate extremal statements, but rather develop some self-
contained convexity and semigroup arguments to reach the concentration properties
originally deduced from isoperimetry. Chapter 3 is a first view towards geometric
and topological applications of measure concentration. In particular, we describe
there Milman's proof of Dvoretsky's theorem on almost spherical sections of convex
bodies. V. Milman in this proof most vigorously emphasized the usefulness of con-
centration ideas. Chapter 4 investigates measure concentration in product spaces,
mostly based on the recent developments by M. Talagrand. After a brief view of
the more classical martingale bounded difference method, we cover there the convex
hull and .finite point approximations, which are of powerful use in applications to
both empirical processes and discrete mathematics. We also discuss the particu-
lar concentration property of the exponential distribution. The next two chapters
emphasize functional inequalities stable under products- thereby obtaining a new
approach to the results of Chapter 4. Chapter 5 is devoted to the entropic and
logarithmic Sobolev inequality approach. We present there the Herbst method to
deduce concentration from a logarithmic Sobolev inequality and describe the various
applications to product measures and related topics. Chapter 6 is yet another form
of concentration relying on information and transportation cost inequalities with
which one may reach several of the conclusions of the preceding chapters. Chapter
7 is devoted to the probabilistic applications of concentration in product spaces
to sharp bounds on sums of independent random vectors or empirical processes:
these applications lay at the heart of M. Talagrand's original investigation. The
last chapter is a selection of (recent) applications of the concentration of measure
phenomenon to various areas such as statistical mechanics, geometric probabilities,
discrete and algorithmic mathematics, for which the concentration ideas, although
perhaps at some mild level, appear to be useful tools of investigation.

While we describe in this work a number of concentration properties put for-
ward in several contexts, from more geometric to functional and probabilistic set-
tings, we usually produce the correct orders but almost never discuss sharp con-
stants.



x INTRODUCTION

This book is strongly inspired by early references on the subject. In particular,
the lecture notes by V. Milman and G. Schechtman that describe the concentration
of measure phenomenon and its applications to asymptotic theory of finite dimen-
sional normed spaces were a basic source of inspiration during the preparation of
this book. We also used the recent survey by G. Schechtman in the Handbook in the
Geometry of Banach Spaces. (The latter handbook contains further contributions
that illustrate the use of concentration in various functional analytic problems.)
The memoir by M. Talagrand on isoperimetric and concentration inequalities in
product spaces is at the basis of most of the material presented starting with Chap-
ter 4, and the ideas developed there gave a strong impetus to recent developments
in various areas of probability theory and its applications. Several of the neat argu-
ments presented in these references have been reproduced here. The already famous
32 Chapter of the recent book by M. Gromov served as a useful source of geometric
examples where further motivating aspects of convergence of metric measure spaces
related to concentration are developed. While many geometric invariants are in-
troduced and analyzed there, our point of view is perhaps a bit more quantitative
and motivated by a number of recent probabilistic questions. Perspectives and de-
velopments related to the concentration of measure phenomenon in various areas
of mathematics and its applications are discussed in M. Gromov's book as well as
in the recent papers of M. Gromov and V. Milman in the special issues "Vision" of
Geometric and Functional Analysis GAFA2000.

Each chapter is followed by some Notes and Remarks with an attempt in
particular to trace the origin of the main ideas. We apologize for inaccuracies and
omissions.

The notations used throughout this book are the standard ones used in the
literature. Although we keep some consistency, we did not try to unify all the
notations and often used the classical notation in a given context even though it
might have been used differently in another.

I am grateful to Michel Talagrand for numerous discussions over the years on
the topic of concentration and for explaining to me his work on concentration in
product spaces. Parts of several joint works with Sergey Bobkov on concentration
and related matters are reproduced here. I sincerely thank fiim for corrections
and comments on the first draft of the manuscript. I also thank Vitali Milman
and Gideon Schechtman for their interest and useful comments and suggestions,
and Markus Neuhauser, James Norris and Vladimir Pestov for helpful remarks and
corrections. I sincerely thank the A.M.S. Mathematics Editor Edward Dunne and
Natalya Pluzhnikov for their help in the preparation of the manuscript.

Toulouse, May 2001 Michel Ledoux



1. CONCENTRATION FUNCTIONS
AND INEQUALITIES

In this chapter, we introduce, with the first examples of spherical and Gaussian
isoperimetry, the concept of measure concentration as put forward by V. Milman
[M-S] and discuss its first properties. We define the notion of concentration function
and connect it with Levy's deviation and concentration inequalities for Lipschitz
functions that provide a main tool in applications. The notion of observable diam-
eter is another more geometric view to concentration. The last two sections of this
chapter are devoted to the useful tools of expansion coefficients, Laplace bounds
and infimum-convolution inequalities to explore concentration properties.

1.1 First examples

To introduce to the concept of measure concentration, we first briefly discuss a few
examples that will be further analyzed (with references) later on.

Our first illustration is suggested by the example of the standard n-sphere Sn
in 1Rn+1 when dimension n is large. By a standard computation, uniform measure
Qn on Sn is almost concentrated when the dimension n is large around the (every!)
equator. Actually, the isoperimetric inequality on Sn expresses that spherical caps
(geodesic balls) minimize the boundary measure at fixed volume. In its integrated
form (see Section 2.1), given a Borel set A on S' with the same measure as a
spherical cap B, then for every r > 0,

on(Ar) >_ orn(Br)

where Ar = {x E Sn; d(x, A) < r} is the (open) neighborhood of order r for
the geodesic distance on Sn. One main feature of concentration with respect to
isoperimetry is to analyze this inequality for the non-infinitesimal values of r > 0.
The explicit evaluation of the measure of spherical caps (performed below in Section
2.1) then implies that given any measurable set A with, say, an(A) > 1, for every
r > 0,

Qn(Ar) > 1 - e-(n-1)r2/2. (1.1)

Therefore, almost all points on Sn are within (geodesic) distance 1 from A, which
is of particular interest when the dimension n is large. From a "tomographic" point
of view (developed further in Section 1.4 below), the visual diameter of Sn (for on)
is of the order of as n - oo, which is in contrast with the diameter of Sn as a

vrn-
metric space.

1



2 1. CONCENTRATION FUNCTIONS AND INEQUALITIES

This example is a first, and main, instance of the concentration of measure
phenomenon for which nice patterns develop as the dimension is large. It further-
more suggests the introduction of a concentration function in order to evaluate the
decay in (1.1). Setting

aon (r) = sup { 1 - a' (Ar); A C Sn, an (A)
2

}, r > 0,

the bound (1.1) amounts to saying that

ci n (r) < e-(n-1)r2/2, r > 0.

Note that r > 0 in (1.2) actually ranges up to the diameter ir of Sn and that (1.2)
is thus mainly of interest when n is large.

By resealing of the metric, the preceding results apply similarly to uniform
measure an

R
on the n-sphere SR of radius R > 0. In particular,

a,n (r) < e-(n-1)r2/2R2, r > 0. (1.3)

Properly normalized, uniform measures on high dimensional spheres approxi-
mate Gaussian distributions. More precisely (see Section 2.1), the measures Q
converge when n tends to infinity to the canonical Gaussian measure on RN. The
isoperimetric inequality on spheres may then be transferred to an isoperimetric
inequality for Gaussian measures. Precisely, if y = yk is the canonical Gaussian
measure on Rk with density (27r)-k/2e-IxI /2 with respect to Lebesgue measure
and if A is a Borel set in Rk with y(A) = -t(a) for some a E [-oo, +oo] where
-t(t) = (27r) -1/2 f t e-X2/2dx is the distribution function of the standard normal
distribution on the line, then for every r > 0,

'y(Ar) ? P(a + r).

Here Ar denotes the r-neighborhood of A with respect to the standard Euclidean
metric on Rk. Unless otherwise specified, Rk (or subsets of R c) will be equipped
throughout this book with the standard Euclidean structure and the metric Ix - yl,
x, y E Rk, induced by the norm jxj _ 1 x01/2, x = (xl, ... , xk) ER k. The
scalar product will be denoted x y = Ea 1 Xiyi, x = (x1, ... , xk), y = (Yi, ... , yk)
E Rk. Defining similarly the concentration function for y as

a.y(r) = sup 11 - y(Ar); A C ][8k, y(A) > 2 }

we get in particular since -P (0) = 2 and 1 - -t (r) < e-r2/2, r > 0, that

a.y(r) <
e-r2/2,

r > 0. (1.4)

One may also think of (1.3) in the limit as n -+ oo with R = -,/-n-. One may again
interpret (1.4) by saying that given a set A with y(A) > 2, almost all points in R c
are within distance 5 or 10 say from the set A whereas of course Rk is unbounded.
We have thus here a second instance of measure concentration with the particular
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feature that the concentration function of (1.4) does not depend on the dimension
of the underlying state space Rk for the product measure ry = -Y k.

Our third example will be discrete. Consider the n-dimensional discrete cube
X = {0,1}n and equip X with the normalized Hamming metric

d(x, y) = 1 Card({x2 # y2; i = 1, ... , n}),n

x = (x1, ... , xn), y = (yi, ... , yn) E {0,1}n. Let p = pn be uniform (product)
measure on {0,1}n defined by p(A) = 2-n Card (A) for every subset A of X. Iden-
tifying the extremal sets A in X for which the infimum inf{p(Ar); p(A) > 1} is
attained may be used to show here that

2
aN,(r) < e-2n' , r > 0, (1.5)

where the concentration function a, for p on {0,1}n equipped with the Hamming
metric is defined as above.

These first examples of concentration properties all follow from more refined
isoperimetric inequalities. They will be detailed in the next chapter in which full
proofs of the concentration (rather than isoperimetric) results will be presented.
These examples will serve as guidelines for the further developments. They moti-
vate and justify in particular the analysis of the concept of concentration function
performed in the next section.

1.2 Concentration functions

Motivated by the early examples of the preceding section, we introduce and for-
malize the concept of concentration function of a probability measure on, say, a
metric space. The concentration examples of Section 1.1 indeed rely on two main
ingredients, a (probability) measure and a notion of (isoperimetric) enlargement
with respect to which concentration is evaluated.

Thus, let (X, d) be a metric space equipped with a probability measure p on
the Borel sets of (X, d) (a metric measure space in the sense of [Grom2]). The
concentration function a(X,d,µ) (denoted more simply a(X,µ) , or even aµ, when the
metric d, or the underlying metric space (X, d), is implicit) is defined as

a(X,d,µ)(r) = sup{ 1 - p(A,.); A C X, p(A) >
a

}, r > 0. (1.6)

Here A,. = {x E X; d(x, A) < r} is the (open) r-neighborhood of A (with respect to
d). A concentration function is less than or equal to 2. When (X, d) is bounded,
the enlargements r > 0 in (1.6) actually range up to the diameter

Diam(X, d) = sup {d(x, y); x, y E X }

of (X, d), the concentration function being 0 when r is larger than the diameter.
This, however, will not usually be specified. In any case, the concentration function
decreases to 0 as r -+ oo. Indeed, fix a point x in X. Given 0 < e < 2, choose r
such that the measure of the complement of the ball B with center x and radius r
is less than e. Then, any Borel set A such that p(A) > 1 intersects B. Hence A2,.
covers B and thus 1 - p(A2,.) < 1 - p(B) < e.
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By definition of the concentration function aµ = a(X.d.µ), given a set A with
measure µ(A) > 2, the set of points which are within distance r > 0 from a point
in A has measure larger than or equal to 1 - aµ(r). If necessary, we agree in the
following that aµ(0) = 2

The idea of the concentration of measure phenomenon is that, in a number
of basic examples, a(X,d,µ)(r) decreases rapidly as r, or the dimension of X, is
large. In particular, we say that µ has normal concentration on (X, d) if there are
constants C, c > 0 such that, for every r > 0,

r 2
a(X,d,µ) (r) <

Ce-
. (1.7)

As emphasized in Section 1.1, important examples share this normal concentration
and we will often be concerned with this property throughout these notes. In
particular, as we have seen with (1.2), the normalized invariant measure a' on the
standard n-sphere S'n, n > 2, has normal concentration with c = (n - 1)/2 and
C = 1, which thus yields strong concentration in high dimension. By (1.4), the
canonical Gaussian measure on Euclidean space has this concentration (with c = 2
and C = 1). Concentration (1.5) on the cube {0,1}" also belongs to this family.
We will also speak of exponential concentration if

o'(X,d,µ) (r) < C e r > 0.

Throughout these notes, we do not pay much attention to sharp constants in
normal concentration, although when possible we try to reach the correct exponent
c > 0. We do not discuss optimal C in normal or exponential concentration.

While the concentration function bounds 1 - µ(Ar) for any measurable set A
with p(A) > 2, it also does so when p(A) > e > 0. This is the content of the
following easy and useful consequence of the definition of a concentration function.

Lemma 1.1. Let µ be a probability measure on the Bore] sets of a metric space
(X, d) with concentration function aµ. If p(A) > e > 0, then

1 - p(Aro+r) < aµ(r)

for any r > 0 and ro > 0 such that aµ(ro) < E.

Proof. Denote by B the complement of Aro so that A is included in the complement
of Bro. If µ(B) > 2,

µ(A)<1-µ(Bro)<aµ(ro)<s
which is impossible. Thus p(Aro) >

2
so that for every r > 0,

1 - µ(Aro+r) < aµ(r)-

The lemma is proved. 0
The following simple contraction property shows that concentration functions

are decreasing under 1-Lipschitz mappings.

Proposition 1.2. Let cp be a Lipschitz map between two metric spaces (X, d) and
(Y, 6) such that

8(cp(x), cp(x')) < II(PIILipd(x, x') for all x, x' EX.
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Let a be a probability measure on the Borel sets of X and denote by, , the measure
y pushed forward by cP on the Bore] sets of (Y, 6). Then, for every r > 0,

a(Y,5, ) (r) < a(X,d,µ) (r/II PII L;P)

In particular c , < aµ if cp : X -> Y is 1-Lipschitz.

For the proof, simply note that if A is a Borel set in Y, then for every r > 0,

v-1(Ar) D
((p_1(A))+'/IlwlLp

where the enlargements are understood with respect to d and S, respectively.
A typical example of application of Proposition 1.2 arises when X is a topo-

logical metric group equipped with a (left-) translation invariant metric d and Y is
a quotient X/G equipped with the quotient metric

S(y, y') = inf {d(x, w(x) = y, w(x') = y l

where cP : X -+ X/G is the 1-Lipschitz quotient map.

1.3 Deviation inequalities

In this section we discuss equivalent descriptions of concentration properties in
terms of deviation and concentration inequalities for Lipschitz functions.

As before, let (X, d) be a metric space with Borel probability measure p. In
the preceding section we defined the concentration function a(X,d,µ) (r), r > 0, as
the supremum over all Borel sets A with p(A) > .1 of 1 - µ(A,.), where we recall
that A, is the enlargement of order r of A in the metric d. One could also define,
for every s > 0,

a(X d,µ) (r) = sup{ 1 - µ(A,.); A C X, µ(A) > e}, r> 0,

leading essentially to the same concept by Lemma 1.1. The value e = a is however
of particular interest through its connection with medians.

If p is a probability measure on the Borel sets of (X, d), and if F is a measurable
real-valued function on (X, d), we say that mF is a median of F for p if

p({F < mF}) > 1 and p({F > mF}) > z .

A median mF may not be unique.
For a continuous function F on (X, d), we denote by

WF(rl) =sup { I F(x) - F(y) I ; d(x, y) < r/}, i7>0,

its modulus of continuity. If mF is a median of F for µ, and if A = IF _< mF},
note that whenever x is such that d(x, y) < r/ for some y E A, then

F(x) < F(y) +WF(rl) C mF +WF(rl)-
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Hence. since µ(A) > 2, by definition of the concentration function a(x.d.µ),

p({F > mF +wF(y)}) < aµ(77). (1.8)

Similarly with A = {F > mF},

p({F < mF - WF(77)}) C aµ(77)

(Alternatively, replace F by -F.) In particular,

µ({ IF - mFI > WF(77)}) : 2aµ(77).

Inequalities (1.8) and (1.9) on the n-dimensional sphere S" are sometimes called
Levy's inequalities. The high dimensional effect on S' is expressed by the fact that
a ,n (77) is small when n is large, showing thus that functions on S"' with small local
oscillation are nearly constant on almost all of the space (with respect to an).

It will be more convenient in the sequel to work with Lipschitz functions and
Lipschitz coefficients rather than with moduli of continuity. Let us detail again
(1.8) and (1.9) on Lipschitz functions. A real-valued function F on (X, d) is said
to be Lipschitz if

IIFIILIP =
sup IF(x) - F(y)I < 00.
x#y d(x, y)

Clearly WF(77) < 77IIFlIL-P for every 77 > 0. We say that F is 1-Lipschitz if IIFIILIP <_ 1.
The class of Lipschitz functions is stable under the operations min and max.

If F is Lipschitz on (X, d) and if A = IF < m}, then, for every r > 0,
A,. C IF < m + rIIFIILIP}. Therefore, if m = mF is a median of F for p, we get as
for (1.8) that for every r > 0,

µ({F > mF + r}) < aµ(r/IIFIILIP) (1.10)

We speak of (1.10) (and (1.8)) as a deviation inequality.
By Lemma 1.1, if p({F < m}) > e > 0, then for every r > 0,

p({F>m+ro+r}) <aµ(r/IIFIILIP) (1.11)

where aµ(ro/IIFIILIP) < e. Similarly, the inequality (1.10) would hold with a(x,d,µ)
as soon as mF is such that µ({F < mF}) > e > 0. But, as before, the particular
choice of e = z allows us to repeat the same argument with -F to get that

p({F < mF - r}) < aµ(r/IIFIILIP). (1.12)

Therefore, together with (1.10), we deduce that for every r > 0,

µ({ IF - mFI > r}) < 2at,,(r/IIFIILIP). (1.13)

This inequality (as well as (1.9)) describes a concentration inequality of F around its
median (one of them) with rate aµ. According to the relative size of aµ and IIFIILIP
the Lipschitz function F "concentrates" around one constant value on a portion
of the space of large measure. Moreover, it should already be emphasized that
mF and IIFIILIP might be of rather different scales, an observation of fundamental
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importance in applications. On the other hand, concentration usually does not yield
any particular kind of information on the size of the Lipschitz functions themselves
(in particular of 7nF).

By homogeneity, it is enough to consider the preceding deviation and concen-
tration inequalities for 1-Lipschitz functions.

The deviation or concentration inequalities on Lipschitz functions (1.10) and
(1.13) are actually equivalent to the corresponding statement on sets. Let A be a
Borel set in (X, d) with µ(A) > 1. Set F(x) = d(x, A), x E X. Clearly IIFIILip 1

while
p({F = 0}) > µ(A) > 2

Hence, since F > 0, 0 is a median of F for p, and thus, by (1.10), for every r > 0,

1 - p(A,.) = p({F > r}) < aµ(r).

We may summarize these conclusions in a statement.

Proposition 1.3. Let p be a Bore] probability measure on a metric space (X, d).
Let F be a real-valued continuous function on (X, d) with modulus of continuity
WF and let mF be a median of F for p. Then, for every rl > 0,

p({F > mF +WF(n)}) S aµ(rl)

In particular, if F is Lipschitz, for any r > 0,

p({F > mF + r}) < a,, (r/IIFIILip)

and
p({IF - mFI > r}) < 2aN,(r/IIFIILip).

Conversely, if for some non-negative function a on R+,

p({F > mF + r}) < a(r)

for any 1-Lipschitz function F with median mF and any r > 0, then aµ < a.

The previous proposition has the following interesting consequences.

Corollary 1.4. If p on (X, d) has concentration function aµ = a(X,d,,), for any
two non-empty Borel sets A and B in X,

p(A)p(B) < 4at,,(d(A, B)/2)

where d(A, B) = inf{d(x, y); x E A, y E B}.

Proof. Let 2r = d(A, B) > 0. Consider the 1-Lipschitz function F(y) = d(y, B)
and denote by mF a median of F for p. Since F = 0 on B and F > 2r on A,

p(A)p(B) < p ® p({(x, y); I F(x) - F(y)) > 2r})

<2p({IF -mFI >r})
< 4a,A(r),

which is the desired result. 0
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Corollary 1.5. If p on (X, d) has concentration function a, = a(X,d,µ), for any
1-Lipschitz function F on (X, d) and any r > 0,

µ®µ({(x,y)EXxX;IF(x)-F(y)I >r) <2c (2).

Conversely, if for some non-negative function a on IR+, all 1-Lipschitz functions F
and all r > 0,

p ®µ({(x, y) E X x X; I F(x) - F(y)I > r) < a(r),

then aµ < 2a.

Proof. The first assertion follows from the fact, already used in Corollary 1.4, that

µ®µ({(x,y);IF(x)-F(y)I >2r}) :5 2µ({IF-mFI >r}).

Conversely, take A with µ(A) > 1. Applying the hypothesis to F(x) = d(x, A),
x E X, we get as in Corollary 1.4 that for every r > 0,

µ(A) (1 - µ(A-r)) < p ®µ ({ (x, y); I F(x) - F(y) I ? r})
< a(r)

from which the desired claim follows.

A particular situation for deviation inequalities under some level occurs for
convex functions and the next statement is a short digression on this theme. Assume
for simplicity that X = R' equipped with its standard Euclidean metric I I and
denote by VF the gradient of a smooth function F on 1[P.

Proposition 1.6. Let p be a probability measure on the Borel sets of R', and let
F be smooth and convex on R' such that for some m E R and L > 0,

p({F > m; IVFI < L}) > e > 0.

Then, for every r > 0,

p({F<m-L(ro+r)}) <aµ(r)

where aµ(ro) < e.

Proof. Applying Lemma 1.1 to ri = ro + r, it is enough to show that whenever
A = IF > m, I VFI < L}, then

Arl C IF > m - Lrl}.

But since F is (smooth and) convex, for any x, y E R',

F(y) < F(x) + VF(y) (y - x).

Hence, if y E A and Ix - yI < r1,

F(x) > F(y) - I VF(y) I Ix - yI > m - Lr1.

The proposition is proved.
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When m is a median of F in Proposition 1.6, it is usually impossible to expect
that p(A) > .1 where

A={F>m,IVFI <L}.

To estimate p(A) from below we may however write

p(A) > p({F > m}) - p({IVFI > L}). (1.14)

If F is Lipschitz on R', by Rademacher's theorem, F is almost everywhere dif-
ferentiable and IIVFII. = IIFIILip- Proposition 1.6 thus shows that for Lipschitz
convex functions, the deviation inequalities under some level m are governed, using
(1.14), by the L°-norm of the gradient of F rather than by its L°O-norm as in (1.12).
This is a useful observation in applications. Similar conclusions of course apply to
deviation inequalities above some level for concave functions.

Inequality (1.13) describes a concentration property of the Lipschitz function
F around some median value mF. The median mF may actually be replaced by
the mean of F. We first show a converse result in this direction.

Proposition 1.7. Let p be a Borel probability measure on a metric space (X, d).
Assume that for some non-negative function a on R+ and any bounded 1-Lipschitz
function F on (X, d),

p({F > f Fdp +r}) < a(r) (1.15)

for every r > 0. Then
1 - p(Ar) < a(p(A) r)

for every Borel set A with p(A) > 0 and every r > 0. In particular,

a(X,d,µ) (r) < a(1:), ), r > 0.

Moreover, ifa is such that limr_,,,. a(r) = 0, any 1-Lipschitz function F is integrable
with respect to p and, provided a is continuous, satisfies (1.15).

Proof. Take A with p(A) > 0 and fix r > 0. Consider F(x) = min(d(x, A), r),
x E X. Clearly IIFIlrip < 1 while

JFdp < (1 - p(A))r.

By the hypothesis,

1- p(A,.) = p({F > r})
< p({F > f Fdp + p(A) r})
< a(p(A) r).

In particular, if p(A) > 21 p(Ar) < a(2) so that the first claim follows.
Now let F be a 1-Lipschitz function on (X, d). For every n > 0, Fn =

min(IFI,n) is again 1-Lipschitz and bounded. Applying (1.15) to -Fn, for every
r>0,

p({Fn < f Fndp - r}) < a(r). (1.16)
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Choose m such that µ({IFI < m}) > 2 and ro such that a(ro) < 2. Since for every
n, p({F,ti < m}) > 2, intersecting with (1.16) for r = ro, we get that, independently
of it,

fFndµ<m+r'o
and thus f IFIdi < oo by monotone convergence. Then we apply (1.15) to
min(max(F, -n), n) and let n - oo. Proposition 1.7 is established.

In Proposition 1.7, we lose the factor 2 in the concentration function. This
may be improved by an iteration of the argument. In the same spirit, observe that
(1.15) together with the same inequality for -F contains a concentration inequality
around the mean

p({IF- fFdpl > r}) < 2a(r), r > 0. (1.17)

Now, if ro is chosen so that 2a(ro) < 2, any median mF of F is such that

ImF - f FdpI < ro.

From this together with (1.17) it follows that

µ({ IF - mFI > r + ro}) < 2a(r), r > 0. (1.18)

In the case of normal concentration a(r) = C
e-,r2,

for example, we then get via
Proposition 1.3 a concentration function aµ asymptotically of the same order as
r -> oo, namely

a,, (r) < CI e-cr2+c'r, r > 0.

We will not be concerned in this work with sharp constants in concentration
functions, and usually present bounds on concentration functions using the next
simple Proposition 1.7 with factor 2. Moreover, in normal concentration functions
a(r) = Ce-C,2, we will never describe sharp values of C. However, when the sharp
concentration inequalities for Lipschitz functions around the median or the mean
are available, we present them simultaneously. As we will see in the next chapter,
isoperimetric inequalities do usually provide optimal concentration functions.

The next proposition formalizes the argument leading to (1.18) with the mean
replaced by any constant value. To this task, we may actually work at the level of
one single function F.

Proposition 1.8. Let F be a measurable function on a probability space (X, A, µ).
Assume that for some aF E JR and a non-negative function a on Il8+ such that
limn.. a(r) = 0,

p({IF - aFI >r}) <a(r)
for all r > 0. Then

p({IF-mFI >r+ro}) <a(r), r> 0,

where mF is a median of F for p and where ro > 0 is such that a(ro) < 2. If
moreover a = fo a(r)dr < oo, then F is integrable, IaF - f FddI < a and for every
r > 0,

p({IF- fFdpI >r+a}) <a(r).
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In particular, if a(r) < C e-"], . 0 < p < oo, r > 0, then

µ({IF - MI > r}) < C'e-'P"', r > 0,

where Al is either the mean or a median of F for p and where C' > 0 only depends
on C and p and rp > 0 only depends on p.

Proof. The first part follows from the argument leading to (1.18). For the second
part, note that

f({IFf IF-a FIdp-aFI >r})drTherefore

f I FI dp < oo and IaF - f FdpI < a from which the desired claim easily
follows. If a(r) < Ce-"P, 0 < p < oo, r > 0, we may choose ro > 0 such that
ecru = 2C so that when r < ro,

µ({ IF - mFI > r}) < 1 < 2Ce-cro < 2Ce-crP

while when r > ro,

p({ IF - mFI > r}) < Ce-a(r-r0)P < C'e-rcPCrP

In the same way,

Cedr = KCc"'a < f
where Kp > 0 only depends on p. A similar argument, in accordance with r < a
or r > a, yields the concentration inequality around the mean of F.

Normal concentration implies strong integrability properties of Lipschitz func-
tions. This is the content of the simple proposition that immediately follows by
integration in r > 0.

Proposition 1.9. Let F be a measurable function on some probability space
(X, A, p) such that for some aF E IR and some constants C, c > 0,

p({IF - aFI > r}) < Ce-"r2

for every r > 0. Then

for every p < c. Furthermore,

fFc4t - aF

epF
2
dp < 00

2 c<CV
and Varµ(F) < C

c

Proof. From the hypothesis, for every r > I aF

IaFI)2p({IFI > r}) < µ({ IF - aFI > r - IaFI }) < Ce-c(r-.
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Now, by Fubini's theorem,

JeF2d/ = 1 + J
00

2prµ({IFS > r})epr2dr
0

00
e"aF + f 2prp({IFI > r}) e°r2dr

aFI

< e"a2 + J 2Cpre-c(r-IaFU2ePr2dr00
aF I

from which the first claim follows. As in the proof of Proposition 1.8,

l< f IF - aFIdµ

j= p({ IF - aFI > r})dr

< f 'Ce 6r2dr =
2 c0

while

Varµ(F) < f IF - aFI2dµ

= f 2rµ({IF- aFI > r})dr

< f '2Cre 6r2dr = C

o c
0

The preceding statement is typical of one basic aspect of concentration in that
it does not tell anything about the size of F but only bounds discrepancies around
a mean value.

The following proposition is a further description of normal concentration.

Proposition 1.10. Let µ be a Bore] probability measure on a metric space (X, d).
T h e n (X, d, p) has normal concentration at, (r) _< C e 612, r > 0, if and only if there
is a constant K > 0 (depending only on C) such that for every q > 1 and every
1-Lipschitz function F on (X, d),

1117- fFdµllq<K q

where 11 IIq is the L9-norm with respect to µ.

Proof. If aµ (r) < C e 6r2 , r > 0, we know from Proposition 1.8 that for every
1-Lipschitz function F, and every r > 0,

p({IF - f FdAI > r}) < C' e Kcr2

where C' > 0 only depends on C > 0 and a > 0 is numerical. Then, as before, for
q > 1,

IIF - f Fdpll q = j qrq-1 p({I F - f Fd,I > r})dr
y

< f 2C'grq-1e-KCr2dr
0
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from which the implication follows since

fo

00
rq-1e-rcr'dr - (q)q

2

c

as q -+ oo. Conversely, by Chebyshev's inequality, for every r > 0 and q > 1,

p({IF - f Fdpl > r}) < Kq(q)q/2r-q

from which normal concentration (with exponential rate proportional to c) follows
by optimization in q > 1. (The same description of course holds with the median
instead of the mean.)

As a consequence of Proposition 1.10, if (X, d, p) has normal concentration,
there exists K > 0 such that for every q > 1 and every Lipschitz function F on
(X, d),

IIFIIq <- IIFII1 + K/ IIFIIL;p (1.19)

Propositions 1.9 and 1.10 clearly extend to concentration functions of the type
Ce-1p, p > 0 (or more general sufficiently small concentration functions). The
growth rate in q > 1 is then g11P in Proposition 1.10.

Proposition 1.7 is a convenient tool to handle concentration in product spaces
with which we conclude this section. If (X, d) and (Y, 8) are metric spaces, we equip
the Cartesian product space X x Y with the £'-metric

d(x, x') + 8(y, y'), x, x' E X, y, y' E Y. (1.20)

Proposition 1.11. Let p and v be Bore] probability measures on metric spaces
(X, d) and (Y, 8) respectively. Let a and 8 be non-negative functions on R+ such
that whenever F : X -> R and G : Y -> R are bounded and 1-Lipschitz on their
respective spaces, then for every r > 0,

p({F > f Fdµ + r}) < a(r)

and

v({G > f Gdv+r}) <,3(r).
Then, if It ®v is the product measure of p and v on X x Y equipped with the .'-
metric (1.20), for any bounded 1-Lipschitz function F on the product space X x Y
and anyr>0,

p ® v({F > f Fdµ ® v + 2r}) < a(r) +,8(r).

Proof Set, for every x E X, y E Y, F& (x) = F(x, y) and G(y) = f F'dp, and
observe that F& and G are 1-Lipschitz on their respective spaces. Therefore, for
every r > 0,

It ®v({F > f Fdp v + 2r})

<it (9 v({(x,y)EXxY;F&(x)> fFpdp+r})
+v({G> fGdv+r})

< a(r) + /3(r).
The proposition is established. 0
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While Proposition 1.11 describes concentration results in product spaces, these
are not well suited to concentration bounds which are independent of the number
of spaces in the product (dimension free concentration). It will be one main task
addressed in Chapters 4, 5 and 6 to develop tools to reach such dimension free
bounds of fundamental importance in applications.

1.4 Observable diameter

The notion of observable diameter is somewhat dual to the one of concentration
function. It describes the diameter of a metric space (X, d) viewed through a given
probability measure p on the Borel sets of (X, d).

We fix n > 0 to be thought of as small (rc = 10-10 in [Grom2]!). According
to M. Gromov [Grom2], define first the partial diameter PartDiamr,(X, d) of (X, d)
with respect to p as the infimal D such that there exists a subset A of X with
diameter less than or equal to D and measure p(A) > 1-rc. This diameter is clearly
monotone for the Lipschitz ordering: if W : (X, d) -> (Y, 5) is 1-Lipschitz, and if p,1,
is the pushed forward measure p by cp, then PartDiamµ,, (Y, 5) _< PartDiamr, (X, d)
(for all rc > 0). What is not obvious is that the partial diameter may dramatically
decrease under all 1-Lipschitz maps from X to a certain Y, which we always take
to be R. We then define the observable diameter ObsDiam,.(X, d) of (X, d) with
respect to It as the supremum of PartDiamr,F, (R) over all image measures PF of p
by a 1-Lipschiz map F : X - R.

Following [Grom2], we think of p as a state on the configuration space (X, d)
and a Lipschitz map F : X -> R is interpreted as an observable giving the tomo-
graphic image AF on R. We watch AF and can only distinguish a part of its support
of measure 1 - is.

The next simple statement connects the observable diameter ObsDiamµ(X, d)
with the concentration function aµ = a(X,d,µ). Let aµ 1 be the generalized inverse
function of the non-increasing function aµ, that is,

aµ1(e) = inf {r > 0; ar,(r) < e}, e>0.

Proposition 1.12. Let (X, d, p) be a metric measure space, and let rc > 0. Then

ObsDiamr,(X, d) < 2aµ 1 (K2).

Proof. It is an easy consequence of the concentration inequalities for Lipschitz
functions of the preceding sections. Indeed, if F : X -+ JR is 1-Lipschitz, we know
from (1.13) that for every r > 0,

p({IF - mFI >r}) <2a, (r)

where mF is a median of F for p. Hence, if AF denotes the image measure of p
by F, the interval ]mF - r, mF + r[ has length 2r and µF-measure larger than or
equal to 1 - 2ar,(r). The proposition then follows from the definition of the inverse
function aµ 1 of aµ.



1.5 EXPANSION COEFFICIENT 15

As an example, if p has normal concentration a. (r) < C e-,2, r > 0, on
(X, d), then

ObsDiamµ(X, d) < 2 1 log 2C L. (1.21)- c r.

The important parameter in (1.21) is the rate c in the exponential decay of the
concentration function, the value of C > 0 being usually a numerical constant that
simply modifies the numerical value of a by a factor. For example, by (1.2), (1.21)
for the standard n-sphere S" may loosely be described by saying that

ObsDiamon (S"`) = O (.)
n

as n is large, which is of course in strong contrast with the diameter of S" itself as
a metric space. Similarly, the observable diameter of Euclidean space with respect
to Gaussian measures is bounded.

1.5 Expansion coefficient

Expansion coefficients are a natural multiplicative description of exponential con-
centration.

As before, let p be a probability measure on the Borel sets of a metric space
(X, d). Define the expansion coefficient of It on (X, d) of order e > 0 as

Expµ(e) = inf {e > 1; p(BE) > ep(B),B C X, p(BE) < 11

where we recall that BE is the (open) e-neighborhood of B with respect to d.
The definition of Expµ(e) shows that whenever B is such that p(Bk8) < 1 for

some integer k > 1, then

1p(B) < Exp(e)-kp(BkE) <
2

Expµ(e)-k. (1.22)

In particular, if Expµ,(e) > 1, B has very small measure. Thinking of B as the
complement of some large r-neighborhood of a set A with measure p(A) _>

.1

immediately leads to the exponential decay of the concentration function aµ of p
on (X, d).

Proposition 1.13. If for some e > 0, Expµ(e) > e > 1, then (X, d, p) has
exponential concentration

e
e-r(loge)/e, r > 0.aµ(r) < e

Proof. Let A be a Borel set in (X, d) with p(A) > .1. If B is the complement of Ak8,
then Bk8 is contained in the complement of A and thus p(Bke) z. Therefore, by
(1.22),

1
1 - p(Ake) S

2ek

We then simply interpolate between ke and (k + 1)e to get the desired result.
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1.6 Laplace bounds and infimum-convolutions

In this section, we provide some simple and useful tools to establish concentration
properties, either through exponential deviation inequalities for Lipschitz functions
or by infimum-convolution arguments.

Let (X, d) be a metric space and let p be a probability measure on the Borel
sets of (X, d). Define, for A > 0, the Laplace functional of p on (X, d) as

E(x,d,µ) (A) = sup J
eaFdp

where the supremum runs over all (bounded) mean zero 1-Lipschitz functions F on
(X, d). We often write more simply Eµ = E(x,d,µ).

The following elementary proposition bounds the concentration function
a(x,d,µ) of It on (X, d) by E(x,d,µ).

Proposition 1.14. Under the preceding notation,

a(x,d,a) (r) < in
o

e-ar/2
E(x,d,µ) (A), r > 0.

In particular, if

E(x,d,a) (A) < era/2c, A > 0,

then, every 1-Lipschitz function F : X -> R is integrable and for every r > 0,

p({F > f Fdp + r}) < e-_2 /2

and (X, d, p) has normal concentration

a(x,d,µ) (r) < e-Cr2/a, r > 0.

If E(X,d,t,) (Ao) < oo for some \o > 0, then (X, d, p) has exponential concentration.

For the proof, simply note that by Chebyshev's exponential inequality, for any
mean zero 1-Lipschitz function F : X -i R, and any r and A > 0,

p({F > r}) < e-\'E(x,d,µ)(A)

Optimizing in A, the various conclusions immediately follow from Proposition 1.7.
As for concentration functions, the Laplace functional is decreasing under 1-

Lipschitz maps. Moreover, the Laplace functional E(X,d,t,) is a convenient tool to
handle concentration in product spaces with respect to the £1-metric. If (X, d) and
(Y, 8) are two metric spaces, we equip the product space X x Y with the metric
(1.20),

d(x, x') + 8(y, y'), x, x' E X, y, y' E Y.

Proposition 1.15. Under the preceding notation,

E(xxY,d+6,µ®v) : E(x,d,µ) E(y,a,v)
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Proof. It is similar to the proof of Proposition 1.11. Let F be a mean zero 1-
Lipschitz function on the product space. Set, for every x E X, y E Y, Fy(x) =
F(x, y) and G(y) = f Fydp. Observe that FY and G are 1-Lipschitz on their
respective spaces. We then write, for every A > 0,

fed/10 v = f e\G(y) (fefF'1d(x))dv(Y)

< ]:',(X,d,µ) (A) f eaGdv

from which the claim follows since f Gdv = 0.

The next statement is a simple illustration of the use of Laplace functionals.
It will describe a basic concentration behavior in product spaces with respect to
the 21-metric.

Proposition 1.16. If Diam (X, d) = D < oo, then, for any probability measure µ
on the Bore] sets of (X, d),

E(X,d,µ)(A) < eDa,\ a/2, A > 0.

Proof. Let F be a mean zero 1-Lipschitz function on (X, d). By Jensen's inequality,
for every A > 0,

Jed: Jfe(x)_F(zi)1dp(x)d,t(y)
00

(DA)2a

a-o (2i)!

< eD2A2/2

and the proposition is proved.

As a consequence of Propositions 1.14, 1.15 and 1.16, we get the following
simple, yet important, corollary.

Corollary 1.17. Let P = µ1 0 0 p, be any product probability measure on
the Cartesian product X = X1 x ... x X,, of metric spaces (X2, da) with finite
diameters D$, i = 1,.. . , n, equipped with the £1-metric d = En 1 d2. Then, if F is
a 1-Lipschitz function on (X, d), for every r > 0,

P({F > f FdP + r}) < e--' /2D
2

where D2 = Fa
1 D$ . In particular,

a1 a

Applied to sums S = Y1 + +Yn of real-valued independent random variables
Yi,... , Yn on some probability space (1, A, F) such that u= < Y$ < v$, i = I,-, n,
Corollary 1.17 yields (with worse constants) a Hoeffding type inequality [Hoe] (see
[Sto], [MD2])

F({S > E(S) + r}) < e-ra/2Da (1.23)
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for every r > 0 where D2 > El 1(v, - u,)2. Exponential inequalities such as
(1.23), obtained from Laplace transform estimates, have actually a long run in the
study of limit theorems in classical probability theory going back to S. Bernstein,
A. Kolmogorov, Y. Prokhorov etc (cf. e.g. [Sto]).

In Corollary 1.17, we may consider in particular the trivial metric on each
factor so that the $1-metric on X = X1 x ... x Xn is the Hamming metric

n
d(x,y)1{x,#v,l=Card {1<i<n;x,#y,}

i=1

(where we denote by x = (x1,. .. , x,) and y = (yl,... , yn) the coordinates of the
points x, y in the product space X). Hence, any product probability measure P on
the product space has normal concentration

/sn
cep(r) <

e_r2 r>0. (1.24)

This is already good enough to recover (up to numerical constants) concentration
(1.5) on the discrete cube {0,1}n. In terms of the observable diameter of the
product space X = X1 x x Xn with respect to the Hamming metric and any
product probability measure P,

ObsDiamp(X) = O(/). (1.25)

As already mentioned next to Proposition 1.11, this approach is however not well
suited to concentration bounds with respect to £2-metrics (like the Euclidean met-
ric) which are independent of the number of spaces in the product (dimension free
concentration) as it is the case for Gaussian measures.

In Chapter 4, we establish normal concentration by showing that for every
Borel set A in X,

J 1

µ(A)
(1.26)

where d(x, A) is the distance from the point x to the set A. Indeed, under (1.26),
for every r > 0,

1 - µ(Ar) = A) > r}) <
µ(A)

e_Cr,2

so that a. (r) _< 2 e-c'r2, r > 0.
In the same spirit, one may investigate infimum-convolution inequalities that

actually allow us to investigate concentration properties outside the usual metric
setting. Given a measurable space (X, A), consider a non-negative cost function
c : X x X -> R+. A typical example is the quadratic cost c(x, y) = e(x - y) =
1 Ix - y12 on IR' x Rn. Given a real-valued measurable function f on X, denote by
Qe f the infimum-convolution of f with respect to the cost c defined by

Qef(x) bnf [.f(y)+c(x,y)], x E X. (1.27)
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If µ is a probability measure on A, and c a non-negative measurable cost func-
tion on X, we say that p satisfies an infimum-convolution inequality with respect
to the cost c if for all bounded measurable functions f on X,

feC2dpfedp < 1. (1.28)

If we adopt the convention that +oo x 0 < 1, the above inequality extends to all
!-valued functions f.

The preceding definition is motivated by its connection to concentration.

Proposition 1.18. If It satisfies an infimum-convolution inequality with respect
to the cost c, then, for every measurable set A in X and every r > 0,

1 - p({ inff y) < r}) < µ(A) e-"'.
YEA

The proof simply follows by applying (1.28) to the function f that is equal to 0
on A and +oo outside. Then QJ (x) > r if and only if infYEA c'(x, y) > r. Conclude
with Chebyshev's exponential inequality.

A typical application is of course the cost given by the distance c(x, y) = d(x, y)
on a metric space (X, d). One may also consider powers of the distance functions.
The example of

c(x, y) = 2 d(x, y)2, x, y E X, (1.29)

for some c > 0 is of particular interest. It should be noted that by Jensen's in-
equality, inequality (1.28) implies that for every bounded measurable function f on
X,

JeQd µ < of f dµ. (1.30)

Now, for the choice (1.29) of the cost c, whenever F is Lipschitz on (X, d) with
Lipschitz coefficient I I F I I L;P, for every x E X,

QzF(x) > F(x) + sex L - 111716, d(x, y) + 2 d(x, y)2]

> F(x) - 2c IIFIILiP

Hence it follows from (1.30) that

Lip/2c
J

eFdµ <
efFdµ+IIFII2

We thus recover from Proposition 1.18 the concentration result deduced in Propo-
sition 1.14 from the Laplace bounds. We will return to this aspect in Chapter 6.

Another instance of interest is the case of a topological vector space X with
its Borel a-field. Given a measurable non-negative function c on X, consider the
cost e(x, y) = c(x - y), x, y E X. The concentration result of Proposition 1.18 then
amounts to the inequality

1-p({A+{e<r}}): µ1 e-', r>0 (1.31)
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where we denote by A + B the Minkowski sum

A+B={x+y;xEA,yE B}

of two sets A and B in X.
As for the concentration functions and Laplace functionals, the infimum-con-

volution property (1.28) satisfies a useful contraction property. Indeed, let p satisfy
an infimum-convolution inequality with respect to a cost function c on X x X. Let
e be a cost function on Y x Y and let cp : X - Y be such that

e(cp(x), W(Y)) < c(x, y)

for all x E X, y E Y. Then the image measure of p by cp satisfies an infimum-
convolution inequality with cost e on Y. Indeed, it is enough to observe that for
every f : Y - R, Qa(f o (p) >_ (Qef) o W.

One basic aspect of the infimum-convolution inequality is its stability under
products.

Proposition 1.19. Let p and v be Borel probability measures satisfying infimum-
convolution inequalities with respect to costs c and a on X and Y, respectively.
Then p ®v satisfies an infimum-convolution inequality with respect to the cost
c+e onXxY.

Proof. Given f = f (x, y) on the product space, set f y (x) = f (x, y) for every y E Y
as well as g(y) = log f eQefvdp. Observe that

f eQa+afdp < eQ8s.

By (1.28) applied to f v with respect to p for every y and to g with respect to v,
we have fe fvdp < e-9(v) and Je9dz1fe_9dv < 1.

The conclusion follows. 0

As a consequence of Proposition 1.19, each time a measure p satisfies the
infimum-convolution inequality (1.28), the n-fold product probability measure An
on X" satisfies the concentration inequality of Proposition 1.18 with respect to the
sum of the costs along each coordinate. With respect to Proposition 1.15, this result
allows us to deal with more general metrics than the fl-metric on product spaces,
such as for example the .e2-metric related to the quadratic cost. In particular, if
P = pi x ... x p is any product measure on R", in order that P has normal
concentration with respect to the Euclidean metric, it suffices to know that each
one dimensional marginal p= satisfies an infimum-convolution inequality (1.28) with
the same cost c(x) = cx2, x E R, for some c > 0. We develop application of this
principle to dimension free concentration in Chapters 4 and 6.
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Notes and Remarks

The definition of concentration function was first introduced in [Am-M]. It is for-
malized in [Gr-Ml] and further analyzed in [M-S], and these are the references from
which the elementary properties of Section 1.2 are taken. Concentration and de-
viation inequalities for Lipschitz functions on high dimenisonal spheres have been
emphasized by P. Levy [Le]. Their equivalence with concentration inequalities is
also part of the folklore of the subject. Sharper constants in normal deviation in-
equalities are discussed in [Bob6]. Many properties discussed in Section 1.3 of this
chapter may be found in the reference [M-S]. Further introductions to the concen-
tration of measure phenomenon and its applications are [Mi5] and [Sche5]. See also
[Bal] for an introduction in the context of modern convex geometry.

Observable diameters of metric measure spaces are described by M. Gromov in
[Grom2] where further geometric invariants related to concentration are analyzed.
Expansion coefficients are also discussed there and used in [Gr-M1] (see Chapter 3).

Inequalities on Laplace transforms are a traditional tool to produce (normal)
concentration. Infimum-convolution inequalities were introduced in this way by
B. Maurey in [Mau2] inspired by investigations by M. Talagrand [Ta13]. The various
results on concentration under infimum-convolution inequalities of Section 1.6 are
taken from [Mau2] and will be revisited in Chapter 6.





2. ISOPERIMETRIC AND
FUNCTIONAL EXAMPLES

As already illustrated in the first section of the first chapter, isoperimetric inequal-
ities are a basic source of examples of concentration properties. In the first sections
of this chapter we present the basic isoperimetric and Brunn-Minkowski inequali-
ties leading to measure concentration (and in particular, cover more carefully the
early examples of Section 1.1). We however do not present proofs of the isoperi-
metric inequalities but rather provide in Sections 2.2 and 2.3 complete functional
arguments (mainly from semigroup theory) to reach the concentration examples
initially derived from isoperimetry. Indeed, while the first concern of isoperime-
try is extremal sets, the concentration phenomenon dealing with non-infinitesimal
neighborhoods is a milder property that may be established far outside the isoperi-
metric context as will be amply demonstrated throughout this book. Geometric
examples involve lower bounds on the Ricci curvature as parts of the Riemannian
comparison theorems. These are treated here with rather elementary functional
tools (Bochner's formula and convexity criteria) which do not require any deep
knowledge in Riemannian geometry.

2.1 Isoperimetric examples

Isoperimetric inequalities are a basic source of examples of the concentration princi-
ple. However, their main interest lies in extremal sets and surface measures, whereas
concentration deals with big enlargements. As such, concentration covers situations
far outside isoperimetric considerations. This section thus only describes the con-
centration properties that follow from isoperimetry rather than the isoperimetric
inequalities themselves.

Let (X, d) be a metric space equipped with a (not necessarily finite) Borel
measure p. The boundary measure or Minkowski content of a Borel set A in X
with respect to p is defined as

µ+(A) = lim inf 1 p(Ar\A)
r--.O r

where we recall that Ar = {x E X; d(x, A) < r} is the (open) r-neighborhood of A
(with respect to d).

The isoperimetric function of p is the largest function Iµ on [0, p(X)] such that

µ+(A) ? Iµ(p(A))
23



24 2. ISOPERIMETRIC AND FUNCTIONAL EXAMPLES

holds for every Borel set A C X such that µ(A) < oo. When B is such that µ+(B) =
I, (µ(B)), B has minimal boundary measure among sets of the same measure, and
B is said to be an extremal set. Isoperimetry thus expresses that whenever A is
a measurable set with the same volume as an extremal set B, then the boundary
measure of A is greater than or equal to the boundary measure of B. One of the
main interests in isoperimetric inequalities lies in explicit expressions for extremal
sets. Unfortunately, extremal sets are rather difficult to determine. One motivation
for the concentration phenomenon is that methods and results are available for large
families of examples for which the characterization of isoperimetric extremal sets is
simply hopeless.

The isoperimetric function I. is explicitly known only in a few cases. The most
notable ones are the constant curvature spaces, going back to the works of P. Levy
[Le] and E. Schmidt [Schmi]. Indeed, let X be either the Euclidean n-space Rn,
the standard n-sphere Sn C Rn+1 with its geodesic metric or the n-dimensional
hyperbolic space Hn with its hyperbolic metric. Equip these spaces with their
Riemannian volume element dv = dµ (normalized in the case of the sphere) and
denote by v(r) the measure of a ball with radius r > 0. Then

Iµ = v o v-1. (2.3)

In particular, I(a) = nwnjna(n-1)1n in the case of Lebesgue measure on Rn where
wn is the volume of the Euclidean unit ball. Extremal sets are given in each case by
geodesic balls. Further examples will be discussed later. One of the most fruitful
among such examples is Gaussian isoperimetry, which will be described below as
limiting spherical isoperimetry.

The first statement is the bridge between isoperimetric and concentration prop-
erties. We assume there for simplicity that p is Borel measure on a metric space
(X,d) such that the liminf in the definition (2.1) of µ+(A) is a true limit for A
given by a finite union of open balls and such that the family of these subsets is a
determining class for p. These assumptions are easily seen to cover the preceding
classical examples, as well as measures which are absolutely continuous with respect
to Lebesgue measure on Rn.

Proposition 2.1. Let p be as above. Assume that I, > v' o v-i for some strictly
increasing differentiable function v : I C R --* [0, µ(X)]. Then, for every r > 0,

v-1(µ(A,-)) > v-1 (µ(A)) + r.

Proof. By the hypotheses, it is enough to assume that A is given by a finite union
of open balls. The family of such sets is closed under the operation A H Ar, r > 0.
Now, the function h(r) = v-1(µ(A,.)) satisfies

µ+(Ar)h (r) = > 1
v' o v-1(µ(Ar))

so that h(r) = h(0) + fo h'(s)ds > v-1(µ(A)) + r which is the desired claim.

Note that conversely, if

v-1(µ(Ar)) > v-1(µ(A)) + r, r > 0,
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then, for every subset A with p(A) < oo,

A+(A) > lim inf 1 [v (v-1 (µ(A)) + r) - µ(A)]r-.0 r (2.4)

= v' o v-1(µ(A)).

For the constant curvature spaces, equality in (2.4) is achieved on geodesic balls so
that Proposition 2.1 may be expressed equivalently as the comparison result

p(Ar) > p(Br), r > 0, (2.5)

as soon as A is a set with p(A) = p(B) where B is a ball. This geometric descrip-
tion emphasizes the interest in explicit knowledge of extremal sets to bound below
p(Ar) for any set A. However, the difference in perspective between isoperime-
try and concentration is that the latter makes use of the integrated form (2.5) of
isoperimetry with no emphasis on surface measure and extremal sets.

If p is a probability measure on the Borel sets of (X, d), recall its concentration
function aµ = a(X,d,µ).

Corollary 2.2. Let p be a probability measure on (X, d) for which Proposition
2.1 applies and assume that Iµ > V o v-1. Then,

a(X,d,µ)(r) < 1 - v(v-1(2) +r), r>0.

Denote for example by an the normalized volume element on the unit sphere
S' equipped with its geodesic distance, n > 2. Then, for every 0 < r < 7r,

v(r) = sn 1
j.r6d9

where sn = fo sinn-16d6. Since v-1(2) = z , we evaluate the quantity 1 - v(2 + r)
for 0 < r < 2. We have

(w/2)+r ,rr
J

sinn-1 9d9 = sn 1

0 (ir/2)+r
it/2

1 - s9t 1 sinn-1 9d6

= Si nf con-10d6.

By the change of variables 0 = T/ n - 1, and the elementary inequality cos u
e"2/2,0<u<2,

jr'r
corn-10de corn-dTn1 r n-1 n-1

< -1
J

e-T2/2dT
n 1 r n-1

< V " e-(n-1)r2/2
2(n - 1)
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where we used that 1 - 4(r) < 2 e-r2/2, r > 0. To evaluate sn from below,
note that by integration by parts sn = [(n - 2)/(n - 1)]sn_2i n > 2, so that

n - 1 sn > n - 3 sn-2. Hence n --1 sn > 2, n > 2. As a consequence, we may
state the following important consequence.

Theorem 2.3. For the standard n-sphere Sn, n > 2, equipped with its geodesic
metric d and normalized volume element p,

a(Sn d Qn) < e-(n 1)r2/2, r> 0

(actually 0 < r < ir).

Up to numerical constants, we may regard Sn equivalently as a subset of 1Rn+1
endowed with the usual Euclidean metric. Notice that Theorem 2.3 applied to sets
the diameter of which tends to zero implies the classical isoperimetric inequality in
Euclidean space.

As already emphasized in Section 1.1, this property is of special interest when
the dimension n is large in which case a very small enlargement, of the order of,
yields a set of almost full measure. In other words, given a set A with on(A) > 2,
most of the points on the sphere are within distance * from A. By Proposition
1.3, for every continuous function F on Sn and every 77 > 0,

7.c({IF - mFI > WF(rl)}) <_ 2e-(n-1)n2/2 (2.6)

where mF is a median of F and WF the modulus of continuity of F. When n is
large, functions with small oscillations are thus almost constant. Inequality (2.6)
is referred to as Levy's inequality. In terms of the observable diameter (cf. Section
1.4),

ObsDiamun (Sn) = O () . (2.7)

For the n-sphere SR with radius R > 0 equipped with the normalized invariant
measure anR,

a,n (r) < e-(n-1)r2/2R2, r > 0. (2.8)

The isoperimetric inequality on spheres has been extended by M. Gromov
[Groml], using ideas going back to P. Levy, as a comparison theorem for Riemannian
manifolds with strictly positive curvature. Let (X, g) be a compact connected
smooth Riemannian manifold of dimension n (> 2) with Riemannian metric g,
equipped with the normalized Riemannian volume element dµ =

v
where V is

the total volume of X. Denote by c(X) the infimum of the Ricci curvature tensor
over all unit tangent vectors, and assume that c(X) > 0. The n-sphere SR with
radius R > 0 is of constant curvature c(SR) Ricci curvature is a way to
describe the variations of the Riemannian measure with respect to the Euclidean
one. We refer to [C-E], [G-H-L], [Cha2], etc. for standard introductions to curvature
in Riemannian geometry as well as for some classical examples (see also below).
While Ricci curvature appears as a crucial geometric parameter in the subsequent
statements, we provide in Section 2.3 a simple functional approach to these results
relying only on the use of Bochner's formula (2.29) that does not require any deep
understanding of Riemannian geometry. Furthermore, the log-concavity condition
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of Theorem 2.7 and Proposition 2.18 below may be used to get some further insight
into the geometric content of curvature in this context. Recall the isoperimetric
function I.

Theorem 2.4. Let (X, g) be a compact connected smooth Riemannian manifold
of dimension n (> 2) equipped with the normalized Riemannian volume element
dp = v such that c(X) > 0. Then

I,4 > Ion

where R > 0 is such that c(SR) c(X). In particular, (X, g, a) has normalR'r
concentration

a(X,s,µ)(r) < e-cr2/2, r > 0.

This isoperimetric comparison theorem strongly emphasizes the importance of
a model space, here the sphere, to which manifolds may be compared. It does not
yield any information on the extremal sets for I. itself. Equality in the inequality
I, > In occurs only if X is a sphere.

Theorem 2.4 includes a number of geometric examples of interest for which a
lower bound on the Ricci curvature is known, some of which we discuss now.

It is clear that (Riemannian) products of spheres or of Riemannian manifolds
with a common lower bound c > 0 on the Ricci curvatures satisfy Theorem 2.4.
Therefore measure concentration holds independently of the number of factors in
the product. This is in contrast with 21-products as analyzed in Proposition 1.11
and Corollary 1.17.

Let On be the group of all n x n real orthogonal matrices. For 1 < k < n, let

Wk = {e = (e1 i ... , ek); e, E Rn, ez ej = 6 j, 1 < i, j < k}

be the so-called Stiefel manifolds. Equip Wk with the metric

k

d(e,f) Iei - f2I2)1/2.
i=1

Note that W = ®n, Wi = Sn-1 and Wn_1 = S®n = IT E on;det(T) = 1}. In
general, Wn,k may be identified with the quotient ®n/®n-k via the map
<p :

On --* Wk, cc(el, ... , en) = (el, ... , ek).
The value of c(S®n) is known and equal to n41 [C-E]. Therefore, by Theorem

2.4, the normalized Haar measure p on S®n has normal concentration function
e-(n-1)x2/8. By Proposition 1.2, this property is inherited by the quotients of
S®n. In particular, all the Stiefel manifolds have normal concentration. Up to
normalization factors, the same conclusions apply to the unitary group.

Similar conclusions hold for Grassmann manifolds. Recall that the Grassmann
manifold Gk, 1 < k < n, is a metric space of all k-dimensional subspaces of Rn
with the Hausdorff distance between the unit spheres of the subspaces of E and F:

d(E, F) = sup {d(x, Sn-1 fl E); X E Sn-1 fl F}.

Since Gk is again a quotient of Son, (normalized Haar) measure on Gk has normal
concentration.
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A wealth of further geometric examples are presented and discussed in [Grom2]
on the basis of Theorem 2.4. including subvarieties in S', real and complex pro-
jectives spaces, etc. For example, the (Lipschitz) Hopf fibration S2"`+1 _ CP"
indicates that

ObsDiam(GP') = O(7.
Of more delicate algebraic and metric geometry, the observable diameter of a com-
plex algebraic submanifold X C GPn of fixed codimension and degree, with nor-
malized Riemannian volume and the induced path metric, satisfies

ObsDiam(X) =
0(lognl

n Jl

We refer to [Grom2) for further details.

It is well known that uniform measures on n-dimensional spheres with ra-
dius v/T approximate (when projected on a finite number of coordinates) Gaussian
measures (Poincare's lemma) [MK], [Str2], [Le3]. In this sense, the isoperimetric
inequality on high dimensional spheres gives rise to an isoperimetric inequality for
Gaussia.u measures. Extreinal sets are then half-spaces (which may be considered
.1." bails with centers at infinity). More precisely, let y = ryk be the canonical Gaus-
sian measure on the Borel sets of Rk with density (21r)-k/2e-IXI2/2 with respect to
Lebesgue measure. Equip Rk with its usual Euclidean metric induced by the norm

k' _ X2)112,
7 x = (x1,..., xk) E 1R .

Theorem 2.5. For any k > 1,

I7=v o$-1

where fi(t) = (21r) -1/2 ft. e-x2/2dx, t E [-oo,+oo], is the distribution function of
the canonical Gaussian measure in dimension one. Moreover, the equality y+ (A) _
I. (^"(A)) holds if and only if A is a half-spare in Rk.

Since the distribution of half-spaces is one-dimensional, the isoperimetric in-
equality of Theorem 2.5 in its integrated form (2.5) indicates that whenever A is a
Borel set in Rk and y(A) = 4D (a) for some a E IR, then

-y(A,.) > D(a + r) (2.9)

for every r > 0 where A,. is the neighborhood of order r > 0 in the Euclidean metric
on IRk. Using that E(0) = 2 and 1 - (D(r) < e-,2 /2, r > 0, we get the following
corollary.

Corollary 2.6. The canonical Gaussian measure y on 1Rk equipped with its Eu-
cli{Icaa; metric has nornlal concentration

e-'"2/2, r > 0.

Alternatively, one may perform the Poincare limit on (2.8). In particular, by
Proposition 1.3, for every 1-Lipschitz function F on IRk and every r > 0,

y({F > mF + r}) < e-r2/2 (2.10)
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where mF is a median of F for -y. This inequality extends the trivial case of linear
functions. In terms of the observable diameter,

ObsDiamry(l1 ) = 0(1) (2.11)

uniformly in k > 1. The preceding results for canonical Gaussian measures im-
mediately extend to arbitrary Gaussian measures replacing the standard Euclidean
structure by the corresponding covariance structure. One important feature of both
Theorem 2.5 and Corollary 2.6 is indeed the dimension free character of the isoperi-
metric and concentration functions of Gaussian measures. This observation opens
the extension to infinite dimensional Gaussian analysis (cf. [Bor2], [Le-T], [Le3],
[Li], [Bog]). For example, (2.10) holds similarly for a functional F : E -> R on an
abstract Wiener space (E, H, p) that is 1-Lipschitz in the directions of H, that is,
IF(x + h) - F(x) I < I hi for all x E E, h E H.

As for Theorem 2.4, Theorem 2.5 may be turned into a comparison theo-
rem. Due to the dimension free character of Gaussian isoperimetry, this is better
presented in terms of (strictly) log-concave probability measures (on a finite dimen-
sional state space). The following statement is moreover a concrete illustration of
the geometric content of Ricci curvature in the preceding Riemannian language.

Theorem 2.7. Let p be a probability measure on R" with smooth strictly pos-
itive density a-U with respect to Lebesgue measure such that, for some c > 0.
Hess U(x) > cId as symmetric matrices uniformly in x E R. Then,

Iµ>v" Ly.

In particular,
01(R1,A)(r) < e-`r212, r > 0,

where R" is equipped with the standard Euclidean metric, as usual.

The convexity condition in Theorem 2.7 is stable under various operations. For
example, image measures of log-concave measures in convex domains in R' under
linear projections R" -' 1[l;' are log-concave with the same log-concavity bound.

Although Theorem 2.3 may be properly modified to yield similarly the case of
dimension one, that is, the case of the circle, it is simpler to deduce this case by
contraction of the Gaussian measure following Proposition 1.2. We may even state
the result on the product space. Let µ1o,11. be the uniform measure on [0.1]" (with
the induced Euclidean metric) that is the product measure of Lebesgue measure
on [0, 1] in each direction. Then µ1o,11 is the image of the canonical Gaussian
measure ly = ry" on R" under the map cp = fi®" where we recall that 4) is the
distribution function of the standard normal distribution in dimension one. Since
(I<PIILip = (21r) -1/2, we may state the following consequence. The constants are not
sharp.

Proposition 2.8. Let µ[o,1],, be a uniform measure on [0, 1]". Then

«([0,11^,µ(o,i]n)(r) < a-"r2, r > 0.

We may also push forward Gaussian measure on the Euclidean unit ball.
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Proposition 2.9. Let 1?' be the Euclidean unit ball in R' equipped with the
normalized uniform measure µL3. . Then

a(L^,µ8
) (r) < c_enr2, r > 0,

where c > 0 is numerical.

Proof. Denote by yp the image measure of the canonical Gaussian measure y on
R' under the 1-Lipschitz map x'--1 IxI. Further, denote by v: R+ -> [0,1] the map
that pushes yp forward to the probability measure d(tn) on [0, 1]. In other words,
for every t E [0, 1],

y({x E 1Rn;v(IxI) < t}) = yp({r > 0;v(r) < t}) = tn.

It is an easy matter to check from the definition that IIvIILip < for some numer-
ical C > 0. Then set

0(x) = fjv(IxI), xE1Rn\{0}.

The image measure of y under cp is /. n and IIWIILip = IIvIILip The conclusion then
follows again from Proposition 1.2.

One may also deduce Proposition 2.9 from concentration on spheres by inte-
gration in polar coordinates together with the fact (see above) that the measure
d(tn) on [0, 1] has normal concentration with rate of the order of n. Concentra-
tion on Euclidean spheres or balls is thus similar, with the same dimensional rate.
Actually, simple volume estimates show that a uniform measure on the Euclidean
unit ball ,tan in high dimension is strongly concentrated on its boundary since for
e. ,at,

VOln(Bn) - (1- e)nvoln(8n) ,., (1 - a-t) vOln(Bn)

as n --> oo. Here vol(.)ndenotes the volume element in 1Rn (Lebesgue measure). The
same holds for large families of convex bodies, including the cube. This observation
intuitively justifies many transfers from the ball to the sphere and conversely.

In the same spirit, one may transfer concentration for Gaussian measures back
to spheres. This is the content of the following proposition, which we state quite
informally.

Proposition 2.10. Concentration for Gaussian measures implies concentration on
spheres.

Proof. The image measure of the canonical Gaussian measure on 1Rn+1 under the
map x r+

I

'
I

is an. Given a 1-Lipschitz function F : Sn -- R, and xo a fixed point
on vn, define G : Rn+1 - R by G(x) = IxI (F(1) - F(xo)) (G(0) = 0). Then
G = F - F(xo) on Sn and IIGIILip << 2ir. Let Mn be a median of x F--, IxI with
respect to y on 1Rn+1 For every r > 0,

l'Y®y({(x,y) E1Rn+1XRn+1;IG(Ixl)

G(IyI)l >-3r})

< y ®y({(x,y); I G(mn) - G(m
a) I > r})

+2y({x'IG(IxI)-G(mn)I >r}).
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Now,

IG(IXI) -G(mn)1<21r

and G(Inn) is n-Lipschitz on I[2n+1 Apply now (2.10) to both G(in) and x'-
to get

l'Y®'Y({(x,y);JG(Ixl)_G(lyl)I >3r})

< 2
e-nanr2/32x2

+ 4 e-"nnr2/sae.

A simple computation shows that Mn - -,Fn. The claim easily follows by Corollary
1.5. 0

We close this section with some discrete examples. We start by a further
isoperimetric inequality, on the discrete cube, and with the corresponding concen-
tration phenomenon. Equip the n-dimensional discrete cube X = {0,1}n with the
normalized Hamming metric

d(x, y) = n Card({xi # yi; i = 1, ... , n}),

x = (xl, ... , xn), y = (y1, ... , yn) E {0,1}n, and with the uniform measure µ(A) _
2-n Card (A), A c X. Extremal sets of the isoperimetric problem

inf{µ(A,.); p(A) = e}

have been identified in [Ha] as hereditary sets A in the sense that if x = (xi, ... , xn)
E A and if y = (yl, ..., yn) E {0,1}n is such that yi < xi for all i = 1, ... , n, then
y E A. For e = 2, such an hereditary set A is given by

{xE{01}7;xiA = <
J

For any integer k > 0, classical binomial bounds (cf. e.g. [MD2]) show that

Q
n ll

µ { x; xi - 2 > k } f < e-2k2/n.
l i= JJJ /

We may thus come to the following concentration result on the discrete cube. With
a weaker numerical constant, this was already observed through (1.24). The nor-
malization of the metric so far is chosen for the matter of comparison with spherical
concentration.

Theorem 2.11. For a uniform measure µ = An on {0,1}n equipped with the
normalized Hamming metric,

c ({o,i}n,µ) (r) <- a-2nr2, r > 0.

In the same spirit, expander graphs may also satisfy some measure concentra-
tion. Let X = (V, E) be a finite graph with set of vertices V and set of edges E.
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Assume that each vertex has at most a fixed number ko of adjacent edges. A subset
A of V has boundary OA consisting of all vertices in the complement of A that are
adjacent to A. Assume now that X satisfies the (linear) isoperimetric inequality

Card(OA) > h Card(A) (2.12)

for some h > 0 and all subsets A of V such that Card(A) < .1Card(V). Then (2.12)
amounts to the expansion property (cf. Section 1.5),

Exp,(1)>1+h>1.

Here p is a normalized counting measure on V and we give the path metric to X
having all edges of unit length. By Proposition 1.13, each such expander graph has
thus exponential concentration.

One class of examples are the Cayley graphs. If V is a finite group and S C V
a symmetric set of generators of V, we may join x and yin V by an edge if x = s-1y
for some s E S. Here ko = Card(S) and the path distance on X = (V, £) is the
word distance in V induced by S.

The isoperimetric inequality (2.12) is actually related to the so-called Cheeger
isoperimetric constant, useful in Riemannian geometry (see Section 3.1). Assume
for simplicity that p is a probability measure on the Borel sets of a metric space
(X, d) such that, for some constant h > 0 and all Borel sets A in X,

µ+(A) > hmin (µ(A),1- µ(A)). (2.13)

This isoperimetric inequality is of weaker type than the spherical and Gaussian type
isoperimetric inequalities. As an easy consequence of Corollary 2.2 with v(r) _

2
f. e-hlzIdx, r E R, µ has an exponential concentration function.

Proposition 2.12. Let p be a probability measure on the Borel sets of a metric
space (X, d) satisfying (2.13) for some h > 0. Then (X, d, p) has exponential
concentration

a(X,d,µ) (r) < e-h" , r > 0.

A functional description of this result and its relation with spectrum will be
provided in Section 3.1.

2.2 Brunn-Minkowski inequalities

Geometric and functional Brunn-Minkoswki inequalities may be used to provide
simple but powerful concentration results.

The classical Brunn-Minkowski inequality indicates that for all bounded Borel
measurable sets A, B in Rn,

vol,a(A + B)1/' > voln(A)1"n + voln(B)l/n (2.14)

where A + B = {x + y; x E A, Y E B} is the Minkowski sum of A and B and
where we recall that vol,,(-) denotes the volume element in R'2. In its equivalent
multiplicative form, for every 0 E [0, 1],

voln(OA+ (1 - 6)B) > voln(A)Bvoln(B)1-B. (2.15)
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Indeed, under (2.14),

vol,,(OA+ (1 - 0)B)1/n > 9voln(A)1/n + (1 - 9)voln(B)1/n

> (voln(A)Bvoln(B)1-0 )
1/n

by the arithmetic-geometric mean inequality. Conversely, if A' = voln(A)-1/nA

and B' = voln(B)-1/nB, then (2.15) implies that voln(OA' + (1 - 9)B') > 1 for
every 0 E [0, 1]. Since

0A'+(1-9)B'= A+B
Voln(A)l/n + voln(B)1/n

for

yoln(A)1/n
voln(A)1/n +voln(B)1/n '

(2.14) immediately follows by homogeneity.
The Brunn-Minkowski inequality may be used to produce a simple proof of

Euclidean isoperimetry by taking B to be the ball with center at the origin and
radius r > 0: then (2.14) shows that

voln(Ar)1/n = voln(A + B) 1/n > voln(A)1/n + v(r)1/n

where we recall that v(r) is the volume of the Euclidean ball of radius r > 0. Since
V1/n is linear,

voln(A)1/n + v(r)1/n = v(v-1(voln(A)) + r)
1/n

so that
v-1(voln(Ar)) > v-1(voln(A)) + r

which amounts to isoperimetry by Proposition 2.1.
The multiplicative form of the Brunn-Minskowski inequality admits a func-

tional version.

Theorem 2.13. Let 0 E [0, 1] and let u, v, w be non-negative measurable functions
on IRn such that for all x, y E 1R' ,

W (Ox + (1 - 9)y) > u(x)BV(y)1-0. (2.16)

Then

(Jvdx)
1-8

fwdx > (fudx)° (2.17)

Applied to the characteristic functions of bounded measurable sets A and B
in Rn, it yields the multiplicative form (2.15) of the geometric Brunn-Minkowski
inequality.

For the sake of completeness, we present a proof of the functional Brunn-
Minkowski theorem using the transportation of measure that we learned from
F. Barthe.
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Proof. We start with n = 1 and then perform induction on dimension. By homo-
geneity, we may assume that fudx = fvdx = 1 and by approximation that u and
v are continuous with strictly positive values. Define x, y : [0, 1] -j R by

J
x(t) y(t)

J u(q)dq = t, f v(q)dq = t.
00

Therefore x and y are increasing and differentiable and

x'(t)u(x(t)) = y'(t)v(y(t)) = 1.

Set z(t) = 9x(t)+(1-9)y(t), t E [0, 1]. By the arithmetic-geometric mean inequality,
for every t,

z'(t) = Ox'(t) + (1 - 9)y'(t) > (x'(t))o(y'(t))1-e. (2.18)

Now, since z is injective, by the hypothesis (2.16) on w and (2.18),

1fwdx > f w(z(t))z'(t)dt

u(x(t))9v(y(t))1-0(x'(t))°(y'(t))1-edt
> J

1

= f 1 [u(x(t))x'(t)]B[v(y(t))y
(t)]1-edt

=1.

This proves the case n = 1. It is then easy to deduce the general case by induction
on n. Suppose n > 1 and assume the Brunn-Minkowski theorem holds in Rs-1.
Let u, v, w be non-negative measurable functions on R'2 satisfying (2.16) for some
9 E [0,1]. Let q E IR be fixed and define u9 : Rr-1 -> [0, oo) by uq(x) = u(x, q) and
similarly for vq and wq. Clearly, if q = Oqo + (1 - 9)q1, qo, q1 E R,

wq(9x + (1 - 9)y) >
uq(x)evq(y)1-9

for all x, y E Rn-1. Therefore, by the induction hypothesis,

/ \B/ 1-e
vgdx)fn-1 wgdx > I fR.-

1 R
ugdx I I In-'

Finally, applying the one-dimensional case shows that

fwdx = f (fRn-1
wgdx)

>
(Judx)°(fvdx)'°

which is the desired result. Theorem 2.13 is established.

Brunn-Minkowski inequalities may be used to produce concentration type in-
equalities, and to recover in particular the application of Theorem 2.7 to concen-
tration. We however start with a milder result for log-concave measures.
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On R' (for simplicity), we say that a Borel probability measure p is log-concave
if for any Borel sets A and B in R', and every 0 E [0, 1],

µ(9A+ (1 - 9)B) > p(A)°p(B)1-B. (2.19)

If p has strictly positive density a-U, p is log-concave if and only if U is convex. If
1C is any convex body of finite volume in R", the uniform normalized measure on
IC defined by

pz(A) = vol,a(A l1C)
voln (1C)

is log-concave by the Brunn-Minkowski inequality.
The following is a concentration result for homothetics.

(2.20)

Proposition 2.14. Let p be log-concave. Then, for all convex symmetric sets A
in R" with measure p(A) = a > 0,

1 - (r+1)/21-p(rA)<a( )
a

a

for every r > 1. In particular, if a > 2,

limsup
1

log (1 - p(rA)) < 0.r-oo r

Proof. Since A is convex and symmetric, one may check that

Rn\AD r2 (R'\(rA))+r+1 A.

Then, by (2.19),

1 - µ(A) > (1 - p(rA))2/(r+1)µ(A)(r-1)/(r+1)

from which the result follows.

If F on R" is non-negative, convex and symmetric, and if A = {I FI < m} with
µ(A) > 4 for example, then we get from Proposition 2.14 that for every r > 1,

p({IFI > mr}) < e-r12.

Integrating in r shows that for some numerical constant C > 0, IIFIIq < Cqm for
every q > 1 where II

- IIq is the Lq-norm with respect to A. Since we may choose
m = 411F111, it follows that, for some C > 0 and all q > 1,

IIFIIq < Cq IIF111. (2.21)

This result applies in particular to the normalized Lebesgue measure pK (2.20) on a
convex body 1C. The reverse Holder inequality (2.21) is rather useful in the geometry
of convex bodies. For example, if 1C = [- 2, +11" ]'a and F(x) = II 1 x$vi II , x =
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(x1,. .. , x,) E R', for vectors v1,.. . , vn in some normed vector space (E, ), the
preceding yields

n

xiV%

(j_2 2 t=1

q 1/q

dx) < Cq Idx. (2.22)

These inequalities are part of the Khintchine-Kahane inequalities (see Section 7.1).
We now consider strict log-concavity conditions. Assume indeed that p is a

probability measure on Rn with smooth strictly positive density a-U with respect
to Lebesgue measure such that for some c > 0 and all x, y E Rn,

U(x) + U(y) - 2U(x 2 yl
> 4 x - y12. (2.23)

A typical example is of course the canonical Gaussian measure y on Rn for which
c = 1. Given a bounded measurable function f on Rn, apply then the functional
Brunn-Minkowski Theorem 2.13 to

u(x) = v(y) = e-f(v)-U(&) w(z) = e-U(z),

where we define, following (1.27), Qj, c > 0, as the infimum-convolution

Qj (x) = yinf [f (y) + 2
IX - y12] , xER',

with cost c(x, y) =
z

Ix - y12, (x, y) E Rn x Rn. By definition of Qc f and the
convexity hypothesis (2.23) on U, condition (2.16) is satisfied with 9 = a so that

1 > feI2fdpfe_.dp.

We then make use of Proposition 1.18 to obtain a first alternative argument for the
concentration results of Corollary 2.6 and Theorem 2.7 which were deduced there
from isoperimetry.

Theorem 2.15. Let dp = e-Udx where U satisfies (2.23). Then,

aµ (r) < 2 e `" 214, r> 0.

In particular
a.y (r) < 2 e-'

2
/4, r> 0,

for the canonical Gaussian measure y on R.

Note that the constants provided by Theorem 2.15 are not quite optimal. The-
orem 2.15 applies similarly to arbitrary norms 11 11 on R' instead of the Euclidean
norm in (2.23). Concentration then takes place with respect to the metric given
by the norm. We may also work with p-convex potentials U, p > 2, satisfying for
some c > 0 and all x, y E JR,

U(x) + U(y) - 2U(x 2 U) > 2p lix - yil , (2.24)
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to produce concentration of the type

aµ(r) < 2e-cp'P, r > 0,

for some cp > 0 only depending on p > 2.

In the last part of this section, we discuss how Brunn-Minkowski inequalities
may be further used to determine concentration properties for uniform and surface
measures on the unit ball of uniformy convex spaces, extending the case of the
standard sphere.

A normed space X = (R', is said to be uniformly convex if for each
e > 0 there is 8 = 8(e) > 0 such that whenever X, y E X with IIxII = IIyII = 1 and
IIx - yII> -e, then

1 - IIx + yII > 8(e).
2

The modulus of convexity of the normed space X is thus defined as the function of
e,0<e<2,

8x(e)=inf{1-11x2yll'IIxii=IIyII=1, IIx-yIl

LP-spaces, 1 < p < oo, are uniformly convex with modulus of convexity of power
type, 6(e) > Cema"(p,2) for every e. Further examples are discussed in [Li-T].

Now let X be uniformly convex and let B be the unit ball of (X, II - II). Denote
by pg the normalized uniform volume element on B. Given two non-empty sets
A, B C B at distance e E (0, 1), we have by definition of the modulus of convexity
that

2 (A + B) C (1- 8x(e))B.

Hence, by the Brunn-Minkowski inequality (2.15),

pi" 2(A) µg 2(B) < (1 - 6x(e))n.

Taking for B the complement of AE, we get,

pet (1 - 8x(e))2n1 -
1 (2.25)

> 1 - e-2n5x (e)
µB (-A)

Here we recover in particular concentration on the Euclidean unit ball in Rn (Propo-
sition 2.9).

This measure concentration result for p13 may easily be transferred to the
normalized surface measure pe13 of B with respect to itself, defined by

µag (A) = µL3( U tA) , Ac 8B. (2.26)
o<t<i

Indeed, given a measurable set A on 8B, consider

r= U to C B.
1/2<t<1
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Clearly pa(l') > 1 p0B(A) while rE C Uo<t<1 tA2E. Therefore, as a consequence of
(2.25), we obtain the following result that covers in particular the standard sphere
S" itself.

Theorem 2.16. Denote by peg the surface measure as defined in (2.26) on the
boundary of the unit ball 13 of a uniformly convex space X = (R', I II) with
modulus of convexity 6x. Then,

4e-2n6x(r/2) r > 0.

As we have seen, 6(e) > Cem,(p,2) on LP-spaces, 1 < p < oo. Therefore, if 13p
is the ball in R' for the norm

n 1/p

IxIp-1 Ixilp/ x=(xl,...,xn)ERn'
a=1

and if p is normalized Lebesgue measure on 8, or its boundary, then

a(L3 ,l I P,µ) (r) < Ce-C"rP, r > 0,

for2<p<ooand
ObsDiamµ (f p ,

I ' Ip) = O(n 1/p)

while for 1 < p < 2,

and

Ce-,r2, r>0'
(2.27)

ObsDiamµ(1p, I Ip) = O(n-1/2).

The functions x '- Ixlp are examples of p-convex potentials, p > 2, in the sense
of (2.24) (or more generally x H IIxIIp for a norm II ' II with modulus of convexity
of power type p > 2; cf. [Li-T]). Therefore, considering the product probability
measure on Rn when each coordinate is endowed with the distribution cpe-IxlPdx,
the preceding may also be deduced from the analogues of Propositions 2.9 and 2.10
for this measure. This is the argument outlined at the end of Chapter 4 to prove
that (2.27) also holds in this form for p = 1.

2.3 Semigroup tools

In this section, we present some rather elementary semigroup arguments to reach
the full concentration properties on spheres and manifolds with strictly positive
curvature as well as for Gaussian measures and strictly log-concave distributions
derived in Section 2.1 from sharp isoperimetric inequalities. The functional ap-
proach we adopt, relying only on Bochner's formula, allows a neat and tireless
treatment of the geometric Ricci curvature.

We start with the case of the sphere, or more generally of a Riemannian man-
ifold with a strictly positive lower bound on the Ricci curvature. We then describe
how the formal argument extends. Thus, as in Section 2.1, let (X, g) be a compact
connected smooth Riemannian manifold of dimension n (> 2) equipped with the
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normalized Riemannian volume element dp = v where V is the total volume of X.
Denote by c = c(X) the infimum of the Ricci curvature tensor over all unit tangent
vectors, and assume that c > 0. We use Laplace's bounds to establish the following
result. By Proposition 1.7, it shows that (X, g, p) has normal concentration

a(X,9.,) (r) < 2
e-C,.2/s, r > 0.

Proposition 2.17. Let (X, g) be a compact connected smooth Riemannian mani-
fold of dimension n (> 2) equipped with the normalized Riemannian volume element
dp = v such that c(X) > 0. For any 1-Lipschitz function F on X, and any r > 0,

p({F > fFdp + r}) < e-°''2/2

Proof. By Proposition 1.14, it is enough to show that

E(X,9,µ) (A) < e\2/2c (2.28)

for every A > 0 where we recall that E(X,9,µ) is the Laplace functional of p defined
in Section 1.6.

Let V be the gradient on (X, g) and 0 be the Laplace-Beltrami operator.
Bochner's formula (see [G-H-L], [Cha2], etc.) indicates that for every smooth func-
tion f on X,

2 A(iVfi2) - Vf. V(Af) = IlHessfll2 +Ric(Vf, Vf) (2.29)

where ll Hess f 112 is the Hilbert-Schmidt norm of the Hessian of f and Ric is the
Ricci tensor. By the hypothesis,

2 o(iVfl2) - Vf. V(Of) > c lof l2. (2.30)

This is the only place where Ricci curvature is really used for the concentration
result of Proposition 2.17. We now take (2.30) into account by functional semigroup
tools.

Consider the heat semigroup Pt = eta, t > 0, with generator the Laplace
operator 0 on X (cf. [Yo], [Davie2], [F-O-T], etc.). Given a (regular) real-valued
function f on X,

u = u(x, t) = Pt f (x), x E X, t > 0,

is the solution of the initial value problem for the partial differential (heat) equation

(2.31)

with f.
Let f be smooth on X. It is an immediate consequence of (2.30) that, for every

t>0,
IVPtfI2 < e-2ctpt(iVfI2). (2.32)
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Indeed, let t > 0 be fixed and set ?)(s) = e-Zc8Ps(IOPt_s f I2) for every 0 < s < t.
By (2.31),

01(s) = 2e-acs [-cps
(IOPt_sf I2)

+P8(zA (IOPt-sfl2) -VPt_sf V(APt

Hence, by (2.30) applied to Pt_s f for every s, 7P is non-decreasing and (2.32) follows.
Now, let F be a mean zero 1-Lipschitz function on (X, g) and let A > 0.

We may and do assume that F is smooth enough for what follows. In particular
IDFI < 1 almost everywhere. Set W(t) = f eAPtFdp, t > 0. Since Q(oo) = 1 and
since, by (2.32),

IVPtFI2 < e-2ct,

we can write for every t > 0,

'Y(t) = 1 - f1i'(s) ds

=1-A f't
(fz.(PsF)e'"'dP)ds

=1+A2 f(f IVPsFI2eaP.Fdp)ds
//

oo
< 1 + A2 f a-2cs W (s) ds

t

where we used integration by parts in the space variable. By Gronwall's lemma,

T(0) = f eaFdµ < ea2/2c

which is (2.28), at least for a smooth function F. The general case follows from a
standard regularization procedure. The proof is complete.

The principle of proof of Proposition 2.17 applies similarly to further examples
of analytic interest, which include the concentration result of Theorem 2.7 and
provide an alternative description of the conclusion of Theorem 2.15, which was
based on the Brunn-Minkowski approach. We only outline the argument. Consider
indeed, a Borel probability measure p on R', with density a-U with respect to
Lebesgue measure, where U is a smooth function on R'. On U we adopt some
convexity assumption that corresponds to the Ricci curvature lower bound in a
Riemannian context. Suppose indeed that, as in Theorem 2.7, for some c > 0,
HessU(x) > c Id uniformly in x E R. A typical example is the Gaussian density
U(x) = Ix12/2 (up to the normalization factor) for which c = 1. Consider then
the second order differential operator L = A - VU V on R' with invariant and
symmetric measure p. Integration by parts for L reads as

ff(_Lg)dp = fyi. Vg dp (2.33)
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for smooth f, g. It is then a mere exercise to check the analogues of Bochner's
formula (2.29) and of (2.30), namely

2 L(VfI2) - Vf - V(Lf) = IlHessfII2+Hess (U)(Vf,of)

and, by the convexity assumption on U,

2L(VfI2)-Vf-V(Lf)>cIVfI2. (2.34)

Following then the standard Hille-Yoshida theory of self-adjoint operators [Yo], we
may consider, under mild growth conditions on U, the invariant and time reversible
semigroup (Pt)t>o with infinitesimal generator L (cf. also [Du-S], [Fr], [F-O-T],
Daviel], [Roy], etc., and below for a probabilistic outline). Therefore, in[ particular,
e= LPt f . Strict convexity of U easily enters this framework. For example, in
the case of the canonical Gaussian measure y on R'2, L f (x) = A f (x) - x V f (x),
x E R'2, for f smooth enough, and the semigroup (Pt)t>o with generator L admits
the integral representation

P tf(x) = f f (e-tx + (1 - e-2t)1/2y)dy(y), x E R , t > 0.
n

Now (2.34) may be used exactly in the same way to show the corresponding com-
mutation inequality (2.32) for (Pt)t>o. The same proof as the one of Proposition
2.17 thus leads to the following result.

Proposition 2.18. Let dµ = e-Udx be a probability measure on the Borel sets
of R' such that, for some c > 0, Hess U(x) > c Id uniformly in x E R. Then, for
every bounded 1-Lipschitz function F : R' - R and every r > 0,

µ({F > f Fdµ + r}) < e-ore/2

Together with Proposition 1.7, we thus find again the concentration properties
of µ derived from isoperimetry in Theorem 2.7 or from Brunn-Minskowski inequal-
ities in Theorem 2.15.

As a consequence, if y is the canonical Gaussian measure on R' with density
IX12

/2 with respect to Lebesgue measure, for every 1-Lipschitz function
F on R" and every r > 0,

y({F > f Fdy + r}) < e-,.2/2, r > 0. (2.35)

This inequality must be compared with the corresponding inequality for the median
in (2.10). It extends similarly the case of linear functionals.

An alternative proof of (2.35) may be provided by a beautiful simple argument
using Brownian integration. For every smooth function f on R , write

1

f (W(1)) - IEf (W(1)) = f
VP1-tf

(W(t)) dW(t) (2.35)
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where (W(t))t>o is Brownian motion on R' starting at the origin defined on some
probability space (I ,.F, IE) and where (Pt)t>o denotes its associated semigroup (the
heat semigroup), with the probabilistic normalization (that is, with generator a A).
Note then that the above stochastic integral has the same distribution as /3(T) where
(/3(t))t>o is a one-dimensional Brownian motion and where

T = Jot I V Pi-tf (W (t))
12

dt.

Therefore, for every 1-Lipschitz function F, T < 1 almost surely so that, for all
r>0,

P({F(W(1)) - IEF(W(1)) > r}) < P({m<a<x Q(t) > r})

2
e-x2/2

°°= f
r 27f

/2
< e_r2

Since W(1) has distribution y, this is thus simply (2.35).
As time of Brownian motion changes, continuous martingales satisfy similarly

sharp deviation inequalities. Assume for simplicity that M = (Mt)0<t<1 is a real-
valued continuous martingale on some filtered probability space (f J7, Ft, ]P) sat-
isfying the usual conditions (cf. [R-Y)). Denote by ((M, M)t)0<t<1 its quadratic
increasing process and assume that (M)1 < D2 almost surely. Then, for every
r>0,

IP({M1 > E(Mi) + r}) < IP({ max ,Q(t) > r})
0<t<(M,M)1

< IE({0 m DZ /3(t) > r})

so that

IP({M1 > E(Ml) + r}) < e-r2/2D2. (2.37)

Alternatively, and assuming that M0 = 0 for simplicity,

t-12eAM A ER t>0

is a martingale with expectation 1. Hence, for any A, r > 0,

IP({M1 > r}) < P({AM1 -
a

(M, M)1 > Ar - 22 D2})

<
e-ar+,\2D2/2

from which we recover (2.37) by optimizing in A.

Related to the representation formula (2.36), a somewhat analogous method
may be developed in the setting of general Markov processes under the technique of
forward and backward martingales. For simplicity, suppose that (660 is a strong
Markov process on some probability space with continuous paths taking its values
in a locally compact space X with countable base, that it is time homogeneous,
and that for each x E X, there is a probability measure l' on SZ = C([0, oo), X)
corresponding to the law of conditioned to start with Co = x. More generally,



2.3 SEMIGROUP TOOLS 43

let IP" be the law of where the law of 0 is a Radon measure P. Such a process
induces a Markov semigroup (Pt)t>o on bounded Borel functions defined by

Ptf (x) = E(f (fit) I o = x) = Ex (f (et)), t > 0, x E X.

Because of the Markov property, PsPt = P3+t.
Suppose for regularity purposes that Pt : Cb(X) -> Cb(X). If (Pt)t>o has

stationary (not necessarily finite) measure u j(that is, lPµ({Xt E A}) = µ(A) for
all t or equivalently f Pt f dµ = f f dµ), then Pt maps LP (µ) into itself for every
1 < p < oo. We can thus express Pt = etL, where L is a uniquely defined closed
(unbounded) operator from LP -+ LP as well as from Cb(X) -+ Cb(X) known as the
infinitesimal generator of (cf. [Yo], [S-V], [I-W], [F-O-T]).

Now let f E D(L) fl Cb(X) where D(L) is the domain of L. Ito's formula of
martingale characterization expresses that

tf (et) - f (G) = A + J Lf (e3)ds (2.38)
0

where Mt = Mt '£ is a P"-continuous local martingale whenever L f is in L1(µ) and
a P'-local martingale for any f satisfying Lf E Cb(X). In concrete situations, the
operator L is frequently the closure of a second order elliptic operator. This is the
situation we encountered above with the Laplace-Beltrami operator on a manifold
(X, g). In these geometric cases, one can usually identify the quadratic variation
process (M, M) t of M as

t
(M,M)t = f IVf(es)12ds.

0

When the operator L is selfadjoint, the adjoint semigroup is the same as the
original one. This analytic remark has stochastic counterparts. The processes 1-t
and t are identical in law when started with initial distribution A. We say that
the process is reversible with respect to µ. In particular, Mt At is also a
martingale (in the filtration Ft = tr(ei. , s < t)). So, by (2.38),

tf(et) =f(eo)+Mt+J Lf(e8)ds
0

and _ f1-t

f (et) = f (e1) + At + J Lf (e1-s)ds.
0

Taking the two expressions together,

and thus

(Mt + Ml-t) + Lf (e8)ds,
fo

1

df (et) =
2

(dMt + dM1_t).
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Here the most useful form is

f(w -f(ro)=M1-M1

where M and M are both martingales with

d(M,M)i = d(M,M)1-t =

It then follows from (2.37) that whenever F is 1-Lipschitz, for every r > 0,

.F``({IF(e1) - I _> r}) <
2e-'2/8

To make use of this result, taking, for example, F to be the distance function to
some fixed set A shows that

Fµ E A, d(e1, A) > r}) < 2 e-' 2/s

for every r > 0. While such a bound does not require any geometric assumptions
on curvature as in previous analogous results, its application is conditioned by the
initial information o E A that is handled by geometric arguments involving volume
of balls and curvature. Further applications in probability and potential theory are
discussed in [L-Z], [Tak], [Ly].

Notes and Remarks

The isoperimetric inequality on the sphere goes back to P. Levy [L6] and E. Schmidt
[Schmi]. A short self-contained proof is presented in the appendix of [F-L-M]. An
alternative method relying on two-point symmetrization is used in [B-T] and pre-
sented in [Beny], [Sche5]. Isoperimetric inequalities are discussed in [B-Z], [Os], etc.
Levy's original idea [Le] was extended by M. Gromov [Gromi] (see [M-S], [Grom2],
[G-H-L]) as a comparison theorem for Riemannian manifolds with a strictly positive
lower bound on the Ricci curvature (Theorem 2.4). Further geometric applications
of Theorem 2.4 are discussed in [Grom2]. Concentration for Grassmann and Stiefel
manifolds, orthogonal groups, and first spectrum applications go back to the pio-
neering works [Mil], [Mi3] by V. Milman. The Gaussian isoperimetric inequality
(Theorem 2.6) is due independently to C. Borell [Bor2] and V. N. Sudakov and
B. Tsirel'son [S-T] as limiting spherical isoperimetry. An intrinsic proof using
Gaussian symmetrization is due to A. Ehrhard [Eh] while S. Bobkov gave in [Bob4]
a functional argument based on a two-point inequality and the central limit theo-
rem. The paper [Bor2] develops the infinite dimensional aspects of the Gaussian
isoperimetric inequality (see [Li], [Bog], and for applications, [Le3]). Theorem 2.7
is established in a more general context in [Ba-L] via the functional formulation of
[Bob4] (see also [Bob3]) with the semigroup tools of Section 2.3. This result may also
be proved more simply by the localization lemma of L. Lovasz and M. Simonovits
[L-S] as developed in [K-L-S] and explained in [Grom2] (using the separation ideas
of [Gr-M21). See also [Ale]. Proposition 2.8 was observed in [I-S-T] and [Pisl] and
Proposition 2.10 in [M-S] (see also [Grom2]). Theorem 2.11 is a direct consequence
of the solution of the isoperimetric problem on the discrete cube by L. H. Harper
[Ha] (for a simple proof see [F-F] and for a far reaching generalization [W-W]).
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Historical aspects of the Brunn-Minkowski theorem are discussed in [DG]. To
its functional version, the names of R. Henstock and A. MacBeath, A. Prekopa,
L. Leindler, H. Brascamp and E. Lieb, C. Borell, etc. should be associated. Per-
tinence of Brunn-Minkowski inequalities to measure concentration has a long run
(see [M-S]). Proposition 2.14 is due to C. Borell [Borl]. Improved (and optimal)
estimates are obtained in [L-S] by means of the localization method for the uniform
distribution on the Euclidean ball and extended in [Gu] to all log-concave measures.
Inequality (2.21) is fruitful in the analysis of high dimensional convex sets and was
extended to multilinear functions in [Bou] (see also [Bob7]). Recent developments
on levels of concentration with respect to a given class of functions with new ge-
ometric applications to concentration of random sets in R" with respect to linear
functions are initiated in [Gi-M2] (see also [Mi7]). For a recent application of con-
centration to the central limit theorem for convex bodies, see [A-B-P]. Inequality
(2.22) is part of the Khintchine-Kahane inequalities [Ka] and will be investigated
more precisely in Section 7.1.

Cheeger type isoperimetric inequalities for log-concave measures are studied
in [Bobs]. The proof of Theorem 2.15 is essentially due to B. Maurey [Mau2]
(see also [Schmul], [B-G], [Bo-L3]). Extensions of the functional Brunn-Minkowski
theorem to Riemannian manifolds were described recently in [CE-MC-S] and may
be used to recover the concentration results of Theorem 2.4. Theorem 2.16 is due
to M. Gromov and V. Milman [Gr-M2], the simple proof taken from [AR-B-V].
See also [Schmul], [Bo-L3]. More on concentration in LP-spaces may be found in
[Sche3], [Sche5], [S-Z1], [S-Si] (see also Chapter 4).

The semigroup arguments of Section 2.3 were developed originally for logarith-
mic Sobolev inequalities by D. Bakry and M. Emery [B-E] (see [Baki], [Bak2]) and
their adaptation to concentration inequalities was noticed in [Lel]. Propositions
2.17 and 2.18 are taken from [Lel] (see also [Le5]). General diffusions and Lips-
chitz functions with respect to the carre du champ operator are treated similarly
[Bakl], [Le6]. The discrete analogue for non-local generators on graphs is studied
in [Schmu3] by appropriate notion of curvature of a graph (with illustrations).

Further semigroup arguments relying on logarithmic Sobolev inequalities and
covariance identities are developed in the same spirit in Chapter 5.

The Brownian proof of (2.35) is due to I. Ibragimov, B. Tsirel'son and V. Su-
dakov [I-T-S], and was unfortunately ignored for a long time. The representation
formula (2.36) is a particular form of the important Clark-Ocone formula in stochas-
tic analysis [Mal], [Nu] (and may be used to produce concentration inequalities on
more general path spaces).

The so-called forward and backward martingale method was put forward in
the paper [L-Z], and further developed by M. Takeda [Tak]. The exposition here
is taken from the notes [Ly] by T. Lyons to which we refer for applications to
geometric potential theory.





3. CONCENTRATION AND GEOMETRY

In this chapter, we discuss the concept of Levy families and its geometric counter-
parts motivated by the examples presented in the preceding chapter. Following the
sphere example, the Levy families describe asymptotic concentration as the dimen-
sion goes to infinity. In the first section, we describe how spectral properties entail
exponential concentration, both in continuous and discrete settings. Applications
to spectral and diameter bounds are the topic of Section 3.2. In particular, with the
tool of concentration, we recover Cheng's upper bound on the diameter of a Rie-
mannian manifold with non-negative Ricci curvature. We then present and study
the Levy families. Topological applications to fixed point theorems emphasized by
M. Gromov and V. Milman are further motivation for this geometric investigation.
The last application is the historical starting point of the development of the con-
centration of measure phenomenon. V. Milman [Mi3] indeed used concentration
on high dimensional spheres in the early 1970's to produce an inspiring proof of
Dvoretzky's theorem about almost spherical sections of convex bodies. We present
this proof below with the help of Gaussian rather than spherical concentration as
put forward in [Pis2].

3.1 Spectrum and concentration

In this section, we show how spectral properties may yield concentration properties.
Assume we are given a smooth compact Riemannian manifold X with Riemannian
metric g. Denote by V the total volume of X and by dµ = v the normalized
Riemannian volume element on (X, g). In Chapter 2, we described normal con-
centration properties of µ under the rather stringent assumption that the Ricci
curvatures of (X, g) are strictly positive. In this section, we bound the concentra-
tion function a(x,9,µ) by the spectrum of the Laplace operator A on (X, g). More
precisely, denote by Al = 11(X) > 0 the first non-trivial eigenvalue of A. It is well
known (cf. [Chal], [G-H-L]) that Al is characterized by the variational inequality

Al Varµ(f) < f .f(_Af)dµ = J IV f I2dµ (3.1)

for all smooth real-valued f's on (X, g) where

Varµ(f) = f f2dµ- (Jfdii)2

is the variance of f with respect to µ and where IVfI is the Riemannian length
of the gradient of f. The historical such inequality (3.1) is the so-called Poincare

47
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inequality on the circle (with Al = 1), which is established by comparing, for a
mean zero function f, the L2-norms of f and f' along the trigonometric basis.

Theorem 3.1. Let (X, g) be a compact Riemannian manifold with normalized
Riemannian measure µ. Then, (X, d, p) has exponential concentration

a(x,9,µ) (r) <-
e-rJX-113, r>0'

where Al > 0 is the first non-trivial eigenvalue of the Laplace operator A on (X, g).

Proof. Let A and B be (open) subsets of X such that d(A, B) = e > 0. Set
µ(A) = a, µ(B) = b. Consider the function f given by

f (x) =
1

a
1

e
( 1

a
+b') min (d(x, A), e), x E X

(so that f = 1/a on A and f = 1/b on B). By a simple regularization argument, we
may apply (3.1) to this f. We need then simply evaluate appropriately the various
terms of this inequality. Clearly, f is Lipschitz, V f = 0 on A U B and

'vu1 a+b
almost everywhere. Therefore

f jVfj2dp:5
1

1

(1

1 +
1)2(l -a-b).

On the other hand,

Varµ(f) = f (f - ffdµ)2dµ

>

fA (f - ffdµ)2dµ+fB (f - ffdµ)2dµ

>a+

It thus follows from (3.1) that

Ale2<(1 +b)(1-a-b)< 1-aab-b

so that
b< 1-a < 1

I+ .1e2a - 1 + .1e2a

Choosing for A the complement of BE and assuming that u(B,) = 1 - a _< 2 shows
that

µ(B.) ? (1 + A2 2)µ(B).

In other words, the expansion coefficient of µ on (X, g) satisfies

aA16
>1.
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Set then e > 0 so that Ale 2 = 2 and the conclusion follows from Proposition 1.13.
The numerical constant 3 is not sharp at all.

The proof of Theorem 3.1 is complete.

On the standard n-sphere S' , Al = n [Chal] so that Theorem 3.1 yields a
weaker concentration than Theorem 2.3. By Lichnerowicz's lower bound Al > n% i
([G-H-L], [Cha2]) on a compact Riemannian manifold (X,g) with dimension n and
strictly positive lower bound c(X) on its Ricci curvature, the same comment applies
with respect to Theorem 2.4. However, Theorem 3.1 holds true on any compact
manifold.

It is a simple yet non-trivial observation (see Corollary 5.7 below for a proof)
that A1(X x Y) = min(A1(X), Al (Y)) for Riemannian manifolds X and Y. Theorem
3.1 therefore provides a useful tool to concentration in product spaces. In particular,
if X" is the n-fold Riemannian product of a compact Riemannian manifold (X, g)
equipped with the product measure p , then

ObsDiamµn. (X") = 0(1).

This is in contrast with the Cartesian product for which we observed in (1.25)
that ObsDiamµn (X"`) is essentially of the order of v fn-. This observation is the
first step towards dimension free measure concentration for P2-metrics that will be
investigated deeply in Chapter 4 and subsequent.

The proof of Theorem 3.1 generalizes to probability measures µ on a metric
space (X, d) that satisfies a Poincare inequality

Varµ(.f) <_CJ IVfI2dµ (3.2)

with respect to some (generalized length of) gradient IV f1. One may for example
consider, given a locally Lipschitz function f on (X, d), the length of the gradient
of f at the point x E X to be

I Vf I (x) = lim sup
If (x) - f W l

y-x d(x, y)

Note that if a on (X, d) satisfies a Poincare inequality (3.2) with constant C, the
pushed forward measure µ,o by a 1-Lipschitz map W : (X, d) --+ (Y, S) also satisfies
(3.2) with constant C. Eigenfunction expansions and decompositions along or-
thogonal polynomials are a fruitful source of examples of measures satisfying (3.2)
(see for example [Kl], [K-L-O], etc. and the references therein). For example, the
Hermite basis of the L2-space over the the canonical Gaussian measure y on R'
shows that y satisfies (3.2) with C = 1. Rather than spectrum, we actually use
Poincare inequalities towards concentration through the energy f I V f I2dµ. The
next statement is an immediate adaptation of Theorem 3.1.

Corollary 3.2. Assume that µ is a probability measure on the Bore] sets of a
metric space (X, d) such that for some C > 0 and all locally Lipschitz real-valued
functions f on (X, d),

Vary (.f) <_ C f I V f I2 dµ.
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Then

a( X,9.µ) (r) < en/', r > 0.

Theorem 3.1 has an analogue on graphs to which we turn now. It is convenient
to deal with finite state Markov chains.

Let X be a finite or countable set. Let II(x, y) > 0 satisfy

EH(x,y)=1
yEX

for every x E X. Assume furthermore that there is a symmetric invariant prob-
ability measure u on X, that is, II(x, y)µ({x}) is symmetric in x and y, and
F,x II(x, y)µ({x}) = µ({y}) for every y E X. In other words, (II, µ) is a reversible
Markov chain. Define

Q(f,f) _ [f(x) - f(y)]211(x'y)a({x}).
x,yEX

We may speak of the spectral gap, or rather the Poincare constant, of the chain
(II, p) m the largest Al > 0 such that for all f's,

A1Varµ(f) < Q(f,f)

Set also
111f111002 = 1 sup E If(x) - f (y)

j211(x'
y).2 -EX yEX

The triple norm III III may be thought of as a discrete version of the Lipschitz
norm in the continuous setting. Although it may not be well adapted to all dis-
crete structures, it behaves similarly for what concerns spectrum and exponential
concentration. Theorem 3.3 below is the analogue of Theorem 3.1 in this discrete
setting. We however adopt a different strategy of proof best adapted to this case.
The argument may be applied similarly to yield alternative proofs of both Theorem
3.1 and Corollary 3.2.

Theorem 3.3. Let (II, y) be a reversible Markov chain on X, as before, with a
spectral gap Al > 0. Then, whenever IIIFIII,, < 1, F is integrable with respect to
p and for every r > 0,

p({F > f Fdp + r}) < 3 e-'

Proof. Let F be a bounded mean zero function on X with IIIFIII. < 1. Set
A(,\) = fed, A >_ 0. We apply the Poincare inequality to eAF/2. The main
observation is that

Q(e'F/2, eaF/2) <_ 111171 II 1 eAFda. (3.4)
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Indeed, for A > 0, by symmetry,

[eAF(x)/2 - e>F(y)/2] 2II(x, y)µ({x})Q(eAF/2, eAF/2) = 2 1:
x,yEX

_ E [eAF(x)/2 - eAF(y)/2] 21I(x, y)µ ({x})
F(y)<F(x)

22 [F(x) - F(y)] 2eaF(x)II(x, y)µ({x})
x,yEX

from which (3.4) follows by definition of IIIFIII.. Therefore,

A(A) - A(2)2 < Al A(A),

that is, for every A < -1 i

1
A(A)

1- \2/A1 A \ 2

,\)2.

Applying the same inequality for \/2 and iterating, yields, after n steps,

n-1 2k 2n

A('\) (1- \ /4kA1 A (2n
k=o

Since A(,\) = 1 + o(,\), we have that A(A/2n)2" -> 1 as n - 0. Therefore,

A(,\) < 1(1 - A2/4kAi)
k=0

51

where the product converges whenever \ < X1. The proof of the proposition is
easily completed. Indeed, setting for example A = a -1 yields that

A (
1) = feTF/2dµ < 3.

2

By Chebyshev's inequality

p({F > r}) < 3e_/'2

for every r > 0. As in Proposition 1.7, the result is easily extended to arbitrary F
with IIIFIII00 < 1 which completes the proof.

We may define a distance on X associated with I II ' II I00 as

d(x, y) = sup [f (x) - f (y)], x, y E X.
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Then, together with Proposition 1.7, Theorem 3.3 indicates that

a(x.d,µ) (r) < 3 e-rte/4, r> 0. (3.5)

The distance most often used is however not d but the combinatorial distance d,
associated with the graph with vertex-set X and edge-set {(x, y) : II(x, y) > 0}.
This distance can be defined as the minimum number of edges one has to cross to
go from x to y. Equivalently,

d.(x, y) = sup [1(x) - f (y)]
11vf11-<1

where
Il Vf Iloo = suP { I f (x) - f (y) I ; II(x, y) > 0}.

Now since Ey ll(x, y) = 1,

Illflll00<-2IIVfll00.

In particular, d, < d// and thus (3.5) also holds for d,.
As an example, let X = (V,.6) be a finite connected oriented graph with

symmetric set of vertices V and set of edges E. Equip V with the normalized
uniform measure and the combinatorial metric d,. We may consider 11(x, y) = x
whenever x and y are adjacent in V, and 0 otherwise, where k(x) is the number of
neighbors of x. Consider the quadratic form

Q(f, f) _ [f (x) - f (y)]
2

x-v

where the sum runs over all neighbors x - y in X. Since X is connected, Q(f, f) > 0
for all f's and is zero whenever f is constant. Let Al > 0 be the first non-trivial
eigenvalue of Q, that is, of the Laplace operator on X. As a consequence of Theorem
3.3, we have the following result.

Corollary 3.4. Let ko = max{k(x); x E V} < oo. Then

a(x,d.,µ) (r) < 3 e-r a, /ioko, r > 0.

The most important examples of applications of the preceding corollary are
the Cayley graphs. Recall that if V is a finite group and S C V a symmetric set
of generators of V, we may join x and y in V by an edge if x = s-1y for some
s E S. The path distance on X = (V, E) is the word distance in V induced by S
and ko = Card(S).

Spectral and Poincare inequalities have an L' counterpart related to Cheeger's
isoperimetric constant that describes the correspondence between the previous con-
centration results and the isoperimetric approach of Proposition 2.12. If for example
(X, g) is a compact Riemannian manifold with normalized Riemannian measure Fz,
denote by h > 0 the best constant such that

hf If - f fdyl dµ <_ JIVfIdi
(3.6)
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for all smooth functions f on (X, g). Cheeger's inequality [Chee] indicates that

2

Al > 4

Applying actually (3.6) to characteristic functions of sets amounts to

A+(A) > 2h p(A) (I - µ(A)),

which is close to the isoperimetric inequality (2.13). By Cheeger's inequality (3.7),
Theorem 3.1 thus covers the isoperimetric approach in this case, producing similar
exponential concentration under weaker geometric invariants. The same comments
are more or less in order on graphs (cf. [Al-M], [Alon], [B-H-T]).

3.2 Spectral and diameter bounds

On the basis of the results of Section 3.1, we investigate here some relationships
between spectral and diameter bounds.

Assume we are given a smooth complete Riemannian manifold (X, g) that is
not necessarily compact but with finite volume V. We denote as usual by dp = v
the normalized Riemannian volume element. Denote by Al = Al (X) the first non-
trivial eigenvalue of the Laplace operator on (X, g).

If B(x, r) is the (open) ball with center x and radius r > 0 in (X, g), it follows
from Theorem 3.1 applied to the 1-Lipschitz function d(x, ) that Al = A1(X) = 0
as soon as

limsup 1 log (1- p(B(x,r))) = 0 (3.8)
r--.oo r

for some (all) x in X. The following is a kind of converse.

Theorem 3.5. Let (X, g) be a smooth complete Riemannian manifold with di-
mension n and finite volume. Let p be the normalized Riemannian volume on
(X, g). Assume that the Ricci curvature of (X, g) is bounded below. Then (X, g)
is compact as soon as

liminf 1 log (1 -µ(B(x,r))) =-00
r--.oo r

for some (or all) x E X. In particular Al > 0 under this condition. Furthermore, if
(X, g) has non-negative Ricci curvature and if D is the diameter of (X, g),

where C. > 0 only depends on the dimension n of X.

The upper bound (3.9) goes back to the work of S.-Y. Cheng [Chen] in Rie-
mannian geometry (see also [Chal]).

Proof. We proceed by contradiction and assume that X is not compact. Choose
B(x, ro) a geodesic ball in (X, g) with center x and radius ro > 0 such that
p(B(x,ro)) > 2. By non-compactness (and completeness), for every r > 0, we
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can take z at distance ro + 2r from x. In particular, B(x, ro) C B(z, 2(ro + r)). By
the Riemannian volume comparison theorem [C-E], [Cha2], for every y E X and
0<s<t,

p(B(y,t)) < (t l net (n-1)K (3.10)ic(B(y,s)) - \s/
where -K, K > 0, is a lower bound on the Ricci curvature of (X, g). Therefore,

µ(B(z, r)) > ( r )n
e-2(r+ro)(n-1)K

2(ro+r) p(B(z, 2(ro + r)))

1 ( r n -2(ro+r) (n-1)K
2 2(ro + r)

e

where we used that p(B(z, 2(ro + r))) > p(B(x, ro)) > 2. Since B(z, r) is included
in the complement of B(x, ro + r),

1 - tt(B(x, r + ro)) > -
r ne

2(ro+r) (n-1)K
2 ro+r)

(3.11)
2(

which is impossible as r --> oo by the assumption. The first part of the theorem is
established.

Thus (X, g) is compact. Denote by D its diameter. Assume that (X, g) has
non-negative Ricci curvature. That is, we may take K = 0 in (3.10). By Theorem
3.1, for every measurable subset A in X such that µ(A) > 2, and every r > 0,

1 - p(Ar) < e-fir/3.
(3.12)

Let B(x, $) be the ball with center x and radius a . We distinguish between two
cases. If p(B(x,

$
)) > 2, apply (3.12) to A = B(x,

a
). By definition of D, we may

choose r = ro = s in (3.11) to get

1 ai D/24
T4 n < 1 - l2(AD/8) < e- .

If p(B(x,
s

)) < 2, apply (3.12) to A, the complement of B(x,
a

). Since the ball
B(x, 16) is included in the complement of AD/16 and since by (3.10) with t = D,

D
A \B \x' 16)) 16n

we get from (3.12) with r = 16 that

1 < e- - D/48
1612

The conclusion easily follows from either case. Theorem 3.5 is established.

In the last part of this section, we describe analogous conclusions in the discrete
case. As in Section 3.1, let II(x, y) be a Markov chain on a finite state space X with
symmetric invariant probability measure p. Denote by A > 0 the spectral gap of
(II, p) defined by

AiVarµ(f) < Q(f,f)
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for every f on X. Recall that here

Q(f, f) _ [f(x) - f(y)] 21I(x,y)µ({x}).
x,yEX

If d is the distance defined from the norm

11181100 = 2 SEX yE 1f(X) - f (y)1211(x, y);

recall also from Theorem 3.3 and (3.5) that

a(x,d,µ) (r) < 3 e-rte/4 r > 0.,

Denote by D the diameter of X for the distance d.
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(3.13)

Proposition 3.6. If p is nearly constant, that is, if there exists C > 0 such that,
for every x, p({x}) < CminYEx p({y}), then

'\1
< 8log(12C Card(X))12

D J

Proof. Consider two points x, y E X such that d(x, y) = D. By Corollary 1.4 and
(3.13),

p({x})µ({y}) < 12e-D"/s.

Since, by the hypothesis on p, minzEx µ({z}) > (C Card(X))-1, the conclusion
follows. O

Recall that the combinatorial diameter D,, is such that D, < D/i.

3.3 Levy families

In this section, we deal with families of metric measure spaces (X', dn) equipped
with Borel probability measures µn, n > 1. Denote by Dn the diameter of (Xn, dn)
and assume that 1 < Dn < oo, n > 1. According to the definition of the concentra-
tion function, we say that the family (Xn, dn, is a Levy family if for every
r>0,

lim a(x°,dn,pn)(Dnr) = 0.
n--,oo

(3.14)

More quantitatively, we say that (Xn, dn, An)n>1 is a normal Levy family if there
are constants C, c > 0 such that for every n > 1 or only n large enough) and r > 0,

a(X°,dn,an)(r) < Ce-nr'. (3.15)

Since we assumed that Dn > 1, any normal Levy family is a Levy family. The
omission of Dn in the definition of a normal Levy family is justified by the fact that
many examples become that way Levy families with their natural metrics.
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A particular situation occurs when µn, n > 1, is a family of probability mea-
sures on a given fixed metric space (X, d). We then say similarly that (X, d, µn)n>1
is a Levy family if for every r > 0,

lim a(X.d,Fln)(r) = 0.n-oo
(3.16)

The study of Chapter 2 provides a number of geometric examples of (normal)
Levy families. Let us review a few of them. The family (SRn, a'n) of the Euclidean
spheres with radii Rn equipped with normalized Haar measures is a Levy family
as soon as n-1/2Rn -> 0 as n -+ oo. It is a normal Levy family if Rn - 1. More
generally, by Theorem 2.4, a family (X", gn)n>1 of compact Riemannian manifolds
equipped with the normalized volume elements µn such that c(X') -> oo with n is
a Levy family. Recall that we denote by c(X) the infimum of the Ricci curvature
tensor over all unit tangent vectors of a Riemannian manifold (X, g). This includes
Sn, SOn for which c(S®n) = 41, the Stiefeld manifolds Wkn, etc. (cf. [Mil], [C-E],
[Chat]). By Propositions 2.8 and 2.9, we may add the examples of unit cubes [0, 1]n
(with normalized Euclidean metric) and Euclidean unit balls which form normal
Levy families for their uniform measures.

If (Xn, gn)n>1 are compact Riemannian manifolds such that A1(Xn) -> oo as
n -> oo where X I (X n) is the first non-trivial eigenvalue of the Laplace operator
on Xn, then (Xn, gn)n>1 is a Levy family by Theorem 3.1, however usually not
normal.

The discrete cubes {0,1}n with normalized Hamming metrics and counting
measures define a normal Levy family. There are many known families of ko-
regular graphs X (with ko fixed) such that Card(X) - oo whereas \1 > e > 0
stays bounded away from zero (the so-called expanders graphs). Moreover graphs
with this property are "generic" amongst ko-regular graphs [Alo]. These examples
thus give also rise to Levy families. Further combinatorial examples such as the
symmetric group 1In will be described in the next chapter.

The following simple proposition is an alternative definition of Levy families.
Recall that if A is a subset of a metric space (X, d) and if r > 0, we let A,. _
{x E X; d(x, A) < r}.

Proposition 3.7. Let (Xn, dn, µn)n>1 be a Levy family. Then, for any sequence
An C Xn, n > 1, such that liminfn_,00 p" (An) > 0, we have for every e > 0,

ri p"((An)EDn) = 1.

When (Xn, dn, µn)n>1 is a normal Levy family, the same result holds with sDn
replaced by E.

Proof. Let lim infn_,,,,, µn(An) > rl > 0. Since (X", dn, An)n>1 is a Levy family, for
every r > 0, apn (Dnr) < 77 for all n's large enough. Therefore by Lemma 1.1, for
every n large enough and every s > 0,

1 - ,n((A")Dn(r+s)) < al n(Dns).

Using again that aµn (Dns) --+ 0 as n -> oo, and since r, s > 0 are arbitrary, the
conclusion follows.



3.4 TOPOLOGICAL APPLICATIONS 57

The next statement describes the general properties of Levy families that im-
mediately follow from the definition and results of Chapter 1.

Proposition 3.8. Let (Xn, dn, µn)n>1 be a (normal) Levy family.
For every n > 1, let cp1 be a Lipschitz map between (Xn, dn) and (Yn, an)

Denote by µ'Wn the image measure of µn by cpn, n > 1. If supn>1 11w' IIL;p < ()o,
then (Yn, 8n, µ'n )n>1 is again a (normal) Levy family.

If (Yn, an, pn)n>1 is another (normal) Levy family, the product family
(Xn X Yn, do + 5n, n 0 Vn)n>1)n>1 is a (normal) Levy family.

Let An C Xn, n > 1, Bore] sets such that liminfn-j µn(An) > 0. Then
(Xn, dn, µn( IAn))n>1 is a (normal) Levy family.

3.4 Topological applications

In this section, we present applications of the concentration of measure phenomenon
to some fixed point theorems.

Let (X, d) be a metric space, and let G be a family of maps from X into X.
We say that a subset A of X is essential (with respect to the action of G) if for
every e > 0 and every finite subset {gl, ... , ge} C G,

P

ngk(A.)50.
k=1

(Recall AE = {x E X; d(x, A) < e}. We then say that the pair (X, G) has the
property of concentration if for every finite covering X C UN 1 Ai, Ai C X, there
exists Aa which is essential (for the action of G).

The following proposition connects this definition with Levy families.

Proposition 3.9. Let (X, d) and G be as before. Suppose that G = Un>1 Gn,
Gn C Gn+1, and that there exist probability measures µn, n > 1, on the Borel sets
of (X, d) such that An is Gn-invariant for each n. If (X, d, µn)n>_1 is a Levy family,
then (X, G) has the property of concentration.

Proof. Assume X = UN1 A. There exists i, 1 < i < N, such that

lim sup p12 (A) >
n-.oo

Selecting a subsequence n', by Proposition 3.7, for every e > 0,

li µn' ((A$)e) = 1.
W-00

Since un is Gn-invariant, for every g E G,

nlimoµn (g((A2)E)) = 1.

It immediately follows that A$ is essential. 0
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The following examples illustrate the proposition. Let H be an infinite dimen-
sional Hilbert space and let (e,)z,,1 be an orthonormal basis of H. The orthogonal
group SO' may be realized as unitary operators on H which are the identity on the
span of (e,),> . Then SO" C SO"+1 Consider then X = G = SO' = U">1 SO"
equipped with the Hilbert-Schmidt operator metric. Then (X, G) has the concen-
tration property. To prove it, recall that SO" equipped with the normalized Haar
measures p", n > 1, form a normal Levy family and apply Proposition 3.9 (with
µ" defined on all of X).

Exactly the same proof together with concentration on spheres shows that the
unit sphere SO° of H with the action of G = SO' has the concentration property.
One may also show that if u is a unitary operator on H and if G = (u")">1, then
(S°°, G) has the property of concentration in the above sense.

If G consists of a family of pairwise commuting unitary operators on H, then
(S°°, G) has still the property of concentration. However, this is no more true if
G is the group of all unitary operators. Recently, V. Pestov [Pel], [Pe2] described
conditions on G in terms of amenability for the property of concentration to hold.
Let 7r be a unitary representation of a group G in H. In particular, G acts on the
unit sphere SH of the space of representation.

Theorem 3.10. A discrete group is amenable if and only if the dynamical system
(SH, G, 7r) has the property of concentration for every unitary representation 7r of
Gin H.

If G' is a subgroup of G and (SH, G) has the property of concentration, then
(SH, G') also has the property of concentration. For example, if F2 denotes the free
group on two generators, the pair formed by the unit sphere of the space L2(F2)
and the full unitary group of this space does not have the property of concentration.

Moreover, amenable representations can be characterized in terms of the con-
centration property. The proof of Theorem 3.10 is based on proper extensions of
fixed point theorems under the property of concentration to which we turn now.
Actually, the concentration property of the system (SH, G, 7r) has to do not with the
amenability of the acting group G as such, but rather with the amenability of the
representation Tr. We refer to [Pel] for the proof of Theorem 3.10 and for extensions
to locally compact groups as well as for dynamical and ergodic applications.

As announced, we turn to fixed point theorems under the property of concen-
tration. Let (X, d) be a metric space. Let G be a family of continuous maps from
X into X and suppose the identity map belongs to G. We call the pair (X, G) a
G-space. We do not assume that G is a group (or even a semigroup) although this
will mostly be the case.

Proposition 3.11. Let (X, d) be a G-space and let r be a compact space. Assume
that (X, G) has the property of concentration. Let ' : X - r be any map with
domain X. Then there exists x E r such that for any neighborhood 0 of x, the set
,0-'(0) is essential in X.

We call such point x an essential point of the map 0.

Proof. We proceed by contradiction. If such x does not exist, we can find for every
y in r an open neighborhood Oy such that 0-1(0y) is not essential. Since r is
compact, there is a finite family (001<i<N of the covering (Oy)yer of r such that



3.4 TOPOLOGICAL APPLICATIONS 59

r C UN 1 O. Therefore UN1 zi-1(Oi) = X and, by the concentration property, one
of the sets v'-'(Os) has to be essential which is a contradiction. The proposition is
proved.

A map : X -> IF where IF is compact is called uniformly continuous if for any
closed subset A C r and any open neighborhood OA of A, there is e > 0 such that

([_1(A)]E)
C OA.

Theorem 3.12. Let (X, d) be a G-space and let IF be a compact space. Assume
that (X, G) has the property of concentration. Let '' : X -> I' be uniformly
continuous and g E G be fixed, and assume that there exists a continuous J : r -> r
such that Jg = 1/ig. Then any essential point of -0 is a fixed point for J.

Before turning to the proof of Theorem 3.12, let us mention the following
immediate consequence that motivated the present investigation and that follows
by choosing r = X, 0 the identity map and J = g.

Corollary 3.13. Let (X, d) be a compact G-space. If (X, G) has the property of
concentration, then there is a point x E X which is fixed under the action of G.

More generally, if '' : X -> r is equivariant in the sense that for every g E G
there exists a continuous J. : r -> r such that Jgb = zlig, then any essential point
of z/i is a fixed point for Jg, g E G. One example is provided by a (compact) group
G acting on r, fixing x E r, and setting 0 : G -+ r , ipg = gx.

Proof of Theorem 3.12. Let x be an essential point of Eli such that J(x) = y # x.
By continuity of J, there exist open neighborhoods Ox of x and Oy of y such that
J(O,) C Oy and Ox fl Oy = 0. We may moreover choose Ox such that for some
neighborhoods U and V of the closures of O., and Oy, we have U fl V = 0. Since
x is an essential point of V), 1-1(Os) = X C X is an essential set. Therefore, for
every e > 0, (g(X))E fl XE 0. Since -0 is uniformly continuous, there exists e > 0
such that O(X), C U and z,([ '1(Oy)]E) C V. Since

g(X) C 1G-1(J(Ox)) and J(O,,) C Oy,
we get 0((g(X))E) C V. Now, (g(X))E fl X. 0, so that U fl V 54 0 which yields a
contradiction. The proof of Theorem 3.12 is complete.

In the final part of this section, we turn to some finite dimensional analogue
for which we may not claim fixed points but for which we estimate the diameter of
minimal invariant subspaces.

Let (X, d) be a compact metric space with a Borel probability measure p. We
denote by aµ the concentration function of (X, d, p). Also let G be a family of
measure-preserving maps from X into X.

Let (r, 5) be a compact metric space and let X -> r be an equivariant
map. We assume that I1J9 II Lip L for every Jg. Denote by Nr (e) the minimum
number of (open) balls of radius e > 0 which cover r.

Theorem 3.14. Under the above conditions and notations, there exists x E r such
that for every Jg, g E G,

/'d(Jgx, x) < (1 + L) inf (e + II4'IILip(s + r))

where the infimum runs over all e, s, r > 0 such that Nr (e) a, (s) < 1 and aµ (r) < z
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Proof. Let e > 0 and s > 0 satisfy the required condition and choose a finite subset
S of F with cardinality Nr(e) such that the balls centered in S with radius a cover
r. Choose X E S such that

1

Nr(e) > aµ(s)

where B(x, e) is the ball with center x and radius a in r. Define x = 0-1(B(x, e)).
By Lemma 1.1,

µ(x8+,) >_ 1 - aµ(r) >
2

when aN, (r) < 2 . Now,

(xs+r) C B(x, e + (s + r)II0IILip) = B1

while, by the definition of L, for any g E G,

J9(B1) C B(Jgx,L(e+(s+r)IIIIILip)) =B2

Therefore, p(i,b-1(B1)) > a while

p(4'-1(B2)) µ(V)-1Jg(Bl)) = p(gV5-1(B1)) > I

It follows that B1 fl B2 54 0 so that

d(Jgx, x) < (1 + L) (e + II'IILip(s + r)).

Since g is arbitrary in G, the theorem is established. 0
A typical application occurs when t is a compact set in IRk equipped with a

norm II II in which case Nr(e) < (1 +R)k where R is the radius of IF for the norm
I II (see Lemma 3.18 below). Then, provided that p has normal concentration

aN,(r) < Ce-C9ZT2, r > 0, it may be shown from Theorem 3.14 that R < Const n
where the constant depends on the various parameters in Theorem 3.14 (see [Mi4]
for details).

3.5 Euclidean sections of convex bodies

This last section is devoted to the historical example of application of concentration
to the geometric problem of spherical sections of convex bodies.

Let K be a convex symmetric body in 1W', that is, a convex compact subset
of 1' with non-empty interior, symmetric with respect to the origin. K is said to
contain almost Euclidean sections of dimension k if, for every e > 0, there exist a
k-dimensional subspace H and an ellipsoid E in H such that

(1-e)ECKf1HC(1+e)E. (3.17)
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This geometric description admits the following equivalent functional formu-
lation. A Banach space E (with norm I I . I I ) is said to contain a subspace (1 + e)-
isomorphic to the Euclidean space R c if there are vectors vl, ... , vk in E such that
f o r all t = (tl, ... , tk) in Rk,

(1-e)ItI <
tZvz11 `(1+e)Itl (3.18)

a 1-

where I I is the Euclidean norm on Rk. Indeed, if II . II is the gauge of the convex
body K, the subspace H generated by v1i ... , vk and the ellipsoid E, the image of
the Euclidean unit ball of Rk under the isomorphism ei -> vg, satisfy (3.17).

The important next statement is the famous Dvoretzky theorem in the local
theory of normed spaces.

Theorem 3.15. For each s > 0 there exists ri(e) > 0 such that every Banach space
E of dimension n contains a subspace (l+e)-isomorphic to Rk where k = [ri(e) log n].

Since every 2n-dimensional ellipsoid has an n-dimensional section which is a
multiple of the canonical Euclidean ball, we see from Theorem 3.15 that for each
e > 0 there exists ri(r) > 0 such that every centrally symmetric convex body K
admits a central section Ko with dimension k > ri(e) log n and p > 0 such that
(1 - e)pl3k C )CO C (1 + e)pBk where 8k is the canonical Euclidean ball in the
subspace spanned by KO.

The rest of the section is devoted to the proof of this result. While the original
concentration proof by V. Milman [Mi3] uses high dimensional spherical concentra-
tion, we rather make use of Gaussian concentration following [Pis2] (see also [Pis3]).
The main argument will be to span the Euclidean subspace by the rotational invari-
ance of Gaussian distributions. The first lemma, known as the Dvoretzky-Rodgers
lemma, will be crucial in the choice of the underlying Gaussian distribution.

Lemma 3.16. Let (E, II . II) be a Banach space of dimension n and let m = [n/2]
(integer part). There exist vectors wl,... , in E such that II wj II > 1/2 for all
j=1,...,mand

m

tjwjj=1

1

for alltERm.

< ItI

Proof. We first construct an operator T : R' -> E such that IITII S 1 and
IITvII > dim(V)/n for all subspaces V of R' . In particular IITII = 1. To this
task, consider any determinant function (associated to any fixed matrix represen-
tation) S -> det(S). Let T be such that

det(T) = max {det(S); S : R"` -> E, IIS11 < 1}.

Then, for any e>Oand any S:R"`-+E,

det(T + eS) < det(T) IIT + sSII91. (3.19)

Now,
det(T + eS) = det(T)det(Id + ET-'S)

= det(T) (1 +eTr(T-1S) + o(e)).
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Hence, substituting in (3.19), we get

1+ETr(T-1S) IIT+ESII'1+o(e)

< (1 + EIISII)n + o(E)

< 1 + enMISII + o(c)

so that Tr(T-1S) _< nIISII Consider now a subspace V in Rn and let P : ]fin -j V
be the orthogonal projection. Setting S = TP we get

dim(V) = Tr(P) = Tr(T-1S) < nIISII.

Therefore IITPII > dim(V)/n which proves the claim.
It is now easy to complete the proof of the lemma. Let T be as before. Choose

y1 in Rn such that Iy1I = 1 and IITy1II = IITII = 1. Then choose y2 orthogonal
to y1 such that Iy2I = 1 and IITy2II = IITQII >_ (1 - -1n) where Q is the orthogonal
projection onto {y1}1. Continuing in this way on the basis of the preceding claim,
one constructs a sequence such that yj E {y1i... , yj_1 }1 and I yj I = 1, II Tyj II
(n - j + 1)/n. Set then wj = Ty3, j = 1, ... , [n/2], which have the required
properties. The proof of Lemma 3.16 is complete.

Define the map F : R' -> R by

F(x) =
m

1: xjwjII, x = (xii...,xm) E 1Rm. (3.20)
j=1

By Lcunua 3.16, IIFIIL,p < 1. Indeed, for all x, y E ',
IF(x) - F(y) I < I E(xj-yj)w3ll <Ix - yI

j=1

Denoting by y the canonical Gaussian measure on Rm, by (2.35) for example, for
every r > 0,

'y({IF - f Fdyl > r}) < 2 e-''212. (3.21)

It is an important feature of the construction of Lemma 3.16 that MF = f Fdy is
much greater (for n large) than IIFIIL;p _< 1. This is the effect of high dimensional
geometry in this Gaussian framework. Namely, denoting by p the uniform measure
on the discrete cube {-1, +1}m, by symmetry of y,

MF -- ff II'Ejxjwj
dp(e)d'y(x)

j=1

By Jensen's inequality, conditionally on ek, k # j, it follows that

MF>- f1:5i:5 Ilxjwjlldy(x)> 1 Jmax Ix'Id'y(x)2 <j<m

where we used Lemma 3.16 in the second step. By a well-known and elementary
computation, there is a numerical constant p > 0 such that

flmaxnlxjldy(x) > 2p logm.
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Hence, for every n > 3,
MF > p log n . (3.22)

As a next step, we need two technical lemmas to discretize the problem of
finding Euclidean subspaces. A 6-net (S > 0) of A C Rk is a subset S C A such
that for every tin A one can find s in S with It - sl < S.

Lemma 3.17. For each e > 0 there is S = S(E) > 0 with the following property.
Let S be a 6-net of the unit sphere of Rk. Then, if for some v1, ... , vk in a Banach
space E, we have 1 - S < 11 1 tivi I I < 1 + S for all tin S, then

k

(1- E) ItI < ll tavall < (1 + E) ItI
a-1

for all tin IRk

Proof. It is enough, by homogeneity, to establish the conclusion for every t in Rk
with ItI = 1. By definition of S, there exists to in S such that it - t°l < S, hence
t = to + A1s with s in the unit sphere of Rk and jAi < S. Iterating the procedure,
we get that t = Ee ° Attt with tt E S and IA < Se for all .£ > 0. Hence

k 1+S
tavall

<

00

Stil

k

tvail < 1 - S
i=1 t=° i=1

(S < 1). In the same way,

I
It therefore suffices to choose S appropriately, as a function of E > 0 only, in order
to get the conclusion.

The size of a 6-net of spheres in finite dimension is easily estimated in terms
of S > 0 and the dimension, as is shown by the next lemma which follows from a
simple volume argument.

Lemma 3.18. There is a 6-net S of the unit sphere of Rk of cardinality less than
(1 + 2)k < elk/b.

Proof. Let t',. .. , tt be maximal in the unit sphere of Rk under the relations
Iti - ti I > S for i # j. Then the balls in Rk with centers ti and radius

2
are disjoint

and are all contained in the ball with center at the origin and radius 1 + 2. By
comparing the volumes, we get f(2 )k < (1 + 2)k from which the lemma follows.

We are now in a position to prove Theorem 3.15. The main argument is
the concentration property for Gaussian measures (3.21). The idea is to span the
Euclidean subspace by the Gaussian rotational invariance. Consider the Lipschitz
function F defined in (3.20) and recall the canonical Gaussian measure -y on R',
m = [n/2]. Let k > 1 be specified later on and let t = (t1, ... , tk) in the unit sphere
of Rk (i.e., ItI = 1). By the Gaussian rotational invariance, the distribution of the
map

k

(Xi, ... , Xk) E (Rm)k 4 E tiXi E Ill m

i=1
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under the product measure ryk on (Rm')k is the same as ry. Therefore, by (3.21), for
every r > 0,

7k
(I (X1'. - -, Xk) E (R"` )k; FI >tzX' I - MF

\\\ z_ 1

ll /2>r} <2e_r2

Now let e > 0 be fixed and choose S = S(E) > 0 according to Lemma 3.17. Further-
more, let S be a 5-net in the unit sphere of Rk, which can be chosen with cardinality
less than or equal to elk/s (Lemma 3.18). Let r = SMF. The preceding inequality
together with the definition of F thus implies that

ryk
\j3 t E S; I II

tE MF II -1I > S}) < 2 Card (S) e-SZM1l2

< 2 e(2k/s)_(b2MF/2)

where
m

Zi = E Xijwj E E, Xi = (Xi3)1<j<-1 i=11 .... k.
j=1

Assume n to be large enough (otherwise there is nothing to prove). Since MF >
p og n, we can then choose k = [r7 log n] for 77 = 77(5) = 77(e) small enough such
that the preceding probability is strictly less than 1. It follows that there is at least
one realization of (X1 i ... , Xk) such that (v1, ... , vk) = (MF)-1(Z1, ... , Zk) satisfy

1-6<Il tivi11<i+S

for all tin S. Together with Lemma 3.17, this completes the proof of the theorem. 0

The preceding proof of Theorem 3.15 actually shows that most random sec-
tions (in the sense of -y k) will produce almost Euclidean subspaces. Further use of
concentration arguments (by means of empirical processes) shows that the depen-
dence of E of the function q(E) is of the order of e2 [Sche2]. The order k - log n
is optimal as shown by the example of the cube. £ -balls in R' have Euclidean
sections proportional to n2/p for p > 2 and of the order of n for 1 < p < 2 [F-L-M].

As announced, the original measure concentration argument by V. Milman
[Mi3] used spherical rather than Gaussian concentration. One nice feature of the
spherical proof is the following geometric consequence [Mi3], [Mi5].

Theorem 3.19. For each 17 > 0 there exists S = 5(77) > 0 such that for any
continuous function F on S', there exists a k-dimensional sphere Sk C S"` (i.e., the
unit sphere of a (k + 1)-dimensional subspace) with k = [Sn] such that for any x in
sk

I F(x) - mFI < wF(2q)

where mF is a median of F (for o'a) and WF is the modulus of continuity of F.

Proof. It is a consequence of Levy's inequality (2.6). Consider the set

A = {IF - mFl < wF(77)}.
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By (2.6), we know that
,,n (A) > 1 - 2 e(n-1),

2/2.

Fix x in Sn and let p be the Haar probability measure on S®n. Clearly,

µ({T E Son;Tx E A}) = an(A) > 1 - 2e-(n-1)n2/2.

This implies that for any finite set S inSn,

p({T E S®n; TS C A}) > 1 - 2 Card(S) e-(n-1),12/2

Therefore, if 2 Card(S) < e(n-1)fl2/2, we may find a rotation T such that TS is a
subset of A. Choose then S to be a 6-net of Sk according to Lemma 3.18. This is
thus possible for k = [Sn] for some appropriate S = S(17) > 0 from which the result
follows.

Notes and Remarks

Dvoretzky's theorem on Euclidean subspaces of Banach spaces (Theorem 3.15) was
established first in [Dv]. The new proof by V. Milman [Mi3] was at the starting
point of the developments of the concentration ideas. Since then, V. Milman indeed
strongly promoted the usefulness of the concentration of measure phenomenon in
various contexts [Mi5], and convinced in particular M. Talagrand of the importance
of this simple, but useful, property. The proof presented in Section 3.5 of Dvoret-
zky's theorem is the Gaussian version, due to G. Pisier [Pis2], [Pis3], of Milman's
argument (that used concentration on high dimensional spheres). Lemma 3.16 is an
important step known as the Dvoretzky-Rodgers lemma [D-R]. Applications of con-
centration to Dvoretzky-like theorems have been a main issue in the local theory of
Banach spaces in the decades 1970-90, starting with the fundamental contribution
[F-L-M] by T. Figiel, J. Lindenstrauss and V. Milman where the connection with
type and cotype of Banach spaces is amply demonstrated. The main results are
extensively reviewed in the Lecture Notes [M-S] by V. Milman and G. Schechtman
and more recently in the Handbook in the geometry of Banach spaces [J-L] (cf. the
contributions [Sche5], [Gi-Ml], [J-S3], etc.) See also [Pis3]. In particular, fine em-
beddings of subspaces of IF in finite dimensional £ -spaces and finite dimensional
P-subspaces, 1 < p < 2, in connection with stable type, have been investigated by
W. Johnson and G. Schechtman [J-Sl] and G. Pisier [Pisa] together with further
probabilistic concentration inequalities for series of independent random vectors (cf.
[Pis2], [Sche5]). Approximation of zonoids by zonotopes by random embeddings in
[B-L-M] makes use of concentration through empirical process methods as initiated
in [Sche3]. Theorem 3.19 is taken from Milman's original paper [Mi3]. V. Mil-
man also used concentration for some infinite dimensional integration questions
and other problems [Mi2].

Concentration under spectral properties was first put forward by M. Gromov
and V. Milman in [Gr-Ml] from which Theorem 3.1 and its proof are taken. A proof
of Theorem 3.1 using a variation on the Herbst argument of Chapter 5 is presented in
[Schmu2]. The corresponding results on graphs and applications to expander graphs
and superconcentrators have been investigated by N. Alon and V. Milman [Al-M],



66 3. CONCENTRATION AND GEOMETRY

[Alo]. See also [B-H-T]. Further geometric examples may be found in [Grom2]. The
proof of Theorem 3.3 is taken from [A-S]. Connections between concentration and
Poincare's inequalities strongly developed on the probabilistic side during the past
decade (cf. [Le5] and the references therein).

The results of Section 3.2 are inspired by early contributions of R. Brooks [Bro].
Theorem 3.5 is implicit in [Le5] where the analogous results between bounds on the
diameter and the logarithmic Sobolev constant are developed. Cheng's inequality
(3.9) was established in [Chen].

The Levy families are introduced and analyzed from a geometric and topolog-
ical point of view by M. Gromov and V. Milman in [Gr-Ml] where a number of
geometric examples are provided. The results of Section 3.3 and the fixed point
theorems of Section 3.4 are taken from this reference. See also [Grom2], [Mi5].
In particular, the interested reader will find in [Grom2] inspiring developments on
convergence of metric measure spaces related to the Levy families. Theorem 3.14
is due to V. Milman [Mi4]. Theorem 3.10 is one example of the recent deep inves-
tigation by V. Pestov [Pel], [Pe2] to connect measure concentration and ergodic
theory by showing that an action on some group has concentration if and only if it
is amenable.
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While products of Levy families are still Levy families, at a more quantitative level
the concentration functions of product spaces are very sensible to dimension. An
important issue addressed in this chapter is to describe dimension free concentra-
tion properties in product spaces. With respect to the high dimensional effects
of concentration developed in Chapter 3, the normalization chosen here points to-
wards the dimension free Gaussian model. Several methods are developed to this
task, and further ones will be presented in Chapters 5 and 6.

We already described in Chapter 1 concentration in product spaces for the
£1-metric and the Hamming metric. In this chapter (and the subsequent ones), we
rather deal with the £2-metric to produce dimension free concentration properties.
We start with a useful martingale method that discretizes some of the martingale
tools of Chapter 2. We next present some aspects of the deep investigation by M. Tar
lagrand [Tal7] of concentration in product spaces. Following his work, we analyze
successively the convex hull and q-point approximations of powerful use in discrete
and combinatorial probability theory as illustrated in Section 8.4. In particular,
while the basic definition of concentration deals with metric spaces, we investigate
here examples in product spaces that go far outside the usual metric setting. Proofs
rely on a basic induction scheme together with geometric arguments. Section 4.4 is
devoted to the application of infimum-convolution inequalities to concentration for
product measures as already outlined at the end of the first chapter. The last part
describes the striking concentration phenomenon for the exponential distribution
that goes beyond the concentration phenomenon for Gaussian measures. From a
probabilistic point of view, most of the concentration and deviation inequalities we
will obtain furthermore extend classical inequalities on sums of independent ran-
dom variables to arbitrary Lipschitz (or Lipschitz and convex) functionals of the
sample, leading to powerful tools in applications (see Chapters 7 and 8).

4.1 Martingale methods

We examine first some useful martingale inequalities that yield a variety of further
concentration results.

Let (0, .F, P) be a probability space. Denote by E(f) the expectation of an
integrable real-valued function f on (0,.F) with respect to P. Consider a finite
filtration of sub-a-fields

{O,f }=F0 CF1 C...CFn=F
67
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of the or-field .F. F o r every i = 1, ... , n, set

dt = 1E"' (f) - lE-F`-1 (f)

where IEF, denotes conditional expectation with respect to the sub-v-field F,. The
first lemma bounds the deviation of a function f from its mean in terms of the sizes
of the increments di. It is the discrete analogue of (2.37).

Lemma 4.1. Let f be integrable with respect to P. For every r > 0,

1P({ f > E(f) + r}) < e-r2/2D2

where D2 > E=1 lIdaII0.

Applied simultaneously to - f, Lemma 4.1 yields the concentration off around
its mean,

P({I f - E(f)I ? r}) < 2e-r2/2D2. (4.1)

Proof. By convexity, for every A E R and -1 < u < +1,

eA" < 1+uea+ -ue-a
2 2

Hence, by homogeneity and since (da) = 0, for every \ E R,

cosh (AIpdiHH.) <

The properties of conditional expectations then prove that

1E(eE' 1d') = E(eE. 11 EF»-1(eAdtt)) < e\211d»112 /2E(e£s 11d+

Iterating,

lE(eE 1d.) < ea2D2/2.

Since f -E(f) = En 1 d8, by Chebyshev's exponential inequality, for every A, r > 0,

P({ f > E(f) + r}) < e-\r E(eE, 1d.) < e-ar+a2D2/2

Minimizing in \ > 0 thus yields the inequality of the lemma.

Lemma 4.1 is the martingale extension of the Hoeffding type inequality (1.23).
Inequalities of this type have been proved extremely useful in the study of limit
theorems in classical probability theory and in discrete algorithmic mathematics
[MD2J.

Lemma 4.1 is of special interest once the decomposition

{0,1l} =.FF C.F1 C ... C,Fn =F

in sub-v-fields is such that the martingale differences di of a given function f can
be controlled. The following metric decomposition is a useful tool in this regard.

A finite metric space (X, d) is of length at most 2 if there exist an increasing
sequence {X } = X0, X1, ... , Xn = {{x}}.,Ex of partitions of X (X$ is a refinement
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of X'-1) and positive numbers a1, ... , an with f = (En ai )1/2 such that, if Xi =
{A31}1<3<?n,, for all i = 1, ... , n, p = 1, ... , mi_1 and j, k such that A3z, At c Ar-1,
there exists a one-to-one and onto function A - A' such that d(x, O(x)) _< ai
for every x E A.. Note that £ is always smaller than or equal to the diameter of X.

Theorem 4.2. Let (X, d) be a finite metric space of length at most f, and let p
be the normalized counting measure on X. Then, for every 1-Lipschitz function F
on (X, d) and every r > 0,

p({F > f Fdp + r}) < e-"2/2e2

In particular,
a(X,d,µ)(r) < e-'"2/see, r > 0.

Before turning to the proof of Theorem 4.2, let us present examples that mo-
tivate the definition of spaces with controlled length in the above sense. First, let
X be the discrete cube {0,1}n equipped with the normalized Hamming metric and
normalized counting (product) measure p = pn. The obvious choice of partitions
(adding one coordinate at each step) shows that {0,1}n is of length at most
Therefore, we deduce from Theorem 4.2 that

a({o,l}",µ)(r) < e-n'"2/s, r > 0. (4.2)

Compare with Theorem 2.11.
Actually, the same would apply to any product measure with respect to the

Hamming metric. Indeed, let (Sti, Ei, Pi), i = 1, ... , n, be arbitrary finite probabil-
ity spaces and let P be the product measure pl ® ® pn on the product space
X = S21 x . . . X Stn. A point x in X has coordinates x = (x1, ... , xn). Equip
X = S21 x x On with the Hamming metric

d(x, y) = Card {1 < i < n; xi # yi}.

Choose the partitions Xi consisting of the elements

Q1 X ... X Qi X (xi+l,... , xn), xi+1 a ... , xn E SZ.

It is clear that the sequence of partitions (X2)1<i<n fulfils the definition of the
length of a metric space with all the ai's equal to 1 by definition of the Hamming
metric. We thus recover in this way (1.24).

A further, non-product, example is given by the symmetric group IIn of per-
mutations of 11, . . . , n} equipped with the normalized metric

d(a, 7c) = 1 Card {i; v(i) # ir(i) }
n

and uniform measure it (assigning mass (n!)-1 to each permutation). (The choice
of the normalized metric is again guided here for the matter of comparison with
spherical concentration.) For every i = 1, . . . , n, consider the elements

Ajn.
2,...,j. = for E IIn; Q(1) = j1i ... , v(i) = ji
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where the j,,. .. , jt are distinct in {1, ... , n}. These elements form a partition X'
of lln. Now, given A = A3 ......3, as above, let B = A,,1.....,., and C = A3...... 3,,q be
contained in A. Let T be the transposition that changes p with q. Define 0 : B --> C
by letting 0(Q) = r o Q. It is easily seen that d(a, ¢(o)) < so that we may take
the aa's equal to .n

Corollary 4.3. Let p be a uniform measure on the symmetric group lI'a. For any
1-Lipschitz function F on (lln, d) and any r > 0,

p({F > f Fdp + r}) <
e-n,2/s.

In particular,

a(nn,d, )(r) <-
e-nr2/a2,

r > 0.

We now present the proof of Theorem 4.2.

Proof of Theorem 4.2. Denote by Fi the a-field generated by the partition Xi,
i = 1, ... , n. Given F integrable with respect to P, set Fi = EF (F), i = 0,1, ... , n
(F0 = ]E(F)). For any B = A. and C = At contained in Ap 1, Fi is constant on B
and C and

IF,IB - FiiCI < ai (4.3)

where FijB, Filc denote the restriction of Fi to B, respectively C. Indeed, FiIB =
(Card (B))-1 >,,EB F(v) while

FilC = (Card (C)) -1 F(a) = (Card (B))-1 F(¢(o))
aEC oEB

so that (4.3) immediately follows.
Therefore, for any A, B as before, IFijB - F,_11AI < ai. Indeed,

Fi-11A =
1
N E FijA

CCA

with N = Card {C; C C Al so that

IFiIB - Fi_1JAI < N E IFIB - FiJCI < ai.
CCA

Hence II di 11. < ai for any i = 1, ... , n and Lemma 4.1 yields the desired conclusion.
The proof of Theorem 4.2 is complete.

The examples of the discrete cube and symmetric group suggest one further
extension of the method. Given a compact metric group G with a translation
invariant metric d, and a closed subgroup H of G, one can define a natural metric
8 on the quotient G/H by

6(gH, g'H) = d(g, g'H) =
d(gj-1g, H).

The translation invariance of d implies that this is actually a metric and that
d(g, g'H) does not depend on the representative g of gH.
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Theorem 4.4. Let G be a compact metric group with a translation invariant
metric d and lci C = Go D G, D G = {e} be a decreasing sequence of
closed subspaces of G. Denote by a, the diameter of G,_ I /G , i = l ..... v. and let
f= (Ell 102) '/2 . Let p be Haar measure on G. Then.

c(G.d.N)(r) < c-r2/st2, r > 0.

Proof. We show that for every mean zero 1-Lipschitz function F on (G, d) and
every r > 0,

µ({F > r}) < e-r2/2t2.

Let Fi, i = 0, ... , n, be the o-algebra generated by the sets {gGa}9EG. Note that
if gGi_1 D hG,, then g-1h E G,_1. If both gG,_1 i h1Ga and gG,_1 i h2Ga, let
s E Gi_1 be such that

Diam(G,_1/G2) = d(g-lhl,g-1h2Ga) = d(g-lhl,g-lh2s)
Define then 0: h1G1 --> h2Ga by 0(hir) = h2sr. Then

d(hir, 0(hir)) = d(hi, h2s) = Diam (G1_1/G,) = a2.

Therefore, if F, = E (F), i = 0, . . . , n, the oscillation of F, on each atom of Fa_ 1
is at most a2, so that, in the notation of Lemma 4.1, IIddII. 5 a1. Lemma 4.1 then
allows us to complete the proof of the theorem.

In the case of the symmetric group over n elements, we may take G = IIn,
Ga = lIn_1 and as = n. One further instance of this theorem is the n-dimensional
torus Tn equipped with the normalized product measure p and the normalized 11-
metric n EZ1 Is, - t, 1. Taking T', i = 0, ... , n, as subgroups, one gets a, < n for
every i so that, by Theorem 4.4,

a(an,d,µ) (r) < 2 e_' '2/s, r > 0.

This result is to be compared with Proposition 2.7 where the stronger Euclidean
metric was inforced, for which dimension free concentration holds.

We complete this section by another application of the martingale method to
norms of sums of independent random vectors (one can also use the language of
supremum of empirical processes as in Chapter 7). Let Y1, ... , Yn be independent
integrable random variables on some probability space (St, .F, P) taking values in a
Banach space (E, II ' II) and let S = Ea1 Y,. Now

n

IISII - E(IISII) = Edi
a=1

can be written as a sum of martingale differences with respect to the filtration F,
generated by Y1,.. . , Y,, i = 1, ... , n, with the property that, for every i = 1, ... , n,

Id,I =

I(1EF -EF,-1) (IISII - IIS - Y,II)

< 11Y A + E(IIYII)
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by the triangle inequality and independence. In a sense, IISII - lE(IISIP) is as good
as the sum E 1 IIYiII, so that, provided E(IISII) is under control, the classical one-
dimensional results apply. As a consequence of Lemma 4.1, we thus obtain the
following extension of (1.23).

Corollary 4.5. Let Y1,. .. , Yn be independent bounded random vectors in a Ba-
nach space (E, II II) and let S = E', Y. For every r > 0,

i({IIISII - E(IISII)I >- r}) < 2e-r2/2D2

where D2 > E% IIYBIIoo.

4.2 Convex hull approximation

In this section, we investigate concentration for product measures through geomet-
ric considerations involving convexity properties. Let (Sli, Ei, /µi), i = 1, ... , n, be
arbitrary probability spaces and let P be the product measure µ1 ® ® tin on
X =121 x x Stn. A point x in X has coordinates x = (xi, ... , xn).

Recall the Hamming distance on X defined by

d(x,y)=Card {1 <i<n;xi54 yi}.

As we have seen in (1.24) and Section 4.1 above, the concentration function of any
product probability P on (X, d) satisfies

«(X,d,P) (r) < e-`" 2In, r > 0, (4.4)

for some numerical constant c > 0. In particular, if P(A) > 2, for most of the
elements x in Stn, there exists y E A within distance \ of x.

The same result actually applies to all the Hamming metrics
n

da(x, E ail{x.:A?/.) , a = (al, ... , an) E R+,
i=1

with IaI2 = Enj=1 ai instead of n on the right-hand side of (4.4). This type of
normalization leads to dimension free formulations.

Note that various measurability questions may arise in the subsequent state-
ments. These are actually completely unessential and will be ignored below (start
for example with finite or Polish probability spaces Sli).

We now introduce a control that will be uniform in the Hamming metrics da
whenever Pal < 1. We define, for every non-empty subset A of X = S i x ... x Stn
and every x E X, a distance D;1(x) from x to A as

D;1(x) = sup da(x, A).
jaI=1

This definition somewhat hides the combinatorial and convexity properties of the
functional DA that will be needed in its investigation. For a subset A C X and
xEX,let

UA(x) = is = (Si)1<i<n E {0, 1}n; 3 y E A such that yi = xi if Si = 0}.



4.2 CONVEX HULL APPROXIMATION 73

One can use equivalently the collection of the characteristic functions 1{x,0y,},
y E A. Denote by VA(x) the convex hull of UA(x) as a subset of [0, 1]" C R". Note
that 0 E VA(x) if and only if x E A. One may then measure the distance from x to
A by the Euclidean distance d(0, VA(x)) from 0 to VA(x). It is easily seen that

DA(x) = d(O,VA(x)) = inf lyl. (4.5)
yEVA(x)

We recall that I I denotes the Euclidean norm on R'. Indeed, if d(0, VA(x)) < r,
there exists z in VA(x) with JzJ < r. Let a E R+ with Jal = 1. Then

inf <r
yEVA(x)

where u v is the scalar product of u, v E R'. Since

inf (a y) = inf (a s) = da(x, A), (4.6)
yEVA(x) sEUA(x)

DA (x) < r. Conversely, let z E VA(x) be such that Izi = d(0, VA(x)) (> 0) and set
a = z/JzJ. Let y E VA(x). By convexity, for every 0 E [0, 1], Oy + (1 - 9)z E VA(x)
so that

Iz+0(y-z)12 = Iay+(1 -6)x12 > Iz12.

Hence, as 0 -, 0, (y - z) z > 0, that is,

a y > Izl = d(O, VA(x))

for every y E VA(x). Now, by (4.6),

VA' (x) >- da(x, A) = yEi x)(a y) >- d(O, VA (X))

which is the claim.
The next theorem extends the concentration (4.4) to this uniformity with di-

mension free bounds.

Theorem 4.6. For every measurable non-empty subset A of X = Ill x ... x 111s,
and every product probability measure P on X,

P(A)JelP< 1

In particular, for every r > 0,

P({DA > r}) <
P(A)

e ''2/4.

The general scheme of proof is by induction on the number of coordinates
together with geometric argument involving projections and sections to lower di-
mensional subspaces. The main difficulty in this type of statements is to find the
adapted recurrence hypothesis expressed here by the exponential integral inequal-
ities. For simplicity in the notation, we assume that we are given a probability
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space (St. E, A) and that P is the n-fold product µn of p on X = Stn. This is no loss
of generality. Since the crucial inequalities will not depend on n, we need simply
to work on products of (S2,µ) _ (,I 1S2Z, (gz

1 /-z2) with itself and consider the
coordinate map

x = (xl, ..., xn) E Stn --> (xa), E Q,, xa = ((xx)l1 ... , lxx)n) E it,

that only depends on the i-th factor.

Proof of Theorem 4.6. The case n = 1 is easy. To go from n to n + 1, let A be
a subset of S2n+1 and let B be its projection on Stn. Furthermore, for W E 0, let
A(w) be the section of A along w. If X E Stn and w E St, set z = (x, w). The key
observation is the following: if s E UA(,,) (x), then (s, 0) E UA(z), and if t E UB (x),
then (t,1) E UA(z). It follows that if t; E VA(,,) (X), ( E VB(x) and 0 < 9 < 1, then
(9 + (1 - 9)(,1- 9) E VA(z). By the description (4.5) of DA and convexity of the
square function,

DA(z)2 < (1 - 9)2 + I9
+ (1 - 0)(12

< (1- 9)2 + eiet2 + (1- 9)1(12.

Hence,
DA(z)2 < (1 - 9)2 + 9DA(w)(x)2 + (1 - 9)DB(x)2.

Now, by Holder's inequality and the induction hypothesis, for every w in St,

L.

that is,

e(D`A(x,w))Z/4dp(x)

< e(1_0)2 /4

Un IB I

e(DB)a/4dP)1-e

/ \ 12n
9 1-9

2

P(A(1 w))) (P(B1 )) '

e(DA(x,w))2/4dP(x) < 1 e(1-9)2/4 '(A(w))
B

P(B) P(B) .in.

Optimize now in 9. To this aim, use that, for every u E [0, 1],

9E[0,1]

Taking 9 = 1 + 2logu if u > e-1/2 and 9 = 0 otherwise, and taking logarithms, it
suffices to show that

log(2 - u) + log u + (log u)2 > 0,

which is established through elementary calculus. Therefore, by (4.7),

inf
e(1-B)2/4u-9

< 2 - u.

e(D`a(x,w))2/4dP(x) < P(B) (2 PP(B))))
Ln \
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To conclude, integrate in w so that, by Fubini's theorem,

n}1 e(VA(X.W))2/4dP(x)dp(w) < P(B) (2_ PP(B) )
J 1<

P 0 p(A)

since u(2 - u) < 1 for every real number u. Theorem 4.6 is established.

The strength of the functional DA(x) with respect to the Hamming metric is
that all choices of ai's (depending upon x) are possible. This makes Theorem 4.6 a
principle of considerable power in applications, as will be further demonstrated in
Chapters 7 and 8. As a first illustration, let 1 = {0, 1} and pr, be the probability
measure that gives mass p to 1. Denote by P = p the product measure of p,, on Q.
Consider a subset A of Q 'I that is hereditary in the sense that if x = (xl, ... , x,) E A
and if y= (yl, ... , yn) E St's is such that yi < xi for all i = 1,...,n, then y E A.
For x E St's, set J = {1 < i < n; x, = 1} and N(x) = Card(J). Choosing ai = 1 if
i E J and 0 otherwise shows that

d(x, A) < VA' (x) N(x)

where d(x, A) is the usual Hamming distance from x to A. Therefore, for every
r,s>0,

A) > r}) < P({DA > rs-1/2}) + P({y : N(y) > s})
P(A) e-r2/4s + P({y : N(y) > s}).

Since the last term is very small for s > pn, we see that Theorem 4.6 produces the
correct order (pn)-1 in the coefficient of r2.

By definition of the convex hull distance DA (x) as a supremum of distances, its
application to Lipschitz functions requires some care. Consider indeed a function
F : X --+ R on the product space X = Stl x ... x St,, such that for every x E X
there exists a = a(x) E R+ with jal = 1 such that for every y E X,

F(x) < F(y) + da(x, y). (4.8)

The important feature in the extension provided by Theorem 4.6 is that a may
depend on x. Then let A = IF < m}. By (4.8) and the definition of DAc (x), it is
clear that

F(x) <m+da(x,A) <m+DA(x)

for every x. Hence, by Theorem 4.6, for every r > 0,

P({F > m + r}) < P({DA > r}) < P(A) e-r2/4

In other words,

P({F < m})P({F > m + r}) < e-r2/4, r > 0.
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Choose then successively m = mF and m = mF - r where mF is a median of F
for P to get the following result.

Corollary 4.7. Let P be a product probability measure on the product space
X = SZl x . x f and let F : X - R be 1-Lipschitz in the sense of (4.8). Then,
for every r > 0,

P({IF - mFJ > r})< 4e-''214

where mF is a median of F for P.

Replacing F by -F, Corollary 4.7 applies similarly if (4.8) is replaced by
F(y) < F(x) + da(x, y).

A typical application of Corollary 4.7 concerns supremum of linear function-
als. In a probabilistic language, consider independent real-valued random variables
Yi, , Yn on some probability space (Sl, A, P) such that for real numbers ui, vi,
i = 1,...,n,

ui < Yi < vi, i = 1,...,n.

Set
n

Z = sup tiYi (4.9)
tET i=1

where T is a (finite or countable) family of vectors t = ( t 1 ,- .. , tn) in Rn such that
0 = suptET (E 1 tZ (va - 3")2)1/2 < oo. Apply Corollary 4.7 to

n
F(x) = sup tixi

tET i=1

on X = rja 1
[ui, vi] under the product measure of the laws of the YY's, i = 1, ... , n.

Indeed, given x = (xii ... , xn) E X, let t = t(x) achieve the supremum of F(x)
(start with T finite if necessary). Then, for every y E X,

n n n

F(x) = tixi < tiyi+ ItdIxi -iiil
i=1 i=1 i=1

n
Itillyi - uil< F(y) + 0 1{x. Y).

ori=1

Hence 0-1F satisfies (4.8) with a = a(x) = 0-1(It1
I, ... , Itn I). Thus Corollary 4.7

yields the following consequence that has to be compared with (1.23) for T reduced
to one point.

Corollary 4.8. Let Z be as in (4.9) and denote by mz a median of Z. Then, for
every r > 0,

Furthermore,

]E({IZ - mzI > r}) < 4e-r214°2.

IE(Z) - mz I < 4/0 and Var(Z) < 1602.

What is actually hidden behind this example are the convexity properties of
the functional F. It is easy to check that if Sl = [0, 1] and if dB is the Euclidean
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distance to the convex hull B = Conv(A) of A, then dB < V. Indeed, given
xE[0,1]1,foranyykEA,0k>0,Ek9k=1,

dB(x)
< I X - L.: 9kykl

k

1 I ek (xi - ya)
I2) 1/2

i=1 k

z I

2\ 1/2

since xi, yi E [0, 1]. The conclusion follows from the combinatorial description (4.5)
of DA (x).

Corollary 4.9. For any product probability measure P on [0,1]1, and any mea-
surable set A C [0, 1]n,

fe41"4dP < P(A)

where B is the convex hull of A.

Let F be a 1-Lipschitz convex function on [0,1]1. Set A = IF < m} where
m E R. Since F is convex, A is convex. For every x E [0,1]1 such that d(x, A) < r,
F(x) < m + r. Hence, by Corollary 4.9,

er2/4P({F < m})P({F > m+r}) <

Choosing successively as before m = mF and m = mF - r where mF is a median of
F for P, we get the following important consequence of Theorem 4.6. Alternatively,
if F is convex and 1-Lipschitz, for every x, y E [0,1]1,

n

F(x) < F(y) + E(xi - yi)8OF(x) < F(y) + da(x, y)
i=1

with a = a(x) = (I81F(x)I,... , IBnF(x)I) and thus F satisfies (4.8).

Corollary 4.10. For every product probability P on [0,1]1, every convex 1-
Lipschitz function F on R1, and every r > 0,

P({IF - mFI > r}) < 4e-r2 /4

where mF is a median of F for P.

Corollary 4.10 extends to probability measures µi supported on [ui, vi], i
1, ... , n, for functions F such that

n
1:(vi - ui)2(8iF)2 < 1.
i=1
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In particular, if P is a product measure on [v. i']" and if F is convex and 1-Lipsc1iitz
on R". for every r > 0.

P({IF - mpI > r}) <
4e-12/4(v-u)2

(4.10)

By Proposition 1.8, we may replace the median by the mean up to numerical
constants. The numerical constant 4 in the exponent may be improved to get
close to the best possible value 2. This concentration inequality is very similar
to Gaussian concentration, however with F convex. This convexity assumption
cannot be omitted in general as shown by the following example. Let P be a
uniform product measure on {0,1}n c [0, 1]n and assume that n = 2k is even. Let
the Hamming ball

A= {x E {0, 1}n; E1 xi < k}i
and F(x) = d(x, A), X E Rn, where d is Euclidean metric. Clearly IIFIILip = 1 and
0 is a median of F. Now, if E 1(2x, - 1) > pVT for some p > 0 to be specified
later, for all y E A,

n n
p

v ^. :5 E(xz - yi) C E I xi - yzlz.
z=1 z=1

Hence d(x, A) > / k1/4. It follows from the central limit theorem that

rj V-e nl1/4 1 "` p 1P(lx;d(x,A)> 121 JI API /n-E(2xa-1)>_ }) > 4V z=1 V `

for p > 0 sufficiently small and independent of n. Therefore concentration is not
available.

Theorem 4.6 may be generalized along the same lines of proof to non-quadratic
distances. One possibility is to measure the distance to VA(x) in another way. To
this task, given a > 0, set

n

D,a,A(x) = V (A ar)
ET,s(yz)

yE

where

T13(1 -u)=,(3ulogu-(1+/3u)log (1+'3u , uE [0,1]. (4.11)1+0
The reader should observe that D,a,A corresponds in the preceding notation to (DA)2
rather than to D.

Theorem 4.11. For every non-empty subset A of X = fl' x ... X Stn, and every
product probability measure P on Stn,

feVP.AdP < 1
P(A)a

In particular, for every r > 0,

P({D,6,A > r}) < P A a e-' .



4.3 CONTROL BY SEVERAL POINTS 79

We refer to [Ta17] for a proof of Theorem 4.11 along the lines of the proof of
Theorem 4.6. One striking aspect of this result is that the form of the function
-r,3 is exactly determined by the optimization (4.7) when dealing with the extra
parameter 3. We present a proof of Theorem 4.11 with the tool of information
inequalities in Chapter 6.

4.3 Control by several points

The preceding convex hull approximation suggests the possibility of various notions
of enlargements in product spaces that go outside the scope of distances. The
following is a control by a finite number of points that is not metric.

As in the previous section, let (S2a, oi, pi), i = 1, . . . , n, be arbitrary probability
spaces and let P = Al ® . ®µn be the product measure on X =1 , x x On. If q
is an integer > 2 and if Al, ... , Aq are subsets of X, then, f o r every x = (x,, ... ,xn)
in Stn, let Dq(x) = DA, a9 (x) be defined by

Dq (x) = inf {k > 0; 2 yl E A',. .., 3 yq E Aq such that

<k}.

(We agree that Dq = oo if one of the A2's is empty.) If, for every i = 1, . . . , n,
Ai = A for some A C Stn, Dq(x) < k means that the coordinates of x may be
copied, with the exception of k of them, by the coordinates of q elements in A.
Using again a proof by induction on the number of coordinates, we establish the
following result.

Theorem 4.12. Under the previous notations,

f qDv (X)

dP(x)
<_

1
H P(A2)

In particular, for every integer k,

P({Dq > k}) < q-k
q 1i P(Aa)i=i

Proof. As in the proof of Theorem 4.6, we may assume that X = Stn is the n-fold
product of a probability space (Il, E, p) with the product measure P = µn. One
first observes that if g is a function on SZ such that 1 < g < 1, then

f gdA1. (4.12)

Indeed, since log u < u - 1, u > 0, it

s(fd)
ufiices to show that

f?d,.+qJgdp=f(?g+gg)di <q+1 .

But this is obvious since u + qu < q + 1 for .1 < u < 1.
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Let g,, i = 1, ... , q, be functions on Il such that 0 < ga < 1. Applying (4.12)
tog given by 9 = min(q, mine<a<q 9+) yields

fmin(qrnin
q

q

-1

) d,L (fj .
J gzdµ) < 1 (4.13)

Z-1

since gi < g for every i = 1, ... , q.
We prove the theorem by induction on n. If n = 1, the result follows from

(4.12) by taking gi = IA,. Assume Theorem 4.12 has been proved for n and let
us prove it for n + 1. Consider sets A',-, Aq of Stn+1. For w E St, consider the
sections Ai(w), i = 1, . . . , q, as well a s the projections Bi of Ai on on, i = 1, ... , q.
Note that if we set gi = P(Ai(w))/P(Bi) in (4.13) we get by Fubini's theorem that

fmin (q
P(Bi)

lmin 11 P(Cii)) dµ < 11 P
0 µ(A4)

(4.14)
i=1 '1-qi=1 i=1

where Cap = Bi if i # j and Ci2 = AZ(w). The basic observation is now the
following: for (x, w) E Stn X St,

DA1,...,Aq (x, w) < 1 + DB1,...,Bq (x)

and, for every 1 < j < q,

DA1,...,Aq (x, w) : (x)

It follows that

gDAl, A9(X'W)dP(x)dq(w)

fn+1
min(q . gDB1,....BgiXl' 1minggDC1.2, . cqa i0>)dP(x)dµ(w)

< min (q f gDs1,...,Bgix>dP(x),
n n

min f gDa1j,..cq3ix>dP(x))dµ(w)

1<j<q on
q 1 q 1

< in min (q
P(Bi) f P(Cij) ) dµ(w)

by the recurrence hypothesis. The conclusion follows from (4.14) and the proof of
Theorem 4.12 is thus complete. 0

In the applications, q is usually fixed, for example equal to 2. Theorem 4.12
then shows how to control, with a fixed subset A, arbitrary samples with an expo-
nential decay of the probability in the number of coordinates which are neglected.
Let us consider a class of functions to which this property may be applied. For a
subset I c {1, ... , n}, set StI = rJiEI Sti and denote by fl* the collection of all f j's,
I C {1, ... , n}. If x = (x1, ... , xn) E Sl1 x . . X Stn and I C {1, ... , n}, we denote
similarly xI = (xi)iEI E SZI. A function F : St* -> R+ is said to be monotone if
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F(xi) < F(x,i) whenever I C J. F is said to be subadditive if for I, J disjoint in
{1,...,n} and xluJ E QIUJ,

F(xiu,i) < F(xj) + F(xj)

Typical examples of monotone and subadditive functions are the following. If SZ =
[0, oo) for every i = 1,.. . , n, set F(xi) = ZiEI xi. If 1lZ are subsets of a normed
space (E, 11 I1), put

F(xi)
E(I E eixi

iEl 1)

where ei are independent symmetric ±1 Bernoulli random variables.

Corollary 4.13. Let P be any product measure on X = c21 x x SZn and let F
be monotone and subadditive on SZ*. We denote in the same way the restriction of
F to X. Let m be chosen so that (for example) P({F < m}) > 1. Then, for every
integers k, q > 1, and every r > 0,

P({F > qm + r}) < 2qq-(k+l) + P({x; max F(xi) > r}).
I;Card(I)<k

Proof. Let A = IF < m} and let Dq = DA A. If X E {Dq < k}, there exist
y',...,yq in A such that Card (I) < k where

I= 111 ,

Take then a partition (Jj)1<j<q of I' = {1,...,n} \ I such that xi = y$ if i E J.
Then, by subadditivity and monotonicity,

F(xi`) E F(.l,) Fly{1,...,n}) :5 qm.
j=1 j=1

The conclusion immediately follows from Theorem 4.12.

Applied to a sum of non-negative independent random variables this yields the
following.

Corollary 4.14. Let Yl,... , Yn be non-negative independent random variables on
some probability space (Il, A, F) and set S = Yi + + Yn. Let m be such that
P({S < m}) > 1 and denote by {Y',. .. , Yn } the non-increasing rearrangement of
the sample {Y1, ... , Yn}. Then, for any integers k, q > 1, and every r > 0,

F({S > qm + r}) < 2qq-(k+l) + p

If the random variables are bounded by some C > 0, k is usually chosen of
the order of Cr so that the second term on the right-hand side of the inequality of
Corollary 4.14 cancels.
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Let T be a family of n-tuples t = (ti, ... , tn), t2 > 0. It is clear that the
preceding argument leading to Corollary 4.14 applies in the same way to

n
S = sup E tZY"

tET "=1

to yield

P({S > qm + r}) < 29q-(k+1) + p I { Q Yj* > r } I (4.15)\l a=1 JJJ///

where a=sup{ti;1<i_<n,tET}.
The case of random variables with arbitrary signs will be studied in this way

in Chapter 7 with the tool of (probabilistic) symmetrization.

4.4 Convex infimum-convolution

In this section, we develop the tool of infimum-convolution inequalities, introduced
in Section 1.6, for product measures to recover some of the results of Section 4.2.
Recall from Section 1.6 that given a measurable non-negative function c on a topo-
logical vector space X and a real-valued measurable function f on X, we denote
by Qa f the infimum-convolution of f with respect to the cost c"(x, y) = c(x - y),
x,yEX,

Qaf (x) = inf [f (y) + c(x - y)], x E X.

If p is a probability measure on the Borel sets of X, and c is a non-negative measur-
able cost function on X, we say that p satisfies an infimum-convolution inequality
with respect to the cost c if for all bounded measurable functions f on X,

fedJedp < 1. (4.16)

We have seen in Proposition 1.18 and (1.31) how (4.16) is simply related to con-
centration by the fact that for every Borel set A and every r > 0,

1 - p({A + {c < r}}) < e (4.17)

As a consequence of Proposition 1.19, each time a measure µ satisfies the
infimum-convolution inequality (4.16), the product measure µn on Xn satisfies the
concentration inequality (4.16) with the cost function E 1 c(xi), x1i ... , xn E X.

We apply this observation in the context of the infimum-convolution inequality
for convex functions. Let us say that a probability measure p on the Borel sets of
X satisfies a convex infimum-convolution inequality with respect to a convex cost c
if for all bounded measurable convex functions f on X,

JeMdpfedp < 1. (4.18)

It is easy to see that the convex infimum-convolution inequality also satisfies the
product property of Proposition 1.19. In the following statement, X1,. .. , Xn is a
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family of normed vector spaces and a point x in the product space X = X1 x ... X X.

will be denoted x = (x1, ... , x11). The norms on the various X, will be denoted in

the same way by II II.

Theorem 4.15. Let X1, ... , X91 be normed vector spaces and, for each i = 1, ... , n,

let pi be a probability measure supported by a set of diameter less than or equal

to 1 on X,. Then the product probability measure P = pi 0 . 0 An satisfies the

convex infimum-convolution inequality on X = X1 x . . . x X91 with respect to the

cost function c(x) = 4 Et 1
IIx,112, x E X.

Proof. By the product property of the convex infimum-convolution inequality, it is

enough to deal with a single probability measure p supported by a set A of diameter

less than or equal to 1 on a normed space (X, 11 II). Let f be a convex function
on A for which we may assume without loss of generality that inf f (A) = 0. Let
xEA,e>OandaEAbesuch that f(a) <-e. For9E [0,1],andy=Ox+(1-9)a,
by convexity,

Qaf(x) <-f(y)+4Ilx-y1I2 <Of(x)+(1-9)6+4 (1-O)2

since Diam(A) < 1. Choosing optimal 0, we deduce that QJ f (x) < b(f (x)) where

u-u2
O(u) = I1

4

1
if0<--u<- 2'

One can check that a*(u) < 2 - e-" for every u > 0. Indeed, for 0 < u < 1,

z

2
(eu-u2 + e-") = e-"2/2 cosh (u - 2) < e-u2/2 cosh(u) < 1,

while for u > 2, e u < 2 - e1/4. It follows that

Jefd
1

Jedµ 2-µ<_ (Je_fd)

which proves the theorem. 0

The simple minded Theorem 4.15 has strong consequences. We may indeed

recover with it Corollary 4.9 and thus the useful Corollary 4.10. Indeed, let X$ = R

for every i = 1, . . . , n and let µi be probability measures supported by [0,1]. Given

a convex set A, apply Theorem 4.15 to the (convex) function f equal to 0 on A and

to +oo outside. Since QJ f = 114 A)2, the claim follows.

4.5 The exponential distribution

In this section, we consider a special concentration property of the exponential

distribution. Let vn be the product measure on R' when each factor is endowed



84 4. CONCENTRATION IN PRODUCT SPACES

with the measure v of density 2e-IxI with respect to Lebesgue measure. Denote by
13" = 132n the Euclidean (open) unit ball and by B the 21-unit ball in Rn, i.e.,

61 X= (xl, ... , xn) E Rn; I xxj < 1 }.
l x=1 J

Theorem 4.16. For every Bore] set A in Rn and every r > 0,

1- vn (A + 6v 82 + 9rB) < vn(A) e--.

A striking feature of Theorem 4.16 is that it may be used to improve some
aspects of concentration for Gaussian measures especially for cubes. Consider in-
deed the increasing map T : R -+ R that transforms v into the one-dimensional
canonical Gaussian measure y. It is a simple matter to check that

IW(x) - '(y) i < K min(Ix - yI, lx - yI112), x, y E R, (4.19)

for some numerical constant K > 0. The map cp = %yon : Rn - Rn defined by
VW = (W (xi))1<i<_n transforms vn into 'y . Consider now a Borel set A of Rn such
that -y-(A) > 2. Then, by Theorem 4.16,

yn
(V 6/ 132 + 9rBln) )

=vn(W-1(A)+6f,- B +9rB )
> 1 - 2e-".

However, it follows from (4.19) that

cp(cp-1(A)+6 / B2 +9rB1) C A+K'/132.

Thus Theorem 4.16 implies (within numerical constants) concentration for yn. To
actually illustrate the improvement for some classes of sets, let

A={xEIIFn; max 1xil <m}
1<i<n

where m = m(n) is chosen so that yn(A) > 1 (and hence m(n) is of order ogn).
Then, when r > 1 is very small compared to log n, it is easily seen that actually

cp(w -1(A) + /,- B2n + Bin) C A + Kl
6 / + 9r

'6n162ogn ogn )
C A+ K2 Flog v B .

g

To establish Theorem 4.16, we show that the exponential distribution satisfies
the infimum-convolution inequality (4.16) for a cost that gives rise to the enlarge-
ment 6/ 132 + 9rBi through (4.17). By Proposition 1.19, it will be enough to deal
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with the dimension one. By a further symmetrization argument, we need only con-
sider the one-sided exponential measure with density a-x with respect to Lebesgue
measure on R+.

Proposition 4.17. The probability measure with density e-x on R+ satisfies the
infimum-convolution inequality with cost function Z(x - y) on R x R where

1 x2 if jxj < 2,
c(x) = 18

9 (jxj - 1) if lxj > 2.

Proof. Let f be a bounded measurable function on R+. Let

Jo = j0"e-f(x)-xdx and J1
=j'

eQaf(v)-'dy.
0

For 0 < t < 1, define x(t) and y(t) by the relations

J
x(t) adx

= tJ0 and
0YM e'dy = tJ1.

J0

By differentiation,

x'(t) = Jo of (x(t))+x(t) and y'(t) = J1 e QZf(v(t))+v(t).

Here y' is the usual derivative while x' is understood in the weak sense of the
Sobolev space H1. Since

Q3f (y(t)) < f (x(t)) + c(x(t) - y(t)),

we get
y'(t) > J1 ef(x(t))-Z(x(t)-v(t))+v(t).

Now let z(t) =
2

(x(t) + y(t)) - c"(x(t) - y(t)). We have

z'(t) W'(x(t) - y(t)))x (t) + (2 + a'(x(t) - y(t)))Y, (t)

Now jc'j < 2. Writing x for x(t) and y for y(t), and using the inequality .Xu+A-lv >
2/ uv for A = of (x), we get

z'(t) > (2 - c'(x - y)) Jo ex+f(x)

+ (2 + c'(x - y))Ji e-z(x-v)+v-f (x)

> 1 - 4c(x - y)2 J0J1 e' (x+v)-'6(x-v)

> J0J1 ez(t) 1 - 4c'(x - y) 2 e1a(x-v).

Now, (1 - 4e(u)2) W(") > 1 for every u E R. Since c is even, it is enough to check
the latter for u > 0. For u > 2, c' is constant and c" is increasing. For 0 < u < 2,
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it reduces to the elementary inequality e-''/18 < 1-(4v/81) for 0 < v<4. As a
consequence, it follows that

e-z(t)z'(t) ? JoJi,

which, after integration between 0 and 1, yields the result. Proposition 4.17 is
established.

To complete the proof of Theorem 4.16, observe first that Proposition 4.17
holds, up to numerical constants, for the two-sided exponential distribution with
the cost function

1 x2 if IxI < 4,
c(x) =

26
(4.20)

1(IxI - 2) if IxI > 4.

By Proposition 1.19, the product v' of the two-sided exponential distribution
on R' satisfies the infimum-convolution inequality with the cost Z 1 c(xi), x =
(Xii ... , x,) E R'. It is then a mere exercise to check that

{x E Rn; c"(xi) <r} c 6 132 +9r131
11111 i=1 111

from which the conclusion follows by (4.17).
As in Chapter 1, the concentration inequality on sets of Theorem 4.16 may be

translated equivalently to functions. This is the content of the next proposition.

Proposition 4.18. Let F be a real-valued function on Rn such that IIFIILiP < a
and such that its Lipschitz coefficient with respect to the Q1-metric is less than or
equal to b, that is,

IF(x)-F(y)I <bEIx,-ydI, x,yER'.
i=1

Then, for every r > 0,

/ / 2))
v' ({F>M+r}) <Kexp1 -K mint b,a2 (4.21)

for some numerical constant K > 0 where M is either a median of F for vn or
its mean. Conversely, if the latter holds, the concentration result of Theorem 4.16
holds.

By Rademacher's theorem, the hypotheses on F are equivalent to saying that
F is almost everywhere differentiable with

n
IejFI2 < a2 and max IeiFI < b

i=1
1<i<n

almost everywhere. The inequality of Proposition 4.18 extends in the appropriate
sense the classical case of linear functions F (sums of exponential random variables)
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with a quadratic exponential growth for the small values of r and a linear one for
the large values, and may be shown to be sharp in this case.

Proof. Apply first Theorem 4.16 to A = IF < mF} where mF is a median of F for
vn and note that by the Lipschitz bounds on F,

A+6 X32 +9rL31 C IF <mF+6af +9br}.

The positive solution s to the equation 6a/+9br = s behaves like s min (b, a ).
This yields the inequality of the proposition for the median. Using a routine ar-
gument (cf. Proposition 1.8), the deviation inequality from either the median or
the mean are equivalent up to numerical constants. Conversely, for A C 1Rn and

nx=(x1i...,xn)EIl$ R, se

n
FA(x) = inf min (lxa - zal, l xi - zil2).

zEA
a=1

For r > 0, set further F = min(FA, r). Then En 1 lOOFl2 < 4r and maxi<i<n IOOFI
< 2 almost everywhere. Indeed, it is enough to prove this result for G = min(Gz, r)
for every fixed z where

n

Gz(x) = Emin (Ixi - zil, Ixi - zil2).
Z=1

Now, almost everywhere, and for every i = 1,. .. , n, l aiGz (x) I < 21xi - zi I if
lxi - ziI < 1 whereas la Gz(x)I < 1 if lxi - ziI > 1. Therefore, maxl<i<n laiGz(x)I <
2 and n n

1

aaGz(x)12 < 4min (1xi - zit, Ixi - zil2) = 4Gz(x)
i=1 i=1

which yields the announced claim. If vn (A) > 2 , 0 is a median of F so that, by the
hypothesis with M the median,

vn ({FA > r}) = vn (IF > r}) < e-r/4K

Since {FA < r} C A + V ,-52n + rB, this amounts to the inequality of Theorem
4.16.

In the final corollary, we apply Theorem 4.16 to concentration of products of
the measure vp with density cp a-I'l', 1 < p < oo, with respect to Lebesgue measure
on R. We recall the &-unit ball Bp, 1 < p < oo, in R, ,

BPn JX
n1/p

= =(x1i...,xn)ERnilxlpIxalp<\
a=1

and

t3'n _ {x = (xl,...,xn) E Rn; Ixloo = max lxil < 1}.1<i<n

nDenote by vp the product measure of vp on R.
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Theorem 4.19. There is a constant K > 0 only depending on 1 < p < oo such
that for any Bore] set A in Rn and any r > 0,

1 - vp (A+ f 132 +,I /P,3) <_
vp (A)

e-*/x

Proof. For p = 1, this is the content of Theorem 4.16. We show how this case
implies the other ones. As for the comparison with Gaussian measures, consider
the increasing transformation WP from R to R that maps vl into vp. Denote then
by cpp = Tpn the map from 1W into itself given by cpp(x) = ('Yp(xi))1<i<n, x =
(z1, ... , x,) E 1I8n; cop transforms vi into vp . If vp (A) 2, then v1(cpp 1(A)) > 2.

By Theorem 4.16,

v1 ( c p p 1(A) + 6 / 82n + 9r8) > 1 - 2 e-'

for every r > 0. Thus it suffices to show that

c p p (co 1(A) + 6/ + 9rB) C A + K (V/r 132 + r1/P, p) . (4.22)

To this task, we need the following simple but a bit technical estimates we
leave to the reader (see [Tal6]). First, for all x, y E R,

I Wp(x)-hp(y)I <Kmin(Ix-yl,Ix-yll/P). (4.23)

(Compare with (4.19).) Here and below, K > 0 denotes a constant only depending
on p and possibly changing from line to line. Second, define 19p(u) = u2 for Jul < 1
and 19p(u) = up for Jul > 1 and set for r > 0,

n l
Vp(r) x E Rn; 19p(xi) < r }.

l a=1 JJJ

Then

while for every p,

/L + rB C 12V1(r), (4.24)

VP (r) C xB2 +r11'13p. (4.25)

Therefore, by (4.24) and (4.25), in order to prove (4.22), it suffices to show that for
every r > 0,

ccp (cpp 1(A) + 2V1(r)) c A + Vp(Kr).

Consider y E cpp 1(A)+2V1(r). Thus y = cpp 1(x)+z where x E A and E$ 119p(2) <r.
By (4.23),

IWp(yi) - xil < Kmin (Izil, Izill/P)

for every i. If IziI < 1,
,op(gP(Yi)-xi)

<z=
`` K

while if Izi I > 1, since 79p increases,

TP(yK-
xi/

<
Izil.
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Now i91(u) = min(u2, Jul) < K191(2) so that

,0P(I'P(1JK- X, < ,91(z:)
<_ Ki91 2 )

and

n 'p(TP(m) - xi) < Kr.ji=1
`` K 1lE
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The proof is easily completed.

As in Proposition 4.18, the concentration result of Theorem 4.19 may be trans-
lated equivalently to functions.

It should be noted that the arguments developed in Propositions 2.9 and 2.10
transferring concentration for Gaussian measures to concentration on the Euclidean
ball and sphere may be applied similarly starting from Theorem 4.16 (or rather
Proposition 4.18) to yield a concentration result on the £l-unit ball or sphere in
R". Indeed, if x is distributed according to v1, then x/I x I I is distributed according
to the normalized surface measure on the sphere of £1 in R". We may thus reach in
this way concentration for uniform measure on the unit ball, or sphere, of £1, hence
including the value p = 1 in (2.27).

Proposition 4.20. If p is uniformly distributed on the unit sphere, or ball, of $P
inR',1<p<2,

a(BP,j.IP,µ)(r) < Ce ""-2, r>0'

where C, c > 0 are constants depending only on p.

We refer to [AR-V], [Sche4] for details and proofs. In particular, on the basis
of Theorem 4.19, the result may be obtained simultaneously for every 1 < p < 2.
Recall that in the case of 1 < p < 2, the relevant measure p is not the surface
measure but the one induced from Lebesgue measure on the full ball defined in
(2.26).

In another direction, the paper [S-Z2] deals with Lipschitz functions with re-
spect to the Euclidean metric.

Proposition 4.21. If p is uniformly distributed on the unit ball, or sphere, of P
in R", 1 < p < 2,

a(BP,1.12,µ)(r) < Ce` 9, r > 0,

where C, c > 0 are constants depending only on p.

Notes and Remarks

This chapter presents various views on concentration for product measures. Lemma
4.1 goes back to [Az]. The generality of the martingale method as presented in Sec-
tion 4.1 was understood by G. Schechtman [Schel] (from which most of the results
of this section are taken; see also [M-S]) after the important step by B. Maurey
[Maul] on the symmetric group (Corollary 4.3). Its first occurrence however goes
back to the Yurinskii method of Corollary 4.5 [Yul], [Yu2] to bound norms of sums
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of independent random vectors from their mean in probability in Banach spaces (cf.
[Le-T]). Optimal concentration functions on the discrete cube via the martingale
method are discussed in [MD1] and [Ta17]. The notes [MD2] form a complete sur-
vey of the applications of the bounded difference martingale method to algorithmic
discrete mathematics. Recent developments of the methods towards fluctuations
results are due to O. Catoni [Ca].

It soon became apparent that the Laplace approach would not yield optimal
results when applied to more general functionals. In [Tall], M. Talagrand estab-
lished Corollary 4.9 for a uniform measure on the discrete cube. W. Johnson and
G. Schechtman [J-S2] extended the argument to all measures on the discrete cube
that prompted M. Talagrand to the abstract formulation presented here as Section
4.2. There is an analogue of Theorem 4.6 on the symmetric group [Tall], extended
recently by C. McDiarmid [MD3], and presented in Section 8.2 below.

Motivated by questions in probability in Banach spaces (cf. Chapter 7), M. Ta-
lagrand [Ta12] established simultaneously Theorem 4.12. The first proof uses del-
icate rearrangement and symmetrization techniques of isoperimetric flavor. The
short proof presented here appears in [Tall].

The memoir [Tal7] by M. Talagrand is a landmark paper on concentration in
product spaces, which presents definitive results with applications to a number of
questions on norms of sums of independent random vectors and discrete algorithmic
probabilities. See also [Tal8] for an introduction. The results of Sections 4.2 and
4.3 are taken from there and some applications are developed in Chapters 7 and
8. Penalty versions of the results presented here with applications to distributions
with unbounded supports are also investigated in [Tal7].

The application of infimum-convolutions to concentration properties of product
measures was emphasized by B. Maurey in [Mau2]. The results of Section 4.4 are
taken from this reference.

It was again the merit of M. Talagrand [Tal3] to emphasize the concentration
properties of the exponential distribution. The exposition of Section 4.5 is en-
tirely taken from the nice approach developed by B. Maurey [Maul]. The method
is already implicitly present in Talagrand's work, which reaches moreover some
isoperimetric statements. Theorem 4.19 is taken from [Ta16]. The papers [M-P]
and [S-Z1] develop the crucial argument to transfer the measures vp to uniform
measures on £ -balls and spheres. Applications of this principle to concentration
on the £ -balls, 1 < p < 2, (Propositions 4.20 and 4.21) appear in [S-S1], [S-Zl],
[S-Z2], [AR-V], [Sche4]. These results may be used in various embedding questions
(cf. [Sche5]).
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In this chapter, we illustrate how normal concentration properties may follow from
a functional logarithmic Sobolev inequality. This is in parallel with the exponential
concentration under spectral bounds investigated in Section 3.1. Although rather
elementary, this observation is a powerful scheme which allows us to both establish
some new concentration inequalities and recover several of the concentration re-
sults in product spaces presented in the previous chapter due to the basic product
property of entropy. The first section presents the logarithmic Sobolev inequalities
introduced by L. Gross [Grosl] and develops the basic scheme from logarithmic
Sobolev inequalities to concentration that is going back to some unpublished ob-
servation by I. Herbst. We next investigate entropy of product measures and their
applications to concentration in product spaces. Section 5.3 analyzes, with the tool
of logarithmic Sobolev inequalities, the concentration properties of the exponential
distribution while section 5.4 is devoted to some discrete analogues. The last section
describes related covariance identities that also entail measure concentration.

5.1 Logarithmic Sobolev inequalities and concentration

We present in this section the Herbst argument leading to measure concentration
from a logarithmic Sobolev inequality.

Given a probability measure p on some measurable space (St, E), for every
non-negative measurable function f on (Il, E), define its entropy as

Entµ (f) = fflogfdP - ffdPlogffdP

if f f log(1 + f )dp < oo, and +oo if not. Note that Entµ(f) > 0 by Jensen's
inequality and that entropy is homogeneous of degree 1.

We introduce the concept of logarithmic Sobolev inequality. To avoid some
technical questions, let us consider first the case of the Euclidean space Rn. A
probability measure p on the Borel sets of R" is said to satisfy a logarithmic Sobolev
inequality if for some constant C > 0 and all smooth enough functions f on Ian,

Entµ(f2) <2C f IVfI2dp. (5.1)

Here V f denotes the usual gradient off and I V f I its Euclidean length. Hereinafter,
by smooth we understand enough regularity so that the various terms in (5.1) make
sense.

91
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The logarithmic Sobolev inequality is to be compared with the Poincare in-
equality (or spectral gap inequality) of Section 3.1,

Varµ(f) :5 C1 lvfl2dµ (5.2)

where we recall that

Varµ(f)=ff2d- (ffd)2
is the variance of a (square integrable) function f. Applying (5.1) to 1 + of and
letting a -> 0 shows by a standard Taylor expansion that the logarithmic Sobolev
inequality (5.1) is a stronger statement than the Poincare inequality (5.2). This
observation moreover motivates the choice of the normalization 2C in (5.1). The
basic example of the canonical Gaussian measure y on R' satisfies (5.1) (and thus
also (5.2)) with C = 1. As we already mentioned in Chapter 3, the constant 1 in
the Poincare inequality for y may also be described as the eigenvalue of the first
Hermite polynomial in the orthogonal decomposition of L2(y). While Poincare
inequalities are spectral, this is not the case for logarithmic Sobolev inequalities,
which do not usually follow from eigenfunction expansions.

Logarithmic Sobolev inequalities are part of the family of classical Sobolev in-
equalities. In terms of Sobolev embeddings, under a logarithmic Sobolev inequality,
functions in H1 do not belong necessarily to some LP-space with p > 2, but to the
Orlicz space L2log L. This embedding is optimal for the basic example of Gaussian
measures. On the other hand, no constant depending on the dimension arises in
the logarithmic Sobolev inequality for Gaussian measures. This is one fundamental
aspect of the infinite dimensional character of logarithmic Sobolev inequalities that
will be exploited here toward dimension free concentration.

Although we already provided a number of arguments leading to concentra-
tion of Gaussian measures, we present, for the matter of completeness, a proof of
the logarithmic Sobolev inequality for Gaussian measures (that will lead below to
concentration). The argument relies on the semigroup tools of Section 2.3.

Theorem 5.1. For every smooth enough function f on R,

Enty(.f2) <_ 2J lVfl2dy.

Proof. Recall from Section 2.3 the second-order differential operator L = A - x V
on R' with associated semigroup (Pt)t>0 called the Ornstein-Uhlenbeck semigroup
(cf. [Bak1)). In this particular example, (Pt)t>0 admits an explicit integral repre-
sentation as

Ptf(x) = ff (e-tx + (1- e-2t)112y)dy(y), t > 0, x E R". (5.3)

Let f be smooth and non-negative on R'. To be more precise, we take f smooth
and such that e < f < 1/e for some e > 0, which we set to 0 at the end of the
argument. Since Po f = f and limt + Ptf = f f dy, write

d (fPtf logPtfdy ldt.Ent.y(f) _ fo00wt-
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By the chain rule formula and integration by parts for L (2.33),

dtfPtflogPtfdy=J LPtflogPfdy+ JLPtfd7

- f IVPtf12
d

J Ptf y

since y is invariant under the action of Pt and thus f LPt f dy = 0. Now, by the
integral representation (5.3), for every t > 0,

VPtf = e tPt(Vf)

and thus
IVPtfI 5 etPt(IVfI). (5.4)

By the Cauchy-Schwarz inequality for Pt,

(ofI2)Pt(IofI)2 < Pt fPt f
Summarizing,

Ent. (f) <_ fe-2t 1 JPt (I j I2) dl-t)dt = 2 f 182 dµ

by invariance. By the change of f into f2 the theorem is established. 0
The preceding proof works similarly for all log concave measures dµ = e-udx

such that Hess U(x) > c Id > 0 for some c > 0 uniformly in x E R'.

Theorem 5.2. Let dp = e-udx where, for some c > 0, Hess U(x) > cId uniformly
in x E R'. Then for all smooth functions f on R,

Entµ(f2) <-
2

IVfl2dtt.
c

In order to establish Theorem 5.2, one should however note that the argument
above (cf. (5.4)) requires to improve (2.32) into

IVPtf I <e-ctPt(IDfI)

where, as in Section 2.3, (Pt)t>o is the semigroup with generator L = A- VU - V (cf.
[Bak2], [Le6] for a proof of Theorem 5.2 along these lines). Alternatively, following
the proof of Theorem 5.1, set (with the corresponding notations)

fi(t)= f IVPfI2dp, t>0.

Check then that q5'(t) < -2c-o(t), t > 0, as a consequence of (2.34) applied to
log Pt f. Hence ¢(t) < e-2ct¢(0), t > 0, from which the conclusion follows (cf.
[B-E], [Bakl], [Le7]). As we have seen in Theorem 2.7, such measures satisfy a
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Gaussian type isoperimetric inequality. It may be shown that this isoperimetric
inequality actually implies the logarithmic Sobolev inequality (cf. [Le5]).

The proof of Theorems 5.1 and 5.2 further extends to (compact) Riemannian
manifolds (X, .q) with a strictly positive lower bound c = c(X) > 0 on the Ricci
curvature. As for the first non-trivial eigenvahle Al = A1(X) of the Laplace op-
erator A on a compact Riemannian manifold (X, g). we may define formally the
logarithmic Sobolev constant of 0 or of the normalized Riemannian measure µ on
(X, g) as the constant po = po(X) such that

poEntµ(f2) < 2ff(-of )du = 2f IVfl2dµ (5.5)

holds for all smooth functions f on (X, g). By the Sobolev embedding theorem, it
is known [Rotl] that po > 0 on any compact manifold, and furthermore as above
that po < A1. The proof of Theorem 5.1 thus extends, as for Theorem 5.2, to show
that

Al > p0 > c(X). (5.6)

In analogy with the Lichnerowicz lower bound Al > nc i [Chal], [G-H-L], this
may actually be improved [B-E] together with the dimension n of X as

Al > po >
nc(X)
n-1

In particular,

EntQ,.(f2) <
2

f IVfI2do (5.7)

on the standard n-sphere S"`, including n = 1. We refer to [Bakl], [Le6] for further
details on these aspects and for the proofs of (5.6) and (5.7).

We now present the Herbst argument from a logarithmic Sobolev inequality to
concentration. The principle is similar to the application of spectral properties to
concentration presented in Section 3.1, but logarithmic Sobolev inequalities allow
us to reach normal concentration. To begin with, let us consider a probability
measure µ on the Borel sets of R". Assume that µ satisfies the logarithmic Sobolev
inequality (5.1). We will then show that

Eµ(A) <
eCa2/2,

A > 0,

where we recall that Eµ is the Laplace functional of µ (Section 1.6). Thus let F be
a smooth bounded Lipschitz function on R" such that f Fdµ = 0. In particular,
since F is assumed to be regular enough, we can have that IVFI < IIFIILiP at every

point. We apply (5.1) to f 2 = eAF-Ca211F IIMP/2 for every A E R. We have

2 2 aF-C,\2JIF'IIi;P/2f IV! I dµ = 4 f IVFI e dµ

< 4 eaF-ca211F IIi,P/2dµ.
4
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Setting A(A) = f' cXF A E R, by the definition of entropy,

J
I AF - 2 A2IIFIILip] CaF-C,\2 - A(A) log A(A)

2 A2IIFIILipA(A).

In other words,
AA'(A) < A(A) logA(A), A E R.

If H(A) =
a

logA(A) (with H(0) = A'(0)/A(0) = f Fdµ = 0), A E R, then
H'(A) < 0 for every A. Therefore, H is non-increasing and thus A(A) < 1 for
every A, that is,

fe'dP < eca2IIFIILip/2. (5.8)

Replacing F by a smooth convolution, (5.8) extends to all mean zero Lipschitz
functions. In particular, by Proposition 1.14 every 1-Lipschitz function F on R' is
integrable with respect toy and, for every r > 0,

µ({F > f Fdµ + r}) < e-''2/2c

Furthermore

a(R",µ) (r) <
e-9,2/sC,

r > 0.

The preceding argument actually extends to measures on arbitrary metric
spaces provided a natural extension of the length of the gradient is chosen. As
in Section 3.1, given a locally Lipschitz function f on a metric space (X, d), define
the length of the gradient of f at the point x E X as

IVfI(x) = lim sup If (x) - f(Y)I
v-.x d(x, y)

This gradient satisfies the chain rule

Ioct(f)I < I0'(f)IIofI (5.10)

for ¢ : R -f R smooth enough. Note that I V f I (x) < IIFIILip at any x. By
Rademacher's theorem, a Lipschitz function F on R' is almost everywhere dif-
ferentiable and IIVFII,,. = IIFIILip Furthermore, on R', (5.1) extends to all locally
Lipschitz functions. With a proof that just repeats the case of R', the next result
indicates that under a logarithmic Sobolev inequality, the underlying measure has
normal concentration (Herbst's argument).

Theorem 5.3. Let µ be a probability measure on the Bore] sets of a metric space
(X, d) such that for some C > 0 and all locally Lipschitz functions f on X,

Ent1, (f 2) < 2CJ I V f I2dµ.

Then, every 1-Lipschitz function F : X -f R is integrable and such that for every
r > 0,

p({F> f Fdµ+r}) <e-"2/2c
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In particular,

a(X,d,,) (r) < e_r2/8C, r > 0.

The normal concentration produced by Theorem 5.3 is optimal as shown by
the example of the Gaussian measure y for which C = 1. We saw in Corollary 3.2
that if a probability measure p on (X, d) satisfies the Poincare inequality

Varµ(f) < C1 IVfl2dp

for all locally Lipschitz functions f on (X, d), then p has exponential concentration.
Theorem 5.3 thus improves this result to normal concentration under a logarithmic
Sobolev inequality. Therefore, as spectrum was used in Section 3.1 to recover the ex-
ponential isoperimetric concentration of Proposition 2.12, entropy and logarithmic
Sobolev inequalities may be used to reach the Gaussian isoperimetric concentration
of Theorem 2.7. As for Poincare inequalities, note that if p on (X, d) satisfies the
logarithmic Sobolev inequality of Theorem 5.3 with constant C, the pushed forward
measure p,p by a 1-Lipschitz map cp : (X, d) -> (Y, 5) also satisfies the same inequal-
ity. On a Riemannian manifold, Theorem 5.3 yields the following consequence that
must be compared with Theorem 3.1 and that may be used to produce further ex-
amples of normal Levy families in the sense of Section 3.3. Recall the logarithmic
Sobolev constant po of (5.5).

Corollary 5.4. Let (X, g) be a compact Riemannian manifold with normalized
Riemannian measure A. Then,

a(X,g,p) (r) < e-Por2I8, r > 0,

where po > 0 is the logarithmic Sobolev constant of the Laplace operator A on
(X, g) -

By (5.6), Corollary 5.4 covers Theorem 2.4. It might be worthwhile noting
that Corollary 5.4 together with (5.7) improves the numerical constant of Theorem
2.3 including the one-dimensional torus.

To conclude this section, we briefly mention that both Poincare and logarithmic
Sobolev inequalities are stable under perturbation by a bounded potential. This is
the content of the next simple proposition. One odd feature of this result is that it
usually yields rather poor constants as functions of the dimension.

Proposition 5.5. Let p be a probability measure on the Bore] sets of R' and let
V be bounded on R. Define dv = Z-'evdp where Z is the normalization factor.
Then, if p satisfies a Poincare or logarithmic Sobolev inequality with constant C,
then v satisfies the same inequality with the constant Ce411V11-.

Proof. Note first that e-11V11oo < Z < e11V11-. Let ( be a smooth convex function on
some open interval I of the real line. Typically, ((u) = u2 on R or ((u) = u log u on
R+. By convexity of (, for any probability measure p and any smooth (bounded)
f:I --lR,

f((f)dp - (I J fdp) = innff f [((f) - ((t) + (t - f)('(t)ldp (5.11)
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where the integrand on the right-hand side is non-negative. It immediately follows
that

Pf)dv - C (ffdv) < e211v11o [J(f)dµ - (ffd)].
Hence, if

Varµ(f) < Cf IDfI2dµ,

the choice of ((u) = u2 yields

If

Ce211V1100 I IDfI2dµ < Ce411V11oof jVfl2dv.

Entµ(f2) <2C f IDfI2dµ,

then, taking ((u) = u log u,

Ent, (f2) < We211V11- f IVfl2dµ, < 2Ce411V11- f IVfl2dv.

Proposition 5.5 is proved.

5.2 Product measures

0

One important feature of entropy (and of variance) is its product property. Together
with the Herbst argument, this will give rise to a powerful tool to analyze dimension
free concentration properties of product measures P = µl ® .. 0 µn. To illustrate
the usefulness of this tool in product spaces, recall from Chapter 1 that the £1-
metric cannot reflect dimension free concentration properties since the Lipschitz
norm is not additive. We thus have to work at a higher level that motivates the
interest for logarithmic Sobolev inequalities that deal (on R' for example) with the
energy

f I V f I2dP = J>.(Of)2dp1 ®... dAn
:-1

which is clearly better adapted to product spaces than the Lipschitz coefficient
IIhJ IILip = IIDf Iloo-

Assume thus we are given probability spaces (Sli, Ei, µi), i = 1, ... , n. Denote
by P the product probability measure /11 ® .. 0 µn on the product space X =
Stl x x On equipped with the product u-field. A point x in X is denoted
x = (x1, ... , xn), xi E Oil i = 1, ... , n. Given f on the product space, we write
furthermore fi, i = 1, . . . , n, for the function on f defined by

fi(xi) = f (xl, ... , xi-l, xi)xi-Fl, ... , xn),

with xl, .. , xi-1, xi-E1, , xn fixed. The first result is the additivity of entropy.
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Proposition 5.6. For every non-negative function f on the product space X,

n

fEnt(fz)dP.Entp(f) <

The statement is the same for variances, namely for any f on the product
space,

Varp(f) < JVar,(fi)dP. (5.12)
i=1

Proof. We only prove it for entropy, the proof for variance being entirely similar,
and even simpler. For a non-negative function f on some probability space (Il, E, µ),

Ent,. (f) = sup { < 1 }. (5.13)

Indeed, assume by homogeneity that f f dµ = 1. By Young's inequality

uv<ulogu-u+e'", u>0, vER,

we get, for f e9dµ < 1,

Jfodi Jf1ogfdi -1 +J e9dµ<iflogfdµ.

The converse is obvious.
To prove Proposition 5.6, given g such that f e9dP < 1, set, for every i =

1,...,n,

i ( f e9(x1,...exn)d/Li(xl)...d/Li-i(xi-1)l
9 (xi ... , xn) =log \ f e9(x1 .....xn)dµi (xi) ... d/,(xi) /

Then g < Ea 1 gi and f 1. Therefore,

n

J f gdP < f gidP
i=1 I

(Jf.(9i).d/A.)dP

< J Ent,, (fi)dP
i=1

which is the result. Proposition 5.6 is established.

Corollary 5.7. Let µi on (Xi, di) satisfy the logarithmic Sobolev inequality

Entt.(f2) <2Cif IVifl2d/ii

11
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for every locally Lipschitz function f on X,, i = 1, ... , n, where I V, f I is the gen-
eralized modulus of gradient in the i-th space X,. Then the product measure
P =M10 .. 0 µn on the product space X = X1 x x Xn satisfies the logarithmic
Sobolev inequality

Entp(f2) <2 max C, f IOfl2dP
1 <i <n

for every locally Lipschitz function f on X where

n

Iof12Ioifl2.
i=1

The same assertion holds for the Poincare inequality. In particular, if (Xi, gi),
i = 1,. .. , n, are compact Riemannian manifolds, and if X is the Riemannian
product of the X,'s,

.1(X) = min A1(Xi) and po(X) = min Po(X2)
1<i<n 1<i<n

The main consequence of Corollary 5.7 is that it yields, together with the
Herbst argument, concentration results in product spaces with respect to the Eu-
clidean metric (E 1 da)1/2 which are independent of the dimension. Corollary 5.7
may be combined in applications with the perturbation result of Proposition 5.5.

The following is a simple consequence of Proposition 5.6 that bounds in a useful
way the entropies along each coordinate.

Corollary 5.8. For every function f on the product space X = St1 x ... X f1 and
every product probability measure P = it, ® ... 0 µn,

Entp(ef) < -1 n f7Zi(eft)(x)dP(x)
2 a-1

where, for i = 1, ... , n,

R--,(ef')(x)
= f f [fi(x%) -

Proof. The proof is elementary. We may assume f bounded. By the product
property of entropy (Proposition 5.6), it is enough to deal with the case n = 1. By
Jensen's inequality,

Entp (ef) < J/efdP- JefdPJfdP.

The right-hand side of the latter may then be rewritten as

2 Jf [.f (x) - f (y)1 [ef(' - of(v)] dP(x)dP(y)

= ff [ f(x) - f(y)] [ef(m) - ef()] dP(x)dP(y)
f( x)?f(v)}
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Since for u > v

(u - v) (eu - e") <

2

(u - v)2(eu + et) < (u - v)2eu,

the conclusion easily follows. Corollary 5.8 is established.

On the basis of these results, we first illustrate the use of logarithmic Sobolev
inequalities in the basic example of the Hamming metric. As a consequence of
Corollary 5.8, if

then

dµi(yi))
,

N(f) = sup f If(x) - fi(yi)I2
1 2

xEX i=1 /

Entp(ef) <N(f)2 f efdP. (5.14)

If F is a 1-Lipschitz function with respect to the Hamming metric on the product
space X then N(F)2 < n. Now, the proof of Theorem 5.3 above immediately shows
from (5.14) that if F is mean zero and 1-Lipschitz, then for every A E R,

z
J eXFdP < ena .

Therefore, by Proposition 1.14, for any product probability P on the product space
X = S21 x x Stn equipped with the Hamming metric,

a(x a P)(r) < e-r2/16n, r > 0,

that should be compared once more to (1.24) (and (4.2)).
In the last part of this section, we provide along the same lines an elementary

approach to Corollary 4.10. The point is that while the deviation inequalities have
no reason to be tensorizable, they are actually consequences of a logarithmic Sobolev
inequality, which only needs to be proved in dimension one. The main result in
this direction is the following statement. Let Al i ... , µn be arbitrary probability
measures on the unit interval [0,1] and let P be the product probability measure
P = µ1 0 . 0 An on [0,1]n. We say that a function on 1W' is separately convex if
it is convex in each coordinate. Recall that a convex function on R is continuous
and almost everywhere differentiable.

Theorem 5.9. Let F be separately convex and 1-Lipschitz on iiln. Then, for
every product probability measure P on [0,1]n, and every r > 0,

P({F > f FdP + r}) < e-r2/4

Proof. The theorem will follow from the following stronger statement of independent
interest.

Proposition 5.10. For every separately convex function f and every product
probability P on Rn

n
Entp(ef) < ff E(xi - y2)2 (8s f)(x)2 of (")dP(x)dP(y).
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Proof. By Corollary 5.8, it is enough to show that for every i = 1, ... , n and every
n

1i(ef.)(x) ff(x2 - yi)2fa'(xi)2 eAix:)dl-ia(xi)dppa(ya)

Now, since f is separately convex, for all x, y E

fi(xi) - fi(yi) s (xi - yi)fi(xi)

The proof is easily completed. Proposition 5.10 is established.

We now complete the proof of Theorem 5.9 following the Herbst argument.
Let F be a separately convex Lipschitz function such that IIFIILip <_ 1 by homo-
geneity. By Rademacher's theorem, IDFI < 1 almost everywhere. Replacing F
by a convolution with a Gaussian kernel, we may actually suppose that IDFI < 1
everywhere. Then, the argument is entirely similar to the proof of Theorem 5.3.
Applying indeed Proposition 5.10 to AF - A2, A > 0, we deduce that

Entp(e\F-,\2) < A2 f IOFI2eAF-),2dP

where we used that P is concentrated on [0, 1]' . Therefore, for every A > 0,

AA'(A) < A(A) logA(A)

where A(A) = f eXF-a2dP. The proof is completed as in Theorem 5.3.

It should be pointed out that Theorem 5.9 does not produce deviation inequal-
ities under the mean since we have to work with A > 0 to preserve convexity. The
point is that Theorem 5.9 is stated for separately convex functions, whereas de-
viations under the mean seem to require the full convexity assumption. (See [Sa]
for a discussion of deviation inequalities under the mean of convex functions with
respect to product measures.)

Proposition 5.10 is of particular use for norms of sums of independent random
vectors and will be crucial in the investigation of sharp bounds in Section 7.3. The
proposition also puts forward the generalized gradient (in dimension one)

(J(xIOf I(x) = - y)y(y)2dµ(y))

of statistical interest.

5.3 Modified logarithmic Sobolev inequalities

As we have seen in Section 4.5, products of the usual exponential distribution
somewhat surprisingly satisfy a concentration property which, in some respect, is
stronger than concentration for Gaussian measures. Our first aim here will be to
show that this result can be seen as a consequence of some appropriate logarithmic
Sobolev inequality which we call modified. One of its main interest is that it
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tensorizes with two parameters on the gradient, one on its supremuul norm and
one on the usual quadratic norm. This feature is the appropriate explanation for
the concentration property of the exponential distribution.

We first investigate a modified logarithmic Sobolev inequality for the exponen-
tial distribution. We then describe the product properties of modified logarithmic
Sobolev inequalities and their applications to concentration. We then observe that
all measures satisfying a Poincare inequality do satisfy the same modified inequality
as the exponential distribution.

Let us start back with the concentration property described by Theorem 4.16.
Let v" be the product measure on R' when each factor is endowed with the measure
v of density

a

e-1x1 with respect to Lebesgue measure. Recall 8 the Euclidean unit
ball and the £l-unit ball in R n. Then, for every Borel set A in Rn and every
r>0,

1- vn(A + 6/L + 9r!) < vn(A) e-r. (5.15)

As we have seen in Proposition 4.18, this concentration property on sets may be
translated equivalently on functions. Let F be a real-valued function on Rn such
that IIFIILip < a and with Lipschitz coefficient b with respect to the P1-metric, that
is,

n

F(x) - F(y)I < bE Ixa - yiI, x, y E Rn
i=1

Then, for every r > 0,

/ 2))
vn({F > M+r}) < exp(-K mint r

, a2 (5.16)

for some numerical constant K > 0 where M is a median or the mean of F for vn.
Our first task will be to present an elementary proof of (5.16) based on log-

arithmic Sobolev inequalities. Following the Herbst argument in the case of the
exponential distribution would require to determine the appropriate logarithmic
Sobolev inequality satisfied by vn. We cannot hope for a classical logarithmic
Sobolev inequality to hold simply because it would imply that linear functions have
a Gaussian tail for v". To investigate logarithmic Sobolev inequalities for vn, it is
enough, by the fundamental product property of entropy, to deal with the dimension
one. One first inequality may be deduced from the Gaussian logarithmic Sobolev
inequality. Given a smooth function f on R, apply Theorem 5.1 in dimension 2 to
g(x, y) = f (x). Letting v denote the one-sided exponential distribution with
density e_x with respect to Lebesgue measure on R+, we get

Ent;,(f2) <4J xf'(x)2dv(x).

If //n denote the product measure on R+, we have similarly for every smooth f on
Rn

Ent;,n (f 2) <4 J xi I Bif (x) I2dv"(x). (5.17)
a-1

It does not seem however that this logarithmic Sobolev inequality (5.17) can yield
(5.16), and thus the geometric concentration (5.15), via the Herbst argument. In
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a sense, this negative observation is compatible with the fact that (5.15) improves
upon some aspects of the concentration for Gaussian measures as we have seen in
Section 4.5. We thus have to look for some other version of the logarithmic Sobolev
inequality for the exponential distribution. To this task, let us observe that. at the
level of Poincare inequalities, there are two distinct inequalities. For simplicity, let
us deal again only with n = 1. The first one, in the spirit of (5.17), is

Var;,(f) < f x f'(x)2dv(x). (5.18)

This may be shown, either from the Gaussian Poincare inequality as before, with
however a worse constant, or by noting that the first eigenvalue of the Laguerre
generator with invariant measure v is 1. Actually, (5.17) is exactly the (optimal)
logarithmic Sobolev inequality associated to the Laguerre generator. By the way,
that 4 is the best constant in (5.17) is an easy consequence of our arguments.
Indeed, if (5.17) holds with a constant C < 4, a function F on R+ such that
xF'(x)2 < 1 almost everywhere would be such that f eF'2/4dv < oo by Theorem 5.3
(together with Proposition 1.9). But the example of F(x) = 2-,fx- contradicts this
consequence (cf. [Ko-S]).

A second Poincare inequality states thatf

Varo (f) < 4 J
f/2dv. (5.19)

Inequalities (5.18) and (5.19) are not directly comparable and, in a sense, we are
looking for an analogue of (5.19) for entropy.

To introduce this result, let us first recall the proof of (5.19). We will work
with the double exponential distribution v. It is plain that all the results hold,
with the obvious modifications, for the one-sided exponential distribution v. We
also work below with smooth functions. (One may consider for example the space
of all continuous almost everywhere differentiable functions f : R' -> R such that
fIfIdvn <oo, fIVfIdvn <oo and

lim a-Ix,I f(xi,...,xe,...,xn) = 0x,±00

for every i = 1'...,n and X1, ... ) xi_1, xi+l, ... , xn E R.) The main argument of
the proof is the following simple observation. If ¢ is smooth on R, by the integration
by parts formula,

f ¢dv = ¢(0) + fsgn(x)'(x)dz/(x). (5.20)

Lemma 5.11. For every smooth f on R,
f

4J fj2dv.

Proof. Set g(x) = f (x) - f (0). Then, by (5.20) and the Cauchy-Schwarz inequality,

fg2dl/ = 2 J sgn(x)g'(x)g(x)dv(x)

< 2( f g2dv)) 1/2
1/2
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Since Var (f) = Var (g) < f g2 dv, and g' = f', the lemma follows.

We turn to the corresponding inequality for entropy and the main result of
this section.

Theorem 5.12. For every 0 < p < 1 and every Lipschitz function f on R such
that I f'I < p < 1 almost everywhere,

Ent (ef) < 1 2
P

f f'2efdv.

Note that Theorem 5.12, when applied to functions e f as e -+ 0, implies Lemma
5.11. Theorem 5.12 is the first example of what we will call a modified logarithmic
Sobolev inequality. Theorem 5.12 is basically only used below for some fixed values
of p, for example p = 2 .

Proof. Changing f into f+const we may assume that f (0) = 0. Since u log u > u-1,
u > 0, we have

Ent (ef) < f [fef - of + 1] dv.

Since J f' j < p < 1 almost everywhere, the functions of, fef and f2 ef are smooth
in our preceding sense. Therefore, by repeated use of (5.20),

f [fef - of + 1] dv = f sgn(x) f'(x) f (x) of (x)dv(x)

and

f f2 efdv = 2f sgn(x) f'(x) f (x) of (x)dv(x)

+ f sgn(x)f'(x)f(x)2ef(x)dv(x).

By the Cauchy-Schwarz inequality and the assumption on f',

f f2efdv < 2 ( I f f'2ef dvl
1/2

(ff2efdv)"2 + pff 2ef dv

so that
Jf2ef

dv < (1 2 /
l2

f f'Zef dv.
P

Now, by the Cauchy-Schwarz inequality again,

Ent,(ef) < f sgn(x)f'(x)f (x) ef (x)dv(x)

(Ja)<
1/2

(J12e1 dv)
1/2

< 2 Jf2fdv
1-p

which is the result. Theorem 5.12 is proved.



5.3 MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES 105

We are now ready to describe the application to concentration. As a conse-
quence of Theorem 5.12 and of the product property of entropy (Proposition 5.6),
for every smooth enough function F on R' such that maxi<a<n 1a2Fl < 1 almost
everywhere and every A, I A I < p < 1,

2 n

Ent,n(eaF) < 2 f (O$F)2eaFdv. (5.21)
1 - p i=1

For simplicity, let us take p = z (although p < 1 might improve some numerical
constants below). Moreover, assume that E$ 1(0iF)2 < a2 almost everywhere.
Then, by (5.21),

Ent,,,. (eAF) < 4a2A2 f eaFdvn

for every JAI < z. We now argue as in the proof of Theorem 5.3. Let A(A) _
f e\F-4a2a2dvn, IAl < 2. The preceding inequality expresses that

AA'(A) < A(A) logA(A), JAI < 2 .

Integrating this differential inequality shows that

fI e,\Fdvn < of Fdvn+4a2.\2

which only holds for l A l < a
.

By Chebyshev's exponential inequality, for every
r > 0 and JAI < 2,

vn ({F > f Fdvn + r}) <
e-ar+4a2>2

Minimizing over A (take A = r/8a2 if r < 4a2 and A = 2 if r > 4a2) shows that, for
every r > 0,

/ 2

vn({F> fFdvn+r}) <expC-4 mmI r, r I I

By homogeneity, this inequality amounts to (5.16) (with K = 16) and our claim is
proved. As already mentioned, we have a similar result for the one-sided exponential
distribution.

The inequality put forward in Theorem 5.12 for the exponential distribution
is an example of what can be called modified logarithmic Sobolev inequalities. In
order to describe this notion in some generality, we set the following definition.
It allows us to describe various types of concentration behavior by the appropri-
ate functional logarithmic Sobolev inequality. We take again the framework of a
metric space (X, d) with the generalized length of a gradient I V f I. We say that a
probability measure p on the Borel sets of a metric space (X, d) satisfies a modi-
fied logarithmic Sobolev inequality if there is a function ,8(p) > 0 on R+ such that,
whenever IIDf 11. < p,

Ent,,(ef) < f3(p)J IVfl2efdp (5.22)

for all f's such that f of dp < oo.
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According to Theorem 5.12, the exponential distribution v on the line satisfies
a modified logarithmic Sobolev inequality with respect to the usual gradient with
/3(p) bounded for the small values of p. On the other hand, the canonical Gaussian
measure 'y satisfies a modified logarithmic Sobolev inequality with /3(p) = 2, p > 0.

The definition (5.22) implies that

Ent,, (e1) < p2/3(p)J efdµ

for every f with II Vf 11. p. In particular, if /3(p) is bounded for the small values
of p, Lipschitz functions will have an exponential tail.

The main new feature here is that the modified logarithmic Sobolev inequalities
tensorize in terms of two parameters rather than only the Lipschitz bound. This
property is summarized in the next proposition which is an elementary consequence
of the product property of entropy (Proposition 5.6). It allows new concentration
behaviors.

Let µ1i ... , µn be probability measures on respective metric spaces (Xi, di),
i = 1, ... , n, and let P = 11 ® ® Yn be the product probability on the product
space X = X1 x x Xn. If f is a function on the product space, for each i, fi
is the function f depending on the i-th variable with the other coordinates fixed.
As in Corollary 5.7, we denote by I Dif I the generalized modulus of gradient in the
i-th space Xi.

Proposition 5.13. Assume that for every function f on X, such that II Vif Iloo < p,

Entµ, (ef) _< 13(p) f I Vif I2ef dµi, i = 1, ... , n.

Then, for every f on the product space such that maxl<i<n IIVifilloo <_ p,

Entp(ef) </3(p)J IVf12efdP

where IVf12 = E%1
IDif 12.

According to the behavior of /3(p), this proposition yields concentration prop-
erties in terms of the parameters

on
II IVif1211 and max Ilvifll.

00 1<i<ni-1

For example, if /3(p) < c for 0 < p < po, the product measure P will satisfy the
same concentration inequality as the one for the exponential distribution (5.16). In
the next section, we investigate instances where /3(p) < rce6 , p > 0, related to the
Poisson measure.

We now observe that the concentration properties of the exponential distri-
bution are actually shared by all measures satisfying a Poincare inequality. More
precisely, every such measure satisfies the modified logarithmic Sobolev inequality
of Theorem 5.12.
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Thus let I V f I be a generalized modulus of gradient (5.9) on a metric space
(X, d), satisfying thus the chain rule formula (5.10). Let p be a probability measure
on the Borel a-field of X such that for some C > 0 and all locally Lipschitz functions
f,

Varµ(f) < CJ I V f I2dp. (5.23)

We already know from Corollary 3.2 that such a Poincare inequality implies ex-
ponential integrability of Lipschitz functions. We next show how it also implies a
modified logarithmic Sobolev inequality which yields, as just discussed, concentra-
tion properties for the product measures p' similar to those of the products of the
exponential distribution. We refer to [Bo-L1] for a proof of Theorem 5.14 below
that extends the argument of Theorem 5.12.

Theorem 5.14. Let it be a probability measure on the Bore] sets of a metric space
(X, d) satisfying the Poincare inequality (5.23). Then, for any function f on X
such that II Vf II, 5 p < 2//,

where

Entµ(ef) <_Q(p) f IVfl2efdp

C(2+pyl2e scp
a(p) = 2 2 - pV JJ

Note that 8(p) is uniformly bounded for the small values of p, for example
/3(p) < 3e5C/2 when p< 11VC__. As a corollary, we obtain, following the preceding
discussion, a concentration inequality of exponential type for the product measure
pnof it on Xn.

Corollary 5.15. Let p satisfy (5.23) and denote by pn the n-fold product of p on
X. Then, every function F on Xn such that

n

IV=FI2 < a2 and max IViFI < b
i=1

1<i<n

pn-almost everywhere is integrable with respect to pn, and for every r > 0,

//
K 1 b a2An ({F > f Fdpn + r}) < exp

r,r
Il min

where K > 0 only depends on the constant C in the Poincare inequality (5.23).

One may obtain a similar statement for products of possibly different measures
p with a uniform lower bound on the constants in the Poincare inequalities (5.23).

Corollary 5.15 may be turned into an inequality on sets such as (5.15). More
precisely, if pn(A) > z, for every r > 0 and some numerical constant K > 0,

pn ({FA > r}) < e-r/K



108 5. ENTROPY AND CONCENTRATION

where for x = (x1,. .. , x,) E Xn and A c X",

n

FA(x) anf E min (d(x8, a,), d(x,, aa)2).
z=1

An important feature of the constant /3(p) of Theorem 5.14 is that /3(p) -+ C/2
as p -. 0. In particular, the modified logarithmic Sobolev inequality of Theorem
5.14 implies back the Poincare inequality (5.23) by applying it to functions e f
with e -+ 0. The Poincare inequality (5.23) and the modified logarithmic Sobolev
inequality of Theorem 5.14 thus appear as formally equivalent.

Other exponential decays may also be produced by families of inequalities inter-
polating between Poincare and logarithmic Sobolev inequalities considered recently
by R. Latala and K. Oleskiewicz [L-O]. For a probability measure p on the Borel
sets of a metric space (X, d), consider the inequality, for some 9 E [0, 1] and C > 0,
and every 1 < q < 2 and every locally Lipschitz function f on (X, d),

2/q rff2dIL- (fIfIdP) <C(2-q)°J lVfI2dp. (5.24)

It is easily seen that these inequalities are stronger and stronger as 9 increases
and that 9 = 0 amounts to the Poincare inequality whereas 9 = 1 amounts to the
logarithmic Sobolev inequality (within numerical constants). One may also show
(cf. [L-O]) that these families of inequalities for a given 9 are stable under products.
As a main result, it is shown in [L-O] that the measures v', with density c1, e- 1-11,

1

1 < p < 2, with respect to Lebesgue measure on R satisfy (5.24) with 9 = 2(1- 1).
Together with the following, it may be used in particular to recover Proposition
4.21 (cf. [S-Z2]).

Theorem 5.16. Let p be a probability measure on the Bore] sets of a metric space
(X, d) satisfying (5.24) for some 9 E [0, 1] and C > 0. Then, every 1-Lipschitz
function F : X --+ R is integrable and such that for every r > 0,

p({F > f Fdp + r}) < e-rp/KCp/z

where 1 < p < 2 is such that 9 = 2(1 -
p)

and where K > 0 is a numerical constant.
In particular,

a(X,d,µ)(r) < e-r"/KC'/2,
r>0.

5.4 Discrete settings

In this section, we briefly describe how the entropic method may be developed
similarly in discrete structures for which the chain rule (5.10) on gradients is not
available. We then discuss more simply the examples of uniform measure on the
discrete cube {0,1}n and of standard Poisson measure.

We take again the discrete setting of the end of Section 3.1 where exponential
concentration for Markov chains and graphs under spectral properties was investi-
gated. Recall that (II, p) is a reversible Markov chain with invariant measure p on
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a finite or countable set X if II(x, y) > 0 satisfies

E II(x, y) = 1
yEX

109

for every x E X and if II(x, y)p({x}) is symmetric in x and y and Ex II(x, y)p({x})
= p({y}) for every y E X. Define

Q(f, f) _ [f (x) - f (y)]21,(x, y)p({x})
x,yEX

and set rIlfIII = 1 sup L:If(x)-f(y)I2II(x,y)00 2 xEX yEX

We already mentioned that the I I I - II I.norm tries to be as close as possible to the
sup-norm of a gradient in a continuous setting. The next statement is thus the
analogue of Theorem 5.3 in this setting, and the logarithmic Sobolev version of the
Poincare Theorem 3.3.

Theorem 5.17. Let (II, p) be a reversible Markov chain on X as before, and
assume that for some constant C > 0 and all f's on X,

Entµ(f2) < 2CQ(f, f).

Then, whenever I I IFI I I. S 1, F is integrable with respect to p and for every r > 0,

p({F > f Fdp + r}) < e-'2/4c

Proof. We apply the logarithmic Sobolev inequality to f2 = eaF, A E R. Recall
from (3.4) that

Q(eAF/2, eAF/2) < I I IFI 1100 f eaFdp

Therefore, for every A E R,

Entµ(eAF) < c f eAFdp

from which the proof is completed as in Theorem 5.3. The result follows.

While the norm I I I - III. might appear as the proper generalization of the Lip-
schitz norm on X, it does not always reflect accurately discrete situations. Discrete
gradients may also be examined in another way. For example, if f is a real-valued
function on Z, set

D f (x) = f (x + 1) - f (x), x E Z. (5.25)

One may then regard as Lipschitz the norm supXEZd I D f (x) 1, which will prove more
adapted to a number of cases, such as for example Poisson measures. The lack of
chain rule (for example, I D(ef) I < I D f IeIDf lef only in general) will then have to be
handled by other means, but will also determine the best that can be expected under
some appropriate logarithmic Sobolev inequality. This is the subject to which we
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turn now. Actually, the norm I I I - III. is just adapted to produce Gaussian bounds
and, as such, is not suited to a number of various exponential decays.

The preceding example may be further generalized to Zd. Similarly, in the
context of statistical mechanics, we may consider X = {-1,+1}z" and let

IDf(w)I = I Iakf(w)I2
1/2

)
kEZd

where ak f (w) = f(wk) - f (w) and where wk is the element of X obtained from w
by replacing the k-th coordinate with -wk.

As a starting point of our investigation, consider the logarithmic Sobolev in-
equality for the uniform product measure p = pn on {0,1}n expressed by

Entµ(f2) < 1 fIDifI2dP (5.26)
2 i=1

for any function f on {0,1}n where

Dif(x) = f(x) - f(s,(x)), x = (x1,...,xn) E {0,1}n

with .si(x) = (x1, ... ) xa_11 1 - xi, x2+1, ... , xn). The gradients D, are just (5.25)
on the two-point space. By the product property of entropy, this inequality needs
only be proven in dimension one, for which it amounts to the inequality

u2 log u2 + v2 log v2 - (u2 + v2) log (u2
2

v2) < (u - V)2

for any real u, v. By means of the central limit theorem, it may be used to prove
the logarithmic Sobolev inequality for Gaussian measures (cf. [Grosl]).

This logarithmic Sobolev inequality may be used to recover concentration with
respect to the Hamming metric on {0,1}n. Namely, let F be 1-Lipschitz with
respect to the Hamming metric on the discrete cube {0,1}n. Following the Herbst
argument, apply (5.26) to f2 = e", A E R. Although the Di's do not satisfy the
chain rule formula, since IF(x) - F(si(x))I < 1, it is easily seen that

IDz(e>F/2)(x)I = le\F(x)/2 - eaF(s,(x))/2l < AlIe\F(x)/2

for every JAI < 1. Hence, setting as usual A(A) = f e\F'-na2/2dµ, A E R, we have

AA'(A) < A(A) logA(A), INI < 1.

We integrate this differential inequality as in Section 5.1 to get that

J eX Fdµ <
ea f FdIA+n,\2/2

for every IAI < 1. By Chebyshev's inequality,

p({F > f Fdp + r}) < e_''2/2n (5.27)
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however only for 0 < r < n. But since IIFIILip < 1 for the Hamming metric,
IF - fFdpl < n so that (5.27) actually holds true for every r > 0.

It might be further observed that if F is convex on [0,1]", then

DiF(x)I2 < Ia2F(x)I2 + I aOF(s2(x))I2

where at is the partial derivative of F along the i-th coordinate. Then

2
Ent,, (eaF) < IV(eAF/2)I2di < flVFIe'd, A>0.

Together with the Herbst argument, we thus recover in this way Theorem 5.9 with
improved constants but only for uniform measure on {0,1}".

Now, for 0 < p< 1, let pp be the product measure on {0,1}" when each factor
is endowed with the Bernoulli measure p5l + q6o, q = 1 - p, with probability of
success p. Then the constant in the logarithmic Sobolev inequality (5.26) for pp
does not behave nicely as a function of p. Indeed (see [SC], [An]),

Entpn (f 2) < Cp E f I Di.f I2dt p (5.28)
-1

where

Cp = pq
log p - log q

p-q
In particular, Cp/pq -4 +oo as p -+ 0 or 1. This prevents the use of (5.28) in
any limit theorem as p -> 0, such as Poissonian limits. There is of course a good
reason for that, namely that Poisson measures do not satisfy standard logarithmic
Sobolev inequalities with respect to the gradient D of (5.25). Indeed, denote by
7e the Poisson measure on N with parameter 0 > 0 and assume that, for some
constant C > 0, and all f, say bounded, on N,

Ent,.(.f2) <C f IDfI2dire (5.29)

where we recall that D f (x) = f (x+ 1) - f (x), x E N. Apply (5.29) to the indicator
function of the interval [k + 1, oo) for each k E N. We get

-ire ([k + 1, oo)) log ire ([k + 1, oo)) < Cire ({k})

which is clearly impossible as k goes to infinity.
There is however an alternative version of the logarithmic Sobolev inequality

on the two-point space for which Poissonian limits may be performed. Recall the
product Bernoulli measure µp with parameter p.

Lemma 5.18. For any non-negative function f on {0,1}",

Ent,,- (1) < pq f E Di fD2 (log f) dµp .

-1
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When the gradients D, satisfy the chain rule formula, the form of the logarith-
mic Sobolev inequality of Lemma 5.18 is equivalent by integration by parts to the
standard form. For example, the logarithmic Sobolev inequality for the canonical
Gaussian measure ry on lR' is equivalent to saying that for any smooth non-negative
function f on ][fin,

Ent-, (f)<2fVf.V(logf)dy.

The proof of Lemma 5.18 reduces as usual to dimension one, in which case it
amounts to establishing the inequality

pulogu+gvlogv - (pu+qv) log(pu+qv)
< pq(u - v) (log u - log v)

for any u,v > 0 (see [Wu], [An]).
Due to the constant pq in the logarithmic Sobolev inequality of Lemma 5.18,

we may perform a Poissonian limit as p - 0. Take 0 on N such that

0<6<0< 1/6<00

and apply Lemma 5.18 to

f (x) = f (xl, ... , xn) _ 0(x1 + ... + xn),

x = (x1, xn) E {0,1}n, with p = n, r > 0 (for every n large enough). Then,
setting Sn = x1 + + xn,

n
ED$ f D$ (log f )
i=1

_ (n - Sn) [O(Sn + 1) - O(Sn)] [logO(Sn + 1) - log O(Sn)]

+Sn[O(Sn) - O(Sn - 1)] [logw(Sn) - logO(Sn - 1)]

The distribution of Sn under /,In converges to irT. Using the bounds

0<e<0<1/e<00,

it follows from the preceding that

n nI fDD(log)d1ri.
a=1

as n - oo. We may therefore state the following corollary.

Corollary 5.19. For any non-negative function f on N,

Ent,,(f) < rf DfD(log f)d4rT

where we recall that here D f (x) = f (x + 1) - f (x), x E N.
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The example of f (x) = e-"x, x E N, as K -+ oo shows that one cannot expect
a better factor of T in the preceding corollary.

To conclude this section, we deduce concentration inequalities for measures p
on N, for simplicity, satisfying a logarithmic Sobolev inequality, such as the Poisson
measure irT.

Corollary 5.20. Let p be a probability measure on N such that for some constant
C > 0 and all non-negative (bounded) functions f on N,

Entµ(f) <C f DfD(log f)dµ.

Then, if F is such that IF(x + 1) - F(x) I < 1 for all x E N, we have f I FI dµ < 00
and, for every r > 0,

µ({F> fFdµ+r}) <exp(-4log(1+2C)).

The numerical constants in Corollary 5.20 have no reason to be sharp. How-
ever, the order of growth is optimal as shown by the example of Poisson measure
itself. More precisely, the tail of the Lipschitz function F is Gaussian for the small
values of r and Poissonian for the large values (with respect to C).

Proof. It follows the common pattern of proofs in this chapter. We apply the
logarithmic Sobolev inequality of Corollary 5.20 to f = e A F with F say bounded
to start with. The gradient D is not local; however, since IF(x + 1) - F(x) I < 1 for
all x E N, for every A > 0,

[AF(x + 1) - AF(x)] [eaF(x+1) - e'] < A eAeaF(x).

Hence, with the usual notation,

Ent,u(eAF) < Ae"A(A).

Integration of this differential inequality together with Chebyschev's inequality eas-
ily yields the result. Corollary 5.20 is established.

According to this proof, the preceding logarithmic Sobolev inequalities are part
of the family of modified logarithmic Sobolev inequalities investigated in Section
5.3, with a function ,3(p) of the order of e2p, p > 0. Following Proposition 5.13
it may thus be tensorized in terms of two distinct norms on the gradients. The
following statement is then an easy consequence of this observation. It extends to
Lipschitz functions known inequalities for sums of independent Bernoulli or Poisson
random variables. We let (e1, ... , e,,) be the canonical basis of R.

Corollary 5.21. Let p be some measure on N. Assume that for every f on N with
supxEN I Df (x) I < p,

Ent, (ef) < 13(p) f I Df I2ef dµ
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where, as a function of p > 0, 3(p) < i OP for some ic, S > 0. Denote by lµn the
n-fold product measure of p on N. Let F be a function on Nn such that, for every
xENn,

n
EIF(x+e,) -F(x)I2 <a2 and max IF(x+ei) -F(x)1:5b.
i=1 - -

Then f IFIdltn < oo and, for every r > 0,

An ({F > f Fdie' + r}) < exp (-26b log('
+ 4rca2)).

5.5 Covariance identities

In this last section, we consider yet another approach to some of the concentration
properties described in this chapter and the preceding ones based on covariance
identities. We only present the basic principle in the Gaussian case, referreing to
[B-G-H], [Hou], [Pa] for extensions to Poisson and infinitely divisible measures.

Recall the Ornstein-Uhlenbeck semigroup (5.3),

Ptf (x) = ff(e_tx + (1 - e-2t)1/2y)d Y(y), t > 0, x E R ,

with symmetric and invariant measure the canonical Gaussian measure ry on Rn.
Let f and g be smooth functions on ]fin. Using that atPtg = LPtg where L is the
second order differential operator 0 - x V, we may write as in Sections 2.3 and
5.1 that

Cov.y(f, g) = f f (g - f gdy)dydy
f00

f f LPtg dydt
0

00

= f Vf VPtgdydt.
0

Coming back to the expression of Ptg,

Cov.y(f, g) = fJJVf(x) Vg(e-tx + (1 - e-2t)/2y)dy(x)d'Y(y) dt.

Therefore, if zut is the Gaussian measure on Rn x Rn which is the image measure
of 'y 0 'y by the map

(x, y) i-+ (x, a-tx + (1 - e-2t) 1/2y)

and if ru denotes the probability measure fo wtdt, we get that

Cov.y(f, g) = ff Of (x) . Vg(y)dr(x, y). (5.30)
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It is of course assumed in the preceding argument that f and g have all the regularity
and integrability properties needed to justify differentiation and the use of Fubini's
theorem.

The representation formula (5.30) (which may be shown to hold in more general
situations) is a simple tool to reach measure concentration. The following is an
immediate consequence of (5.30).

Proposition 5.22. For every smooth enough functions f and g on 1W such that
f is 1-Lispchitz,

Cov.y(f, g) < JIV9Id'Y.

Now, Proposition 5.22 may be used as logarithmic Sobolev inequalities to pro-
duce measure concentration with a modification of the Herbst argument. Indeed,
given F 1-Lipschitz and with mean zero with respect to y, apply Proposition 5.22
to f =Fandg=e.1F,A>0. Then

JFedy = Cov.y(F, e,\F) < A f JVFI e\Fdy < Af e\Fdy.

For the function J(A) = log f eAFdy, A > 0, we thus have the differential inequality
J'(A) < A. Since J(0) = 0, we conclude that J(A) < a . Hence

f e\Fdy <
ea2/2

We thus recover from the covariance identity (5.30) the concentration properties of
Gaussian measures.

This type of argument may be, on one hand, used to sharpen some of the
deviation inequalities for Gaussian measures, and, on the other hand, be extended
to various kinds of distributions including binomial, Poisson and infinitely divisible
laws. We refer to [B-G-H], [H-PA-S], [Hou] and [Pa].

Notes and Remarks

Logarithmic Sobolev inequalities were introduced by L. Gross [Grosl] as the in-
finitesimal version of hypercontractivity in quantum field theory (see [Gros2] and
references therein). They soon became a tool of fundamental importance in infinite
dimensional analysis, with increasing activity [Gros2], both on the side of lattice
spin systems and Gibbs measures in statistical mechanics ([Strl], [G-Zeg], [Roy],
etc.), and of path and loop spaces in infinite dimensional stochastic analysis [Hs].
The smoothing property of hypercontractivity of the associated heat semigroup
is there a tool of powerful interest in convergence to equilibrium and uniqueness
theorems. Applications of logarithmic Sobolev inequalities to convergence to equi-
librium of a finite state Markov chain are presented in [D-SC], [SC]. A pedestrian
introduction to logarithmic Sobolev inequalities is the reference [An].

One of the early questions on logarithmic Sobolev inequalities was to determine
conditions on measures p on R' to satisfy a rlogarithmic Sobolev inequality

Entµ(f2) < 2Cf IVfl2dp
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for all smooth enough functions f. To this question raised by L. Gross, I. Herbst
(in an unpublished letter to L. Gross) found as a necessary condition the fact that

Je*12d,i(x) < 00

for some p > 0 small enough. Herbst's argument is presented in [Da-S], however,
with a small error in the argument. This was settled in the paper [A-M-S], which
revived the interest in the Gross question and gave rise to several subsequent con-
tributions [A-S], [Le2], [G-R], [Rot2], etc. In particular, Herbst's argument as a
Laplace bound of concentration spirit is exposed in [Le2] and is presented this way
as Theorem 5.3.

The Herbst argument motivated the investigation [Le4] of concentration in-
equalities for product measures by the entropic method. The results of Section 5.2
are taken from this reference. Some sharper numerical constants may be found in
[Le4], [Bobl], [Masl], etc.

Modified logarithmic Sobolev inequalities and their application to the concen-
tration properties of products of the exponential distribution were investigated in
[Bo-L1] from which the results of Section 5.3 are taken. The corresponding re-
sults for products of Markov chains are discussed in [H-T). Concentration between
Poincare and logarithmic Sobolev inequalities with application to concentration of
log-concave measures is investigated in [L-O] (see also [Bar1]) through the family
of functional inequalities (5.24).

The discrete setting is studied in a number of references including [A-S], [G-R],
etc. The results of Section 5.4 are taken from [Wu] and [Bo-L2] (a different energy
is however used in the latter) where Poissonian bounds are analyzed (see also the
references on Section 5.5).

Most of the results of this chapter are taken from the survey [Le5] where the
reader will find further details and references. It must also be emphasized that a
great deal of the intense activity on logarithmic Sobolev inequalities in the recent
years has been dealing with logarithmic Sobolev inequalities for infinite particle
systems (lattice spin systems and Gibbs states in statistical mechanics), especially
with the work of D. Stroock and B. Zegarlinski (cf. [Strl], [G-Zeg], [Roy], etc.).
For recent developments for unbounded spin systems, see [Yos], [B-H], [Le7]. These
are examples of dimension free logarithmic Sobolev inequalities which are highly
non-product measures. Together with the Herbst argument, these results thus yield
new concentration properties far away from product spaces. Another direction to
non-product measures will be alluded to in Section 6.3 of the next chapter. For
applications to concentration on path spaces (extending Wiener spaces), see [Hs],
[Le5], [A-L], [Ho-P], etc.

The result and method of Section 5.5 are taken from the works [B-G-H],
[H-PA-S], [Hou], [Pa] and [Ho-P], to which we refer for further developments for
infinitely divisible distributions. It is shown in [B-G-H] that the method can be
used to yield sharper bounds and constants.
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In this chapter, we investigate a third description of concentration. After the ge-
ometric description of the concentration function itself, and the Laplace bounds
related to logarithmic Sobolev inequalities, we turn to a dual formulation of the
latter in terms of distances between measures. This approach was put forward
by K. Marton. While equally suited to product measures, it seems a convenient
tool to investigate concentration in some dependent structures such as contractive
Markov chains. After describing information inequalities and their relation to con-
centration, we study quadratic transportation cost inequalities. While these are
actually consequences of logarithmic Sobolev inequalities, they have an interest in
their own. In the last section, we present proofs of some of the geometric inequali-
ties of Sections 4.2 and 4.3 with the transportation cost approach, and discuss some
extensions to non-product measures.

6.1 Information inequalities and concentration

To introduce to the topic of this chapter, let us start with the classical Pinsker-
Csizsar-Kullback inequality (cf. [Pin]) that indicates that whenever p and v are
two probability measures on the Borel sets of a metric space (X, d), then

III - 'IITV<_ 2H(vIi).

Here II - IITv denotes the total variation distance, whereas H(v I µ) is the relative
entropy of v with respect to µ defined by

H (v I µ) = Entµ
dv) = / log dv

dv
Cdp f dµ

whenever v is absolutely continuous with respect to µ with Radon-Nikodym deriva-
tive dµ, and +oo if not. Inequalities such as (6.1) have often been considered in
information theory.

That such an inequality is related to concentration properties may be shown in
the following way. Given a metric space (X, d) and two Borel probability measures
p and v on X, consider the Wasserstein distance between p and v,

W, (µ, v) = inf f f d(x, y)dir(x, y)

117
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where the infimum runs over all probability measures -7r on the product space X x X
with marginals µ and v having a finite first moment. The total variation distance
corresponds to the trivial metric. Given µ, consider then the inequality

W1(µ, v) < 2CH(v I µ) (6.2)

for some C > 0 and every v. Let A and B be Borel sets with µ(A), µ(B) > 0,
and consider the conditional probabilities µA = µ( IA) and µB = µ( J B). By the
triangle inequality for W1 and (6.2),

W1(µA)AB) <W1(µ,µA) +W1(µ,µB)

< 2C H (µA I µ) + 2C H (µB I µ)
(6.3)

2C log 2C log µ(B) .

Now, all measures with marginals PA and µB must be supported on A x B, so that,
by definition of W1,

W1(AA, µB) >- d(A, B) = inf{d(x, y); x E A, y E B}.

Then (6.3) implies a concentration inequality. Given A and B in X such that
d(A, B) >r > 0, we get

r < Flog µ(A) + J2Clog 1- µ(Ar)

where we recall that Ar = {x E X; d(x, A) < r}. Inequality (6.4) appears as a
symmetric form of concentration. If, say, µ(A) > 2,

r < 2Clog2+ Flog 1
1 - µ(Ar)

so that, whenever r > 2/2C log 2 for example,

1 - µ(Ar) < e-TZ/$C

The same applies for Wasserstein functionals with respect to some cost function
c : X x X --+ R+ (cf. [R-R]) defined by

W3(µ, v) = inf f f c(x, y)dir(x, y)

where the infimum is running over all probability measures 7r on the product space
X x X with marginals p and v such that 6 is integrable with respect to a. Given
p, we may consider the transportation cost inequality

W3(µ, v) < H(v I µ) (6.5)
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for every v. Arguing as above shows that for every Borel sets A and B in X,

inf c(x, y) 2log + /2log 1 (6.6)
xEA.yEB µ(A) 1 - µ(A, )

We thus reach in this way concentration properties of the family of sets of Propo-
sition 1.18.

It actually turns out that the transportation cost inequality (6.2) is equivalent
to the normal Laplace bound deduced in the preceding chapter from logarithmic
Sobolev inequalities, and may be thought of as its dual version. We indeed have
the following result. Recall the Laplace functional (Section 1.6) of (X, d, µ),

E(X,d,µ) (A) = sup f eaFdµ, A> 0,

where the supremum runs over all 1-Lipschitz mean zero functions F : X - R.

Proposition 6.1. Let It be a Borel probability measure on a metric space (X, d).
Then

W1(µ, v) < 2CH (v I µ) (6.7)

for some C > 0 and all v if and only if

E(X,d,a) (A) < e' 2"2 \>O.

Proof. By the Monge-Kantorovitch-Rubinstein dual characterization (cf. [Dud],
[Ra2]) of the Wasserstein distance,

W1(µ, v) = sup [fdzi - ffd]
where the supremum is running over all bounded measurable functions f and g
such that

g(x) < f(y) + d(x,y)

for every x, y E X. Under (6.7),

f9dii - J f dµ < /2CEnti(),
dµ

or, equivalently, for every A > 0,

C
+

1
AEnt

dvJ9dv_ffdIL: 2 µ(TA) .

Set q5 = dµ . The preceding indicates that

Podp < Entµ(0)
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where 0 = Ag - A f f dp - CA2/2. Since this inequality holds for every choice of ¢
(i.e. v), applying it to 0 = e''/ f e'''dp yields that log f e''I'dp < 0. In other words,

f eAgdµ < e\f fd A+Ca2/2

When F is Lipschitz with IIFIIL;P S 1, one may choose F = g = f so that the latter
amounts to (6.8). Since

r
Entµ(0) = sup f 00dµ

where the supremum is running over all 's such that f e''dp < 1, the preceding
argument clearly indicates that (6.8) is actually equivalent to (6.7). The proof of
Proposition 6.1 is complete.

The same may be proved on the alternative (more classical and easily equiva-
lent) characterization of W1 as

W1 (p, v) = sup [f.dl1 - fFdv]

where the supremum is running over all 1-Lipschitz functions F on (X, d).
The general form of the dual Monge-Kantorovitch-Rubinstein representation

theorem indicates that (cf. [Ral], [Ra2], [R-R]) for Borel probability measures p
and v on a metric space (X, d),

Wa(p, v) = inf Jf c(x, y)d7r(x, y) = sup [fgdz/ - Jfd] (6.9)

where the supremum is over all pairs (g, f) of bounded measurable functions (or
respectively v and p-integrable) such that for all x, y in X,

g(x) < f (y) + c"(x, Y) -

Here c is upper semicontinuous, ir-integrable and such that

6(x, y) < a(x) + b(y)

for some measurable functions a and b. On R', the supremum on the right-hand
side of (6.9) may be taken over smaller classes of smooth functions, such as bounded
Lipschitz or so on. On the basis of this description, it is a mere exercise to repeat
the proof of Proposition 6.1 to come to the following. We recall from (1.27) the
infimum-convolution QZf with cost c of a given function f,

Qc.f (x) = inf [f (y) + 6(x, y)], x E X.

Proposition 6.2. Let c be an admissible (for (6.9) to hold) cost function on X x X
and let p be a Bore] probability measure on X. Then

Wa(p, v) < H(v I p) (6.10)
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for all v if and only if for all bounded measurable functions f on R,

fefdp < of fdµ, (6.11)

The infimum-convolution inequality (6.11) of Proposition 6.2 has of course to
be compared with the one introduced in Section 1.6 that reads

fedpfefdp<1. (6. 12)

By Jensen's inequality f e-fdµ > of f dµ, so that (6.12) is stronger than (6.11).
As we have seen in Proposition 1.18 and (6.6) the infimum convolution inequalities
(6.11) and (6.12) both produce measure concentration for it with respect to the cost
c. Proposition 6.2 is actually a bridge between the methods developed in Section 1.6
(and Sections 4.4 and 4.5) and the transportation cost inequalities. As announced,
it may be used for example to yield a very simple proof of the product property of
transportation cost inequalities along the lines of Proposition 1.19.

Proposition 6.3. Let P = p1 0 ... 0 p,, be a product probability measure on
the Bore] sets of a product space X = X1 x . . . x X,a of metric spaces (Xi, di),
i = 1, ... , n. Assume that each pi, i = 1, ... , n, satisfies a quadratic transportation
cost inequality

Wa,(pi,v) <_ H(vIµi)

for every vi on Xi for some cost function ci. Then,

W5 (P, R)) <_ H(R I P)

for every probability measure R on X with respect to the cost c = 1 ci.

Proof. By Proposition 6.2, we may follow the argument put forward in Proposition
1.19. By induction, it is enough to consider the case n = 2. Let f be bounded on
X1 x X2, and for X2 E X2, set g(x2) = log f eQalfx2dp1 where f As
we already saw in Proposition 1.19,

f eQafdµldp2 S f eQa29d/-i2

By (6.11) applied to g,
f eQa29dµ2 < of 9dµ2

and by (6.11) applied to fx2 for every x2i

9(x2) = log Je1P2dpi S ffx2ipi

The claim follows.
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6.2 Quadratic transportation cost inequalities

As we have seen in Proposition 6.3, transportation cost inequalities do share ten-
sorization properties as logarithmic Sobolev inequalities and may be used, for some
appropriate cost functions, to describe dimension free concentration properties.

Consider indeed metric spaces (Xef di), i = 1, ... , n, equipped with probability
measures µ$, i = 1, ... , n. Let P denote the product measure P = µ1 ® ®µn on
the product space X = X1 x x Xn. By the product property of Laplace func-
tionals (Proposition 1.15) and Proposition 6.1, or Proposition 6.3, if each measure
µi satisfies a transportation cost inequality

W 1(tti, vi) < 2CH(vi I pi)

for all vi on Xi, i = 1, ... , n, then the product measure P satisfies the transportation
cost inequality

W, (P, R) < 2CnH (R I P)

for every probability measure R on the Cartesian product space equipped with
the P1-metric. As discussed earlier, the drawback of the fl-metric is that it highly
takes into account the number of coordinates in the product space. However, it
allows us to recover once more concentration with respect to the Hamming metric.
Indeed, starting from the Pinsker-Csizsar-Kullback inequality (6.1), for any product
probability measure P on X equipped with the Hamming metric,

W1(P,R)< 2H(RIP)

which thus produces concentration by Proposition 6.1.
Following the logarithmic Sobolev approach of Chapter 5, it is however more

fruitful, in order to reach dimension free concentration properties, to think in terms
of a quadratic cost. To this task, let us restrict ourselves to the case of Rn with
the Euclidean norm I 1. Given a probability measure µ on the Borel sets of Rn,
say that it satisfies a quadratic transportation cost inequality whenever there exists
a constant C > 0 such that for all probability measures v,

W2(µ, v) < (6.13)

Here W2 is the Wasserstein distance with quadratic cost

W2 (µ,v)2 = inf 2 IX - yl2dir(x, y)

where the infimum is running over all probability measures it on Rn x Rn with
respective marginals p and v. (The infimum in W2 is finite as soon as µ and v have
finite second moment which we shall always assume.)

It is clear by Jensen's inequality that the quadratic transportation cost inequal-
ity is stronger than the W1 transportation cost inequality considered in Section 6.1.

Since the cost in W2 is given by e(x, y) = c(x - y) with

1
n

1 2 n 2 n=C(x) _ 9 Ixl , E xi' x = (xl,... , xn) E ) ,

i=1
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Proposition 6.3 applies to show that a quadratic transportation cost inequality ten-
sorizes. In particular, if each y, satisfies a quadratic transportation cost inequality
with constants C2 > 0, i = 1, ... , n, then the product measure P = µl ® ®µn will
satisfy a quadratic transportation cost inequality with constant C = maxl<i<n C$
(compare with Corollary 5.7). Moreover, Proposition 6.2 for the quadratic cost
reads as follows.

Corollary 6.4. Let p be a Bore] probability measure on R'. Then

W2(µ, V) < CH (v I p) (6.14)

for some C > 0 and all v if and only if for all bounded measurable functions f on
Rn

Je'h1I'dµ < of fdµ (6.15)

where Qj , c > 0, is the infimum-convolution off with the quadratic cost ce(x, y) _
Ix - yI2, that is,

Qcf (x) _ Yinf [f (y) + 2 Ix - yI2] , x E Rn.

As in Section 1.6, observe, for the matter of comparison with Proposition 6.1,
that whenever F is Lipschitz,

Q,F > F - 2c IIF'IlLip.

The quadratic transportation cost inequalities thus turn out to be a useful tool
in the investigation of dimension free concentration properties similar to what has
been developed for logarithmic Sobolev inequalities in the preceding chapter. In a
sense, the quadratic transportation cost inequalities may be thought of as dual to
logarithmic Sobolev inequalities.

Corollary 6.4 furthermore emphasizes the usefulness of Brunn-Minkowski in-
equalities in this context, which may be compared to what was developed in Section
2.2. Let p be a Borel probability measure on R' with density e -U with respect to
Lebesgue measure. Assume that U is strictly convex in the sense that, for some
c>Oandevery0E [0, 1], x,y ER'7,

OU(x) + (1 - 0)U(y) - U(Ox + (1 - 0)y) > 2 0(1- 0)Ix - yI2. (6.16)

If the potential U is twice continuously differentiable, this amounts to Hess (U)(x)
> c Id (as symmetric matrices) uniformly in x E R'7.

Theorem 6.5. Let dp = e-udx where U satisfies (6.16) with constant c > 0.
Then, for every probability measure v on li8n,

W2(A,v)< H("Iµ)
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Before turning to the proof of Theorem 6.5, note that it contains the case
of the canonical Gaussian measure on R' with c = 1. This case may be proved
alternatively starting from dimension one and using induction over the coordinates
(see [Ta110]. As shown in [Bll], more generally, an alternative proof of Theorem
6.5 may be given using the Brenier-McCann theorem [Bre], [MC] about monotone
measure preserving maps.

Note furthermore that by Corollary 6.4, under the hypotheses of Theorem 6.5,

JeQJdit <offdµ

for every bounded measurable function f while Theorem 2.15 of Chapter 2 shows
that

JeQI2'd,Je_fd/A < 1.

(However Theorem 2.15 only uses (6.16) with 9 = 2.) We thus reach with the
quadratic cost transportation inequalities somewhat sharper bounds under some-
what sharper hypotheses.

Proof. Given 9 E [0,1] and x, y E R, let

Lo(x, y) = 1 9U(x) + (1 - 9)U(y) - U(9x + (1 - 9)y) .0(1-0)
]

L J

We apply the functional form of the Brunn-Minkowski theorem (Section 2.2). Set

u(x) = e-(1-e)f(x)-U(x), v(y) = eo9(v)-U(v), w(z) = e-U(z).

We get

1 > (f e-('-')f dt
l9 (

f eo9 dµ) 1-0 (6.17)

provided the functions f and g satisfy

g(y) < f (x) + Lo (x, y), x, y E 1R' . (6.18)

Given f, the optimal function g = Lo f in (6.18) is defined by

Lef (y) = xin [g(x) + Le (x, y)]

so that (6.17) becomes

1/(1-e)
(fe0181dp)

1/e
(fe_1_8vd)t < 1. (6.19)

Now, as a consequence of the convexity assumption on U,

liminf Lo (x, y) >
2

ix - yI2.
0-1
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As a result, letting 0 --+ 1 in (6.19), we arrive at

f eQ,fdµ<effd'

which thus holds true for all bounded measurable functions f. As a consequence of
Corollary 6.4, the theorem is established.

Although we need not really be concerned with that, it is important to em-
phasize that quadratic transportation cost inequalities are actually consequences of
logarithmic Sobolev inequalities. In particular, a statement such as Theorem 6.5
above is a consequence of Theorem 5.2 for logarithmic Sobolev inequalities. The
derivation of a quadratic transportation cost inequality from a logarithmic Sobolev
inequality may be performed on the model of the Herbst argument. We briefly
describe the argument. Assume thus we are given an absolutely continuous prob-
ability measure p on the Borel sets of R' such that for all smooth functions f on
R"`,

Entµ(f2) < 2CJ IV f j2dp. (6.20)

Given a (bounded Lipschitz) function f on R, apply now the logarithmic Sobolev
inequality (6.20) to eQ11c(af)/2, A > 0, where we recall that Qc f, c > 0, is the
infimum-convolution of f with the quadratic cost c(x - y) = 2 Ix - y12, x, y E R,
c > 0. Now infimum-convolutions

v=v(x,t)= inf [f(y)+ 1 Ix-y12], xER"`,t>0,
yER^ 2t

are the Hopf-Lax representation of solutions of the Hamilton-Jacobi initial value
problem

0V{+IvvI2=o 2inR' x(0,oo),

v=f onR'x{t=0}

(cf. [Ev]). Therefore, setting

g = 9(x, A) = Qi1CW)(x),

almost everywhere in space,

9 = A
8

9 +
1

Io9I2FA -2

We thus immediately deduce from the logarithmic Sobolev inequality (6.20) the
differential inequality

AM'(A) < M(A) logM(A), A > 0,

on M(A) = f e9dp. Since M'(0) = f fdµ, it follows as in the proof of Theorem 5.3
that

eQ'Icfdµ < of fdµ,
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which is the infimum-convolution inequality (6.15).
As a consequence of the preceding and Corollary 6.4, we may state the following

result.

Theorem 6.6. Assume that p is absolutely continuous and that for some C > 0
and all smooth enough functions f on

Entµ(f2)<2C f IVfI2dp.

Then, for every probability measure v,

W2(µ, V) < CH(v I µ).

Replacing Ix - yj by the Riemannian distance d(x, y) would yield the same con-
clusion on a smooth complete Riemannian manifold (X, g). In particular, most of
the logarithmic Sobolev inequalities we discussed in Chapter 5 may be turned into
a quadratic transportation inequality. It may easily be shown (cf. [O-V], [B-G-L])
that the quadratic transportation cost inequality (6.14), or its equivalent infimum-
convolution inequality (6.15), implies a Poincare inequality (with constant C) so
that quadratic transportation cost inequalities appear to be intermediate between
logarithmic Sobolev inequalities and Poincare inequalities (however producing nor-
mal concentration).

This line of reasoning may be pushed further to show that the modified loga-
rithmic Sobolev inequality satisfied by the exponential distribution (Theorem 5.12)
also implies a transportation cost inequality for the cost (4.20). For the particular
example of the exponential distribution v itself with density

a
e-1'1 with respect to

Lebesgue measure on R, we have the following statement.

Theorem 6.7. For every probability measure c absolutely continuous with respect
to the exponential distribution v on R,

Wz(v, () < CH(C IV)

where c(x, y) = c(x - y) is the cost function (4.20) and C > 0 a universal constant.

The argument is quite similar to the one for the quadratic cost and we refer
to [B-G-L] for details. The transportation cost inequality of Theorem 6.7 is equiv-
alent to the one put forward in [Tall0]. It may be tensorized to dimension free
transportation inequalities for products of the exponential distribution to recover
its sharp concentration properties [Tal10] as exposed in Sections 4.5 and 5.3 by
other means.

6.3 Transportation for product and non-product measures

In this section, we show how the transportation approach may be developed to
obtain some of the geometric results of Sections 4.2 and 4.3. The arguments rely on
somewhat delicate coupling arguments. One main interest in this approach is that
it allows us to investigate some non-product situations as emphasized by K. Marton
[Mart], [Mar3]. We only review here a few recent results in this direction.



6.3 TRANSPORTATION FOR PRODUCT AND NON-PRODUCT MEASURES 127

To avoid unessential measurability questions, for simplicity let (Xe, di), i
1, ... , n, be arbitrary Polish (complete separable) metric spaces and let

X=X1x...xXn.

A point x in X has coordinates x = (x1, ... , xn).
Denote by P(Q, R) the set of all probability measures on the product space

X x X with marginals Q and R. Introduce a coupling distance between probability
measures (cf. [R-R]) by

(fv({x;x.d(Q, R) = inf
a-1

where the infimum is running over all it E P(Q, R). If it is a probability measure on
a product space Ek = El x x Ek, we denote by irz, where z = (z1,.. . , zie) E EI =
Eil x .. x Eje, I = {i1, ... , it) C {1, ... , k}, the (regular) conditional distribution
of -7r given z, that is such that for every bounded measurable function 0 on Ek,

O(w,z)drrz(w)) daj(z)J141r=J
\I z{1, ,k}\I

where 7rj is the marginal of it over EI (cf. e.g. [Str2]). In probabilistic notation,

(JP({eid(Q, R) = inf 0 (i I C= y})2dR(y)
)

1/2

(6.21)

where the couple of random variables (l;, () has distribution 7r and
W. Note that d(Q, R) is not symmetric in Q, R.

To better understand the significance of the coupling distance d, let us relate
it to the convex hull distance DA of Section 4.2. To this task recall from (4.5) that,
for a given subset A of the product space X and X E A, we let

DA(x) =
yE of

1Y1

where VA(x) is the convex hull of 1{y,0x,))j y E A, in [0,1]n. It is
easily seen that by the Cauchy-Schwarz inequality,

n
DA (x)2 = inf E v({y; yi 3&

xi})2

i=1

where the infimum is running over all probability measures on X such that v(A) = 1.
As a consequence, for any Q supported on A and any R,

f (DA)2dR < d(Q, R)2. (6.22)

The following result will contain the main conclusions of Section 4.2.
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Theorem 6.8. For any product measure P on X = X1 x ... x Xn and any
probability measures Q and R on X,

1 d(Q, R)2 < H (RIP) + H (Q I P).

To apply Theorem 6.8, take A C X and assume that P(A) > 0. Define first
P( IA), for which H(Q I P) = log Pa y. Let R be such that

dR _ 1
e(DA)2/4

dP Z

where Z is the normalization constant for which

H(R I P) = J(V)2dR_logZ.

By (6.22),

H (RIP) 4 d(Q, R)2 - log Z.

It then follows from Theorem 6.8 that

log Z < H (Q I P) = log
P1

(A)'

that is,

= :)2/4Z
J

e(-D' < P(A),

which is the content of Theorem 4.6.
The proof of Theorem 6.8 uses coupling arguments. We indicate the sketch of

the proof. We actually deal with the more general version of Theorem 4.11. To
this task, given /3 > 0, recall the function

/
rp (1 - u) = /3u log u - (1 +,8u) log

11 ++1+
/3u

,

Define, for every /3 > 0, the coupling distance

u E 10, 11.

r n
dp(Q,R) = infJ >T,(ay({x;xi # y:}))dR(y)

a-1

where the infimum is taken as in (6.21). Note that rp(u) > 4 for /3 = 1. The
following theorem thus covers Theorem 6.8 and will imply exactly in the same way
Theorem 4.11.

Theorem 6.9. For any /3 > 0, any product probability measure P on X =
X1 x . x X and any probability measures Q and R on X,

dp(Q, R) _< H(R I P) +/3H(Q I P).
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Proof. The following (one-dimensional) coupling lemma is the key to the proof of
Theorem 6.9.

Lemma 6.10. Let (X, d) be a Polish space. For any ,(3 > 0 and any probability
measures Q and R on X, define

Aa (Q, R) = fT/3((l
-dR) +) dR.

Then, there exists it E P(Q, R) such that

fr(1rv({x;x 34 y})dR(y) = OQ(Q, R)

Furthermore, for any probability measure P on X,

1 (Q,R)SH(RIP)+aH(QIP)

Proof. Let (R - Q)+ denote the positive part of the finite signed measure R - Q
and let Q A R denote the positive measure

R - (R - Q)+ = Q - (Q - R)+.

Set p = (R - Q)+(X). Suppose 0 < p < 1, and consider independent random
variables U, V and W with respective distributions

(1- p)-1Q A R, p 1(R - Q)+ and p 1(Q - R)+.

Let I E {1, 2} be chosen, independently of these variables, such that I = 2 with
probability p. Set (= (= U when I = 1 and e = W # V = (when I = 2. If
p = 1, then we do not need the variable V for the construction of (, (, whereas for
p = 0 we never use W and V. The coupling ((, () with distribution 7r E P(Q, R) is
such that

ir({(x, y); x 51y, y E .}) = (R - Q)+(.)

By definition of conditional probability distributions, for every Borel set B in X,

fB7ry({x;x # y})dR(y) = L'({(1);x # y})dR(y)

_l'( U {(x,y);x0y}))
yEB

_ (R - Q)+(B)

implying that Try ({x; x # y}) = (1 - aR)+(y) for R-almost every y. The first part
of the lemma follows.

Turning to the second part, it suffices to consider P such that both f = dR/dP
and g = dQ/dP exist. Let

PO = 1+13 (R +)3Q)
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so that

Hence

dP _ _ 1 (f +,89)
dP

h 1+0

H (RIP) + ,3 H (Q I P) [f log f + ,(3g log g] dP

[f log

h

+ fig log h] dP

since f h log hdP = H(Pp I P) > 0. Set p = dQ/dR so that

h _ 1+Op gf
1+0

and f = p.

Hence, by the preceding,

H(RIP)+QH(QIP)? f Tp(1-p)dR

from which the desired claim follows since Tp (1- u) > Tp ((1- u)+) for every u > 0.
Lemma 6.10 is established.

The proof of Theorem 6.9 is now the proper tensorization of Lemma 6.10.

Proof of Theorem 6.9. Fix ,(3 > 0 and P = µl ® ®µn. For i = 1, ... , n, denote
by Qx1..... xt-1 the (regular) conditional distribution of Q given x1,... , xa_ 1 i and by
Qx1.... X -1

a its marginal along the xi coordinate. Define Ra similarly. By the
first part of Lemma 6.10, for every i = 1, . . . , n, there exists a probability measure
it in P(Q8 1,...,x._1, Ri 1,...,x _1) such that

Op (QZ R$ 1,...,x1_1) = f x 34y}))dRi 1,...,x,-1 (y)

Now let ir on X x X be defined by

7r(B) = f ...f iri (dxl i dy1)i21,v1 (dx2, (d2n, dyn),
B

Note that 7r E P(Q, R). By the properties of conditional expectations and convexity
of Tp, for every i = 1, ... , n,

fr,3(ir1({x;xi 34yi}))dir(x,y)

: Jr,(irN{xj rh yi}))dir(x, y)

= fOp Qi(
x1,...,X _1, R'1: ,...,1-1)drr(x. y).

As a consequence of Lemma 6.10,
n

dp(Q, R) Op(Qi x1,...,x$_1 Ry1dir(x
y)a

i=1

f (H(Rv1,...,v _1 I pi) + a H(Qa 1,...,x,-1
I Ni))d1r(x, y)

a=1
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The chain rule for relative entropy (cf. [De-S], [Dem-Zl]) indicates that
n

H(Q IP) _
H(Q-'....,x,-'

I µi)dQ(x)
%=1

and similarly for H(R I P). Theorem 6.9 is thus established. O

As shown by A. Dembo [De], the preceding tools may be extended to reach in
the same way the q point approximation theorem of Section 4.3.

The transportation approach may be well suited to reach some dependent
situations. Variants of Theorem 6.8 have been used by K. Marton [Mar2] in the
investigation of some non-product Markov chains for which it appears to be a
powerful tool. More precisely, let P be a Markov chain on X = X1 x ... x Xn with
transition kernels Ili, i = 1, ... , n, that is,

dP(xl, ... , xn) = nn(xn, dxn-1) ... 112(x2, dx1)n1(dxl)

Assume that, for some 0 < p < 1, for every i = 1, ... , n, and every x, y E [0, 11,

IIHi(x, ) - ni(y,')IITV < p. (6.23)

The case p = 0 of course corresponds to independent kernels Ili.
In a statement analogous to Theorem 6.8, K. Marton [Mar2] obtains, through

coupling characterizations of the total variation distance and Pinsker type inequal-
ities, the following result. Recall the quadratic coupling distance,

d(Q,R) =inf (Jirv({x;x. 54 yi})2d(y) I:=1
/

Theorem 6.11. Let P be a Markov chain on X = X1 x x Xn satisfying (6.23)
for some 0 < p < 1. For any probability measures Q and R on X,

4
(1- p)2d(Q, R)2 < H(R IP) + H(R IP).

In the same way we deduced Theorem 4.6 from Theorem 6.8, we get the fol-
lowing corollary.

Corollary 6.12. Let P be a Markov chain on X = X1 x x Xn satisfying (6.23)
for some 0 < p < 1. Then, for any measurable non-empty subset A of X,

Je(1_2c4)2h/4dP < 1
P(A)

The next corollary appears as the proper extension of Corollary 4.10.

Corollary 6.13. Let P be a Markov chain on [0, 1]n satisfying (6.23) for some
0 < p < 1. For every convex 1-Lipschitz map F on Rn and any r > 0,

P({I F- f FdPI > r}) < 4 e-(1-v)2"2/4.

These results have been extended in [Mar4], and independently in [Sa], to
larger classes of dependent processes, including Doeblin recurrent Markov chains
and 4b-mixing processes. We refer to [Mar4], [Sal for details.
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Notes and Remarks

The interest of information inequalities for the concentration of measure phenome-
non was emphasized in a series of papers by K. Marton [Marl], [Mar2]. Proposition
6.1 is due to S. Bobkov and F. Gotze [B-G].

General references on mass transportation problems and minimal metrics are
[Ra2], [R-R]. The quadratic transportation cost inequality for Gaussian measures
is due to M. Talagrand [TallO], with a proof that is further extended to strictly
log-concave measures in [Bll] by means of the Brenier-McCann mass transference
theorem [Bre], [MC]. A simple transparent proof is provided in [CE]. Its infimum-
convolution description is emphasized in [B-G], and further analyzed in [Bo-L3]
and [B-G-L]. That quadratic transportation cost inequalities follow from logarith-
mic Sobolev inequalities (Theorem 6.6) is due to F. Otto and C. Villani [O-V] with
a PDE proof. The connection with Hamilton-Jacobi equations and hypercontrac-
tivity is made clear in [B-G-L] (see also [An]). Transportation cost inequalities for
the exponential distribution (Theorem 6.7) were first obtained in [Tal10] to pro-
duce an alternative approach to the concentration results of [Ta13] presented here
in Section 4.5. The connection with modified logarithmic Sobolev inequalities is
exposed similarly in [B-G-L].

The transportation cost approach was initiated by K. Marton [Mar2] to ex-
tend Talagrand's convex hull theorem to some contractive Markov chain. Theorem
6.11 is due to K. Marton [Mar2]. The method was then systematically applied by
A. Dembo [De] to recover most of the geometric inequalities for product measures
of Section 4.2 and 4.3. See also [Dem-Z2]. Theorem 6.9 and its proof are taken
from [De] and [Dem-Zl]. More recent developments for dependent variables and
processes are due to K. Marton [Mar3], [Mar4], P: M. Samson [Sa] and E. Rio [dl]
with applications to bounds on empirical processes in the spirit of the inequalities
described in the next chapter.



7. SHARP BOUNDS ON GAUSSIAN
AND EMPIRICAL PROCESSES

In this chapter, we illustrate some of the basic principles of concentration to sharp
bounds on Gaussian and empirical processes (or norms of sums of independent
random vectors). In the first section, we present the sharp deviation inequality
for supremum of Gaussian processes and its consequence to strong integrability.
We then turn to bounds on sums of independent random vectors and empirical
processes, first with the geometric tools of Chapter 4. In the last section, we
establish sharper bounds with the entropic method. One of the powers of the
concentration inequalities is that they extend classical results for sums of samples
of random variables to Lipschitz functions of such samples, therefore allowing new,
powerful applications.

7.1 Gaussian processes

We illustrate in this section the application of concentration properties of Gaussian
measures to sharp deviation and integrability results for Gaussian processes.

On some probability space (St, A, 1V'), let G = (Gt)tET be a centered Gaussian
process indexed by some parameter set T. We mean thus that for any finite col-
lection (t1,.. . , t,,) in T, the random vector (Gt1, ... , is a centered Gaussian
random vector in R.

We are interested here in sharp probability inequalities on the distribution
of the supremum of G. To this task, assume, to avoid measurability questions,
that T is countable. In general this is dispensed with using separability assump-
tions. In any case, the basic inequalities are finite dimensional. We assume that
suptET Gt < oo almost surely.

We first claim that
o = EP (E(Gt))1/2 \+°° (7.1)

Indeed, let m be such that P({suptET Gt < m}) > 4. Then, for every t, we have
]ED({Gt < m}) > 4 and, if at = (E(Gt))1/2,

It
>-1(4) > 0, from which (7.1)

follows (recall that fi is the distribution function of the standard one-dimensional
Gaussian law).

Now fix tl, ... , to in T and consider the centered Gaussian random vector
(Gt...... in R". Denote by r = -s-is its (semi-) positive definite covariance
matrix. The random vector (Gt...... Gt.) has thus the same distribution as N
where M is distributed according to the canonical Gaussian measure ly on 1W'. Let

133
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F : Rn -> R be defined by

F(x) = max (Ex),, x = (xl,... , xn) E IFn.
1<%<n

Hence the distribution of F under -y is the distribution of the random variable
maxi<x<n G. It is easily seen that the Lipschitz norm IIFIILiP of F is less than or
equal to the norm IIuII of E as an operator from Rn equipped with the Euclidean
norm into Rn equipped with the supremum norm. Furthermore, this operator norm
IIBII is equal by construction to

In 1/2

max I = max (E(Gt ))1/2
1<i<n / 1<i<n

where we denote by °ij the entries of the matrix Applying thus (2.35) for
example to F yields

P({ max Gt, > E( max Gt,) +r}) < e-r2/2°2 (7.2)
1<i<n 1<i<n -

for every r > 0. We then argue as in the proof of Proposition 1.7. The same
inequality applied to -F yields

P({ max Gt, < ]E( max Gt,) - r}) < e "2/202. (7.3)
1<i<n 1<i<n

Let ro be large enough so that e-'x/2o2 < 2. Also let m be large enough in order
that P({suptET Gt < m}) > 2. Intersecting this probability with the one in (7.3)
for r = ro shows that

E( max Gt,) < ro + m.
1<i<n

Since m and ro have been chosen independently of ti, ... , tn, we already get that

]E (sup Gt) < oo.
tET

Now, one can use monotone convergence in (7.2) to come to the following basic
inequality.

Theorem 7.1. Let G = (Gt)tET be a centered Gaussian process indexed by a
countable set T such that SUPtET Gt < oo almost surely. Then, E(suptET Gt) < 00
and for every r > 0,

JP({ sup Gt > IE(sup Gt) + r}) < e_r2/2°2
tET tET

where o, 2 = SUPtET E(G?) < oo.

Therefore, up to the deviation factor E(suptET Gt), the distribution of the
supremum suptET Gt is as good as a one-dimensional Gaussian law with variance
the supremum of the variances. Furthermore, for every r > 0,

IP({I supGt - E(supGt)I >r}) <2e '2/202 (7.4)
tET tET
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and

Var (sup Gt) < 4v2.
tET

Both Theorem 7.1 and (7.4) hold similarly with the median of suptET Gt in-
stead of the mean (using (2.10)). One may also work with suptET IGtl assuming
suptET I Gt l < oo almost surely.

As we already discussed it in Chapter 3, the main interest in the inequality of
Theorem 7.1 is the relative size of or and E(suptET Gt). We always have

E(supGt) = 1 ]E( sup (Gs -Gt))
tET 2 s,tET

= 1 E( sup I G. - Gt l )
2 8,tET

> 1 sup
(2)1/2(]E(IG8-Gt12))1/2

2 s,tET i
so that, for any s E T,

o < (E(G8))1/2 + 2ir]E(supGt).
tET

In general ]E(suptET Gt) is much bigger than Q. Think for example of G being
distributed as -y on 1' for which E(SUPtET Gt) is of the order of og n for n large
whereas v = 1. This was actually one crucial point in the concentration proof of
Dvoretzky's theorem in Section 3.5. On the other hand, ]E(suptET Gt) only appears
as a deviation factor and not as a multiplicative factor in the exponential. The con-
centration inequalities however do not provide any hint on the size of ]E(suptET Gt)
itself for which independent tools are required (entropy or majorizing measures (cf.
[Le-T], [Talll]).

The next theorem is a consequence of the strong integrability of the supremum
of Gaussian processes.

Corollary 7.2. Let G = (Gt)tET be a centered Gaussian process indexed by a
countable set T such that SUPtET Gt < oo almost surely. Then

lim 2 log ]P({supGt > r}) 12r-'oo r tET 2a

where a2 = suptET ]E(Gi) < oo. Equivalently,

]E (exp(p(suptET Gt)2)) < 00

if and only if p < Zo .

The first assertion in Corollary 7.2 is a large deviation statement for comple-
ments of balls. The upper bound immediately follows from Theorem 7.1. The lower
bound is just that

1P ({sup Gt > r}) > 1P({Gt > r})
tET

= 1 - vt)
-'r 2 /2a2

> (rlat))
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for every t E T and r > 0. The second part of the theorem follows by integration
of the inequality of Theorem 7.1 in r > 0.

The deviation inequality of Theorem 7.1 actually contains much more informa-
tion than the integrability result of Corollary 7.2. For example, if G' is a sequence
of Gaussian processes as before, and if we let IIG"II = suptET Gt, n E N, then
II G" II - 0 almost surely as soon as IE(IIG" II) -' 0 and v" og n -- 0 where, for
every n, Q" = SuptET(E((Gt )2))1/2.

As we have seen above, IE (suptET I Gt I) > na for some numerical is > 0. There-
fore, integration of (7.4) applied to suptET I Gt I shows, as in Proposition 1.10 and
(1.19), that for some numerical constant C > 0 and all q > 1,

(IE(suplGtlq))1/9 <Cf E(sup IGt1). (7.5)
tET tET

This equivalence of moments is a useful tool in the study of Gaussian processes and
measures.

The preceding results may be presented equivalently on Gaussian measures
on infinite dimensional normed vector spaces. Now, such Gaussian measures may
be represented as (almost sure convergent) series E=°_1 gavi where vi, i > 1, is a
sequence in (E, II II) and the gg's are independent standard normal random variables
on some probability space (Il, A, P). Theorem 7.1 and Corollary 7.2 thus describe
the distribution and integrability properties of the norm

00IIEgavall

Note that since
IE00

9av%II = SUP 57,gs(b,vs)
00i=1 IIEII<_1 i=1

where the supremum is running over the unit ball of the dual space,
00

02 = sup v%)2.

IIEII<_1 g=1

Since the norm is convex, the results in Section 4.2 extend these conclusions to
the supremum of functionals that are not necessarily Gaussian. For simplicity we
deal with finite sums. Indeed, let r7i, i = 1, ... , n, be independent random variables
on (1, A, IP) with 177i l < 1 almost surely. Let vi, i = 1,. .. , n, be vectors in an
arbitrary normed space E with norm II - II. Since the norm is a supremum of linear
functionals, we may directly apply Corollary 4.8 to get deviation and concentration
inequalities around a median. Let us however repeat here the argument. Consider
the convex function F : R" -+ R defined by

F(x)
= I) xava Il

, x = (x1, ... , xn) E R".
a=1

Then, by duality, for x, y E Il8"

F(x) - F(x)I
: IIE(x% - yt)val

a-1
n

= sup E(x% - ya)(C vg) QIx - yl,

IIEII<1 $_1
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where the last step is obtained from the Cauchy-Schwarz inequality. Hence IIFIiLip
< a. As an application of Corollary 4.10, or Theorem 5.9, we get the following
result.

Theorem 7.3. Let i71, ... , r/ , be independent random variables such that 1'ii I < 1
almost surely, i = 1, ... , n, and let v1,. .. , vn be vectors in a normed space (E, II II).
For every r > 0,

P\llln i7iviII >M+r} I <2e-r2/16'2

where M is either the mean or a median of Ii Ez 1 rliviII and where

n
2 2v =sup vi)

i=1

There is a similar inequality for deviations under M, and thus a concentration
inequality.

This inequality is the analogue of the Gaussian deviation inequality of Theorem
7.1 and describes one proper infinite dimensional extension of the Hoeffding type
inequality (1.23).

Theorem 7.3 may be used as for Corollary 7.2 to show that whenever the series
00

S = Iiivi
i=1

is almost surely convergent in E, then its norm IISII is strongly integrable in the
sense that

E(ePIIs112) < 00 (7.6)

for every p. (The fact that it holds for every p with respect to the Gaussian case is
due to the fact that the rli's are bounded.)

Theorem 7.3 may be used to prove equivalences of moments as for Gaussian
random vectors and series. In particular, if the rli's are symmetric Bernoulli vari-
ables taking values ±1, the classical Khintchine inequalities show that

]E(IISII) > sup
IIf1151

sup =
no,

p k lE(I (e, S) I2))
1/2

>
IIE1151

for some numerical is > 0. Hence, as for (7.5),

(E(IISII9))1/9

<_ Cv'E(IISII) (7.7)

for some numerical constant C > 0 and all q > 1. Inequalities (7.7) are the famous
Khintchine-Kahane inequalities. As for (7.5), these moment equivalences are part
of the geometric reversed Holder inequalities (2.21) and improve upon the earlier
version (2.22) with the optimal growth of the constants in q > 1 (cf. [Le-T]).
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7.2 Bounds on empirical processes

Sums of independent random variables are a natural application of the deviation
inequalities for product measures. In this section and the next one, we present esti-
mates on supremum of empirical processes. This paragraph relies on the geometric
concentration properties developed in Sections 4.2 and 4.3 while the next one is
based on the entropic method of Chapter 5.

Tail probabilities for sums of independent random variables have been ex-
tensively studied in classical probability theory and limit theorems. We already
mentioned in this work the Hoeffding type inequality (1.23) (and its martingale
extension Lemma 4.1)

F({S > E(S) + r)) < e`2 /2nC2

where S = Y1 + - + Yn is a sum of independent real random variables bounded
by C > 0. One finished result is the so-called Bennett inequality [Been] (after
contributions by S. Bernstein, A. Kolmogorov, Y. Prokhorov, W. Hoeffding, etc.).
As for (1.23), it will be convenient to compare the infinite dimensional extension
we will present with this result. With due respect to the Hoeffding inequality,
this result takes into account the fluctuations of S with respect to the variance
more carefully. Namely, let Y1, ... , Yn be independent real-valued random variables
on some probability space (fl, A, F) such that jY < C, i = 1,. .. , n. Set S =
Yi + + Yn. Then, for every r > 0,

/ 2

1!n({S >E(S) + r}) < exp(-C h(-r)) (7.8)
012

where h(u) = (1+u) log(1+u)-u, u > 0, and o.2 = Ea 1 E(Y2). Such an inequality
describes the Gaussian tail for the values of r which are small with respect to u2,
and the Poissonian behavior for the large values (think for example of a sample of
independent Bernoulli variables, with probability of success either or of the order
of I).

Our task in this chapter will be to understand what is saved of such a sharp
inequality for norms of sums S = 1 Y of independent random vectors Ya taking
values in some Banach space (E, 11 p). In particular these bounds aim to be as
close as possible to the one-dimensional inequality (7.8). They should also compare
to the bounds on Gaussian processes of the preceding section involving two main
parameters, one on the supremum itself (mean or median), and one on supremum
of weak variances.

A first result in this direction is Corollary 4.5 obtained from martingale in-
equalities. However, the inequality of Corollary 4.5, while a deviation inequality
from the mean E(JIS11), does not emphasize, according to Theorems 7.1 and 7.3,
the supremum of weak variances

n
sup

IIeII<_1 i=1

This is why we have to turn to more refined tools such as the concentration inequal-
ities in product spaces of Sections 4.2 and 4.3 or the entropic method of Chapter 5.
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Motivated by recent applications, we present the results in the context of supre-
mum of empirical processes rather than sums of random vectors. This is however
only different at a notational level. in statistical applications, one is interested in
such bounds uniformly over classes of functions, and importance of such inequalities
has been emphasized in the statistical treatment of selection of models in [B-Ml],
[B-M2], [B-B-M] (see [Mas2]). More precisely, let Y1, Y2,..., Y,,,... be indepen-
dent random variables with values in some measurable space (V, V) with identical
distribution P, and for n > 1, let

1 nPn=n SY.

%=1

be the empirical measures (on P). A class F of real measurable functions on V is
said to be a Glivenko-Cantelli class if the supremum sup fE.F I Pn (f) - P(f) I con-
verges almost surely to 0. It is a Donsker class if (in a sense to be made precise),
Vlrn(Pn(f) - P(f)), f E F, converges in distribution towards a centered Gaus-
sian process G7 = {GP (f ), f E F} with covariance function P(fg) - P(f)P(g),
f, g E.P. These definitions naturally extend the classical example of the class of all
characteristic functions of intervals (-oo, t], t E IR (studied precisely by Glivenko-
Cantelli and Donsker). These asymptotic properties however often need to be
turned into tail inequalities at fixed n on classes F which are as rich as possible
(to determine accurate approximation by empirical models). In particular, the aim
is to reach exact extension of the Gaussian bound of Theorem 7.1 for Gp and the
Bennett inequality (7.8) corresponding to a class F reduced to one function.

In this section, we present a result on the basis of the control by q points
of Section 4.3. As we have seen there, this method is of particular interest to
bounds on sums of independent random variables and we already presented there
a useful inequality for non-negative summands (Corollary 4.14). In the study of
empirical processes, one does not usually deal with non-negative summands. One
general situation is thus the following. Let Y1,. .. , Yn be independent random
variables taking values in some space V and consider, say, a countable family F of
(measurable) real-valued functions on V. We are interested in bounds on the tail
of

n
Z=supf(Y).

f E.7-
(One can deal similarly with absolute values

sup
f EF

76

4=1

For simplicity, we deal with centered random variables, and thus assume that
E(f (Y%)) = 0 for every i = 1, ... , n and every f E .F. If this is not the case, replace
f (Y) by f (Y%) - E(f (Y) ), although several results do actually still hold for f (Y )
itself. Standard symmetrization techniques reduce then to the investigation of

n

Z3 = sup e% f (Y%)
fEY %=1
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where are independent symmetric Bernoulli random variables indepen-
dent of the Y2's. Indeed, if {Y11, ... , Yn} denotes an independent copy of the sample
{Y1i ... , Yn}, it is not difficult to see that for every r, s > 0,

ll({Z>_r+s}) <P 1 {
\IfE.F'a_1

+supP(
fE.F' \1i=1 J

By symmetry,

n n
sup (1 (Yi) - f(Y')) and sup ei (.f (Yi) - .f (Y') )
f E.F i.1 f E.F' i=1

have the same distribution. Together with some minor modifications, we may thus
reduce to the symmetrized supremum Z8.

When dealing with Z or Z8, we may not use directly Corollary 4.14. To
overcome this difficulty, we use the symmetry properties of Z8. Write

Z8 = (Z8 - EE(Z3)) +Ee(Z8)

where IEE is partial integration with respect to the Bernoulli variables
The point is that, as we have seen prior to Corollary 4.13, is monotone and
subadditive with respect to the independent random variables Y1, . . . , Yn. Corollary
4.13 therefore applies to E, (Z'). The remainder term Z8 - E(Z8) is bounded, con-
ditionally on the Y2's, with the deviation inequality of Theorem 7.3 by a Gaussian
tail involving a random supremum of weak variances

n
E2 = sup f2(Y).

f E-F i=1

Now E2 is again monotone and subadditive so that Corollary 4.13 may also be
applied to it. Assuming If < 1, f E F, and combining the arguments yields after
some work (cf. [Le-T], [Tal5]) the inequality, for integers k, q > 1,

P({Z8 > 8glE(Z8) + 2k}) < 2'q'''` + 2 e-k2/12sgE(E') (7.9)

How is (7.9) used in applications? One possible choice is simply q = 2. We may
also optimize the choice of q and take it of the order of k/ log k. This choice then
leads to the following general statement (cf. [Tal5]).

Theorem 7.4. If If 1 < C for every f in F, and if E(f (Y)) = 0 for every f E F
and i = 1, ... , n, then, for all r > 0,

JE(Z8 > KE(Z8) + r) < K exp (- KC, log 1 1 +
Cr

E(F2) + G"

where K > 0 is a numerical constant.
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To compare more carefully this result with (7.8), it is important to give a more
tractable form to ]E(E2). To this task, we may write

E(E2)< .2+lEI I
f Ear i-1

By Jensen's inequality,

lE1 sup(f2(Y)-lE(f2(Yi))) <]EI f2(Ya,))
\fE. s=1

where the Y"s are independent copies of the YZ's, i = 1, ... , n. By symmetry,

]E(sup (f2(Yg) - f2(Yl))) <2]E(SEp I E%f2(Yi)
z_1 i=1

where we recall that 61, ... , en are independent ±1 symmetric Bernoulli random
variables independent of the Y's. We then have to make use of a contraction
inequality [Le-T], p. 112,

n n
E(SUP, IEEif2(Y%)I/

C4C]E('supjEE%f(Ya)I)

Alltogether, we conclude that

where

and

E(E2) < Q2 + 16CIE(Z) (7.10)

n
Q2 = sup EE(f2(Yi))

f E-F i=1

sup f (Y )
f E.Y i=1

(if Z is defined without absolute values). With this observation, Theorem 7.4 pro-
vides an inequality close to both the classical exponential inequalities for sums of
independent real-valued random variables (7.8) and to the bounds of the preced-
ing section on supremum of Gaussian processes with the same basic parameters a
and ]E(Z). Theorem 7.4 is good enough to establish most basic almost sure limit
theorems in Banach spaces (cf. [Le-T], [Le-Z]]).
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7.3 Sharper bounds via the entropic method

One weak aspect of Theorem 7.4 is that it does not present a deviation inequality
from the mean (or median) itself but rather a multiple of the mean. Neither does
it provides a concentration inequality. This can be obtained, however, in a rather
delicate way, by further abstract developments of the methods of Sections 4.2 and
4.3 as demonstrated in [Tal9].

Here, we observe that the functional approach based on logarithmic Sobolev
inequalities of Chapter 5 may be used to yield these sharper bounds. The overall
approach is simpler and more transparent than the preceding developments based
on the results of Sections 4.2 and 4.3.

We start with a first result concerning supremum of empirical processes over
a class of non-negative bounded functions. As before, let Y1i . . . , Yn be a sample of
independent random variables with values in some measurable space (V, V). Let F
be a (countable) class of measurable functions f on V such that 0 < f < 1. Set

n
Z=supf(Yi).

f E'Y i=1

Theorem 7.5. Under the preceding notation, for any ) > 0,

E(e'`Z) < e(eA-1)E(z)

In particular, for any r > 0,

(-
where

/ \ \
IP({Z>]E(Z)+r}) <exph(u)

= (1 + u)log(1 + u) - u, u > 0.

The exponential inequality of Theorem 7.5 is the optimal extension of (7.8)
for non-negative summands. It is in particular attained when Z has a Poisson
distribution. Note that since h(u) a u log(1 + u) for any u _> 0, Theorem 7.5
implies that

1P({Z>]E(Z)+r}) exp(-2 )I
(7.11)

for every r > 0.

Proof. We may clearly assume that .F is a finite class (with N elements). We may
then represent Z as a function

n
Z(x) = max xk

1 <k<N
i=1

where x = (X1, ... , xn) E En, E = JRN. If we further denote by pi the law of f (Yi),
f E F, on E, the distribution of Z under F is the same as the distribution of Z(x)
under the product measure P of the pi's. Note that since 0 < f < 1, the bb's are
supported by [0, 11N C E, and we may thus assume that E = [0,1]N.
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Since P is a product measure, we may apply the product property of entropy
(Proposition 5.6) to get that

Entp(eAZ) < fEnt,(e)dP. (7.12)
i=1

Recall that here Z, is Z as a function of the i-th variables, the others being fixed.
Let 0(u) = e-u + u - 1, u E R. The variational characterization of entropy (cf.
(5.11)) indicates that for any probability measure p and any (say bounded) function
f, f

Ent,, (ef) = infoJ [ f of - (log t + 1) of + t] dp

inf fcb(f - u) of dµ.
UER

For every x = (x1,.. . , xn) in En, and i = 1, ... , n, set

ny=yi(x)=(x1,...,xi-1a 01xi+1,...,xn EE

In the variational characterization of Ent., (eAZI ), choose then u = AZ(y) so that

f Ent.,(eAZI)dP < J(.X(Z(x) - Z(yi(x)))) a (")dP(x). (7.13)

Note that since xi E [0,1]N, Z(x) > Z(yi(x)) by definition of Z. On the other
hand, if (Ak)1<k<N is a partition of En such that

r n

AkCSxEEn;Z(x)xk
l i=1

and if Tk = Tk (x) = 1 Ak (x),

N

0 < Z(x) - Z(yi(x)) < ETkx$ = T Xi.
k=1

Now, since 0 is convex, for any A > 0 and u E [0, 1], O(Au) < uo(A). Therefore, for
any A > 0,

- -
.O(A(Z(x) - Z(yi(x)))) < (T . xi) O(A).

Together with (7.12) and (7.13), it follows that

Entp(eaZ) < O(A) f(r. xi) eaZ(a)dP(x)
i=1

_ ¢(A) f Ze,\zdP
(7.14)

since by construction > a 1 T xi = Z(x).
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Now let A()/) = E(e"Z) = f e"ZdP, A > 0, be the Laplace transform of Z.
What we have obtained in (7.14) is that, for every A > 0,

AA'(A) - A(A) log A(A) < O(A)A'(,\),

that is,
(1- e-'\)A'(A) < A(A) logA(A), \>O.

This differential inequality may be integrated in the optimal way. The function
J(A) = log A(A) satisfies

J'(A) < (1 - e--\) -' J(,\),

that is,
[log J(A)]' < [ log(eA -1)]'.

Hence (e" - 1)J(A) / E(Z) as A \ 0 from which the desired claim follows. By
Chebyshev's inequality, for every A, r > 0,

P({Z > E(Z) + r}) < 1E(Z)O(A) e --\r

and minimizing over A > 0 yields the deviation inequality of the statement. Theo-
rem 7.5 is established. 0

Now we turn to classes of (bounded) functions with arbitrary signs. As before,
let Y1,.. . , Yn be independent random variables with values in some space V, and
let ..T be a countable class of measurable functions on V. Set

Z = sup f (Y).
fEF

The arguments developed below are similar for

n
supI f(Y)I
fEF i..1

Theorem 7.6. If If 1:5 C for every f in F, then, for all r > 0,

lE({IZ-lE(Z)I >r}> <3exp1 -KClogl 1+E(r2)))

where E2 = sup f E.F E 1 f 2 (Y) is the supremum of random variances and where
K > 0 is a numerical constant.

This statement is as close as possible to (7.8). With respect to Theorem
7.4, the main feature is the concentration property around the mean IE(Z) (or
equivalently a median of Z). As for Gaussian processes, the theorem does not yield
any information on the size of E(Z) itself.

The proof of Theorem 7.6 relies, as the one of Theorem 7.5, on the entropic
method but several technicalities make it a little heavier. In particular, the proof
is made harder by the fact that we are looking for a concentration inequality.
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Deviation above the mean (as for Theorem 5.9) requires significantly less effort,
and even allows sharp bounds (cf. [Masi], [Ri2], [Ri3]). For simplicity, we will
not look that time for an optimal integration of the basic differential inequality on
Laplace transforms we will get. Reasonable values of K are however deduced in
[Masi].

Proof. By homogeneity, take C = 1. As in the proof of Theorem 7.5, we may and
do assume that F is finite. We then represent Z as a function

n
Z(x) = max

1<k<N
i=1

where x = (x1i ... , xn) E En, E = RN. As before, if we denote by pi the law of
f (Yi), f E F, on E, the distribution of Z under F is the same as the distribution of
Z(x) under the product measure P of the pi's. With respect to Theorem 7.5, since
If < 1, the pi's are rather supported by [-1, +1]N C E so that we consider this
time that E = [-1,+1]N. Recall also that we denote by (Ak)1<k<N a partition of
En such that

(r
n l

Ak C { x E En; Z(x) = >2 x }.
11111 i=1 111

Now, the convexity properties of Z ensure that for every x E En, every i = 1, ... , n
and every y such that yj = xj, j # i,

N

Z(x) - Z(y) <_ E
Tk 14 - yi, I (7.15)

k=1

where we recall that Tk = Tk(x) = 1Ak(x). On the other hand, since xi, yi E
[-1, +1]N,

I Z(x) - Z(y) I < 2. (7.16)

We make use of Corollary 5.8 together with (7.15) and (7.16). That is, for
every A E R,

fEntp(eaZ) < 112
J \ f J [Z1(xi) - Zi(yi)]2

i=1 {AZ.(x.)>AZ.(y.)}

eAZ` (x') dpi (xi) dpi (yi)) dP(x).

Fixi, 1 < i < n. When \>O,

[Z1(xi) - Zi(yi)]2e,Z,(x`)dpi(xi)dpi(yi)
{AZ.(x;)>AZ.(y.)}

Jf
N

< Tk1x)(ri - y2) i)dlji(yi),
k=1

whereas when A < 0,

[Zi(xi) - Zi(yi)]2e_1Z.(x.)dpi(xi)dp'i(yi)

{AZ.(x.)>AZ.(y.)}
N

fJTk(V)(X% - y$ )Ze,\Z`(v.)+ZjXjdpi(xi)dpi(yi)

k=1
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where we used (7.15) and (7.16). It follows that, for every A E R,

Entp(e'\z) < A2e2IAIJ f max (x$ - (7.17)
1<k<N

z=1

The extra factor e2lAI with respect to analogous formulas might look annoying.
However, we only use (7.17) with A small.

Let us not recast inequality (7.17) with the original notations. Using that
(u+v)2 < 2u2+2v2 and independence, inequality (7.17) amounts to the inequality
inAEIR,

Entp(eaz) < 2A2e21aI

Take a A0 > 0 to be specified below. In particular, for every CAI < A0,

Entp(e,\z) < c0A2 (E(E2)E(e,`z) + E(E2e\z)) (7.18)

with co = 2 e2Ao. As in Chapter 5 and Theorem 7.5 above, one has to integrate
this differential inequality. We do not try here a sharp integration as in Theorem
7.5, but what follows is sufficient for the purpose of the theorem (for a more careful
analysis, see [Mast]).

We work with Z = Z - E(Z). In terms of the Laplace transform A of Z, (7.18)
indicates that for every A such that JAI < Ao,

AA'(A) - A(A) logA(A) < coA2 (IE(E2)A(A) +

We first bound the term E(E2e,`z). We have

(e - 1)]E(E2)lE(eAz) + ]E([E2 - (e - 1)lE(E2)]e'z)

< (e - 1)1E(E2)E(e-\2) + AE(ZeNz) - E(e)2) + E(eE2-(e-1)]E(E2))

where we used Young's inequality uv < u log u - u + e", u > 0, v E R, with u = e'z
and v = E2 -(e- 1)]E(E2). Now, since 0 < f2 < 1, E2 enters the setting of Theorem
7.5 so that IE(eE2_(e-1)E(Ea)) < 1. Since E(eaz) > 1 by Jensen's inequality, it follows
that

]E(E2eAz) < (e - 1)lE(E2)A(A) + AA'(A)

for every A.

Summarizing the preceding estimates, for JAI < A0,

AA'(A) - A(A) logA(A) < coA2 (eE(E2)A(A) + AA'(A)).

We now integrate this differential inequality in the standard way. Set H(A) _
a log ,(A), H(0) = 0, A E R. Hence,

H'(A)<coleE(E2)+A A(A) f.
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We may integrate the preceding to get (recall H(O) = 0), for Al J< Ao,

log A(A) < co (e EE(E2)A2 + A2 log A(A)) .

Therefore, provided that c0A20 < 1, for JAI < Ao,

A(A) <
e"oE(E2)A2

where no = ecoe2Ao(1 - coAo)-1. For 0 < A < Ao and r > 0,

EP({Z - E(Z) > r}) < e-ar+w°E(Ez)az

Then choose A = r/2no]E(E2) for r < 2icoAoEE(E2) and A = A0 for r > 2icoAoEE(E2)
to get

(Aortin({Z - E(Z) > r}) < exp - min ,r2
2 4tcXE2)) )

for every r > 0. For some appropriate choice of Ao (e.g. A0 = 51), and together with
the same argument for E(Z) - Z, we may state the following.

Proposition 7.7. If If < C for every f in F, then, for all r > 0,

EP({IZ -]E(Z)I > r)) < 2exp - 10 min (C'
ar

3E(r2)))'
We now complete the proof of Theorem 7.6 with the Poissonian bound. We

use a truncation argument. For every r > 0,

EP({IZ - EE(Z)I > 4r}) < EP({IZp - EE(Zp)I > r}) + EP({Wp + EE(WW) > 3r})

where
n

Zp = sup E f(Yi)
fEF f=1

with J1p = If 1{Ifl<p}; f E .F}, p > 0 to be determined, and

n

WP =SUPSEPEIf(Yi)I1{If(y.)I>p}.

We use Proposition 7.7 for Z. to get, for every r > 0,

P({IZp - lE(Zp)I > r}) < 2exp - 10 min r,
3]E E (7.19)To ( 2))

On the other hand, we apply Theorem 7.5, more precisely (7.11) to Wp, to get

EP({Wp + EE(Wp) > 3r}) < ]P({Wp > E(Wp) + r})

< exp -2 log 1 +
W

(7.20)r
( (P)))
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provided that r > EE(W.). Choose now

P = p(r) =min (1,
/E(E2)'\

.P)
Then

r > EE(WW) and rEE(E2) > EE(W.).

Indeed, either p = 1 and Wp = 0 or p< 1, i.e. r > E(E2), so that, since Wp < E2/p,

r > rEE E2 = E(E2) > ]E W .

Since for every u > 0,

mm n (-' 3)
> 12

log(1 + 4u),

we have by the choice of p

ar r
min (r, 3EE(E2)) > 12

log I 1 +
E(E2)

while

log (1+E(WP)) >log(1+ f(E2))

4 log (1
+ EE(E2) )

Therefore, as a consequence of (7.19) and (7.20),

]En({IZ - EE(Z)I > 4r}) < 3exp (-
120

log (1 + )).( a)

Changing r into r/4 completes the proof of Theorem 7.6. 0
T o g e t h e r with (7.10), Theorem 7.6 g i v e s rise to the f o l l ow i n g more useful v e r -

s i o n . Recall that when w e deal with the supremum Z = sup f EF > 1 f (Y) without
absolute values, we set

Z = sup
fEF

n

f(Y:)
4=1

Corollary 7.8. If If I < C for every f in F, and if EE(f (Y)) = 0 for every f E F
andi=1,...,n, then, for all r>0,

where v2 = sup fE.F Ea 1 EE f 2 (Y) and K > 0 is a numerical constant.
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If one is not concerned with Poissonian behavior, the Bernstein inequality of
Proposition 7.7 may also be stated in the following more tractable way (see [Masl],
[Mas2]). Assume for simplicity that Z = Z.

Corollary 7.9. If If I < C for every fin F, and if ]E(f (YY)) = 0 for every f E F
andi=l,...,n, then, forallr>Oande>0,

P({Z > (1 + e)]E(Z) + v Kr + K(1 + ')Cr})e-< e-,.

and
P({Z < (1- e)]E(Z) - v Kr - K(1 + ')Cr})e-< e_,.

where K > 0 is numerical.

As announced, sharp values of the numerical constant K may be obtained by
a more careful analysis. In particular, the optimal value of the constant in front of
the variance term a for the first inequality of Corollary 7.9 is achieved in [1113] by
the entropic method in the identically distributed case.

Notes and Remarks

Bounds on norms of sums of independent random vectors or empirical processes
motivated the early investigation by M. Talagrand of concentration inequalities in
product spaces. Applications of Gaussian isoperimetry to sharp bounds on Gaus-
sian random vectors and processes, initiated in [Bor2], were fully developed in the
seventies after the early integrability theorems by H. J. Landau and L. A. Shepp
[L-S] and X. Fernique [Fe] (cf. [Le-T], [Le3], [Li], [Bog], [Fe], etc. for a description
of the historical developments of the Gaussian theory leading to Theorem 7.1 and
Corollary 7.2). As alluded to in Section 7.1, the deviation and concentration from
or around the mean or median of supremum of Gaussian processes do not lead in
general to estimates on the mean or median themselves. These have to be handled
by other means such as entropy or majorizing measures, which may also be used
to yield directly, for more explicit Gaussian processes, sharp deviation inequalities
(cf. [Le-T], [Li], [Ta15], [Talll], etc.). The integrability result (7.6) is due to S.
Kwapien [Kw]. The Khintchine-Kahane inequalities (7.7) go back to [Ka]. Sharp
constants are discussed in [K-L-O].

The early Gaussian study together with some crucial open problems on limit
theorems for sums of independent random vectors (in particular the law of the
iterated logarithm) prompted M. Talagrand to investigate from an abstract mea-
sure theoretic point of view concentration properties in product spaces. This led
him, after a first contribution on the discrete cube [Tall] (that covers Theorem
7.3 in this case), to the breakthrough [Tal2] on which most of the further devel-
opments are based. These results allowed the monograph [Le-T] that solved with
these tools most of the open questions on strong limit theorems for Banach space
valued random variables with the approach presented here in Section 7.2 (see also
[Le-Z]). Theorem 7.4 is taken from [Le-T] and [Ta15]. For statistical applications,
cf. [V-W]. The isoperimetric inequality of [Ta12], and its application to a bound on
sums of independent random vectors, then received a number of improvements and
simplified proofs ([Tal4], [Ta17]) which finally led to the memoir [Ta17] that crowns
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with definitive results and arguments this deep investigation of isoperimetric and
concentration inequalities for product measures.

To answer the questions by L. Birge and P. Massart on concentration inequal-
ities around the mean or median of supremum of empirical processes motivated
by applications to selection of models in statistics [B-M1], [B-M2], [B-B-M] (cf.
[Mas2]), M. Talagrand undertook in [Tal9] a further technical refinement of his
methods to reach the rather definitive Theorem 7.6. In [Le4], a simplified approach
to this result is presented with the tool of logarithmic Sobolev inequalities and
the Herbst argument (entropic method) exposed in Section 5.2. The argument of
[Le4] has been carefully examined in [Masl] in order to reach numerical constants
of statistical use. The optimal Theorem 7.5 is in particular taken from [Masl]
(see also [Mas2]). Recently, E. Rio [Ri2] further improves the entropic method,
by clever integration of the differential inequality, to binomial (in the spirit of Ho-
effding's inequalities [Hoe]) rather than Poissonian bounds of empirical processes
based on classes of indicator functions (see also [A-V] for large deviation results).
A parallel investigation of exponential integrability of sums of independent random
vectors relying on hypercontractive methods is undertaken in [Kw-S] (see [K-W]
for a presentation in the book form).
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In this chapter, we further illustrate with a few applications the concentration of
measure phenomenon. While these often lie at some mild level, the power of the
concentration ideas is their wide range of potential usefulness. The first section is
devoted to concentration for harmonic measures on the sphere proved by G. Schecht-
man and M. Schmuckenschlager [S-S2]. In Section 8.2, we present recent work of
C. McDiarmid [MD3] on concentration for independent permutations extending
prior contribution in [Ta17]. We next describe applications due to M. Talagrand
[Ta17], mainly without proofs, of the convex hull approximation of Section 4.2 to
various problems in discrete algorithmic mathematics, such as tail estimates on the
longest increasing subsequence of a sample of independent uniformly distributed
random variables on the unit interval, the traveling salesman problem, the mini-
mum spanning tree, first passage times in percolation and the assignment problem.
In Section 8.4, we present recent developments by M. Talagrand [Ta112] on tails of
the free energy function in the Sherrington-Kirkpatrick spin glass model. Finally we
briefly mention in the last part some concentration results for the spectral measure
of large random matrices.

8.1 Concentration of harmonic measures

Denote by on normalized Lebesgue measure on the unit sphere Sn in R'+1. For a
point x in the open unit ball Bn+1 of Rn+l, denote by o,n, the probability measure
on Sn given by

1
a

X
dan(y)

=
_

l y - xI I+1 da"(y)

where we recall that is the standard Euclidean norm. We denote below by x y
the scalar product of x, y E Ign+1 If f is integrable on Sn, f f clan is harmonic in
Bn+1 with radial limits equal an-almost everywhere to f.

The measures an are the so-called harmonic measures on the sphere Sn. They
have a neat probabilistic interpretation in terms of exit times of Brownian motion.
Indeed, if 1P., is the probability distribution of a standard Brownian motion (Wt)t>o
in Rn+1 starting from x E Bn+1, and if T is the first time t for which Wt hits Sn,
then the distribution of WT under P. is a. n.

The following theorem has been proved in [S-S2] and extends concentration of
the sphere to all harmonic measures uniformly over x.

151
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Theorem 8.1. For every IxI < 1,
2(r) < 4e-" ,

where c > 0 is numerical.

r > 0,

Proof. It is divided in several steps.

Lemma 8.2. For alllxl <1and0<A< 281)2,

E,, (e
XT) < e2A(1-Ix12)/(n+1).

Proof. The function u(y) = e-'Iv12, y E Rn+l, satisfies the equation 2 Au+cu = 0
where c = c(y) = A(n + 1) - 2A2Iyi2. It thus follows from Ito's formula ([Dur],
[R-Y], etc.) that

t \
Mt=exp1 -AlWti2+ Jc(W8)dsl, t>0,

is a martingale. In particular, for every integer k > 0,

eal'I2 = Ex(Mo) = I'x(MTAk)

Now, for 0<t<Tand 0<A< ,wehave

2A2IWtl2 < A(n+1)
2

so that
Ex (ea(n+l)T/21{T<k}) < e\(1-1x12)

Replacing A by 2A/(n + 1)
lyields

the conclusion.

For 0 < IxI < 1, let

A(x) = {x + (1 - Ixi2)1/2z; IzI =1, z 1 x

The next geometric lemma is left to the reader (see [S-S2] for the details).

Lemma 8.3. Let 0 < IxI < 1. For any y E Sn, the Euclidean distance d(y, A(x))
satisfies

TXTd(y,A(x)) < 2 K.Y - x) '
(1 - 1x12)1/2

if(y - x) x> 0 whereas when (y - x) - x <0,

I(y-x)' III
d(y, A(x)) < 2 (1- (y. 02)1/2x

One shows similarly that

d(y, A(x)) < 2
1

(y - x) IxI I1/2. (8.2)
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For 0<1x1<1and -1<A<+1,set Sa-1(x)=A(AI

Proposition 8.4. Let 0 < I x1 < 1 and let F : 8"` -> IR be a 1-Lipschitz function
which is constant on each 8nx-1(x), -1 < A < +1, n > 2. Then for some constant
aF E IR, -

of ({IF - aFI > r}) < 2e-("+l)r2/32

for every r > 0.

Proof. Let aF be the constant value of F on S 1(x) = A(x). We may and do
1XI

assume that aF = 0. Note that by (8.2),

{IF1 > r} C {y; d(y, A(x)) > r} c {y;
1(y

_ x)
1x1

I > 2}.

To evaluate the measure of the last set, we again apply Ito's formula. For A E Ilt,
consider now u(y) = ea(v-x)'TT, y E lR +1 Then Au = A2u and thus

\
Mt = exp (.\(Wt - x) 1x1 - Z t l , t > 0,

is a bounded martingale under P. In particular E(MT) = Mo = 1 and thus

E (ea(WT-x) 1sT )
l

= ]Ex(e,\(K,T-x).-a2Te\2T

< (E(e2a(WT-x) - 22 2 T))1/2 (E.(e2a2T))1/2

< e2\2(1-Ix12)/(n+l)

for A < n4 from Lemma 8.2.
Since the law of WT under Px is ox, when r > 2(1 -x12)1/2, we may choose

A = in Chebyshev's exponential inequality to get from the preceding that

of ({ IFI > r}) < 2 e-("+1)r2/s

When r < 2(1 - 1x12)l/2 we use the bounds of Lemma 8.3 to get that

o ({IF1 > r}) < ox ({y; (y - X).
x1 > 2 (1 -

Ix12)1/21

)
<2expAr(1-1x12)1/2+2.2(1-1x12)1

2 n+1

for all 0 < A <_ -4 . Choosing 8A(1 - 1x12)1/2 = (n + 1)r, we get

/32("+1)r
2

a ({1F1 > r}) < 2e-

The proof of the proposition is complete.
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We may now complete the proof of Theorem 8.1. Assume that 0 < IxI < 1. Let
F be 1-Lipschitz on Sn, n > 3. For -1 < A < +1, denote by a(A) the expectation
of F on Sn-1(x) with respect to o.n conditioned on P\-'(x) (that can be viewed as
normalized Haar measure ore-1 on Sn fl xl). Now,

+ (1 - A2)1/2z)FA(z) = F (A f

is Lipschitz with Lipschitz constant (1 - ,2)1/2 < 1 on Sn fl x-1-. Concentration on
spheres (Theorem 2.3) thus yields

ox ({y; IF(y) - a(y, n) I _> r}) < 2 e (n-2)r2/8.

Now, a(y j) is 1-Lipschitz on Sn and by Proposition 8.4, for some a E R and all
r>0,

ox ({y I a(y x) - al > r}) < 2e-c(n+1)r2/32

It easily follows from the triangle inequality that

ox({IF - al >r}) <4e-`(n_2)ra, r>0,

for some numerical c > 0. By Proposition 1.8, we may then come to the result of
Theorem 8.1. It is not difficult to check that the theorem also holds for n = 1, 2.
The proof is complete.

Harmonic measures are related to image measures of uniform measure on Sn
under the so-called Mobius transformations. A modification of the proof of Theorem
8.1 then gives rise to an improvement of the deviation inequalities for Lipschitz
functions by replacing the Lipschitz coefficient of a function F by the infimum over
the Lipschitz constants of F composed with all Mobius transformations.

If x is a point in the Euclidean (open) unit ball 5n+1 of Rn+1, denote by
Px the orthogonal projection onto the subspace generated by x, and by Qx the
orthogonal projection onto the subspace orthogonal to x. Define then the Mobius
transformation ¢x by

x - P(y) - (1 - IxI2)112QX(y)

(y)=

It is known (cf. [Ru]) that ¢x is an involutive diffeomorphism of 6n+1 onto itself,
that 0., restricted to Sn is an involutive diffeomorphism of Sn onto itself and that
for every y in the closure of 13n+1,

1 -
10X(Y)12

= (1 -
(x12)(1 - Iy12)

(1 - (y x))2

Proposition 8.4 may be adapted (a more direct approach is also suggested in
[S-S2]), to yield the same conclusion for the image measures of Sn under Ox. One
may then derive, as for Theorem 8.1, the following sharpening of the concentration
phenomenon on Sn.
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Theorem 8.5. Let F be a real continuous function on Sn, n > 2, such that
inf II F o 0x hipLip < 1 where the infimum is running over all x's in the unit ball of
Rn+1 Then, for every r > 0,

an({IF - fFdoI >r}) <4e-cnr2

where c > 0 is numerical.

8.2 Concentration for independent permutations

This section is taken from a recent work by C. McDiarmid [MD3], which improves
upon some early result in [Ta17]. It aims to present a uniform version of the con-
centration property on the symmetric group IIn of Corollary 4.3 in the same way
Theorem 4.6 extends concentration for the Hamming metric.

We start with some notation. Recall the symmetric group ][In over {1,.. . , n}.
Let B1 U B2 U . . U BB be a partition of {1, ... , n} and set G = ft=1 II(Bk) where
II(Bk) is the symmetric group over Bk. We denote by P the product measure on
G of uniform probability measures on each II(Bk). Thus P is uniform over G. We
may consider the convex functional DA (a) of Section 4.2 on Hn with thus or E 1n,
and A non-empty subset of Hn. In particular, as we have seen there,

')A' (a) _ yEinf I yI

where for a permutation a = (a(1), ... , o ,(n)) in IIn and A a non-empty subset of
IIn, VA(a) denotes the convex hull of the vectors (1{a(i)07r(i)})1<i<n' i E A, in

[0,1]/n. We also recall that IyI denotes here the Euclidean norm (Fn y1)1/2 of
y= (yl,...,yn) E Rn.

Theorem 8.6. Let G be a product group of permutations on the set {1, ... , n}
and let P be a uniform measure on G. Then, for every non-empty subset A C G,

Je4)2/16dP <
1

P(A)'

Before turning to the proof of the theorem, we present some useful lemmas.
The first lemma shows that VA(a) is stable under composition and inverse. If

T E ][In, VA(Q)T denotes the collection of all (vr(i))1<i<n, v E VA(a).

Lemma 8.7. For A C IIn and a, 7r E IIn,

VA,(Q1r) = VA(a)lr and VA-i(o,-1) = VA(a)o-1.

Proof. Simply note that ifs = (si)1<i<n is defined by

si = 1{a(i)#T(i)l' i = 1, ... , n,

for some r E A, then sir = (s,r(i))1<i<n is defined by

, n,87r(i) = 1{0,1r(i)#T7r(i)}, i = 1,.



156 8. SELECTED APPLICATIONS

where T7r E A7r. The first identity follows. The second is proved similarly.

Besides DA (o), define f o r i E {1, ... , n},

DA' (a, i) _ &Ei
(a)

(IyI2 + y2)112.

Observe that DA (o, i) = DA (a) if 7r(i) = o(i) for each 7r E A, and in particular if
7r(i) = i for each 7r E A U {o}. As a consequence, the preceding lemma immediately
yields the following.

Lemma 8.8. For A C lln, o', 7/r E lln, and i E { 1, ... , n},

DA(o) = DAr (o7r), DA(o,i) = DA7,(o'7r,7r-1(i))

and
DA(o, i) = DA-= (0-1, o(i))

The next lemma is crucial in the induction proof of Theorem 8.6. It is similar
to the argument used for Theorem 4.6.

Lemma8.9. Let AClln,oEIIn,i#jin {l,...,n}and let 0<9<1. Set
Ai = {7r E A; 7r(i) = o(i)} and suppose that Ai and A,, are non-empty. Then

DA (o, i)2 < 4(1- 9)2 + 9DA, (o, j)2 + (1 - e)DATy
(0)2

where Tyj is the permutation that exchanges i and j.

Proof. Given i # j in {1, . . . , n}, set further

DA(a, i, j) = bEi o)
(Iy12 - y2 - y )1,2.

Let ( E VA (or) satisfy ($ = 0 and DA, (o, j)2 = E, and let ( E VA(o) satisfy
DA(o, i, j) 2 = I(I2 - (2 - (J2. Since VA(a) is convex, the point v = 9(+ (1 - 0) ( is
in VA(a). Thus

DA (o, i)2 < Iv12 + v2.

Furthermore, by the convexity property of the square function, for every 1 < k < n,

Also,

and

Hence,

2v2 = 2(1- 9)2(2 < 2(1- 9)2

vj2 < 2920 +2(l - 9)2(j2 < 29(j2 + 2(1 - 9)2.

DA(o, i)2 < 4(1- 9)2 + 29(j2 + E (1- 9)(k)
k i,7

= 4(1- 9)2 + 9(I(I2 + (i) + (1 0) (I(I2 - (2 - (j2)

= 4(1 - 9) 2 + 9DA, (o, j)2 + (1- 9)DA(o, i, j)2.
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Finally note that
DA(o', i, j) < DA.., (O) < DA,r (7)

from which the conclusion follows. The lemma is established. 0
We turn to the proof of Theorem 8.6. We use induction on the order of G to

prove a slightly stronger result, namely that for each i in 11, ... , n},

fet(M)2/16dP < 1P(A)'

The inequality is obvious if G is reduced to the identity permutation since then
A = G. It suffices also to assume that i is such that ir(i) 54 i for some ir E G since
for each j E 11,. . . , n} for which this is not the case,

PAC (a, j) = Da(a) DA (o, i)

for every a E G. We may thus assume, to establish (8.3), that 7r(i) # i for some
irEGandthat i=1.

Assume now that G is non-trivial and suppose (8.3) holds for any product
group which is a proper subgroup of G. Then let H = {O E G; o(1) = 1} be the
stabilizer of the element 1. We may assume without loss of generality that the
orbit {O(1); O E G} is {1, ... , m} for some m > 2. Then H is a product group of
permutations of IIn where the block {1, ... , m} has been split into the two blocks
{1} and {2,. .. , m}. Let H1 = H and for i = 1, ... , m, let Hi denote the coset
HTli = {OTli; O E H}. Thus G is partitioned into the m cosets Hi where Hi
consists of the permutations a with a(i) = 1 and each Hi has size m-1Card(G).

To ease the notation, we set, for a non-empty subset A C IIn,

OA(O) = 6 (DA(O))2 and OA(O, i) = 16 (VC (a, i))2.

Now let A C G, and for i = I,-, m, let Ai = A n Hi. Choose j such that
P(AS)/P(H) is maximum, and keep j fixed. For every i E 11,... , m}, denote by
Pi a uniform probability measure on Hi. The main part of the proof is to establish
that, for every i,

< P(H) 2 P(`4i) (8.4)Je&4(.MdP.
P(AS) P(AS)

Let us agree that T11 is the identity element. By Lemma 8.8,

f eOA,(,a)dpi = J e" (01,n1sW)dp. ((7)

so that
Je44MdPi < P(H) (8.5)

P(Ai)
by the induction hypothesis since AiTli C H and P(AiTli) = P(A2). By Lemma
8.8 again,

I eOA.1 ri,dpi = J (Or1,)dpi((7)
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and hence

Je4'idPz < P(H)
P(A3)

(8.6)

by the induction hypothesis since A.,Ta,T1i C H and P(A.,Ta,T1a) = P(AS).
Suppose first that i # j. By Lemma 8.9, for every 0 < 0 < 1, as in the proof

of Theorem 4.6,

f e0A(",a))dPa(v) < e(i-B)2/4 '(o,3)+(1-e)cA,1 (a)dPa(or)

< e(1_9)2 /4 (fe")dPi(a)

e(1-9)2 /4 / P(H) \ e / P(H) ) 1-8

P(A$) lP(A3)

l1-e
eOA3 dPi

/

where we used Holder's inequality and (8.5), (8.6). Minimizing over 9 using (4.7)
yields the claim (8.4) in this case. The case i = j immediately follows from (8.5).

We may now conclude the proof of the theorem on the basis of (8.4). Write

f eOA(c,o-1(1))dp(a) = 1 V eOA(o,i)dpi(Q).M
i=1

Hence, by (8.4),

fe"1(1fldP(o.) <
m

.

P(AS) C2 P(A) /a=1

= P(H) C2 - P(A)P(H)
P(Aj) P(AS) )

1

P(A)

since u(2 - u) < 1 for any real number u. Replace now A by A. By Lemma
8.8, DA(a,1) and VA_1(a-1, o (1)) have the same distribution under P, from which
the desired claim follows since P(A-1) = P(A). The proof of Theorem 8.6 is
complete.

Theorem 8.6 was motivated by randomized methods for graph coloring, and
in particular by bounds on the chromatic number of a graph in terms of the clique
number and the maximum degree (cf. [MD3], [M-R]). To this task, it may be
coupled with the product space statement (Theorem 4.6) to yield concentration
inequalities for certain classes of functionals of interest in graph theory. Let X =
X1 x ... x X7, be a product space equipped with a product probability measure
Q = µ1® ®µn. Recall the product group G = k=1 II(Bk) where B1 U . U BB
is a partition of {1, . . . , n} and ll(Bk) is the symmetric group over Bk. As before,
let P be the product measure on G of uniform probability measures on each II(Bk).
We may then consider a function F = F(x, o) on the product space X x G. Assume
first that F is 1-Lipschitz with respect to the Hamming metric d on X and G in
the sense that for all (x, o), (y, ir) in (X, G),

F(x, o) - F(y, 7r) I < 2d(x, y) + d(o, 7r). (8.7)
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Assume moreover that F is t-determined for some t > 0, in the sense that when-
ever F(x, v) = s, then any (y, 7r) E X x G that agrees with (x, o) on at least is
coordinates is such that F(y, ir) > s. The following consequence of both Theorems
8.6 and 4.6 (cf. [MD3]) is typically used with t small, say 1 or 2, to show that such
an F is strongly concentrated around a median or mean.

Theorem 8.10. Let F on X x G be t-determined and 1-Lipschitz in the sense of
(8.7), and let m be a median of F for Q ® P. Then, for each r > 0,

Q® P({F > m + r}) < 2 e-r2/16t(m+r)

and
Q® P({F < m - r}) < 2 e-"'2'161.

In particular,

for0<r<m.
Q ®P({jF - mj >r}) <4e -r2 /32t

8.3 Subsequences, percolation, assignment

This section is devoted to applications of Theorem 4.6 to various questions in dis-
crete and combinatorial probability theory. These applications are due to M. Ta-
lagrand and are taken, mostly without proofs, from the memoir [Tall] (see also
[MD2], [Ste]). While the results of this section all produce strong concentration
around some mean value, they do not control the respective size of the functionals
under study.

We first examine subsequences. Consider points x1, ... , xn in [0, 1]. Denote by
Ln(x1, ... , x,) the length of the longest increasing subsequence of xl, . . . , xn, that
is, the largest integer p such that we can find it < . . . < i1, for which xi, < < xi9.
It is easy to see that when U1,. .. , Un are independent uniformly distributed over
[0, 1], the random variable L,,(Ui, ... , U,) is distributed like the length of the
longest increasing subsequence of a random permutation of {1, ... , n}. Concen-
tration properties for Ln(U1, ... , Un) may be obtained as a simple consequence of
the convex hull approximation studied in Section 4.2.

For x = (Xi, ... , xn) E [0,1]n, denote more simply Ln(x) = Ln(xl, ... , xn).
Recall the convex hull approximation functional DA from Section 4.2.

Lemma 8.11. For all s > 0 and x E [0,1]n,

s > Ln(x) - VA' (X) Ln(x)

where A = {Ln < s}. In particular,

u
DA(x) >

s -T u

whenever Ln(x) > s + u.

Proof. By definition, we can find a subset I of {1, ... , n} of cardinality Ln(x) such
that if i, j E I, i < j, then xi < xj. It follows from the definition of DA that there
exists y E A such that

Card (J) < DA Ln(x)
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where J = {i E I; y1 # x,}. Thus (X'),EI\J is an increasing subsequence of y, and
since y E A, we have Card (I \ J) < s which is the first claim of the lemma. The
second claim immediately follows from the fact that the function u H (u - s)/V/u-
increases for u > s. Lemma 8.11 is established.

The following is the announced concentration property.

Theorem 8.12. Denote by mn a median of Ln = L,,,(U1, ... , U,,). For every r > 0,

IP({Ln > m,, + r}) < 2 e-r2/4("n"+r)

and

In particular,

for0<r<mn.

IP({Ln < mn - r}) <

1P({IL,, - mnl > r}) < 4e-r2/8m

Proof. The first inequality is an immediate consequence of Theorem 4.6 combined
with the preceding lemma. To establish the second inequality, we use Lemma 8.11
with s = Mn - r, u = r, to see that

VA, (X) >
r

yMn

whenever Ln(x) > Mn (recall A = {Ln < s} = {Ln < Mn - r}). Hence

On the other hand, by Theorem 4.6 again,

P(rDc`4- > r
})

e-r2/4m,,.
``lt n J J P(A)

The required bound on P(A) = IP({Ln < Mn - r}) follows. The theorem is
proved.

We now present without proofs some further applications of the convex hull ap-
proximation referring to [Tal7] for details. We deal first with the travelling salesman
problem and the minimum spanning tree.

Given a finite subset F in the unit square [0,1]2 in 92, denote first by L(F)
the length of the shortest tour through F. We study the random variable Ln =
L({UI,... , Un}) where Ul,... , Un are independently uniformly distributed over
[0,1]2.

Theorem 8.13. There is a numerical constant K > 0 such that for every r > 0,

1P({ILn - mnJ > r}) < Ke r2/K

where Mn is a median of L.
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The proof of Theorem 8.13 is only based on the following regularity property
of L(F). Denote by Ck, k > 1, the family of the 22k dyadic squares with vertices
(t12-k, t22-k), 0 < 4, Q2 < 2k. Consider F C [0,1]2, C E Ck, G C C, and assume
that there is a point of F within distance 2-k+2 of C. Then

L(F) < L(F U G) < L(F) + K 2_k Card(G) (8.8)

for some numerical constant K > 0.
The random miminum spanning tree satisfies a similar concentration result. A

spanning tree of a finite subset F C JR2 is a connected set that is a union of segments
each of which joins two points of F. Its length is the sum of the lengths of these
segments. We denote by L(F) the length of the shortest (minimum) spanning tree
of F. With respect to the travelling salesman functional, it may happen here that
L(F) is not monotone. We study again the random variable L = L(1171,...,
where X1, . . . , X,, are independently uniformly distributed over [0, 1]2.

Theorem 8.14. There is a numerical constant K > 0 such that for every r > 0,

P({IL,, - m,,I > r}) < Ke-r'/K

where m,, is a median of L,,.

The regularity property of L used in this theorem is now the following. Con-
sider F C [0, 1]2 finite and C E Ck, k > 1. Assume that each C' E Ck_1 that is
within distance 2-k+5 of C meets F. Then, for any G C C,

L(F U G) - L(F) I < K 2-kV/Card(G) (8.9)

for some numerical constant K > 0.

Let us deal next with first passage time in percolation theory. Let (V, E)
be a graph with vertices V and edges E. On some probability space (Il, A, 1F'), let
(Ye)eEP be a family of non-negative independent and identically distributed random
variables. Ye represents the passage time through the edge e. Let T be a family of
(finite) subsets of E, and, for T E T, set YT = >eET Y. If T is made of contiguous
edges, YT represents the passage time through the path T. Set

ZT = inf YT = inf Ye
TET TET

eET

and D = SUPTET Card(T), and let m be a median of ZT.

Theorem 8.15. Assume that 0 < Ye < 1 almost surely. Then, for every r > 0,

1F'({IZT - ml > r}) < 4e-''/4D.

In particular,

I]E(ZT) - m1 < 4 i-ED and Var(ZT) < 16D.

Proof. Changing Ye into -Ye, we may apply Corollary 4.8. Assume that V is finite.
Define, for x = (xe)eEE,

F(x) = Sup E Xe = Sup texe
TET eET tET eEV
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where T is the collection of all t = (te)eEV defined by

te = 1{eET}, e E V,

for T E T. Since suptET (ueEV to)1/2 < v/, the conclusion follows from Corollary
4.8.

When V is Z2 and 6 the edges connecting two adjacent points, and when
T = Tn is the set of all self-avoiding paths connecting the origin to the point (0, n),
H. Kesten [Ke] showed that, when 0 < X < 1 almost surely and P({Ye = 0}) < 2
(percolation), one may reduce, in ZT,,, to paths with length less than some multiple
of n. Together with this result, Theorem 8.15 indicates that for every r > 0,

/ \
P(IZT -mnl > r) < Kexp r

l I

\\\
Kn/

where Mn is a median of Tn. This result strengthens the previous estimate by
H. Kesten [Ke] which was of the order of r/Cv/n- in the exponent and the proof of
which was based on martingale inequalities. The more delicate unbounded case is
investigated in [Ta17] by means of penalty theorems.

We close this section with the assignment problem. One basic problem in this
area is to study the infimum

n
An = 1n UU,a(=)

i=1

where the infimum is over all permutations a of { 1, ... , n} and the UUj's are n2
independent random variables with the uniform distribution on [0, 1]. It is a re-
markable fact that E(An) is bounded as n - oo, and actually E(An) < 2 (see [Ste]
and the references therein).

M. Talagrand proved in [Tall], again as an application of the convex hull ap-
proach of Section 4.2, that the standard deviation of An is of the order of O(n-1/2)
up to logarithmic factors.

Theorem 8.16. Denote by Mn a median of An. There is a numerical constant
K > 0 such that for n > 3 and r < og n,

-mnl > Kr(logn)z 11 < 2e-r2
\ l n og og n f l

while for r > og n,

_r2Kr3log n
< 2 e]P

.({lAn -mnl >-
(logr)2/1)

We refer to [Tall] for the proofs, and to [Ste], [MD2] for further illustrations
in geometric and combinatorial probabilities.
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8.4 The spin glass free energy

This application concerns the limiting behavior of the spin glass free energy function
at high temperature.

Fore E {-1,+1}N, denote by (Et)ZEN the coordinate functions that define, un-
der the uniform product measure, independent symmetric random variables taking
values ±1. Each ej represents the spin of a particle i. Consider then interactions
g2j, i < j, between spins. For some parameter 3 > 0 (that plays the role of the
inverse of the temperature), the family of Gibbs measures Zr,le-OHN, N > 2, on
{-1,+1}N, with Hamiltonian

HN = HN (x, e) = -
1

1V 1<i<j<N

describe the behavior of the system with size N (at temperature Q ). The normal-
ization factor ZN, N > 2, the so-called partition function, is defined by

ZN = 1` e-OHN (f)

eE{-1,+J)N

We will actually work with ZN = 2-NZN and use to describe ZN the probabilistic
representation

ZN = ZN = El
\ \
expl "r F E$Ejgij

V l 1<i<j<N

where E, is integration with respect to the a s.
In the model we study, the interactions gij are random and the gij's will be

assumed independent with common standard Gaussian distribution.
Set FN = log ZN, which defines the spin glass free energy (up to normalization).

Theorem 8.17. For every 0 <,3 < 1,

/32
li FN

almost surely.

m =
N-*oo N 4

The proof is based on concentration of Gaussian distribution together with the
so-called second moment method, or Paley-Zygmund inequality.

Proof. We may think of FN as function

FN(X) =log]E,(exP
1<i

NEZEjx2jx = (x2j)1<i<j<N,

on R', n = N(N - 1)/2, equipped with the canonical Gaussian measure -y = -,n.
We write P and E for ^y and f dry. It is easily seen that JIFNIIL,p <
Therefore, by (2.35) for example, for every r > 0,

(N - 1)/2.

P({ I FN - E(FN) I > r}) < 2 (8.10)
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Hence, by the Borel-Cantelli lemma, for any /3 > 0,

N'-.00 I N
FN _ E

(N ) 0

almost surely. It therefore suffices to show that

lim
E(FN) _

'82

N-oo N 4

for 0 <,3 < 1. By Jensen's inequality, for every N > 2,

E(FN) _ ]E(log ZN) < log]E(ZN) =
)32(N

4- 1) . (8.11)

We have thus to prove that E(FN) is actually of this order. To this task we use
again the concentration result (8.10) together with the so-called second moment
method.

Lemma 8.18. For every 0 <)3 < 1 and every N,

E(ZN) S K($)e 2(N-1)/2 = K(/3) (E(ZN))2,

with

K(a) =
1

1-)32

Proof. By Fubini's theorem, denoting by (e$)zEN a sequence of independent symmet-
ric Bernoulli random variables, independent of both sequences (ei)iEN and

]E(ZN2) = ]EIEe.IEE, (exp (a E(Eiej +4Ej)gij
v W i<j

(eiEj + EiEj )2/_ ]EE]Ee, ( exp Fi<j

Further,
E(Siej +e e )2 = N(N -1) +2EeiEje,ej
i<j i<j()2

i
=N(N-2)+

Now EN1 Eyed has the same distribution as EN 1 ei. It follows therefore from the
preceding that

2

IE(Z)
<

e2(1)/2 ]E(

\ exp

( )2))
2N

i-1

If g is a standard normal variable,

exp 12N ( ei) 2) ]E( exp (= (i ei) g)) ,
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so that, by Fubini's theorem again,

]Ef C exp C 21V 2/ /
]E C coshN ( = 9)

)

1

1-#2

where we used that coshu _< e_u2/2. Together with (8.11), the proof of the lemma
is complete.

We turn back to the proof of the theorem. We make use of the classical Paley-
Zygmund inequality

2
1P({Zn, > 2>E(ZN)})

(E(ZN))2

)

For a proof, simply note that, for every 0 < 0 < 1,

E(ZN) :5 ]E(ZN 1 {ZN>OE(ZN)}) + 9E(ZN),

so that, by the Cauchy-Schwarz inequality,

(1 - 0)](ZN) (E(ZN)F({ZN >
0]E(ZN)}))1/2.

Choose then 0 = 2.
It thus follows from (8.12) and Lemma 8.18 that

(8.12)

]P({ZN >
2

E(ZN)}) >
1

4K(Q)

Assume first that r = log(2]E(ZN)) -]E(FN) > 0. Then, by (8.10) applied to this r,

1 < ]P({logZN > log(!
2

]E(ZN))})
4K(a) -

< ]P({FN > ]E(FN) + r})

<2e -r2/,62 (N- 1)

so that
r < Q N - 1 log 8K(,3).

Hence, by (8.11) and the preceding, in any case,

,132(N -1)
> E(FN)

4

> log 2E(ZN)) -a N- 1 log 8K(3)

>
#2(N4-1) - log2 - ,QN - 1 log8K(8).
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Hence E(FN)/N _-+,32/4 as N -* oo and Theorem 8.17 follows. 0
It should be noted that the first part of the proof of Theorem 8.17 indicates

that for any (3 > 0,
z

0 < lim sup FN < Q

N--. N 4

almost surely. We have seen in Theorem 8.17 that the upper bound 02 is actually
accurate for 0 < ,6 < 1. It may be shown that this is still the case for ,3 = 1, but
the low temperature regime ,3 > 1 is of a much higher difficulty. Only few rigorous
results are known, and challenging replicas conjectures of the physicists have still
to be proved [Ta112], [Tall3].

Even in the high temperature regime 0 < ,3 < 1 for which Theorem 8.17 is
available, a number of more precise bounds may be analyzed. For example, the
proof of Theorem 8.17 displays the inequality

1) ( > r(3 N - 1
(8.13)\

+ N - 1 log 8K(,l3) + log 21) <2e -''2

for r > 0. The following refines upon (8.13). /
Theorem 8.19. For each ,Q < 1, there is a constant K'(/3) > 0 such that for each
N and each r > 0,

P({F,N < $2(N- 1) - r}) e-,2 IK'(0)

4

Note that by Chebyschev's inequality and Lemma 8.18, for every s > 0,

P({ZN > sE(ZN)}) <
KW)
82

Hence, since logE(ZN) ='62(N - 1)/4, for every r > 0,

zP({F,N > Q (4- 1)
+ r}) < K(3) a-2r. (8.14)

Proof of Theorem 8.19. It is an important observation to note that FN = log ZN
is convex (as a function on R", n = N(N - 1)/2). The idea is then to combine
Proposition 1.6 with the following analogue of the second moment method. Indeed,
we have, for every N,

E(IVZNI2) < Kl(,6)E(ZN)2 (8.15)

for some constant K1(/3) > 0 only depending on ,13. Indeed, using the same notation
as in the proof of Lemma 8.18,

IVZN12
N EEEE, ( (EZEjEEj') exp (-L, =E(e e +

i<j

<
2

EEEE' ((eie)2 exp (-L (ee + e e )9ij / /2N v/N- <j
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Now u < eu for every u E R. Hence, arguing exactly as in the proof of Lemma 8.18,

( (
N l2

E(IVZNI2) < ea2(N-1)/2IE_ (exp
2N

8)

\> E1) //a=1

< 1 e02(N_1)12 1

8 ,(32(1+S)

provided that /32(1+8) < 1. It then suffices to appropriately choose 8 > 0 depending
on /3 so that (8.15) holds.

For 0 < 0 < 1 and L > 0,

IP({ZN >O E(ZN), IVZNI < LZN})
> P({ZN > 9IE(ZN), IVZNI < LOIE(ZN)})

> P({ZN > 9IE(ZN)}) -IF({IVZNI > LO E(ZN)})

> (1 - 9)2 K1(/3)
K($) L202

where we have used the Paley-Zygmund inequality (8.12) and Lemma 8.18, as well
as Chebyshev's inequality and (8.15) in the last step. Choose now 0 = a and
L2 = 32K(,C3)K1(1(3) so that

P({ZN > .1 E(ZN), IVZNI < 32K(,3)K1(/3)ZN}) > 1- 8K(/3)

In terms of FN = log ZN,

IP({FN > log (2 E(ZN)), IVFNI < 32K(,8)K1(8)})
1

8K(,8)

We then make use of the deviation inequality of Proposition 1.6 for the convex
function FN with respect to the Gaussian measure y on Rn to get that for every
r>0,

P1 {FN <
(N

4-1) -log2- 32K(,3)Kl (,3) (r + 21og8K(/3))}) <e2/2.

The conclusion of Theorem 8.19 immediately follows. 0

8.5 Concentration of random matrices

Let Mn = be an n x n real symmetric matrix. We are interested
here in the case the entries Mn of Mn are real-valued random variables on some
probability space (S2, A, P), and we study the concentration properties of functionals
of the eigenvalues Al,-- . , An of Mn. The motivation for such investigation comes
from Wigner's theorem (cf. e.g. [Me], [Hi-P1]) asserting that whenever the random
variables Minj, 1 < i < j < n, are independent with finite moments and E(Minj) = 0,
E((Minj)2) = n, 1 < i < j < n, then the empirical distribution n En

1 Say converges
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almost surely towards the semicircular law with density (21r)-1 4 - x2 on [-2, +2].
The concentration properties presented here are milder results, which, however,
hold for any fixed n. Moreover, with respect to the exponential large deviation
bounds (with rate n2) on Wigner's limit (cf. [BA-G], [Hi-P2]), the results here
concern rather general families of underlying distributions.

The first observation allows simple use of the contraction property. Denote by
Mn the real n x n matrices, and by Mn its symmetric part. Each element M of
Mn has a unique list of eigenvalues A = A(M) = (A1 i ... , An) listed in increasing
order according to multiplicity in the simplex

Sn={A1 <...<An;AiER,i=1,...,n}.

Equip Mn with the Hilbert-Schmidt norm
n

IIMI12 = Tr(M tM) _ >2 M
i,j=1

and Sn with the Euclidean norm JAI _ (E 1 A )112.
The following statement is

a classical result (cf. e.g. [H-J], [Si]).

Proposition 8.20. The map cp :.M8 - Sn which associates to each real symmet-
ric matrix its ordered list of eigenvalues is 1-Lipschitz.

The following is then a direct consequence of the contraction principle (Propo-
sition 1.2) and the concentration inequalities for Lipschitz functions. We use a
probabilistic formulation. If F is a function on Sn, set F = F o (p on Mn . Atypical
example is given by

n

F(M) = Tr f (M) _ f (A$)
:=1

(8.16)

for some function f : R -p R.

Corollary 8.21. Let M be a symmetric random matrix, and denote by P the
distribution of its entries MEN, 1 < i < j < n, on Mn M. Denote as usual by ap the
concentration function of P. For any 1-Lipschitz function F : Sn -+ R and any
r > 0,

]P({I F(M) - ml > r}):5 2c p(r)

where m is a median of F(M).

Under appropriate integrability properties, the same inequality holds with the
mean replaced by the median by the results of Section 1.3.

Assume for example, as in Wigner's theorem, that the Mgt's are independent
centered real Gaussian variables with variance n. We then get from Corollary 8.21
that if F is 1-Lipschitz, for any r > 0,

1P({ l F(Mn) - ml > r}) < 2 e-nr2/2

where m is either the mean or a median of F(M). In particular, if f : 1[t --+ R is
1-Lipschitz,

1P({
l

n
Tr f (M) - mI > r}) <2e 2 r2/2, r > 0.
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Another example of a Lipschitz function is given by

F(M) = max X, = n
1<i<n

(8.17)

for which we get that

PQ I max Ai - ml > r}) < 2 e-nr2 /2, r >O,0,
1<i<n

where m is either the mean or the median of maxl<z<n Ai. As for the longest
increasing subsequence however, much more precise fluctuation results are available
in this case [So].

Similarly, we may consider the case where the entries Mij's of M E Mn are
independent bounded random variables for which the results of Chapter 4 provide a
number of concentration results for convex functionals. To this task, the following
classical result (cf. [Davi], [H-J) is of use. A function F : Rn -> R is said to be
symmetric if it is invariant under permutations.

Proposition 8.22. Let F : II8n - R be convex and symmetric. Then F = F o cp
on Mn is a (real orthogonally invariant) convex matrix function.

The next corollary, consequence of Corollary 4.10, is then the analogue of
Corollary 8.21. Note that if f : R --+ R is convex, then Proposition 8.22 applies to
Tr f (M) as defined in (8.16) as well as to max,<i<n \i of (8.17).

Corollary 8.23. Let M be a symmetric random matrix, and assume the entries
Mij, 1 < i < j < n, are independent random variables bounded (by 1). Then, for
any convex symmetric 1-Lipschitz function F : Sn - R, and any r > 0,

1P({IF(M) - ml > r}) < 4e-r2 /4

where m is a median of F(M).

Complex entries are treated similarly. The structure of the arguments is suffi-
ciently general to cover in the same way symmetric inhomogeneous matrices with
entries ail M a where the ai.7 are fixed non-random coefficients. This provides con-
centration for a number of families of random matrices including diluted, band or
Wishart matrices. We refer to [G-Zei] for details.

An interesting by-product of Proposition 8.22 is that whenever U : llln --> R is
symmetric and strictly convex in the sense that for some c > 0, Hess U(x) > cId
uniformly in x E Rn, then the probability measure .i on Mn defined by

dp(M) _ e-v(M)dM (8.18)

(where dM is Lebesgue measure on Mn) is also strictly convex in the same sense.
In particular, it satisfies the Gaussian like isoperimetric inequality of Theorem 2.7
and thus has normal concentration independently of the dimension n. By Theo-
rem 5.2, the measure .i also satisfies a logarithmic Sobolev inequality. While in
the Gaussian case U(x) = Jx12, the preceding distribution µ on Mn may be rep-
resented by a Wigner matrix with independent Gaussian entries, a similar simple
description of the ensemble in terms of the matrix entries should not be expected
in the general case, the entries being possibly dependent as random variables. For
p-convex potentials, p > 2, see [B12].



170 8. SELECTED APPLICATIONS

Notes and Remarks

The topics selected in this chapter only reflect a few of the applications of the
concentration of measure phenomenon. Geometric and topological applications
were already described in Chapter 3, together with the historical application to
Euclidean sections of convex bodies. Applications to sums of independent random
vectors and supremum of empirical processes are the subject of Chapter 7.

Concentration for harmonic measures as described in the first section is taken
from the work [S-S2] by G. Schechtman and M. Schmuckenschlager, to which the
reader is referred for further details and alternative, more analytic, proofs, in partic-
ular of Theorem 8.5. Recently, F. Barthe [Bar2] was able to show that the harmonic
measures of satisfy a Poincare inequality with a uniform constant of the order of
1 thus recovering exponential concentration from Section 3.1. The corresponding
conclusion for the logarithmic Sobolev inequality is so far open.

Concentration for independent permutations started with the note [Maul] by
B. Maurey based on the martingale method. The question of the convex envelope
is addressed in [Ta17]. The extension and result presented in Section 8.2 are taken
from the recent contribution [MD3] by C. McDiarmid motivated by randomized
methods for graph coloring (cf. [M-R]).

The memoir [Ta17] by M. Talagrand contains a number of applications to dis-
crete and geometric probabilities from which the few topics presented in Section 8.3
are taken. Complete expositions in the framework of probability theory for algo-
rithmic discrete mathematics and combinatorial optimization are the notes [MD2]
by C. McDiarmid and [Ste] by M. Steele. For sharp constants in Theorem 8.12
via the entropic method, see [Bo-L-M]. That concentration methods do not provide
tight results for the longest increasing subsequence problem is observed in [Deu-Z].
Far reaching fluctuation results on the distribution of the longest increasing subse-
quence have been obtained by combinatorial and analytic methods in [B-D-J].

The application of concentration for Gaussian measures to the spin glass free
energy is due to M. Talagrand [Ta17], [Tall2], [Ta113], from which the results of
Section 8.4 are taken. Theorem 8.17 goes back to [A-L-R] with a proof based on
moment expansions (see also [C-N] for a stochastic calculus proof).

A general introduction to random matrices is the reference [Me]. Concentration
of the spectral measure of random matrices was investigated recently by A. Guion-
net and 0. Zeitouni in [G-Zei] for the trace functional, and by G. Blower [B12] for
measures with p-convex potentials. Concentration in free probability is alluded to
in [V-D-N].
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