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Preface 

The development of Mathematics in the past few decades has witnessed 
an unprecedented rise in the usage of the notion of heat kernel in the diverse 
and seemingly remote sections of Mathematics. In the paper [217], titled 
"The ubiquitous heat kernel", Jay Jorgenson and Serge Lang called the heat 
kernel "... a universal gadget which is a dominant factor practically every­
where in mathematics, also in physics, and has very simple and powerful 
properties." 

Already in a first Analysis course, one sees a special role of the exponen­
tial function t J---+ eat. No wonder that a far reaching generalization of the 
exponential function - the heat semigroup {e-tA } t>O' where A is a positive 
definite linear operator, plays similarly an indispensable role in Mathemat­
ics and Physics, not the least because it solves the associated heat equation 
it + Au = O. If the operator A acts in a function space then frequently the 
action of the semigroup e-tA is given by an integral operator, whose kernel 
is called then the heat kernel of A. 

Needless to say that any knowledge of the heat kernel, for example, 
upper and/or lower estimates, can help in solving various problems related 
to the operator A and its spectrum, the solutions to the heat equation, as 
well as to the properties of the underlying space. If in addition the operator 
A is Markovian, that is, generates a Markov process (for example, this is 
the case when A is a second order elliptic differential operator), then one 
can use information about the heat kernel to answer questions concerning 
the process itself. 

This book is devoted to the study of the heat equation and the heat 
kernel of the Laplace operator on Riemannian manifolds. Over 140 years 
ago, in 1867, Eugenio Beltrami [29] introduced the Laplace operator for a 
Riemannian metric, which is also referred to as the Laplace-Beltrami op­
erator. The next key step towards analysis of this operator was made in 
1954 by Matthew Gaffney [126], who showed that on geodesically complete 
manifolds the Laplace operator is essentially self-adjoint in L2. Gaffney also 
proved in [127] the first non-trivial sufficient condition for the stochastic 
completeness of the heat semigroup, that is, for the preservation of the Ll_ 
norm by this semigroup. Nearly at the same time S. Minakshisundaram 
[275] constructed the heat kernel on compact Riemannian manifolds using 
the parametrix method. 

xi 
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However, it was not until the mid-1970s when the geometric analysis 
of the Laplace operator and the heat equation was revolutionized in the 
groundbreaking work of Shing-Thng Yau, which completely reshaped the 
area. The culmination of this work was the proof by Li and Yau [258] in 1986 
of the parabolic Harnack inequality and the heat kernel two-sided estimates 
on complete manifolds of non-negative Ricci curvature, which stimulated 
further research on heat kernel estimates by many authors. Apart from 
the general wide influence on geometric analysis, the gradient estimates 
of Li and Yau motivated Richard Hamilton in his program on Ricci flow 
that eventually lead to the resolution of the Poincare conjecture by Grigory 
Perel'man, which can be viewed as a most spectacular application of heat 
kernels in geometryl. 

Another direction in heat kernel research was developed by Brian Davies 
[96J and Nick Varopoulos [353], [355], who used primarily function-analytic 
methods to relate heat kernel estimates to certain functional inequalities. 

The purpose of this book is to provide an accessible for graduate students 
introduction to the geometric analysis of the Laplace operator and the heat 
equation, which would bridge the gap between the foundations of the subject 
and the current research. The book focuses on the following aspects of these 
notions, which form separate chapters or groups of chapters. 

1. Local geometric background. A detailed introduction to Riemannian 
geometry is given, with emphasis on construction of the Riemannian measure 
and the Riemannian Laplace operator as an elliptic differential operator of 
second order, whose coefficients are determined by the Riemannian metric 
tensor. 

II. Spectral-theoretic properties. It is a crucial observation that the 
Laplace operator can be extended to a self-adjoint operator in L2 space, 
which enables one to invoke the spectral theory and functional calculus of 
self-adjoint operator and, hence, to construct the associated heat semigroup. 
To treat properly the domains of the self-adjoint Laplacian and that of the 
associated energy form, one needs the Sobolev function spaces on manifolds. 
A detailed introduction to the theory of distributions and Sobolev spaces is 
given in the setting of ~n and Riemannian manifolds. 

III. Markovian properties and maximum princzples. The above spectral­
theoretic aspect of the Laplace operator exploits its ellipticity and symme­
try. The fact that its order is 2 leads to the so-called Markovian properties, 
that is, to maximum and minimum principles for solutions to the Laplace 
equation and the heat equation. Various versions of maximum/minimum 
principles are presented in different parts of the book, in the weak, normal, 
and strong forms. The Markovian properties are tightly related to the dif­
fusion Markov process associated with the Laplacian, where is reflected in 

lAnother striking application of heat kernels is the heat equation approach to the 
Atiyah-Singer index theorem - see [12], [132], [317]. 
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the terminology. However, we do not treat stochastic processes here, leaving 
this topic for a prospective second volume. 

IV. Smoothness properties. As it is well-known, elliptic and parabolic 
equations feature an added regularity phenomenon, when the degree of 
smoothness of solutions is higher than a priori necessary. A detailed account 
of the local regularity theory in Rn (and consequently on manifolds) is given 
for elliptic and parabolic operators with smooth coefficients. This includes 
the study of the smoothness of solutions in the scale of Sobolev spaces of 
positive and negative orders, as well as the embedding theorems of Sobolev 
spaces into Ck. The local estimates of solutions are used, in particular, to 
prove the existence of the heat kernel on an arbitrary manifold. 

V. Global geometric aspects. These are those properties of solutions 
which depend on the geometry of the manifold in the large, such as the 
essential self-adjointness of the Laplace operator (that is, the uniqueness of 
the self-adjoint extension), the stochastic completeness of the heat kernel, 
the uniqueness in the bounded Cauchy problem for the heat equation, and 
the quantitative estimates of solutions, in particular, of the heat kernel. A 
special attention is given to upper bounds of the heat kernel, especially the 
on-diagonal upper bounds with the long-time dependence, and the Gaussian 
upper bounds reflecting the long-distance behavior. The lower bounds as 
well as the related uniform Harnack inequalities and gradient estimates are 
omitted and will be included in the second volume. 

The prerequisites for reading of this books are Analysis in ]Rn and the ba­
sics of Functional Analysis, including Measure Theory, Hilbert spaces, and 
Spectral Theorem for self-adjoint operators (the necessary material from 
Functional Analysis is briefly surveyed in Appendix). The book can be used 
as a source for a number of graduate lecture courses on the following topics: 
Riemannian Geometry, Analysis on Manifolds, Sobolev Spaces, Partial Dif­
ferential Equations, Heat Semigroups, Heat Kernel Estimates, and others. 
In fact, it grew up from a graduate course "Analysis on Manifolds" that was 
taught by the author in 1995-2005 at Imperial College London and in 2002, 
2005 at Chinese University of Hong Kong. 

The book is equipped with over 400 exercises whose level of difficulty 
ranges from "general nonsense" to quite involved. The exercises extend and 
illustrate the main text, some of them are used in the main text as lemmas. 
The detailed solutions of the exercises (about 200 pages) as well as their 
g\'IEjX sources are available on the web page of the AMS 

http://www.ams.org/bookpages/amsip-47 

where also additional material on the subject of the book will be posted. 
The book has little intersection with the existing monographs on the 

subject. The above mentioned upper bounds of heat kernels, which were 
obtained mostly by the author in 1990s, are presented for the first time in a 
book format. However, the background material is also significantly differer:.: 
from the previous accounts. The main distinctive feature of the foundat:oI:. 
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part of this book is a new method of construction of the heat kernel on 
an arbitrary Riemannian manifold. Since the above mentioned work by 
Minakshisundaram, the traditional method of constructing the heat kernel 
was by using the parametrix method (see, for example, [36], [37], [51], 
[317]' [326]). However, a recent development of analysis on metric spaces, 
including fractals (see [22], [186], [187], [224]), has lead to emergence of 
other methods that are not linked so much to the local Euclidean structure 
of the underlying space. 

Although singular spaces are not treated here, we still employ whenever 
possible those methods that could be applied also on such spaces. This 
desire has resulted in the abandonment of the parametrix method as well 
as the tools using smooth hypersurfaces such as the coarea formula and the 
boundary regularity of solutions, sometimes at expense of more technical 
arguments. Consequently, many proofs in this book are entirely new, even 
for the old well-known properties of the heat kernel and the Green function. 
A number of key theorems are presented with more than one proof, which 
should provide enough flexibility for building lecture courses for audiences 
with diverse background. 

The material of Chapters 1 - 10, the first part of Chapter 11, and Chapter 
13, belongs to the foundation of the subject. The rest of the book - the 
second part of Chapter 11, Chapters 12 and 14 - 16, contains more advanced 
results, obtained in the 1980s -1990s. 

Let us briefly describe the contents of the individual chapters. 
Chapters I, 2, 6 contain the necessary material on the analysis in ffin 

and the regularity theory of elliptic and parabolic equations in ffi.n . They do 
not depend on the other chapters and can be either read independently or 
used as a reference source on the subject. 

Chapter 3 contains a rather elementary introduction to Riemannian ge­
ometry, which focuses on the Laplace-Beltrami operator and the Green for­
mula. 

Chapter 4 introduces the Dirichlet Laplace operator as a self-adjoint 
operator in L2, which allows then to define the associated heat semigroup 
and to prove its basic properties. The spectral theorem is the main tool in 
this part. 

Chapter 5 treats the Markovian properties of the heat semigroup, which 
amounts to the chain rule for the weak gradient, and the weak maximum 
principle for elliptic and parabolic problems. The account here does not use 
the smoothness of solutions; hence, the main tools are the Sobolev spaces. 

Chapter 7 introduces the heat kernel on an arbitrary manifold as the 
integral kernel of the heat semigroup. The main tool is the regularity theory 
of Chapter 6, transplanted to manifolds. The existence of the heat kernel 
is derived from a local L2 --+ L co estimate of the heat semigroup, which in 
turn is a consequence of the Sobolev embedding theorem and the regularity 
theory. The latter implies also the smoothness of the heat kernel. 
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Chapter 8 deals with a number of issues related to the positivity or 
boundedness of solutions to the heat equation, which can be regarded as an 
extension of Chapter .) using the smoothness of the solutions. It contains the 
results on the minimality of the heat semigroup and resolvent, the strong 
minimum principle for positiYe supersolutions, and some basic criteria for 
the stochastic completeness. 

Chapter 9 treats the heat kernel as a fundamental solution. Based on 
that, some useful tools are introduced for verifying that a given function is 
the heat kernel, and some examples of heat kernels are given. 

Chapter 10 deals v.ith basic spectral properties of the Dirichlet Lapla­
cian. It contains the variational principle for the bottom of the spectrum AI, 
the positivity of the bottom eigenfunction, the discreteness of the spectrum 
and the positivity of Al in relatively compact domains, and the characteri­
zation of the long time behador of the heat kernel in terms of AI. 

Chapter 11 contains the material related to the use of the geodesic dis­
tance. It starts with the properties of Lipschitz functions, in particular, 
their weak differentiabilit}-, which allows then to use Lipschitz functions as 
test functions in various proofs. The following results are proved using the 
distance function: the essential self-adjointness of the Dirichlet Laplacian 
on geodesically complete manifolds, the volume tests for the stochastic com­
pleteness and parabolicity, and the estimates of the bottom of the spectrum. 

Chapter 12 is the first of the four chapters dealing with upper bounds of 
the heat kernel. It contains the results on the integrated Gaussian estimates 
that are valid on an arbitrary manifold: the integrated maximum principle, 
the Davies-Gaffney inequality, Takeda's inequality, and some consequences. 
The proofs use the carefully chosen test functions based on the geodesic 
distance. 

Chapter 13 is devoted to the Green function of the Laplace operator, 
which is constructed by integrating the heat kernel in time. Using the Green 
function together with the strong minimum principle allows to prove the 
local Harnack inequality for a-harmonic functions and its consequences -
convergence theorems. As an example of application, the existence of the 
ground state on an arbitrary manifold is proved. Logically this Chapter 
belongs to the foundations of the subject and should have been placed much 
earlier in the sequence of the chapters. However, the proof of the local 
Harnack inequality requires one of the results of Chapter 12, which has 
necessitated the present order. 

Chapter 14 deals with the on-diagonal upper bounds of the heat kernel, 
which requires additional hypothesis on the manifold in question. Normally 
such hypotheses are stated in terms of some isoperimetric or functional in­
equalities. We use here the approach based on the Faber-Krahn inequality 
for the bottom eigenvalue, which creates useful links with the spectral prop­
erties. The main result is that, to a certain extent, the on-diagonal upper 
bounds of the heat kernel are equivalent to the Faber-Krahn inequalities. 



xvi PREFACE 

Chapter 15 continues the topic of the Gaussian estimates. The main 
technical result is Moser's mean-value inequality for solutions of the heat 
equation, which together with the integrated maximum principle allows to 
obtain pointwise Gaussian upper bounds of the heat kernel. We consider 
such estimates in the following three settings: arbitrary manifolds, the man­
ifolds with the global Faber-Krahn inequality, and the manifolds with the 
relative Faber-Krahn inequality that leads to the Li-Yau estimates of the 
heat kernel. 

Chapter 16 introduces alternative tools to deal with the Gaussian esti­
mates. The main point is that the Gaussian upper bounds can be deduced 
directly from the on-diagonal upper bounds, although in a quite elaborate 
manner. As an application of these techniques, some on-diagonal lower es­
timates are proved. 

Finally, Appendix A contains some reference material as was already 
mentioned above. 
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CHAPTER 1 

Laplace operator and the heat equation in lRn 

The Laplace operator in ]Rn is a partial differential operator defined by 

n cP 
L\= Lax2 ' 

k=l k 

where Xl, ... , xn are the Cartesian coordinates in ]Rn. This operator plays a 
crucial role in many areas of mathematics and physics. In this Chapter we 
present some basic facts about the Laplace operator and the associated heat 
equation to motivate a similar study on manifolds. 

1.1. Historical background 

The Laplace operator came to Mathematics from Physics. 
Laplace equation. Pierre-Simon Laplace discovered in 1784-85 that a 

gravitational field can be represented as the gradient of a potential function 
U (x), and that this function satisfies in a free space the equation L\U = 
O. This equation is referred to as the Laplace equation. The gravitational 
potential of a particle placed at the origin 0 E ]R3 is given by U (x) = -,~ 
where m is the mass of the particle. It is easy to verify that L\ I;' = 0 in 

]R3 \ { o} whence L\U = 0 follows. The potential of a body located in an open 
set n c ]R3 is given by 

U(x) = _ r p (y) dy , 
in Ix - yl 

where p is the mass density of the body. Then it follows that L\U(x) = 0 
outside n. 

Heat equation. Fourier's law of heat conductivity ("TMorie analytique 
de la chaleur"l, 1822) implies that the temperature u (t, x) at time t and 
point x E ]R3 satisfies the heat equation 

au 
at = kL\u, 

in any region that is free of sources and sinks of the heat (here k > 0 is the 
coefficient of heat conductivity). 

l"The analytic theory of heat" 

I 
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Wave equation. It follows from Maxwell's equations ("'Treatise on Elec­
tricity and Magnetism", 1873), that each component u = u (t, x) of an elec­
tromagnetic field satisfies the wave equation, 

a2u 
at2 = c

2 
!':l.u, 

in any region that is free of charges and currents (here c is the speed of 
light). The wave equation appears also in other physical phenomena related 
to wave propagation. 

Diffusion equation. Albert Einstein suggested a mathematical explana­
tion of the Brownian motion in his paper "Uber die von der molekulakinetis­
chen Theorie der Warme gefoderte Bewegung von in ruhenden fii.issigkeite 
suspendierten Teilchen,,2 published in Annalen der Physik, 1905. He showed 
that the density u (t, x) of the probability that the particle started at the 
origin 0 E 31.3 reaches the point x in time t satisfies the diffusion equation 

au = D!':l.u 
at 

(here D > 0 is the diffusion coefficient). Using this equation, Einstein 
predicted that the mean displacement of the particle after time t was V 4Dt. 
The latter was verified experimentally by Jean Perrin in 1908, for which he 
was honored with the 1926 Nobel Prize for Physics. That work was a strong 
argument in favor of the molecular-kinetic theory and thereby confirmed the 
atomic structure of matter. 

Schrodinger equation. In 1926, Erwin Schrodinger developed a new ap­
proach for describing motion of elementary particles in Quantum Mechanics. 
Developing further the idea of Louis de Broglie that the motion of a par­
ticle is governed by the wave function tj;(t, x), Schrodinger formulated the 
following equation describing the dynamic of the wave function of a spin-less 
particle: 

atj; n2 
in- = __ !':l.nl·+Unl. 

at 2m <p <p, 

where m is the mass of the particle, U is the potential field, n is the Planck 
constant, and i = A. He then applied this equation to the hydrogen 
atom and predicted many of its properties with remarkable accuracy. Erwin 
Schrodinger shared the 1933 Nobel Prize for Physics with Paul Dirac. 

1.2. The Green formula 

The Laplace operator appears in many applications (including all the 
physical laws) through the Green formula, which is a consequence of the 
divergence theorem. Let n be a bounded open subset of ]Rn with smooth 

2 "On the motion of small particles suspended in liquids at rest required by the 
molecular-kinetic theory of heat" 
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boundary. Then the divergence theorem says that, for any vector field F 
that is C 1 in 0 and continuous in 0, 

{ F'1/dJ= {divFdx, (1.1) 
Jan Jn 

where J is the boundary area on 00 and 1/ is the outward normal unit vector 
field on 00. 

For any continuous function f defined in an open subset n of IRn , define 
its support by 

suppf = {x EO: f(x) =J a}, (1.2) 

where the closure is taken in O. If u, v E C 1 (0) and one of the supports 
of u and v is compact then the following integration-by-parts formula takes 
place: 

i ou i ov -vdx = - u-dx, 
0. OXk 0. OXk 

(1.3) 

which follows from (1.1) for F = uvek, where ek is the unit vector in the 
direction of the axis Xk. 

If u, v E 0 2 (0) and one of the supports of u and v is compact then the 
following Green formula takes place: 

In uf:l v dx = - In V' u . V'v dx = In f:l u v dx, (1.4) 

which follows from (1.1) for F = uV'v and F = vV'u. Alternatively, (1.4) 
follows easily from (1.3): 

i ~i 8
2
v ~i ou ov i uf:lv dx = L....J U >l 2 dx = - L....J ):l~ dx = - V'u· V'v dx. 

0. k=l n uXk k=l n UXUXk n 

Exercises. 

1.1. Denote by Sr (x) the sphere of radius r > 0 centered at the point x E ]Rn, that is 

Sr (x) = {y E ]Rn : Ix - yl = r}. 
Let a be the (n - I)-volume on Sr (x), and note that a (Sr (x») = wnrn- 1 where Wn is the 
area of the unit (n -I)-sphere in ]Rn. Prove that, for any f E C2 (]Rn) and for all x E ]Rn, 

-h ( ( fda) - f (x) = ~f (x) 2r2 + 0 e) as r -t O. (1.5) 
wnr }Sr(x) n 

1.2. Denote a round ball in ]Rn by 

BR (x) = {y E ]Rn : Ix - yl < R} 

and note that its volume is equal to cnRn where en is the volume of the unit ball in ]Rn. 

Prove that, for any f E C2 (]Rn) and for all x E ]Rn, 

Cn~n (lR(X) f (y) dY) - f(x) = ~f(x) 2 (:: 2) + 0 (R2) as R -t O. (1.6) 
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1.3. The heat equation 

Our main subject will be the heat equation 

au 
- = .6.u, at 

where u = u( t, x), t varies in an interval of JR, and x E JRn . According to the 
classification theory of partial differential equations, the Laplace operator 
belongs to the family of elliptic operators, whereas the heat operator %t -.6. 
belongs to the family of parabolic operators. The difference between these 
families manifests in many properties of the equations, in particular, which 
boundary and initial value problems are well-posed. 

One of the most interesting problems associated with the heat equation 
is the Cauchy problem (known also as the initial value problem): given a 
function f(x) on JRn, find u(t,x) such that 

{ ~~ =.6.u in JR+ X JRn, 

ult=o = f, 
(1.7) 

where the function u is sought in the class C2 (R+ x JRn) so that the heat 
equation makes sense. The exact meaning of the initial data ult=o = f 
depends on the degree of smoothness of the function f. In this section, we 
consider only continuous functions f, and in this case ult=o = f means, by 
definition, that u (t, x) ---7 f (x) as t ---7 0 locally uniformly in x. Equivalently, 
this means that the function u (t, x), extended to t = 0 by setting u (0, x) = 
f (x), is continuous in [0,00) x JRn. 

We investigate here the existence and uniqueness in the Cauchy problem 
in the class of bounded solutions. 

1.3.1. Heat kernel and existence in the Cauchy problem. The 
following function plays the main role in the existence problem: 

Pt(x) = (47r~)nI2 exp (_1:~2) , (1.8) 

where t > 0 and x E JRn. The function Pt (x) is called the Gauss- Weierstrass 
function or the heat kernel (see Fig. 1.1 and 1.2). 

The main properties of the heat kernel are stated in the following lemma. 

LEMMA 1.1. The function Pt (x) is Coo smooth in JR+ x JRn, positive, 
satisfies the heat equation 

the identity 

r pt(x)dx == 1, JlRn 

(1.9) 

(1.10) 
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FIGURE 1.1. The graphs of the function x t--t Pt (x) in lR for 
t = 1 (thin), t = 3 (medium), and t = 9 (thick). 

o~----+-----+-----+-----
o 05 

FIGURE 1.2. The graphs of the function t t--t Pt (x) 1.:.:: 5. ::~ 
x = 0 (left) and x = 1 (right) 

and, for any r > 0, 

J pt(x)dx -+ 0 as t -+ O. 
{Ixl>r} 

5 

PROOF. The smoothness and positivity of Pt (x) are 0 :;-,-:':-::5 ~: ~ -=~--:e~ 
to verify the equation (1.9) using the function 

. .~ 

n 'X-
u (t, x) := logpt (x) = --logt - -' - - .:::~~ 

2 1-.,., 

Differentiating the identity Pt = e'U, we obtain 

apt au 'U a2pt (a2u E-~-
at = at e and -a 2 = a 2 -', :;.-

x k xl. '--c 
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Denoting by V'uthe gradient of u, that is 

V'u = (:~, ... , :x:)' 
we see that the equation (1.9) is equivalent to 

au 2 
8t = ~u+ lV'ul . 

Computing the derivatives of u, 

and 

au n Ixl 2 

8t = - 2t + 4t2 

n 1 
~U=-2t' V'u=-2t(Xl,""Xn ), 

we obtain (1.12). 
To prove (1.10), let us use the identity 

(1.12) 

L: e-
s2 

ds = Vi (1.13) 

(cf. Example A.l), which implies by a change in the integral that L: e-
s2

/
4tds = V47rt. 

Reducing the integration in ~n to repeated integrals, we obtain 

kn pt(x)dx = (47r~)n/2kn exp ( - xi + .~; + X~) dXl ... dXn 

= (47r~)n/2 11 l exp ( - ~;) dXk 

= (47r~)n/2 (V 47rt) n 

=1. 

Finally, to verify (1.11), let us make the change y = r 1/ 2x in the integral 
(1.11). Since dy = r n / 2dx, the factor t-n / 2 cancels and we obtain 

1 pt(x)dx = 1 2 r e-!YI
2
/4dy. (1.14) 

{Ixl>r} (47r)n/ J{lyl>t- 1/ 2r} 

Since the integral in the right hand side is convergent and r 1/ 2r -t 00 as 
t -t 00, we obtain that it tends to 0 as t -t 00, which was to be proved. D 

REMARK 1.2. It is obvious from (1.14) that, in fact, 

1 pt(x)dx::; constexp (_r2), 
{Ixl>r} 5t 

so that the integral tends to 0 as t -t 0 faster than any power of t. 
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For any two continuous functions f, 9 in lRn , their convolution f * 9 is 
defined by 

f*g(x) = r f(x-y)g(y)dy, 
JlRn 

provided the integral converges for all x E lRn. It turns out that the Cauchy 
problem can be solved by taking the convolution of the heat kernel with the 
initial function f· 

THEOREM 1.3. If f is a bounded continuous function in lRn then the 
following function 

u(t,x)=pt*f(x) (1.15) 

is Coo smooth in lR+ x lRn, satisfies the heat equation 

au = b,.u 
at 

and the initial data ult=o = f in the sense that 

u(t,x) -t f (x) as t --+ 0 (1.16) 

locally uniformly m x. Moreover, the function u is bounded and, for all t > 0 
and x E lRn, 

inf f:::; u(t,x):::; supJ. (1.17) 

PROOF. By the definition of the convolution, we have 

u(t,x)= r pt{x-y)f(y)dy= r 1 /2exp(-IX~YI2)f(Y)dY. 
At'" JlRn (47rt t t 

(1.18) 
The function (t, x) H Pt (x - y) is infinitely smooth in lR+ x lRn whence the 
same property of u follows from the fact that we can interchange the order of 
differentiation in t and x and integration in (1.18) (note that the integral in 
(1.18) converges locally uniformly in (t, x) and so does any integral obtained 
by differentiation of the integrand in t and x, thanks to the boundedness of 
f). In particular, using (1.9) we obtain 

~~ - b,.u = In (! -~ ) Pt(x - y)f(y)dy = O. 

Let us verify (1.16). Using the identity (1.10), we can write 

u(t, x) - f(x) = r Pt(x - y)f(y)dy - r Pt(x - y)f(x)dy 
JlRn JlRn 

= r Pt(x - y)(f(y) - f(x))dy. 
JlRn 

Since f is continuous at x, for any c > 0 there exists 0> 0 such that 

Iy - xl < 0 => If(x) - f(y)1 < E. 
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Furthermore, since I is locally uniformly continuous, the same 0 can be 
chosen for all x varying in a bounded set. Then we have 

J Pt(X - y)(f(y) - I(x))dy ~ c r Pt (x - y) dy = c 
{Iy-x/<o} J.~.n 

and, changing z = x - y, 

J Pt(x - y)(f(y) - I(x))dy ~ 2 sup III J pt(z)dz. 
{Iy-xl~o} {Iz/~.s} 

The right hand side in the last integral tends to 0 as t -t 0 by (1.11). Hence, 
we conclude that 

r Pt(x - y)(f(y) - I(x))dy -t 0 as t -t 0, 
JlRn 

and the convergence is local uniform in x, which proves (1.16). 
Finally, the positivity of the heat kernel and (1.10) imply that 

u (x) ~ sup I Ln Pt.(x - y)dy = sup I 

and in the same way u ~ inf I. o 
REMARK 1.4. It is clear from the proof that if I (x) is uniformly contin­

uous in]Rn then u (t, x) -t I (x) uniformly in x E ]Rn. 

Exercises. 
The next two questions provide a step-by-step guide for alternative proofs of Lemma 

1.1 and (a version of) Theorem 1.3, using the Fourier transform. Recall that, for any 
function u E L1 (Rn

), its Fourier transform u(~) is defined by 

u(~) = r e-i:Z;{u(x)dx. 
Jan 

Using the Plancherel identity, the Fourier transform extends to all u E L2 (Rn). 
In all questions here, Pt (x) is the heat kernel in Rn defined by (1.8). 

1.3. Prove the following properties of the heat kernel. 

(a) Forallt>Oand~ERn, 

(b) JRn Pt (x) dx = 1. 
(c) For all t, s > 0, Pt * Ps = Pt+s. 
(c) W = /lPt. 

(1.19) 

1.4. Fix a function 1 E L2 (Rn) and set Ut = Pt * 1 for any t > O. Prove the following 
properties of the function Ut. 

(a) Ut (~) = e- tl {1
2 j(~). 

(b) Ut (x) is smooth and satisfies the heat equation in R+ x R". 
(c) lIutllL2 ~ IIIIIL2 for all t > O. 
(d) U (t, x) --+ 1 (x) as t --+ 0 in the norm of L2 (Rn). 
(e) If JELl (Rn) then u (t, x) --+ 1 (x) as t --+ 0 uniformly in x ERn. 

1.5. Prove the following properties of the heat kernel. 

(a) For any c > 0, Pt (x) --+ 0 as t --+ 0 uniformly in {x; Ixl > c}. 
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(b) Pt (x) -+ ° as x -+ 00 uniformly in t E (0, +00). 
(c) For any € > 0, Pt (x) is continuous in {x: Ixl > €} uniformly in t E (0,+00). 

1.3.2. Maximum principle and uniqueness in the Cauchy prob­
lem. The uniqueness in the bounded Cauchy problem will follow from the 
maximum principle, which is of its own interest. Let U c ]Rn be a bounded 
open set. Fix some positive real T and consider the cylinder r = (0, T) xU 
as a subset in ]Rn+1. The boundary ar can be split into three parts: the top 
{T} x U, the bottom {O} x U and the lateral boundary [0, T] x au (where 
au is the boundary of U in ]Rn). Define the parabolic boundary apr of the 
cylinder r as the union of its bottom and the lateral boundary, that is 

apr := ({O} X U) u (f0, T] x au) 
(see Fig. 1.3). Note that apr is a closed subset of ]Rn+1. 

T 

r .- .- .. -... _ .......... -" 

......... '" ............ . 

jRD 

FIGURE 1.3. The parabolic boundary apr contains the bot­
tom and the lateral surface of the cylinder r, but does not 
include the top. 

LEMMA 1.5. (Parabolic maximum principle) If u E c 2 (r) n C (f) and 

au 
- -~u< 0 inr 

then 
at -

supu = supu. 
r apr 

" In particular, if u ::; 0 on apr then u ::; 0 in r. 

(1.20) 
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By changing u to -u, we obtain the minimum principle: if 

au _ D.u > 0 in r at -
then 

infu = inf u. 
r apr 

In particular, if u solves the heat equation in r then the maximum and 
minimum of u in r are attained also in apr. 

PROOF. Assume first that u satisfies a strict inequality in r: 
au 
at - b..u < O. (1.21 ) 

By slightly reducing T, we can assume that (1.21) holds also at the top of 
r. Let (to, xo) be a point of maximum of function u in r. Let us show that 
(to, xo) E apr, which will imply (1.20). If (to, xo) ¢:. apr then (to, xo) lies 
either inside r or at the top of r. In the both cases, Xo E r and to > O. 
Since the function x r--+ u (to, x) in U attains the maximum at x = xo, we 
have 

a2u . 
a 2 (to, xo) ::; 0 for all J = 1, ... , n 

x· J 

whence D.u (to, xo) ::; o. 

FIGURE 1.4. The restriction of u(t, x) to the lines in the 
direction Xj and in the direction of t (downwards) attains 
the maximum at (to, xo). 

On the other hand, the function t r--+ u (t, xo) in (0, to] attains its maxi­
mum at t = to whence 

au 
at (to, xo) ? 0 
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(if to < T then, in fact, !fir (to, xo) = 0). Hence, we conclude that 

(~~ - ~u) (to, xo) ~ 0, 

contradicting (1.21). 
Consider now the general case. Set U e = U - c:t where c: is a positive 

parameter. Clearly, we have 

aUe (au) at - ~ue = at - ~u - c < 0. 

Hence, the previous case applies to the function ue , and we conclude that 

sup (u - ct) = sup (u - ct) . 
r apr 

Letting c --+ ° we obtain (1.20). o 
REMARK 1.6. The statement remains true for a more general operator 

a n a 
--~-I)'-
at j=l J aXj' 

where bj are arbitrary functions in r. Indeed, the first order terms vanish 
at the point (to, xo) because t;-. (to, xo) = 0, and the proof goes through 

J 

unchanged. 

Now we can prove the uniqueness theorem. 

THEOREM 1.7. For any continuous function f (x), the Cauchy problem 
(1.7) has at most one bounded solution u (t, x). 

PROOF. It suffices to prove that if u is a bounded solution to the Cauchy 
problem with f = ° then u = 0. Compare u to the function 

v(t, x) = Ixl2 + 2nt, 

which is non-negative and obviously satisfies the heat equation 

av 
at - ~v = 0. 

Fix c > 0 and compare u and cv in a cylinder r = (0, T) X BR. At the 
bottom of the cylinder (that is, at t = 0) we have u = ° ~ cv. At the lateral 
boundary of the cylinder (that is, at Ixl = R) we have u(x) ~ C where 
C:= sup lui, and cv(x) ~ cR2. Choosing R so big that cR2 ~ C, we obtain 
that u ~ cv on the lateral boundary of r. 

Hence, the function u - c:v satisfies the heat equation in rand u - cV ~ ° 
on the parabolic boundary apr. By Lemma 1.5, we conclude that u - c:v ~ ° 
in r. Letting R -+ 00 and T -+ 00 we obtain u - cV ~ ° in lR+ x lRn. Letting 
c -+ 0, we obtain u ~ 0. In the same way u ~ 0, whence u = 0. 0 
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T 

o 

FIGURE 1.5. Comparison of functions U and cv on apr 

'REMARK 1.8. In fact, the uniqueness class for solutions to the Cauchy 
problem is much wider than the set of bounded functions. For example, the 
Tikhonov theorem says that if u (t, x) solves the Cauchy problem with f = 0 
and 

lu (t, x)1 ::; C exp (C Ix12) 
for some constant C and all t > 0, x E ~n, then u == O. We do not prove 
this theorem here because it will easily follow from a much more general 
result of Chapter 11 (see Corollary 11.10). 

Theorems 1.3 and 1.7 imply that, for any bounded continuous function 
f, the Cauchy problem has a unique bounded solution, given by Pt * f. Let 
us show an amusing example of application of this result to the heat kernel. 

EXAMPLE 1.9. Let us prove that, for all 0 < s < t, 

Pt-s * Ps = Pt· (1.22) 

(cf. Exercise 1.3). Let f be continuous function in ~n with compact support. 
By Theorem 1.3, the function Ut = Pt * f solves the bounded Cauchy problem 
with the initial function f. Consider now the Cauchy problem with the 
initial function us. Obviously, the function Ut gives the bounded solution to 
this problem at time t - s. On the other hand, the solution at time t - sis 
given by Pt-s * us. Hence, we obtain the identity 

Ut = Pt-s * Us, 

that is 

Pt * f = Pt-s * (Ps * f) . 
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By the associative law of convolution (which follows just by changing the 
order of integration), we have 

Pt-s * (Ps * 1) = (Pt-s * Ps) * j, 
whence 

Pt * j = (Pt-s * Ps) * j. 
Since this is true for all functions j as above, we conclude that Pt = Pt-s *Ps. 

Naturally, this identity can be proved by a direct computation, but such 
a computation is not very simple. 

Exercises. 

1.6. (Elliptic maximum principle) Let n be a bounded open set in IRn
, and consider the 

following differential operator in n 
n a 

L = ~ + 2.:)j (x) ax" 
j=l J 

where bj are smooth bounded functions in n. 
(a) Show that there exists a function v E C 2 (n) n C (TI) such that Lv> 0 in n. 
(b) Prove that if u E C2 (n) n C en) and Lu ~ 0 in n then 

supu = supu. 
n an 

1. 7. Evaluate the bounded solution u (t, x) of the Cauchy problem with the initial function 
f (x) = exp( _/x/ 2

). 

Notes 

The material of this Chapter is standard and can be found in many textbooks on 

partial differential equations - see for example, [38), [118)' [121), [130), [243). 



CHAPTER 2 

Function spaces in JRn 

We have collected in this Chapter some properties of distributions and 
Sobolev spaces in ]Rn mostly related to the techniques of mollifiers. The 
knowledge of the Lebesgue measure, Lebesgue integration, and Hilbert spaces 
is assumed here. The reader is referred to Appendix A for the necessary 
background. 

The full strength of the results of this Chapter will be used only in 
Chapter 6 in the regularity theory of elliptic and parabolic equations. 

For the next Chapter 3, we will need only the material of Section 2.2 
(the cutoff functions and partition of unity). In Chapter 4, we will introduce 
distributions and Sobolev spaces on manifolds, where the understanding of 
similar notions in ]Rn will be an advantage. At technical level, we will need 
there only the material of Section 2.3 (in fact, only Corollary 2.5). Chapter 
5 does not use any results from the present Chapter. 

Sections 2.1-2.6 are self-contained. Section 2.7 is somewhat away from 
the mainstream of this Chapter (although it depends on the results of the 
preceding sections) and can be considered as a continuation of Chapter 1. 
Also, it provides a certain motivation for the L2-Cauchy problem on man­
ifolds, which will be considered in Section 4.3. Technically, the results of 
Section 2.7 are used to prove the embedding theorems in Chapter 6, although 
alternative proofs are available as well. , 

2.1. Spaces Ck and LP 

Let xl, ... , xn be the Cartesian coordinates in ]Rn. We use the following 
short notation for partial derivatives: 

{} 
{}i == {}xi 

and, for any multiindex a = (aI, ... , an), 

{}Icxl 
{}CX _ - {}CX1{}CX2 {}CXn (2 1) 

- ({}XI)CX1 ({}X2t2 ... (8xn )CXn - 1 2 ... n , . 

where lal := al + ... + an is the order of the multiindex. In particular, if 
a = 0 then {}cx.u = u. 

For any open set 0 C ]Rn, C (0) denotes the class of all continuous 
fUnctions in 0, and Ck (0) denotes the class of all functions f from C (0) 
such {}a fEe (0) for all lal ~ k (here k is a non-negative integer). Let 

15 
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coo (n) be the intersection of all Ck (n), and CO" (n) be the subspace of 
Coo (n), which consists of functions with compact support in n. 

The sup-norm of any function u E C (n) is defined by 

liullC(rl) := sup lui, 
rl 

and the Ok-norm of u E C k (n) is defined by 

Despite the terminology, IiUIlCk(rl) is not a norm in C k (n) because it may 
take the value 00. In fact, the topology of the space Ck (n) is defined by the 
family of seminorms Ilullck(rl/) where n' is any open subset of n such that 
n' <s n. The relation E <s n (compact inclusion) means that the closure E 
of the set E is compact and E c n. 

Denote by J.l the Lebesgue measure in ]Rn. By "a measurable function" 
we always mean a function measurable with respect to measure J.l. For any 
open set n c ]Rn, V (n) stands for the Lebesgue space V (n,J.l), 1 ~ p ~ 
00 (see Section A.4.5). The local Lebesgue space Lfoc (n) is the set of all 
measurable functions f in n such that f E V (n') for any open set n' <s n. 
Clearly, Lfoc (n) is a linear space, and it has a natural topology, defined by 
the family of semi norms llfIlLP(rl/) where n' runs over all open sets compactly 
contained in n. 

If V and Ware two linear topological spaces then an embedding of V to 
W is a linear continuous injection V -+ W. We will apply this notion when 
V, Ware spaces of functions on the same set and a natural embedding of V 
to W is obtained by identifying functions from V as elements from W. In 
this case, we denote the embedding by V <-t Wand will normally consider 
Vasa subspace of W (although, in general, the topology of V is stronger 
than that of W). 

Obviously, we have the embeddings 

For another example, let n' be an open subset of n. Any function from 
f E V (n') can be identified as a function from V (n) just by setting f = 0 
in n\n'. Since this mapping from V (n') to V (n) is injective and bounded 
(in fact, norm preserving), we obtain a natural embedding V (n') <-tV en). 
One can, of course, define also a mapping from V (n) to v en') just by 
restricting a function on n to n'. Although this mapping is bounded, it is 
not injective and, hence, is not an embedding. 

CLAIM. Lfoc (n) <-tLfoc (n) for any p E [1, +00]. 



2.2. CONVOLUTION AND PARTITION OF UNITY 17 

PROOF. Indeed, for all f E Lfoc (0) and 0' \S 0, we have by the Holder 
inequality 

IIfll£1(O') = h, l·lfl dJ-l ~ J-l (D,)l-l
lp (h, IflP dJ-l) lip = CllfIILP(o'), 

(2.2) 
where C := J-l (O,)l-l/p < 00 (strictly speaking, the above computations 
is valid only if p < 00, but the case p = 00 is trivial - cf. Exercise 2.1). 
Therefore, any function from Lfoc (0) belongs also to Lfoc (0), which defines 
a natural linear injection from Lfoc (0) to Lfoc (0), and this injection is 
continuous by (2.2). 0 

It follows that all the function spaces considered above embed into 
LFoc (IRn). 

Exercises. 

2.1. Prove that Lioe (n) "--+ Lfoe (n) for all 1 ~ p < q::; +00. 

2.2. Let Uk} be a sequence of functions from LP (n) that converges to a function f in LP 
norm, 1 ::; p ~ 00. Prove that if fk ;:::: 0 a.e. then also f ;:::: 0 a.eo. 

2.2. Convolution and partition of unity 

The purpose on this section is to approximate functions from Ll and 
Lfoc by smooth functions. The main technical tool for that is the notion of 
convolution. Recall that, for any two measurable functions f, 9 on IRn, their 
convolution f * 9 is defined by 

f*g(x)= r f(x-y)g(y)dJ-l(Y), (2.3) 
JRn 

provided the integral converges in the Lebesgue sense. Note that the function 
f (x - y) 9 (y) is measurable as a function of x, y and, by Fubini's theorem, 
if the above integral converges then it defines a measurable function of x. 

Denote by Br (x) the ball of radius r centered at x, that is, 

Br (x) = {y E IRn : Ix - yl < r}. 

LEMMA 2.1. If f E Lfoc (IRn) and 'P E COO (IRn) then the convolution 
f * 'P belongs to Coo (IRn) and, for any multiindex a, 

80! (f * 'P) = f * 80!'P. (2.4) 

Also, if supp 'P C Br (0) then supp (f * 'P) is contained in the r-neighborhood 
of supp f· 

PROOF. Assuming that sUPP'P C Br (0) and changing z = x-y in (2.3), 
we obtain 

f * 'P (x) = r f (z) 'P (x - z) dz = r f (z) 'P (x - z) dz. (2.5) 
JRn J Br(x) 
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Since f E Ll (Br (x)) and <p is bounded, we see that the integral in the right 
hand side converges for all x. If x is away from the r-neighborhood of supp f 
then Br (x) and supp f are disjoint, whence it follows that f * <p (x) = 0, 
which proves the second claim of Lemma 2.1. 

Let us show that f * <p is continuous. If x' is close enough to x, namely, 
Ix - x'I < r then we have 

f * <p (x') = r f (z) <p (x' - z) dz = r f (z) <p (x' - z) dz. 
J Br(x') J B2r(X) 

Since f is integrable in B2r (x) and <p (x' - z) =t <p (x - z) as x' --+ x, we can 
pass to the limit in the above integral and obtain that f * <p (x') --+ f * <p (x). 

Let us show that the derivative 8j (J * <p) exists and is equal to f * 8j <p. 
If h is a non-zero vector in the direction x j then we have 

f*<p(x+h)-f*<p(x) = r f( )<p(x+h-z)-<p(x-z)d 
Ihl JlRn z Ihl z. 

Again, if Ihl is small enough then the integration can be restricted to z E 
B2r (x). Since f is integrable in this ball and 

<p(x+h-z)-<p(x-z) 8 ( ) 
Ihl =t j<p x - z 

as h --+ 0, we can pass to the limit under the integral and conclude that 

l ' f * <p (x + h) - f * <p (x) 
Im~~~~~~~~~ 

h-+O Ihl 

r f(z)8j<p(x-z)dx 
JIRn 
f * 8j<p (x) . 

Applying the same argument to f * 8j<p and continuing by induction, we 
obtain (2.4) for an arbitrary a and f * <p E Coo (lRn). 0 

We say that a function <p E COO (l~n) is a mollifier if supp <p c Bl (0), 
<p ~ 0, and 

r <pdp, = 1. 
JIRn 

For example, the following function 

<p (x) = { cexp ( - (IXI2~1/4)2 ) 
0, 

Ixl < 1/2 

Ixl ~ 1/2 

is a mollifier, for a suitable normalizing constant c> 0 (see Fig. 2.1). 
If <p is a mollifier then, for any 0 < c < 1, the function 

<Pe := €-n<p (~) 

is also a mollifier, and sUPP<Pe C Be (0), 

(2.6) 

(2.7) 
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FIGURE 2.1. The mollifier (2.7) in JR. 

THEOREM 2.2. (Partition of unity) Let K be a compact subset of JRn 
and {Uj}J=1 be a finite family of open sets covering K. Then there ex­
ist non-negative functions <pj E Co (Uj ) such that I:j <pj == 1 in an open 
neighbourhood of K and 2:j <pj :S 1 in JRn. 

Such a family of functions <pj is called a partition of unity at K subor­
dinate to the covering {Uj }_ 

PROOF _ Consider first the case when the family {Uj} consists of a single 
set U. Then we will construct a function 'ljJ E Co (U) such that 0 :S 'ljJ :S 1 
and'ljJ == 1 in an open neighbourhood of K. Such a function 'ljJ is called a 
cutoff function of Kin U. 

Let V be an open neighborhood of K such that V <s U, and set f = 1 v . 
Fix a mollifier <po Since f E L1 (JRn), by Lemma 2.1 we have f * <Pc E 
Coo (JRn). If c is small enough then f * <Pc is supported in U so that f * <Pc E 
Co (U). Clearly, f * <Pc 2: 0 and 

f * <Pc (x) :S sup If I r <pc (y) dy = sup If I = l. Iff,ln 
Finally, if c is small enough then, for any x E K, we have Bc (x) C V, 
whence fIBe(x) = 1 and 

f*<pc(x)= r f(z)<Pc(x-z)dz= r <Pt:(x-z)dz=l. .IBe(x) .IBe(x) 

Hence, the function 'ljJ = f * <Pc satisfies all the requirements, provided c is 
small enough. 

Consider now the general case of an arbitrary finite family {Uj }. Any 
point x E K belongs to a set Uj. Hence, there is a ball Bx centered at x 
and such that Bx <S Uj. The family of balls {BX}xEK obviously covers K. 
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Select a finite subfamily with the same property, say {EXi }, and denote by 
Vj the union of those balls EXi for which Bx; <s Uj (see Fig. 2.2). 

K 

FIGURE 2.2. Function 'ljJJ is a cutoff function of Vi in Uj . 

By construction, the set Vi is open, Vi <s Uj, and the union of all sets 
Vi covers K. Let 'ljJj be a cutoff function of Vi in Uj , and set 

'PI = 'ljJl, 'P2 = 'ljJ2 (1 - 'ljJl), ... , 'Pk = 'ljJk (1 - 'ljJl) '" (1 - 'ljJk-l). 

Obviously, 'Pi E CD (Uj) and 'Pj 2: O. It is easy to check the identity 

1 - L 'Pj = (1 - 'ljJl) ... (1 - 'ljJk) , (2.8) 
j 

which, in particular, implies L,'Pj:::; 1. Since 1-'ljJj = 0 on Vj, (2.8) implies 
also that L,j 'Pj == 1 on the union of sets Vj and, in particular, on K. 0 

2.3. Approximation of integrable functions by smooth ones 

THEOREM 2.3. For any 1 :::; p < 00 and for any open set n eRn, 
CD (n) is dense in LP (n), and the space LP (n) is separable. 

PROOF. We need to show that any function f E LP (0) can be approx­
imated in LP norm by a sequence of functions from CD (0). Recall that a 
simple function in 0 is a linear combination of the indicator functions IE 
where E c 0 is a measurable set with finite measure. Since the class of sim­
ple functions in dense in LP (0) (see Section A.4.3), it suffices to prove the 
above claim in the case f = IE. By the regularity of the Lebesgue measure 
(see Section A.4.1), for anye > 0 there exist a compact set K and an open 
set U C 0 such that 

KcECU, 

and 

11 (U) '5:. 11 (K) + e. 
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Let 'I/; E Co (U) be a cutoff function of Kin U. Then 'I/; = 1 = IE on K, 
'I/; = IE = 0 outside U, whereas in U \ K we have lIE - '1/;1 s 1. Therefore, 

IIIE - 'l/;1I1p = in lIE - 'l/JIP dp, S p, (U \ K) S c, 

which settles the first claim. 
To prove the separability of V (0), consider the following functions in 

V(O): 

(2.9) 
i=l 

where k is a positive integer, ai are rationals, and Qi are disjoint open boxes 
in 0 with rationals coordinates of the corners1. Clearly, the family of all such 
functions is countable. Let us show that this family is dense in V (n), which 
will prove the separability. As in the first part, it suffices to prove that, for 
any measurable set E c n of finite measure, the indicator function IE can 
be approximated in V norm by functions (2.9). 

Let c, K, U be as in the first part of the proof. Fix a rational 8 > 0 and 
consider the lattice 571P, which induces the splitting of JRn into the cubes of 
the size 5. Let Ql, ... , Qk be those (open) cubes that are contained in n. If 
8 is small enough then the closed cubes QI, ... , Qk cover the compact set K. 
Hence, 

k k 

P, (K) S L p, (Qi) = L p, (Qi) S p, (U) , 
i=l i=1 

whence it follows that 
k 

IIIE - L lQJ1p S c, 
i=l 

which finishes the proof. o 

Mollifiers allow to construct smooth approximations to integrable func­
tion with additional properties. The following lemma has numerous exten­
sions to other functional classes (cf. Lemma 2.10, Theorems 2.11,2.13,2.16, 
and Exercise 2.18). 

LEMMA 2.4. Let 'P be a mollifier. 

(i) If f is a uniformly continuous function on JRn then f * 'Pc: ~ f as 
c -r O. If fEe (JRn) then f * 'Pc: --+ f as c --+ 0 locally uniformly. 

(ii) If fELl (JRn) then also f * 'P E L1 (JRn) and 

(2.10) 

1Here a box in JR" is a set of the form h x ... x In where each Ik is a bounded open 
interval (ak' b,.) c JR. We choose the boxes with rational ak, bk. 
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(iii) If f E Lfoc (JRn) then 

f * 'Pc: Lfoc(r) f as c -+ O. 

PROOF. (i) We have 

f*'Pc:(x)-f(x) = f f(x-Y)'Pc:(y)dy-f(x) f 'Pc: (y)dy 
he~ he~ 

- f (f (x - y) - f (x)) 'Pc: (y) dy. 
JBe(O) 

The uniform continuity of f yields 

sup If (x - y) - f (x) I -+ 0 as c -+ 0, 
xElRn ,jyj <c: 

which implies f * 'Pc: =4 f. 
If f E C (JRn ) then f (x) is uniformly continuous on compact sets, and 

the same argument works when x varies in a compact set rather than in JRn . 

(ii) Using Fubini's theorem and (2.6), we obtain 

that is, 

f If*'P(x)ldx < f (f Ifl(x-y)'P(y)dY)dx 
JlRn JlRn JlRn 

in (in If I (x - y) dX) 'P (y) dy 

= IIfllv, 

IIf * 'PII£1 ::; IIfl1v· (2.11) 
By Theorem 2.3, Co (JRn) is dense in L1 (JRn). Hence, for a given 5 > 0, 
there exists 9 E Co (JRn

) such that IIf - gllL1 < J (in fact, we need only 
that 9 is a continuous function with compact support). Then we have 

IIf * 'Pc: - fl1v ::; IIf * 'Pc: - 9 * 'Pc: 11£1 + Ilg * 'Pc: - gil £1 + IIg - fll£1· 

Using (2.11), we obtain 

Ilf * 'Pc: - 9 * 'Pc: 11£1 = II (f - g) * 'Pc: 11£1 ::; Ilf - gll£1 < 5, 
whence 

IIf * 'Pc: - fll£1 ::; IIg * 'Pc: - gll£1 + 28. (2.12) 

By part (i), we have 9 * 'Pc: =4 9 as IS -+ O. Obviously, supp (g * 'Pc:) is 
contained in the e-neighborhood of supp g, which implies 

L1 
9 * 'Pc: ~ g. 

Hence, (2.12) yields 

lim sup IIf * 'Pc: - fll£1 ::; 28, 
c:-+o 

and, since 8 > 0 is arbitrary, we obtain (2.10). 
(iii) It suffices to prove that, for any bounded open set 0 C JRn, f * 'Pc: -+ 

f in L1 (0). Let 01 be the I-neighborhood of 0 and set 9 = lrhf. Then 
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9 E Ll (J~n) and, by part (ii), we have 9 * 'Pc: --t 9 in Ll (lRn). Since f = 9 
in 0 1 and supp 'Pc C Bl (0), we obtain that f * 'Pc = g * 'Pc in O. Therefore, 
we conclude that f * 'Pc --t f in Ll (0). 0 

COROLLARY 2.5. For any open set 0 C lRn, if f E Ltoc (0) and 

10 f7jJdJ-l = 0 for any 7jJ E Co (0) , (2.13) 

then f = 0 a.e. in O. 

PROOF. Let 'P be a mollifier and fi~ an open set 0' <s O. If c > 0 is 
small enough then, for any x E 0', the function 'Pc (x - .) is supported in 
Bc (x) cO, which implies by (2.13) 

f*'Pc(x) = 1of(Z)'Pe(X-Z)dZ=O. 

By Lemma 2.4, f * 'Pc: --t f in Ltoc (lRn), whence it follows that f = 0 a.e. 
in 0'. Since 0' was arbitrary, we conclude j = 0 a.e.in 0, which was to be 
proved. 0 

Exercises. 

2.3. Prove that if 1 E L OO (l~n) and 9 E L1 (JRn) then 1 * 9 E L oo (JRn) and 

111 * gllL'>O ::; IlfIIL= II gil £1. 

2.4. Prove that if 1, 9 E L1 (JRn ) then 1 * 9 E L1 (l~n) and 

111 * gllL1 ::; IIII1L11Ig))£1· 
2.5. Prove that if 1, g, hELl (Rn) then 1 * 9 = 9 * 1 and 

(f * g) * h = 1 * (g * h) . 

2.6. Prove that if C k (Rn) and <p E Co (Rn) then, for any multiindex 0: with 10:1 ::; k, 

aD< (f * <p) = (aa 1) * <p. 

2.7. Prove that if 1 E ck (Rn) and <p is a mollifier in Rn then 1 * 'Pe ---+ 1 as c: ---+ ° in the 
topology of C k (Rn). 

2.8. Let f E L}oc (n). Prove that f ~ ° a.e. if and only jf 

i I1jJd/-t ~ 0, 

for all non-negative function 1jJ E Co (n). 

2.4. Distributions 

For any open set 0 C lRn, define the space of test functions 1) (0) as 
follows. As a set, 1) (0) is identical to Crr (0) but, in addition, 1) (0) is 
endowed with the following convergence: a sequence {'Pk} converges to 'P in 
1) (0) if 

(1) cyi.'Pk:::::t flY''P for any multiindex a; 
(2) all supports supp 'Pk are contained in some compact set K C O. 
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If these two conditions are satisfied then we will write CPk D(O; cP or 

'Pk ~ 'P. It is possible to prove that this convergence comes from a certain 
topology, which makes V (0) into a linear topological space2

. It is easy to 

see that if 'Pk ~ cP then also {Pcpk ~ (Y'cp for any multiindex a. 
Denote by V' (0) the dual space to V (0), that is, the space of all linear 

continuous functionals on V (0). The elements of 1)' (0) are called distribu­
tions in O. If U E V' (0) then the action of u at a test function cP E V (D) 
is denoted by (u, cp). The bracket (u, cp) is also referred to as the pair­
ing of a distribution and a test function. The continuity of u means that 

D 
(u, CPk) -+ (u, cp) whenever CPk --+ 'P. 

Obviously, 1)' (0) is a linear space. We will use the following convergence 

in 1)1 (0): Uk ~ u if (Uk, cp) -+ (u, cp) for any cP E 1) (0) (this convergence 
is associated with the weak topology of V' (0» 

Any function u E L[oc (0) can be identified as a distribution by the 
following rule3 

(u, cp) = in U'P dp, for any cP E 1) (D) , (2.14) 

where p, is the Lebesgue measure. Clearly, CPk ~ cP implies (u, CPk) -+ (u, cp) 
so that (2.14), indeed, defines a distribution. If u E Lfoc (0) defines by 
(2.14) the zero distribution then Corollary 2.5 yields that u = 0 as an 
element of L[oc (0). If a sequence Uk converges to u in Lloc (D) then obviously 

(Uk, cp) -+ (u, cp) for any cP E 1) (0), that is, Uk ~ u. Therefore, the relation 
( 4.1) defines an embedding 

L[oc (0) Y V' (D) . 

From now on, we will regard L[oc (D) as a subspace of V' (D). Hence, all 
other function spaces Ck (D), V (D), and Lfoc (0) also become subspaces of 
1)' (D). 

Another example of a distribution is the delta function 8z : for any fixed 
point Z E 0, Oz is defined by 

(8z , cp) = 'P (z) for any cP E V (D). 

2 Any topology determines a convergence, which in this context is called a topological 
convergence. However, not every convergence is topological. For example, convergence 
almost everywhere is not a topological one. Although the convergence in V is topological, 
we never actually need the topology in 1) and will work only with the convergence. 

3The notation (u, cp) is consistent with the usage of the brackets to denote the inner 
product in L2. Hence, ifu E L2 then (u,cp) means both the inner product ofu and cp and 
the pairing of u and cp in the sense of distributions. If it is still necessary to distinguish 
these notions then we will use (" ·h2 to denote the inner product in L2. For example, 
the difference occurs when one considers complex valued functions (which we normally do 
not). In this case, (u, CP)L2 = Cu, v;) where V; is the complex conjugate of cp. 
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This example shows that there are distributions that are not obtained from 
functions by the rule (2.14). The delta function belongs to a class of distri­
butions that arise from measures. Indeed, any Radon (signed) measure v in 
,0 determines a distribution by 

(v, cp) = 10 cpdv. 

Using the integration by parts formula, we see that, for all U E C1 (D) 
and cp E 1) (D), 

10 (Oju) cp d/-L = - 10 U Ojcp d/-L. 

This suggests the following extension of the operator OJ to the space 1)' (D): 
for any distribution U E 1)' (D), define its derivative OjU E 1)' (D) by the rule 

(OjU, cp) = - (u, Ojcp) , for all cp E 1) (D). (2.15) 

Obviously, the right hand side of (2.15) is, indeed, a continuous linear func­
tional on 1) (D) and, hence, OjU is defined as an element of 1)' (.0). Now 
we can define oO<u for any multiindex a either inductively, using (2.1), or 
directly by 

(2.16) 

It is worth mentioning that 80< is a continuous operator in 1)' (D) (cf. Exer­
cise 2.13). Clearly, we have oo<of3u = oo<+f3u for any U E 1)' (D) and for all 
multiindices a, (3. 

It is a consequence of the definition that all distributions are differen­
tiable infinitely many times. In particular, any function U E Lfoc (.0) has all 
partial derivatives oO<u as distributions. However, a function can be differen­
tiated also in the classical sense, when OjU is defined pointwise as the limit 
of the difference quotient. We will distinguish the two kinds of derivatives 
by referring to them as distributional versus classical derivatives. It is clear 
from the above definition that if U E Ck (.0) then all the classical derivatives 
oO<u of the order lal :::; k coincide with their distributional counterparts. 

Let us define one more operation on distributions: multiplication by a 
smooth function. If U E Lroc (.0) and f E Coo (D) then we have obviously 
the identity 

10 (fu) cpd/-L = 10 U (fcp) d/-L for any cp E 1) (.0). 

Hence, for a distribution U E V' (.0) and a function f E Coo (D), define a 
distribution fu by the identity 

(fu, cp) = (u, fcp) for all cp E V (D) . 

We say that a distribution u E V' (D) vanishes in an open set U c .0 if 
(u, cp) = 0 for any cp E V (U). It is possible to prove that if u vanishes in a 
family of open sets then it vanishes also in their union (cf. Exercise 2.10). 
Hence, there is a maximal open set in D where u vanishes. Its complement 
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in n is called the support of u and is denoted by supp u. Clearly, supp u is 
a closed subset of n. For any function u E Lfoc (n), its support supp u is 
defined as the support of the associated distribution u. If u E C (n) then 
this definition of the support is consistent with (1.2) (cf. Exercise 2.11). 

Let us state for the record the following properties of distributions (the 
proofs are straightforward and are omitted). 

CLAIM. Let u E 1)' (n). 

(i) For any derivative [Y", we have suppoO!u C suppu. 
(ii) IjCPI,CP2 E 1)(n) and CPI = CP2 '/.n a neighborhood ojsuppu then 

(U,CPI) = (U,CP2)' 

If supp u is a compact subset of n then u can be canonically extended 
to a distribution in Rn as follows. Let 'lj; E 1) (n) be a cutoff function of a 
neighborhood of supp u in n (see Theorem 2.2). Then, for any cP E 1) (Rn ), 

the function 'lj;cP belongs to 1) (n), which allows to define (u, cp) by 

(2.17) 

Note that if cP E 1) (n) then 'lj;cP = cP in a neighborhood of supp u and, hence, 
(u, 'lj;cp) = (u, cp). Therefore, the above extension of u is consistent with the 
action of u in 1) (n). Also, this extension is independent of the choice of 'lj; 
because if 'lj;' is another cut-off function then 'lj; = 'lj;' in a neighborhood of 
supp u, which implies (u, 'lj;cP) = (u, 'lj;' cp). 

LEMMA 2.6. Let u be a distribution in n with compact support and let 
v = oO!u. Let u' and v' be the canonical extensions oj u and v to Rn as 
described above. Then v' = oO!u' in]Rn. 

PROOF. In other words, this statement says that the extension operator 
commutes with OO!. It suffices to show that for the first order derivative. 
Hence, let us prove that, for any cP E 1) (Rn), 

( u' , OJ cp) = - (v', cp) , 

which, in the view of (2.17), amounts to 

(u,'lj;OjCP) = - (OjU,'lj;cp). 

We have 

and 

OJ ('lj;cP) = (OJ'lj;) cP + 'lj;OjCP· 

Since OJ'lj; == 0 in a neighborhood of suppu and hence, (u, (OJ'lj;) cp) = 0, we 
obtain 

which finishes the proof. o 
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LEMMA 2.7. For any distribution u E V' (D) and for any open set U ~ 
D, there exist a positive integer N and a real C > 0 such that, for any 
'P E V (U), 

I(u, 'P)I ~ C max sup 180!'P1· 
IO!I~N u 

(2.18) 

PROOF. Assume that (2.18) does not hold for any C and N. Then, for 
any positive integer k, there exists 'Pk E V (U) such that 

(u, 'Pk) ~ k max sup 180!'Pk I . 
1001~k U 

Multiplying 'Pk by a constant, we can assume that (u, 'Pk) = 1, which implies 

1 
max sup I 80! 'Pk I ~ -k' 
lal~k u 

It follows that, for any a, 8C'i'Pk converges to ° uniformly on U. Since all 

supp 'Pk are contained in U, we conclude that 'Pk ~ 0. By the continuity 
of u, this should imply (u, 'Pk) --+ 0, which contradicts (u, 'Pk) = 1. 0 

Exercises. 

2.9. For a function f on JR, denote by f~ist its distributional derivative, reserving I' for 
the classical derivative. 

(a) Prove that if fECI (R) then f~ist = 1'. 
(b) Prove that the same is true if f is continuous and piecewise continuously differen­

tiable. 
(c) Evaluate f~ist for f (x) = Ixl· 
(d) Let f = 1(0.+00)' Prove that f~ist = 6, where 6 is the Dirac delta-function at O. 

2.10. Let D C Rn be an open set. We say that two distributions u, v E 1)' (D) are equal 
on an open subset U C D if (u, <p) = (v, <p) for all <p E 1) (U). 

(a) Let {D",} be a family of open subsets of D. Prove that if u and v are equal on each 
of the sets D", then they are equal on their union u",D",. 

(b) Prove that for any u E 1)' (D) there exists the maximal open set U C D such that 
u = 0 in U. 

REMARK. The closed set D \ U is called the support of the distribution u and is denoted 
by suppu. 

2.11. For any function u (x), defined pointwise in D, set 

s (u) = {x ED: u (x) ~ O}, 

where the bar means the closure in D. 

(a) Prove that if u E C (D) then its support suppu in the distributional sense coincides 
with S (u). 

(b) If u E Lfoc (D) then its support suppu in the distributional sense can be identified 
by 

supp u = n S (v) , 
1)=1.£ a e. 

where the intersection is taken over all functions v in D, defined pointwise, which 
are equal to u almost everywhere. 
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2.12. Prove the product rule: if U E V' (n) and f E C= (n) then 

lY" (fu) = L (a) ao:-P f aPu, 
P-:,o: f3 

where 

(2.19) 

is the product of the binomial coefficients, and f3 :::; a means that f3i :::; a, for all i = 1, ... , n. 

2.13. Let {Uk} be a sequence of distributions in n such that Uk 1)~) u. 

(a) Prove that aO:Uk ~ ao:u for any multiindex a. 
1)' 

(b) Prove that fUk ~ fu for any f E Coo (n). 

2.14. Let X be a topological space. Prove that a sequence {Xk} C X converges to x E X 
(in the topology of X) if and only if any subsequence of {Xk} contains a sub-subsequence 
that converges to x. 

2.15. Prove that the convergence "almost everywhere" is not topological, that is, it is not 
determined by any topology. 

2.16. Prove that the convergence in the space V (n) is topological. 

2.5. Approximation of distributions by smooth functions 

For any distribution u E 1)' (IRn) and a function <p E 1) (JRn), define the 
convolution u * <p as a function in JRn by 

(u * <p) (x) = (u, <p (x - .)) . 

If u E Lfoc (JRn) then this definition obviously matches the one from Section 
2.2 (cf. (2.5)). 

LEMMA 2.8. For all u E 1)' (JRn) and <p E 1) (JRn), the function u * <p is 
continuous and, for any 1j; E 1) (JRn ), 

(u * <p, 1j;) = (u, <p' * 1j;) (2.20) 

where <p' (x) = <p (-x). 

PROOF. Let us show that u*<p is a continuous function. Indeed, if y -+ x 
then obviously 

whence we conclude that 

(u * <p) (y) = (u, <p (y - .)) -+ (u, <p (x - .)) = (u * <p) (y). 

In particular, function u * <p can be considered as a distribution, which 
validates the left hand side of (2.20). 

To prove (2.20), transform the left hand side of (2.20) as follows: 

(u * <p, 1j;) = { (u, <p (x - .)) 1j; (x) dx = { (u, <I? (x, .)) dx, 
JlRn JlRn 
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where 

iP(x,y) :=<p(X-y)1jJ(X). 

CLAIM. For any function iP (x, y) E 1) (JR2n) J we have 

In (u,iP(x,·))dx= (u,ln g?(x,.)dX). (2.21) 

Using (2.21), the proof of (2.20) is finished by the observation that 

r iP{x,y)dx= r <p'(y-x)1jJ(x)dx= (<p'*1jJ) (y). 
JRTI. JRTI. 

To prove (2.21), let us approximate the integral of iP by the Riemann sums, 
as follows: 

r iP (x, y) dx = lim '" iP (ck, y) En. JRn E."-tO ~ 
kElP 

(2.22) 

Since the sum here is, in fact, finite, the both sides of (2.22) belong to 
1) (JRn) as functions of y, and the support of the right hand side is uniformly 
bounded for all E > O. Since 1V'g?1 is uniformly bounded, the limit in (2.22) 
is uniform with respect to y. Applying the same argument for any derivative 
a~iP, we obtain that the limit in (2.22) can be understood in the sense of 
the convergence in 1) (JRn). Therefore, (2.22) implies 

(u,ln iP (x,·) dX) = !~ (u, 2: iP (Ek,·) En) 
kEZn 

which finishes the proof. 

- lim '" (u, iP (Ek, .)) En 
E."-tO ~ 

kEZn 

- r (U, g? (X, .)) dx, JRr, 

_ The following statement extends Lemma 2.1 to distributions. 

o 

LEMMA 2.9. If U E 1)' (JRn) and <p E 1) (JRn) then U * <p E Coo (JRn) and, 
for any multiindex a, 

(2.23) 

If supp<p C Br (0) then supp (u * <p) is contained in the r-neighborhood of 
suppu. 

PROOF. Since 

supp <p (x - .) c Br (x) , 

if x is away from the r-neighborhood of supp u then supp <p (x - .) and supp u 
are disjoint whence u * <p (x) = 0, which proves the second claim. 
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The second equality in (2.23) is easily proved as follows: 

(oCtu ) * <P (x) = (oCtu, <P (x - .)) = (_l)ICtI (u, oCt [<p (x - .)]) 

= (u, ({)Ctcp) (x - .» = u * ({)Ctcp) (x). 

Before we prove the first equality in (2.23) and the smoothness of u * cp, 
recall that, by Lemma 2.8, u * <P E C (JRn). For any 'IjJ E 1) (JRn) , we have by 
Lemma 2.8 

(2.24) 

where the derivative {)Ct (u * cp) is understood in the distributional sense. By 
Lemma 2.1, we have 

whence 

(-It (u, <p' * {)Ct'IjJ) = (_l)Ct (u, oCt (<p' * 'IjJ)) = (oCtu , cp' * 'IjJ) = (({)Ctu ) * cp, 'IjJ). 

Together with (2.24), this proves the first equality in (2.23). 
We still need to prove that u * <p E Coo (JRn). What we already know is 

that u * cp is continuous and all its distributional derivatives oCt (u * cp) are 
continuous as well. The proof will be completed if we prove the following 
fact (here odist and {)clas stand for the distributional and classical derivatives, 
respectively) . 

CLAIM. If fEe (JRn) and ojist fEe (JRn) then oras f exists at any point 
and is equal to ofist f . 

Let cp be a mollifier. By Lemma 2.1, the function f * <Pc is COO-smooth. 
Setting 9 = ojist f, using the identity (2.4) of Lemma 2.1 and the identity 
(2.23), we obtain 

ojlas (J * <Pc) = ojist (J * CPc) = (O;ist 1) * CPc = 9 * CPc' 

By Lemma 2.4, we obtain f * CPc -+ f as c -+ 0 and 

oras (J * CPc) = 9 * CPc -+ 9, 

where the convergence is locally uniform. This implies that araB f exists at 
any point and is equal to 9. 0 

In the rest of this section, we extend Lemma 2.4 to the spaces 1)' and 
L2. 

LEMMA 2.10. Let <p be a mollifier in JRn . 

(i) If u E 1) (JRn) then u * CPc ~ u. 

(ii) If u E 1)' (JRn) then u * CPc ~ u. 

PROOF. (i) By Lemma 2.4, we have u * <Pc ::::::t u. Using Lemma 2.1 or 
2.9, we obtain, for any multiindex a, 

oCt (u * CPc) = ({)Ctu ) * CPc::::::t {)Ctu. 



2.5. APPROXIMATION OF DISTRIBUTIONS BY SMOOTH FUNCTIONS 31 

Finally, since all the supports of U * !.pe are uniformly bounded when £ -+ 0, 

we obtain that U * '!.pe ~ u. 
(ii) By Lemma 2.8, for any 'Ij; E V (Rn ), 

(u*!.pe,'Ij;) = (u,!.p~*'Ij;). 

Since !.p~ * 'Ij; ~ 'Ij; by part (i), we conclude that 

( U * !.pe, 'Ij;) -+ (u, 'Ij;) 

h· h . l' 1)1 W IC Imp les U * !.pe ---+ U. 

THEOREM 2.11. Let!.p be a mollifier in Rn. 
(i) If U E L2 (Rn) then U *!.p is also in L2 (Rn) and 

lIu * !.pIlL2 ~ lIulIL2. 

Moreover, we have 
L2 

U * !.pe ---+ U as £ -+ O. 

(ii) If U E Lroc (Rn) then 
L2 

U * !.pe ~ U as £ -+ O. 

(iii) If U E V' (Rn) and 

liminf Ilu * !.pell£2 < 00 
e-+O 

then u E L2 (Rn) and 

lIullL2 ~ liminf lIu * !.pellL2. 
e-+O 

o 

(2.25) 

(2.26) 

PROOF. (i) + (ii) Applying the Cauchy-Schwarz inequality and using 

r !.p (y) dy = 1, 
J~.n 

we obtain 

whence 

IU*!.p(x)1 2 (in !.p(y)U(X_ y)dy)2 

_ (in!.p (y)1/2!.p (y)1/2 U (x _ y) dY) 2 

< r !.p(y)dy r !.p(Y)U2(x-y)dy Jltn Jltn 
r !.p (y) U2 (X - y) dy, Jltn 

lIu*!.p1l~2 ~ r r !.p(Y)U2(x-y)dxdy= lIulI~2' JR.n Jltn 
Alternatively, (2.25) follows from Exercise 2.20 with q (x, y) = !.p (x - y) and 
K==:l. 
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After we have proved using (2.25), the convergencies in L2 and L?oc are 
treated in the same way as those in Ll and L[oc in Lemma 2.4. 

(iii) Let Ck -+ ° be a sequence such that 

liminfllu*cpcllp = lim Ilu*CPckllp· 
C-+O k-+oo 

Set Uk = U * CPck' Since the sequence {Uk} is bounded in L2, by the weak 
compactness of a ball in L2, there exists a subsequence {Uk.} that converges 
weakly in L2, say to v E L2. The weak convergence in L2 obviously implies 

VI VI 
the convergence in V', whence Uk. --+ V. By Lemma 2.10, we have Uk --+ u, 
which implies U = v and, hence, U E L2. 

We are left to verify (2.26). The fact that Uk converges to U weakly in 
L2 implies, in particular, that 

(Uk, u)p -+ (U, u)p . 

Using the Cauchy-Schwarz inequality, we obtain 

lIulli2 ~ lim lIukllpllulIL2, 
k-+oo 

whence (2.26) follows. o 
REMARK 2.12. It is useful to observe that the proof of inequality (2.25) 

works for a more general class of functions cP, in particular, if cP is a non­
negative integrable function on ~n satisfying 

r cP (y) dy ~ 1 
JIRn 

(cf. Exercise 2.19). 

Exercises. 

2.17. Prove that if u, v E L2 (lRn) and OiU, O.V E L2 (lRn) for some index i, then 

(OiU, Vh2 = - (v, O.Vh2 . (2.27) 

2.18. Let 1 < p < 00, u E LP (lRn
), and i.p be a mollifier in lRn. 

(a) Prove that u * cp E LP and 

(b) Prove that 
LP 

U * i.pe ~ u as E: -+ O. 

2.19. Prove that if f E LP (lRn), 1 $ p $ 00, and 9 E L1 (lRn) then f * 9 exists, belongs to 
£P (lRn), and 

IIf*gllp $lIfllplIgIl1. 
2.20. (Lemma of Schur) Let (M, f.t) be a measure space with a O"-finite measure f.t. Let 
q (x, y) be a non-negative measurable function M x M such that, for a constant K, 

L q(x,y) df.t (y) $ K for almost all x (2.28) 

and L q (x, y) df.t (x) $ K for almost all y. (2.29) 
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Prove that, for any I E Lr (M,p.), 1 ~ r ~ 00, the function 

QI (x) := 1M q (x, y) I (y) dp. (y) 

belongs to L r (M, p.) and 
(2.30) 

2.21. Under the condition of Exercise 2.20, assume in addition that, for some constant C, 

q (x,y) ~ C, 

for almost all x,y E M. Prove that, for any IE Lr (M,p.), 1 ~ r ~ +00, the function QI 
belongs to L S (M, 1-') for any s E (r, +00] and 

IIQIIiLs ~ c1/r-1/sK1/r'+1/sIl/IlLr, (2.31) 

where r' is the Holder conjugate to r. 

2.22. A function I on a set S C ]Rn is called Lipschitz if, for some constant L, called the 
Lipschitz constant, the following holds: 

II (x) - I (y)1 ~ L Ix - yl for all x, yES. 

Let U be an open subset of]Rn and let I be a Lipschitz function in U with the Lipschitz 
constant L. For any E: > 0, set 

Ue = {x E U : BE (x) C U} . 

Let I{J be a mollifier in ]Rn. 

(a) Show that UE is an open set and 
00 

(2.32) 
k=l 

Extend I to ]Rn by setting I = 0 outside U. Prove that 1* cpe is Lipschitz in Ue 
with the same Lipschitz constant L. 

(b) Prove that, for any 5> 0, 1* CPE ~ I in Uli as E: -+ 0. 

2.23. Prove that if I is a Lipschitz function in an open set U C ]Rn then all the distribu­
tional partial derivatives 8d belong to Loo (U) and IV/I ~ L a.e. where 

IV/I:= (t(8j I)2) 1/2 

and L is the Lipschitz constant of I. 

2.24. Prove that if I and 9 are two bounded Lipschitz functions in an open set U C ]Rn 
then f 9 is also Lipschitz. Prove the product rule for the distributional derivatives: 

8j (1g) = (8j l) 9 + I (8;g) . 

2.25. Let I (x) be a Lipschitz function on an interval [a, b] C lR. Prove that if f' is its 
distributional derivative then 

lb !' (x) dx = f (b) - I (a). 

~rove that if 9 is another Lipschitz function on [a, bj then 

lb !' gdx = (f g]: - lb I g'dx. (2.33) 
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2.6. Weak derivatives and Sobolev spaces 

2.6.1. Spaces of positive order. If U E Lfoc (D) and its distributional 
derivative [)OI.u happens to belong to Lfoc (D) then we say that 801.u is a weak 
derivative4 of u. 

For any non-negative integer k, consider the following space: 

Wk (D) = {u E L2 (D) : f)OI.u E L2 (D) for all a with lal s k} , 
which is a linear space with the following inner product: 

(U,V)wk(n) := L 1801.u 801.VdP, = L ([)OI.U,8C1.V )L2(n)· 
10001~k n ICl.I~k 

The associated norm is given by 

lIull~k(n) = L il[)Cl.uI2 dp, = L 11 8C1.u lli2(n) 
ICl.I~k n 10001~k 

In fact, Wk (D) is a Hilbert space (cf. Exercise 2.28). 
The spaces W k (D) are called the Sobolev spaces. For example, WO (D) == 

L2 (D), 

and 
n 

(U,V)Wl = (U,V)L2 + L([)jU,[)jV)£2' 
j=l 

Obviously, we have 

for any k :;::: O. 
Let us mention the following simple properties of the Sobolev spaces. 

CLAIM. (a) If u E Wk and lal s k then [)Cl.u E wk-Ial. 
(b) If [)au E Wk for all a with lal s m then u E wk+m. 

PROOF. The first property is obvious. To prove the second one, observe 
that any multiindex 13 with 1131 s k + m can be presented in the form 13 = 
a+a' where !a! s m and la'i s k. Hence, 8!3u = [)a

l 

([)Cl.u) E Wk-ICI.'I C L2, 
whence the claim follows. 0 

Let D' be an open subset of D. For any U E Wk (f2), the restriction of u 
to D' belongs to Wk (D') and 

Ilullwk(n/) S Ilullwk(n)' 

Define the local Sobolev space Wi~c (D) as the class of all distributions u E 

V' (D) such that u E Wk (D') for any open set D' <s D. The topology in 

4The weak derivative 8C<u can be equivalenlty defined as a function from Lfoc (0) that 
satisfies the identity (2.16). 
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Wfoc (0) is defined by the family of the seminorms II u II Wk (0/)' Let us mention 
also that 

Wl~c (0) = {u E L~oc (0) : {jau E L~oc (0) for all a with lal ~ k} . 

The scale of spaces Wl~c (0) is in some sense analogous to that of Ck (0), 
although, for the spaces Wi~c' we use weak derivatives, whereas the spaces C k 

are associated with continuous derivatives. If u E Ck then all the classical 
derivatives of u are also weak derivatives and, for any open set 0' <s 0, 

IIullwk(O/) ~ Cllullck(o/). 

Hence, we have an embedding 

C k (0) '--+Wi~c (0) . 

The next statement extends Theorem 2.11 to the spaces Wk. 

THEOREM 2.13. Let 'P be a mollifier in JRn and k be a non-negative 
integer. 

(i) If u E Wk (JRn) then u * 'P is also in Wk (JRn) and 

IIu * 'PIIWk ~ IIullwk. (2.34) 

Moreover, we have 
Wk 

U * 'Pe: --+ u as e ~ O. 

(ii) If u E V' (JRn) and 

liminf IIu * 'Pe:llwk < 00, 
e:-+O 

then u E Wk (JRn) and 

IIullwk ~ liminf Ilu * 'Pe:IIWk. e:-+O 

PROOF. (i) By Lemma 2.9, we have 

[)a (u * 'P) = ([)au ) * 'P. 

Applying Theorem 2.11 to {jau , where lal ~ k, we obtain 

II{ja (u * 'P) 11£2 ~ II[)au ll£2 

and 
£2 

{ja( U * 'P) --+ [)a'P, 

whence (2.34) and (2.35) follow. 

(2.35) 

(2.36) 

(2.37) 

(ii) For any multiindex a with la! ~ k, we have by (2.36) and (2.37) 
that 

liminf" ([)au) * 'Pe:II£2 < 00. 
e:-+O 

By Theorem 2.11, we conclude that {jau E L2 and 

II{jau ll£2 ~ liminf II{ja (u * 'Pe:) 11£2, 
e:-+O 

whence the both claims follows. o 
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Exercises. 

2.26. Let fECI< (n), where k is a non-negative integer. 

(a) Prove that if 

IIflbcn) < 00 

then, for any u E WI< (n), also Iu E WI< (n) and 

IIlullwk Cf!) S; Cll/llck(f!) Ilullwk(f!)' 

where the constant C depends only on k, n. 
(b) Prove that if u E Wi~c (n) then lu E Wl~c (n). 

(2.38) 

2.27. Assume that II< -+ I in WI< and aCt f -+ g in WI<, for some multiindex a such that 
lal S; k. Prove that g = aCt f. 

2.28. Prove that, for any open set ncR", the space Wk (n) is complete. 

2.29. Denote by W: (n) the subset of W k (n), which consists of functions with compact 
support in n. Prove that 1) (n) is dense in W: (n). 

2.30. Prove that 1) (Rn) is dense in WI< (Rn
), for any non-negative integer k. Warning: 

for an arbitrary open set n C Rn
, 1) (n) may not be dense in WI< (n). 

2.31. Denote by WJ (n) the closure of 1) (n) in WI (n). Prove that, for any u E WI (n) 
and v E WJ (n), 

(aiu,vhz = - (u, a;V)L2 . 

2.32. Let u E L2 (Rn) and a"u E L2 (Rn) for some multiindex a. 

( a) Prove that 

a;;u = (i~)" U (~) , 

where u is the Fourier transform of u and ~" == ~fl ... .;~n, i" == i''''. 
(b) Prove the following identity 

(2.39) 

(2.40) 

(2.41) 

2.33. Let u E L2 (Rn). Prove that if the right hand side of (2.41) is finite then B"u belongs 
to L2 (Rn) and, hence, the identity (2.41) holds. 

2.34. Prove that the space WI< (Rn) (where k is a positive integer) can be characterized 
in terms of the Fourier transform as follows: a function u E L2 (Rn) belongs to WI< (Rn) 
if and only if 

Moreover, the following relation holds: 

(2.42) 

where the sign ~ means that the ratio of the both sides is bounded from above and below 
by positive constants. 
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2.6.2. Spaces of negative order. In the previous section, the Sobolev 
space Wk of order k was defined for any non-negative integer k. Our next 
goal is to define the Sobolev spaces of negative orders. 

Fix an open set 0 C Rn and, for any positive integer k and a distribution 
u E V' (0), set 

(u,<p) 
Ilullw-k := sup II II . 

~E'D(O)\{O} <P Wk 

Then the space W- k (0) is defined by 

W-k (0) := {u E V' (0) : Ilullw-k < oo} . 
It follows directly from the definition (2.43) that 

I(u, <p)1 :S lI u llw-k(o) II <p1I wk(n) , 

for all u E W- k (0) and <p E V (0). 

(2.43) 

Here are some simple properties of the spaces Wk (0) for all k E Z. 

CLAIM. If k < m then 
(2.44) 

and, consequently, wm<--+ Wk. In particular, if k < 0 then L2<--+ Wk. 

PROOF. If k 2: 0 then this property is already known, so assume k < O. 
If m > 0 then we can replace it by m = O. Hence, we can assume k < m :S O. 

Observe that the definition (2.43) is valid also for k = 0, that is, for 
the L2-norm, which follows from the fact that V (0) is dense in L2 (0) (see 
Theorem 2.3). Since Ikl > Iml, we have I/<Pl/Wlkl 2: I/<pllwlml, and (2.44) 
follows from (2.43). 0 

CLAIM. If k E Z and u E Wk (0) then OjU E W k - 1 (0) and 

lIojullwk-l :S Ilullwk. (2.45) 

PROOF. If k 2: 1 then this is already known, so assume k :S O. For any 
<p E V, we have 

whence 

(OjU,<p):S Ilullwklloj<pllwlki :S lIullwkl/<pl/wlkl+l, 
and (2.45) follows. o 

In Particular, we obtain that if u E L2 then oau E W-iai, which gives 
'many examples of distributions from Wk with negative k. 

CLAIM. If 0' C 0 then, for any k E Z, 

I/ullwk(nl) :S l/uIlWk(O), 
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PROOF. For k ~ 0 this is already known. For k < 0 it follows from 
(2.43) and the fact that 1) (n') c 1) (n). 0 

The function space Wtoc (n) for k < 0 is defined in the same way as 
that for k ~ 0 in the previous section. Namely, a distribution u E 1)' (n) 
belongs to Wi~c (n) if u E Wk (n') for any open set n' <s n. The topology in 
Wl~c (n) is defined by the family of the seminorms Ilullwk(n/). It follows from 
the above statements that Wi~c (n) increases when n expands and when k 
decreases. 

It is interesting to mention that any function from Ltoc (n) belongs to 
Wi~: (n) if k > n/2 - see Example 6.2 below. 

LEMMA 2.14. Let k E Z. 

(a) If f E 1) (n) and u E Wi~c (n) then fu E Wk (n) and 

IIfullwk(n) :::; Cllfllclkl(n)llullwk(n/), (2.46) 

where n' is an open set conta?,ning supp f and the constant C de­
pends on k, n. 

(b) If f E coo (n) and u E Wl~c (n) then fu E Wi~c (n). 

PROOF. (a) If k ~ 0 then we obtain by Exercise 2.26 fu E Wk (n') and 

Ilfullwkcn/) :::; Gllfllek(n/) lI u llwk(o/), 

whence the claim follows. 
Let now k < O. Assuming that <p ranges in 1) (n) and 11<pllwlkl(n) = 1, 

we have 

IIfu llwk(n) = sup (fu, <p) = sup (u, f<p) :::; sup Ilf<pllwlkl(n') lIullwk(n/), 
~ ~ ~ 

where the last inequality holds because f<p E 1) (n'). We are left to notice 
that 

IIf<pllwlkl(n') :::; Cllfilelklll<pllwlki = Cllfllelkl, 
whence the claim follows. 

(b) Let us show that fu E Wk (n') for any open set n' <s n. Fix a 
function <p E 1) (n) such that <p == 1 in n'. Then <pf E 1) (n) and, by the 
previous part, <pfu E Wk (n). It follows that <pfu E Wk (n') and, hence, 
fu E Wk (n'). 0 

LEMMA 2.15. Let k be a positive integer. For any u E W-k (lRn) , there 
exists a unique function v E Wk (Rn) such that 

u = L (_1)laI82av. 

lalSk 

Moreover, we have the identity 

lIullw-k = Ilvllwk. 

(2.47) 

(2.48) 
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Note that, for any v E Wk (Rn), the equation (2.47) defines u E W-k (Rn). 
Hence, we obtain a norm preserving bijection between W k (Rn) and W- k (Rn). 

PROOF. By definition, u E Wk CIL~n) means that 

_ I(u, tp)1 
lIullw-k = sup II II < 00. 

'PEV(JRn)\{o} tp Wk 

Hence, u can be considered as a linear functional on V (JRn ) bounded in 
the norm Wk. Since V (Rn) is dense in Wk (Rn) (see Exercise 2.30), this 
functional uniquely extends to a bounded functional on Wk (Rn), with the 
same norm. Denote it by Fu (tp). 

However, W k is Hilbert space and, by the Riesz representation theorem, 
there exists a unique function v E W k (Rn) such that 

Fu (tp) = (v, tp )Wk for all tp E Wk (JRn
) . 

In particular, this means, that for all tp E V (Rn), 

(u, tp) = (v, tp)Wk = L (aav , aatp)£2 
lal~k 

L (aav,aatp) = L (_l)lal (a2av,tp) , 
lal~k lal~k 

which proves the first claim. 
The functional tp t-+ (v, tp)Wk on W k (Rn) has the norm IIvllwk, whence 

it follows that IlFull = Ilvllwk where IlFull is the norm of the function Fu 
on Wk (Rn). By the first part of the proof, IlFull = lIullw-k, whence (2.48) 
follows. 0 

The following statement extends Theorem 2.13 to the Sobolev spaces of 
negative order. 

THEOREM 2.16. Let k be a positive integer. If u E W- k (Rn) and tp is 
a mollifier in Rn then 

W-k 
U * tpe --+ u as c ~ O. 

PROOF. Consider the following differential operator 

D = L (_1)lala2a, 

lal9 

~hich maps Wk into W- k • By Lemma 2.15, for any u E W- k (Rn), there 
exists a unique v E W k (JRn ) such that u = Dv, and also 

IIDvllw-k = IIvllwk . 

.using Lemma 2.9, we obtain 

u * tpe - U = (Dv) * tpe - Dv = D (v * tpe - v) , 
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whence 

lIu * 'Pc - ullw-k = IID(v * 'Pc - v)llw-k = Ilv * 'Pc - vllwk. 
Since, by Theorem 2.13, the right hand side here tends to 0, we obtain that 
u * 'Pc --t u in W- k , which was to be proved. 0 

Exercises. 

2.35. Let k be a positive integer. Prove that if u E W- k (JRn) and If' is a mollifier in JRn 
then 

(2.49) 

2.36. Prove that, for any positive integer k, the space W- k with the norm II . IIW-k is a 
Hilbert space. 

2.7. Heat semigroup in lRn 

Let ~ be the Laplace operator in lRn and 

Pt (xl = (4n~)"/2 exp e:;') (2.50) 

be the heat kernel in lRn (cf. Section 1.3). For any t 2 0, denote by Pt the 
following operator on functions 

Pd = { Pt * j, t > 0, 
j, t=O, 

wnenever'the convolution Pt * j makes sense. Denote by cb (Rn) the class of 
bounded continuous functions in lRn. By Theorem 1.3, if j E cb (Rn) then 
the function Pd (x) is Coo -smooth in lR+ x lRn and solves in lR+ x Rn the 
heat equation 

(2.51) 

Besides, Pd (x) is bounded and continuous in [0, +(0) x lRn. 
In particular, for any fixed t 2 0, we can consider Pt as an operator 

from Cb (lRn) to Cb eRn) such that Ptf --t j as t --t ° locally uniformly. The 
identity 

Pt * Ps = PHs (2.52) 

(see Example 1.9) implies 

PtPs = PHS' 
for all t, s 2 0. Hence, the family {Pth>o is a semigroup. It is called the 
heat semigroup of the Laplace operator in Rn. 

Here we consider some properties of the heat semigroup, which extend 
Theorem 1.3 to the class L2. These properties are closely related to the 
properties of mollifiers considered in the previous sections, which is not 
surprising because the heat kernel as a function of x in many respects looks 
like a mollifier although with non-compact support (compare, for example, 
Fig. 1.1 and 2.1). 
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In Chapters 4 and 7, the heat semigroup will be considered on an ar­
bitrary weighted manifold, and most of these properties will be retained, 
although from a difference perspective. 

We use the notation Ot == It and OJ == a~j for j = 1, ... , n. Denote 
by Ck (Rn) the subspace of C k (Rn) that consists of functions u whose all 
partial derivatives up to the order k are bounded functions. 

LEMMA 2.17. If f E Cff (Rn) then Pt! E Cr ([0, +00) x Rn). More­
over, the following identities hold in [0, +(0) x Rn: 

(2.53) 

and 

Ot (Pt!) = Pt (t::..f) . (2.54) 

PROOF. The function Pt! is bounded and COO-smooth in (0, +00) x R n 

by Theorem 1.3. The identity (2.53) for t > ° follows from Lemma 2.1 
because 

OJ (Pt!) = OJ (Pt * f) = Pt * ojf = Pt (ojf)· (2.55) 

This proves also (2.54), because using the heat equation (2.51) and iterating 
(2.53), we obtain 

Ot (Pt!) = t::.. (Pt!) = Pt (t::..f) . 

To extend all this to t = 0, observe that the right hand sides of (2.53) and 
(2.54) are continuos functions up to t = 0. Therefore, the derivatives in 
the left hand side exist and satisfy these identities also up to t = 0. In 
particular, we obtain that Pt! is CI-smooth up to t = 0. Since ojf and t::..f 
are bounded functions, the identities (2.53) and (2.54) imply that OJ (Pt!) 
and Ot (Pt!) are bounded in [0, +(0) x Rn, that is, 

(2.56) 

Since ojf and t::..f belong to Cff (Rn), we obtain by (2.53), (2.54) and (2.56) 
that OJ (Pt!) and odPt!) are also in the class Cl ([0,+00) x Rn), which 
implies that 

Pt! E cl ([0, +00) x Rn). 

Continuing by induction, we conclude the proof. o 

The following statement is similar to Theorem 2.11 but a mollifier is 
replaced by the heat kernel. 

LEMMA 2.18. If f E L2 (Rn) then Pt! E L2 (Rn) for any t ~ 0, and 

(2.57) 

Moreover, we have 
L2 

Pt! ----7 f as t -+ 0. (2.58) 
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PROOF. For t = 0 the claim is trivial. If t > 0 then we have by Lemma 
1.1 

(2.59) 

Since Pd = f * Pt, the first claim follows from an extension of Theorem 2.11 
by Remark 2.12. 

Thanks to (2.57) and the fact that Cgo (Rn) is dense in L2 (Rn) (see 
Theorem 2.3), it suffices to prove (2.58) for f E cgo (Rn). Assuming that, 
we have by Theorem 1.3, 

sup IPd - fl -t 0 as t -t 0, 
lRn 

because the function f is uniformly continuos (cf. Remark 1.4). Since (2.59) 
implies 

(cf. Lemma 2.4), we obtain 

IIFtf - flli2 ~ sup IPd - flllPd - fllL1 ~ 2 sup IPd - fillfliv -t O. 
lRn lRn 

o 
See also Exercise 1.4 for an alternative proof of (2.57) and (2.58). 
Hence, Pt can be now considered as a bounded operator from L2 to L2. 

The semigroup property 

(2.60) 

obviously extends to L2 because Cff is dense in L2. A new feature of Pt 
which comes with L2 spaces, is the symmetry, in the following sense: 

for all f, 9 E L2. Indeed, if f, 9 E Cff then this trivially follows from 

(Pd, g) - Ln (LnPt(X-Y)f(Y)dY)9(X)dX 

- r r pt{ x - y) f (y) 9 (x) dydx 
Jw.n JlR"" 

(2.61) 

and from a similar expression for (j, Ptg), because Pt (x - y) = Pt (y - x); 
then the extension to L2 is obvious. 

In the next statement, we will use the notion of convexity. Recall that 
a function <p (t) on [0, +00) is called convex if, for all t, s ~ 0 and € E (0,1), 

It' (€t + (1 - c) s) ~ c<p (t) + (1 - c) It' (s) . (2.62) 

If <p is continuous then it suffices to have this property for € = 1/2, that is, 

(2.63) 
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Indeed, by iterating (2.63), one obtains (2.62) for all binary fractions c, 
and then for all real c by continuity. A non-negative function r.p is called 
log-convex if log r.p is convex. The latter obviously amounts to 

r.p C;s) ~ Vr.p(t)r.p(s). (2.64) 

Comparing (2.63) and (2.64) we see that the log-convexity implies the con­
vexity. 

The following convexity lemma is frequently useful. 

LEMMA 2.19. For any f E L2 (Rn ), the function 

r.p (t) := (Pd'!)£2 

on t E [0, +(0) is non-negative, decreasing, continuous, and log-convex. 

PROOF. The proof is based only on the properties (2.57), (2.58), (2.60), 
(2.61) of the semigroup Pt and, hence, the statement of Lemma 2.19 remains 
true in any other setting where these properties can be verified. In particular, 
this will be the case for the heat semigroup on an arbitrary manifold - see 
Section 4.3. 

We start with the observation that, by (2.60) and (2.61), 

r.p (t) = (Pt/ 2Pt/ 2 f, f) = (Pt/ 2 f, pt/ 2 f) = IIPt/ 2 fIl 2
, (2.65) 

which implies <p (t) ::::: O. Using (2.60) and (2.57), we obtain, for all t, s ::::: 0, 

IIPHsfll = liPs (Pd) II ::; IlPdll, 
that is, the function t H- IIPtfll is decreasing, which implies by (2.65) that 
r.p (t) is also decreasing. The triangle inequality and (2.58) yield 

IIPdll - IIPHsili ::; IlPd - PHsf11 = IlPt (J - Ps!) II ::; Ilf - Psfll -+ 0 

as s -+ 0+ (and the same holds if s -+ 0-), which implies that the function 
t H- IIPdl1 is continuous and, hence, so is r.p (t). 

Finally, we have by the Cauchy-Schwarz inequality 

r.p(2t+2s) = (PHsf,f) = (Psf,Pd) ~ IIPsfllllPdl1 = vr.p (2s)r.p (2t), 

which proves the log-convexity of <po o 
In the next statement, we show that the rate of convergence Pd -+ 1 

as t -+ 0 depends on the regularity of f. If 1 E WI then denote by V 1 the 
''vector'' (8d, ... , 8n f) of its first order partial derivatives, and set 

n 

IV 112 := L 18j /1 2 

j=l 

and llV 111£2 == II IV flllL2 so that 

11111£2 + IIV fll£2 = IIfll~l' 
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If f E W2 then its distributional Laplacian I1f belongs to £2 and 
n 

1II1111L2 ~ L 118}IIIL2 ~ nll/llw2. 
j=l 

LEMMA 2.20. II I E WI (JRn) then, lor any t > 0, 

IIPtf - IIIL2 ~ ViIlV'/lIp· 
If IE W 2 (JRn) then, for any t > 0, 

IIPtf - IIIL2 ~ tlll1/11p· 

(2.66) 

(2.67) 

PROOF. It suffices to prove the both claims for I E 1) (JRn) because 
1) (JRn) is dense both in WI (JRn) and W2 (JRn) (d. Exercise 2.30) and the 
expressions in (2.66) and (2.67) are continuous in WI and W 2, respectively. 
Using the notation <p (t) = (Ptf, f) as in Lemma 2.19, we have 

IiPtf - 1112 = (Pt/, Ptf) - 2 (Ptf, f) + (j, I) = cp (2t) - 2cp (t) + cp (0). (2.68) 

Since <p (2t) ~ cp (t), this implies 

IIPtf - 1112 ~ cp (0) - <p (t) . (2.69) 

Using Lemma 2.17 and the Green formula, we can compute the derivative 
<p' (0) as follows: 

<p' (0) = (8t-{Ptf) It=o, f) = (111, f) = - r IV' fl2 dx = -IIV IlIi2, (2.70) ilRn 

which together with the convexity of <p yields 

cp (t) - cp (0) = t<p' (e) ~ tcp' (0) = -tliV f1l 2
, (2.71) 

where e E (0, t). Combining (2.69) and (2.71), we obtain (2.66). 
To prove (2.67), we need the second derivative of cp, which is computed 

as follows using Lemma 2.17: 

cp' (t) = (8t (Ptf) ,f) = (11 (Ptf) ,I) = (Pt/, 11f), 

and 

<p" (t) = (8t Pt/,I1f) = (Pt (111), 11f). (2.72) 

By Lemma 2.19, (Pt (11f) ,11f) is non-increasing in t; hence, <pI! (t) is non­
increasing. Using (2.68) and (2.72) for t = 0, we obtain 

IIPt! - 11/2 = <p (2t) - 2<p (t) + <p (0) = cpl! (e) t2 ~ cpl! (0) t2 = /ll1f/l 2t2, 

which finishes the proof. o 
See Exercise 2.39 for a Fourier transform proof of Lemma 2.20, and 

Exercises 4.39, 4.40 for an extension of Lemma 2.20 to a general setting of 
manifolds. 
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DEFINITION 2.21. Let B be a Banach space and I be an interval in R. 
A path u : I -+ B is said to be strong differentiable at t E I, if the limit 

lim u (t + c:) - u (t) (2.73) 
e-tO £ 

exists in the norm of B. The value of the limit is called the strong derivative 
of u at t and is denoted by u' (t) or ~~. 

The word "strong" refers to the fact that the limit in (2.73) is understood 
in the strong topology of B, that is, the norm topology. If the limit is 
understood in the weak topology of B then one obtains the weak derivative. 

In the next statement, we consider the function t t-+ Ptf as a path in 
L2. 

THEOREM 2.22. If f E W2 (JRn) then the path t -+ Ptf is strongly dif­
ferentiable in L2 (JRn ) for all t E [0, +00), and 

d 
dt (Ptf) = Ll (Ptf)· (2.74) 

Combining with Lemma 2.18, we see that the path u (t) = Ptf solves 
the Cauchy problem in the L2 sense: it satisfies the heat equation and the 
initial data 

{ 
~~ = Llu, 
ult=o = f, 

where the limits in the both conditions are understood in the L2-norm. 

PROOF. Let us prove first that, when t -+ 0, 

Qtf := Ptf
t
- f ~ Llf in L2 (JRn). (2.75) 

Assume that f E 1) (JRn). Then, by Lemma 2.17, the function Ptf is smooth 
in [0, +00) X JRn, bounded, and all its derivatives are bounded. Therefore, 
by (2.54), 

Ptf (x)t- f (x) =4 8t Ptf (x) It=o = Llf (x). 

It follows that, for any bounded open set 0 C JRn, Qtf -+ Llf in L2 (0). 
Choose 0 to contain K := supp f, and prove that also 

(2.76) 

which will imply (2.75). Since in OC we have f = Llf = ° and Qtf = tPtf, 
(2.76) amounts to 

IIPdUL2(OC) = 0 (t) as t --t 00. 

Since function Ptf (x) is bounded, it suffices to prove that 

IIPtfll£l(.Ilc) = 0 (t) as t -+ 00. (2.77) 
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Denoting by IS the distance from K to the boundary of 0, we obtain 

IIPdllu(nc) < Inc (i pdx - y) If (y)1 dY) dx 

- i (Inc pt(x - y) dX) If (y)1 dy 

< r (;; Pt (x - y) dX) If (y)1 dy J K {lx-YI>c} 

= r if (y)1 dy r pt{z) dz. 
JK J{lzl>e} 

By Remark 1.2, the last integral decays as t -+ 0 faster than any power of 
t, which proves (2.77). 

Let us prove (2.75) for f E W2 (JRn). By Exercise 2.30, there exists a 
sequence Ud cD (JRn) such that fk -+ f in W 2 (I~n). Observing that, by 
Lemma 2.20, 

we obtain 

IIQd - ~f1lL2 ::; IIQd - Qtikll£2 + IIQdk - ~ik1lL2 + II~ik - ~fll£2 
::; IIQdk - ~ik11L2 + 211~ik - ~fll£2 . 

Letting t -+ 0 and then k -+ 00, we obtain (2.75). 
Note that (2.75) is a particular case of (2.74) for t = O. Let us prove 

(2.74) for all t > O. First show that, for any multiindex a of order ~ 2, 

EjO (Pt!) = Pt (aCt f) , (2.78) 

which will imply Pd E W 2• Indeed, for any test function 'ljJ E D (JRn) , we 
have 

(Pt (aCt f), 'ljJ) in (in aa f (x - y) Pt (y) dY) 'ljJ (x) dx 

- in (in aaf(x-y)'lj; (X)dX) pdy)dy 

(_l)ICtI in (i" f (x - y) aa'ljJ (x) dX) Pt (y) dy 

- (_l)ICtI (Pd, aCt'lj;) = (aCt Pd, 'lj;), 

whence (2.78) follows. Applying (2.75) to function Pd E W 2 , we obtain 

Pt+si - Pd = Ps (Pt!) - Pd L2) ~ (Pd) as s -+ 0, 
s s 

which finishes the proof. o 



NOTES 

Exercises. 

2.37. Evaluate function r.p (t) from Lemma 2.19 for f (x) = exp (-JxJ2
) • 

2.38. Show that Lemma 2.17 remains true for f E C;:O (lRn). 
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2.39. Give an alternative proof of Lemma 2.20 using the Fourier transform and Exercises 
1.4,2.32. 

Notes 

This Chapter contains a standard material on distributions and mollifiers in lRn - see, 

for example, [207], [327], [356]. 



CHAPTER 3 

Laplace operator on a Riemannian manifold 

We introduce in this Chapter the notions of smooth and Riemannian 
manifolds, Riemannian measure, and the Riemannian Laplace operator. 
From the previous Chapters, we use here only the material of Section 2.2. 
However, acquaintance with measure theory and integration is required (see 
Appendix A). 

The core of this Chapter is the material of Sections 3.1-3,6, which is 
needed in the rest of the book except for Chapter 6. The material of Sections 
3.7-3.10 is mostly used for constructing examples of manifolds. In Section 
3.11, we introduce the geodesic distance, which will be seriously used only 
in Chapters 11 and 15. 

3.1. Smooth manifolds 

Let M be a topological space. Recall M is called Hausdorff if, for any 
two disjoint points x, y E M, there exist two disjoint open sets U, V c M 
containing x and y, respectively. We say that M has a countable base if 
there exists a countable family {Bj} of open sets in M such that any other 
open set is a union of some sets Bj. The family {Bj} is called a base of the 
topology of M. 

DEFINITION 3.1. A n-dimensional chart on M is any couple (U, r.p) where 
U is an open subset of M and r.p is a homeomorphism of U onto an open 
subset of]Rn (which is .9alled the image of the chart). 

DEFINITION 3.2. A C-manifold of dimension n is a Hausdorff topological 
space M with a countable base such that any point of M belongs to a n­
dimensional chart. 

Let M be a C-manifold of dimension n. For any chart (U, r.p) on M, 
the local coordinate system xl, x2 , .'" xn is defined in U by taking the r.p­
pullback of the Cartesian coordinate system in ]Rn. Hence, loosely speaking, 
a chart is an open set U c M with a local coordinate system. Normally, 
we will identify U with its image so that the coordinates xl, x2 , ••• , xn can 
be regarded as the Cartesian coordinates in a region in ]Rn. However, there 
are some subtleties with this identification, which we would like to clarify 
before we proceed further. 

If U c M is an open set and E c M then the relation E E U (compact 
inclusion) means that the closure E of E in M is compact and E c U. The 

49 
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compact inclusion will be frequently used but it may become ambiguous if 
U is a chart on M because in this case E (5 U can be understood also in the 
sense of the topology of Rn. Let us show that the two m~anings of E (5 U 
are identical. Assume E C U and denote temyorarily by E the closure of E 
in ]Rn. If E (5 U in the topology of]Rn then E is compact in ]Rn and, hence, 
its pullback to M (also denoted by E) is compact in M. The fact that M 
is Hausdorff implies that any compact subset of M is closed. Therefore, it 
is closed in M, which implies E C it and, hence, the inclusion E (5 U holds 
also in M. The converse is proved in the same way. 

If U and V are two charts on a C-manifold M then in the intersection 
Un V two coordinate systems are defined, say xl, x2, ... , xn and yl, y2, ... , yn. 
The change of the coordinates is given then by continuous functions yi = 
yi (xl, ... , xn) and xi = xi (yl, ... , yn). Indeed, if <p is the mapping of U to ]Rn 
and 'l/J is the mapping of V to ]Rn then the functions yi = yi (xl, ... , xn) are 
the components of the mapping 'l/J 0 <p-l and the functions xi (yl, ... , yn) are 
the components of the mapping <p 0 'l/J-I (see Fig. 3.1). 

1 n x, ... ,X 
1 n y, ... ,y 

FIGURE 3.1. The mapping <p 0 'l/J-I 

A family A of charts on a C-manifold is called a Ck-atlas (where k is a 
positive integer or +00) if the charts from A covers all M and the change 
of coordinates in the intersection of any two charts from A is given by Ck _ 

functions. Two Ck-atlases are said to be compatible if their union is again a 
Ck-atlas. The union of all compatible Ck-atlases determines a Ck-structure 
onM. 

DEFINITION 3.3. A smooth manifold is a C-manifold endowed with a 
Coo -structure. 
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Alternatively, one can say that a smooth manifold is a couple (M, A), 
where M is a C-manifold and A is a COO-atlas on M. 

By a chart on a smooth manifold we will always mean a chart from its 
COO-structure, that is, any chart compatible with the defining atlas A. 

A trivial example of a smooth manifold is lRn with the COO-atlas consist­
ing of a single chart (lRn , id). By default, the term "manifold" will be used 
as a synonymous of "smooth manifold" . 

If f is a (real valued) function on a manifold M and k is a non-negative 
integer or 00 then we write f E Ck(M) (or f E Ck) if the restriction of f 
to any chart is a Ck function of the local coordinates xl, x 2

, ... , xn. The set 
Ck (M) is a linear space with respect to the usual addition of functions and 
multiplication by constant. 

For any function f E C (M), its support is defined by 

supp f = {x EM: f (x) 1= O}, 

where the bar stands for the closure of the set in M. Denote by C~ (M) the 
subspace of Ck (M), which consists of functions whose support is compact. 
The fact that compact sets in M are closed implies that if f vanishes outside 
a compact set K c M then supp f C K. 

If n is an open subset of M then n naturally inherits all the above 
structures of M and becomes a smooth manifold if M is so. Indeed, the 
open sets in n are defined as the intersections of open sets in M with n, 
and in the same way one defines charts and atlases in n. 

The hypothesis of a countable base will be mostly used via the next 
simple lemma. 

LEMMA 3.4. For any manifold M, there is a countable family {Ui}~l 
of relatively compact charls covering all M and such that the closure Ui is 
contained in a chart. 

PROOF. Any point x E M is contained in a chart, say Vx . Choose 
Ux (£ Vx to be a small open ball around x so that Ux is also a chart. By 
definition, manifold M has a countable base, say {Bj} ';1' Let us mark each 
set Bj which is contained in some set Ux . Since Ux is open, it is a union of 
some marked sets B j . It follows that all marked Bj cover M. Select for each 
marked B j exactly one set Ux containing Bj. Thus, we obtain a countable 
family of sets Ux covering M, which finishes the proof. 0 

In particular, we see that a manifold M is a locally compact topological 
space. 

The following statement extends Theorem 2.2 and provides a convenient 
vehicle for transporting the local properties of lRn to manifolds. 

THEOREM 3.5. Let K be a compact subset of a smooth manifold M 
and {Uj }7=1 be a finite family of open sets covering K. Then there ex­

ist non-negative functions <pj E Co (Uj) such that I.:J rpj == 1 m an open 
neighbourhood of K and I.:j rpj ~ 1 in M. 
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A sequence of functions {!.pj} as in Theorem 3.5 is called a partition of 
unity at K subordinate to the cover {Uj}. 

A particular case of Theorem 3.5 with k = 1 says that, for any compact 
K and any open set U :J K, there exists a function !.p E Co (U) such that 
!.p == 1 in a neighborhood of K and, besides, 0 ~ !.p ~ 1. Such a function t.p 

is called a cutoff function of K in U. 

PROOF. If each set Uj is a chart then the proof of Theorem 2.2 goes 
through unchanged. In the general case, for any point x E K, there is a 
chart Vx containing x and such that Vx C Uj for some j. Out of the family 
{Vx } xEK covering K select a finite subfamily {lti} also covering K. Since 
each lti is a chart, there exists a partition of unity {'l,Vi} at K subordinate to 
{lti}. Now define !.pI to be the sum of those functions 'l,Vi which are supported 
in U1i !.p2 to be the sum of those functions 'l,Vi which are supported in U2 

but not supported in U1i ... i !.pk to be the sum of those functions 'l,Vi which 
are supported in Uk but not supported in Ub ... , Uk-I' Clearly, each !.pj is 
non-negative and belongs to Co (Uj). Since lti is covered by some Uj) each 
'l,Vi is supported in some Uj and, hence, each 'l,Vi will be used in the above 
construction exactly once. This implies 

2: !.pi == 2: 'l,Vj, 
i j 

which finishes the proof. o 
COROLLARY 3.6. Let {no,} be an arbitrary covering of M by open sets. 

Then, for any function f E Co (M), there exists a finite sequence {1i}:=1 
of functions from Co (M) such that each Ii is supported in one of the sets 
no: and 

f==!I+ .. ·+fk. (3.1) 

PROOF. Let K = supp f and let nb ... , n k be a finite subfamily of {no:} 
covering K. By Theorem 3.5, there exists a partition of unity {!.pi}:=l at K 
subordinate to {ni }:=l' Set Ii = f!.pi so that fi E Co (ni)' Then 

2: Ii = f, 
i 

because on K we have Li!.pi == 1, and outside K all functions f, Ii vanish. 
o 

Exercises. 

3.1. Prove that, on any C-manifold M, there exists a countable sequence {nk} ofrelatively 
compact open sets such that n k <S nk+l and the union of all n k is M. Prove also that if 
M is connected then the sets nk can also be taken connected. 

REMARK. An increasing sequence {nk } of open subsets of M whose union is M, is called 
an exhaustion sequence. If in addition nk <S nk+l (that is, nk is relatively compact and 
Dk c nk+l) then the sequence {nk } is called a compact exhaustion sequence. 
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3.2. Prove that, on any C-manifold M, there is a countable locally finite family of relatively 
compact charts covering all M. (A family of sets is called locally finite if any compact set 
intersects at most finitely many sets from this family). 

3.2. Tangent vectors 

Let M be a smooth manifold. 

DEFINITION 3.7. A mapping ~ : Coo (M) ~ lR is called an lR-differentiation 
at a point Xo E M if 

• ~ is linear; 
• ~ satisfies the product rule in the following form: 

~ (lg) = ~ (I) g (xo) + ~ (g) f (xo) , 

for all f,g E Coo. 

The set of all lR-differentiations at Xo is denoted by TxoM. For any 
~,17 E Txo M one defines the sum ~ + 17 as the sum of two functions on Coo, 
and similarly one defined .x~ for any .x E lR. It is easy to check that both 
e + 17 and .xe are again lR-differentiations, so that Txo M is a linear space over 
lR. The linear space Txo M is called the tangent space of M at Xo, and its 
elements (that is, lR-differentiations) are also called tangent vectors at xo. 

THEOREM 3.8. If M is a smooth manifold of dimension n then the tan­
gent space TxoM is a linear space of the same dimension n. 

We will prove this after a series of claims. 

CLAIM 1. Let U c M be an open set and Uo <s U be its open subset. Then, 
for any function f E Coo (U), there exists a function FE Coo (M) such that 
f:= Fin Uo· 

PROOF. Indeed, let'IjJ be a cutoff function of Uo in U (see Theorem 3.5). 
Then define function F by 

{ 
F='ljJf in U, 
F=O inM\U, 

which clearly satisfies all the requirements. o 
CLAIM 2. Let f E Coo (M) and let f = 0 in an open neighbourhood U of a 
point Xo E M. Then ~ (I) = 0 for anye E TxoM. Consequently, if Fl and 
F2 are smooth functions on M such that PI = H in an open neighbourhood 
of a point Xo EM then e (Fl) = e (F2) for anye E TxoM. 

PROOF. Let Uo be a neighborhood of Xo such that Uo (S U and let 'IjJ be 
a cutoff function of Uo in U. Then we have f'IjJ:= 0 on M, which implies the 
identity f = f (1- 'IjJ). By the product rule, we obtain 

e (I) = e (I (1- 'IjJ)) = e (I) (1- 'IjJ) (xo) + e (1- 'IjJ) f(xo) = 0, 
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because f(xo) = (1- 'IjJ) (xo) = O. The second part follows from the first 
one applied to the function f = Fl - F2. 0 

REMARK 3.9. Originally a tangent vector e E TxoM is defined as a 
functional on Coo (M). The results of Claims 1 and 2 imply that e can be 
regarded as a functional on Coo (U) where U is any neighbourhood of Xo. 
Indeed, by Claim 1, for any f E Coo (U) there exists a function FE Coo (M) 
such that f = F in a neighborhood of XOi hence, set e (f) := e (F). By Claim 
2, this definition of e (I) does not depend on the choice of F. 

CLAIM 3. Let f be a smooth function in a ball B = BR(O) in]Rn where 0 is 
the origin. Then there exist smooth functions hI, h2, ... , hn in B such that, 
for any x E B, 

f(x) = f(o) + xihi(x), (3.2) 
where we assume summation over the repeated index i. Also, we have 

f)f 
hi(O) = -f) . (0). (3.3) 

x~ 

PROOF. By the fundamental theorem of calculus applied to the function 
t t-+ f (tx) on the interval t E [0,1)' we have 

r1 
d 

f(x) = f(o) + Jo dtf(tx) dt, (3.4) 

whence it follows 

f(x) = f(o) + r1 
xif)f)f. (tx)dt. 

Jo x~ 
Setting 

118f 
hi(X) = -8' (tx)dt o x~ 

we obtain (3.2). Clearly, hi E Coo(B). The identity (3.3) follows from the 
line above by substitution x = o. 0 

CLAIM 4. Under the hypothesis of Claim 3, there exist smooth functions hij 
in B, (where i,j = 1,2, ... , n) such that, for any x E B, 

f(x) = f(o) + xi :~ (0) + xixj hij(x). (3.5) 

PROOF. Applying (3.2) to the function hj instead of f we obtain that 
there exist smooth functions hij in B, i = 1,2, ... , n such that 

hj(x) = hj(o) + xihij(x). 

Substituting this into the representation (3.2) for f and using hj(o) = If,(o) 
we obtain 

f(x) = f(o) + xihi(X) = f(o) + Xi :;i (0) + xix3~j(x). 
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o 
Now we can prove Theorem 3.8. 

PROOF OF THEOREM 3.8. Let xl, X 2 , ... , xn be local coordinates in a 
chart U containing Xo. All the partial derivatives 8~i evaluated at Xo are 
lR-differentiations at xo, and they are linearly independent. We will prove 
that any tangent vector ~ E Txo M is represented irr'the form 

·8 .. 
~ = ~~ 8xi where ~z = ~ (XZ) (3.6) 

(note that, by Remark 3.9, the lR-differentiation ~ applies also to smooth 
functions defined in a neighborhood of xo), which will imply that {8~i} ~=l 
is a basis in the linear space TxoM and hence dim TxoM = n. 

Without loss of generality, we can assume that Xo is the origin of the 
chart U. For any smooth function f on M, we have by (3.5) the following 
representation in a ball Be U centred at Xo: 

f(x) = f(xo) + Xi 88
f
. (xo) + xixihij(X) , 

XZ 

where hij are some smooth functions in B. Using the linearity of e, we 
obtain 

e (f) = e (1) f(xo) + e (xi) :~ (xo) + e (xixihij) . (3.7) 

By the product rule, we have 

e (1) = e (1· 1) = e (1) 1 + ~ (1) 1 = 2~ (1) , 

whence e (1) = O. Set Ui = xjhij' By the linearity and the product rule, 

e (XiUi) = e (xi) Ui(XO) + ~ (Ui) xi(xO) = 0, 

because xi and hence Ui vanish at Xo. Hence, in the right hand side of (3.7), 
the first and the third term vanish, and we obtain 

e (f) = ei

8
8f

., (3.8) 
x~ 

which was to be proved. o 
The numbers ~i are referred to as the components of the vector e in 

the coordinate system xl, ... , xn. One often uses the following alternative 
notation for e (f): 

8f 
e(f) == 8t;' 

Then the identity (3.8) takes the form 

8f = ei 8f 
8e 8xi' 

~hich allows to think of ~ as a direction at Xo and to interpret ~~ as a 
dIrectional derivative. 
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A vector field on a smooth manifold M is a family {v (x)} xEM of tangent 
vectors such that v (x) E TxM for any x E M. In the local coordinates 
xl, ... , xn, it can be represented in the form 

. 8 
v (x) = vt (x) -8 .. xt 

The vector field v (x) is called smooth if all the functions vi (x) are smooth 
in any chart. 

Fix a point x E M and let f be a smooth function in a neighborhood 
of x. Define the notion of the differential df at x as follows: df is a linear 
functional on TxM given by 

(df,~) = ~ (f) for any ~ E Tx M , (3.9) 

where (0, -) denotes the pairing of a linear functional on TxMand a vector 
from TxM. Hence, df is an element of the dual space T;M, which is called a 
cotangent space. It is known from linear algebra that the dual space is also 
a linear space of the same dimension n. The elements of T; M are called 
covectors. 

Any basis {el, ... ,en}in TxM has a dual basis {el, ... ,en} in the dual 
space T; M, which is defined by 

( i) .t"i {1, j = i, 
e , ej = Uj := 0 . ..../.. . 

, J r z. 

For example, the basis {8~'} has dual {dxi} because 

. 8 a· . 
(dx\ -8 .) = -a .xt = 8J~' 

xJ xJ 

The covector df can be represented in the basis {dxi} as follows: 

af . 
df = -8 .dxt, xt (3.10) 

that is, the partial derivatives i!r are the components of the differential df 
in the basis {dxi}. Indeed, for any j = 1, ... , n, 

af i a af i a af i af a 
(-a .dx '-a .) = -a .(dx '-a .) = -8 .8J. = -8 . = (df'-a .). xt xJ xt xJ xt xJ xJ 

3.3. Riemannian metric 

Let M be a smooth n-dimensional manifold. A Riemannian metric (or 
a Riemannian metric tensor) on M is a family! g = {g(X)}XEM such that 
g( x) is a symmetric, positive definite, bilinear form on the tangent space 
TxM, smoothly depending on x E M. 

lOne can also say that g is a smooth (0,2)-tensor field on M. 
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Using the metric tensor, one defines an inner product (', ')g in any tan­
gent space TxM by2 

(~, 'f/)g == g (x) (~, 'f/), 

for all tangent vectors e, 'f/ E TxM. Hence, TxM becomes a Euclidean space. 
For any tangent vector e E TxM, its length is defined by 

1~lg = (~,~)~/2. 

In the local coordinates xl, ... , xn, the inner product in TxM has the form 

(3.11) 

where (9ij (x»~j=l is a symmetric positive definite n x n matrix. The func­
tions 9ij (x) are called the components of the tensor g in the coordinates 
xl, ... , xn. The condition that g (x) smoothly depends on x means that all 
the components 9ij (x) are COO-functions in the corresponding charts. It 
follows from (3.11) that 

8 8 
9ij = (-8 ., -8 .)g. 

x~ Xl (3.12) 

DEFINITION 3.10. A Riemannian manifold is a couple (M, g) where g is 
a Riemannian metric on a smooth manifold M. 

A trivial example of a Riemannian manifold is ]Rn with the canonical 
Euclidean metric glRn defined in the Cartesian coordinates xl, .'" xn by 

glRn = (dxl)2 + ... + (dxn)2. 

For this metric, we have (9ij) = id. 
It is frequently convenient to write the metric tensor g in the form 

g = 9ijdxidxj , (3.13) 

where dxidxj stands for the tensor product of the covectors dxi and dxj , 
which is a bilinear functional on TxM defined by 

dxidxj(e,'f/) = (dXi,~)(dxj,'f/), 

where (., .) is the pairing of covectors and vectors. Indeed, since 

(dxi,~) = e (xi) = ~i, 

(3.13) is equivalent to g (e, 'f/) = 9ij~i~, which is just another form of (3.11). 
Let (M, g) be a Riemannian manifold. The metric tensor g provides 

a canonical way of identifying the tangent space TxM with the cotangent 
space T;M. Indeed, for any vector ~ E TxM, denote by g (x) ~ a covector 
that is defined by the identity 

(g (x) e, 'f/) = (e, 'f/)g for all 'f/ E Tx M . (3.14) 

2In the context when the metric tensor g is fixed, we will normally drop the subscript 
g from all notation. 
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Clearly, this makes g (x) into a linear mapping from TxM to T;M. In the 
local coordinates, we have 

which implies 
(g (x) ~)j = gij~i. 

In particular, the components of the linear operator g (x) are 9ij - the same 
as the components of the metric tensor. With a slight abuse of notation, 
one writes ~j == (g (x) ~)j so that the same letter is used to denote a vector 
and the corresponding covector. In this notation, we have ~j = gij(,i. 

Observe that if ~ # 0 then g (x ) ~ is also non-zero as covector, because 
(g(x)~,~) > O.Therefore, the mapping 

g (x) : TxM -+ T;M 

is injective and, hence, also bijective. Consequently, it has the inverse map­
ping 

g-l (x) : T;M -+ TxM , 

whose components are denoted by (gij) so that 

(lj) = (gij)-l . 

Hence, for any covector wE T;M, g-l (x)w is a vector whose components 
are given by 

(3.15) 

Obviously, g-l (x) can be considered as an inner product in T;M: for all 
V,W E T;M, set 

(v, W)g-l := (g-l (x) v, g-l (x) w)g = (v, g-l (x) w). 

It follows that, in the local coordinates, 

(V,W)g-l = gijviWJ' 

For any smooth function f on M, define its gradient '\1 f (x) at a point 
xEMby 

'\1 f (x) = g-l (x) df (x) (3.16) 

that is, 'Vf(x) is a covector version of df(x). Applying (3.14) with ~ = 
"f(x), we obtain, for any 'fJ E TxM, 

8f 
('V f, 'fJ)g = (df, 'fJ) = 8'fJ' (3.17) 

which can be considered as an alternative definition of the gradient. In the 
local coordinates xl, ... , xn , we obtain by (3.15) and (3.16) 

('\1 f)i = lj 88 f. . (3.18) 
xJ 
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If h is another smooth function on M then setting in (3.17) 'fJ = \1h and 
using (3.18), we obtain 

"of oh 
(\1 f, \1h)g = (df, \1h) = lJ oxi oxj = (df, dh)g-l. (3.19) 

Exercises. 

3.3. Prove the product rule for d and \7: 

d (uv) = udv + vdu 

and 
\7 (uv) == u\7v + v\7u, 

where u and v are smooth function on M, 

3.4. Prove the chain rule for d and \7: 

df (u) = !' (u) du 

and 
\7 f (u) = !' (u) \7u 

where u and f are smooth functions on M and JR, respectively. 

3.4. Riemannian measure 

(3.20) 

Some basic knowledge of the measure theory is required in this section 
(see the reference material in Appendix A, Section AA). 

Let M be a smooth manifold of dimension n. Let B (M) be the smallest 
O'-algebra containing all open sets in M. The elements of B (M) are called 
Borel sets. We say that a set E c M is measurable if, for any chart U, the 
intersection En U is a Lebesgue measurable set in U. Obviously, the family 
of all measurable sets in M forms a O'-algebra; denote it by A (M). Since 
any open subset of M is measurable, it follows that also all Borel sets are 
measurable, that is, B (M) c A (M). 

The purpose of this section is to show that any Riemannian manifold 
(M, g) features a canonical measure v, defined on A (M), which is called the 
Riemannian measure (or volume). This measure is defined by means of the 
following theorem. 

THEOREM 3.11. For any Riemannian manifold (M, g), there exists a 
unique measure v on A (M) such that, in any chart U, 

dv = Vdetgd'x, (3.21) 

where g = (gij) is the matrix of the Riemannian metric g in U, and ,X is the 
Lebesgue measure in U~~ . 

Furthermore, the'measure v is complete, 1/ (K) < 00 for any compact set 
K C M, v (n) > 0 for any non-empty open set n c M, and v is regular in 
the following sense: for any set A E A (M), 

v (A) = sup {1/ (K) : K C A, K compact} (3.22) 
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and 
v (A) = inf {v (U) : A en, n open} . (3.23) 

For the proof we use the following lemma. 

LEMMA 3.12. Let xl, ... , xn and yl, ... , yn be the local coordinate systems 
in open sets U and V, respectively. Denote by gX and gY the matrices of g 
in the coordinates xl, ... , xn and yl, ... , yn, respectively. Let J = (Jf) ~,i=l be 

the Jacobian matrix of the change y = y (x) defined in un V by 

k _ ayk 
Ji - axi ' (3.24) 

where k is the row index and i is the column index. Then we have the 
following identity in U n V: 

gX = JTgYJ, 

where JT is the transposed matrix. 

PROOF. By the chain rule, we have 

whence by (3.12) 

a _ ayk a _ Jk a 
axi - axi ayk - i ayk' 

x _ a a _ k 1 a a _ k y 1 
gij - (ax i ' axj}g - Ji Jj(ayk' ayl)g - Ji gklJj' 

Noticing that 

we obtain 

whence (3.25) follows. 

(3.25) 

(3.26) 

o 
PROOF OF THEOREM 3.11. The condition (3.21) means that, for any 

measurable set A c U, 

(3.27) 

By measure theory, the identity (3.27), indeed, defines a measure v on the 
(I-algebra A (U) of Lebesgue measurable sets in U (see Section AA.3). 

We will show that the measure v defined by (3.27) in each chart, can be 
uniquely extended to A (M). However, before that, we need to ensure that 
the measures in different charts agree on their intersection. 

CLAIM. If U and V are two charts on M and A is a measurable set in Un V 
then v (A) defined by (3.27) has the same values in both charts. 

Let x!, ... , xn and yI, ... , yn be the local coordinate systems in U and 
V, respectively. Denote by gX and gY the matrices of g in the coordinates 
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Xl, ... , xn and yl, ... , yn, respectively. We need to show that, for any measur­
able set A c W := Un V , 

i jdetgXdx = i jdetgYdy, 

where dx and dy stand for the Lebesgue measures in U and V, respectively. 
By (3.25), we have 

det gX = (det J)2 det gY. (3.28) 

Next, let us use the following formula for change of variables in multivariable 

integration: if f is a non-negative measurable function in W then 

iwfdY= iwfldetJldx. 

Applying this for f = lAVdet9Y, where A c W is a measurable set, and 
using (3.28), we obtain 

i jdetgYdy= i jdetgYldetJldx= i jdetgXdx, 

which was to be proved. 
Now let us prove the uniqueness of measure v. By Lemma 3.4, there is a 

countable family {Ui}~l ofrelatively compact charts covering M and such 
that U i is contained in a chart. For any measurable set A on M, define the 
sequence of sets Ai C Ui by 

Al = An UI, A2 = An U2 \ Ul, .... , Ai = An Ui \ UI \ ... \ Ui-l, ... (3.29) 

(see Fig. 3.2). 

M 

FIGURE 3.2. Splitting A into disjoint sets Ai' 

Clearly, A = Ui Ai where the sign U means "disjoint union". Therefore, 
for any extension of v, we should have 

v (A) = L v (A) . (3.30) 
i 
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However, the value v (Ai) is uniquely defined because Ai is contained in the 
chart Ui . Hence, v (A) is also uniquely defined, which was to be proved. 

To prove the existence of v, we use the same construction: for any 
measurable set A, define v (A) by (3.27), using the fact that v (A) is already 
defined. Let us show that v is a measure, that is, v is O"-additive. Let {Ak} 
be a sequence of disjoint measurable sets in M and let 

A=UAk. 
k 

Defining the sets Af similarly to (3.29), we obtain that 

A=UAf. 
k 

Since v is O"-additive in each chart Ui, we obtain 

v (Ai) = L v(Af)· 
k 

Adding up in i and interchanging the summation in i and k, we obtain 

which was to be proved. 
Let us show that measure v is complete, that is, any null set of v is 

measurable. Let N be a null set of v, that is, N c A for some set A with 
v (A) = O. Defining Ni similarly to Ai by (3.29), we obtain Ni C Ai' Since 
v (Ai) = 0, it follow from the formula (3.27) in Ui and v'det 9 > 0 that also 
.A (A) = O. Thus, Ni is a null set for the Lebesgue measure .A in Ui. Since 
the Lebesgue measure is complete, we conclude that Ni is measurable and, 
hence, N is measurable. 

Any compact set K C M can covered by a finite number of charts Ui 

and, hence, K is a finite union of some sets Ki = K n Ui. Applying (3.27) 
in a chart containing Ui and noticing v'detg is bounded on Ui, we obtain 
v (Ki) < 00, which implies v (K) < 00. 

Any non-empty open set 0 C M contains some chart U, whence it 
follows from (3.27) that 

v (0) ~ v (U) = fu Vdetgd.A > O. 

Let us prove the inner regularity of v, that is (3.22). Let A be a relatively 
compact measurable subset of M. Then there is a finite family {Ui}:l of 
charts that cover A. We can assume that each Ui is compact and is contained 
in another chart Vi. By the regularity of the Lebesgue measure, each set 
Ai = An Ui can be approximated by a compact set Ki C Ai such that 
.Ai (A \ K i ) < Ci where .Ai is the Lebesgue measure in Vi and Ci > 0 is any 
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given number. Set Ci = SUPUi -jdetg, K = U:l Ki, and observe that 
m m 

v(A \K):S Lv(A \Kd:S LCici. 
i=l i=l 

Since Ci can be chosen arbitrarily small, the right hand side can be made 
arbitrarily small, which proves (3.22). If A is an arbitrary measurable subset 
of M, then take a compact exhaustion {n k } of M and apply the previous 
argument to Ak = A n Ok. Let Kk be a compact subset of Ak such that 
v (Ak \ Kk) < Ck where {ck} is any sequence of positive numbers such that 
Ck -+ 0 as k -+ 00. Then we have 

lim v (Kk) = lim v (Ak) = v (A) , 
k-+oo k-+oo 

which proves (3.22). 
Finally, let us prove the outer regularity of v, that is (3.23). Let now 

{Ui} be a countable family of charts that cover M and such that each Ui 
is contained in another chart Vi, such that Vi is compact and is contained 
yet in another chart. By the regularity of the Lebesgue measure, the set 
Ai = A n Ui can be approximated by an open set ni ::J Ai so that 0i C Vi 
and Ai (Oi \ Ai) < ci. Setting Ci = sUPv. -jdet 9 and n = U~l ni, we obtain 
as above 

00 

v (n \ A) :S L Cicio 
i=l 

Since the right hand side can be made arbitrarily small by the choice of Ci, 

we obtain (3.23). 0 

The extension of measure v from the charts to the whole manifold can also be done 
using the Caratheodory extension of measures. Consider the following family of subsets 
ofM: 

S = {A eM: A is a relatively compact measurable set and if is contained in a chart} . 

Observe that S is a semi-ring and, by the above Claim, v is defined as a measure on S. 
Hence, the Caratheodory extension of v exists and is a complete measure on M. It is not 
difficult to check that the domain of this measure is exactly A (M). Since the union of 
sets U. from Lemma 3.4 is M and v (Ui ) < 00, the measure v on S is o--finite and, hence, 
its extension to A (M) is unique. 

Since the Riemannian measure v is finite on compact sets, any contin­
uous function with compact support is integrable against V. Let us record 
the following simple property of measure v, which will be used in the next 
section. 

LEMMA 3.13. If f E C(M) and 

1M fcpdv = 0 

for all cp E crr (M) then f == O. 

(3.31) 
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PROOF. Assume that f (xo) -# 0 for some point Xo EM, say, f (xo) > O. 
Then, by the continuity of f, f (x) is strictly positive in a open neighborhood 
o of Xo. Let cp be a cutoff function of {xo} in O. Then cp = 1 in an open 
neighborhood U of Xo. Since v (U) > 0, it follows that 

1M fcpdv = in fcpdv ~ fu fdv > 0, 

which contradicts (3.31). o 

Exercises. 

3.5. Let g, g be two Riemannian metric tensors on a smooth manifold M and let 9 and 9 
be the matrices of g and g respectively in some coordinate system. Prove that the ratio 

detg 
detg 

does not depend on the choice of the coordinates (although separately det 9 and det 9 do 
depend on the coordinate system). 

3.6. Let g, g be two Riemannian metric tensors on a smooth manifold M such that 

(3.32) 

that is, for all x E M and ~ E T"M, 

(a) Prove that if v and v are the Riemannian volumes of g and g, respectively. then 

dV < Cn / 2 
dv - , 

where n = dimM. 
(b) Prove that, for any smooth function f on M, 

IV fl! ::; C IV fl~ . 

3.5. Divergence theorem 

For any smooth vector field v (x) on a Riemannian manifold (M, g), its 
divergence div v (x) is a smooth function on M, defined by means of the 
following statement. 

THEOREM 3.14. (Divergence theorem) For any COO-vector field v (x) on 
a Riemannian manifold M, there exists a unique smooth function on M, 
denoted by div v, such that the following identity holds 

1M (divv) udv = - 1M (v, 'Vu)gdv, 

for all u E ego (M). 

(3.33) 
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PROOF. The uniqueness of div v is simple: if there are two candidates 
for divv, say (divv)' and (divv)" then, for all u E COO (M), 

1M (divv)' udv = 1M (divv)" udv, 

which implies (divv)' = (divv)" by Lemma 3.13. 
To prove the existence of div v, let us first show that div v exists in any 

chart. Namely, if U is a chart on M with the coordinates xl, .'" xn then, 
using (3.17), (3.21), and the integration-by-parts formula in U, we obtain, 
for any u E COO (U), 

fu (v, 'Vu)gdv - fu (v, du)dv 

fu vk ::k vi det gd)" 

- -fu {)~k (vkvldetg) ud)" 

- -fu ~{)~k (vkvldetg) udv. (3.34) 

Comparing with (3.33) we see that the divergence in U can be defined by 

(3.35) 

If U and V are two charts then (3.35) defines the divergences in U and in 
V, which agree in un V by the uniqueness statement. Hence, (3.35) defines 
div vasa function on the entire manifold M, and the divergence defined 
in this way satisfies the identity (3.33) for all test functions u compactly 
supported in one of the charts. 

We are left to extend the identity (3.33) to all functions u E COO (M). Let 
{nO!} be any family of charts covering M. By Corollary 3.6, any function 
u E COO (M) can be represented as a sum Ul + ... + Uk, where each Ui is 
smooth and compactly supported in some nO!. Hence, (3.33) holds for each 
of the functions Ui, and adding up all such identities, we obtain (3.33) for 
function u. 0 

It follows from (3.35) that 

{)vk {) 
div v = {)xk + v k 

{)xk log vi det g. 

In particular, if detg == 1 then we obtain the same formula as in :Rn : divv = 
QVk 

QXk ' 

COROLLARY 3.15. The identity (3.33) holds also if U (x) is any smooth 
junction on M and v (x) is a compactly supported smooth vector field on M. 
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PROOF. Let K = supp v. By Theorem 3.5, there exists a cutoff function 
of K, that is, a function cp E Co (M) such that cp == 1 in a neighbourhood 
of K. Then ucp E Co (M), and we obtain by Theorem 3.14 

1M divvudv = 1M divv (ucp) dv = - L (v, \7 (ucp))gdV = - L (v, \7u)gdv. 

o 

Alternative definition of divergence. Let us define the divergence div v in any 
chart by 

(3.36) 

and show by a direct computation that, in the intersection of any two charts, (3.36) 
defines the same function. This approach allows to avoid integration in the definition of 
divergence but it is more technically involved (besides, we need integration and Theorem 
3.14 anyway). 

We will use the following formula: if a = (a~) is a non-singular n x n matrix smoothly 
depending on a real parameter t and (a;) is its inverse (where i is the row index and j is 
the column index) then 

a -I aaf 
at logdet a = ak7it. (3.37) 

In the common domain of two coordinate systems Xl, ••• , X" and y1, ..• , yn, set 

k ayk -i ax' 
J, = axi and Jk = ayk' 

Let 9 be the matrix of the tensor g and vi be the components of the vector v in coordinates 
xl, ... , x", and let 9 be the matrix of g and :uk be the components of the vector v in 
coordinates yl, ... ,y". Then we have 

ia iayka ika 
v = v ax' = v ax' ayk = v Ji ayk 

so that 

Since by (3.28) 

y'det 9 = y'det 9 Idet JI-1 
, 

where J = (J1<) , the divergence of v in coordinates y\ ... , yn is given by 

dl'VV -_ 1 a (~-k) detJ J-l a ( IF • (d J)-l k) y' --a k yuetgv = Jd k-a' yuetgv et Ji detg y etg Xl 

1 a ( ~ .) -. k . -. k a l' -. aJk 
~ -a . y det gv' Jk Ji + V' J~ J i det J -a . (det J) - + v' J~ a '. 

yuetg Xl Xl x3 

1 a ( ~.) . a . -. aJk 
= .~-a· ydetgv' -v'-a .10gdetJ+v·J~a··' 

yuetg x' X' Xl 

where we have used the fact that the matrices (Jf) and (J/.) are mutually inverse. To 
finish the proof, it suffices to show that, for any index i, 

a -·aJ~ --a . logdet J + J~ a '. = O. (3.38) 
X· Xl 

By (3.37), we have 
a -.aJ; -a .logdetJ= JZ-a .' x' x' 
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Noticing that 

we obtain (3.38). 

3.6. Laplace operator and weighted manifolds 

Having defined gradient and divergence, we can now define the Laplace 
operator (called also the Laplace-Beltrami operator) on any Riemannian 
manifold (M, g) as follows: 

Il = divo\7. 

That is, for any smooth function f on M, 

Ilf = div (\7 f) , (3.39) 

so that Ilf is also a smooth function on M. In local coordinates, we have 

1 a (~ .. a) Il = y'detg a' y det gg'3 -a . , 
etg x' x3 (3.40) 

where 9 = (gij). 

THEOREM 3.16. (Green formula) If u and v are smooth functions on a 
Riemannian manifold M and one of them has a compact support then 

1M ullv dv = - 1M (\7u, \7v)gdv = 1M vllu dv. (3.41) 

PROOF. Consider the vector field \7 v. Clearly, supp \7 v c supp v so that 
either suppu or supp \7v is compact. By Theorem 3.14, Corollary 3.15, and 
(3.39), we obtain 

1M ullvdv = 1M udiv (\7v) dv = - 1M (\7u, \7v)gdv. 

The second identity in (3.41) is proved similarly. o 
For example, if (gij) == id then also (gij) == id, and (3.40) takes the form 

n a2 

Il = ?= (axi )2' 
2=1 

Any smooth positive function Y (x) on a Riemannian manifold (M, g) 
gives rise to a measure JL on M given by dJL = Y dv. The function Y is called 
the density function of the measure JL. For example, the density function of 
the Riemannian measure v is 1. 

DEFINITION 3.17. A triple (M, g, JL) is called a weighted manifold, if 
(M, g) is a Riemannian manifold and JL is a measure on M with a smooth 
positive density function. 
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The definition of gradient on a weighted manifold (M, g, J.L) is the same 
as on (M, g), but the definition of divergence changes. For any smooth 
vector field v on M, define its weighted divergence div fJ. v by 

divfJ. v = ~ div (Tv). 

It follows immediately from this definition and (3.33) that the following 
extension of Theorem 3.14 takes place: for all smooth vector fields v and 
functions u, 

1M divJ.! vudJ.L = - 1M (v, V'u)gdJ.L, 

provided v or u has a compact support. 
Define the weighted Laplace operator b..J.! by 

b..fJ. = divfJ. oV'. 

(3.42) 

The Green formulas remain true, that is, if u and v are smooth functions on 
M and one of them has a compact support then 

and 

1M ub..J.!V dJ.L = - 1M (V'u, 'V'v)gdJ.L = 1M vb..J.!udJ.L. 

In the local coordinates xl, ... , xn , we have 

1 0 ( . 
divp,v = poxi pv~) 

1 0 ( .. 0 ) ___ ~J_ 

b..fJ. - o' pg 0 . . p x~ xJ 

(3.43) 

(3.44) 

(3.45) 

where p = T v'det g. Note also that dJ.L = pd>.., where>.. is the Lebesgue 
measure in U. 

Sometimes is it useful to know that the right hand side of (3.45) can be 
expanded as follows: 

2 ( .. i' 0 1 op i' ag~J a 
b.. = 9 J 0 '0 . + --0 .g J + -0 .) -a .. 

x~ xJ P x~ x~ xJ 
(3.46) 

EXAMPLE .. 3.18. Consider the weighted manifold (JR., g, J.L) where g is the 
canonical Euclidean metric and dJ.L = Tdx. Then by (3.45) or (3.46) 

Ll f = ~!£ (T d
f

) = f" T' f' fJ. Tdx dx + T . 

For example, if T = e-x2 then 

b..J.!f = !" - 2xf'· (3.47) 
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Exercises. 

3.7. (Product rule for divergence) Prove that, for any smooth function u and any smooth 
vector field w, 

clivI' (uw) = ('Vu, w) + ucliv!L w (3.48) 

3.8. (Product rule for the Laplacian) Prove that, for any two smooth functions u and v, 

D.!L (uv) = uD.!LV + 2('Vu, 'Vv)g + (D.!Lu) v. 

3.9. (Chain rule for the Laplacian) Prove that 

D.!Lf (u) = !" (u) l'Vul! + !' (u) D.!LU, 

where u and f are smooth functions on M and JR, respectively. 

3.10. The Hermite polynomials hk (x) are defined by 

(3.49) 

where k = 0, 1,2, .... Show that the Hermite polynomials are the eigenfunctions of the 
operator (3.47). 

3.11. Let a(x), b(x) be smooth positive functions on a weighted manifold (M,g,p.), and 
define new metric g and measure Ji. by 

g = ag and dJi. = bdJ-t. 

Prove that the Laplace operator LijL of the weighted manifold (M, g, Ji.) is given by 

- 1 (b) D.jL = b clivI' a'V . 

In particular, if a = b then 

3.12. Consider the following operator L on a weighted manifold (M, g, J-t): 

Lu = ~ div!L (A'Vu), 

where b = b (x) is a smooth positive function on M and A = A (x) is a smooth field of 
positive definite symmetric operators on T",M. Prove that L coincides with the Laplace 
operator AjL of the weighted manifold (M, g, Ji.) where 

g = bgA- 1 and dJi. = bdJ-t. 

3.13. Consider the following operator L on a weighted manifold (M, g, p,): 

Lu = D.!Lu + ('Vv, 'Vu)g, 

where v is a smooth function on M. Prove that L = D.jL for some measure Ji., and determine 
this measure. 
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3.7. Submanifolds 

If M is a smooth manifold then any open subset 0 c M trivially becomes 
a smooth manifold by restricting all charts to O. Also, if g is a Riemannian 
metric on M then gin is a Riemannian metric on O. Hence, any open subset 
o of M can be considered as a (Riemannian) submanifold of a (Riemannian) 
manifold M of the same dimension. 

Consider a more interesting notion of a sub manifold of smaller dimen­
sion. Any subset S of a smooth manifold M can be regarded as a topological 
space with induced topology. It is easy to see that S inherits from M the 
properties of being Hausdorff and having a countable base. 

A set ScM is called an (embedded) submanifold of dimension m if, 
for any point Xo E S, there is a chart (U, IP) on M covering Xo such that the 
intersection S n U is given in U by the equations 

xm +1 = xm +2 = ... = xn = 0, 

where xl, x 2 , ... , xn are the local coordinates in U (see Fig. 3.3). 

I cp(snU) 1 

"""" 
!'. 

u 
rp(U) 

JRm 
JRn 

FIGURE 3.3. The image IP (S n U) lies in lRm c lRn. 

In particular, this means that the image IP (U n S) is contained in the 
m-dimensional subspace of lRn 

{x E lRn 
: xm+1 = xm +2 = ... = xn = o} , 

which can be identified with lRm
, so that IPluns can be considered as a 

mapping from unS to jRm. Hence, (U n S, IPluns) is a m-dimensional chart 
on S (with the coordinates xl, x 2 , •.. , xm). With the atlas of all such charts, 
the submanifold S is a smooth m-dimensional manifold. 

Let e be an lR-differentiation on S at a point Xo E S. For any smooth 
function f on M, its restriction fls is a smooth function on S. Hence, 
setting 

e (f) := e (fls) , (3.50) 

we see that e can be extended to an lR-differentiation on M at the same 
point Xo. Therefore, (3.50) provides a natural identification of TxoS as a 
subspace of TxoM. 
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Let (M, g) be a Riemannian manifold. If Xo E S then by restricting the 
tensor g in TxoM to the subspace TxoS, we obtain the Riemannian metric 
gs on S, which is called the induced metric. 

Let (M, g, J.t) be a weighted manifold and l' be the density function of 
measure J.t. Define the induced measure J.ts on S by the condition that J.ts 
has the density function Tis with respect to the Riemannian measure of gs· 
Hence, we obtain the weighted manifold (S, gs, J.ts). If dim S = n - 1 then 
the measure J.ts is also referred to as area as opposed to the n-dimensional 
measure J.t, which in this context is called volume. 

LEMMA 3.19. Let M be a smooth manifold of dimension nand F : M-+ 
R be a smooth function on M. Consider the null set of F, that is 

N = {x EM: F (x) = O}. 

If 
dF -=1= 0 on N 

then N is a submanifold of dimension n - 1. 
~3.51) 

PROOF. For any point Xo EN, there is a chart U on M containing Xo 
and such that dF -=1= 0 in U. This means that the row-vector (g;.) does 
not vanish in U. By the implicit function theorem, there exists an open 
set V C U containing Xo and an index i E {I, ... , n} such that the equation 
F (x) = 0 in V can be resolved with respect to the coordinate xi; that is, 
the equation F (x) = 0 is equivalent in V to 

. 1 i 
x~ = f(x , ... .f ... , xn), 

i 
where f is a smooth function and the sign .f means that the coordinate xi 
is omitted from the list. 

For simplicity of notation, set i = n so that the equation of set N in V 
becomes 

n f ( 1 n-l) x = x , ... ,x . 
After the change of coordinates 

yl 

yn-l = xn-l, 
n n f ( 1 n-l) y = X - X , ... ,X , 

the equation of N in V becomes yn = 0 and hence N is a (n - 1 )-dimensional 
submanifold. 0 

EXAMPLE 3.20. Consider in Rn+1 the following equation 

(X1)2 + ... + (xn+1)2 = 1, 

which defines the unit sphere §n. Since §n is the null set of the function 

F (x) = (x1)2 + ... + (xn+1)2 - 1, 
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whose differential dF = (2xl, ... , 2xn+l) does not vanish on §n, we conclude 
that §n is a submanifold of Rn+l of dimension n. Furthermore, considering 
Rn+l as a Riemannian manifold with the canonical Euclidean metric, we see 
that §n can be regarded as Riemannian manifold with the induced metric, 
which is called the canonical spherical metric and is denoted by g§n. 

Exercises. 

3.14. Let M be a smooth manifold of dimension nand N be its submanifold of dimension 
n - 1 given by the equation F (x) = 0 where F is a smooth function on M such that 
dF :I 0 on N. Prove that, for any x E N, the tangent space T"N is determined as a 
subspace of T"M by the equation 

TxN = {E E TxM: (dF,E) = O}. (3.52) 

In the case when M = JRn, show that the tangent space T"N can be naturally identified 
with the hyperplane in JRn that goes through x and has the normal 

VF= (:~'"'' :;). 
In other words, the tangent space T"N is identified with the tangent hyperplane to the ~ 
hypersurface N at the point x. 

3.8. Product manifolds 

Let X, Y be smooth manifolds of dimensions n and m, respectively, 
and let M = X x Y be the direct product of X and Y as topological 
spaces. The space M consists of the couples (x, y) where x E X and y E Y, 
and it can be naturally endowed with a structure of a smooth manifold. 
Indeed, if U and V are charts on X and Y respectively, with the coordinates 
xl, ... , xn and yl, ... , ym then U x V is a chart on M with the coordinates 
xl, ... , xn , yl, ... , ym. The atlas of all such charts makes M into a smooth 
manifold. 

For any point (x, y) EM, the tangent space T(x,y)M is naturally identi­
fied as the direct sum TxX El7 TyY of the linear spaces. Indeed, :fix a point 
(x,y) E M. Any R-differentiation ~ E TxX can be considered as an R­
differentiation on functions f (x, y) on M by freezing the variable y, that 
is 

~ (J) = ~ (J (', y)) . 

This identifies TxX as a subspace of T(x,y)M, and the same applied to TyY. 
Let us show that the intersection of TxX and TyY in T(x,y)M is {O}. Indeed, 
if ~ E TxX n TyY then, for some vectors a E TxX and b E TyY and all 
f E Coo (M), 

~ (J) = a (J (', y)) = b (J (x, .)), 

whence it follows that 

i 8f _. 8f 
a ~ (x,y) = lY~ (x,y), 

uxt uyJ 
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which is not possible for all j, unless all ai = bi = O. Since dimTxX = n, 
dim TyY = m, and dim T(x,y) = n + m, we conclude that 

Tex,y)M = Tx X EEl TyY. (3.53) 

If gx and gy are Riemannian metric tensors on X and Y, respectively, 
then define the metric tensor g on M as the direct sum 

g=gx+gy. (3.54) 

Namely, for any (x, y) EM, any vector e E Tex,y)M uniquely splits into the 
sum 

e = ex +ey, 
where ex E TxX and ~y E TyY; then set 

(gX + gy) (x, y) (e, 'r)) = gx (x) (~x, 'r)x) + gy (y) (~y, 'r)y) . 

In the local coordinates xl, ... , Xn, yl, ... , ym, we have 
. . k I 

gx + gy = (gX )ij dx~dxJ + (gy)kl dy dy. 

The manifold (M, g) is called the Riemannian (or direct) product of (X, gx) 
and (Y,gy). 

Note that the matrix 9 of the metric tensor g has the block form 

_(~ 0 ) 
g- ~' °u 

which implies a similar form for g-l and 

detg = detgx detgy. 

If vx and l/y are the Riemannian measures on X and Y, respectively, then 
the Riemannian measure v of M is given by 

dv = Jdetgdx1 
... dxn dy1 ... dym = dvxdl/y. 

Hence, v is the product of measures vx and l/y, that is, 

v = vx X l/y 

(see Section A.4.6 for the definition of products of measures). 
Denoting by b.x and b.y the Laplace operator on X and Y, respec­

tively, and by zl, ... ,zn+m the coordinates xl, ... ,xn,yl, ... ,ym, we obtain 
the following expression of the Laplace operator b. on M: 

b. = 1 a (~ .. a) y'd8tg~ vdetgg~J~ 
etg vz~ vzJ 

1 {) ( ~ ij a ) 1 a ( ~ ij a ) 
- y'det 9 axi V uet ggx axj + y'det 9 {)yi V uet ggy ayi 

- y'de~gx a~i ( Jdetgxg:k a~J) + ~ a~i ( Jdetgyg~ a~j) , 
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that is, 
A=AX+Ay. 

Let (X, gx, J.Lx) and (Y, gy, J.Ly) be weighted manifold. Setting M = X x 
Y, g = gX +gy and J.L = J.Lx x J.Ly, we obtain a weighted manifold (M, g, J.L), 
which is called the direct product of weighted manifolds (X, gx, J.Lx) and 
(Y, gy, J.LY). A computation similar to the above shows that 

Aj.£ = Aj.£x + Aj.£Y . 

There are other possibility to define a Riemannian tensor g on the prod­
uct manifold M = X x Y. For example, if'IjJ (x) is a smooth positive function 
on X then consider the metric 

(3.55) 

The Riemannian manifold (M, g) with this metric is called a warped product 
of (X,gx) and (Y,gy). In the local coordinates, we have 

i j 2 k I g = (gX )ij dx dx + 'IjJ (x)(gY)kl dy dy. 

Exercises. 

3.15. Prove that the Riemannian measure v of the metric (3.55) is given by 

dv = 'I/J= (x) dvxdvy, (3.56) 

and the Laplace operator ~ of this metric is given by 
1 

~f=~xf+m(V'xlog'I/J)V'xf)gX + 'l/J2(x)~Yf) (3.57) 

where V' x is gradient on X. 

3.9. Polar coordinates in Rn , §n, lHIn 

Euclidean space. In Rn , n ~ 2, every point x i= 0 can be represented in 
the polar coordinates as a couple (r, e) where r := Ixl > 0 is the polar radius 
and e := lir E §n-l is the polar angle. 

CLAIM. The canonical Euclidean metric gRn has the following representa­
tion in the polar coordinates: 

glRn = dr2 + r2ggn_l, 

where gsn-l is the canonical spherical metric. 

PROOF. Let el , ... , en - l be local coordinates on §n-l and let 

gsn-l = 'Yijdeidej . 

(3.58) 

(3.59) 

Then r, e1, ... , en- l are local coordinates on Rn, and (3.58) means that 
2 2 .. 

glRn = dr + r 'Yijde~d()J. (3.60) 

We start with the identity x = re, which implies that the Cartesian coordi­
nates xl, ... , xn can be expressed via the polar coordinates r, el , ... , en - 1 as 
follows: 

i fi (81 en-I) x =r , ... , , (3.61) 
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where fi is the xi-coordinate in]Rn of the point e E §n-l. Clearly, fl, ... , fn 
are smooth functions of 01 , ... , on-l and 

(3.62) 

Applying differential d to xi and using the product rule for d, we obtain 

dxi = fidr + rdfi, 

whence, taking the tensor product, 

(dxi)2 = (Ji)2 dr2 + (rdr) (Jidi) + (idfi) (rdr) + r2 (dfi) 
2 

. 

Summing up these identities for all i and using (3.62) and its consequence 

(3.63) 

we obtain 
g]Rn = L (dxi)2 = dr2 + r2 L (dfi)2. 

i i 

Clearly, we have 
. 2 .. 

(dfi)2 = (ar dOj ) = ar ar dOjdOk 
aO) aOj aOk ' 

which implies that the sum Ei (dfi) 2 can be represented in the form 

L (dfi) 
2 = IjkdOjdOk, (3.64) 

where Ijk are smooth functions of 01 , ... , on-I. Hence, we obtain the identity 
(3.60). 

We are left to verify that lijd()id()j is the canonical spherical metric. 
Indeed, the metric g§n-l is obtained by restricting the metric glRn to §n-l. 
On §n-l we have the coordinates ()1, ... , en- 1 while r = 1 and dr = O. Indeed, 
for any ~ E Tx§n-l, we have 

(dr,~) = ~ (r) = ~ (rlsn-l) = ~ (1) = O. 

Therefore, substituting in (3.60) r = 1 and dr = 0, we obtain (3.59). 0 

Sphere. Consider now the polar coordinates on §n. Let p be the north 
pole of §n and q be the south pole of §n (that is, p is the point (0, ... ,0,1) 
in ]Rn+1 and q = -p). For any point x E §n \ {p, q}, define r E (0,7r) and 
o E §n-l by , 

n+l d Ll X ( 
cosr = x an u = Ix'l' 3.65) 

where x' is the projection of x onto]Rn = {x E ]Rn+1 : xn+1 = O}. Clearly, 
the polar radius r is the angle between the position vectors of x and p, and 
r can be regarded as the latitude of the point x measured from the pole. 
The polar angle 0 can be regarded as the longitude of the point x (see Fig. 
3.4). 
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FIGURE 3.4. Polar coordinates on §n 

CLAIM. The canonical spherical metric gsn has the following representation 
in the polar coordinates: 

d 2 . 2 gsn = r + sm rgsn-l. (3.66) 

PROOF. Let e1, ... , en - 1 are local coordinates on §n-1 and let us write 
down the metric gsn in the local coordinates r, e1, ... , on-I. Obviously, for 
any point x E §n \ {p, q}, we have Ix'i = sin r whence x' = (sin r) O. Hence, 
the Cartesian coordinates x!, ... , xn+l of the point x can be expressed as 

follows: 

Xi = sinrfi (e1, ... , en-I) , i = 1, ... ,n, 

xn+1 = cosr, 
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where fi are the same functions as in (3.61). Therefore, we obtain using 
(3.62), (3.63), and (3.64), 

(dxl)2 + ... + (dxn)2 + (dxn+1)2 
n 

- L (Ii cos rdr + sin rdl) 2 + sin2 rdr2 

i=l 
n 

L ( (Ii) 2 cos2 rdr2 + sin2 r (dfi) 2) 
i=l 

n n 

+ L (sinrcosrdr) (ldl) + L (lidfi) (sinrcosrdr) 
i=l 

n 

- cos2 rdr2 + sin2 r L (dfi)2 + sin2 rdr2 

i=l 

dr2 + sin2 r'Yijdeidej . 

Since we already know that 'Yijdeidej is the canonical metric on §n-\ we 
obtain (3.66). 0 

Hyperbolic space. The hyperbolic space JH[n, n 2: 2, is defined as follows. 
Consider in ~n+1 a hyperboloid H given by the equation3 

(xn+1)2 _ (X
,
)2 = 1, (3.67) 

where x' = (xl, ... ,xn) E IRn and x n+1 > O. By Lemma 3.19, H is a 
submanifold of IRn+1 of dimension n. 

Consider in IRn+1 the Minkowski metric 

gMink = (dXl)2 + ... + (dxn)2 - (dxn+1) 
2 

, (3.68) 

which is a bilinear symmetric form in any tangent space TxIRn+1 but not 
positive definite (so, gMink is not a Riemannian metric, but is a pseudo­
Riemannian metric). Let gH be the restriction ofthe tensor gMink to H. We 
will prove below that gH is positive definite so that (H, gH) is a Riemannian 
manifold. By definition, this manifold is called the hyperbolic space and is 
denoted by JH[n, and the metric gH is called the canonical hyperbolic metric 
and is denoted also by gHn. 

Our main purpose here is to introduce the polar coordinates in JH[n and 
to represent glllln in the polar coordinates. As a by-product, we will see that 
gHn is positive definite. 

Let p be the pole of JH[n, that is p = (0, ... ,0,1) E IRn+l. For any point 
x E JH[n \ {p}, define r > 0 and e E §n-l by 

cosh r = xn+1 and 
x, 

e = TX'I (3.69) 

3For comparison, the equation of sn can be written in the form (xn+l)2 + (X,)2 = 1. 
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(see Fig. 3.5). 

.. n+l ,x 
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FIGURE 3.5. Polar coordinates on lHIn 

CLAIM. The canonical hyperbolic metric glHln has the following representa­
tion in the polar coordinates: 

(3.70) 

In particular, we see from (3.70) that the tensor glHln is positive definite 
on TxlHIn for any x E lHIn \ {p}. The fact that glHln is positive definite on 
TplHIn follows directly from (3.68) because dxn+l = 0 on TplHIn. 

PROOF. Let 01, ... , on-l be local coordinates on sn-l and let us write 
down the metric glHln in the local coordinates r, Or, ... , on-I. For any point 
x E lHIn 

\ {p}, we have 

Ix'i = .Jlxn +112 - 1 = .J cosh2 r - 1 = sinh r, 

whence x' = (sinh r) O. Hence, the Cartesian coordinates xl, ... , xn+1 of the 
point x can be expressed as follows: 

Xi _ sinhrfi(OI, ... ,en - I), i=l, ... ,n, 

xn+1 _ cosh r, 
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where fi are the same functions as in (3.61). It follows that 

(dxl)2 + ... + (dxn)2 _ (dxn+1)2 
n 

L (Ji cosh rdr + sinh rdfi) 2 - sinh2 rdr2 

i=l 
n 

L ( (Ji) 2 cosh2 rdr2 + sinh2 r (dfi) 2) 
i=l 

n n 

+ L (sinhrcoshrdr) (Jidfi) + L (Jidfi) (sinhrcoshrdr) 
i=l i=l 

- sinh2 rdr2 

n 

_ cosh2 rdr2 + sinh2 r L (dfi) 2 - sinh2 rdr2 

i=l 

- dr2 + sinh2 riijdtidO
j
. 
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Since iijdOidOj is the canonical metric on §n-t, we obtain (3.70). 0 

Exercises. 

3.16. Let q be the south pole of§n. For any point x E §n\ {q}, its stereographic projection 
is the point y at the subspace 

En = {z E E n +1 
; zn+l = O} , 

which belongs to the straight line through x and q. Show that the stereographic projection 
is a bijection x f-+ y between §n \ {q} and En given by 

x' 
y = xn +1 + l' 

where x = (Xl, ... ,xn +l
) and x' = (xl, ... ,xn

). Prove that, in the Cartesian coordinates 
yl, ... , yn, the canonical spherical metric has the form 

4 
gsn = 2 glRn , 

(1 + IYI2) 

where lyl2 = 2: (yi)2 and~" = (dyl)2 + ... + (dyn)2 is the canonical Euclidean metric. 

3.17. Prove that the canonical hyperbolic metric IDlI" is positive definite using directly the 
definition of IDlIn as the restriction of the Minkowski metric to the hyperboloid. 

3.18. Show that the equation 
x' 

y = xn+l + 1 (3.71) 

determines a bijection of the hyperboloid JBr onto the unit ball lEn = {Iyl < I} in En. 
Prove that, in the Cartesian coordinates yl, ... , yn in lEn, the canonical hyperbolic metric 
has the form 

4 
gil" = (1_IYI2)2~n, (3.72) 

where lyl2 = 2: (yi)2 and glR" = (dyl)2 + ... + (dyn)2 is the canonical Euclidean metric. 

REMARK. The ball lEn with the metric (3.72) is called the Poincare model of the hyperbolic 
space. Representation of the metric glHln in this form gives yet another proof of its positive 
definiteness. 
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3.19. Prove that the relation between the polar coordinates (r,O) in JH[n and the coordinates 
yl, ... ) yn in the Poincare model of Exercise 3.18 are given by 

1+ 1 12 
coshr = --y- d 0 Y 

2 an = -Iyl' 1-lyl 

3.10. Model manifolds 

DEFINITION 3.21. An n-dimensional Riemannian manifold (M, g) is called 
a Riemannian model if the following two conditions are satisfied: 

(1) There is a chart on M that covers all M, and the image of this 
chart in ]Rn is a ball 

Bro := {x E ]Rn : Ixl < 1'o} 

of radius 1'0 E (0, +00] (in particular, if 1'0 = 00 then Bra = ]Rn). 

(2) The metric g in the polar coordinates (1',0) in the above chart has 
the form 

g = d1'2 + 1/J2 (1') g§n-l, 

where 1/J (1') is a smooth positive function on (0,1'0)' 
The number 1'0 is called the radius of the model M. 

(3.73) 

To simplify the terminology and notation, we usually identify a model 
M with the ball Bro. Then the polar coordinates (1',0) are defined in M\ {o} 
where 0 is the origin of]Rn. If Ol, ... , en- 1 are the local coordinates on §n-l 

and 

g§n-l = 'YijdOi dOj , 

then 1',01, ... ,en - 1 are local coordinates on M\ {o}, and (3.73) is equivalent 
to 

(3.74) 

Observe also that away from a neighborhood of 0, 1/J (1') may be any smooth 
positive function. However, 1/J (1') should satisfy certain conditions near 0 to 
ensure that the metric (3.73) extends smoothly to 0 (see [133]). 

In some cases, the polar coordinates on a Riemannian manifold can be 
used to identify this manifold or its part as a model. For example, the results 
of Section 3.9 imply the following: 

• ]Rn is a model with the radius 1'0 = 00 and 1/J (1') = rj 
• §n without a pole is a model with the radius 1'0 = 1T' and 1/J (1') = 

sin 1'; 
• JH[n is a model with the radius 1'0 = 00 and 1/J (1') = sinh r. 

The following statement is a particular case of Exercise 3.15. 

LEMMA 3.22. On a model manifold (M, g) with metric (3.73), the Rie­
mannian measure v is given in the polar coordinates by 

dv = 1/J (rr-1 d1'dO, (3.75) 
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where dO stands for the Riemannian measure on §n-l, and the Laplace op­
erator on (M, g) has the form 

{)2 ( d n-l) {) 1 
~ = {)r2 + dr log '1/1 {)r + '1/12 (r)~sn-l. (3.76) 

PROOF. Let 9 = (gij) be the matrix of the tensor g in coordinates 
r, (jl, ... , (jn-l. For simplicity of notation, set (jo = r and assume that the 
indices i,j vary from 0 to n -1. It follows from (3.74) that 

and 

( 

1 
.. 0 

(g'1) = g-1 = b 
o ",' 0 1 

'---_'I/1_-_
2

_(_r )_'Y_iJ_' ----' • 

In particular, we have 
detg = 'lj;2(n-l) det'Y, 

where 'Y = bij), which implies (3.75). 
Using representation (3.40) of ~ in local coordinates, that is, 

1 n-l {) ( .. {) ) 
~ = Jdet9 L {)Oi vi det glJ {)(jj , 

detg .. 0 
~,J= 

and that gOO = 1, gOi = 0 for i 2: 1, we obtain 

1 {) ( {) ) n-l 1 {) ( .. {) ) 
~ = Jdet9 {)r vi det 9 {)r + i~l Jdet9 {)Oi vi det glJ {)OJ . 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

Applying (3.78) and (3.79) and noticing that '1/1 depends only on rand 'Yij 
depend only on (jl, ... , on-I, we obtain 

~ :r ( vi det 9 :r) = ::2 + (:r log vi det g) :r 
{)2 ( d n-l) {) 

- {)r2 + dr log '1/1 {)r 

1 
- '1/12 (r) ~sn-l. 

Substituting into (3.81), we obtain (3.76). o 
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and 

EXAMPLE 3.23. In JR.n, we have '!/J(r) = r and, hence, 

dv = rn- 1 drd(} 

82 n-18 1 
L\lRn = 8 2 + ---8 + 2'L\§n-l. r r r r 

In sn, we have '!/J (r) = sinr and, hence, 

dv = sinn - 1 r drd(} 

and 

(3.82) 

(3.83) 

82 8 1 
L\§n = 8 2 + (n - 1) cot r-

B 
+ -'-2-L\sn-l . (3.84) 

r r sln r 
In JH[n, we have '!/J (r) = sinh r and, hence, 

dv = sinhn - 1 r drd(} 

and 
82 B 1 

Lllllln = 8 2 + (n - 1) coth r-
8 

+ . 2 L\sn-l. (3.85) 
r r smh r 

The formula (3.84) can be iterated in dimension to obtain a full expansion 
of L\sn in the polar coordinates (see Exercise 3.22). 

Consider now a weighted model (M, g, 1-£) where (M ,g) is a Riemannian 
model, and measure 1-£ has t~~ density function T (r), which depends only 
on r. Setting 

(J (r) = T (r) '!/In-l (r) , 

we obtain from Lemma 3.22 

and 
82 (J'B 1 

L\f..t = 8r2 + ;; 8r + '!/J2 (r) L\sn-l . 

Let Wn be the full Riemannian measure of sn-l, that is 

Wn = f d(). 
)§n-l 

Then it follows from (3.86) that, for any R E (0, ro), 

1-£ (BR) = Wn foR (J (r) dr. 

For example, in]Rn we have (J (r) = rn - 1 and 

1-£ (BR) = Wn Rn. 
n 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

The function R M 1-£ (BR) is called the volume function of the model mani­
fold. Define the area function S (r) by 

S (r) := Wn(J (r) = Wn T (r) '!/In-l (r) . (3.91) 

It obviously follows from (3.89) and (3.87) that 
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(3.92) 

and 
a2 Sf (r) a 1 

D..p. = ar2 + S (r) ar + 1/;2 (r) D..sn-1 . (3.93) 

To explain the terminology, consider the sphere 

Sr = {X E ]Rn : Ixl = r} 

as a submanifold of M of dimension n - 1 (cf. Example 3.20). It is easy to 
show that 

S (r) = /-LSr (Sr) , 

where /-LSr is the induced measure on Sr. Hence, S (r) is the area of the 
sphere Sr, which explains the term "area function". 

Exercises. 

3.20. Let Wn be defined by (3.88). 

(a) Use (3.89) to obtain a recursive formula for w .... 
(b) Evaluate w ... for n = 3,4 given W2 = 271". Evaluate the volume functions of JR."', §n, 

JH[n for n = 2, 3,4. 

3.21. Prove that, for any n ~ 1, 
71" ... /2 

Wn = 2r (n/2) , (3.94) 

where r is the gamma function (d. Section A.6). 

3.22. Using (3.84), obtain a full expansion of ~sn in the polar coordinates for n = 2,3. 
Hence, obtain a full expansion of ~Rn and ~Hn in the polar coordinates for n = 2,3. 

3.23. Consider in JH[3 a function u given in the polar coordinates by u = si:hr' 

(a) Prove that, in the domain of the polar coordinates, this function satisfies the equation 

~1ll3U+U = o. (3.95) 

(b) Prove that function u extends to a smooth function in the whole space lIl!3 and, 
hence, satisfies (3.95) in JH[3. 

HINT. Write function u in the coordinates of the Poincare model (cf. Exercises 3.18 and 
3.19). 

3.24. Let M be a weighted model of radius ro and u = u(r) be a smooth function on 
M \ {o} depending only on the polar radius. Let S (r) be its area function. Prove that u 
is harmonic, that is, ~I'u = 0, if and only if 

l
r dr 

u(r)=C rl S (r)+C1 , 

where C, C1 arbitrary reals and r1 E (0, ro). Hence or otherwise, find all radial harmonic 
functions in ]Rn, §2, §3, JH[2, JH[3. 



84 3. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD 

3.25. Let M be a weighted model of radius roo Fix some 0 < a < b < ro and consider the 
annulus 

A = {x EM: a < jxj < b}. 

Prove the following Green formulas for any two function u, v of the class C2 (A) n c l (A): 

r (.6.~u) v dp. = - r ('Vu, 'Vv)dp. + r UrVdP.Sb - r urvdp.sa. (3.96) 
1A 1A lsb lsa. 

and 

where U r = ~~. 

3.26. Let S be a surface of revolution in an+! given by the equation 

Ix'j = ~ (xn+l) , 
where cp is a smooth positive function defined on an open interval. 

(a) Prove that S is a submanifold of Rn +l of dimension n. 

(3.97) 

(b) Prove that the induced metric gs of S is given in the coordinates t = x n +! and 
(J - x' "",-1 b -i?jE.;, Y 

gs = (1 + cp' (t)2) dt2 + cp2 (t) gg,,-l. 

(c) Show that the change of the coordinate 

p = ! VI + cpl (t)2dt 

brings the metric gs to the model form 

gs = d/ + w2 (p) gg,,-l, 

where W is a smooth positive function. 

3.27. Represent in the model form (3.98) the induced metric of the cylinder 

Cyl = {x E a n
+!: Ix'i = 1} 

and that of the cone 

Cone = {x ERn +!: xn
+! = Ix'i > o}. 

3.28. The pseudo-sphere PSis defined as follows 

(3.98) 

{
I + yl_jx'j2 } 

PS = x E an+! : 0 < Ix'i < 1, xn+! = -yl-jx'j2 + log jx'! . 

Show that the model form (3.98) of the induced metric of PS is 

gps = dp2 + e-2Pgsn_l. 

HINT. Use a variable s defined by jx'j = cos\'s' 
3.29. For any two-dimensional Riemannian manifold (M, g), the Gauss curvature KM,g (x) 
is defined in a certain way as a function on M. It is known that if the metric g has in 
coordinates Xl, x 2 the form 

g 
(dXl)2 + (dX2)2 

f2 (x) 
(3.99) 
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where j is a smooth positive function, then the Gauss curvature can be computed in this 
chart as follows 

KM,g = lAlogj, 

where A = (a~~)2 + (a~~)2 is the Laplace operator of the metric (dx1
) 

2 + (dx2t 
(a) Using (3.100), evaluate the Gauss curvature of R2, §2, JH[2. 

(b) Consider in the half-plane]R~:= {(Xl,X2) E]R2: X2 > o} the metric 

(dXl)2 + (dx2)2 
g (X2)2 

Evaluate the Gauss curvature of this metric. 

(3.100) 

3.30. Let g be the metric (3.99) on a two-dimensional manifold M. Consider the metric 
g = -bg where h is a smooth positive function on M. Prove that 

KM,g = (KM,g + Aglogh) h2
, 

where Ag is the Laplace operator of the metric g. 

3.31. Let the metric g on a two-dimensional manifold M have in coordinates (r,8) the 
form 

Prove that 

g = dr2 + 'tjJ2 (r) d82. 

'tjJ" (r) 
KM,g = - 'tjJ(r) . 

(3.101) 

(3.102) 

3.32. Using (3.102), evaluate the Gauss curvature of the two-dimensional manifolds R2, 
§2, JH[2, Cyl, Cone, PS. 

3.33. Find all metrics g of the form (3.101) with constant Gauss curvature. 

3.11. Length of paths and the geodesic distance 

Let M be a smooth manifold. A path on M is any continuous mapping 
, : (a,b) -+ M where -00 :::; a < b :::; +00. In local coordinates xl, ... ,xn , 

the path is given by its components ,i (t). If ,i (t) are smooth functions of 
t then the path, is also called smooth. 

For any smooth path, (t), its velocity i (t) is an R-differentiation at the 
point ,( t) defined by 

i (t) (I) = (10,), (t) for all f E Coo (M), (3.103) 

where the dash' means derivation in t. In the local coordinates, we have, 
using the notation ii == ¥t, 

whence it follows that 

(f )' ·i of 0, =, oxi ' 

. .i 0 
,=,~. 

uxt 

This implies, in particular, that any tangent vector ~ E TxM can be repre­
sented as the velocity of a path (for example, the path ,i (t) = xi + t~i will 
do). 
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Let now (M, g) be a Riemannian manifold. Recall that length of a 
tangent vector ~ E TxM is defined by lei = J(e,e)g. For any smooth path 
'Y: (a, b) -+ M, its length £ (T) is defined by 

£ (T) = lb 1"1 (t)1 dt. (3.104) 

If the interval (a, b) is bounded and 'Y extends to a smooth mapping from 
the closed interval [a, bj to M then £ (T) < 00. 

If the image of'Y is contained in a chart U with coordinates Xl, ... , xn 
then 

1"1 (t)1 = J gij (T (t» "Ii (t) 'Yj (t) 

and hence 

£ ('Y) = lb J gij'Yi'Yj dt. 

For example, if (gij) == id then 

f (T) = lb J("tl)2 + ... + ("tn)2dt. 

Let us use the paths to define a distance function on the manifold (M, g). 
We say that a path 'Y : [a, b] -+ M connects points x and y if 'Y (a) = x and 
'Y (b) = y. The geodesic distance d (x, y) between points x, y E M is defined 
by 

d(x,y) = inU(T), 
'Y 

(3.105) 

where the infimum is taken over all smooth paths connecting x and y. If 
the infimum in (3.105) is attained on a path 'Y then 'Y is called a shortest (or 
a minimizing) geodesics between x and y. If there is no path connecting x 
and y then, by definition, d (x, y) = +00. 

Our purpose is to show that the geodesic distance is a metric4 on M, and 
the topology of the metric space (M, d) coincides with the original topology 
of the smooth manifold M (see Corollary 3.26 below). We start with the 
following observation. 

CLAIM. The geodesic distance satisfies the following properties. 

(i) d(x,y) E [0,+00] and d(x,x) = O. 
(ii) Symmetry: d(x,y) = d(y,x). 

(iii) The triangle inequality: d(x,y) ~ d(x,z) +d(y,z). 

4We allow a metric d (x, y) to take value +00. It can always be replaced by a finite 
metric 

- d(x,y) 
d(x,y) := 1 + d(x,y)' 

which determines the same topology as d (x, y) . 
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PROOF. Properties (i) and (ii) trivially follow from (3.105). To prove 
(iii), consider any smooth path ,I connecting x and z, and a smooth path ,2 connecting z and y. Let, be the path connecting x and y, which goes 
first from x to z along ,I and then from z to y along ,2. Then we obtain 
from (3.105) that5 

whence the triangle inequality follows by minimizing in ,I and ,2. D 

We still need to verify that d(x,y) > 0 for all distinct points x,y. A 
crucial step towards that is contained in the following lemma. 

LEMMA 3.24. For any point p E M, there is a chart U :3 P and C 2: 1 
such that, for all x, y E U, 

(3.106) 

PROOF. Fix a point p E M and a chart W around p with local coordi­
nates xl, ... , xn. Let V E W be a Euclidean ball in W of (a small) radius r 
centered at p. 

For any x E V and any tangent vector, E TxM, its length l'lg in the 
metric g is given by 

1'1; = 9ij (x) ,ie, 

whereas its length I'le in the Euclidean metric e is given by 
n 

I~I; = L (~i)2 . 
i=l 

Since the matrix (9ij (x)) is positive definite and continuously depends on 
x, there is a constant C 2: 1 such that 

n n 

C-2 L (,i)2 S 9ij (x) ,i,j s C2 L (~i)2 , 
i=1 i=1 

for all x E V and, E TxM. Hence, we obtain 

C-
1 1~le S I"g S G 1~le , 

which implies that, for any smooth path, in V, 

C-lie (,) S Rg h) S GRe (,) . 

Connecting points x, y E V by a straight line segment , and noticing that 
the image of, is contained in V and Re h) = Ix - yl we obtain 

d(x,y) Sigh) S Glx-yl· 

5Some approximation argument is still needed to show d (x, y) :::; e ( 'Y) because the 
path 'Y is piecewise smooth rather than smooth. 
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Let U be the Euclidean ball in W of radius ir centered at p. Let I be 
any smooth path on M connecting points x, y E U. If I stays in V then 
fe ([) ~ Ix - YI, whence 

fg ([) ~ C-1 Ix - YI (3.107) 

(cf. Exercise 3.37) 

v 

FIGURE 3.6. Path I connecting the points x, y intersects av 
at a point z. 

If I does not stay in V then it intersects the sphere av (see Fig. 3.6). 
Denoting by -;.y be the part of I that connects in V the point x to a point 
z E av, we obtain 

2 
fg ([) ~ fg (-;.y) ~ C-11x - zl ~ C-1

3r ~ C-11x - YI. 

Hence, (3.107) holds for all paths I connecting x and y, which implies 

d (x, y) ~ C-11x - yl. 

D 

COROLLARY 3.25. We have d (x, y) > 0 for all distinct points x, y E M. 
Consequently, the geodesic distance d (x, y) satisfies the axioms of a metric 
and, hence, (M, d) is a metric space. 
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PROOF. Fix a point p E M and let U be a chat as in Lemma 3.24. If 
x E U then d (x, p) > 0 by (3.106). We are left to treat the case x E M \ U. 
Considering U as a part of ]Rn, denote by Br (p) the Euclidean ball of radius 
r > 0 centered at p, that is, 

Br (p) = {y E ]Rn : Iy - pi < r}. 

Choose r small enough so that Br (p) C U. Then any path from x to p 
must intersect the boundary of Br (p), which implies that the length of this 
path is at least C-Ir, where C is the constant from (3.106). It follows that 
d (p, x) ~ C-Ir, which finishes the proof. 0 

For any x E M and r > 0, denote by B (x, r) the geodesic ball of radius 
r centered at x EM, that is 

B(x,r) = {y EM: d(x,y) < r}. 

In other words, B (x, r) are the metric balls in the metric space (M, d). By 
definition, the topology of any metric space is generated by metric balls, 
which form a base of this topology. Note that the metric balls are open sets 
in this topology. 

COROLLARY 3.26. The topology of the metric space (M, d) coincides with 
the original topology of the smooth manifold M. 

PROOF. Since the topology of M in any chart U coincides with the 
Euclidean topology in U, it suffices to show that the geodesic balls form a 
local base of the Euclidean topology in U. Fix a point p E M and let U 
be a chart constructed in Lemma 3.24, where (3.106) holds. Considering U 
as a part of ]Rn, recall that the Euclidean balls Br (p) form a local base of 
the Euclidean topology at the point p. For some c > 0, the ball Be (p) is 
contained in U and, hence, can be regarded as a subset of M. The result 
will follow if we show that, for any r ::; 2C' the geodesic ball B (p,r) is 
sandwiched between two Euclidean balls as follows: 

Be-lr (p) c B (p, r) C Ber (p) , (3.108) 

where C is the constant from (3.106). Indeed, if x E Be-l r (p) then x E U 
and 

d(x,p)::; Clx-pl < r, 
whence x E B(p,r). To prove the second inclusion in (3.108), let us first 
verify that B (p, r) C U. Indeed, if x ~ U then any path 'Y connecting x and 
p contains a point y E U such that Iy - pi = c/2 (see Fig. 3.7). 

By (3.106), we obtain 

fg (,) ~ d(y,p) ~ C-Ily - pi = 2~ ~ r, 
whence d (x,p) ~ r and x ~ B (p, r). Therefore, x E B (p, r) implies x E U 
and, hence, 

Ix - pi ::; Cd (x,p) < Cr, 

that is, x E Ber (p). o 
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FIGURE 3.7. If x Fj. U then any path 'Y connecting x and p 
contains a point y E U such that Iy - pi = c:/2 

Exercises. 

3.34. Prove that the length e (r) does not depend on the parametrization of the path / 
as long as the change of the parameter is monotone. 

3.35. Prove that the geodesic distance d (x, y) is finite if and only if the points x, y belong 
to the same connected component of M. 

3.36. Let (M, g) be a Riemannian model, and let x', x" be two points on M with the 
polar coordinates (r', 8') and (r", 8"), respectively. 

(a) Prove that, for any smooth path / on M connecting the points x' and x", 

e(r) ~ Ir' - rill· 
Consequently, d (x' , x") ~ I r' - rill . 

(b) Show that if 8' = 8" then there exists a path / of length Ir' - rill connecting the 
points x' and x". Consequently, d (x', x") = Ir' - rill. 

3.37. Let (M, g) be a Riemannian model. Prove that, for any point x = (r,8), we have 
d(O,x)=r. 

Hence or otherwise prove that in lie the geodesic distance d (x, y) coincides with 
Ix-yl· 

3.38. Let / be a shortest geodesics between points x, y and let z be a point on the image 
of /. Prove that the part of / connecting x and z is a shortest geodesics between x and z. 

3.39. Fix a point p on a Riemannian manifold M and consider the function I (x) = d (x, p). 
Prove that if f (x) is finite and smooth in a neighborhood of a point x then I'VI (x)1 ~ 1. 

3.40. Let (M, g) be a Riemannian model with infinite radius. Prove that, for any smooth 
even function a on JR, the function a 0 r is smooth on M, where r is the polar radius on 
(M,g). 
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3.41. Denote by S the class of all smooth, positive, even functions a on 1R, such that 

10= a (t) dt = 00. (3.109) 

For any function a E S, let G" be the conformal transformation of the metric of a Rie­
mannian model (M, g) with infinite radius given by 

Gag = a2 (1') g. 

(a) Prove that (M, Gag) is also a Riemannian model with infinite radius and that the 
polar radius ron (M, Gag) is related to the polar radius l' on (M, g) by the identity 

r= lor a(s)ds. 

(b) For any two functions a, bE S, consider the operation a * b defined by 

(a*b) (t) = a (lot b(S)dS) b(t). (3.110) 

Prove that (S,*) is a group. 
(c) Fix mEN and set for any v E IRm 

log[1J] l' = (log l' )1J1 (log log 1') "2 •.. (log ... log1' tm ----m times 

assuming that l' is a large enough positive number. Let a and b be functions from S 
such that, for large enough 1', 

a (1') ~ 1',,-llog[u] l' and b (1') ~ 1'fJ - 1 log[1J] 1', 

for some a, (3 E 1R+ and u, v E 1R1n. Prove that 

a * b ~ 1''Y-1log[w] 1', 

where 
'Y = a(3 and w = u + avo 

REMARK. The identity (3.111) leads to the operation 

(u, a) * (v, (3) = (u + av, a(3), 

(3.111) 

that coincides with the group operation in the semi-direct product lR'm )<I 1R+, where the 
multiplicative group 1R+ acts on the additive group IRm by the scalar multiplication. 

3.12. Smooth mappings and isometries 

Let M and N be two smooth manifolds of dimension m and n, respec­
tively. A mapping J : M -+ N is called smooth if it is represented in any 
charts of M and N by smooth functions. More precisely, this means the 
following. Let xl, ... , xm be the local coordinates in a chart U C M, and 
yl, ... , yn be the local coordinates in a chart V C N, and let J (U) c V. 
Then the mapping J/u is given by n functions yi (x1, ... ,xm ), and all they 
must be smooth. 

A smooth mapping J : M -+ N allows to transfer various objects and 
structures either from M to N, or back from N to M. The corresponding 
operators in the case "from M to N" are called "push forward" operators, 
and in the case "from N to M" they are called "pullback" operators and 
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are denoted by J*. For example, any function! on N induces the pullback 
function J*! on M by J*! = ! 0 J, that is 

J*! (x) = ! (Jx) for all x E M. 

Clearly, if ! is smooth then J*! is also smooth. This allows to push forward 
a tangent vector ~ E TxM to the tangent vector in TJxN, which is denoted 
by dJ~ and is defined as an R-differentiation by 

dJ~ (f) = ~ (J*f) for any! E Coo (N). (3.112) 

The push forward operator 

(3.113) 

is called the differential or the tangent map of J at the point x. In the local 
coordinates, we have 

that is, 

(dJ~)j = ~y~ ~i. 
ux~ 

In terms of the differentials dxi and dyj, this equation becomes 

dyj = ~y~dxi. (3.114) 
ux~ 

Given a Riemannian metric tensor g on N, define its pullback J*g by 

J*g (x) (~, rJ) = g (Jx) (dJ~, dJrJ) , (3.115) 

for all x E M and ~,rJ E TxM. Obviously, J*g (x) is a symmetric, non­
negative definite, bilinear form on TxM, and it is positive definite provided 
the differential (3.113) is injective. In the latter case, J*g is a Riemannian 
metric on M. 

In the local coordinates, we have 

i' oyi oyj k I 
J*g = gijdy dyJ = gij oxk oxl dx dx 

whence 
oyi oyj 

(J*g)kl = gij oxk oxl ' (3.116) 

Assume from now on that M and N have the same dimension n. A 
mapping J : M -+ N is called a diffeomorphism if it is smooth and the 
inverse mapping J-1 : N -+ M exists and is also smooth. In this case, 
the differentials dJ and dJ- 1 are mutually inverse, which implies that dJ is 
injective. 

Two Riemannian manifolds (M, gM) and (N, gN) are called isometric if 
there is a diffeomorphism J : M -+ N such that 

J*gN = gM· 
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Such a mapping J is called a Riemannian isometry. Two weighted manifolds 
(M, gM, /-LM) and (N, gN, /-LN) are called isometric if there is a Riemannian 
isometry J : M ---+ N such that 

J*YN = YM, 

where 1 Nand 1M are the density functions of /-LN and /-LM, respectively. 
Similarly, two weighted manifolds (M,gM,/-LM) and (N,gN,/-LN) are 

called quasi-isometric if there is a diffeomorphism J : M ---+ N such that 

J*gN:::::gM and J*lN:::::1M, (3.117) 

where the sign ::::: means that the ratio of the both sides is bounded by 
positive constants from above and below. Such a mapping J is called a 
quasi-isometry. 

LEMMA 3.27. Let J be an isometry of two weighted manifolds as above. 
Then the following is true: 

(a) For any integrable function f on N, 

1M (J*J) d/-LM = L f d/-LN· (3.118) 

(b) For any f E Coo (N), 

J* (8.NJ) = 8.M (J*J) , (3.119) 

where 8.M and 8.N are the wei9hted Laplace operators on M and 
N, respectively. 

PROOF. By definition ofthe integral, it suffices to prove (3.118) for func­
tions f with compact supports. Using then a partition of unity of Theorem 
3.5, we see that it is enough to consider the case when supp f is contained 
in a chart. Let V be a chart on N with coordinates yl, ... , yn. By shrinking 
it if necessary, we can assume that U = J- l (V) is a chart on M; let its 
coordinates be xl, ... , xn. By pushing forward functions Xl, ... , Xn to N, we 
can consider xl, ... , xn as new coordinates in V. 

With this identification of U and V, the operator J* becomes the identity 
operator. Hence, (3.118) amounts to proving that measures /-LM and /-LN 
coincide in V. Let 9~ be the components of the tensor gN in V in the 
coordinates yl, ... , yn, and let 9kl be the components of the tensor gN in V 
in the coordinates xl, ... , xn. By (3.26), we have 

x _ y oyi oyj 
9kl - 9ij oxk oxl . (3.120) 

Let 9kl be the components of the tensor gM in U in the coordinates xl, ... , xn. 
Since gM = J*gN, we have by (3.116) that 

__ y oyi oyj 
9kl - 9ij oxk oxl 

whence 
- x 9kl = 9kl' (3.121) 
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Since measures J..LM and J..LN have the same density function, say r, it follows 
that 

dJ..LN = r J det gXdXl ... dxn 

- rJdetgdx1 ... dxn 

which proves the identity of measures /J-M and /J-N, In the same way, we 
have 

A _ 1 8 ('V' ~x ( x)ij 8 ) _ A 
UN- ~-8' .Lyuetg- 9 -8' -UM· r v det gX x~ xl 

Define the push forward measure J J..LM on N by 

(JJ..LM) (A) = J..LM (1-1 (A)) 

where A is a subset of N. The identity (3.118) means that 

JJ..LM=J..LN, 

provided J is an isometry. 

(3.122) 

o 

A typical situation when Lemma 3,27 may be useful is the following. Let 
J be an isometry of a weighed manifold (M, g, J..L) onto itself. Then (3.119) 
means that ~p. commutes with J*. Alternatively, (3,119) can be written in 
the form 

(~p.f) 0 J = ~p. (f 0 J) . 
In ]Rn with the canonical Euclidean metric gRn, a translation is a trivial 

example of a Riemannian isometry. Another example is an element of the 
orthogonal group 0 (n) (in particular, a rotation). The latter is also an 
isometry of §n-I with the canonical spherical metric g§n-l. 

Let (M, g, J..L) be a weighted model with polar coordinates (r,O) (see 
Section 3.10) and let J be an isometry of §n-I, Then J induces an isometry 
of (M, g, J..L) by 

J (r, 0) = (r, J()) , 
which implies that L::t.p. commutes with the rotations of the polar angle e. 

Exercises. 

3.42. Let J: M --+ M be a Riemannian isometry and let S be a submanifold of M such 
that J (S) = S. Prove that Jis is a Riemannian isometry of S with respect to the induced 
metric of S. 

3.43. Let (M, gM) and (N, gN) be Riemannian manifolds and J : M --+ N be a Riemannian 
isometry. Prove the following identities: 

(a) For any smooth path "y on M, 

.eSM b) = .egN (J 0 "y) . 

(b) For any two points x, y E M, 

dM (x,y) = dN (Jx, Jy), 

where dM, dN are the geodesic distances on M and N, respectively. 
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3.44. Let (M,gM,j.tM) and (N,gN,j.tN) be two weighted manifolds and J: M ~ N be a 
quasi-isometry. Prove the following relations. 

( a ) For all smooth paths 'Y on M, 

f gM b) !:;::; fgN (J 0 'Y) . 

(b) For all couples of points x, y E M, 

dM (x, y) !:;::; dN (Jx, Jy). 

(c) For all non-negative measurable functions f on N, 

1M (J*!) dj.l.M !:;::; i! dj.l.N. 

(d) For all smooth functions f on N, 

1M 1'1 (J*f)I~M dj.tM!:;::; i 1'1 fl~N dj.tN. 

3.45. For any real a, consider the mapping y = Jx of Rn +l onto itself given by 

yl = Xl 

yn-l = xn-1 

yn = xn cosh a + xn +1 sinh a 
yn+l = xn sinh a + x n+1 cosh a, 

which is called a hyperbolic rotation. 

(a) Prove that J is an isometry of jRn+1 with respect to the Minkowski metric 

gM,nk = (dXl)2 + ... + (dxn)2 _ (dxn+I)2 . 

(3.123) 

(3.124) 

(3.125) 

(b) Prove that JllHIn is a Riemannian isometry of the hyperbolic space JH[n (cf. Section 
3.9). 

3.46. Prove that, for any four points p, q,p', q' E JH[n such that 

d (p' ,q') = d (p, q) , 

there exists a Riemannian isometry J of W such that Jp' = p and Jq' = q. 

Notes 

(3.126) 

Most of the material of this Chapter belongs to the basics of Riemannian geometry 
and can be found in many textbooks, see for example [45], [51]' [52]' [200], [213], [228]' 
[227], [244], [299], [326], [329). 

The presentation of model manifolds follows [155]. 



CHAPTER 4 

Laplace operator and heat equation in L2 (M) 

We use here quite substantially measure theory, integration, the theory 
of Hilbert spaces, and the spectral theory of self-adjoint operators. The 
reader is referred to Appendix A for the necessary reference material. All 
subsequent Chapters (except for Chapter 6) depend upon and use the results 
of this Chapter. 

In Section 4.1, we introduce the Lebesgue spaces, distributions, and 
Sobolev spaces on a weighted manifold. This material is similar to the 
corresponding parts of Chapter 2, although technically we use from Chapter 
2 only Corollary 2.5. 

The key Sections 4.2 and 4.3 rest on Section 3.6 from Chapter 3, espe­
cially on the Green formulas (3.43). 

4.1. Distributions and Sobolev spaces 

For any smooth manifold M, define the space of test functions V (M) as 

Cgo (M) with the following convergence: CPk ~ cP if the following conditions 
are satisfied: 

1. In any chart U and for any multiindex a, ffxcpk =4 (JO'.cp in U. 
2. All supports supp CPk are contained in a compact subset of M. 

A distribution is a continuous linear functional on V (M). If u is a 
distribution then its value at a function cP E V is denoted by (u, r.p). The set 
D' (M) of all distributions is obviously a linear space. The convergence in 

V' (M) is defined as follows: Uk ~ u if (Uk, cp) -+ (u, r.p) for all r.p E V (M). 
Since any open set D c M is a manifold itself, the spaces V (D) and 

V' (n) are defined as above. In any chart U eM, the spaces V (U) and 
D' (U) are identical to those defined in U as a part of]Rn (cf. Section 2.4). 

A distribution u E V' (M) vanishes in an open set n c M if (u, cp) = 0 
for any cP E V (D). It is proved in the same way as in ]Rn (cf. Exercise 
2.10) that if u vanishes in a family of open sets then it vanishes also in their 
union. Hence, there is a maximal open set in M where u vanishes, and its 
complement in M is called the support of u and is denoted by supp u. By 
construction, supp U is a closed subset of M. 

Next, we would like to identify a function on M as a distribution, and 
for that we need a measure on M. Assume in the sequel that (M, g, f.L) is a 
weighted manifold. The couple (M, f.L) can also be considered as a measure 
space. Hence, the notions of measurable and integrable functions are defined 

97 
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as well as the Lebesgue function spaces LP (M) = LP (M, p,), 1 S P S 00 (see 
Section A.4). Note that LP (M) are Banach spaces, and L2 (M) is a Hilbert 
space. Sometimes it is useful to know that if 1 S p < 00 then LP (M) is 
separable and 1) (M) is dense in LP (M) (cf. Theorem 2.3 and Exercise 4.4) 

Denote by Lfoe (M) the space of all measurable functions f on M such 
that f E LP (D) for any relatively compact open set n c M. The space 
Lfoe (M) is linear space, and the topology of Lfoe (M) is defined by the 
family of seminorms IIfIILP(o) for all open D <s M. Clearly, we have the 
following embeddings: 

V(M) Y Lfoe(M) Y L~c(M) 

(cf. Section 2.1). 
Now we can associate any function u E Lioe (M) with a distribution by 

the following rule: 

(u, <p) = L u<pdp, for any 'P E 1) (M). (4.1) 

LEMMA 4.1. Let u E Lioe (M). Then u = 0 a.e. if and only if u = 0 in 
1)' (M), that is, if 

L u<p df.L = 0 for any <p E 1) (M) . (4.2) 

Note that if u E C (M) then this was proved in Lemma 3.13. 

PROOF. Let U c M be any chart and A be the Lebesgue measure in 
U. Since the density ~ is a smooth positive function, the condition (4.2) , 
implies that 

fu U'P dA = 0 for any 'P E 1) (U) . 

By Corollary 2.5, we obtain u = 0 a.e. in U. Since M can be covered by a 
countable family of charts, we obtain u = 0 a.e. on M. 0 

Lemma 4.1 implies that the linear mapping Lfoe (M) -t V' (M) defined 
by (4.1) is an injection, which enables us to identify Lioe (M) as a subspace of 
1)' (M) . Since the convergence in Lfoe (M) obviously implies the convergence 
in 1)' (M), we obtain the embedding 

Lioe (M) YV' (M). 

In particular, this allows to define the support supp u of any function u E 

Lioe (M) as that of the associated distribution. 
Let us introduce the vector field versions of all the above spaces. Let 

15 (M) be the space of all smooth v~tor fields on M with compact supports 
endowed with the convergence similar to that in 1) (M). 

The elements of the dual space V' (M) are called distributional vector 
fields. The convergence in V' (M) is defined in the same way as in V' (M). 

A vector field v on M is called measurable if all its components in any 
chart are measurable functions. By definition, the space j) (M) consists of 
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(the equivalence classes of) measurable vector fields v such that Ivl E V (M) 
(where Ivl = (v,v)~2 is the length of v). 

Similarly, the space ifoc(M) is determined by the condition Ivl E Lfoc (M). 
The norm in V (M) is defined by 

IIvllfp := " IvIIlLP' 
The spaces V (M) are also complete (see Exercise 4.9). In particular, 
t} (M) is a Hilbert space with the inner product 

(v, W)L2 = L (v, w}dp,. 

Any vector field v E iloc (M) determines a distributional vector field by 

(v, 't/J) = 1M (v, 't/J)dp, for any't/J E iJ (M), 

which defines the embedding iloc (M) y iJ' (M). 
Let us define some operators in 1)' (M) and V' (M). For any distribution 

u E V' (M), its distributional Laplacian b..,..u E V' (M) is defined by means 
of the identity 

(b..,..u, rp) = (u, b..,..rp) for all rp E 1) (M). (4.3) 

Note that the right hand side makes sense because b..p.rp E 1) (M), and it 
determines a continuous linear functional of rp E V (M). Indeed, it is easy to 

see that rpk !; rp implies b..,..rpk ~ b..,..rp and, hence, (u, b..,..rpk) -+ (u, b..,..rp). 
If u is a smooth function then its classical Laplacian b..,..u satisfies (4.3), 

because by the Green formula (3.43) 

(b..p.u, rp) = L (b..,..u) rpdp, = L ub..,..rpdp, = (u, b..p.rp). 

Hence, in this case the distributional Laplacian coincides with the classical 
Laplacian, which justifies the usage of the same notation b..,..u for the both 
of them. 

If u E Lroc (M) and the distribution b..,..u can be identified as a func­
tion from Lroc (M), also denoted by b..p.u, then the latter is called the weak 
Laplacian of u. Alternatively, the weak Laplacian ll/-tu can be defined as a 
function from Lroc (M) that satisfies the identity (4.3). The weak Laplacian 
does not always exist unlike the distributional Laplacian. 

For any distribution u E V' (M), define its distributional gradient \7u E 

V' (M) by means of the identity 

(\7u, 'Ij;) = - (u, div/-t 'Ij;) for all 't/J E V (M). (4.4) 

If u is a smooth function then its classical gradient satisfies (4.4) by Corollary 
3.15. 

If u E Lroc (M) and \7 u E troc (M) then V' u is called the weak gradient 
of u. 
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We will always understand the operators b.f.1., \7 in the distributional sense 
unless otherwise stated. 

The following lemma is frequently useful. 

~ ~ ~ 
LEMMA 4.2. If Uk ---t u then \7uk ---t \7u. Consequently, if Uk ---t u 

15' and \7uk --+ v then \7u = v. 

PROOF. By the definition of the distributional gradient, we have, for 
any 'IjJ E 15 (M), 

(\7uk' 'IjJ) = - (Uk, div f.1. 'IjJ) . 

Passing to the limit as k -+ 00, we obtain 

which implies 

The second claim is obvious. o 
Define the following Sobolev space 

Wl (M) = Wl (M, g, /-L) := {u E L2 (M) : \7u E [} (M) }. 

That is, W l (M) consists of those functions u E L2 (M), whose weak gra­
dient \7 u exists and is in f2 (M). It is easy to see that W l (M) is a linear 
space. Furthermore, W l (M) has a natural inner product 

(u, V)Wl := (u, Vh2 + (\7u, \7v)£2 = 1M uv d/-L + 1M (\7u, \7v) d/-L, (4.5) 

and the associated norm 

Ilull~l = lI u lli2 + lI\7ulli2 = 1M u2d/-L + L l\7ul2 
d/-L. (4.6) 

LEMMA 4.3. WI (M) is a Hilbert space. 

Wi 
PROOF. It follows from (4.6) that the convergence Uk --+ u in W l (M) 

is equivalent to 
£2 £2 

Uk --+ u and \7uk ---t \7u. (4.7) 

Let {Uk} be a Cauchy sequence in W l (M). Then the sequence {Uk} is 
Cauchy also in L2 (M) and, hence, converges in L2-norm to a function u E 
L2 (M). Similarly, the sequence {\7uk} is Cauchy in [} (M) and, hence, 
converges in £2-norm to a vector field v E £2 (M). Since convergence in 
L2 is stronger than the convergence in V', we conclude by Lemma 4.2 that 
\7 u = v. It follows that the conditions (4.7) are satisfied and the sequence 
{ Uk} converges in W l (M). 0 
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In the case when M is an open subset of Rn, the above definition of 
WI (M) matches the one from Section 2.6.1 - see Exercise 4.1l. 

It is obvious from the definition of the norm (4.6) that IIullL2 :::; IIullwl, 
which implies that the identical mapping WI (M) ---+ L2 (M) is a bounded 
injection, that is, an embedding. 

Exercises. 

4.1. Prove that if <Pk ~ <P then 

(a) <Pk ~ <P on Mj 
'V 

(b) l:J..p.<Pk -+ l:J..J.I<pj 

(c) f<Pk ~ f<Pk for any f E Coo (M). 

4.2. For any function f E Coo (M) and a distribution u E Vi (M), their product fu is 
defined as a distribution by 

(fu, <p) = (u, f<p) for any <P E V (M). 

Prove the following assertions. 
'P' 'Pi 

(a) If Uk -+ u then fUk -+ fu. 
(b) supp (fu) C supp f n suppu. 
(c) Product rule: 

v (fu) = fVu + (VI) u, 

(4.8) 

where the product fVu of a smooth function by a distributional vector field and 
the product (V f) u of a smooth vector field by a distribution are defined similarly 
to (4.8). 

4.3. Prove that if f E Coo (M) is such that If I and IV fl are bounded, and u E WI (M) 
then fu E WI (M) and 

IIfullwl :5 CIIullwl, 
where C = 2 max (sup If I , sup IVfl)· 
4.4. Prove the extension of Theorem 2.3 to manifold: for any 1 :5 p < 00 and for any 
weighted manifold (M, g, 1-£), V (M) is dense in LP (M), and the space LP (M) is separable. 

4.5. Prove that V (M) is dense in Co (M), where Co (M) is the space of continuous 
functions with compact support, endowed with the sup-norm. 

4.6. Let u E Vi (M) and (u, <p) = 0 for all non-negative functions <P E V (M). Prove that 
u=O. 

4.7. Let u E Moe (M). 
(a) Prove that if (u, <p) ;::: 0 for all non-negative functions <p E V (M), then u ;::: 0 a.e. 
(b) Prove that if (u, <p) = 0 for all non-negative functions <p E V (M), then u = 0 a.e. 

4.8. 

(a) 

'Vi 
Let {Uk} be a sequence from L2 (M) such that Uk -+ u, where u E Vi (M). 

Prove that if the sequence of norms lIu",IIL2 is bounded then u E L2 (M) and 

lIullL2 :5liminf lIu",IIL2. 
k-+oo 

(b) Assume in addition that Vu", E f,2 and that the sequence of norms IIVukllL2 is 
bounded. Prove that u E WI (M) and 

IIVuliL2 :5liminf IIVukIiL2. 
k-+oo 

4.9. Prove that the space Lp (M, 1-£) is complete. 
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4.10. Define the divergence of a distributional vector field VEt)' by 

(divJ£ v,<p) = - (v, 'V<p) for all <p E 1). 

Prove that, for any distribution U E 1)', 

DoJ£u = divJ£ ('Vu) , 

where all operators Dol-" 'V, and divJL are understood in the distributional sense. 

4.11. Let (M, g, 1-£) be a weighted manifold and U be a chart on M with coordinates 
Xl, ••. , x". Let f E Ltoc (U). 

(a) Assume that all distributional partial derivatives I!r are in Ltoe (U), considering U 
as a part of JRn

• Prove that the distributional gradient 'V gf in U is given by 

and 

('V f)i = giJ of 
g axJ ' 

2 _ ij of of 
I'V gflg - 9 -a . -a .. x' xJ 

Conclude that 'V gf E ltoe (U). 

(4.9) 

(b) Assuming that 'Vgf E ltoe (U), prove that distributional partial derivatives -/!J are 
given by 

of i axj = giJ ('V gf) 

and that the identity (4.9) holds. Conclude that -if, E Moe (U). 

4.12. For an open set n eRn, let WI (n) be the Sobolev space defined in Section 2.6.1, 
and WI (n, g, >.) be the Sobolev space defined in Section 4.1, where g is the canonical 
Euclidean metric and>' is the Lebesgue measure. Prove that these two Sobolev spaces are 
identical. 

4.13. Denote by 'Vdist the distributional gradient in Rn (n ~ 2) reserving 'V for the 
gradient in the classical sense, and the same applies to the Laplace operators Dodist and 
Do. 

(a) Let fECI (Rn \ {a}) and assume that 

f E Lroc (Rn) and 'Vf E £toe (Rn). 

Prove that 'V disd = 'V f. 
(b) Let f E C2 (Rn \ {o}) and assume that 

f E Lroc (JRn) , 'V f E lroe CJRn) , and Dof E Ltoc (Rn) . 

Prove that Dodistf = Dof. 
(e) Consider in R3 the function f (x) = lxi-I. Show that f E Ltoe (R3) and Dof = 0 in 

R3 \ {a}. Prove that Dodistf = -411"15 where 15 is the Dirac delta-function at the origin 
o. 

4.14. Consider in Rn (n ~ 2) the function f (x) = Ixl", where Q is a real parameter. 

(a) Prove that f E Ltoc provided Q > -n/2. 
(b) Prove that f E L'foe and 'Vf E ltoe provided Q > 1- n/2. Show that in this case 

'V disd = 'V f· 
(e) Prove that f E Ltoe, 'V f E lroe , and Dou E Ltoc provided Q > 2 - n/2. Show that 

in this case Dod.sd = Dof .. 

4.15. Prove that if {Uk} is a sequence of functions from WI that is bounded in the norm 
of WI then there exists a subsequence {Uk,} that converges to a function U E WI weakly 
in WI and weakly in L2. 
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4.16. Prove that if {Uk} is a sequence of functions from WI that converges weakly in WI 
to a function U E WI then there is a subsequence {Uk;} such that 

where -' stands for the weak convergence. 

4.17. Let {Uk} be a sequence of functions from WI that converges weakly in L2 to a 
function U E L2. 

(a) Prove that if the sequence {Uk} is bounded in the norm WI then U E WI and 
Wi 

Uk -' u. 

(b) Prove that if in addition IIUkllwl ~ lIullwl then Uk ~ u. 

4.18. Let {Uk} be an increasing sequence of non-negative functions from WI that converges 
almost everywhere to a function U E L2. Prove that if 

II\7ukIlL2 ::::;c 
1 Wl 

for some constant c and all k, then U E W , Uk -' u, and lI\7ulIL2 ::::; Co 

4.2. Dirichlet Laplace operator and resolvent 

Let (M, g, p,) be a weighted manifold. The purpose of this section is 
to extend the Laplace operator IIp. to a self-adjoint operator in the Hilbert 
space L2 = L2 (M, p,). 

Initially, the Laplace operator IIp. is defined on smooth functions, in 
particular, on the space V = V (M). Since V is a dense subspace of L2, 
we can say that IIp. is a densely defined operator in L2 with the domain V. 
Denote this operator by A = 1lp.11>. This operator is symmetric, because, 
by Green's formulas (3.43), 

(Ilp.u,v)p = (u,llP.v)L2 for all u,v E V. 

However, A is not self-adjoint, which follows from the following statement. 

CLAIM. For the operator A = 1lp.11>' the adjoint operator A* has the domain 

domA* = {u E L2: IIp.u E L2}, (4.10) 

and in this domain A*u = IIp.u. 

PROOF. Recall that the adjoint operator is defined by 

domA* = {u E L2 : 31 E L2 Vv E domA (Av, u)p = (v, f)p }, 

and 

A*u = f. 
The equation (Av, U)L2 = (v, f)p is equivalent to (u, IIp.v)1> = (j, vb which 
means that IIp.u = I in the distributional sense. Hence, U E domA* if 
and only if IIp.u E L2, and in this domain A*u = IIp.u, which was to be 
proved. 0 
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It is clear from (4.10) that domA* contains functions, which are not 
compactly supported, and, hence, dom A * strictly larger than dom A. For 

2 
example, in JR, the function u (x) = e-X belongs to domA* but not to 
domA. 

If A is a densely defined symmetric operator in a Hilbert space 1£ then 
we always have 

AcA*. 

If B is a self-adjoint extension of A then 

A c B = B* c A*, 

which implies 
domA c domB c domA*. 

Hence, the problem of constructing a self-adjoint extension of A amounts to 
an appropriate choice of dom B between dom A and dom A * because then 
the action of B can defined by restricting A * to dom B. 

Consider the following functional spaces on a weighted manifold (M, g, t-t): 

WJ (M) = the closure of 1) (M) in WI (M) 

and 
we? (M) = {U E WJ (M) : D.p.U E L2 (M)}. 

That is, We? consists of those functions U E WJ, whose weak Laplacian D.p.u 
exists and belongs to L2. Clearly, 1) c W6. 

The space WJ has the same inner product as WI and is a Hilbert space 
as a closed subspace of WI. It is natural to consider also the following space1 

W2 (M) = {u E WI (M) : D.p.U E L2 (M)}. (4.11) 

Consider the operator D.p.1w.2 as a densely defined operator in L2, which ob­
o 

viously extends the operator D.p.Jv. As will we prove below, the operator D.Jt I w.2 
o 

is actually self-adjoint. Let us first verify that it is symmetric. 

LEMMA 4.4. (The Green formula) For all functions U E WJ (M) and 
v E W 2 (M), we have 

fMUD.JtVdt-t=- fM('lu,'lV)dt-t. (4.12) 

PROOF. Indeed, if U E 1) then by the definitions of the distributional 
Laplacian D.Jtv and the distributional gradient 'lv, we have 

fM uD.Jtv dt-t = (D.Jtv, u) = (v, D.J.Lu) 

- (v, divJt ('lu)) = - ('lv, 'lu) = - L ('lu, 'lv)dt-t. 

1 Warning. If!1 is an open subset of JR." then, in general, the space W2 (!1) defined 
by (4.11) does not match the space W 2 (!1) introduced in Section 2.6.1. 
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For any u E WJ there is a sequence {Uk} C V that converges to U in WI. 
Applying (4.12) to Uk and passing to the limit we obtain the same identity for 
U because the both sides of (4.12) are continuous functionals of U E WI. 0 

In particular, (2.39) applies when U E WJ and v E WJ. If the both 
functions u, v are in W6 then we can switch them in (2.27), which yields 

(D.J.LU,Vh2 = (u,D.J.Lv)p. (4.13) 

Hence, D.J.L1w.2 is a symmetric operator. 
a 

The identity (4.12) also implies that, for any U E wJ, 

1M uD.J.LudJ.L = - 1M lV'ul2 
dJ.L:::; 0, (4.14) 

that is, the operator D.J.L1w.2 is non-positive definite. It is frequently more 
a 

convenient to work with a non-negative definite operator, so set 

.c = - D.J.L1w.2 . 
a 

The operator .c (or its negative D.p, I w.2) is called the Dirichlet Laplace oper­
a 

ator of the weighted manifold (M, g, J.L). 
This terminology is motivated by the following observation. Let 0 be 

a bounded open subset of JRn . Given a function f in 0, the problem of 
finding a function u in D satisfying the conditions 

{ 
D.u = f in 0, (4.15) 
U= 0 on 8D, 

is refereed to as the Dirichlet problem. In the classical understanding of 
this problem, the function u is sought in the class C2 (0) n C (0). However, 
in general the Dirichlet problem has no solution in this class unless the 
boundary of 0 possesses a certain regularity. 

It is more profitable to understand (4.15) in a weak sense. Firstly, 
the Laplace operator in the equation D.u = f can be understood in the 
distributional sense. Secondly, the boundary condition u = 0 can be replaced 
by the requirement that u belongs to a certain functional class. It turns out 
that a good choice of this class is WJ (0). The fact that WJ (0) is the 
closure of ego (0) in WI (0) allows to show that functions from WJ (0) do 
tend to 0 in a certain average sense when approaching the boundary 80. 

Hence, the weak Dirichlet problem in 0 is stated as follows: assuming 
that f E £2 (0), find a function u E WJ (0) such that D.u = f. Obviously, 
if u solves this problem then D.u E £2 and hence u E W6 (0). We see that 
the space W6 appears naturally when solving the Dirichlet problem, which 
explains the above terminology. Replacing the boundary condition in (4.15) 
by the requirement u E WJ allows to generalize the weak Dirichlet prob­
lem to an arbitrary manifold. Namely, for a weighted manifold (M, g, J.L), 
consider the following problem: 

{ 
-D.J.Lu + au = f on M, (4.16) 
u E WJ (M), 
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where a is a given constant and I E L2 (M) is a given function. If a :S 0 
then this problem may have more that one solution. For example, if M is 
a compact manifold, a = 0 and I = 0 then u = const is a solution. AB we 
will see in the next statement, for a > 0 this problem has always exactly 
one solution (see Exercise 4.28 for the uniqueness conditions when a = 0, 
and Exercise 4.29 for a more general version of the weak Dirichlet problem 
with non-zero boundary condition). 

Consider the resolvent Ra = (C + a id)-l of the Dirichlet Laplace op­
erator C, which is defined whenever the operator C + a id is invertible in 
L2. 

THEOREM 4.5. For any a > 0, the resolvent Ra := (C + a id)-l exists 
and is a bounded non-negative definite sell-adjoint operator in L2. Moreover, 
IIRall :S a-I. 

PROOF. Let us show that, for any I E L2, there exists a unique function 
u E W6 such that (C + aid) u = I, that is, 

(4.17) 

This will prove that the resolvent Ra exists and Ral = u. The requirement 
u E W6 here can be relaxed to u E WJ. Indeed, if u E WJ and u satisfies 
(4.17) then 1:::.1-' u = au - f E L2, whence u E W6 (in particular, this will 
imply that the problem (4.16) has a unique solution). 

Considering the both sides of (4.17) as distributions and applying them 
to a test function ep E V, we obtain that (4.17) is equivalent to the equation 

-(u, I:::.I-'ep) + a(u, ep) = (I, ep) , (4.18) 

for any ep E V, where we have used the definition (4.3) of the distributional 
I:::.w Next, using the fact that u E WJ and the definition of the distributional 
gradient \7u, rewrite (4.18) in the equivalent form 

(\7u, \7ep) + a (u, ep) = (I, ep). (4.19) 

Now, let us interpret the brackets in (4.19) as inner products in L2. Since 
V is dense in WJ, we can extend to WJ the class of test functions ep for 
which (4.19) holds. Hence, the problem amounts to proving the existence 
and uniqueness of a solution u E WJ to (4.19) assuming that (4.19) holds 
for all ep E WJ. 

Dengte the left hand side of (4.19) by [u, ep]a' that is, 

[u, ep]a := (\7u, \7 ep) + a (u, ep) , 

and observe that [., ·Ja is an inner product in WJ. If a = 1 then (., ·la 
coincides with the standard inner product in WJ. For any a > 0 and 
u E WJ, we have 

min (a, 1) lIull~l :S [u, u]a :S max (a, 1) lIull~l. 
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Therefore, the space WJ with the inner product (',1)( is complete. Rewriting 
the equation (4.19) in the form 

[u, rpla = (j, rp) , (4.20) 

we obtain by the Riesz representation theorem, that a solution u E WJ exists 
and is unique provided the right hand side of (4.20) is a bounded functional 
of rp E WJ. The latter immediately follows from the estimate 

l(j, <p)1 :s; 1I/IiL211<p1i£2 :s; a-I
/

2 11/11£2 [<p, <p];!2 , 

which finishes the proof of the existence of the resolvent. 
Substituting rp = u in (4,19) we obtain 

lIV'ull1,2 + allull1,2 = (j, u) , (4.21) 

whence it follows (Raf,j) = (u,j) ~ 0, that is, Ra is non-negative definite. 
Another consequence of (4.21) is 

allull12 :s; IIfIlL2I1ull£2, 

which implies IIRafll2 :s; a-1 11/112 and, hence, IIRall :s; a-I. 
Since R is a bounded operator, in order to prove that it is self-adjoint it 

suffices to prove that it is symmetric, that is 

(Rf, g) = (j,Rg) for all f,g E L2. 

Setting Ral = u, Rag = v, and choosing <P = v in (4.19), we obtain 

(V'u, V'v) + a (u, v) = (j, Rag). 

Since the left hand side is symmetric in u, v, we conclude that the right hand 
side is symmetric in I, g, which implies that Ra is symmetric. 0 

Now we can prove the main result of this section. 

THEOREM 4.6. On any weighted manifold, the operator Dirichlet Laplace 
operator C = -~t-£1W:2 is a self-adjoint non-negative definite operator in 

a 
L2, and spec C c [0, +(0). Furthermore, ~t-£Il-t,? is a unique self-adjoint 

a 
extension 01 ~t-£I'D whose domain is contained in WJ. 

PROOF. The fact that C is symmetric and non-negative definite was 
already verified (see (4.13) and (4.14». 

Self-adjointness, By Theorem 4.5, the resolvent R = RI = (C + id)-l 
exists and is a' bounded self-adjoint operator. Let us show that C = R-1-id 
is also a self-adjoint operator. It suffices to prove that R-1 with the domain 
wg is a self-adjoint operator. The symmetry of R-1 easily follows from the 
symmetry of C. Therefore, (R-1)* is an extension of R-1, and all we need 
to show is that 

dom (R-l)* C dom (R- I ). 

By the definition of the adjoint operator, 

dom(R-1)* = {u E L2: 3f E L2 Vv E domR-1 (R-1v,u) = (v,j)}. 
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Since Rf is defined and is in domR- 1 , we have, by the symmetry of R-I, 

(R- 1v,Rf) = (v,R-lRf) = (v,f). 

Comparing the above two lines, we conclude 

(R- 1v,u) = (R- 1v,Rf) for all v E w~, 

whence u = Rf and u E dom R-1 . 

Spectrum of H. Since the inverse operator (£ + o:id)-l exists and is 
bounded for any 0: > 0, we see that -0: is a regular value of C and hence 
spec £ c [0, +00 ). The latter follows also from a general fact that the spec­
trum of a self-adjoint non-negative definite operator is contained in [0, +(0) 
(see Exercise A.26). 

Uniqueness of extension. Set Co := -~J.L1v and suppose that C1 is a 
self-adjoint extension of Co such that 

domC1 C WJ. (4.22) 

We need to prove that £1 = C. By (4.10), we have 

domCo = {u E L2 : ~J.Lu E L2} 

and in this domain 

LOU = -~fJ-u. 

The inclusion Co C C1 implies C1 C Co. Combining with (4.22) we obtain 

domC l C WJ n dom£i = {u E WJ : ~J.Lu E L2} = dom£. 

Also, if U E dom£l then 

£lU = LOU = -~fJ-u = Cu, 

whence it follows that C is an extension of £1, that is, £1 C £. This implies 
Ci ::) £* and, hence, C1 = C, because both operators £1 and £ are self­
~~. D 

SECOND PROOF. This proof does not use Theorem 4.5 and is overall shorter but at 
the expense of using the theory of quadratic forms. Consider the quadratic form 

E (u, v) = (V'u, V'v)£2 

with the domain wJ. This form is obviously symmetric and, as follows from Lemma 
4.3, it is closed in L2. Hence, the form E has a self-adjoint generator C such that for all 
u E domC and v E domE, 

E(u,v) = (Cu,v). 

The operator C is non-negative definite because, for all u E domC, 

(Cu, u) = E (u, u) ~ O. 

The domain of C is dense in WJ and is defined by 

dom C = {u E W~ : v 1--+ E (u, v) is a bounded linear functional of v E W~ in L 2 } • 
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This condition means, by the Riesz representation theorem, that there exists a unique 
function I E L2 such that 

c(u,v)=(f,v) for all v Ewl. 

Since V is dense in wd-, we can rewrite (4.23) as follows: 

£(u,v) = (f,v) for all v E V. 

(4.23) 

(4.24) 

Using the definitions of the distributional Laplacian and gradient, we obtain, for any 
u E dom £ and v E V, 

£ (u, v) = (Y'u, Y'v) = - (u, divp Y'v) = - (u, .:lpv) = - (.:lpu, v) , 

and, comparing with (4.24), we see that for the distribution .:lpu and for any v E V, 

- (.:lpu, v) = (I, v) , 

whence -bopu = I. In particular, this means that .:lpu E L2 and hence u E WJ; further­
more, £u = I = -.:lpu. Conversely, it is easy to see that u E WJ implies u E dome. 
Hence, WJ = dom £ and £ = - .:lp IW2, which finishes the proof of self-adjointness of 

o 
bop lw2 ' 0 o 

THIRD PROOF. Here we provide yet another proof of the self-adjointness of £, based 
on some properties of closed operators. Let us consider gradient Y' as an operator from L 2 

to [,2 with the domain wd-. We claim that Y' is a closed operator. Indeed, if a sequence 
{Jk} c wd- is such that !k -+ I in L2 and Y'/n -+ w in £2 then {Ik} is Cauchy in wd­
and hence converges to I in wd-. Therefore, Y' In -+ Y'I in [} and w = Y'/, whence we 
conclude that Y' is closed. 

Consider the adjoint operator Y'* acting from l2 to L2. By definition, we have 

dom Y'* = {WE l2: I J-t 1M (Y' I, W) dJ1. is a bounded functional of I E dom Y' } , 

and Y'*w is a unique function from L2 such that, for all lEWd-, 

1M (Y'/,w) dJ1. = 1M I Y'*w dJ1. . 

Since V is dense in WJ, we can allow I here to vary in V instead of dom Y'. Then the 
above identity is equivalent to the fact that Y'* w = - div,.. w where div,.. is understood in 
the distributional sense. Hence, we obtain that 

dom Y'* = {WE l2 : div p w E L 2 
} , 

and Y'*w =::: -divpw in this domain. 
Finally, let us show that £ = Y'*Y', which will imply that £ is self-adjoint. Indeed, 

we have 

dom(Y'*Y') {I E dom Y' : Y'I E dom Y'*} 

{J E wl : divp Y'I E L2} 

= {I E wi : bopl E L2} 

= dome, 

and in this domain Y'*Y'I = - div p Y'I = -bopl = £1, which finishes the proof. 0 
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EXAMPLE 4.7. Let us prove that in ]Rn the domain W6 (JRn ) of the Dirichlet Laplace 
operator coincides with the Sobolev space W 2 (JRn

) (cf. Section 2.6). By Exercise 2.30, in 
Rn the space 'D is dense in W 1

, which implies that WJ = W 1
. Therefore, 

U E W2 =? U E WJ and Au E L 2 
=? U E wt 

which means that W2 C W6. 
To prove the opposite inclusion W6 C W 2

, we need to show that if U E W l and 
Au E L 2 then all the second derivatives of U are also in L 2 • Let us first show that if U E 'D 
then 

n 

2: 1I0iOjulI~2 = IIAulI~2. 
\,j=1 

By the definition of the Laplace operator, we have 

IIAulI~2 = r (2:. O;U) 
2 

dx = r 2: .. O;uOJudx. Jan 'I Jan 1,.1 

For any two indices i, j, we obtain, using integration by parts, 

(O;u,oju) = - (OiU,OiOJU) = (OjOiU,OiOjU) = IIOiOjull~2, 
whence (4.25) follows. 

Let us now prove that if U E W5 and supp U is compact then U E W2 and 
n 

2: 1I0iOjull~2 ~ IIAull~2' 
i,j=l 

Fix a mollifier 'P and consider the sequence of functions 

Uk = U * 'Pl/k. 

By Lemma 2.9, Uk E 'D and 

By Theorem 2.11, we obtain 

which together with (4.27) implies 
n 

2: 1I0.0juklih ~ IIAuIIL2. 
i,j=1 

(4.25) 

(4.26) 

(4.27) 

Since all norms IIOiOjukll~2 are bounded uniformly in k, we conclude by Theorem 2.11 
that OiOjU E L2 and (4.27) is satisfied. In particular, we have u E W 2

• 

Now let us prove that any function u E W6 belongs to W 2
• Let 'I/J be a cutoff function 

of the unit ball B1 = {Ixl < I} in Rn so that 'I/J E 'D (Rn) and 'I/J == 1 on B1. Set 

Uk (x) = 1jJ G) u (x) (4.28) 

where k is a positive integer. Then Uk E W 1 and SUPPUk is compact. Let us show that 
AUk E L2. Using the product rule for second order derivatives (see Exercise (2.12)), we 
obtain 

AUk = k-2 (A'I/J) (~) u + 2k- 1 (o.'I/J) (n OiU + 'I/J G) Au. (4.29) 

Obviously, the right hand side here is in L2 and, hence, AUk E L2. Therefore, Uk E W6, 
and, by the previous part, we conclude Uk E W 2

• 

It also follows from (4.29) that 

IIAukllL2 ~ C (liullwl + IIAuIIL2) , 

where C does not depend on k. From (4.27), we obtain that, for any any multiindex Q of 
order 2, 
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that is, the sequence {8"'Uk};::1 is bounded in L2. Since Uk ~ U, we have also 8"'Uk ~ 
8"'u. By Exercise 4.8, we conclude that 8"'u E L2 and, hence, U E W 2

• 

Exercises. 
4.19. Let M be the unit ball B in JR.". Prove that the Laplace operator A with domain 

{J E C2 (E) ; AI E L2 (E)} 

is not symmetric in L2 (B). 

4.20. Let A be an operator in L2 (M) defined by AI ::::;: -AJ.J.I with domA = CD (M). 
Prove that operator A is unbounded. 

4.21. Prove that if f E CD (M) and U E WJ then fu E WJ (M) . 

4.22. Prove that the spaces We? (M) and W2 (M), endowed with the inner product 

(U,V)W2 = (U,V)Wl + (AJ.J.u, AJ.J.vh2' (4.30) 

are Hilbert spaces. 

4.23. Prove that, for any u E We? (M), 

Ilull~l ~ c (11ulli2 + IIAJ.J.ull~2) , (4.31) 

wherec=¥. 

4.24. Let {E)..} be the spectral resolution of the Dirichlet Laplace operator C in L2 (M). 
Prove that, for any f E wg (M), 

IIVflli2 = 100 

AlldE)..flli2. (4.32) 

4.25. Prove that domCl
/ 2 = wJ (M) and that (4.32) holds for any f E WJ (M). 

HINT. Use Exercise A.13. 

4.26. Prove that domCl
/

2 = dom(C + id)1/2 and, for any f E WJ (M), 

II/l1wl = II (C + id)1/2 IIIL2. 
4.27. Prove that, for all f E WJ (M), 

IIV IIIi2 ~ Amin Ilflli2, 
where 

Amin ;= inf spec C. 

4.28. Assuming that Amin > 0, prove that the weak Diricltlet problem on M 

{ 
-AJ.J.u = f, 
u E WJ (M), 

has a unique solution u for any f E L2 (M), and that for this solution 

lIullL2 ~ ;\~:nllfIlL2 
and 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

4.29. Consider the following version of the weak Dirichlet problem; given a real constant 
Q and functions I E L2 (M), w E Wl (M), find a function u E L2 (M) that satisfies the 
conditions 

{ AJ.J.u + QU = I, (4.39) 
U = w mod wJ eM) , 

where the second condition means u - w E WJ (M). Prove that if Q < Amin then the 
problem (4.39) has exactly one solution. 
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4.30. Let A be a bounded self-adjoint operator in L2 such that, for a constant a > 0 and 
for any function I E L2(M), 

a-ll1/l1~ $ (AI, f)L2 $ all/ll~· 
(a) Prove that the bilinear form 

{f,g}:= ('VI, 'Vg) + (AI,g) 

defines an inner product in WJ, and that WJ with this inner product is a Hilbert 
space. 

(b) Prove that, for any h E L2, the equation 

-llp.u + Au = h 

has exactly one solution u E wg. 
4.31. Prove that, for any a > 0 and I E L2 (M), the function u = RaJ is the only 
minimizer of the functional 

E (v) := lI'Vvll~ + a IIv - III~, 
in the domain v E WJ (M). 

4.32. Prove that for any a > 0 the operators 'V 0 R", : L2 (M) -+ [,2 (M) and CoRa: 
L2 (M) -+ L2 (M) are bounded and 

lI\7oRatl$a- 1
/

2
, 

IIC 0 Rail $1. 

4.33. Prove that, for any 1 E L2 (M), 

Prove that if 1 E dom C then 

4.34. Prove that, for all a, f3 > 0, 

Ra - R(3 = (f3 - a) R",R(3. 

4.3. Heat semigroup and L2-Cauchy problem 

(4.40) 

(4.41) 

(4.42) 

Let (M, g, f.1.) be a weighted manifold. The classical Cauchy problem is 
the problem of finding a function U (t, x) E C2 (lR+ x M) such that 

{ eat = C1/1-u, t > 0, (4.43) 
u!t=o = f, 

where f is a given continuous function on M and the the initial data is 
understood in the sense that U (t, x) -+ f (x) as t -+ ° locally uniformly in 
x. Obviously, if a solution u (t, x) exists then it can be extended to t = ° by 
setting u (0, x) = f (x) so that u (t, x) becomes continuous in [0, +00) X M. 

The techniques that has been developed so far enables us to solve an 
L2-version of this problem, which is stated as follows. Consider the Dirichlet 
Laplace operator £ = -C1/1-!w:2 on M. The L2-Cauchy problem is the prob­

o 
lem of finding a function u (t, x) on (0, +00) x M such that u (t, .) E L2 (M) 
for any t > ° and the following properties are satisfied: 
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• The mapping t H u (t,·) is strongly differentiable in L2 (M) for all 
t> O. 

• For any t > 0, u (t,') E domC and 

du 
- = -Cu 
dt ' 

where ~~ is the strong derivative of u in L2 (M). 

• u (t,·) ~ fast -+ 0 where f is a given function from L2 (M). 
Shortly, the L2-Cauchy problem can be written in the form 

{ 

du 
dt = -Cu, t > 0, 

ult=o = f, 
(4.44) 

where all the parts are understood as above. 
The problem (4.44) is reminiscent of a system of linear ordinary dif­

ferential equations of the first order. Indeed, assume for a moment that 
u = u (t) is a path in jRN, C is a linear operator in jRN, and f E jRN. Then 
the system (4.44) has a unique solution u given by 

u = e-t£f, 

where the exponential of an operator A in jRN is defined by 

A2 A3 
eA 

= id + A + 2f + 3f + .... 

In the case when A = -tC is an unbounded operator in L2, the exponential 
series does not help because the domain of the series, that is, the set of 
functions f where all the powers Ak f are defined and the series converges, 
is by far too small. However, one can apply the spectral theory to define 
e-t£ provided C is a self-adjoint operator. 

Let us briefly summarize the necessary information from the spectral 
theory (see Section A.5.4 for more details). Let C be a self-adjoint operator 
in a Hilbert space H, and let spec C be its spectrum. Then any real-valued 
Borel function rp on spec C determines a self-adjoint operator rp (C) in H 
defined by 

rp(C) := 1 rp()")dE>. = 100 

rp()")dE>. , 
spec £ -00 

(4.45) 

where {E>.} is the spectral resolution of C. The domain of rp (C) is defined 
by 

domrp(C) := {f E H: 1 Irp ()..)12 dllE>.fll2 < <Xl} , 
spec £ 

( 4.46) 

and, for any f E domrp (C), we have 

Ilrp(A)fI12 = 1 Irp ()..)1 2 dIIE>.fI12. 
spec A 

(4.47) 
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If I.p is bounded on spec e then the operator 'P(e) is bounded and 

II'P(.c)1I ~ sup I'PI· 
specC 

In this case, dom I.p (.c) = 1£. If 'P is continuous on spec.c then 

II <p(e) II = sup l<pl· 
specC 

If 'P and 't/J are Borel functions on spec e and 'Ij; is bounded then 

'P (.c) + 't/J (.c) = ('P + 't/J) (.c) 

and 
<P (.c) 't/J (.c) = (<p't/J) (.c) 

(4.48) 

(4.49) 

(4.50) 

(cf. Exercise A.23). The relations (4.49) and (4.50) include also the identity 
of the domains of the both sides. 

The following version of the bounded convergence theorem is frequently 
useful. 

LEMMA 4.8. Let.c be a self-adjoint operator in a Hilbert space 1£ and 
{<pk}~l be a sequence of Borel functions on spec.c. If {'Pk} is uniformly 
bounded and converges pointwise to a Borel function 'P on spec.c, then, for 
any f E 1£, 

<Pk (e) f -+ <P (e) f as k -+ 00. (4.51) 

Note that the operators 'Pk (.c) and'P (e) are bounded and their common 
domain is 1£. The convergence in (4.51) is understood in the norm of 1£, 
which means that the sequence of operators 'Pk (.c) converges to <P (.c) in the 
strong operator topology. In terms of the spectral resolution {E>.} of the 
operator e, (4.51) can be stated as follows: 

1 'Pk (A) dE)'f --+ 1 'P(A)dE)'f, (4.52) 
specC spec £ 

which explains the reference to the bounded convergence theorem. 

PROOF. It follows from (4.49) that 

'Pk (.c) - <P (.c) = ('Pk - 'P) (e), 

and (4.47) yields 

II<pk (.c) f-<p (e) fll2 = II ('Pk - 'P) (.c) fll2 = 1 l<Pk(A) - 'P(A)I2 dllE>.fll2. 
spec £ 

The sequence I'Pk(A) - cp(A) I tends to 0 as k -+ 00 for any A E spece. Since 
this sequence is bounded and the measure dllE,dll 2 is finite (its total being 
II f 11 2), the classical bounded convergence theorem yields that 

1 l<Pk(A) - cp(A)I2 dllE>.fll2 --+ 0 as k -+ 00, 
spec £ 

whence (4.51) follows. o 
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Given an operator 12 in a Hilbert space 1l and a vector f E 1l, consider 
the associated Cauchy problem to find a path u : (0, +(0) -+ 1l so that the 
following conditions are satisfied: 

• u (t) is strongly differentiable for all t > 0. 
• For any t > 0, u (t) E dom12 and 

du 
-=-12u 
dt ' 

where ~~ is the strong derivative of u. 
• u (t) -+ fast -+ 0, where the convergence is strong, that is, in the 

norm of 1l. 

If 12 is a self-adjoint, non-negative definite operator, that is, spec 12 C 

[0, +(0), then this problem is solved by means of the following family {Pt } t>O 

of operators: -

Pt := e-t,C = 1 e-t>"dE>.. = {'Xl e-t>"dE>... 
spec'c Jo 

The family {Pt } t>O is called the heat semigroup associated with 12. In par­
ticular, we have .Po = id. 

THEOREM 4.9. For any non-negative definite, self-adjoint operator 12 
in a Hilbert space 1£, the heat semigroup Pt = e-t'c satisfies the following 
properties. 

(i) For any t ~ 0, Pt is a bounded self-adjoint operator, and 

11Ft II :s; 1. (4.53) 

(ii) The family {Pt} satisfies the semigroup identity: 

PtPs = PHs, (4.54) 

for all t, s ~ 0. 
(iii) The mapping t H Pt is strongly continuous on [0, +(0). That is, 

for any t ~ ° and f E 1l, 

limPsf = Pd, 
s-+t 

(4.55) 

where the limit is understood in the norm of1l. In particular, for 
any f E H, 

lim Pd = f. 
t-+O+ 

(iv) For all f E Hand t > 0, we have Pd E dom12 and 

d 
dt (Pd) = -12 (Ptf), (4.57) 

where 1t is the strong derivative in 1l. 

Consequently, the path u = Pd solves the Cauchy problem in 1l for any 
f E H. 
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The properties (i)-(iv) mean that {Pth>o is a strongly continuous con­
traction semigroup in 1i with generator C. -

PROOF. The fact that u = Pt! solves the Cauchy problem is obviously 
contained in (iii) and (iv). 

(i) By (4.48), we have 

IlPtll = lIe-t .c1l = sup e-t>.::; sup e-t>. = 1. 
>'Espec.c >'E[O,+oo) 

(ii) This follows from the property of the exponential function e-t>\e-s>' = 
e-(Hs)>. and from (4.50). 

(iii) The family of functions {e-s>.} 8>0 is uniformly bounded in ,x E 

[0, +(0) and tends pointwise to e-t>' as s --+ t. Hence, by Lemma 4.8, for 
any I E 1i, 

Psi = 10
00 

e-s>'dE>.1 ~ 10
00 

e-t>'dE>.1 = Pt!. 

(iv) Fix t > 0 and consider the functions cp (,x) = ,x, 'ljJ (,x) = e-t>., and 

<I> (,x) := cp (,x) 'ljJ (,x) = ,xe-t>.. 

Since 'ljJ (,x) is bounded on [0, +(0), (4.50) yields 

cp (C) 'ljJ (C) = (cp'ljJ) (C) = <I> (C), 

that is 
Ce-t.c = <I> (C) . 

Since <I> (,x) is bounded on [0, +(0), the operator <I> (.c) is bounded and, 
hence, dom <I> (C) = 1i. Therefore, dom (.ce-t.c) = 1i whence it follows that 
ran e-t.c C dom C, that is, Pt! E dom C for any I E 1i. 

For any I E 1i, we have 

.!!:... (Pt!) = lim PHsl - Pt! = lim [00 e-
s

>. -1 e-t>'dE>.I, (4.58) 
dt s-tO s s-tO Jo s 

where the limit is understood in the norm of 1i. Obviously, we have 

e-s>. - 1 
lim e-t>' = -,xe-o .. 
s-tO S 

We claim that the function 
\ e-s>. - 1 -t>. 
/\ 1-7 e 

s 
is bounded on [0, +(0) uniformly in s E [-c, c] where c is fixed in the range 
0< c < t, say c = t/2. To prove this, let us apply the inequality 

leO -11 ::; 101 e1ol , (4.59) 

for anye E lR, which follows from the mean value theorem. Setting e = -,xs 
in (4.59), we obtain 
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whence 
I e-

A
: -1 e-tA ! :::; Ae-AteA/S / :::; Ae-A(t-e). (4.60) 

Since the right hand side is a bounded function of A, the above claim is 
proved. 

By Lemma 4.8, the right hand side of (4.58) is equal to 

1000 

(-A) e-tAdEAf = -~ (C) f = -C (Ptf) , 

which was to be proved. o 
The existence in the Cauchy problem in 1-£, which follows from Theorem 

4.9, is complemented by the following uniqueness result. 

THEOREM 4.10. Let C be a non-negative definite operator in a Hilbert 
space 1-£. Then the corresponding Cauchy problem in 1-£ has at most one 
solution for any initial vector f E 1-£. 

Note that operator C here is not necessarily self-adjoint. 

PROOF. Assuming that u solves the Cauchy problem, let us prove that 
the function 

J(t) := lIu (t,') 112 = (u (t), u (t)) 
is decreasing in t E (0, +00). For that, we use the following product rule 
for strong derivatives: if u (t) and v (t) are strongly differentiable paths in 
1-£ then the numerical function t H (u (t) , v (t)) is differentiable and 

d d d 
dt (u, v) = (dt u, v) + (u, dt v) 

(cf. Exercise 4.46). In particular, we obtain that the function J (t) is differ­
entiable on (0, +00) and 

J' (t) = :t (u,u) = 2(u, ~~) = -2 (u,Cu) :::; 0, 

where we have used the fact that the operator C is non-negative definite. 
We conclude that J (t) is a decreasing function. 

To prove the uniqueness of the solution is suffices to show that f = 0 
implies u = O. Indeed, if u (t) -+ 0 as t -+ 0 then also J (t) -+ O. Since J (t) 
is non-negative and decreasing, we conclude J (t) == 0 and u (t) = 0, which 
was to be proved. 0 

On any weighted manifold M, set 

Pt = e-tC , 

where C = -~JLIW6 is the Dirichlet Laplace operator. Theorems 4.9 and 
4.10 immediately imply the following result. 

COROLLARY 4.11. For any function f E L2 (M), the L2-Cauchy problem 
(4.44) has a solution. Moreover, this solution is unique and is given by 
u=Ptf· 
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EXAMPLE 4.12. Let Pt (x) be the Gauss-Weierstrass function defined by (1.8), that 
is, 

(4.61) 

where t > 0 and x E R". By Lemma 2.18, for any f E L2 (Rn) and any t > 0, the function 
Ut = Pt * f is in L2 (Rn) and 

£2 
Ut -l- fast -+ O. 

It follows from Theorem 2.22, that if f E W 2 (Rn) then Ut E W2 (Rn), Ut is strongly 
differentiable in L 2, and 

dUt dt = AUt. 

As it was shown in Example 4.7, the domain dome = W6 (Rn) of the Dirichlet Laplace 
operator in Rn coincides2 with W 2 (Rn). Hence, Ut E dome and we obtain that the path 
t H- Ut solves the L 2 -Cauchy problem. 

By Corollary 4.11, the unique solution to the L2-Cauchy problem is given by e-tC I. 
We conclude that, for all t > 0, 

e-tCI=pt*l= r Pt(x-y)/(y)dy, JRn (4.62) 

for any I E W 2
• Since W 2 is dense in L 2 and all parts of (4.62) are continuous in I E L 2, 

we obtain that (4.62) holds for all I E L2. 
Recall that, in Section 2.7, the heat semigroup {Pt } in Rn was defined by Ptf = pt*I, 

whereas in the present context, we have defined it by Pt = e-t'c. The identity (4.62) shows 
that these two definitions are equivalent. Another point of view on (4.62) is that the 
operator Pt = e-t,C in Rn has the integral kernel Pt (x - y). As we will see in Chapter 7, 
the heat semigroup has the integral kernel on any manifold, although no explicit formula 
can be obtained. 

Exercises. 

4.35. Fix a function I E L2. 

(a) Prove that the function cp (t) := (Ptf,J) on t E (0, +00) is non-negative, decreasing, 
continuous, and log-convex. 

(b) Prove that the function 1/J (t) := IIV' Ptfll~ is decreasing on (0, +00) and 

100 

1/J (t) dt ~ 4I1fll~2' 
4.36. Prove that, for any I E WJ, such that II/IIL2 = 1, 

IIPtfllL2 :2: exp (-t L 1V'/12 dp, ) , (4.63) 

for any t > O. 

HINT. Use Exercise 4.25 and 4.35. 

2In fact, we need here only the inclusion W2 (Rn) C dome, which follows from 
WI (Rn) = wJ (Rn) (see Exercise 2.30). 
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4.37. Prove that, for all f E L2 and all t > 0, 
e 

1Ib.1' (Pt!) IIL2 ::; til fll L2. 

and 

11\7 (Pt!) IIL2 ::; /fllfIIL2' 

4.38. For any t > 0, define a quadratic form Et (f) by 

Et (f) = (I - Pt! , f) , 
t L2 

for all f E L2. 
(a) Prove that Et (f) is increasing as t is decreasing. 
(b) Prove that limt-+o t:t (f) is finite if and only if f E WJ, and 

lim Et (j) = r 1\7 fl2 dfJ-. 
t-+O } M 

(c) Define a bilinear form Et (f, g) in L2 by 

Et(f,g) = (f-tPtI,g) L2' 

Prove that if f, 9 E WJ then 

Et (f,g) -+ 1M (\71, \7g) dp, as t -+ O. 

4.39. Prove that if f E w~ then, for all t > 0, 

11Ft! - fllL2 ::; tllb.l'fllL2, 

119 

(4.64) 

(4.65) 

( 4.66) 

(4.67) 

(4.68) 

2 £2 
REMARK. Recall that, by Theorem 4.9, if f E L then Pt! -+ f as t -+ O. The estimate 
(4·68) implies a linear decay of IIPt! - IIIL2 as t -+ 0 provided 1 E W~. 

4.40. Prove that if 1 E WJ then 

11Ft! - 111£2 ::; t 1
/

2 11\7/I1L2. 

HINT. Use Exercise 4.25 or argue as in Lemma 2.20. 

4.41. Prove that if f E W~ then 

Pt! - I ~ b.1'1 as t -+ O. 
t 

4.42. Prove that, for any I E L2, 

Pt!-I ~b. f ast-+O t I' , 

where b.,.J is understood in the distributional sense. 

4.43. Prove that if I E L 2 and, for some gEL 2 , 

Pt! - I L2 
t -+gast-+O 

then f E W6 and 9 = b.l'f. 

4.44. Let f E W~ be such that b.l'f = 0 in an open set n c M. Consider a path 

u (t) = {Ptf' t > 0, 
I, t ::; O. 

(4.69) 

(4.70) 

Prove that u (t) satisfies in lR x n the heat equation ~~ = b.l'u in the following sense: the 
path t 1---+ U (t) is strongly differentiable in L2 (n) for all t E lR and the derivative ~~ is 
equal to b.I'U where b.1' is understood in the distributional sense. 
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4.45. Prove that if f E WJ then 

w l 

Ptf --+ fast -+ O. 

and if f E wJl then 
w2 

Ptf --+ fast -+ O. 

4.46. (Product rule for strong deNvatives) 
(a) Let ti be a Hilbert space, I be an interval in JR, and u (t), v (t) : 1-+ ti be strongly 

differentiable paths. Prove that 
d dv du 
dt (u, v) = (u, dt) + ( dt ' v). 

(b) Consider the mappings u : I -+ LP (M) and v : 1-+ Lq (M) where I is an interval 
in JR and p, q E [1, +00]. Prove that if u and v are continuous then the function 
w (t) = u (t) v (t) is continuous as a mapping from I to Lr (M) where r is defined by 
the equation 

1 1 1 - +- =-. 
p q r 

( c) Prove that if u and v as above are strongly differentiable then w is also strongly 
differentiable and 

dw dv du 
di = u dt + dt v. 

4.47. For any open set n eM, denote by Cb (n) the linear space of all bounded continuous 
functions on n with the sup-norm. Let u (t, x) be a continuous function on I x M where 
I is an open interval in JR, and let the partial derivative ~~ be also continuous in I x M. 
Prove that, for any relatively compact open set n c M, the path u (t,.) : 1-+ Cb (n) is 
strongly differentiable, and its strong derivative ~~ coincides with the partial derivative 
au 
at' 

4.48. Let ti be a Hilbert space. 

(a) Let u (t) : [a, b] -+ ti be a continuous path. Prove that, for any x E ti, the functions 
t>--+ (u (t), x) and t>--+ lIu (t) II are continuous in t E [a, b], and 

lib (u (t), x) dti :s; (ib 
lIu (t) IIdt) IIxll· 

Conclude that there exists a unique vector U E ti such that 

ib (u (t) , x) dt = (U, x) for all x E ti, 

which allows to define J: u (t) dt by 

ib u(t)dt:= U. 

Prove that 

lIib 

u (t) dtll :s; ib Ilu (t) II dt. 

(b) (Fundamental theorem of calculus) Let u (t) : [a, b] -+ ti be a strongly differentiable 
path. Prove that if the strong derivative u' (t) is continuous in [a, b] then 

ib u' (t) dt = u (b) - u (a) . 

4.49. Let u : [a, b] -+ L 1 (M, p,) be a continuous paths in L 1 . Prove that there exists an 
function wELl (N, dv) where N = [a, b] x M and dv = dtdp" such that w (t,·) = u (t) for 
any t E [a, b]. 
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4.50. (Chain rule for strong derivatives) Let u (t) : (a, b) -+ L2 (M) be a strongly differ­
entiable path. Consider a function "p E G1 (JR) such that 

"p (0) = ° and sup l"p/l < 00. (4.71) 

Prove that the path "p (u (t)) is also strongly differentiable in t E (a, b) and 

d"p(u) ="p'(U) duo 
dt dt 

4.51. Let 4> (oX) be a continuous function on [0, +00) of a sub exponential growth; that is, 
for any c: > 0, 

4> (oX) = 0 (eo)..) as oX -+ +00. ( 4.72) 

Let ,c be a non-negative definite self-adjoint operator in a Hilbert space H. Fix f E H 
and consider the path v : JR+ -+ H defined by 

v (t) := 100 

4> (oX) e-t)..dE)..f, (4.73) 

where {E)..} is the spectral resolution of ,c. Prove that, for any t > 0, v (t) E dom'c, the 
strong derivative ~~ exists, and 

dv roo (-t)" ( ) 
dt = - Jo oX4> oX) e dE)..f = -,Cv t . 

k 
Conclude that the strong derivative ~t~ of any order kEN exists and 

~:~ = (_,C)k V (t) . 

4.52. Let'c be a non-negative definite self-adjoint operator in a Hilbert space H. 
t E JR, consider the wave operators 

Gt = cos (t,Cl/2) and St = sin (t,Cl/2) . 

(a) Prove that Gt and St are bounded self-adjoint operators. 
(b) Prove that, for all f, 9 E dom ,C1/2, the function 

u(t) = Cd + Stg 

is strongly differentiable in t and satisfies the initial data 

du I = ,C1/2g. ult=o = f and d 
t t=O 

(4.74) 

(4.75) 

For any 

(c) Prove that, for any f E dom'c, both functions Cd and Sd are twice strongly 
differentiable in t and satisfy the wave equation 

d2u 
dt2 = -,Cu, 

where ~ is the second strong derivative. 
(d) (A transmutation formula) Prove the following relation between the heat and wave 

operators: 

e-tC. = 100 vk exp ( - ::) G.ds, (4.76) 

where the integral is understood in the sense of the weak operator topology (cf. 
Lemma 5.10). 

4.53. Let tp (t) be a continuous real-valued function on an interval (a, b), a < b, and 
assume that tp (t) is right differentiable at any point t E (a, b). Prove that if tp' (t) :::; ° 
for all t E (a, b) (where tp' stands for the right derivative) then function tp is monotone 
decreasing on (a, b). 
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4.54. Consider the right Cauchy problem in a Hilbert space 1£: to find a path u 
(0, +00) -+ 1£ so that the following conditions are satisfied: 

(i) u (t) is continuous and strongly right differentiable for all t > OJ 
(ii) For any t > 0, u (t) E domC and 

du 
- = -Cu 
dt ' 

where ~~ is the strong right derivative of u. 
(iii) u (t) -+ fast -+ 0, where f is a given element of 1£. 

Prove the uniqueness ofthe path u (t) for any given f. 

Notes 

The main result of this Chapter is Theorem 4.6 that guaranties the self-adjointness of 
the Dirichlet Laplace operator. In the present form it was proved in [58]. We give three 
different proofs using different tools: resolvent, quadratic forms, and the adjoint operator 
\7*, respectively (the latter being from [58]). 

Construction of the heat semigroup in Theorem 4.9 follows the standard routine 
of the spectral theory. Different methods for the construction of the heat semigroup 
(concurrently with the associated diffusion process on M) can be found in [16], [271]. 



CHAPTER 5 

Weak maximum principle and related topics 

Here we study those properties of the heat semigroup that are related to 
inequalities. Recall that if U (t, x) is a solution the classical bounded Cauchy 
problem in lRn with the initial function f, then by Theorem 1.3 f ~ 0 implies 
U ~ 0 and f ~ 1 implies U ~ 1. Our purpose is to obtain similar results 
for the heat semigroup Pt = e-t£ on any weighted manifold, where £, is the 
Dirichlet Laplace operator. Such properties of the heat semigroup are called 
Markovian. Obviously, the Markovian properties cannot be extracted just 
from the fact that £, is a non-negative definite self-adjoint operator; one has 
to take into account the fact that the solutions are numerical functions, but 
not just elements of an abstract Hilbert space. 

5.1. Chain rule in WJ 

Let (M, g, j.£) be a weighted manifold. 

LEMMA 5.1. Let'lj; be a COO-function on lR such that 

'lj; (0) = 0 and sup I'lj;' (t)1 < 00. 
tElR. 

Then U E WJ (M) implies 'lj; (u) E WJ (M) and 

\J'lj; (u) = 'lj;' (u) \Ju. 

(5.1) 

(5.2) 

PROOF. If u E Ccr then obviously 'lj; (u) is also in Ccr and hence in WJ, 
and the chain rule (5.2) is trivial (cf. Exercise 3.4). 

An arbitrary function U E WJ can be approximated by a sequence {Uk} 
of Ccr-functions, which converges to U in WI-norm, that is, 

£2 £2 
Uk ---+ u and \JUk ---+ \Ju. 

By selecting a subsequence, we can assume that also Uk (x) -7 U (x) for 
almost all x EM. 

By (5.1) we have I'lj; (u)1 .::; C lui where C = sup 1'lj;'I, whence it follows 
that 'lj; (u) E L2. The boundedness of 'lj;' implies also that 'lj;' (u) \J u E j}. 
Let us show that 

£2 £2 ' 
'lj; (Uk) --7 'lj; (u) and \l'lj; (Uk) --7 'lj;' (u) \Ju, (5.3) 

which will imply that the distributional gradient of'lj; (u) is equal to 'lj;' (u) \J u 
(see Lemma 4.2). The latter, in turn, yields that 'lj; (u) is in WI and, more-

. nr1 over, m yYo' 

123 
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L2 L2 
The convergence 'IjJ (Uk) -t 'IjJ (u) trivially follows from Uk -t U and 

1'IjJ (Uk) - 'I/' (u)1 ~ C IUk - ul . 

To prove the second convergence in (5.3) observe that 

IV'IjJ (Uk) - 'IjJ' (u) Vul = 1'IjJ' (Uk) VUk - '1/" (u) Vul 

~ 1'1/" (Uk) (VUk - Vu)1 + 1 ('IjJ' (Uk) - 'IjJ' (u)) Vuj, 

whence 

IIV'IjJ (Uk) - '1/" (u) Vull£2 ~ CIIVUk - Vull£2 + II ('I/" (Uk) - 'IjJ' (u)) Vull£2' 
(5.4) 

The first term on the right hand side of (5.4) goes to 0 because VUk ~ Vu. 
By construction, we have also Uk (x) -t U (x) a.e. , whence 

'1/" (Uk) - 'IjJ' (u) ---t 0 a.e. 

Since 
1'IjJ' (Uk) - 'IjJ' (u)12IVuj2 ~ 4C2 1Vul2 

and the function IVul2 is integrable on M, we conclude by the dominated 
convergence theorem that 

1M 1'IjJ' (Uk) - 'IjJ' (u)1
2

IVu j2 dp,---t 0, 

which finishes the proof. o 
LEMMA 5.2. Let {'ljJk (t)} be a sequence of COO-smooth functions on JR 

such that 
'ljJk (0) = 0 and sup sup I'I/'Ut) I < 00. (5.5) 

k tER 

Assume that, for some functions 'I/' (t) and 'P (t) on JR, 

'ljJdt) -t 'IjJ (t) and 'ljJUt) -t 'P (t) for all t E R (5.6) 

Then, for any u E WJ (M), the function 'IjJ (u) is also in WJ (M) and 

V'I/' (u) = 'P (u) Vu. 

PROOF. The function 'I/' (u) is the pointwise limit of measurable func­
tions 'l/'k (u) and, hence, is measurable; by the same argument, 'P (u) is also 
measurable. By (5.5), there is a constant C such that 

l'ljJk (t)1 ~ C It I , (5.7) 

for all k and t E JR, and the same holds for function 'IjJ. Therefore, 1'IjJ (u)1 ~ 
C lui, which implies 'IjJ (u) E L2 (M). By (5.5), we have also I'P (t)1 ~ C, 
whence 'P (u) Vu E I}. 

Since each function 'ljJk is smooth and satisfies (5.1), Lemma 5.1 yields 
that 
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Let us show that 
L2 L2 

'lj;k (u) ~ 'Ij; (u) and \l'lj;k (u) ~ 'P (u) \lu, (5.8) 

which will settle the claim. The dominated convergence theorem implies 
that 

1M l'Ij;k (u) - 'Ij; (u)12 dp, ~ 0, 

because the integrand functions tend pointwise to ° as k -+ 00 and, by (5.7), 

l'Ij;k (u) - 'Ij; (u)12 ~ 4C2u2
, 

whereas u2 is integrable on M. Similarly, we have 

1M l\l'lj;k (u) - 'P (u) \lu1
2 

dJ-l = 1M 1'Ij;~ (u) - 'P (u)1
2

1\luI
2 

dp, ~ 0, 

because the sequence of functions 1'Ij;~ (u) - 'P (u)121\luI2 tends pointwise to ° as k -+ 00 and is uniformly bounded by the integrable function 4C21\luI2. 
o 

EXAMPLE 5.3. Consider the functions 

'Ij; (t) = t+ and 'P (t) = { ~: t > 0, 
t ~ 0, 

which can be approximated as in (5.6) as follows. Choose 'lj;1 (t) to be any 
smooth function on lR. such that 

'Ij; (t) = { t - 1, t 2': 2, 
1 0, t ~ 0 

(see Fig. 5.1). Such function 'lj;l (t) can be obtained by twice integrating a 
suitable function from Cf) (0,2). 

cp(t) - - - -: .. :=,,-':-0 __ . __ . __ ._. 

"/\vf(t) ; ......... : 
o 2 o 2 

FIGURE 5.1. Functions 'Ij; (t) = t+ and 'lj;1 (t) and their derivatives 

Then define 'lj;k by 
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If t ~ 0 then 'lj;k (t) = o. If t > 0 then, for large enough k, we have kt > 2 
whence 

1 1 
'lj;dt) = k (kt -1) = t - k -* task -* 00. 

Hence, 'lj;k (t) -* 'Ij; (t) for all t E lR. Similarly, if t ~ 0 then 'Ij;~ (t) = 0, and, 
for t > 0, 

'Ij;~ (t) = 'Ij;~ (kt) -* 1 as k -* 00. 

Hence, 'Ij;~ (t) -? <p (t) for all t E ffi.. 
By Lemma 5.2, we obtain that u+ E WJ and 

n _ {VU, u> 0, 
vU+ - ° ° , u~. 

Applying this to function (-u), we obtain u_ E WJ and 

Vu- = { 0, u ~ 0, 
-Vu, u<O. 

Consequently, since Vu+ = Vu_ = ° on the set {u = O}, we obtain 

Vu = ° on {u = O} . 

(5.9) 

(5.10) 

(5.11) 

Of course, if the set {u = O} has measure ° then (5.11) is void because V u is 
defined up to a set of measure 0, anyway. However, if the set {u = O} has a 
positive measure then the identity (5.11) is highly non-trivial. In particular, 
(5.11) implies that if u, v are two functions from WJ such that u = v on 
some set S then Vu = Vv on S. 

Similarly, u E WJ implies (u - c)+ E WJ for any c ~ 0, and 

V (u - c)+ = {Vu, u> c, (5.12) 
0, u ~ c. 

Since lui = u+ + u-, it follows from (10.20), (5.10), (5.11) that 

Vlul =sgn(u)Vu. (5.13) 

Alternatively, this can be obtained directly from Lemma 5.2 with functions 
'Ij; (t) = It I and <p (t) = sgn (t). 

LEMMA 5.4. Let u be non-negative a function from wJ (M). Then there 
exists a sequence {Uk} of non-negative functions from Cff (M) such that 

Wl 
Uk -* u. 

PROOF. By definition, there is a sequence {Vk} of functions from COO (M) 

such that Vk ~ u. Let 'Ij; be a smooth non-negative function on ffi. satisfying 
(5.1). By (5.3), we have 

'Ij;(Vk) ~ 'Ij;(u). 
Observe that 'Ij; (Vk) ~ 0 and 'Ij; (Vk) E COO (M). Hence, the function 'Ij; (u) E 
WJ can be approximated in WI-norm by a sequence of non-negative func­
tions from COO (M). We are left to show that u can be approximated in 
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WI-norm by functions like 'IjJ (u), that is, there exists a sequence {'lbk} func­
tions as above such that 

Wl 
'ljJk (u) ---7 u. 

Indeed, consider the functions 

'IjJ(t) =t+ and i.(J(t) = 1(0,+00), (5.14) 

and let 'ljJk be a sequence of non-negative smooth functions satisfying (5.5) 
and (5.6). Then, by (5.8), 

L2 L2 
'ljJk (u) ~ 'IjJ (u) = u and V''ljJk (u) ~ i.(J (u) V'u = V'u, 

which finishes the proof. o 
5.2. Chain rule in WI 

The main result ofthis section is Theorem 5.7 that extends Lemma 5.2 
to WI (M). 

Denote by W; (M) the class of functions from WI (M) with compact 
support. 

LEMMA 5.5. W; (M) c WJ (M) . 

PROOF. Set K = supp u and let {Ui} be a finite family of charts covering 
K. By Theorem 3.5, there exists a family {'ljJi} of functions 'ljJi E 1) (Ui ) such 
that Ei 'ljJi == 1 in a neighborhood of K. Then we have 'ljJiu E WeI (Ui) (cf. 
Exercise 4.2). Since u = Ei 'ljJiu, it suffices to prove that 'ljJiU E WJ (Ui ). 

Hence, the problem amounts to showing that, for any chart U, 

W; (U) c WJ (U) , 

that is, for any function U E W; (U), there exists a sequence {I.(Jk} C 1) (U) 

such that i.(Jk W\ u. Since U is a chart and, hence, can be considered as a 
part of ]Rn, also the Euclidean Sobolev space W';ucl(U) is defined in U (see 
Section 2.6.1). In general, the spaces W';ucl(U) and WI (U) are different. 
However, by Exercise 4.11(b), the fact that u E WI (U) implies that U 

and all distributional partial derivatives OjU belong to L?oe (U). Since the 
support of u is compact, we obtain that U and OjU belong to L;ucl(U), 
whence u E W1ucl (U). 

By Exercise 2.30, there exists a sequence {I.(Jk}~1 of functions from 
1) (U) that converges to u in W';ucl (U), and the supports of I.(Jk can be 
assumed to be in an arbitrarily small open neighborhood V of supp u. 

We are left to show that the convergence i.(Jk ---7 u in W';ucl (U) implies 
that in WI (U). By Exercise 4.11, for any v E We~cl (U) we have 

2 .. 
IV' gvlg = lJOiVOjV, 

where V'v is the weak gradient of v in metric g of the manifold M. It follows 
that, for any fixed open set V <s U, 

IIv llwl(V) ::; Cllvllw;uc!(V) 
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where the constant C depends on the supremums of /gij / and v'detg in V. 
Hence, choosing V @ U to contain all the supports of 'Pk and u, we obtain 

Ilu - 'Pkllwl(V) ~ Cllu - 'Pk Ilw;uc! (V) -+ 0, 

that is, 'Pk -+ u in WI (U) . o 

Define the space Wl~e (M) by 

1 {2 -2} W 10e (M) = u E Lloe (M) : \7u E Lloe (M) . (5.15) 

Clearly, if u E Wl~e (M) then u E WI (0) for any relatively compact open 
set 0 C M. Conversely, if u is a function on M such that u E WI (Ok) for 
an exhaustion sequence {Ok} then u E Wi~e (M). 

COROLLARY 5.6. If u E wloe (M) and f E Co (M) then fu E WJ (M). 

PROOF. Let 0 be any relatively compact open set containing supp f. 
Then u E WI (0) and f E Co (0), whence we obtain by Exercise 4.3 
that fu E WI (0). Since supp (fu) is compact and is contained in 0, we 
obtain fu E wI (0) whence by Lemma 5.5 fu E WJ (0). It follows that 
fUEWJ(M). 0 

The following result extends Lemma 5.2 to functions from WI (M). 

THEOREM 5.7. Let {'if;k (t)} be a sequence of COO-smooth functions on R 
such that 

'if;k (0) = 0 and sup sup l'if;Ut)/ < 00. (5.16) 
k tEIR 

Assume that, for some functions 'if; (t) and 'P (t) on R, 

'if;k (t) -+ 'if; (t) and 'if;k, (t) -+ 'P (t) for all t E R, (5.17) 

as k -+ 00. 

(i) If u E WI (M) then 'if; (u) E WI (M) and 

\7'if; (u) = 'P (u) \7u. (5.18) 

(ii) Assume in addition that function 'P (t) is continuous in lR. \ F for 
some finite or countable set F. If Uk, u E WI (M) then 

WI WI 
Uk --+ u ===? 'if; (Uk) --+ 'if; (u). 

REMARK. The conditions (5.16) and (5.17) are identical to the conditions 
(5.5) and (5.6) of Lemma 5.2. 

PROOF. (i) As in the proof of Lemma 5.2, we have 'if; (u) E L2 (M) and 
'P (u) \7u E £2 (M). The identity (5.18) means that, for any vector field 
wE V(M), 

('if; ( u) , div M W) = - ('P (u) \7 u, w) . (5.19) 
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Fix W E t5 (M) and let f E 1) (M) be a cutoff function of suppw. By 
Corollary 5.6, the function Uo := fu is in WJ (M). Therefore, by Lemma 
5.2, 

'V¢ (uo) = <p (uo) 'Vuo 
and, hence, 

(¢ (Uo) , divJ.&w) = - (cp (uo) 'Vuo,w). 
Since U = Uo in a neighborhood of suppw, this identity implies (5.19). 

(ii) It suffices to prove that a subsequence of {¢ (Uk)} converges to ¢ (u) 
(cf. Exercise 2.14). Since Uk -+ U in L2, there is a subsequence {Uk} that 
converges to U almost everywhere. Hence, renaming this subsequence back 
to {Uk}, we can assume that Uk -+ U a.e .. 

What follows is similar to the proof of Lemma 5.1. It suffices to show 
that 

£2 £2 
¢(Uk) --+¢(u) and 'l¢(Uk) --+ 'V¢(u). (5.20) 

By (5.16), there is a constant C such that 

I¢Ut) I 5:. C and I¢k (t)1 5:. C It I , 
for all k and t E lR. Therefore, 

II¢ (Uk) - ¢ (u) II 5:. Clluk - ull 
(where all norms are L2), which implies the first convergence in (5.20). 

Next, using (5.18), we obtain 

1I'l¢(uk) - 'V¢(U) II 5:. IIcp(Uk)('VUk - 'Vu)1I + II (CP(Uk) - cp(u))'lull 
5:. CII('VUk - 'Vu)11 + II (cp(Uk) - cp(u))'lulI· (5.21) 

The first term in (5.21) tends to 0 by hypothesis. The second term is equal 
to 

(11 1cp (Uk (x)) - <p (u (x))1 2 1'VuI2 dJ.L (X)) 1/2 (5.22) 

Consider the following two sets: 

81 = {x EM: udx) ft u(x) as k -+ co}, 

82 = {x EM: U (x) E F}, 

where F is set where cp is discontinuous. By construction, J.L (81) = O. Since 
'lu = 0 on any set of the form {u = const} (cf. Example 5.3) and 82 is 
a countable union of such sets, it follows that 'Vu = 0 on 82. Hence, the 
domain of integration in (5.22) can be reduced to M \ (81 U 8 2). In this 
domain, we have 

Uk (x) -+ U (x) ¢ F, 

which implies by the continuity of cp in lR \ F that 

cp (Uk (x)) -+ cp (u (x)). 

Since the functions under the integral sign in (5.22) are uniformly bounded 
by the integrable function 4C2 1'luI2

, the dominated convergence theorem 
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implies that the integral (5.22) tends to ° as k -+ 00, which proves the 
second relation in (5.20). 0 

EXAMPLE 5.B. Fix c ~ 0 and consider functions 

'ljJ (t) = (t - c)+ and <p (t) = l(c,+oo) (5.23) 

(cf. Example 5.3). Since these functions satisfy all the hypotheses of The­
orem 5.7, we obtain that if u E WI then (u - c)+ E W 1, and '\7 (u - c)+ is 

given by (5.12). Furthermore, by Theorem 5.7, Uk W\ u implies (Uk - c)+ W\ 
(u - c)+. 

Exercises. 

5.1. Let 'if; (t) and 'P (t) be functions satisfying the conditions (5.16) and (5.17) of Theorem 
5.7. Prove that 'if;~;'st = 'P. 

5.2. Let 'if; E al (JR) be such that 

'if; (0) = 0 and sup ['if;'[ < 00. 

Prove that the functions 'if; and 'P := 'if;' satisfy the conditions (5.16) and (5.17) of Theorem 
5.7. 

5.3. Prove that if u,V E WJ (M) then also max (u, v) and min(u, v) belong to WJ (M). 

5.4. Prove that if M is a compact manifold then WI (M) = wJ (M). 

5.5. Prove that if u E WI (M) then, for any real constant c, \7u = 0 a.e. on the set 
{x EM: u (x) = c}. 

5.6. Prove that, for any u E WI (M), 

Wl 
(u-c)+--+u+ asc-+O+. 

5.7. Let f E WI (M) and assume that f (x) -+ 0 as x -+ 00 (the latter means that, for 
anye > 0, the set {If I ~ e} is relatively compact). Prove that f E WJ (M). 

5.S. Prove that if u E Wi~c (M) and 'P, 'if; are functions on JR satisfying the conditions of 
Theorem 5.7 then 'if; (u) E Wl~c (M) and \7'if; (u) = 'P (u) \7u. 

5.9. Define the space Wl~c (M) by 

Wi~c = {J E Wi~c : D.J.lf E Ltoc}. 
Prove the Green formula (4.12) for any two functions u E W; and v E Wl~c' 

5.3. Markovian properties of resolvent and the heat semigroup 

Set as before £, = -LlJ.t[W,2 and recall that the heat semigroup is defined 
o 

by Pt = e~t.c for all t ~ 0, and the resolvent is defined by 

Ret = (£, + a id)-1 (5.24) 

for all a > O. Both operators Pt and Ret are bounded self-adjoint operator 
on £2 (M) (cf. Theorems 4.9 and 4.5). Here we consider the properties of 
the operators Pt and Ret related to inequalities between functions. 
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THEOREM 5.9. Let (M, g, J..L) be a weighted manifold, f E L2 (M), and 
a> O. 

(i) If f 2 0 then Raf 2 O. 
(ii) If f :S 1 then Raf :S a-I. 

PROOF. We will prove that, for any c > 0, f :S c implies Raf :S ca-l, 
which will settle (ii) when c = 1, and settle (i) when c -+ O+. Without loss 
of generality, it suffices to consider the case c = a, that is, to prove that 
f :S a implies Raf :S 1. Set u = Raf and recall that u E dom.c = W6 and 

.cu + au = f. (5.25) 

To prove that u :S 1 is suffices to show that the function v := (u - 1)+ 
identically vanishes. By Example 5.3 and (5.12), we have v E WJ and 

\7v = {'Vu, u > 1, (5.26) 
0, U:S 1. 

Multiplying (5.25) by v and integrating, we obtain 

(.cu, v)£2 + a (u, Vh2 = (j, v)£2 . 

By Lemma 4.4 and (5.26), we have 

(.cu, v) £2 = - (~J.£u, v) £2 = (\7u, \7v) £2 = r l\7ul 2 dJ..L 2 0, 
J{u,>l} 

whereas 

(u, Vh2 = r (v + 1) vdJ..L = IIvlli2 + r vdJ..L. 
J~>~ ~ 

Hence, it follows from (5.27) and f :S a that 

allvlli2 + a L vdJ..L:S (j, v)£2 :S a 1M vdJ..L, 

whence we conclude IIvll£2 = 0 and v = O. 

(5.27) 

o 
Many properties of the heat semigroup can be proved using the corre­

sponding properties of the resolvent and the following identities. 

LEMMA 5.10. For an arbitrary weighted manifold (M, g, J..L) the following 
identity hold. 

(i) For any a > 0, 

Ra = 100 

e-at Ptdt. (5.28) 

where the integral is understood in the following sense: for all f, 9 E 
L2 (M), 

(5.29) 
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(ii) For any t > 0, 

(5.30) 

where the limit is understood in the strong operator topology. 

PROOF. Let {E.).} be the spectral resolution of the Dirichlet Laplace 
operator .c. Then by (4.45) we have 

Pd = 10
00 

e-')'tdE.).f (5.31) 

and 

(5.32) 

(see also Exercise A.24). 
(i) Substituting (5.31) to the right hand side of (5.29) with 9 = f and 

using Fubini's theorem, we obtain 

1000 

e-at (Pd,])£2 dt 10
00 

e-at (10
00 

e-.).td (E.).f, f)£2) dt 

= 10
00 

(10
00 

e-CaH)tdt) d(E.).f'])£2 

1000 

(a + A)-l d (E.).f,])£2 

(Raf,f)£2 , 

which proves (5.29) for the case f = g. Then (5.29) extends to arbitrary 
f, 9 using the identity 

1 1 
(Pd, g) = "2 (Pt (f + g), f + g) - "2 (Pt (J - g) ,f - g) 

and a similar i,.l ntity for Ra 

(#\/ 'he classical identity 

~ 

\\rgence theorem, we obtain 

\~.). = lim roo (1 + tkA) -k dE.)., 
" k~ooJo 

\ 

'n the strong sense. This implies (5.30) because 
~o Pt , and the integral in the right hand side 

\ 
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is equal to 

roo ( t)..)-k Jo 1+-,; dE).. (k)k roo (k )-k t Jo t +,\ dE).. 

(k)k (k )-k (k)k t tid +£ = t R~/t· 
o 

THEOREM 5.11. Let (M,g,j.L) be a weighted manifold, f E L2 (M), and 
t > O. 

(i) If f ~ 0 then Ptf ~ O. 
(iii) If f ~ 1 then Ptf ~ 1. 

PROOF. (i) If f ~ 0 then, by Theorem 5.9, RaJ ~ 0, which implies that 
R~f ~ 0 for all positive integers k. It follows from (5.30) that Ptf ~ O. 

(ii) If f ~ 1 then, by Theorem 5.9, Red ~ a-I, which implies that 
R~f ~ a-k for all positive k. Hence, (5.30) implies 

Ptf ~ lim (~) k (~) -k = 1, 
k-+oo t t 

which was to be proved. 

Exercises. 

5.10. Let Be, be the resolvent defined by (5.24). 
(a) Prove that, for any f E L2 and a > 0, 

. -at 00 a 2ktk k 
Pt/= hm e ~-kl Raf· a-++oo ~ . 

k=O 
(b) Using (5.33), give an alternative proof of the fact that f ::; 1 implies Pt! ::; 1. 

5.11. For all a,k > 0, define R~ as <p(Ra) where <p().) = ).k. 

(a) Prove that, for all a, k > 0, 

roo tk - 1 

R~ = Jo r (k) e-
at 

Ptdt, 

o 

(5.33) 

(5.34) 

where the integral is understood in the weak sense, as in Lemma 5.10, and r is the 
gamma function (cf. Section A.6). 

(b) Write for simplicity Rl = R. Prove that 

Rk Rl = Rk+l for all k,l > O. 

Prove that if f E L2 (M) then f ~ 0 implies Rk f ~ 0 and f ::; 1 implies Rk f ::; 1, 
for all k ~ O. 

(c) Prove that Rk = e-kL where L = log (id +£) and £ is the Dirichlet Laplace operator. 

REMARK. The semigroup {Rk}k>O is called the Bessel semigroup, and the operator 
log (id +£) is its generator. -

5.12. Prove that, for any non-negative function f E L2 (M) and all t, a> 0, 

PtRaf ::; e"t Raj. 

5.13. Let £ be the Dirichlet Laplace operator on ]Rl. 
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(a) Prove that the resolvent RA = (£ +.A id)-l is given for any .A > 0 by the following 
formula: 

for any and f E L2 (R1
). 

(b) Comparing (5.35) with 

R>. = 1000 

e ->.t Ptdt 

(5.35) 

and using the explicit formula for the heat kernel in Rl, establish the following 
identity: 

-tV>: 100 t (t2) -SAd e = -- exp -- e s, 
o \l"41r83 48 

(5.36) 

for all t > 0 and .A ? O. 

REMARK. The function 8 >----+ '/4:.3 exp ( - t-) is the density of a probability distribution 
on R+, which is called the Levy distribution. 

5.14. Let £ be the Dirichlet Laplace operator on an arbitrary weighted manifold, and 
consider the family of operators Qt = exp ( _t£1/2), where t ? o. 

( a) Prove the identity 

100 t (t2) Qt = ~ exp --4 P.ds. 
o V 41r83 8 

(5.37) 

(b) Let f E L2 (M). Prove that f? 0 implies Qt! ? 0 and f ~ 1 implies Qd ~ l. 
(c) Prove that in the case M = Rn, Qt is given explicitly by 

where 

Qt!= r qt(x-y)f(y)dy 
iJR" 

(5.38) 

REMARK. The semigroup {Qth>o is called the Cauchy semigroup, and the operator £1/2 
is its generator. -

5.15. Let '11 be a COO-function on R such that'll (0) = 'II' (0) = 0 and 0 ~ '11" (8) ~ 1 for 
all 8. 

(a) Prove that, for any f E L2 (M), the following function 

F(t) := L '11 (Pd) dp, (5.39) 

is continuous and decreasing in t E [0, +(0). 
(b) Using part (a), give yet another proof ofthe fact that f ~ 1 implies Pd ~ 1, without 

using the resolvent. 
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5.4. Weak maximum principle 

5.4.1. Elliptic problems. Given functions f E L2 (M), w E WI (M), 
and a real constant a, consider the following weak Dirichlet problem: 

{ 
~Jl.u + au = f, (5.40) 
U = w mod wJ- (M) , 

where the second line in (5.40) means that 

U = w + Wo for some Wo E wJ- (M) , 

and can be regarded as the "boundary condition" for u. 
If a < 0 and w = 0 then the problem (5.40) has exactly one solution 

U = -R-af by Theorem 4.5. Set 

f3 = inf spec .c, 

where.c is the Dirichlet Laplace operator on M. Then, by Exercise 4.29, 
the problem (5.40) has exactly one solution for any a < f3 and wE WI (M). 

Here we are interested in the sign of a solution assuming that it already 
exists. In fact, we consider a more general situation when the equations in 
(5.40) are replaced by inequalities. If u, w are two measurable functions on 
M then we write 

U ~ w mod wJ- (M) 
if 

U ~ w + Wo for some Wo E wJ- (M). 
The opposite inequality u 2: w mod wJ- (M) is defined similarly. 

LEMMA 5.12. If U E WI (M) then the relation 

U ~ 0 modWJ- (M) 

holds if and only if U+ E wJ- (M). 

(5.41) 

PROOF. If U+ E wJ- then (5.41) is satisfied because U ~ U+. Conversely, 
we need to prove that if u ~ v for some v E WJ- then U+ E WJ-. 

Assume first that v E Cg:>, and let rp be a cutoff function of supp v (see 
Fig. 5.2). Then we have the following identity: 

U+ = ((1 - rp) v + rpu)+. (5.42) 

Indeed, if rp = 1 then (5.42) is obviously satisfied. If rp < 1 then v = 0 
and, hence, u:::::; 0, so that the both sides of (5.42) vanish. By Corollary 5.6, 
we have rpu E WJ-. Since (1 - rp) v E Cg:>, it follows that 

(1 - rp) v + rpu E WJ-. 

By Lemma 5.2 and (5.42) we conclude that u+ E WJ-. 
For a general v E WJ-, let {Vk} be a sequence of functions from Cg:> such 

h Wl 
t at Vk --t v. Then we have 

Uk := u + (Vk - v) ~ Vk, 
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FIGURE 5.2. Functions u, v, cp 

which implies by the first part of the proof that (Uk) + E WJ. Since Uk ~ U, 
WI 

it follows by Theorem 5.7 that (Uk)+ -t U+, whence we conclude that 
uE WJ. 0 

We say that a distribution u E 1)' (M) is non-negative! and write u ~ 0 
if (u, cp) ~ 0 for any non-negative function cp E 1) (M). 

Of course, if u E Lfoc (M) then U ~ 0 in the sense of distributions if and 
only if u 2:: 0 a.e. (cf. Exercise 4.7). Similarly, one defines the inequalities 
u 2:: v and u ~ v between two distributions. It is possible to prove that 
U 2:: v and U ~ v imply u = v (cf. Exercise 4.6). 

THEOREM 5.13. (Weak maximum principle) .Bet (3 = inf spec £ and as­
sume that, for some real 0: < (3, a function u E WI (M) satisfies in the 
distributional sense the inequality 

D.J1.u + o:u ~ 0 (5.43) 

and the boundary condition 

u ~ 0 mod WJ (M) . (5.44) 

Then u ~ 0 in M. 

REMARK. If 0: 2:: (3 then the statement of Theorem 5.13 may fail. For ex­
ample, if M is compact then (3 = 0 because the constant is an eigenfunction 
of £ with the eigenvalue o. Then both (5.43) and (5.44) hold with 0: = 0 
for any constant function u so that the sign of u can be both positive and 
negative. 

REMARK. Theorem 5.13 can be equivalently stated as a weak minimum 
principle: if u E WI (M) and 

{ 
D.J.'u + o:u ~ 0, 
u 2:: 0 mod WJ (M) , 

then u ~ 0 in M. 

1 It is known that any non-negative distribution is given by a measure but we will not 
use this fact. 
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REMARK. Consider the weak Dirichlet problem (5.40) with the boundary 
function w = O. By Theorem 4.5, if a < 0 then the problem (5.40) has a 
unique solution u = -R-oJ. By Theorem 5.13, we obtain in this case that 
f 2: 0 implies R-af 2: 0, which, hence, recovers Theorem 5.9(i). 

PROOF OF THEOREM 5.13. By definition, (5.43) is equivalent to the 
inequality 

(!:1lJ.u, <p) + a (u, <p) 2: 0 

for any non-negative <p E V (M), which, in turn, is equivalent to 

('Vu, 'V<p) - a (u, <p) :::; O. (5.45) 

Considering the round brackets here also as the inner products in L2 (M) 
and noticing that all terms in (5.45) are continuous in <p in the norm of 
W1 (M), we obtain that (5.45) holds for all non-negative cp E WJ (M) (cf. 
Lemma 5.4). 

By Lemma 5.12 we have u+ E WJ (M). Setting (5.45) <p = u+, we 
obtain 

1M {'Vu, 'Vu+)dJ.L - a 1M u u+ dJ.L :::; O. 

It follows by (5.9), that 

1M l'Vu+12 dJ.L - a L u~dJ.L :::; O. 

By Exercise 4.27, we have 

1M l'Vu+12 dJ.L 2: (3 1M u~dJ.L, 
which together with (5.46) implies 

((3 - a) 1M u~dJL :::; o. 
Since a < (3, we obtain Ilu+IIL2 = 0 and, hence, u:::; O. 

(5.46) 

o 
COROLLARY 5.14. (Comparison principle) Assume that, for some a < (3, 

functions u, v E WI (M) satisfy the conditions 

Then u:::; v. 

{ 
D..lJ.u + au 2: D..lJ.v + av, 
u :::; v mod WJ (M) . 

PROOF. Indeed, the function u-v satisfies all the conditions of Theorem 
5.13, which implies u - v ~ O. 0 

COROLLARY 5.15. (The minimality of resolvent) Assume that a function 
u E WI (M) satisfies the inequality 

-D..lJ.u + ')'U 2: f, (5.47) 

where f E L2 (M) and 'Y > 0, and the boundary condition 

u 2: 0 mod WJ (M). 
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Then u ~ Ryf. 

PROOF. Using Theorem 4.5, we obtain that 

{ 
-!::..p, (Ryf) + "fRyf = f :s; -!::..p,u + "fu 
Ryf = ° mod WJ (M) :s; u mod WJ (M), 

whence we conclude by Corollary 5.14 with a = -"f that Ryf :s; u. 0 

If f ~ ° then, by Theorem 5.9, Ryf ~ 0. The statement of Corollary 
5.15 implies that u = Ryf is the minimal function satisfying (5.47) among 
all non-negative functions u E WI (M). 

Exercises. 

5.16. Give an example of a manifold M and a non-negative function u E W!~c (M) such 
that 

u ~ 0 modW~ (M) 
but u 1. WI (M). 

5.4.2. Parabolic problems. Now we turn to the weak maximum 
principle for the heat equation. In Section 4.3, we have considered the 
L2-Cauchy problem related to the Dirichlet Laplace operator C. In the next 
statement, we consider a more general version of this problem, where the 
requirement to be in dom C is dropped. 

THEOREM 5.16. (Weak parabolic maximum principle) Let u : (0, T) -+ 
WI (M) be a path that satisfies the following conditions: 

(i) For any t E (0, T), the strong derivative ~~ exists in L2 (M) and 
satisfies the inequality 

du 
- -!::.. u < ° (5.48) dt p, - , 

where !::..p, is understood as an operator in V' (M). 
(ii) For any t E (O,T), 

u (t,·) :s; ° mod WJ (M) . 

(iii) u+ (t,') L2(¥) ° as t -+ 0. 

Then u (t,') :s; ° for all t E (0, T) . 

(5.49) 

REMARK. By Theorem 4.9, the function u = Pt! satisfies all the above 
conditions, provided f :s; O. Hence, we conclude by Theorem 5.16 that 
f :s; ° implies Pt! :s; 0, which recovers Theorem 5.11(i). 

Let u be a solution to the L2-Cauchy problem with the initial function 
f, as stated in Section 4.3. Then, for any t > 0, u (t, .) E dom C which 
implies 

u(t,·)=o modWJ(M). 
Applying Theorem 5.16 to u and -u, we see that f = 0 implies u = 0, which 
recovers Theorem 4.10. 
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Similarly to Corollary 5.14, one can state in an obvious way a comparison 
principle associated with Theorem 5.16. 

PROOF. The inequality (5.48) means that, for any fixed t E (0, T) and 
any non-negative function v E V (M), 

(u',v) ~ (~~u,v), 

where u' == ~~, which implies 

(u',v) ~ - (V'u, V'v). (5.50) 

Considering the both sides here as the inner products in L2 (M), we extend 
(5.50) to all non-negative functions v E WJ (M). 

Let a function cp E Coo (JR) be such that, for some positive constant C, 

{ 

cp (s) = 0, s ~ 0, 
cp (s) ;::: 0, s > 0, 
o ~ cp' (s) ~ C, s E R 

(5.51) 

By (5.49) and Lemma 5.12, we have u+ (t,·) E WJ (M), for any t E (0, T). 
Therefore, by Lemma 5.1, the function cp (u (t, .)) = cp (u+ (t, .)) is also in 
WJ (M) and 

V'cp (u) = cpl (u+) V'u+ = cp' (u) V'u 

(cf. (5.9)). Setting v = <p (u (t, .)) in (5.50), we obtain 

(u' , <p (u)) L2 ~ - (V'u, cp' (u) V'u) L2 = - 1M cp' (u) lV'ul2 dJ.L ~ o. (5.52) 

Using the product rule (Exercise 4.46) and the chain rule (Exercise 4.50) for 
strong derivatives, we obtain 

d 
dt (u, cp (u))£2 

where 

(U',CP(U))£2 + (u,cp' (u)u')£2 

- ( u', cp (u) ) £2 + (u', 'I/J (u)) £2 

'I/J (s) = cp' (s) s. 

(5.53) 

(5.54) 

Next, we specify function cp as follows. Define first its second derivative cp" 
as a non-negative smooth function on JR, such that 

cp" (s) = 0, 8 ~ 0 or s ~ 1, 
<p"(s) >0, O<s<1. 

Then cp is obtained by two integrations of cp" keeping the value ° at 0. 
Clearly, cp satisfies (5.51). Also function 'I/J (8) from (5.54) satisfies (5.51), 
because its derivative 

'I/J' (s) = cp" (8) S + cp' (s) 
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is obviously non-negative and bounded. By (5.52), we conclude that the 
right hand side of (5.53) is non-positive, that is, (u, <p (u))£2 as a function 
of t is decreasing in (0, T). Since <p (s) ::; Cs for any s ;::: 0, we obtain that 

(u,<P(u))£2 = (u+,<P(U+)h2::; C(U+,U+h2' 

By hypothesis, (u+, U+h2 -+ 0 as t -+ O. Hence, the function t ~ (u+, <p (U+))L2 
is non-negative, decreasing on (0, T) and goes to 0 as t -+ O. It follows that 
(u+, <p (u+))£2 = 0 for all t E (0, T), which implies that u+ (t,') = 0 for all 
t E (O,T). 0 

COROLLARY 5.17. (The minimality of Pd) Let u: (0, T) -+ Wl (M) be 
a path in WI (M) such that 

{ 

du 
dt ;::: fl.J.!-u for all t E (0, T) , 
u(t,·);:::o modWJ(M) foralltE(O,T), 

L2 
u (t,·) -+ f E L2 (M) as t -+ O. 

(5.55) 

Then, for all t E (0, T), 
u(t,·) ;:::Pd. (5.56) 

PROOF. Using Theorem 4.9, we obtain that the function v (t,.) = u (t,·)-
Pd satisfies the conditions 

{ 

dv > fl. v 
dt - J.!-
v (t,') ;::: 0 mod WJ (M), for all t E (0, T) , 

L2 
v(t,·)-+O 

for all t E (0, T) , 

as t -+ 0, 

whence (5.56) follows by Theorem 5.16. o 
Corollary 5.17 implies the following minimality property of Pd: if f ;::: 0 

then the function u (t,') = Pd is the minimal non-negative solution to the 
Cauchy problem 

{ 

du 
dt = fl.J.!-u, t> 0, 

L2 
u (t,') -+ f, as t -+ O. 

Exercises. 

5.17. Let the paths w : (0, T) -? WI (M) and v : (0, T) -? WJ (M) satisfy the same heat 
equation 

du 
dt = il",u for all t E (0, T) , 

where ~~ is the strong derivative in L2 (M) and il",u is understood in the distributional 
sense. Prove that if 

L2(M) 
w (t,.) - v (t,.) -'-+ ° as t -? 0, 

and w ~ ° then w (t,·) ~ v (t,·) for all t E (0, T). 
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5.4.3. The pointwise boundary condition at 00. 

DEFINITION 5.18. The one point compactification of a smooth manifold 
M is the topological space M U { 00 } where 00 is the ideal infinity point (that 
does not belong to M) and the family of open sets in M U {oo} consists of 
the open sets in M and the sets of the form (M \ K) U { oo} where K is an 
arbitrary compact subset of M. 

It is easy to check that this family of open sets determines the Hausdorff 
topology in M U {oo} and the topological space M U {oo} is compact. Note 
that if M is compact then 00 is disconnected from M. 

If M is non-compact and v (x) is a function on M then it follows from 
the definition of the topology of M U { oo} that, for a real c, 

v(x)-+c as x-+oo 

if, for any c > 0, there is a compact set Kg C M such that 

sup Iv (x) - cl < C. 
xEM\Ke 

(5.57) 

(5.58) 

EXAMPLE 5.19. If M = Rn then any compact set is contained in a ball 
{x ERn: Ixl ~ r}, which implies that (5.57) is equivalent to 

v (x) -+ c as Ixl -+ 00, 

so that x -+ 00 means in this case Ixl -+ 00. 

If M = n where n is a bounded open set in R n then every compact set 
in M is contained in 

no = {x En: d (x, an) 2: 8} 

for some 8 > O. Then x -+ 00 in M means d (x, an) -+ 0 that is, x -+ an. 
If M = n where n is an arbitrary open set in Rn then arguing similarly 

we obtain that x -+ 00 in M means that 
1 

Ixl + d (x, an) -+ 00. 

If VOl (x) is a function on a manifold M that depends on a parameter 
a varying in a set A, then define the uniform convergence in a as follows: 
v (x) ~ c as x -+ 00 uniformly in a E A if the condition (5.58) holds 
uniformly in a, that is, 

sup sup IvOl (x) - cl < c. (5.59) 
OIEAxEM\Ke 

For c = ±oo the conditions (5.58) and (5.59) should be appropriately mod­
ified. 

The next statement is a rather straightforward consequence of Theorem 
5.16 for the classical (sub)solutions to the heat equation. 

COROLLARY 5.20. (Parabolic maximum principle) Set 1 = (0, T) where 
T E (0, +00]. Let a function u (t, x) E C 2 (1 x M) satisfy the following 
conditions: 
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• ~; - !::1p,u ~ 0 in I x M. 
• u+ (x, t) =t 0 as x -+ 00 in M, where the convergence is uniform 

in tEl. 

( ) 
Ltoc(M) 

• u+ t,· ~ 0 as t -+ O. 
Then u ~ 0 in I x M. 

PROOF. The hypothesis u+ (x, t) =t 0 as x -+ 00 means that, for any 
c > 0 there is a compact set K c M such that 

sup sup u Ct, x) < c. 
tEl xEM\K 

Let 0 be any relatively compact open subset of M containing K. Then 
u (t,·) E WI (0) for any tEl and the partial derivative ~~ coincides with 
the strong derivative ~~ in L2 (0) (cf. Exercise 4.47). Therefore, u satisfies 
the hypothesis (i) of Theorem 5.16 in O. It follows that u - c also satisfies 
that condition. 

Since (u - c)+ is supported in K C 0, we obtain by Theorem 5.7 and 
Lemma 5.5 that (u - c)+ E WJ (0). This constitutes the hypothesis (ii) of 
Theorem 5.16. 

Finally, we have (u - c)+ L:if) 0 as t -+ 0, which gives the hypothesis 
(iii) of Theorem 5.16. 

Hence, we conclude by Theorem 5.16 that u - £ ~ 0 in I x O. Finally, 
letting c -+ 0 and exhausting M by sets like 0, we obtain u ~ 0 in I x M. 0 

REMARK 5.21. Corollary 5.20 remains true if u+ satisfies the initial 
condition in the Lfoc sense rather than in Lfoc sense, that is, if 

( ) 
Lloc(M) 

u+ t,· ~ 0 as t -+ O. 

See Exercise 5.21. 

Exercises. 

5.18. Let Va (x) be a real valued function on a non-compact smooth manifold M depending 
on a parameter Q( E A, and let c E IR. Prove that the following conditions are equivalent 
(all convergences are inform in Q( E A); 

(i) Va (X) :::t c as X -t 00. 

(ii) For any sequence {Xk}~l that eventually leaves any compact set K c M, Va (Xk) :::t 
cask -t 00. 

(iii) For any sequence {Xk} on M that eventually leaves any compact set K eM, there 
is a subsequence {Xk.} such that V", (Xk.) :::t c as i -t 00. 

(iv) For any c > 0, the set 

Ve = {X EM; sup Iv", (x) - cl ~ c} (5.60) 
aEA 

is relatively compact. 

Show that these conditions are also equivalent for c = ±oo provided (5.60) is appro­
priately adjusted. 
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5.19. Referring to Exercise 5.18, let M = n where n is an unbounded open subset oflRn. 
Prove that the condition (i) is equivalent to 

(v) v", (XI;;) ~ c for any sequence {XI;;} en such that either XI;; -t X E an or IXIcI-t 00. 

5.20. Let a function v E C2 (M) satisfy the conditions: 

(i) -D..)J-v + QV :::; 0 on M, for some Q > 0; 
(ii) v+ (x) -t 0 as X -t 00 in M. 

Prove that v :::; 0 in M. 

5.21. Prove that the statement of Corollary 5.20 remains true ifthe condition u+ (t,.) L~~) 
o as t -t 0 is replaced by 

( ) 
LFoc(M) 

u+ t,' =-+ 0 as t -t O. 

5.5. Resolvent and the heat semigroup in subsets 

Any open subset D of a weighted manifold (M, g, p,) can be regarded as 
a weighted manifold (D,g,p,). We will write shortly L2 (D) for L2 (D,p,), 
and the same applies to WJ (0) and other Sobolev spaces. 

Given a function f on D, its trivial extension is a function J on M 
defined by 

J(x)={ I(x), xED, 
0, X E M\D. 

The same terminology and notation apply to extension of a vector field in D 
by setting it 0 in M \ O. It is obvious that if I E Co (D) then J E Co (M) 
and 

VI = VI and IlIJ = 1l1.,J· 

The space L2 (0) can be considered as a subspace of L2 (M) by identifying 
any function I E L2 (D) with its trivial extension. 

CLAIM. For any f E WJ (D), its trivial extension J belongs to WJ (M) and 

(5.61) 

Note for comparison that if f E WI (D) then J does not have to be in 
WI (M) - see Exercise 7.7. 

PROOF. If I E Co (D) then obviously J E Co (M) and hence J E 
WJ (M). For any I E WJ (D), there exists a sequence {lk} of functions 
from Co (D) such that . 

lk ----+ I in WJ (D) . 

Clearly, 

h ----+ J in L2 (M). 
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On the other hand, the sequence {h} is obviously Cauchy in WJ (M) and 
hence converges in WJ (M). We conclude that the limit must be 1, whence 
it follows that 1 E wJ (M) and 

- - 1 
fk -+ f in Wo (M) . 

In particular, this implies that 

V h -+ V 1 in £2 (M) . (5.62) 

On the other hand, 
Vfk -+ Vf in £2 (n), 

whence it follows that 

V fk -+ V f in £2 (M) . (5.63) 

Since Vh = VA, we conclude from (5.62) and (5.63) that v1 = Vf. 0 

Hence, the space WJ (n) can be considered as a (closed) subspace of 
WJ (M) by identifying any function f E WJ (0) with its trivial extension. 
This identification is norm preserving, which in particular, implies that we 
have an embedding WJ (0) c......t- W6 (M). In what follows, we will follow the 
convention to denote the trivial extension of a function by the same· letter 
as the function, unless otherwise mentioned. 

Consider the Dirichlet Laplace operator in n 
£0. = -D.JL IW6 (n) , 

as well as the associated resolvent 

R~ = (£0. + aid)-1 

and the heat seroigroup 

pF = exp ( _ten) . 
A sequence {ni } ~l of open subsets of M is called an exhaustion sequence 

if n i C niH for all i and the union of all sets Oi is M. 

THEOREM 5.22. Let f E L2 (M) be a non-negative function, and a> O. 

(i) For any open set n c M, 

R~f ~Rd· 
(ii) For any exhaustion sequence {nd ~1 in M, 

Rn·f Wi R f . 
C<. ---+ c< as t -+ 00. (5.64) 

Note that R~f is a short form of R~ (fIn). 

PROOF. (i) By Theorem 5.9, the functions u = Raj and v = R~f are 
non-negative. By convention, v == 0 outside 0, so that we only need to prove 
that u ~ v in O. By the definition of resolvent, u E wJl (M) and u satisfies 
in M the equation 

-D.J.£u + au = f. 
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In particular, we have U E WI (D). Applying Corollary 5.15 to the manifold 
D, we obtain U 2: R~f, which was to be proved. 

Alternative proof of (i). This proof is longer but it uses fewer tools from the 
present Chapter confining them to Lemmas 5.1 and 5.4. By the definition of resolvent, we 
have U E W6 (M), v E W6 (11), and 

£o.V + av = f in 11, 
£u+au = f in M. 

(5.65) 

By Lemma 5.4, there are sequences of non-negative functions {ud C COO (M) and {Vk} C 
COO (11) which converge, respectively, to u and v in WI-norm. Let 'Ij; be a smooth non­
negative function on lR such that 

'Ij; (t) == 0 for t ::; 0, 'Ij; (t) > 0 and 0 ::; 'Ij;' (t) ::; 1 for all t > O. (5.66) 

One can think of'lj; (t) as a smooth approximation to t+ (see Fig. 5.1). Let us show that 
W := 'Ij; (v - u) E WJ (11). For that, set Wk = 'Ij; (Vk - Uk) and observe that Wk E COO (M) 
and 0 ::; Wk ::; Vk. The latter implies that SUPPWk is contained in 11 and hence Wk E 
COO (11) (see Fig. 5.3). 

~k 
----------------------

;" - .. , 
.. ------------------------~- .. 

FIGURE 5.3. Function Wk = 7./J (Vk - Uk) 

On the other hand, by (5.3) (see Lemma 5.1) we have 

Wl(M) 
'Ij; (Vk - Uk) --'--+ 'Ij; (v - u) , 

which yields W E WJ (11). Subtracting the equations in (5.65) and multiplying them by 
w, we obtain 

By Lemma 4.4, we have 

( £r!v, w) = (V'v, V'W)r;2(o.) =' r (V'v, V'w)dl-£. 
L2 (0.) ) 0. 

and 

(£U,W)P(o.) = (£U,W)L2(M) = (V'u, V'W)Z2(M) = In {V'u, V'w)dl-£, 

where in the last equality we have used (5.61). Hence, we obtain from the above three 
lines that 

l (V' (v - u), V'w)dl-£ + a l (v - u) wdl-£ = 0, (5.67) 
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By (5.2), we have 
V'w = V''IjJ (v - u) = 'IjJ' (v - u) V' (v - u) 

whence, by 'IjJ' (t) ~ 0, 

In (V' (v - u), V'w}df-t = In 'IjJ' (v - u) IV' (v - u)1 2 df-t ~ O. 

Since t'IjJ (t) ~ 0 for all t E JR, we obtain 

In (v-u)wdf-t= In(V-u)'IjJ(V-U)df-t~O. 
Therefore, the equation (5.67) is possible only when 

In (v - u) 'IjJ (v - u) df-t = 0, 

that is, when (v - u) 'IjJ (v - u) = 0 in &1, whence v - u:::; O. 

(ii) Set Ui = R~i j and observe that, by part (i) and Theorem 5.9, the 
sequence {Ui} is increasing and 

0:::; Ui :::; Ro.J. 

Therefore, Ui converges almost everywhere to a function U such that 

0:::; u:::; Ro.j, 

which implies that U E L2 (M) and, by the dominated convergence theorem, 
Ui -+ U in L2 (M). 

Note that the function Ui is in WJ (Oi) and, hence, is in WJ (M). Let 
us show that the sequence {ud is Cauchy in WJ (M). Each function Ui 

satisfies the equation 

(5.68) 

for any cp E WJ (O~) (where (-,.) is the inner product in L2 (M». Choosing 
here cp = Ui, we obtain 

(\lUi, \lUi) + a (Ui' Ui) = (f, Ui). 

Fix k > i and observe that the function cp = Uk - 2Ui belongs to WJ (Ok)' 
Therefore, by the analogous equation for Uk, we obtain 

(\luk' \l (Uk - 2Ui») + a (Uk, Uk - 2Ui) = (f, Uk - 2Ui). 

Adding up the above two lines yields 

lIV'ukI12+IIV'uiIl2-2 (V'Uk, V'ui)+a (llukl1 2 + Il uil1 2 
- 2 (Uk, Ui)) = (f, Uk - Ui) , 

whence 

IIV' (Uk - Ui) 112 + alluk - uil1 2 = (f, Uk - Ui) :::; Iiflll'Uk - uill· 

Since IIUk - uill-+ 0 as k,i -+ 00, we conclude that also IIV' (Uk - Ui) 11-+ O. 
Therefore, the sequence {ud is Cauchy in WJ (M) and, hence, converges in 
WJ (M). Since its limit in L2 (M) is u, we conclude that the limit of {Ui} 

in WJ (M) is also u. In particular, U E WJ (M). 
We are left to show that U = Raj. Fix a function cp E Cgo (M) and 

observe that the support of cp is contained in 0i when i is large enough. 
Therefore, (5.68) holds for this cp for all large enough i. Passing to the limit 



5.5. RESOLVENT AND THE HEAT SEMIGROUP IN SUBSETS 147 

as i -7 00, we obtain that the same equation holds for U instead of Ui, that 
is, 

(,'VU, \lc.p) + 01. (u, c.p) = (f, c.p). (5.69) 

Since ego (M) is dense in WJ (M), this identity holds for all c.p E WJ (M). 
By Theorem 4.5, the equation (5.69) has a unique solution U E WJ (M), 
and this solution is Raf, which finishes the proof. 0 

THEOREM 5.23. Let f E L2 (M) be a non-negative function, and t > O. 

(i) For any open set n c M, 

pl,1 f ::; Pt!. (5.70) 

(ii) For any exhaustion sequence {ni}~l in M, 

p[2i f ~ Pt! as i -7 00. 

REMARK. As we will see from the proof, we have also PPi f ~ Pt!. It will 
be shown in Chapter 7 that the functions prl.i f, Pt! are COO-smooth and, 

in fact, pF'i f Coo) Pd (see Theorem 7.10 and Exercise 7.18). 

PROOF. (i) For any 01. > 0, we have by Theorem 5.22 R~f ::; Raf. By 
Theorem 5.9, the operators Ra and R~ preserve inequalities. Therefore, we 

obtain by iteration that (R~)k f ::; R~f, whence by (5.30) 

PPf = lim (~)k (R~)k f::; lim (~)k Rtf = Pd k-+oo t t k-+oo t t 

(cf. Exercise 2.2 for preserving inequalities by convergence in L2). 

Alternative proof of (i). By Theorem 4.9, function u (t,·) := Pd satisfies the 
conditions 

{ 

~~ = t:.!-'u, for all t > 0, 
u(t,·) E WJ (M), for all t > 0, 

L2(M) 
u(t,·) ----'-t f ast-+O, 

where :~ is the strong derivative in L2 (M). It follows that the restriction of u to .0 (also 

denoted by u) belongs to W l (D) for any t > ° and solves the Cauchy problem in .0 with 

the initial function f. Since by Theorem 5.11 u ~ 0, we conclude by Corollary 5.17 that 

u ~ prj f, which was to be proved. 

(ii) By part (i), the sequence of functions {PPi J}~l is increasing and 
is bounded by Pt!. Hence, for any t > 0, the sequence {prl.i J} converges 
almost everywhere to a function Ut such that 

o ::; Ut ::; Pt!. 
Since Pt! E L2, we conclude that Ut E L2 and, by the dominated convergence 
theorem, 

n. L2 
Pt 'f -+ Ut· 

We need to show that Ut = Pt!. 
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Fix a non-negative function r.p E CO' (M) and observe that r.p E CO' (Oi) 
for large enough i. It follows from (5.29) and the monotone convergence 
theorem that, for any a > 0, 

(R~ij,r.p) = 10
00 

e-at(p[2i j,r.p)dt ~ 1000 

e-at(ut,r.p)dt, 

as i -+ 00. On the other hand, by Theorem 5.22 and (5.29), 

(R~ij,r.p) -+ (Raj,r.p) = 10
00 

e-at(Pd,r.p)dt. 

We conclude that 

1000 

e-at (Ut, r.p) dt = 10
00 

e-at (Pd, r.p) dt, 

which, in the view of inequality (Ut, r.p) :s; (Pd, r.p), is only possible when 

(Ut,r.p) = (Pd,r.p) (5.71) 

for almost all t > O. Let us show that, in fact, both functions t H- (Pd, r.p) 
and t H- (Ut, r.p) are continuous in t > 0, which will imply that (5.71) holds 
for all t > O. 

By Theorem 4.9, the function (Pd, r.p) is even differentiable in t > O. 
The same theorem also yields 

~ (p[2i j, r.p) = _(.cPi p[i'i j, r.p) = (p[i" j, AJJ.r.p) , 

where (.,.) is the inner product in L2. Using Ilptnill :s; 1, we obtain 

I ~ (Pt
n

, j, r.p) I :s; II ptni jllL2(n,) II Attr.pIIL~(ni) :s; IljllL2(M) II Attr.p II L2(M) . 

Since the right hand side here does not depend on i, we see that all the 
functions (Pt

ni j, r.p) have uniformly bounded derivatives in t and, hence, are 
Lipschitz functions with the same Lipschitz constant. Therefore, the limit 
function (Ut, r.p) is also Lipschitz and, in particular, continuous. 

Finally, since (5.71) holds for an arbitrary non-negative function r.p E 

COO (M), we conclude that Ut = Pd (cf. Exercise 4.7). 0 

Exercises. 

5.22. Let u be a function from C (M) n WJ (M). For any a > 0, set 

Ua. = {x EM: u (x) > a}. 

Prove that (u - a)+ E WJ (Ua). 

5.23. Let n be an open subset of a weighted manifold M and K be a compact subset of 
n. Let j be a non-negative function from L2 (M). Prove that, for all a > 0, 

Raj - R~j ~ esupR",j. (5.72) 
M\K 

5.24. Under the hypotheses of Exercise 5.23, prove that, for all t > 0, 

Pd - ptf'l f ~ sup esup p[l f. 
sE[O,t] M\K 

(5.73) 
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5.25. Let {ni}:l be an increasing sequence of open subsets of M, n = U:'l n., and 

I E L2 (D1). Prove that the family of functions {Pt·, 1}:1 considered as the paths in 

L2 (n), is equicontinuous in t E [0, +00) with resect to the norm in L 2 (n). 

5.26. Let A be the multiplication operator by a bounded, non-negative measurable function 
aonM. 

(a) Prove that A is a bounded, non-negative definite, self-adjoint operator in L2 and, 
for any non-negative I E L2 and t ~ 0, 

05:. e-tA 15:. f. (5.74) 

(b) Prove that, for any non-negative I E L2 and t ~ 0, 

o 5:. e -t(C+A) I 5:. e -tC I. 

(c) Using part (b), give an alternative proof of the fact that pf 15:. HI. 
HINT. In part (b) use the Trotter product formula: 

-t(A+B)1 1i (_.t A -.tB)" I e =mene n , 
"->00 

that is true for any two non-negative definite self-adjoint operators A, B in L2. 

Notes 

(5.75) 

(5.76) 

There are different approaches to the maximum principle. The classical approach as 
in Lemma 1.5 applies to smooth solutions of the Laplace and heat equations and uses 
the fact that the derivatives at the extremal points have certain signs. We will use this 
approach in Chapter 8 again, after having established the smoothness of the solutions. 

In the present Chapter we work with weak solutions, and the boundary values are 
also understood in a weak sense, so that other methods are employed. It was revealed 
by Beurling and Deny [39], [106] that the Markovian properties of the heat semigroup 
originate from certain properties of the Dirichlet integral J M J \7uJ 2 dp., which in turn follow 
from the chain rule for the gradient \7. This is why the chain rule for the weak gradient 
is discussed in details in Sections 5.1 and 5.2 (see also [130]). 

Another useful tool is the resolvent ROt. The use of the resolvent for investigation 
of the heat semigroup goes back to the Hille-Yoshida theorem. Obtaining the Markovian 
properties of Pt via those of Ra is a powerful method that we have borrowed from [124]. 
Theorems 5.16, 5.22, 5.23 in the present forms as well as their proofs were taken from 
[162]. 

The reader is referred [41], (115], (124] for the Markovian properties in the general 

context of Markov semigroups and Markov processes. 



CHAPTER 6 

Regularity theory in ]Rn 

We present here the regularity theory for second order elliptic and par­
abolic equations in lRn with smooth coefficients. In the next Chapter 7, this 
theory will be transplanted to manifolds and used, in particular, to prove 
the existence of the heat kernel. 

We use here the same notation as in Chapter 2. 

6.1. Embedding theorems 

6.1.1. Embedding Wl~c y em. In this section, we prove the Sobolev 
embedding theorem (known also as the Sobolev lemma), which provides the 
link between the classical and weak derivatives. Let us first mention the 
following trivial embedding. 

CLAIM. For any open set n c lRn and any non-negative integer m, we have 
an embedding 

em (n) y Wi:: (n) . (6.1) 

PROOF. Indeed, if u E em (n) then any classical derivative cPu of order 
lal ~ m is also a weak derivative from Ltoc (n) and, for any open set n' (S n, 

II(Jll!uIIL2(0/) ~ C sup 180<ul , 
0 ' 

which implies 

IIUllwm(O/) ~ ellullc""Co/)' 
Hence, the identical mapping em (n) --t WI:: (n) is not only a linear injec­
tion but is also continuous, which means that it is an embedding. 0 

The next theorem provides a highly non-trivial embedding of Wi~c (n) 
to em (n). 

THEOREM 6.1. (Sobolev embedding theorem) Let n be an open subset 
of]Rn. If k and m are non-negative integers such that 

n 
k>m+"2 

then u E Wl~c (n) implies u E em (n). Moreover, for all relatively compact 
open sets n', n" such that n' (S nil (S n 

(6.2) 

151 
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where the constant e depends on n',n",k,m,n. 

More precisely, the first claim means that, for every u E Wz~c (0,), there 
is a version of u that belongs to em (0,), which defines a linear injection 
from Wl~c (0,) to em (n). The estimate (6.2) means that this injection is 
continuous, so that we have an embedding 

Wl~c (n) yem (n) . (6.3) 

Set 
00 

Woo (0,) = n Wk (n) 
k=O 

and 
00 

Wl~ (n) = n Wl~c (0,) . 
k=O 

The topology in the space Woo (n) is defined by the family of seminorms 

Ilullwk(n) , 

for all positive integers k, and the topology in Wl~ (n) is defined by the 
family of seminorms 

lIullwk(n/), 
where k is a positive integer and nf <s 0, is an open set. 

It follows from (6.1) and (6.3) that 

Wl~ (0,) = eoo (0,) , 

where the equality means also the identity of the topologies. 
Hence, in order to prove that a function from Lroc belongs to eoo , it 

suffices to show that it has weak derivatives of all orders. Although the latter 
may be difficult as well, the existence of weak derivatives can be frequently 
proved using the tools of the theory of Hilbert spaces, which are not available 
for the spaces ek . 

EXAMPLE 6.2. Let us show that u E Lfoc (0,) implies u E Wi~; (n), for 
any k > n/2. Indeed, fix an open set n' <s 0, and observe that, for any 
<P E 1) (0,'), we have by Theorem 6.1 

(u, <p) = r u<pdp, ~ sup 1<pllluIlLl(n/) ~ ClI<Pllwk(n,)lIuIlLl(n'), in' n' 
where e depends on 0,' and n. It follows that 

Ilullw-k(n/) ~ CI/U//Ll(n/) 

and, hence, u E Wi::. 
PROOF OF THEOREM 6.1. We split the proof into a series of claims. 

Recall that BR = {x E]Rn : Ixl < R}. 
CLAIM 1. For any u E 1) (BR) and k > n/2, 

lu (0)1 ~ ellullwk, (6.4) 
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where the constant C depends on k, n, R. 
We use for the proof the polar coordinates (r,O) centered at the origin 

o E Rn (cf. Section 3.9), and write U = U (r, 0) away from O. The relations 
between the Cartesian and polar coordinates are given by the identities 

x j = r I j (0) , 

where I j are the smooth functions of 0 E §n-1 such that 

L (1j)2 == 1 (6.5) 
j 

(cf. (3.61). This implies that 

Or = I j (0) OJ, (6.6) 

whence it follows by induction that, for any positive integer k, 
k . . 

!l _ 111 IJk !l . !l . 
U r - .... UJ1" 'UJh;' 

Applying the Cauchy-Schwarz inequality and (6.5), we obtain 

10~u12 ~ L looul2. (6.7) 
!o!:::;k 

In particular, we see that the function o~u is bounded in ]Rn \ {O} (note that 
this function is not defined at 0), which allows to integrate o:u in r over the 
interval [0, R]. 

For any 0 E §n-l, we have U (R, 0) = 0 whence we obtain by the funda­
mental theorem of calculus 

U (0) = - foR Oru (r, e) dr. 

Integration by parts yields 

u (0) = - [OrU (r, 8) r]~ + foR ro;'u (r, 8) dr = foR ro;'u (r, 0) dr, 

and continuing by induction, we arrive at 

(_l)k rR 
k-1 k ( 

u(O) = (k-l)! io r 0r u r,8) dr. 

Integrating this identity in 8 over §n-1 and using 

r n - 1drdO = df..l, 

where f..l is the Lebesgue measure (cf. (3.82), we obtain 

() 
(_1)k r k-n!lk d 

WnU 0 = (k -1)! iBR r UrU f..l. 

The Cauchy-Schwarz inequality yields then 

lu (0)12 ~ C r r2k-2ndf..l r 10~u12 df..l. 
iBR iBR (6.8) 
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The first integral in (6.8) is evaluated in the polar coordinates as follows: 

r r2k- 2ndj.t = Wn rR 
r2k-2nrn-ldr = Wn rR 

r2k- n- I rdr = CR2k- n < 00, 

JBR Jo Jo 
where we have used the hypothesis k > n/2. Hence, this integral is just a 
constant depending on R. By (6.7), the second integral in (6.8) is bounded 
by 

1 I: 18
a

uI
2 

dj.t = lIull~k' 
Br lal~k 

Therefore, (6.4) follows from (6.8). 
For the next Claims 2-4, f2 c ]Rn is a bounded open set. 

CLAIM 2. For any u E 1) (f2) and k > n/2, we have 

sup luj :s; Cllullwi< (6.9) 

where the constant C depends on k, n, andl diam f2. 
Indeed, let x be a point of maximum of lui and R = diam f2. Applying 

Claim 1 in the ball BR (x), we obtain (6.9). 

CLAIM 3. Assume that u E Wk (f2) , where k > n/2, and let the support of 
u be a compact set in f2. Then u E C (f2) and the estimate (6.9) holds. 

Let 'P be a mollifier and set Uj = u * 'PI/j where j is a positive integer. 
By Lemma 2.9, we have Uj E 1) (f2), provided j is large enough, and by 
Theorem 2.13, Uj --7 U in Wk when j --7 00. Applying (6.9) to the difference 
'Ui - Uj, we obtain 

sup lUi - ujl :s; CIlUi - UJIIWk. 

Since the right hand side tends to 0 as i, j --7 00, we obtain that the sequence 
{Uj} is Cauchy with respect to the sup-norm and, hence, converges uniformly 
to a continuous function. Hence, the function U has a continuos version, 
which satisfies (6.9). 

CLAIM 4. Assume that U E Wk (f2), where k > n/2 + m and m is a positive 
integer, and let the support of U be a compact set in f2. Then U E cm (f2) 
and 

(6.1O) 

where the constant C depends on k, m, n, and diam f2. 
Indeed, if lal :s; m then 8au E W k - m , which yields by Claim 3 that 

8au E C (f2) and 

sup 18a ul :s; Cl18a ullWk-rn :s; ClluI/wk, 

whence the claim follows2. 

(6.11) 

lIn fact, the constant C in (6.9) can be chosen independently of n, as one can see 
from the second proof of Theorem 6.lo 

2See Claim in the proof of Lemma 2.9. 
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Finally, let us prove the statement of Theorem 6.1. Assume u E Wl~c (D) 
where D is an open subset of ]Rn and k > n/2 + m. Choose open sets 
D' <s D" <s D and a function '¢ E Cff (D") such that '¢ == 1 on D'. Then 
'¢u E Wk (D") (cf. Exercise 2.26) and the support of '¢u is a compact 
subset of D". By Claim 4, we conclude that '¢u E cm (D"). In particular, 
u E cm (D') because u = '¢u in D'. Since D' may be chosen arbitrarily, we 
conclude that u E Cm (D). It follows from (6.10) and (2.38) that 

lIullcm(o/) :s: lI,¢ullcm(oll) :s: CII,¢ullwk(OIl) :s: C'llullwk(OIl), 
which finishes the proof. o 

SECOND PROOF. We use here the Fourier transform and the results of 
Exercise 2.34. Assume first that u E Wk (JRn

) with k > n/2 and prove that 
u E C (JRn ). Since u E L2, the Fourier transform u (~) is defined and is also 
in L2. By (2.42) we have 

In lu (~)12 (1 + 1~12t d~ :s: Cllull~k' (6.12) 

By the Cauchy-Schwarz inequality, 

(lnIU(~)ld~)2:s: lnlu(~)12(1+1~12)kd~ In(1+1~12)-kd~. (6.13) 

The condition k > n/2 implies that the last integral in (6.13) converges, 
which together with (6.12) yields 

r lu(~)1 d~:S: Cllullwk. (6.14) 
JJRn 

In particular, we see that u ELI and, hence, u can be obtain from u by the 
inversion formula 

(6.15) 

for almost all x. Let us show that the right hand side of (6.15) is a continuous 
function. Indeed, for all x, y E ]Rn, we have 

r u(~)eiX~d~- r u(~)eiY~d~= r u(~)(eiX~-eiY~)d~. 
JJRn JJRn JJRn 

If y -+ x then the function under the integral in the right hand side tends 
to 0 and is bounded by the integrable function 2Iu(~)I. We conclude by the 
dominated convergence theorem that the integral tends to 0 and, hence, the 
function u has a continuous version, given by the right hand side of (6.15). 
It also follows from (6.14) and (6.15) that 

sup lui :s: Cllullwk. JRn 
Since this proves Claim 3 from the first proof, the rest follows in the same 
way. 0 
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THIRD PROOF. We will prove here a somewhat weaker version of The­
orem 6.1, when the hypothesis k > m + n/2 is replaced by the stronger 
condition k ;::: m + 2l, where 1 is the minimal integer that is greater than 
n/4. This version of Theorem 6.1 is sufficient for all our applications. The 
advantage of this proof is that it can be carried over to manifolds under 
a mild assumption that the heat kernel satisfies a certain upper estimate; 
besides, it can be enhanced to work also for the full range of k (cf. Exercises 
7.43, 7.44, 7.46). 

We start with the following claim. Recall that Pt is the heat semigroup 
defined in Section 2.7. 

CLAIM. If U E 1) CRn) , k is a positive integer, and 

f = (-Ll + id)k u, (6.16) 

then, for any x E Rn, 

tX> tk-1e-t 

U (x) = Jo (k _l)!Pt!(x) dt. 

By Lemma 2.17, we have in [0,+(0) x Rn the identity 

Pt! = Pt ((-Ll + id)k u) = (-Ll + id)k Ptu. 

Since Ptu satisfies the heat equation and, hence, 

(-Ll + id)k Ptu = (-at + id)k Ptu, 

we obtain 
Pt! = (-at + id)k Ptu. 

Therefore, the right hand side of (6.17) is equal to 

roo tk - 1 -t 
Jo (k _ e1)! (-at + id)k Ptu dt. 

Integrating by parts in (6.18) and using the identity 
tk-1 -t tk-2-t 

(8t+id) (k_
e
1)! = (k_

e
2)!' 

which holds for any k ;::: 2, we obtain 

roo t k - 1 -t 
J

o 
(k _ e

1
)! (-at + id)k Ptu dt 

[
tk - 1 -t ] 00 

- (k _ e1)! (-at + id)k-l Ptu 0 

roo tk - 1 -t 
+ Jo (at+id) (k_

e
1)! (-at+id)k-l Ptudt 

roo tk - 2 -t 

- J
o 

(k _e
2

)! (-at + id)k-l Ptudt, 

(6.17) 

(6.18) 
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where the limits at 0 and 00 vanish due to k > 1 and the boundedness of 
the function (-at +id)k-1 Ptu(x) in [0,+00) x lRn (cf. Lemma 2.17). 

Hence, the integral in (6.18) reduces by induction to a similar integral 
with k = 1. Integrating by parts once again and using (at + id) e-t = 0 and 
Ptu --+ U as t --+ 0 (cf. Theorem 1.3), we obtain 

10
00 

e-t ( -at + id)Ptu dt = [e-t ptu] ~ = u, 

which proves (6.17). 
Let now 1 be the minimal integer that is greater than n/4, u E D (lRn) 

and 

1 = (-~+id)lu. 

It is easy to see that, by (1.22), 

r p; (z) dz = Pt * Pt (0) = P2t (0) = (87rt)-n/2 . 
JJRn 

Hence, for all x E lRn and t > 0, 

IPd (x)1 < (In p;(x - Y)dY) 1/2 (1 ... 12(Y)dY) 1/2 

- (87rt)-n/411/11£2, (6.19) 

which together with (6.17) yields 

roo t l - 1 -t roo t l - 1 -t 

lu (x)1 ~ Jo (l_e1)! IPd (x)1 dt ~ 11/11£2 Jo (l-e1)! (87rt)-n/4 dt. 

The condition l > n/4 implies that the above integral converges, whence we 
obtain 

where the constant C depends only on n. Since 1 can be represented as a 
combination of the derivatives of u up to the order 2l, it follows that 

sup lui ~ Cllullw2!. (6.20) 
JRn 

The proof is finished in the same way as the first proof after Claim 2. 0 

Exercises. 

6.1. Show that the delta function 8 in ]Rn belongs to W- k for any k > n/2. 
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6.1.2. Compact embedding WJe....-t L2. Define the space WJ (n) as 
the closure of COO (n) in WI (n). Clearly, WJ (n) is a Hilbert space with 
the same inner product as in WI (n). 

THEOREM 6.3. (Rellich compact embedding theorem) lin is a relatively 
compact open subset 01 ~n then the identical embedding 

WJ (n) e....-t L2 (n) 

is a compact operator. 

PROOF. Any function I E WJ (n) can be extended to ~n by setting 
1 = 0 outside n. Clearly, 1 E L2nLI (~n). Moreover, I E WI (~n) because 
1 is the limit in WI (n) of a sequence {CPk} C COO (n), and this sequence 
converges also in WI (~n). 

Let {lk} be a bounded sequence in WJ (n). Extending 1k to ~n as above, 
we can assume that also Ik E WI (~n). Since {/d is bounded in L2 (~n), 
there exists a subsequence, denoted again by {1k}, which converges weakly in 
L2 (~n) to a function 1 E L2 (JRn). Let us show that, in fact, {/d converges 
to I in L2 (n)-norm, which will settle the claim. 

Let us use the heat semigroup Pt as in the third proof of Theorem 6.l. 
For any t > 0, we have by the triangle inequality 

1I1k - 111£2(n) ::; 111k - Pt1kIl£2(n) + IIPt!k - Pt!II£2(JRn) + IIPt! - l11£2(JRn). 
(6.21) 

Let C be a constant that bounds 111kllwl for all k. Then Lemma 2.20 yields 

IIlk - Pt1kllL2(JRn) ::; v'tlllkllWl(JRn) ::; CJt. (6.22) 

Since {1k} converges to 1 weakly in L2 (Rn) as k ~ 00, we obtain that, for 
all x ERn, 

Pt!k(X) = (jk,Pt (x - '»£2 ~ (j,Pt (x - '))£2 = Pt!(x). 

On the other hand, by (6.19) 

sup /Pt!kl ::; (81rt)-n/4/11kll£2(Rn) ~ C (81rt)-n/4. 
JRn 

Hence, for any fixed t > 0, the sequence {Pt!d is bounded in sup-norm 
and converges to Pt! pointwise in Rn. Since J..L (n) < 00, the dominated 
convergence theorem yields 

IIPt!k - Pt!II£2(n) ~ 0 as k ~ 00. (6.23) 

From (6.21), (6.22), and (6.23), we obtain that, for any t > 0, 

lim sup 111k - l11£2(n) ::; CJt + IIPt! - III£2(Rn). 
k-+oo 

The proof is finished by letting t ~ 0 because IIPt! - l11L2(JRn) ~ 0 by 
Lemma 2.18. 0 



6.2. TWO TECHNICAL LEMMAS 159 

Exercises. 

6.2. The purpose of this problem is to give an alternative proof of Theorem 6.3 by means 
of the Fourier transform. Let n be a bounded open set in ]Rn. Recall that WJ (n) can be 
considered as a subspace of WI (]Rn) by extending functions by 0 outside n. 

(a) Prove that, for all I E WJ (n) and 9 E Coo (]Rn), 

In (ajl) 9 dx = - In f aJ 9 dx. (6.24) 

(b) Prove that, for any I E WJ (n) and for any ~ E ]Rn, 

(I, eil;x) = (1 + 1~12) 1 (~) , 
Wl(O) 

(6.25) 

where l(~) is the Fourier transform of I· 
(c) Let Uk} be a sequence from WJ (n) such that Ik converges weakly in Wi (]Rn) to 

a function I E WI (]Rn). Prove that f,. (~) -+ J(t;), for any ~ E ]Rn. Prove that also 
f,. -+ lin Ltoc (]Rn). 

(d) Finally, prove that if {j,.,} is a bounded sequence in WJ (n) then Uk} contains a 
subsequence that converges in L2 (n). 

HINT. Use Exercises 2.28 and 2.34. 

6.2. Two technical lemmas 

LEMMA 6.4. (Friedrichs-Poincare inequality) Let 0 be a bounded open 
set in IRn. Then, for any <p E 'D (0) and any index j = 1, ... , n, 

1 <p2dp, ~ (diam 0)21 (OJ<p)2 dp,. (6.26) 

PROOF. Set I = diam O. Consider first the case n = 1 when we can 
assume that 0 is the interval (0, I) (note that we can always expand 0 to an 
interval of the same diameter since a function <p E 'D (0) can be extended 
to a function <p E 'D (JRn) by setting <p = 0 outside 0). Since <p (0) = 0, we 
have, for any x E (0, I), 

<p2 (x) = (l X 

<p' (8) d8) 2 ~ 111 (<p') 2 (8) d8, 

whence, integrating in x, 

1/ <p2 (x) dx ~ 1211 (<p') 2 (8) d8, 

which is exactly (6.26) for the case n = 1. 
In the case n > 1, first apply the one-dimensional Friedrichs' inequality 

to the function <p (x) with respect to the variable xj considering all other 
variables frozen, and then integrate in all other variables, which yields (6.26). 

o 
Recall that, for any mollifier <p, we denote by <Pc the function c-n<p (x/c) 

(see Chapter 2). 
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LEMMA 6.5. (Friedrichs lemma) Let n be an open set in ]Rn and let 
a E Coo (n). Consider the operator A in n defined by 

Au = aoJu, 

for some j = 1, ... , n. Then, for any function u E L2 (n) with compact 
support in n and for any mollifier 'P in ]Rn, we have 

IIA (u * 'Pc) - (Au) * 'Pcll£2(n) -+ 0 as c -7 O. (6.27) 

PROOF. Let no be the co-neighborhood of supp u, where cO > 0 is so 
small that no <s n. Let us extend u to a function in ]Rn by setting u = 0 
outside supp u. Then the convolution u * 'Pc is defined as a smooth function 
in ]Rn and, if c < cO then u * 'Pc is supported in n. In turn, this implies that 
the expression A (u * 'Pc) defines a function from D (n). Similarly, Au is a 
distribution supported by suppu, and (Au) * 'Pc is a function from V (n). 

Let us show that, for c < co, 

(6.28) 

where 

(6.29) 

The point of the inequality (6.28) is that although the constant K depends 
on functions a, 'P and on the set no, it is still independent of u and c. We 
have, for any x E n, 

and 

Setting 

A(u * 'Pc) (x) a(Oj(u * 'Pc» (x) = a(u * OJ 'Pc) (x) 

in a(x)u(Y)Oj'Pc(x - y)dy 

(Au) * 'Pc (x) - (Au, 'Pc (x - .» 

(OjU, a(-)'Pc(x - .» 
- - (u, OJ (a(·)'Pc(x - .») 

in u(y)a(y)oj'Pc(x - y)dy 

(6.30) 

-in u(y)oja(y)'Pc(x - y)dy. (6.31) 

Acu := A (u * 'Pc) - (Au) * 'Pc, 

we obtain from (6.30) and (6.31) 

Acu (x) = in (a(x) - a(y» OJ 'Pc (x - y)u(y)dy 

+ in oja(y)'Pc(x - y)u(y)dy. (6.32) 
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Note that the domains of integration in (6.32) can be restricted to 

y E SUppU n Be(x). (6.33) 

If x ~ Do then the set (6.33) is empty and, hence, Aeu(x) = O. Therefore, 
Aeu(x) i= 0 implies x E Do. In this case, for any y is as in (6.33), we have 
x E Be(Y) C Do whence it follows that 

la(x) - a(y)1 :::; sup IV'alix - yl = C Ix - YI, (6.34) 
no 

where C := sUPno IV'al (see Fig. 6.1). 

FIGURE 6.1. Ify E suppunBe (x) then x E Be (y) C Do and, 
hence, the straight line segment between x and y is contained 
in Do, which implies (6.34). 

Since also IOja (y)1 :::; C, we obtain from (6.32) 

IAeu(x) I < C In (Ix - ylloj<Pel (x - y) + CPe(x - y) lu(y)1 dy 

= C In 'l/Je(x - y) lu(y)1 dy, 

where 
'lj;e(x) := IxllojCPel (x) + CPe(x). 

Hence, for all x E jRn, we have 

IAeu (x)1 :::; C lui * 'lj;e (x) , 
which implies by rescaling the inequality (2.25) of Theorem 2.11 (see also 
Remark 2.12) that 

IIAeuilp :::; C [Ln 'lj;e(X)dX] Iiullp· 

Evaluating the integral of 'l/Je by changing z = x / c:, we obtain 

r 'lj;e(x)dx _ 1 + r Ixl!c:-noxj'P(::)! dx JRn JRn c: 

1 + r lc:zllc:- 10z jcp(z)1 dz = 1 + r Izllojcp(z)1 dz, JRn JRn 
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which gives 

that is (6.28). 
Let us now prove (6.27), that is, 

IIAculIL2 --+ ° as c --+ 0. 
1) 

If U E 1) (D) then, by Lemma 2.10, U * <Pc ----+ U and, hence, 
1) 

A (u * <Pc) ----+ Au. 

Applying Lemma 2.10 to Au, we obtain 

(Au) * <Pc ~ Au, 

(6.35) 

which together with the previous line implies Acu ~ O. For an arbitrary 
function U E L2 (D) with compact support, choose a sequence Uk E 1) (D) 
such that Uk --+ U in L2 (for example, take Uk = U * <Pl/k - cf. Theorem 2.3) 
and observe that 

Acu = Aeuk + Ae (u - Uk). 

To estimate the second term here, we will apply (6.35) to the difference 
U - Uk. If k is large enough then supp (u - Uk) is contained in a small 
neighborhood of supp U and, hence, the constant K from (6.29) can be chosen 
the same for all such k. Hence, we obtain 

IIAcuIIL2 ::; IIAcukllL2 + HAc (u - Uk) IIL2 ::; IIAcU kllL2 + Kllu - ukllL2. 

Since Ilu - ukllL2 --+ ° as k --+ 00 and, for any fixed k, IlAeukllL2 --+ 0 as 
c --+ 0, we conclude that IiAeuIIL2 --+ 0, which was to be proved. 0 

6.3. Local elliptic regularity 

Fix an open set D c jRn and L be the following differential operator in 
D: 

L = Oi (a ij (x) OJ) , 

where aij (x) are smooth functions in D such that the matrix (aij (x))": '-I 
~,J-

is symmetric and positive definite, for any xED. Any such operator with a 
positive definite matrix (aij ) is referred to as an elliptic operator. The fact 
that the matrix (aij ) is positive definite means that, for any point xED 
there is a number c (x) > 0 such that 

.. 2 
a~J (x) eiej 2:: c (x) lei for anye E jRn. (6.36) 

The number c (x) is called the ellipticity constant of operator L at x. Clearly, 
c (x) can be chosen to be a continuous function of x. This implies that, for 
any compact set KeD, c (x) is bounded below by a positive constant for 
all x E K, which is called the ellipticity constant of operator L in K. 
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The symmetry of the matrix a ij implies that the operator L is symmetric 
with respect to the Lebesgue measure p in the following sense: for any 
functions u, v E V (0), 

in Lu v dp = - in a ij 8iu 8jv dp = in u Lv dp, (6.37) 

which follows immediately from the integration-by-parts formula or from the 
divergence theorem. 

The operator L is obviously defined on V' (0) because all parts of the 
expression 8i (aij8j) are defined as operators in V' (0) (see Section 2.4). For 
all u E V' (0) and 'P E V (0), we have 

that is, 

(Lu,'P) (8i (aij 8ju) ,'P) = - (aij8ju,8i'P) 

- (8ju,aij8i'P) = (u,8j (aij8i'P)), 

(Lu, 'P) = (u, L'P)' 

This identity can be also used as the definition of Lu for a distribution u. 

6.3.1. Solutions from Lroc. 

LEMMA 6.6. If a function u E L2 (0) is compactly supported in 0 and 
Lu E W- 1 (D), then 

W-l 
L (u * 'Pe) ---+ Lu as c -+ O. (6.38) 

PROOF. Consider the difference 

L (u * 'Pe) - (Lu) * 'Pe = 8i (a
ij

8j (u * 'Pe)) - 8i ((aij8ju) * 'Pe) = 8d; 

where 

f; := aij8j (u * 'Pe) - (a~J8ju) * 'Pe. 

As follows from Lemma 6.5, IIf;IIL2 -+ 0 as E -+ a whence 

IlL (u * 'Pe) - (Lu) * 'Peliw-l = 118d:liw-l ~ L IIf:IILZ ---+ O. 

Since by Theorem 2.16 

we obtain (6.38). 

W-l 
(Lu) * 'Pe ---+ Lu, 

i 

o 
LEMMA 6.7. (A priori estimate) For any open set 0' E 0 and for any 

u E V (0'), 

Ilullwl ~ CIILullw-l , 
where the constant C depends on diam 0' and on the ellipticity constant of 
Lin 0'. 
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PROOF. Lemma 6.4 implies 

lIullwl :::; Gll'vullL2, 
where G depends on diam n'. Setting f = -Lu, we obtain by (6.37) 

(f,u)=- [ (Lu)udf.L= [ aij(x)oiuojudf.L. In In' 
Let c > 0 be the ellipticity constant of L in n' so that, for any x E n', 

.. 2 
a~J (X)OiUOjU ~ clY'ul . 

Combining with the previous lines, we obtain 

(f, u) 2': c In lY'ul2 
df.L 2': c'llull~T1' (6.39) 

for some d > O. On the other hand, by the definition of the norm W-1, 

(f, u) :::; IIfllw-lllullwl, 
which implies 

c'llull~l :::; Ilfllw-lllullwl, 
whence the claim follows. o 

LEMMA 6.8. For any integer m 2': -1, if U E Wi:+l (n) and Lu E 

WI:: (n) then U E Wi:+2 (n). Moreover, for all open subsets n' (S nil (S nJ 
IIUllwm+2(n/) :::; G (ilullwm+l(nll) + IILUllwm(nll») , (6.40) 

where G is a constant depending on n', nil, L, m. 

PROOF. The main difficulty lies in the proof of the inductive basis for 
m = -1, whereas the inductive step is straightforward. 

The inductive basis for m = -1. Assuming that u E Lroc (n) and Lu E 

Wi~; (n), let us show that u E Wl~c (n) and that the following estimate 
holds: 

lIu llwl(n/) :::; G (1Iull£2(nll) + IILullw-l(nll») . (6.41) 

Let 7/J E 'D (n") be a cutoff function of n' in n" (see Theorem 2.2). Then 
the function v := 7/Ju obviously belongs to L2 (n") and supp v is a compact 
subset of nff. We claim that Lv E W-1 (n"). Indeed, observe that 

Lv = 'lj;Lu + 2aijoi7/JOjU + (L'Ij;) u, (6.42) 

and, by Lemma 2.14, the right hand side belongs to W- 1 (n") because Lu, 
OjU, u belong to Wl~;' whereas 7/J, aijoi7/J, L7/J belong to 'D(n"). 

Let ip be a mollifier in ]Rn. By Lemma 6.7, we have 

Ilv * ipellWl :::; GilL (v * ipe) Ilw-l, 
whereas by Lemma 6.38 

W-l 
L (v * ipe) ----+ Lv as c --t 0, 
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lim sup Jlv * 'P£Jlwl ::; CIILvJlw-l. 
£-+0 

By Theorem 2.13, we conclude that v E WI (n") and 

Ilvllwl(OIl) ::; CIILvllw-l(oll). 

Since U = v on n', we obtain that U E Wi (n') and 

JlUJlwl(O/) ::; IIvllwl(oll). 

165 

By varying the set n' we conclude U E Wl~c (n). Finally, observing that by 
(6.42) 

IILvllw-1(01l) ::; C (liullp(oll) + IILullw-1(01l)) 

and combining this with the two previous lines, we obtain (6.41). 

The inductive step from m - 1 to m, where m ~ O. For an arbitrary 
distribution U E 1)' (n), we have 

al (Lu) - L (alu) - alai (aijaju) - ai (aijajaIU) 

= ai [al (aijajU) - aijalajU] 

ai [(azaij ) aju] . (6.43) 

Assuming that U E Wi';~~+1 (n) and Lu E Wi:: (n) and noticing that the right 
hand side of (6.43) contains only first and second derivatives of u, we obtain 

L (aIU) = al (Lu) - ai [(alaij ) aju] E Wi::-1
. (6.44) 

Since alU E WI::, we can apply the inductive hypothesis to alU, which yields 
a W m+l d h W m +2 

IU E lac an, ence, U E lac . 

Finally, we see from (6.44) that 

ilL (alu) IIwm-l(OIl) ::; CIIUllwm+1(OIl) + IILUllwm(OIl) , 

whence by the inductive hypothesis 

II alU II Wm+1 (0/) ::; C (lialullwm(OIl) + ilL (alu) IIwm-l(OIl)) 

::;' C (1IuJlwm+l(OIl) + IILUllwm(OIl)) , 

which obviously implies (6.40). o 

THEOREM 6.9. For any integer m ~ -1, if U E Lroc (n) and Lu E 

Wi:: (n) then U E Wi::+2 (n). Moreover, for all open subsets n' cs n" cs n, 

lIullwm+2(0/) ::; C (lIuIIL2(01l) + IILUllwm(OIl)) , (6.45) 

where C is a constant depending on n', n", L, m. 

Note the hypotheses of Theorem 6.9 are weaker than those of Lemma 
6.8 - instead of the requirement U E Wi::+1, we assume here only U E Lroc' 
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PROOF. Let k be the largest integer between 0 and m + 2 such that 
u E Wl~c' We need to show that k = m + 2. Indeed, if k ~ m + 1 then we 
have also Lu E Wi~~l, whence it follows by Lemma 6.8 that u E Wl~~l, thus 
contradicting the definition of k. 

The estimate (6.45) is proved by improving inductively the estimate 
(6.40) of Lemma 6.8. For that, consider a decreasing sequence of open sets 
{ni }:,t2 such that no = nil, nm +2 = n' and ni+1 <s n i . By Lemma 6.8, we 
obtain, for any 1 ~ k ~ m + 2, 

Ii u llwk(nk) < C (1Iullwk-l(nk_1) + IILullwk-2(nk_l)) 

< C (Ilullwk-l(nk_l) + IILullwm(nll)) , 

which obviously implies (6.45). 

COROLLARY 6.10. If u E Lfoc (n) and Lu E Wi~ (n) where 
n 

m> 1+2" - 2. 

and 1 is a non-negative integer then u E Cl (n). 

o 

Consequently, if u E Ltoc (n) and Lu E Coo (n) then also u E Coo (n). 

PROOF. Indeed, by Theorem 6.9 u E Wl::+2 (n) and, since m+2 > l+~, 
Theorem 6.1 implies u E Cl (n). The second claim is obvious. 0 

For applications on manifold, we need the following consequence of 
Theorem 6.9 for a bit more general operator L. 

COROLLARY 6.11. Consider in n the following operator 

L = b (x) &i (aij (x) &j) , 

where aij (x) and b (x) belong to Coo (n), b (x) > 0, and the matrix (aii (x))': "-1 
~,J-

is symmetric and positive definite for all x E n. Assume that, for some pos-
itive integer k, 

u, Lu, ... , Lku E Lfoc (n) . 
Then u E Wl~~ (n) and, for all open sets n' <s nil <s n, 

k 

Il u llw2k(nl ) ~ C L II LlU II£2(DII), 
1=0 

where C depends on n', nil, L, k. 
If m is a non-negative number and 

then u E C m (n) and 

m n 
k> 2+4' 

k 

IlullcTn(nl) ~ CL:: II LlU II£2(nll ), 
l=O 

(6.46) 

(6.47) 

(6.48) 

(6.49) 
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where e depends on 0',0", L, k, m, n. 

PROOF. Note that Theorem 6.9 applies to operator L as well because 
b8i (aij8j u) E Wi~c if and only if 8i (aij8ju) E Wi::, and the wm (n')-norms 
of these functions are comparable for any 0' <s O. 

The inductive basis for k = 0 is trivial. Let us prove the inductive step 
from k - 1 to k assuming k ~ 1. Applying the inductive hypothesis to 
function v = Lu, we obtain Lu E WI~~-2, whence u E Wl~~ by Theorem 6.9. 

To prove (6.47) observe that by (6.40) 

Ilullw2k(11/) ~ e (lIull£2(11*) + IILullw2k-2(11*») , 

where n' <s 0* CS 0", and, by the inductive hypothesis, 
k-l k 

IILullw2k-2(.I1*) = II v llw2k- 2(11*) ~ e L IILIVIl£2(11I1) = L IIL
1
ull£2(11I1) , 

1=0 1=1 

whence (6.47) follows. 
Finally, u E Wi~~ (0) and 2k > m + n/2 imply by Theorem 6.1 that 

u E em (n). The estimate (6.49) follows from (6.2) and (6.47). 0 

6.3.2. Solutions from V'. Here we extend Lemma 6.8 and Theorem 
6.9 to arbitrary negative orders m. We start with the solvability of the 
equation Lu = f (cf. Section 4.2). For an open set U C ]Rn, consider the 
space WJ (U), which is the closure of V (U) in WI (U). Clearly, WJ (U) is 
a Hilbert space with the same inner product as WI (U). 

LEMMA 6.12. Let U <s 0 be an open set. Then there exists a bounded 
linear operator n : L2 (U) ~ WJ (U) such that, for any f E L2 (U), the 
function u = nf solves the equation Lu = f. 

The operator n is called the resolvent of L (cf. Section 4.2). 

PROOF. Denote by [u, v] a bilinear form in WJ (U) defined by 

[u, v] := fu aij 8iU 8j v dp,. 

Let us show that [u, v] is, in fact, an inner product, whose norm is equivalent 
to the standard norm in WJ (U). Indeed, using the ellipticity of L, the 
compactness of U, and Lemma 6.4, we obtain, for any u E V (U), 

[u,u] = fu aij8iU8judp, ~ c fu lV'uI 2 dp, ~ c' fu u2dp" (6.50) 

and 

[u, u] ~ e fu lV'ul
2 

dp" 

and these estimates extend by continuity to any u E WJ (U). It follows that 
[u, u] is in a finite ratio with 

Ilull~l = fu u2
dp, + fu lV'ul2 

dp" 
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and, hence, the space WJ (U) is a Hilbert space with the inner product [', .J. 
The equation Lu = f is equivalent to the identity 

fu aijoiuoj'Pdj.L = - (j,'P) for any 'P E V(U), (6.51) 

which can be written in the form 

[U, 'PJ = - (j, 'P) for all 'P E WJ (U) . (6.52) 

Note that 'P t-t (j, 'P) is a bounded linear functional of'P in WJ (U), because, 
using again (6.50), we have 

l(j, 'P)I :::; IIfll£211'PIIL2 :::; Cllfll£2 ['P, 'Pl1/2 . (6.53) 

Hence, by the Riesz representation theorem, (6.52) has a unique solution 
U E WJ (U), which allows to define the resolvent by'RJ = u. 

The linearity n is obviously follows from the uniqueness of the solution. 
Using 'P = U in (6.52) and (6.53) yields 

[u, uJ :::; CllfllL2 [u, u]1/2 , 

and, hence, [u, u]1/2 ~ Cllfll£2, which means that the resolvent R is a 
bounded operator from L2 (U) to WJ (U). 0 

REMARK 6.13. If f E Coo n L2 (U) then, by Corollary 6.10, the function 
u = Rf also belongs to the class Coo n L2 (U). 

Let us mention for a future reference that R is a symmetric operator in 
the sense that 

(Rf,g) = (j, Rg) for all f,g E L2 (U). 

Indeed, setting u = Rf and v = Rg, we obtain from (6.52) 

[u, v] = - (j, v) = - (j, Rg) 

and 
[v,uJ = - (g,u) = - (g, Rf), 

(6.54) 

whence (6.54) follows. Since WJ (U) is a subspace of L2 (U), we can consider 
the resolvent as an operator from L2 (U) to L2 (U). Since U is relatively 
compact and, by Theorem 6.3, the embedding of WJ (U) into L2 (U) is a 
compact operator, we obtain that R, as an operator from L2 (U) to L2 (U), 
is a compact operator. 

LEMMA 6.14. For any m E Il, if u E WZ:+1 (n) and Lu E wz: (n) then 
u E WZ:+2 (n). 

PROOF. If m 2:: -1 then this was proved in Lemma 6.8. Assume m ~ 
-2 and set k = -m so that the statement becomes: if u E WZ::+1 and 
Lu E WZ:: then u E WZ::+2. It suffices to prove that 'ljJu E W-k+2 (n) for 
any'ljJ E V (n). Fix such 'ljJ and set v = 'ljJu. Clearly, v E W-k+1 (n) and, as 
it follows from (6.42), Lv E W-k (n). 
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Let U be a small neighborhood of supp v such that U <s O. We need to 
show that IIviiw-k+2(U) < 00, and this will follow if we prove that, for any 
f E 1) (U), 

(v, J) :S CiI Lvllw-kllfllwk-2. (6.55) 

By Lemma 6.12, for any f E 1) (U) there exists a function wE Coo n L2 (U) 
solving the equation Lw = f in U and satisfying the estimate 

(6.56) 

Fix a function cp E 1) (U) such that cp == 1 in a neighborhood of supp'ljJ. 
Then cpw E 1) (U) and 

(v,J) = (v, Lw) = (v, L (cpw)) = (Lv, cpw) 

:S IILvllw-k(U) Ilcpwllwk(u) :S CIILvllw-k(U) Ilwllwk(UI)' 

where U' <s U is a neighborhood of supp cp and the constant C depends only 
on cp. By Theorem 6.9 and (6.56), we obtain 

Ilwllwk(UI) :S C (1I wIIL2(U) + II Lw IIWk-2(U») :S C'llfllwk-2(u), 

whence (6.55) follows. o 
Finally, we have the following extension of Theorem 6.9. 

THEOREM 6.15. For any m E Z, if u E 1)' (0) and Lu E Wt:c (0) then 
u E W;:c+2 (0). 

PROOF. Let us first show that, for any open set U <s n there exists 
a positive integer l such that u E W-l (U). By Lemma 2.7, there exist 
constants Nand C such that, for all cp E 1) (U), 

(u,cp) :S C max sup 18Q cpl. 
IQI~N U 

It follows from Theorem 6.1 (more precisely, we use the estimate (6.10) from 
the proof of that theorem) that the right hand side here is bounded above 
by const IIcpllw'(u) provided l > N + n/2. Hence, we obtain 

(u, cp) :S C'llcpllw!(u), 

which implies, by the definition of W- l , 

Iiullw-l(u) :S C' < 00 

and u E W-l (U). 
In particular, we have u E Wl~~ (U). Let k be the maximal integer 

between -l and m + 2 such that u E Wl~c (U). If k :S m + 1 then Lu E 

WI~~l (U), which implies by Lemma 6.14 u E WI~~l (U), thus contradicting 
the definition of k. We conclude that k = m + 2, that is, u E WZ:+2 (U). It 
follows that u E WZ:+2 (0), which was to be proved. 0 
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Exercises. 

6.3. Prove that, for any open set n' tE n, for any m 2': -1, and for any u E V cn'), 
(6.57) 

where a constant C depends on n', L, m. 
HINT. Use Lemma 6.7 for the inductive basis and prove the inductive step as in Lemma 
6.8. 

6.4. Consider a more general operator 

L = 8, (a iJ Cx)8j) +ll (x)8j +c(x), (6.58) 

where aij is as before, and li' and c are smooth functions in n. Prove that if u E V' (n) 
and Lu E Wz'~'c (n) for some m E Z then u E WZ:,/2 (n). Conclude that Lu E Coo implies 
u E Coo. 

6.4. Local parabolic regularity 

6.4.1. Anisotropic Sobolev spaces. Denot~ the Cartesian coordi­
nates in ]Rn+l by t, xl, ... , xn. Respectively, the first order partial derivatives 
are denoted by Ot == %t and OJ == a~j for j 2:: 1. For any (n + I)-dimensional 
multiindex a = (ao, ... , an), the partial derivative 00: is defined by 

010:1 
00: - - !:IO:O 00:1 oO:n 

- (ot)O:O (ox1 ti ... (oxntn - Ut 1 ... n . 

Alongside the order lal of the multiindex, consider its weighted order [a], 
defined by 

[a] := 2ao + a1 + ... + an. 
This definition reflect the fact that, in the theory of parabolic equations, the 
time derivative Ot has the same weight as any spatial derivative oJ of the 
second order. 

Fix an open set .0 c ]Rn+l. The spaces of test functions 1) (.0) and 
distributions 1)' (.0) are defined in the same way as before. Our purpose is 
to introduce anisotropic (parabolic) Sobolev spaces VII: (.0) which reflect dif­
ferent weighting of time and space directions. For any non-negative integer 
k, set 

Vk (.0) = {u E L2 (.0): oO:u E L2 (.0) for all a with [aJ s k}, 
and the norm in Vk is defined by 

"ulI~k(n) := L 11 00:u1I12' 
[o:l~k 

Obviously, VO == L2, whereas 

VI (.0) = {u E L2 (.0): OjU E L2 (.0) Vj = 1, ... ,n} 
and 

V2 (.0) = {u E L2 (.0) : OtU, OjU, OiOjU E L2 (.0) Vi,j = 1, ... , n}. (6.59) 
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Most facts about the spaces Vk are similar to those of Wk. Let us 
point out some distinctions between these spaces. For simplicity, we write 
Vk = Vk (0) unless otherwise stated. 

CLAIM.(a) Ifu E Vk and [a] ~ k then oo.u E Vk-[o.]. 
(b) If oo.u E Vk for all a with [aJ ~ 1 and one of the numbers k, 1 is even 

then u E Vk+l. 

PROOF. (a) Let f3 be a multiindex with [f3] ~ k - [a]. Then [a + f3] ~ k 
and hence oo.+flu E L2. Therefore, ofl (oo.u) E L2, which means that oo.u E 
Vk-[o.] 

(b) It is not difficult to verify that if one of the numbers k, 1 is even, then 
any multiindex f3 with [f3J ~ k + 1 can be presented in the form f3 = a + a' 
where [a] ~ 1 and [a'] ~ k. Hence, oflu = 00.' (oo.u) E Vk-[o.'] C L2, whence 
the claim follows. 0 

It follows from part (a) of the above Claim that if u E Vk then OjU E 
V k- 1 and OtU E Vk-2 (provided k ~ 2). 

We will use below only the case 1 = 2 of part (b). Note that if both k, 1 
are odd then the claim of part (b) is not true. For example, if k = 1 = 1 then 
the condition that oCtu E Vi for all a with [aJ ~ 1 means that the spatial 
derivatives OjU are in VI. This implies that OiU, OiOjU are in L2. However, 
to prove that U E V 2 we need to know that also OtU E L2, which cannot be 
derived from the hypotheses. 

For any positive integer k and a distribution U E V' (0), set 

Ilullv-k := sup (u, cp) . 
cpE'D(n)\{o} IIcpllvk 

The space V-k (0) is defined by 

V-k (0) := {u E V' (0) : lIullv-k < (Xl} . 

Obviously, for all U E V-k (0) and cP E V (0), we have 

I(u, cp)1 ~ lIullv-k(n) IIcpllvk(n)' 

The local Sobolev spaces Vl~c (0) are defined similarly to liVl~c (0). 

(6.60) 

The statements of Lemma 2.14 and Theorems 2.13, 2.16 remain true 
for the spaces Vk, and the proofs are the same, so we do not repeat them. 
Observing that Vl~ (0) ~ wtoc (11) and applying Theorem 6.1, we obtain 
that 

Vz~ (0) ~cm (0) , 

provided k and m are non-negative integers such that k > m + n/2. Conse­
quently, we have 

Vz~ (0) = Coo (0) . 
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6.4.2. Solutions from Lroc. Fix an open set 0 C ]Rn+1 and consider 
in 0 the differential operator 

P=p(x)Ot-odaij(x)Oj) (6.61) 

where p and a ij are smooth functions depending only on x = (xl, ... , xn) 
(but not on t), p (x) > 0, and the matrix (aij)~j=l is symmetric and pos­
itive definite. The operator P with such properties belongs to the class of 
parabolic operators. The results of this section remain true if the coefficients 
aij and p depend also on t but the proofs are simpler if they do not, and 
this is sufficient for our applications. 

Setting as in Section 6.3 

L = Oi (a ij (x) OJ) , 

we can write 
P = pOt - L. 

The operator P is defined not only on smooth functions in 0 but also on 
distributions from '[)' (0) because all terms on the right hand side of (6.61) 
are defined as operators in '[)' (0). For all U E '[)' (0) and !.p E '[) (0), we 
have 

(PU, !.p) = (pOtU, !.p) - (Lu, !.p) = - (u, pOt!.p) - (u, L!.p) 
whence it follows that 

(PU,!.p) = (u, P*!.p) , 
where 

P* = -pOt - L 

(6.62) 

is the dual operator to P. The identity (6.62) can be also used as the 
definition of P on '[)' (0). 

We start with an analog of Lemma 6.7 

LEMMA 6.16. (1st a priori estimate) For any open set 0' (5 0 and for 
any U E '[) (0'), 

lIullvl ::; CIIPullv-l, 
where the constant C depends on diam 0' and on the ellzpticity constant of 
Lin 0'. 

PROOF. Setting f = Pu and multiplying this equation by u, we obtain 

L uf dp, = L pu OtU dp, - LuLu dp" 

where dp, = dtdx is the Lebesgue measure in ]Rn+1. Since 

PUOtU = ~Ot(pu2), 
after integrating the function PUOtU in dt we obtain O. Hence, 

L pUOtudp, = O. 
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Applying the same argument as in the proof Lemma 6.7 (cf. (6.39», we 
obtain, 

-in uLudf-L ~ cllull~l(S1)' (6.63) 

where the constant c > 0 depends on the ellipticity constant of L in 51' and 
on diam 51'. Since 

-in uLudf-L= in ufdf-L= (f,u) ~ IIfllv-lllullvl 

we obtain 

whence the claim follows. o 
LEMMA 6.17. (2nd a priori estimate) For any open set 51' <s 51 and for 

any u E V (51'), 
(6.64) 

where the constant C depends on 51', P. 

PROOF. If follows from (6.59) that we have to estimate the L2-norm of 
OtU as well as that of OjU and OiOjU. Setting f = Pu and multiplying this 
equation by OtU, we obtain 

in Otufdf-L= in p (Otu)2df-L-in OtuLudf-L. (6.65) 

Since at and L commute, we obtain, using integration by parts and (6.37), 

in OtuLudf-L = -in UOt(Lu) df-L = -in uL(Otu) df-L = -in Luotudf-L, 

whence it follows that in OtU Lu df-L = O. 

Since p (x) is bounded on 51' by a positive constant, say c, we obtain 

in p (Otu)2 df-L ~ cliOtu lli2. 

Finally, applying the Cauchy-Schwarz inequality to the left hand side of 
(6.65), we obtain 

whence 

IIOtull£2(S1) ~ CllfIlL2(S1)' (6.66) 
To estimate the spatial derivatives, observe that the identity f = pOtU - Lu 
implies 

II Lu IlL2(S1) ~ IIfIlL2(S1) + CIi Otu ll£2(S1) ~ C'lIfIlL2(S1)' (6.67) 
Let Q and Q' be the projections of 51 and 51', respectively, onto the subspace 
lRn 

C lRn+1 spanned by the coordinates xl, ... , xn. Obviously, the operator 
L can be considered as an elliptic operator in Q. Since Q' <s Q and u (t,') E 
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v (Q') for any fixed t, the estimate (6.57) of Exercise 6.3 yields, for any fixed 
t, 

l/uIlW2(Q) ~ CIILuIIL2(Q) 
(a somewhat weaker estimate follows also from Theorem 6.9). Integrating 
this in time and using (6.67), we obtain that the L2 (n)-norms of the deriva­
tives OjU and OiOjU are bounded by Cllfll£2(fl)' Combining with (6.66), we 
obtain (6.64). 0 

LEMMA 6.18. If U E Ltoc (n) and Pu E Vz~cl (n) then U E Vz~c (n) . 
Moreover, for all open subsets n' E nil En, 

lIuIIV1(fll) ~ C (lIu li£2(fl") + IIPullv-l(fl,,») , (6.68) 

where C is a constant depending on n', n", P. 

PROOF. Let'lj; E V (nil) be a cutoff function of n' in n", and let us prove 
that the function v = 'l/Ju belongs to VI (nil), which will imply u E Vz~c (n). 
Clearly, v E L2 (nil) and suppv is a compact subset of nil. Next, we have 

P ('lj;u) = 1j;Pu - 2aijoi1j;oiu + (P'lj;) u (6.69) 

(cf. (6.42)), whence it follows that Pv E V-I (nil) and 

IIPv liv-l(fl,,) ~ C (lIull£2(fl") + IIPullv-l(flll») , (6.70) 

where C depends on n', nil, P. 
Fix a mollifier <.p in ]RnH and observe that, for small enough c > 0, v * <.pc 

belongs to V (nil). By Lemma 6.16, we have 

IIv * <.pcllvl ~ CliP (v * <.pc) Ilv-l, (6.71) 
where the constant C depends on n" and P. 

Let us show that 

liP (v * <.pc) - ('Pv) * rpcllv-l --+ 0 as c --+ O. (6.72) 

By Lemma 6.5, we have 

IIpot (v * rpc) - (pOtv) * rpcllL2 --+ O. (6.73) 

As in the proof of Lemma 6.6, we have 

L (v * <.pc) - (Lv) * rpc; = od; 

where 
f; := aijoj (v * rpc) - (aijojv) * <.pc' 

By Lemma 6.5, IIf:lI£2 --+ 0 whence 

ilL (v * <.pc) - (Lv) * rpcllV-l = lIod;IIV-l ~ L Ilf:IIL2 --+ O. (6.74) 

Combining (6.73) and (6.74), we obtain (6.72). 
By extension of Theorem 2.16 to the spaces V- k , the condition 'Pv E 

V-I (n") implies 
V-1 

('Pv) * <.pc -7 Pv, 
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which together with (6.72) yields 

V-l 
P (v * <Pc) ---+ Pv as c -+ O. (6.75) 

It follows from (6.71) and (6.75) that 

lim sup liv * <Pcllvl ~ CIIPvliv-l. 
c-tO 

By extension of Theorem 2.13 to V k , we conclude that v E VI (n") and 

Ilvllvl(OIl) ~ ClIPvllv-l(oll). 

Combining this estimate with (6.70) and Ilullvl(O/) = Ilvlivl(o/), we obtain 
(6.68). 0 

LEMMA 6.19. ffu E Vi~c (n) and Pu E Ltoc (n) then u E Vi~c (0). More­
over, for all open subsets n' cs 0" cs n, 

lIuIIV2(O/) ~ C (1Iullvl(OIl) + IIPuIIL2(OIl)) , 

where C is a constant depending on 0', nil, P. 

(6.76) 

PROOF. Let 'IjJ E V (n") be a cutoff function of n' in nil, and let us prove 
that the function v = 'ljJu belongs to V 2 (n"), which will imply u E Vz~c (0). 
It follows from (6.69) that Pv E L2 (nil) and 

IIPvIIL2(OIl) ~ C (1Iullvl(OIl) + IIPuIlL2(OIl)) , (6.77) 

where C depends on n', nfl, P. Function v belongs to VI (n") and has a 
compact support in n". 

For any mollifier <P in ]Rn+1 and a small enough c > 0, we have v * <Pc E 
V (n"). By Lemma 6.17, we obtain 

IIv * <Pcllv2 ~ CliP (v * <Pc) 1IL2 (6.78) 

where C depends on n", P. 
Let us show that 

liP (v * <Pc) - (Pv) * <PcllL2 ---+ ° as c -+ O. (6.79) 

For that, represent the operator P in the form 

P = _aij OiOj -ll OJ + pOt, 

where bj = oiaij . The part of the estimate (6.79) corresponding to the first 
order terms bioj and pOt, follows from Lemma 6.5 because v E L2 (n). Next, 
applying Lemma 6.5 to function OjV, which is also in L2 (0), we obtain 

liaijoi (OjV * 'Pc) - (aijoiOjV) * 'PcllL2 -+ 0, 

whence (6.79) follows. 
Since Pv E L2, we have by Theorem 2.11 

L2 
(Pv) * 'Pc ---+ Pv 
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which together with (6.79) yields 
£2 

P (V * <Pc:) --+ Pv as E: ---+ O. 

Combining with (6.78), we obtain 

lim sup IIv * <pc:llv2 ~ CIIPvll£2. 
c:-+o 

Therefore, by extension of Theorem 2.13 to V k , we conclude that v E 
v 2 (nil) and 

Ilvllv2 colI ) ~ GJIPvlluco"). 
Combining this with (6.77) and Ilullv2(O/) = Ilvllv2CO/), we obtain (6.76). 0 

LEMMA 6.20. For any integer m ~ -1, if u E Vl:c+1 (n) and Pu E 

vz: (n) then u E VZ:c+2 (n). Moreover, for all open subsets n' ~ nil ~ n, 

IIUllvm+2CO/) ~ C (1I u llv7n+1 cO") + IIPUllvmCO")) , (6.80) 

where the constant C depends on n', nil, P, m. 

PROOF. The case m = -1 coincides with Lemma 6.18, and the case 
m = 0 coincides with Lemma 6.19. Let us prove the inductive step from 
m - 2 and m - 1 to m, assuming m ~ 1. To show that u E Vl:c+2 , it suffices 
to verify that 

Since OtU E Vl:c- 1 and 

P (Otu) = OtPU E V;:c-2
• (6.81) 

the inductive hypothesis yields OtU E VZ::. 
It follows from (6.43) that 

al (Pu) - P (ozu) = (alP) atu - ai [(azaij ) OjuJ ' (6.82) 

which implies 
P(OIU) E Vl:c-1

. 

Since OlU E VZ:' the inductive hypothesis yields OlV E Vl:c+1
. Consequently, 

all the second order derivatives OiOjV are in Vz:, which was to be proved. 
Let us now prove (6.80). It follows from (6.81) and the inductive hy­

pothesis for m - 2 that 

IIOtUllvm(o/) ~ C (1IOtUllvm-1Co") + liP (Otu) Ilvm - 2(o")) 

~ C (1Iuliv7n+1Co") + IIPullvmCO")) . (6.83) 

it follows from (6.82) that 

liP (ozu) Ilvm-1 Co") ~ C (liullvm +1colI) + IIPullvmcolI)) , 
whence, by the inductive hypothesis for m -1, 

Il olUllvm +1co/) < C (1IolUllv7n(OIl) + liP (ozu) IIvm-1COII)) 

~ C (1Iullvm+l(OIl) + IIPullv7n(OIl)) . (6.84) 
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Combining (6.83) and (6.84) yields (6.80). o 
THEOREM 6.21. For any integer m 2: -1, if U E Ltoc (D) and Pu E 

Vi: (D) then U E Vi:+2 (D). Moreover, for all open subsets D' ~ D" ~ D, 

IIUllvm+2(O/) ~ C (lluIIL2(OIl) + IIPullvm(OIl)) , (6.85) 

where C depends on D', D", P, m. 

PROOF. Let k be the largest number between ° and m + 2 such that 
U E Vi~c (D). If k ~ m + 1 then we have Pu E Vi~;l, which implies by 
Lemma 6.20 that U E Vi~:l, thus contradicting the definition of k. Hence, 
k = m + 2 and U E Vi:+2

, which was to be proved. 
To prove the estimate (6.85), consider a decreasing sequence of open sets 

{DdZ!,i;2 such that Do = D", Dm+2 = D' and DiH E Di. By Lemma 6.20, 
we obtain, for any 1 ~ k ~ m + 2, 

Ilullvk(Ok) < C (1Iullv lc - 1 (Ok_l) + IIPullvk-2(Ok_l)) 

< C (liullvk-1(Ok_l) + IIPullvm(OIl)) , 

which obviously implies (6.85). o 
COROLLARY 6.22. (i) If u E Ltoc (D) and Pu = f where f E 

C= (D) then also u E C= (D) . 
(ii) Let {Uk} be a sequence of smooth functions in D, each satisfying 

the equation PUk = f where f E C= (D). If Uk L;o) u where 
c= 

U E Lroc (D) then Pu = 0, U E C= (D), and Uk ---+ u. 

PROOF. (i) Since Pu E Vi: (D) for any positive integer m, Theorem 
6.21 yields that also U E Vi: (D) for any m. Therefore, U E Wz~ (D) for any 
m and, by Theorem 6.1, we conclude U E C= (D). 

(ii) Let us first show that u satisfies the equation Pu = f in the distri­
butional sense, that is, 

(U, P*<p) = (j, <p) for all <p E V (D), (6.86) 

where P* = -pat - L is the dual operator {cf. (6.62)). Indeed, PUk = f 
implies that 

(Uk, P*<p) = (j, <p), 

whence (6.86) follows by letting k -+ 00. By part (i), we conclude that 
u E Coo (D). 

Setting Vk = u - Uk, noticing that PVk = 0, and applying to Vk the 
estimate (6.85), we obtain, for all open subsets D' ~ D" E D and for any 
positive integer m, 

IIVkllvm(O/) ~ Cllvkll£2(OIl), 
Since Vk -+ ° in L2 (D") , we obtain that Vk -+ ° in vm (D'). 
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Hence, Vk -+ 0 in Vz:: (n) for any m, which implies that also Vk -+ 0 in 
Wi~ (n) for any m and, by the estimate (6.2) of Theorem 6.1, Vk -+ 0 in 
Coo (n), which was to be proved. 0 

Exercises. 
6.5. Let 0' (g 0 be open sets and m ~ -1 be an integer. 

(a) Prove that, for any u E 1) (0'), 

lIullvm+2(11) $ CIiPU livm (I1), 

where a constant C depends on 0', P, m. 
(b) Using part (a), prove that, for any u E Coo (0), 

lIulivm+2(11/) $ C (lluIlL2(11) + IIPullvm(l1)) . 

(6.87) 

(6.88) 

REMARK. The estimate (6.88) was proved in Theorem 6.21. In the case u E Coo, it is 
easier to deduce it from (6.87). 

6.4.3. Solutions from V'. We start with a parabolic analogue of 
Lemma 6.12. 

LEMMA 6.23. Let U ~ n be an open set of the form U = (0, T) x Q 
where T > 0 and Q is an open set in Rn. Then, for any f E L2 (U), there 
exists a function u E L2 (U) solving the equation Pu = f and satisfying the 
estimate 

(6.89) 

REMARK 6.24. As it follows from Corollary 6.22, if f E Coo n L2 (U) 
then the solution u also belongs to Coo n L2 (u). 

PROOF. By Lemma 6.12 and Remark 6.13, the resolvent 'R of the equa­
tion Lu = f is a compact self-adjoint operator in L2 (Q). The multiplication 
operator by the coefficient p (x) is a bounded self-adjoint operator in L2 (Q). 
Therefore, 'Rop is a compact self-adjoint operator in L2 (Q). By the Hilbert­
Schmidt theorem, there exists an orthonormal basis {Vk} in L2 (Q), which 
consists of the eigenfunctions of the operator 'Ro p. Since 'R (pv) = 0 implies 
pv = LO = 0 and, hence, v = 0, zero is not an eigenvalue of 'Ro p. Therefore, 
each Vk is also an eigenfunction of the inverse operator p-lL, and let the 
corresponding eigenvalue be Ak, that is, 

LVk = AkPVk· (6.90) 

Since ran'R is contained in WJ (Q), we have Vk E WJ (Q). Using the identity 
(6.51) with u = <p = Vk and f = AkPVk, we obtain 

fu a ij OiVk OjVk dx = - Ak fu pv~ dx, 

whence it follows that Ak < O. 
Given f E 1) (U), expand function f / p in the basis {Vk}: 

f (t, x) '" 
( ) = L.J fk (t) vdx) , 

p x k 
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where Ik (t) = (J (t,') /P,Vk), and set 

Uk (t) = fot e-).kS Ik (s) ds. (6.91) 

We claim that the function 

U (t, x) = L e).ktuk (t) v". (x) (6.92) 
k 

belongs to L2 (U) and solves the equation Pu = I. Indeed, since Ak < 0 and 

e).ktuk (t) = fot e).k(t-S) Ik (s) ds, 

we see that, for any t E (0, T), 

le).k tuk (t)1 ::; foT Ilk (8)1 ds, 

whence by the Parseval identity 

L le).ktudt )12 < LT iT Ilk (8)12 d8 
k k 0 

T foT 111(8,·) Ili2(Q)dS = TIII/plli2(U)' 

Therefore, the series (6.92) converges in £2 (Q) and, for any t E (0, T), 

lIu (t, .) Ili2(Q) ::; Till/ plli2(U)' 

Integrating in t, we obtain U E L2 (U) and the estimate (6.89). The same 
argument shows that the series (6.92) converges in L2 (U). 

Using (6.90) and (6.91) we obtain 

P (e).ktukVk) = pe).kt (OtUk) vk + pAke).ktukvk - e).ktukLvk = plkVk. 

Using the convergence of the series (6.92) in 1)' (U), we obtain 

Pu = LPlkvk = I, 
k 

which finishes the proof. 

In the proof of the next statement, we will use the operator 

P* := -Pat - L, 

o 

which is dual to P in the following sense: for any distribution U E 1)' (0) 
and a test function cp E 1) (0) , 

(Pu, cp) = (u, P*cp) 

(cf. Section 6.4.2). Let T be the operator of changing the time direction, 
that is, for a test function cp E 1) (0), 

Tcp (t, x) = cp (-t, x) 
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and, for a distribution u E 1)' (0), 

( ru, <p) = (u, r<p) for all <p E 1) ( rO) . 

Clearly, we have P* = po r. Using this relation, many properties of the 
operator P* can be derived from those for P. In particular, one easily verifies 
that Theorem 6.21 and Lemma 6.23 are valid3 also for the operator P*. 

THEOREM 6.25. For any m E Z, if u E 1)' (0) and Pu E Vz: (0) then 
u E Vz:+2 (0). 

PROOF. As in the proof of Theorem 6.21, let us first show that u E 

Vz:+1 (0) and Pu E Vz: (0) imply u E Vz:+2 (0). For m ~ -1, this was 
proved in Theorem 6.21, so assume k := -m ~ 2. 

It suffices to prove that 'l/Ju E V-k+2 (0) for any 'I/J E 1) (0) with 
sufficiently small support. Fix a cylindrical open set U IS 0, a func­
tion 'I/J E 1) (U), and set v = 'l/Ju. It follows from the hypotheses that 
v E V-k+l (0) and Pv E V-k (0) (cf. (6.69)). 

We need to show that IIvllv-k+2(u) < 00, and this will be done if we 
prove that, for any f E 1) (U), 

(v, f) ~ CIIPv llv-1c Ilfllv1c-2. (6.93) 

By Lemma 6.23, for any f E 1) (U), there exists a function wE Ceo nL2 (U) 
solving the equation P*w = f in U and satisfying the estimate 

(6.94) 

Fix a function <p E 1) (U) such that <p == 1 in a neighborhood of supp'I/J. 
Then <pw E 1) (U) and 

(v, f) = (v, P*w) = (v, P* (<pw)) = (Pv, <pw) 

~ II Pv ll v -1c(u) II<pwllv1c (u) ~ C1IPv llv- 1c (u) IIwII V1c(U' ), 

where U' IS U is a neighborhood of supp <p and the constant C depends only 
on <po Using the estimate (6.85) of Theorem 6.21 (or the estimate (6.88) of 
Exercise 6.5) and (6.94), we obtain 

Ilwllvk(UI) ~ C (1Iw IIL2(U) + IIP*wllvk - 2(U)) ~ C'llfllv1c-2(u), 

whence (6.93) follows. 
Assume now that u E 1)' (0) and Pu E Vz: (0), and prove that u E 

V;:+2 (0). As was shown in the proof of Theorem 6.15, for any open set 
U IS 0 there exists 1 > 0 such that u E W-l (U). Since 1I·llwl ~ 11·llv21 and, 
hence, II . II V-21 ~ II . II w-!, this implies u E V-21 (U). Let k ~ m + 2 be the 
maximal integer such that u E Vz~c (U). If k ~ m + 1 then Pu E V;~:1 (U) 
whence by the first part of the proof u E V;~:1 (U). Hence, k = m + 2, which 
was to be proved. 0 

3Let us emphasize that the solvability result of Lemma 6.23 is not sensitive to the 
time direction because we do not impose the initial data. 
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Combining Theorems 6.25 and 6.1, we obtain the following statement 
that extends the result of Corollary 6.22(i) from Ltoc to V' (0) . 

COROLLARY 6.26. If U E V' (0) and Pu E Coo (0) then u E Coo (0) . 

Exercises. 

6.6. Consider a more general parabolic operator 

P = pat - A. (aii (x) OJ) - ~ (x) OJ - c(x), 

where aij and p are as before, and bj and c are smooth functions in O. Prove that if 
u E 1)' (0) and Pu E Vj~ (0) for some m E Z then u E Vi:+ 2 (Q). Conclude that 
Pu E Coo (Q) implies u E Coo (Q). 

Notes 

All the material of this chapter is classical although the presentation has some nov­
elties. The theory of distributions was created by L. Schwartz [327]. The Sobolev spaces 
were introduced by S. L. Sobolev in [328], where he also proved the Sobolev embedding 
theorem. We have presented in Section 6.1.1 only a part of this theorem. The full state-

2 ... 

ment includes the claim that if k < nj2 then Wl~c'-t L1:;21< , and similar results hold for 
the spaces Wk,p based on LP. The modern proofs of the Sobolev embedding theorem can 
be found in [11S], [130]; see also [1] and [269] for further results. 

One ofthe first historical result in the regularity theory (in the present sense) is due 
to H. Weyl [357], who proved that any distribution u E 1)' solving the equation ~u = f 
is a smooth function provided f E Coo (Weyl's lemma). This and similar results for 
the elliptic operators with constant coefficient can be verified by means of the Fourier 
transform (see [309)). The regularity theorem for elliptic operators with smooth variable 
coefficients was proved by K. O. Friedrichs [123], who introduced for that the techniques 
of mollifiers in [122]. Alternative approaches were developed concurrently by P. D. Lax 
[245] and L. Nirenberg [293], [294]. 

Nowadays various approaches are available for the regularity theory. The one we 
present here makes a strong use of the symmetry of the operator (via the Green formula) 
and of the mollifiers. The proofs of the Friedrichs lemma (Lemma 6.4) and the key Lem­
mas 6.7, 6.8 were taken from [208]. The reader may notice that Lemma 6.4 is the only 
technical part of the proof. Other frequently used devices include elementary estimates of 
the commutators of the differential operators with the operators of convolution and mul­
tiplication by a function. The parabolic regularity theory as presented here follows closely 
its elliptic counterpart, with the Sobolev spaces Wi: being replaced by their anisotropic 
version. 

Different accounts ofthe regularity theory can be found in [US], [121], [130], [241], 
[241], [273], [30S] , although in the most sources the theory is restricted to solutions 
from L~oc or even from WI~c as opposed to those from 1)'. A far reaching extension and 
unification of the elliptic and parabolic regularity theories was achieved in L. Hormander's 
theory of hypo elliptic operators [208] (see also [297], [34S]). 

Another branch of the regularity theory goes in the direction of reducing the smooth­
ness of the coefficients - this theory is covered in [130], [118], [242], [241]. If the coeffi­
cients are just measurable functions then all that one can hope for is the HOlder continuity 
of the solutions. The fundamental results in this direction were obtained by E. De Giorgi 

[103] for the elliptic case and by J. Nash [292] for the parabolic case. For the operators 
in non-divergence form, the Holder regularity of solutions was proved by N. Krylov and 
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M. Safonov [236]' partly based on the work of E. M. Landis [243]. See [130] and [230] 
for a detailed account of these results. 



CHAPTER 7 

The heat kernel on a manifold 

This is a central Chapter of the book, where we prove the existence 
of the heat kernel and its general properties. From Chapter 6, we use 
Corollaries 6.11, 6.22, and 6.26. 

7.1. Local regularity issues 

Let (M,g,J1) be a weighted manifold. The only Sobolev space on M we 
have considered so far was WI (M). In general, the higher order Sobolev 
spaces Wk cannot be defined in the same way as in ]Rn because the partial 
derivatives of higher order are not well-defined on M. Using the Laplace 
operator, we still can define the spaces of even orders as follows. For any 
non-negative integer k, set 

W2k (M) = W2k (M, g, J1) = {u : U, L:l.fJ.u, ... , L:l.~U E L2 (M)} , 

and 
k 

lIulI~2k = L 1IL:l.~ulli2' (7.1) 
l=O 

It is easy to check that W2k (M) with the norm (7.1) is a Hilbert space1. 

Define the local Sobolev space W~~ (M) by 

wfo~ (M) = {u : u, L:l.fJ.u, ... , L:l.~u E Lfoc (M) } . 

Equivalently, U E Wl~~ (M) if U E W2k (n) for any open set n <s M. The 
topology in Wl~~ (M) is determined by the family of seminorms lIullw2k(11)' 

The following theorem is a consequence of the elliptic regularity theory 
of Section 6.3.1. 

~HEOREM 7.1. Let (M, g, J1) be a weighted manifold of dimension n, and 
let U be a function from Wl~~ (M) for some positive integer k. 

IBy considering in addition the gradient of ~!u, one could define W2k+1 (M) similarly 
to Wi (M), but we have no need in such space (cf. Exercise 7.1). 

The reader should be warned that if M is an open subset of lRn then W2k (n) need 
not match the Euclidean Sobolev space W2k (n), although these two spaces do coincide if 
M == an (cf. Exercise 2.33(d)). 

183 
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(i) If k > n/4 then u E C (M). Moreover, for any relatively compact 
open set OeM and any set K <s 0, there is a constant C = 
C(K, 0, g, {t, k, n) such that 

sup lui ~ Clluliw2k(o)' (7.2) 
K 

(ii) If k > m/2 + n/4 where m is a positive integer then u E cm (M). 
Moreover, for any relatively compact chart U c M and any set 
K <s U, there is a constant C = C(K, U, g, {t, k, n, m) such that 

(7.3) 

PROOF. Let U be a chart with coordinates xl, ... , xn , and let >. be the 
Lebesgue measure in U. Recall that by (3.21) d{t = p (x) d>', where p = 
T v'det 9 and T is the density function of measure {t. Considering U as a 
part of]Rn, define in U the following operator 

L = p-10i (pgijOj). (7.4) 

By (3.45), we have 

L<p = dJ1.<p for all 'P E 1) (U) . (7.5) 

Now let us consider the operators Land b..J1. in 1)' (U). Since we will apply 
the results of Chapter 6 to the operator L, we need to treat it as an operator 
in a domain of ]Rn. Hence, we define L on 1)/ (U) using the definitions of 
Oi and the multiplication by a function in 1)' (U) given in Section 2.4 (cf. 
Section 6.3). 

However, we treat dJ1. as an operator on M, and b..J1. extends to 1)' (U) 
by means of the identity (4.3). Then Land b..,." are not necessarily equal as 
operators on 1)' (U) because their definitions as operators in 1)' (U) depend 
on the reference measures, which in the case of b..J1. is {t and in the case of L 
is >.. Indeed, for any u E V' (U) and 'P E 1) (U), we have 

(Lu, 'P) - (p-10i(pgij OJ), 'P) = (Oi (pgij OJ), p-1'P) 

_ _ (pgi j OJ, Oi (p-l<p)) = (u, OJ (pgij Oi(p-l<p))) 

- (U,pL(p-l'P)) , (7.6) 

whereas 
(7.7) 

Obviously, we have in general Lu i- b..J1.u. 
Nevertheless, when the distributions b..,."u and Lu are identified with Lfoc 

(or Lloc) functions, the reference measures are used again and cancel, which 
leads back to the equality Lu = b..,."u. More precisely, the following it true2. 

CLAIM. If u E Lfoc (U) and d,."u E Lfoc (U) then Lu = b..J1.u in U. 

2Compare this to Exercise 4.11, where a similar identity is proved for the weak 
gradient. 
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As follows from (7.6), if u E Lfoc (U) then, for any <p E V (U), 

(Lu, <p) = fu upL (p-1<p) d)". 

To prove the claim it suffices to show that 

fu ~Jl.u<pd)" = i upL (p-1<p) d)". 

Since both u and ~Jl.u are in Lroc (M), the identity (7.7) becomes 

i ~Jl.u<pdJ.L = fu u~Jl.<PdJ.L. 
Using this identity and (7.5), we obtain 
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J ~Jl.u<pd)" = J ~Jl.u (p-1<p) dJ.L = J u ~Jl.(p-1<p)dJ.L = J uL(p-1<p)pd)", 

u u u u 
which was to be proved. 

The hypothesis u E Wl~~ (M) and the above claim imply that, in any 
chart U, 

u, Lu, ... , Lku E Lroc (U) . 

If k > m/2+n/4 then we conclude by Corollary 6.11 that u E em (U) and, 
hence, u E em (M). 

The estimate (7.3) follows immediately from the estimate (6.49) of Corol­
lary 6.11 and the definition (7.1) of the norm Ilullw2k. To prove (7.2) observe 
that there exist two finite families {Vi} and {Ui} of relatively compact charts 
such that K is covered by the charts Vi and Vi <S Ui <S n (cf. Lemma 3.4). 
Applying the estimate (6.49) of Corollary 6.11 in each chart Ui for the op­
erator L = ~J.I. and replacing L2 (Ui , )..)-norm by L2 (Ui' J.L)-norm (which are 
comparable), we obtain 

k k 

sup lui::; e:L 11~~uIIL2(Ui').) ::; e':L 11~~uIlL2(n,J.I.) 
~ 1=0 1=0 

Finally, taking maximum over all i, we obtain (7.2). o 
If we define the topology in em (M) by means of the family of seminorms 

liullcm(K) where K is a compact subset of a chart then Theorem 7.1 can be 
shorty stated that we have an embedding 

Wl~~ (M) ~ em (M) , 

provided k > m/2 + n/4. 
Let us introduce the topology in Coo (M) by means of the family of 

seminorms 

(7.8) 
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where K is any compact set that is contained in a chart, and eO! is an 
arbitrary partial derivative in this chart. The convergence in this topology, 
denoted by 

COO 
Vk ---+ v, 

means that Vk converges to v locally uniformly as k --+ 00 and, in any chart 
and for any multiindex a, eO!Vk converges to eO/v locally uniformly, too. 

Denote by Wl~ (M) the intersection of all spaces W?;:c (M), and define 
the topology in W~ (M) by means of the family of seminorms 

Ilu IlW2l(O), (7.9) 

where 1 is any positive integer and n is a relatively compact open subset of 
M. The convergence in Wl~ (M), denoted by 

Wl:f Vk v, 

means that Vk converges to v in Lfoc (M) and, for any positive integer l, 
~~Vk converges to ~~v in Lfoc (M). 

COROLLARY 7.2. The natural identity mapping 

I: Coo (M) --+ Wl~ (M) (7.10) 

is a homeomorphism of the topological spaces Coo (M) and Wl~ (M). 

PROOF. If f E Coo then I (f) is the same function f considered as an 
element of Lfoc' Clearly, I (f) E Wl~ so that the mapping (7.10) is well­
defined. The injectivity of I is obvious, the surjectivity follows from Theorem 
7.1(ii). The inequality (7.3) means that any seminorm in Coo is bounded 
by a seminorm in Wl~' Hence, the inverse mapping I-I is continuous. Any 
seminorm (7.9) in W~ can be bounded by a finite sum of seminorms (7.8) in 
Coo, which can be seen by covering n by a finite family of relatively compact 
charts. Hence, I is continuous, and hence, is a homeomorphism. 0 

It is tempting to say that the spaces Coo and Wkc are identical. However, 
this is not quite so because the elements of Coo are pointwise functions 
whereas the element of Wl~ are equivalence classes of measurable functions. 

COROLLARY 7.3. If a function u E Lfoc(M) satisfies in M the equation 
-~p,u + au = f where a E lR and f E Coo(M), then u E Coo(M). 

More precisely, the statement of Corollary 7.3 means that there is a Coo 
smooth version of a measurable function u. 

PROOF. By Corollary 7.2, it suffices to prove that ~~u E Lroc for all 
k = 1,2, .... It is obvious that au - f E Lfoc and, hence, 

~p,u = au - f E Lroc' 

Then we have 
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Continuing by induction, we obtain 
Ak Ak-l Ak-lf L2 uJLu = aUJL U - uJL E loc' 

which finishes the proof. o 
Now we consider the consequences of the parabolic regularity theory of 

Section 6.4.3. Fix an open interval Ie lR and consider the product manifold 
N = I x M with the measure dv = dt df1.. The time derivative Ot is defined 
on V' (N) as follows: for all U E V' (N) and i.p E V (N), 

(OtU, i.p) = - (u, Oti.p) , 

and the Laplace operator AJL of M extends to V' (N) by 

(AJL u, i.p) = (u, AJL i.p) . 

Hence, the heat operator Ot - AJL is naturally defined on V' (N) as follows: 

({ Ot - AJL) u, i.p) = - (u, Oti.p + AJLi.p) . (7.11) 

THEOREM 7.4. Let N = I x M. 
(i) If U E V' (N) and OtU - AJLu E Coo (N) then U E Coo (N). 

(ii) Let {Uk} be a sequence of smooth functions on N, each satisfying 
the same equation 

OtUk - AJLUk = f, 

where f E Coo (N). If 

Lroc(N) L2 (N) 
Uk =---+ U E loc 

then (a version of) function U is Coo -smooth in N, satisfies the 
equation 

and 
GOO(N) 

Uk --..:..t u. 

PROOF. (i) As in the proof of Theorem 7.1, let U be a chart on M 
with coordinates Xl, .•. , xn , and ,X be the Lebesgue measure in U. Then we 
have df1. = p (x) d,X, where p (x) is a smooth positive function in U, and the 
Laplace operator AJL on V (U) has the form 

AJL = p-lOi (pgijOj) = p-1L, 

where 
L = Oi (pgijOj) . 

Note that fJ := I x U is a chart on N. Using the definition of the operators 
AJL and OJ in V'(fJ), we obtain, for all u E V'(fJ) and i.p E V(fJ), 

(AJLu, i.p) = (u, AJLi.p) = (u, p-lOi (pgij Oji.p)) = (p-1U,Oi (pgij Oji.p)) 

= - (Oi (p-1u) ,pijoji.p) = (OJ (pgijOi (p-lu)) ,i.p) = (Lv,i.p), 
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where v = p-1U E V'(U). Hence, 

(OtU - D.p,u, cp) = (pOtV - Lv, cp) 

so that we have the identity 

OtU - D..J1.u = POtV - Lv. 

The hypothesis OtU - D..J1.u E Coo (N) implies POtV - Lv E COO(U), and 
Corollary 6.26 yields v E COO(U). Hence, we conclude U E COO(U), which 
finishes the proof. 

(ii) It follows from (7.11) that if {Uk} is a sequence of distributions on N 

each satisfying the same equation OtUk - D..J1.Uk = 1 and Uk ~ U then U also 
L2 

satisfies OtU - D..J1.u = f. In particular, this is the case when Uk ~ U as we 
have now. By part (i), we conclude that U E Coo (N), and the convergence 

coo 
Uk --t U follows from Corollary 6.22. 0 

COROLLARY 7.5. The statement 01 Corollary 7.3 remains true il the 
hypothesis U E L?oc (M) is relaxed to U E Lfoc (M). 

PROOF. Indeed, consider the function v (t, x) = eatu (x), which obvi­
ously belongs to Lfoc (N) where N = lR x M. In particular, v E V' (N). We 
have then 

OtV - D..J1.v = aeatu - eat D..J1.u = eOd f. 
Since eat 1 E Coo (N), we conclude by Theorem 7.4 that v E Coo (N), whence 
U E Coo (M). 0 

Exercises. 
For any real 8 > 0, define the space wg (M) as a subspace of L2 (M) by 

W~ (M) = dom (£ + idr/2 
, 

where £ is the Dirichlet Laplace operator. The norm in this space is defined by 

IIfllwg := II (£ + id)8/2 f1lL2. 

7.1. Prove that wg is a Hilbert space. 

7.2. Prove that wJ = WJ and W5 = W5 including the equivalence (but not necessarily 
the identity) of the norms. 

7.3. Prove that if k is a positive integer then f E W5 k if and only if 

f, £f, ... , £k-l f E WJ (M) and £k f E L2 (M). 

7.4. Prove that W5k C W2k and that the norms in W5k and W2k are equivalent. 

7.5. Prove that if f E W5k then, for all integer 0 ~ 1 ~ k, 

II£lfllL2 ~ IIfll~2-1)/kll£kfll~;· 

(7.12) 

(7.13) 

7.6. Let M be a connected weighted manifold. Prove that if f E Lfoc (M) and 'V f = 0 on 
M then f = const on M. 
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7.7. Let M be a connected manifold and 0 be an open subset of M such that and M \ n 
is non-empty. Prove that In f/. WI (M) and In f/. WJ (0) . 
REMARK. If in addition p, (0) < 00 then clearly In E L2 (0) and 'lIn = 0 in 0 whence 
In E WI (0). In this case we obtain an example of a function that is in WI (0) but not 
in WJ (0). 

7.8. (The exterior maximum principle)Let M be a connected weighted manifold and 0 be 
a non-empty open subset of M such that M \ TI is non-empty. Let U be a function from 
G (M) n WJ (M) such that tlpu = 0 in O. Prove that 

supu = supu. 
n 8n 

Prove that if in addition 0 is the exterior of a compact set, then the hypothesis U E 

G(M) n WJ (M) can be relaxed to U E G (0") n WJ (M). 

7.9. Assume that U E L~oc (M) and tlpu E L?oc (M). Prove that U E WI~e (M) and, 
moreover, for any couple of open sets 0' <5 0" <5 M, 

(7.14) 

where the constant G depends on 0', n" , g, p" n. The space WI~c (M) is defined in Exercise 
5.8 by (5.15). 

7.10. Prove that if U E V' (M) and tlpu E 0 00 (M) then U E 0 00 (M) . 

7.11. A function U on a weighted manifold M is called harmonic if U E 0 00 (M) and 
tlpu = O. Prove that if {Uk}~1 is a sequence of harmonic functions such that 

Lto~ 2 ( ) Uk ~uELloc M 

then (a version of) U is also harmonic. Moreover, prove that, in fact, Uk ~ u. 

7.12. Let {Uk} be a sequence of functions from Ltoc (M) such that 

-tlpUk + akUk = fk, (7.15) 

for some ak E R and fk E Wro';; (M), with a fixed non-negative integer m. Assume further 
that, as k -4- 00, 

Wfom L?o 
ak -4- a, fk.:...:.2f f and Uk ~ u. 

Prove that function U satisfies the equation 

-tlpu + au = f, (7.16) 

and that 
W 2m+2 

Uk ~ u. (7.17) 

Prove that if in addition fk E 0 00 (M) and fk ~ f then (versions of) Uk and U belong 

to Goo (M) and Uk ~ u. 

7.13. Let {Uk} be a sequence of non-negative functions from 0 00 (M), which satisfy (7.15) 
with ak E Rand fk E OCXJ (M). Assume further that, as k -4- 00, 

coo 
ak; -4- a, fk ~ f and Uk (x) tu(x) for any x E M, 

where u (x) is a function from Moe that is defined pointwise. Prove that U E 0 00 (M) and 
0 00 

Uk --l- u. 

7.14. Prove that, for any relatively compact open set 0 C M, for any set K <5 0, and for 
any a E R, there exists a constant G = 0 (K, 0, a) such that, for any smooth solution to 
the equation -tlpu + au = 0 on M, 

sup lui ~ C1JuIIL2(o), 
K 
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7.15. Let Ra be the resolvent operator defined in Section 4.2, that is, Ra = (£ + aid)-l, 
where a > O. Prove that if f E L2 n Coo (M) then also Rod E L2 n COO (M) . 

7.16. Let {nil be an exhaustion sequence in M. Prove that, for any non-negative function 
f E L2 n Coo (M) and any a > 0, 

R~i f ~ Raf as i ---+ 00. 

L2 
HINT. Use that R~i f -+ Raf (cf. Theorem 5.22). 

7.2. Smoothness of the semigroup solutions 

The next theorem is a key technical result, which will have may impor­
tant consequences. 

THEOREM 7.6. For any f E L2 (M) and t > 0, the function Ptf belongs 
to Coo (M). 

Moreover, for any set K E M, the following inequality holds 

sup IPtfl ~ FK (t) IIfll£2(M) , (7.18) 
K 

where 
(7.19) 

(J' is the smallest integer larger than n/4, and C is a constant depending on 
K, g,j.L, n. 

Furthermore, for any chart U E M, a set K E U, and a positive integer 
m, we have 

IlPtfllc77t(K) ~ FK (t) IlfllL2(M), (7.20) 
where FK (t) is still given by (7.19) but now (J' is the smallest integer larger 
than m/2 + n/4, and C = C(K, U, g, j.L, n, m). 

The estimate (7.18) is true also with (J' = n/4, which is the best possible 
exponent in (7.19) (cf. Corollary 15.7). However, for our immediate appli­
cations, the value of (J' is unimportant. Moreover, we will only use the fact 
that the function FK (t) in (7.18) and (7.20) is finite and locally bounded in 
t E (0, +00). 

PROOF. Let {E>.} be the spectral resolution of the operator.c = -~1'1W.2 
o 

in L2 (M). Consider the function <.t> (A) = Ake-t>., where t > 0 and k is a 
positive integer. Observe that by (4.50) 

.cke-tC = <.t> (.c) = 100 

Ake-t>'dE>.. (7.21) 

Since the function <.t> (..\) is bounded on [0, +00), the operator <.t> (.c) is bounded 
and so is .cke-t'c. Hence, for any f E L2 (M), we have 

.ck (e-t'cf) E L2 (M), 

that is, 
~~ (Ptf) E L2 (M) . 
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Since this is true for any k, we obtain Pd E Woo (M). By Theorem 7.1 (or 
Corollary 7.2) we conclude that Pd E Coo (M). 

Let us prove the estimates (7.18) and (7.20). Observe that the function 
,\ 1-7 )."ke-t)" takes its maximal value at )." = kit, which implies, for any 
f E L2, 

1I~!Pdll£2 II.cke-tL: fll£2 

_ (1000 

(,\ke-t)..) 2 d II E)..flli2 ) 1/2 

< ~~~ ( )."ke-t)") (1000 

dIlE)..flli2 ) 1/2 

(~) k e-k llfll£2' (7.22) 

Using the definition (7.1) of the norm in W 2
0' and (7.22), we obtain, for any 

positive integer cr, 
0' 

2: 11~!Pdll£2 
k=O 

< C ( 1 + t, m \-')nflIL' 
< Cf (1 + CO') Ilfll£2. (7.23) 

By the estimate (7.2) of Theorem 7.1, we have 

sup IPdl ::; CIIPdllw20'(M), 
K 

provided cr > n14, which together with (7.23) yields (7.18). In the same 
way, (7.20) follows from (7.3). 0 

Initially Pd was defined for as e-tL: f, which is an element of L2 (M). By 
Theorem 7.6, this function has a Coo-version. From now on, let us redefine 
Pd to be the smooth version of e-tL: f. Now we are in position to prove 
that, on any weighted manifold M, the operator Pt possesses an integral 
kernel. 

THEOREM 7.7. For any x E M and for any t > 0, there exists a unique 
/unction Pt,::c E L2 (M) such that, for all f E L2 (M), 

Pt/(x) = iPt,x(Y)f(Y)dP,(Y). (7.24) 

Moreover, for any relatively compact set K c M and for any t > 0, we have 

sup IIpt,xll£2(M) ::; FK (t), 
xEK 

(7.25) 

where FK (t) is the same function as in the estimate (7.18) of Theorem 7.6. 
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REMARK 7.S. The function Pt,x (y) is defined for all t > 0, x E M but 
for almost all y E M. Later on, it will be regularized to obtain a smooth 
function of all three variables t, x, y. 

PROOF. Fix a relatively compact set K c M. By Theorem 7.6, for all 
t > 0 and f E L2 (M), the function Ptf (x) is smooth in x E M and admits 
the estimate 

IFtf (x)1 ~ FK (t) IIfllL2 for all x E K. (7.26) 
Therefore, for fixed t > 0 and x E K, the mapping f f-7 Ptf (x) is a 
bounded linear functional on L2 (M). By the Riesz representation theorem, 
there exists a function Pt,x E L2 (M) such that 

Ptf (x) = (Pt,x, f)L2 for all f E L2 (M), 

whence (7.24) follows. The uniqueness of Pt,x is clear from (7.24). Since 
for any point x E M there is a compact set K containing x (for example, 
K = {x}), the function Pt,x is defined for all t > 0 and x EM. 

Taking in (7.26) f = Pt,x and using 

Ptf (x) = (j, f)L2 = IIflli2 
we obtain 

whence (7.25) follows. o 
EXAMPLE 7.9. Recall that the heat semigroup in lRn is determined by 

(4.62), which implies that in this case 

Pt,x (y) = Pt (x - y) = (41rt\n/2 exp ( _Ix ~/12) . 
Using the identity Pt * Pt = P2t (see Example 1.9), we obtain 

2 l 2 1 IIpt,xllp = Pt (x - y) dy = (Pt * Pt) (0) = P2t (0) = ( )n/2 ' 
~n 8~t 

whence 
IIPt,xIlL2 = (8~t)-n/4. 

In particular, we see that the estimate (7.25) with FK (t) = C (1 + t-G') and 
(J' > n/4 is almost sharp for small t. 

Now we prove that the function Ptf (x) is, in fact, smooth jointly in 
t, x. Consider the product manifold N = lR+ x M with the metric tensor 
gN = dt2 + gM and with measure dv = dtdJl. The Laplace operator D..!Jo of 
(M, Jl) , which is obviously defined on Coo (N), extends to 1)' (N) as follows: 

(D..!Jov, cp) = (v, D..!Jocp) , 

for all v E 1)' (N) and cp E 1) (N). The time derivative ~ is defined in on 
1)' (N) by 
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Hence, for a function u E Lfoc (N), it makes sense to consider the heat 
equation ~ = 6.f.1.u as a distributional equation on N. 

THEOREM 7.10. For any f E £2 (M), the function u (t, x) = Pd (x) 
belongs to Coo (N) and satisfies in N the heat equation ~~ = 6.f.1.u. 

More precisely, the statement means that, for any t > 0, there is a 
pointwise version of the L2 (M)-function u (t,') such that the function u (t, x) 
belongs to Coo (N). 

PROOF. We already know by Theorem 7.6 that the function u (t, x) is 
Coo smooth in x for any fixed t > 0. To prove that u (t, x) is continu­
ous jointly in t,x, it suffices to show that u(t,x) is continuous in t locally 
uniformly in x. In fact, we will prove that, for any t > 0, 

coo 
U(t+E,·)---+U(t,·) as E--+ 0, (7.27) 

which will settle the joint continuity of u. By Corollary 7.2), to prove (7.27) 
it suffices to show that, for any non-negative integer k, 

W2k 
U(t+E,·) ---+u(t,·). (7.28) 

We know already from the proof of Theorem 7.6 that, for any non-negative 
integer m, u (t,·) E dom,Cm and, hence, 6.~U = (_,C)m u. Therefore, it 
suffices to prove that, 

(7.29) 

Since by (7.21) 

,Cm (Pt+eJ) = 1000 

Ame-(t+e)"dE)J 

and the function Ame-(t+e)" remains uniformly bounded in A as E --+ 0, 
Lemma 4.8 allows to pass to the limit under the integral sign, which yields 
(7.29). 

Since u (t, x) is continuous jointly in (t, x), it makes sense to consider u 
as a distribution on N. Let us show that the function u (t, x) satisfies on N 
the heat equation in the distributional sense, which amounts to the equation 

8r.p 
(u, 8t + Af.1.r.p) = 0, (7.30) 

for any r.p E V' (N). Using Fubini's theorem, we obtain 

8r.p r 8r.p 
(u, &t + 6.f.1.r.p) - iN u (8t + 6.f.1.r.p) dv 

_ r (u, ~r.p)L2(M)dt+ r (u,6.f.1.r.p)L2(M)dt.(7.31) iR+ t iR+ 
ConSidering r.p (t,') as a path in L2 (M), observe that the classical partial 
derivative ~ coincides with the strong derivative ¥t (cf. Exercise 4.47). 
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The product rule for the strong derivative (cf. Exercise 4.46) yields 

8cp dcp d du 
(u, 8t) = (u, dt) = dt (u, cp) - (dt' cp), (7.32) 

where all the brackets mean the inner product in £2 (M). Since cp (t,') 
vanishes outside some time interval [a, bj where 0 < a < b, we obtain 

r dd (u, cp) dt = o. (7.33) 
JR+ t 

To handle the last term in (6.66), recall that, by Theorem 4.9, 

du 
dt = !:lJ.l.u, 

(7.34) 

Combining (7.32), (7.33), and (7.34), we obtain that the right hand side of 
(7.31) vanishes, which proves (7.30). 

Applying Theorem 7.4 to function u (t, x), which satisfies the heat equa­
tion in the distributional sense, we conclude that u E Coo (N) and u satisfies 
the heat equation in the classical sense. 0 

SECOND PROOF. In this proof, we do not use the parabolic regularity theory (Theorem 
7.4). However, we still use the first part of the first proof, namely, the convergence (7.27). 
Let us fix a chart U c M so that we can consider the partial derivatives 8C< with respect 
to x in this chart. By Theorem 7.6, 8C<u is COO-smooth in x. By (7.27), we have 

8"'u (t + c,.) ~ 8"'u (t,·) as c --+ 0, 

which implies that 801.u is jointly continuous in t, x. 
To handle the time derivative 8t u, let us first prove that, for any t > 0, 

u(t+c,·)-u(t,·) COO D. (t) 0 
c ----+ JJ.u ,. as c --+ . 

By Corollary 7.2, it suffices to prove that, for any non-negative integer k, 

u (t + c .) - u (t .) W 2k 
, '----+ -.cu 

c ' 
and this, in turn, will follows from 

.cmU(t+c,.)-u(t,.) L2 .c1n+l 
c ----+ - u, 

provided (7.36) holds for all non-negative integers m. It follows from (7.21) that 

.cmU(t+c,.)-u(t,.) =100 .:\me-e>'-le-t>'dE>.f. 
c 0 c 

(7.35) 

(7.36) 

Since the function under the integration remains uniformly bounded in A as c --+ 0 (cf. the 
estimate (4.60) from the proof of Theorem 4.9), by Lemma 4.8 we can pass to the limit 
under the integral sign, which yields (7.36). 

It follows from (7.35) that 8t u exists in the classical sense for all t > 0 and x E M, 
and 

(7.37) 
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Moreover, (7.35) also yields that, for any partial derivative 8C< in x, 

8C<u (t + c,·) - 8C<u (t, .) ~ 8C< ~pu (t,.), 
c 

which implies that 

In particular, we obtain that 8t (8"'u) is continuous in t, x. 
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(7.38) 

Observe that the function v = ~/Lu can be represented in the form v = Pt-sg where 
g E L2 (M), which follows from the identity 

v = -£u = -£e -(t-s)C e -BC f = -e -(t-s).c (£e -sC f) . 

Therefore, all the above argument works also for function v instead of u and, hence, for 
~~u instead of u, for any positive integer k. Replacing in (7.38) u by ~~u we obtain 

8t (8C< ~~-lU) = 8C< (~~u) . (7.39) 

Iterating (7.39) for a decreasing sequence of values of k, we obtain 

8a~;u = 8t (8"'~;-lu) = 8; (8Q~;-2u) = ... = 8:-1 (8Q~l-'u) = 8:8"'u. 

Hence, we have the identity 
8:8C<u = 8Ct~~u. 

In particular, this gives 8;u = ~;u, whence applying 8 Ct , 

8"'8:u = 8'" ~~u. 

Finally, using the above two identities, any partial derivative 

8;18"'18;28"'2 .... u 

can be brought to the form 8'" ~~u and, hence, it exists and is continuous in t, x, which 
finishes the proof. 0 

THIRD PROOF. Let <.I> (>.) be a continuous function on [0, +00) of a subexponential 
growth; that is for any c > 0 

1<.1> (>')1 = 0 (eeA) as >. -+ +00. (7.40) 

Fix f E L2 (M) and, for any t > 0, consider the function 

v (t,·) := 100 

<.I> (>.) e-tAdE>.J, (7.41) 

where {EA } is the spectral resolution of the Dirichlet Laplace operator £ on M. We will 
prove that v (t, x) belongs to Coo (N) and satisfies the heat equation on N (obviously, this 
contains Theorem 7.10 as a particular case for <.I> == 1). 

Fix the numbers 0 < a < b and consider the open set Na,b C N defined by 

Na,b = (a, b) x M. 

LEMMA 7.11. For any t E (a, b), function v (t,·) can be modifietf3 on a subset of 11-­
measure 0 of M so that v (t,x) E L2 (Na,b). Furthermore, the weak denvatives ~~ and 
~/LV exist in L2 (Na,b) and satisfy the identity 

8v roo () -tA at = ~pv = - 10 >'<.1> >. e dEAf. (7.42) 

3Such a modification is necessary because there are non-measurable subsets of N that 
have J-t-measure 0 for any fixed t. 
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PROOF. By (7.40), the function cI> (.x) e-tA is bounded for any t > 0, which implies 
that the right hand side of (7.41) is defined for all f E L2 (M) and determines a function 
from L2 (M). As in the proof of Theorem 4.9, one shows that the mapping t f-+ v (t,·) as 
a path in L 2 (M) is strongly differentiable and satisfies the equation 

~ roo ()-u dt (t, .) = -LV (t,·) = - lo .xcI>.x e dEAf (7.43) 

(cf. Exercise 4.51). 
Consequently, the path t f-+ v2 (t, .) is continuous in Ll (M). By Exercise 4.49, the 

function V (t,·) can be modified for any t E (a, b) on a set of It-measure 0 in M so that 
v2 (t, x) E Ll (Na,b)' Hence, v (t, x) E L2 (No. b). 

Since the function .xcI> (.x) also satisfies the condition (7.40), we conclude by the above 
argument that ~~ (t, x) E L Z (Na,b). Let us show that the distributional derivative ~~ 
coincides with the strong derivative, that is, 

8v dv 
8t = dt' (7.44) 

Indeed, applying the product rule of the strong derivative (see Exercise 4.46), we obtain, 
for any <p E Cgo (Na.,b) 

! (v, <Ph2(M) = (v, ~~) + (~~,<p) . 
L2(M) L2(M) 

Since 
{b d 

la. dt (v, <P)L2(M) = 0, 

it follows that 
{b dv {b d<p 

la. (dt' <ph2(M)dt = - la. (v, dt h 2(M)dt. 

Since ~ = ~ (cf. Exercise 4.47), we conclude that 

( ~~,<p) = -(v, ~~h2(N)' 
L2(N) 

which proves (7.44). 
Let us prove that 

D../-,v = -LV. (7.45) 

By definition of L, for any fixed t > 0, D../-,v (t,·) as a distribution on M coincides with 
-LV (t, .), which implies 

-lb 
(LV (t,·) , <p(t, ')h2(M) dt = lb (D../-,v (t,.) ,<p (t, .» dt 

lb (v (t,.) ,D../-'<p(t,·»dt = (V,D../-'<Ph2(N)' 

whence (7.45) follows. Combining (7.43), (7.44), and (7.45), we obtain (7.42). 0 

Let Li be the (distributional) Laplace operator on the manifold N, that is, 
_ 82 

D.. = 8tz + D../o'" 

By Theorem 7.1, in order to prove that v E Coo (No.,b), it suffices to show that Likv E 
L2 (No.,b) for all k ~ l. 

Since the function .xcI> (.x) also satisfies condition (7.40), Lemma 7.11 applies to func­
tion 
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and yields that the weak derivative ~ exists in L 2 (N a,b) and 

~:~ = 100 

A2{? (A) e-t>'dE>.I. 

Since~:~ and b.Jl-V belong to L2 (Na,b), we obtain that also .6.v E L2 (Na,b) and 

.6.v = 100 

(.\2 - A) {? (A) e-t>'dE>.I. 
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Applying the same argument to the function (A2 - A) {? (A) instead of {? (A) and then 
continuing by induction, we obtain, that for aU integers k 2:: 1, 

.6.kv = 100 

(.\2 _ .\)k {? (.\) e-t>'dE>.I, 

and, hence, .6.k v E L2 (Na,b)' We conclude that v E Coo (Na,b) and the equation ~~ = b.l'v 

(which follows from (7.42)) is satisfied in the classical sense. 0 

Exercises. 

7.17. Prove that, for any compact set K c M, for any 1 E L2 (M, p,), and for any positive 
integer m, 

sup Ib.:' (Pd) I :::; Crm (1 + C") 11/112, 
K 

(7.46) 

where (7 is the smallest integer larger than n/4. 

7.18. Let 1 be a non-negative function from L2 (M) and {n.} be an exhaustion sequence 
in M. Prove that 

C=(R+XM) 
pfi 1 ~ Pd as i -+ 00. 

HINT. Use the fact that, for any t > 0, 

Ptn, 1 ~ Pd as i -+ 00 

(cf. Theorem 5.23). 

7.19. Prove that if 1 E COO (M) then 

C=(M) 
Pd ----"* 1 as t -+ O. 

7.20. Consider the cos-wave operator 

Ct = cos (t.L:l/2) 
(cf. Exercise 4.52). Prove that, for any 1 E COO (M) , the function 

u (t, x) = Cd (x) 

belongs to Coo (IR x M) and solves in IR x M the wave equation 

a2u at2 = b.Jl-U 

with the initial conditions 

au 
u(O,x)=/(x) and at (O,x) =0. 
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1.3. The heat kernel 

By Theorem 7.7, for any x E M and t > 0, there exists a function 
Pt,x E L2 (M, /-L) such that, for all f E L2 (M, /-L), 

Pd (x) = (Pt,x, f)£2 . (7.47) 

Note that the function Pt,x (y) is defined for all x but for almost all y. Here 
we construct a regularized version of Pt,x (y), which will be defined for all y. 
Namely, for any t > ° and a1l x, y E M, set 

pt{x, y) := (Pt/2,x, Pt/2,V) L2 • (7.48) 

DEFINITION 7.12. The function Pt (x, y) is called the heat kernel of the 
weighted manifold (M, g, /-L). 

The main properties of Pt (x, y) are stated in the fo1lowing theorem. 

THEOREM 7.13. On any weighted manifold (M, g, /-L) the heat kernel sat­
isfies the following properties. 

• Symmetry: Pt (x, y) == Pt (y, x) for all x, y E M and t > 0. 
• For any f E L2, and for all x E M and t > 0, 

Pd(x) = LPt(x,Y)f(y)d/-L(Y). (7.49) 

• Pt (x, y) ~ ° for all x, Y E M and t > 0, and 

fMPdx, y) d/-L (y) :::; 1, (7.50) 

for all x E M and t > 0. 
• The semigroup identity: for all x, y E M and t, s > 0, 

PHs (x, y) = L pt(x, z) Ps (z, y) d/-L (z). (7.51) 

• For any y E M, the function u (t, x) := Pt(x, y) is Coo smooth in 
(0, +00) x M and satisfies the heat equation 

au 
at = D.j.Lu. 

• For any function f E CD (M), 

fMPt (x, y) f (y) d/-L (y) -+ f (x) as t -+ 0, 

where the convergence is in Coo (M). 

(7.52) 

(7.53) 

REMARK 7.14. Obviously, a function Pt (x, V), which satisfies (7.49) and 
is continuous in y for any fixed t, x, is unique. As we will see below in 
Theorem 7.20, the function Pt (x, y) is, in fact, Coo smooth jointly in t, x, y. 
Note also that Pt (x, y) > 0 provided manifold M is connected (see Corollary 
8.12). 
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PROOF. Everywhere in the proof, (".) stands for the inner product in 
L2 (M). The symmetry of Pt (x, y) is obvious from definition (7.48). The 
latter also implies Pt (x, y) 2: ° provided we show that Pt,x 2: ° a.e .. Indeed, 
by Theorems 5.11 and 7.6, Pd (x) 2: ° for all non-negative f E L2 and for 
all t > 0, x> 0. Setting! = (Pt,xL, we obtain 

° ~ Pd (x) = (Pt,x, f) = ((Pt,x)+, f) - ((Pt,xL, f) = - (j, f), 
whence f = ° a.e. and Pt,x 2: ° a.e. 

The proof of the rest of Theorem 7.13 will be preceded by two claims. 

CLAIM 1. For all x E M, t, s > 0, and f E L2 (M), 

PHs! (x) = 1M (Pt,z,Ps,x) f (z) dJ.L (z). (7.54) 

Indeed, using PHs = PsPt, (7.47), and the symmetry of Pt, we obtain 

PHs! (x) Ps (Ptf) (x) 

- (Ps,x, Pd) = (PtPs,x, f) 

1M PtPs,x (z) f (z) dJ.L (z) 

- 1M (Pt,z,Ps,x) f (z) dJ.L (z) , 

whence (7.54) follows. 

CLAIM 2. For all x,y E M and t > 0, the inner product (Ps,x,Pt-s,y) does 
not depend on s E (0, t). 

Indeed, for all ° < r < s < t, we have, using (7.47) and applying (7.54) 
with f = Pr,x, 

(Ps,x,Pt-s,y) PsPt-s,y (x) = Pr (Ps-rPt-s,y) (x) 

which was to be proved. 

iMPr,x (z) (Ps-r,z,Pt-s,y) dJ.L (z) 

- Pt-rPr,x (y) 

(Pt-r,y,Pr,x) , 

Proof of (7.49). Combining (7.54) and (7.48), we obtain 

Pd (x) = iM (Pt/2,x,Pt/2,y) f (y) dJ.L (y) = iMPt(x, y) f (y) dJ.L (y). (7.55) 

Proof of (7.50). By Theorem 5.11, f ~ 1 implies Pd (x) ~ 1 for all 
x E M and t > 0. Taking f = 1K where K c M is a compact set, we obtain 

i pt{x, y) dJ.L (y) ~ 1, 

Whence (7.50) follows. 
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Proof of (7.51). It follows from Claim 2 that, for all x, y E M and 
0< s < t, 

Pt (x,y) = (Ps,x,Pt-s,y)' (7.56) 
Indeed, (7.56) holds for s = t/2 by definition (7.48), which implies that it 
holds for all s E (0, t) because the right hand side of (7.56) does not depend 
on s. Comparison of (7.47) and (7.49) shows that 

Pt (x,·) = Pt,x a.e. (7.57) 

Using (7.56) and (7.57), we obtain, for all x, y E M and t, s > 0, 

1M Pt (x, z) Ps (z, y) dJ.l (z) = (Pt (x,·) ,Ps (y, .)) = (Pt,x,Ps,y) = Pt+s (x, y) . 

(7.58) 

Proof of (7. 52}. Fix s > 0 and y E M and consider the function v (t, x) := 
PHs (x, y). We have by (7.58) 

v (t, x) = (Pt,x,Ps,y) = PtPs,y (x). (7.59) 

Since Ps,y E L2 (M), Theorem 7.10 yields that the function v (t, x) is smooth 
in (t, x) and solves the heat equation. Changing t to t - s, we obtain that 
the same is true for the function Pt (x, y). 

Proof of (7.53). If f E COO (M) then also D.lJ.f E COO (M) whence it 
follows by induction that f Edam Cm for any positive integer m, where C 
is the Dirichlet Laplace operator. By (A.48), this implies that 

10
00 

,\
2mdllE,dll 2 < 00. 

The identities 

and 

imply 
roo 2 

IICm (Pt! - f) 111,2 = Jo .x2m (1 - e-tA
) d1lEAf1l2. 

Since the function ,\ 2m (1 - e -tA ) 2 is bounded for all t > 0 by the integrable 
function .x 2m, and 

,\2m (1 - e-tA r ~ 0 as t ~ 0, 

the dominated convergence theorem implies that 

IICm (Pt! - f) IIL2 -t 0 as t -t O. 

We see that Pt! - f -t 0 in Wl~ (M), which implies by Corollary 7.2 that 
GOO 

Pt! ~ j, (7.60) 
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which was to be proved. o 

Exercises. 

7.21. Prove that, for all x, y E M and t > 0, 

Pt (x, y) ::; ";""'Pt-('-x-, x""")-Pt-('-y-, y....,.). (7.61) 

7.22. Prove that, for all x E M, the functions Pt (x, x) and ilPt,xil2 are non-increasing in t. 

7.23. Let K c M be a compact set. 

(a) Prove that the function 

is non-increasing in t > O. 
(b) Prove that, for all t > 0, 

S (t):= sup Pt (x, y) 
a;,lIEK 

S (t) ::; C (I + C") , 
for some constants Q, C > 0, where C depends on K. 

7.24. Let J be an isometry of a weighted manifold M (see Section 3.12). Prove that 

pt{Jx,Jy) =pt{x,y). 

7.4. Extension of the heat semigroup 

So far the operator Pt has been defined on functions f E L2 so that 
Pt! E L2 n Coo. Using the identity (7.49), we now extend the definition o( 
Pt as follows: set 

(7.62) 

for any function f such that the right hand side of (7.62) makes sense. In 
particular, Pt! (x) will be considered as a function defined pointwise (as 
opposed to functions defined up to null sets). 

7.4.1. Heat semigroup in Lfoc' 

THEOREM 7.15. If f E Lfoc (M) is a non-negative function on M then 
the function Pt! (x) is measurable in x E M (for any t > 0) and in (t, x) E 
lR+ x M. 

If, in addition, Pt! (x) E Lfoc (I x M) where I is an open interval in 
lR+, then the function Pt! (x) is Coo smooth on I x M and satisfies the heat 
equation 

f) 
at (Pt!) = Aj.£ (Pt!) . 

PROOF. Let {Ok} be a compact exhaustion sequence in M, that is, an 
increasing sequence of relatively compact open set Ok C M such that Ok C 

Ok+! and the union of all sets Ok is M. Set 

A = min (f, k) Ink 
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and observe that functions fk are bounded, compactly supported, and the 
sequence {fk} is monotone increasing and converges to f a.e .. Since fk E 
L2 (M), by Theorems 7.10 and 7.13, the function Uk (t, x) = Pdk (x) is 
smooth in N := I x M and satisfies the heat equation in N. Set also 
U (t, x) = Pt! (x) and observe that, by (7.62) and the monotone convergence 
theorem, 

Uk (t, x) -t U (t, x) for all (t, x) EN. (7.63) 

Hence, U (t, x) is a measurable function both on M and N (note that so far 
U may take value 00). 

If, in addition, U E Lfoc (N) then U can be considered as a distribution 
on N. The heat equation for Uk implies the identity 

L (~~ + tipit' ) Uk dJ1-dt = 0, 

for all It' E 1) (N). Since the sequence of functions (~+ tipit') Uk is uni­
formly bounded on N by the integrable function Clsupp<pu, where C = 
sup IOtlt' + tipit' I , we can pass to the limit under the integral sign as k -t 00 
and obtain that U satisfies the same identity. Hence, U solves the heat equa­
tion in the distributional sense and, by Theorem 7.4, U admits a Coo (N)­
modification, which we denote by u (t, x). 

The sequence {Uk} is increasing and, by (7.63), converges to u a.e .. 
Since u is smooth and, hence, u E Lfoc (N), we obtain by the dominated 

h 
Ltoc(N) ~ B 

convergence t eorem that Uk ~ u. y the second part of Theorem 7.4, 

we conclude that Uk C') U. Finally, since Uk -t U pointwise, we see that 
u(t,x) = u(t,x) for all (t,x) EN, which finishes the proof. 0 

For applications, Theorem 7.15 should be complemented by the con­
ditions ensuring the finiteness of Pt!. It is also important to understand 
whether Pt! converges to f as t -t 0 and in what sense. We present in the 
next subsections some basic results in this direction. 

7.4.2. Heat semigroup in Cb' Denote by Cb (M) the class of bounded 
continuous functions on M. The following result extends Theorem 1.3 to 
arbitrary weighted manifold. 

THEOREM 7.16. For any f E Cb (M), the function Pt! (x) is finite for 
all t > 0 and x EM, and satisfies the estimate 

inf f ::; Pt! (x) ::; sup f. (7.64) 

Moreover, Pt! (x) is Coo smooth in lR+ x M, satisfies in lR+ x M the heat 
equation, and 

limPt! (x) = f (x), 
t~O 

(7.65) 

where the limit is locally uniform in x EM. 
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In particular, we see that Pd E Cb (M) for any t > 0 so that Pt can 
considered as an operator in Cb (M). 

The statement of Theorem 7.16 can be rephrased also as follows: for 
any I E Cb (M), the function u (t, x) = Ptl (x) is a bounded solution to the 
Cauchy problem 

{ 
'r:: = 6.J.tu in lR+ x M, 
ult=o = I, 

understood in the classical sense. The question of uniqueness is quite subtle 
and will be first addressed in Section 8.4.l. 

PROOF. By treating separately 1+ and 1-, we can assume that I 2: O. 
By (7.50), we obtain, for all t > 0 and x E M, 

Pd (x) ::; sup I Lpt{x,y) dp, (y) S; sup I, (7.66) 

which proves the finiteness of Pd and (7.64). By the first part of Theorem 
7.15, Pd (x) E Loo (lR+ x M), and by the second part of Theorem 7.15, 
Pd (x) E Coo (lR+ x M) and Pd satisfies the heat equation. 

The initial condition (7.65) was proved in Theorem 7.13 for I E C~ (M). 
Assume next that I E Co (M), where Co (M) is the class of continuous 
functions with compact supports. Since C~ (M) is dense in Co (M) (cf. 
Exercise 4.5), there exists a sequence {A} of functions from C~ (M) that 
converges to I uniformly on M. Obviously, we have 

Pd - I = (Pd - Pdk) + (Pdk - A) + (fk - J) . 

For a given c > 0, choose k large enough so that 

sup Ilk - II < c. (7.67) 
M 

By (7.64) we have, for all t > 0, 

sup IPt (Jk - 1)1 < c. 
M 

By the previous step, PtA -+ Ik as t -+ 0 locally uniformly; hence, for any 
compact set K eM and for small enough t > 0, 

sup IPdk - AI < c. 
K 

Combining all the previous lines yields 

whence the claim follows. 

sup IPd - II < 3E:, 
K 

Let now I E Cb (M). Renormalizing I, we can assume 0 S; I S; 1. Fix 
a compact set K C M and a let 1j; E C~ (M) be a cutoff function of K in 
M, that is, 0 S; 1j; S; 1 and 1j; == 1 on K (cf. Theorem 3.5). Since 11j; = I on 
K, we have the identity 

Pd - 1= (Pd - Pt (J1j;» + (Pt (f1j;) - 11j;) on K. 
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Since f1j; E Co (M), we have by the previous step 

sup IPt (J1j;) - f1j;1 --+ ° as t --+ 0. (7.68) 
K 

To estimate the difference Pd - Pt (J1j;), observe that, by 0 ~ f ~ 1 and 
(7.64), ° ~ Pt (J - f1j;) ~ Pd1-1j;) = Pt1 - Pt1j; ~ 1- Pt1j;. 
By the previous part, we have Pt1j; --+ 1j; as t --+ ° locally uniformly. Since 
1j; == 1 on K, we obtain that Pt1j; --+ 1 uniformly on K, which implies that 

sup IPt (J - f1j;)1 --+ ° as t --+ 0, 
K 

which together with (7.68) implies 

sup IPd --+ fl--+ as t --+ 0, 
k 

which was to b'e proved. 

REMARK 7.17. Consider the function 

u(t x) - { Pd(x), 
, - f(x), 

t> 0, 
t = 0. 

o 

It follows from Theorem 7.16 that if f E Cb (M) then u is continuous in 
[0,+00) x M. 

The main difficulty in the proof of Theorem 7.16 was to, ensure that the 
convergence (7.65) is locally uniform. Just pointwise convergence is much 
simpler - see Lemma 9.2. 

7.4.3. Heat semigroup in L1. Our next goal is to consider Pd for 
fELl (M). We will need for that the following lemma. 

LEMMA 7.18. Let {Vik} be a double sequence of non-negative functions 
from L1 (M) such that, for any k, 

£1 1 
Vik --+ Uk E L (M) as i --+ 00 

and 
£1 1 

Uk--+UEL (M) ask--+oo. 
Let {Wi} be a sequence of functions from L1 (M) such that, for all i, k, 

Vik ~ Wi and IIwiliu ~ Ilullu· 
£1 

Then Wi --+ U as i --+ 00. 

, PROOF. All the hypotheses can be displayed in schematic form in the 
following diagram: 

Vik < Wi 

.J-L1 ~L1 
L1 

Uk -"-+ u 
where all notation are self-explanatory. 
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Given c: > 0, we have, for large enough k, 

Fix one of such indices k. Then, for large enough i, we have 

so that 

Let us show that, for such i, 

which will settle the claim. 
By condition Vik ~ Wi, we have 

whence 

and, hence, 

Next, write 

r (u-wi)dj..L+ r (u-wi)dj..L 
J{U"2Wi} J{U<Wi} 

- II (U - Wi)+ IILl -II (U - wiL IIL1. 
By hypothesis, 

1M (u - Wi) dj..L = iluliLl -liwiliLl 2: 0, 

whence it follows that 

II (U - wiL IILl ~ II (u - Wi)+ IILl ~ 2c:, 

and which proves (7.69). 

205 

(7.69) 

o 
THEOREM 7.19. For any fELl (M) and t > 0, we have Ptf E L1 (M) 

and 

(7.70) 

Moreover, Ptf (x) is Coo smooth in ~+ x M, satisfies in ~+ x M the heat 
equation, and 

Ll(M) 
Ptf ~ f as t --+ 0. (7.71) 
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PROOF. Without loss of generality, we can assume f ~ 0 (otherwise, use 
f = f+ - f-)· Note that by Theorem 7.15, Ptf (x) is a measurable function 
of x and of (t, x). Using (7.50), we obtain 

1M PtfdJ-L = 1M (IMPt{x,Y)f(Y)dJ-L(Y») dJ-L(x) 

- 1M (1M Pt (x, y) dJ-L (x») f (y) dJ-L (y) 

< 1M f (y) dJ-L (y) = liflip, 

which implies Ptf E L1 (M) and the estimate (7.70). Integrating the lat­
ter in dt, we obtain that Ptf (x) E Ltoc (lR+ x M). By Theorem 7.15, we 
conclude that Ptf E Coo (R+ x M) and Ptf satisfies the heat equation. 

Let us now prove the initial condition (7.71). Let {Ok} be a compact 
exhaustion sequence in M. Set 

fk = min (1, k) 10k 

and observe that fk E L2 (Ok), which implies by Theorem 4.9 that 

o L2 COk) Pt k!k -'---t fk as t --+ O. 

Since J-L (Ok) < 00 and, hence, L2 (Ok) Y L1 (Ok), we obtain also 

o L1(0,,) 
Pt "fk -'---t fk as t --+ O. 

Extending function pf"!k (x) to M by setting it to 0 outside Ok. we obtain 

o L1(M) 
Pt "fk ~ fk as t --+ O. 

Obviously, !k L
1

CAf) f as k --+ 00, so that we have the diagram 

PtO"!k < Pd 
.!.L1 ~L1 

fk ~ f 
L1 

and conclude by Lemma 7.18 that Pd ~ f. 

Exercises. 

7.25. Prove that, for any two non-negative measurable functions f and 9 on M, 

(Pt (19))2 ~ Pt (12) Pt (l) . 
Prove that 

(Pd)2 ~ Pt (12) . 

o 

7.26. Prove that the following dichotomy takes place: either sup Ptl = 1 for all t > 0 or 
there is c > 0 such that 

supPtl ~ exp(-ct) 

for all large enough t. 
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7.27. Prove that, for any fixed t > ° and x E M, the heat kernel Pt (x,y) is a bounded 
function of y EM. 

7.28. Let F be a set of functions on M such that 1 E F implies 111 E F and Pd E F. 
( a) Prove that the semigroup identity 

PtPs = Pt+s 
holds in F. 

(b) Assume in addition that F is a normed linear space such that, for any 1 E F, 

IIPtfll.r- ::; IIfll.r-
and 

IIPd - fll.r- -+ ° as t -+ 0. 
Prove that, for any 8 > 0, 

IIPd - Psfll.r- -+ ° as t -+ 8. 

7.29. Let f E Wl~e (M) be a non-negative function such that AI-'f ::; ° in the distributional 
sense. Prove that Pd :S f for all t > 0. 

7.30. Let 1 E Moe (M) be a non-negative function such that Ptf ::; f for all t > 0. 

(a) Prove that Pd (x) is decreasing in t for any x E M. 
(b) Prove that Pd is a smooth solution to the heat equation in 1R+ x M. 

L1 
(c) Prove that Pd ~ f as t -+ 0. 
(d) Prove that AI-'f ::; ° in the distributional sense. 

7.31. Under the conditions of Exercise 7.30, assume in addition that AI-'f = 0 in an open 
set U eM. Prove that the function 

(t ) = { Pd (x), t> 0, 
u ,x f(x), t::;o, 

is Coo smooth in IR x U and solves the heat equation in IR xU. 

REMARK. The assumption Pd ::; f simplifies the proof but is not essential - cf. Exercise 
9.8(c). 

7.32. Let f E Mac (M) be a non-negative function such that Pd E Ltoc (M) for all 
t E (0, T) (where T > 0) and Pd ~ f for all t E (0, T). 

(a) Prove that Pd (x) is increasing in t for any x E M. 
(b) Prove that Pd is a smooth solution to the heat equation in (0, T) x M. 

( ) P Lfo~ c rove that Pd --t fast -+ O. 
(d) Prove that AI-'f ~ 0 in the distributional sense. 

(e) Show that the function f (x) = exp (':t) in IRn satisfies the above conditions. 

7.33. Let f E £0>0 (M). Prove that Ptf E L oo (M) for any t > 0, 

IIPdllLOO :S IlfllLoo, 
and the function u (t, x) = Pd (x) is Coo smooth in 1R+ xM and satisfies the heat equation. 

7.34. Let 0 c M be an open set, and consider the function 

{
I, x E 0 

f (x) = In (x) := 0, x E M \ O. 

Prove that 

lim Pd (x) = f (x) for all x E M\ 80, 
t-+o 

(7.72) 

and the convergence is locally uniform in x. 
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7.35. Prove that if a function I E Loo (M) is continuous at a point x E M then 

HI (x) -+ I (x) as t -+ O. (7.73) 

7.36. Let 1 $ r $ 00 and I E L r (M). 

(a) Prove that Ptf E L r (M) for any t > 0, and 

IIH/I/Lr $II/I1Lr. (7.74) 

(b) Prove that Ptf (x) is a smooth function of (t, x) E IR+ x M and satisfies the heat 
equation. 

L r 

7.37. Prove that if 1 < r < 00 and f E L r (M) then Ptf -> fast -+ O. 

7.38. Assume that 
F (t) := sup Pt (x, x) < 00. 

",EM 

Prove that, for all 1 $ r < s $ +00, I E Lr (M) implies Ptf E L S (M) and 

IIPtfllL' $ F (t)l/r-l/s IIfliLr. (7.75) 

7.5. Smoothness of the heat kernel in t, x, y 

In this section, we prove the smoothness of the heat kernel Pt (x, y) jointly 
in t,x,y. 

THEOREM 7.20. The heat kernel Pt (x, y) is COO-smooth jointly in t > 0 
and x, y E M. Furthermore, for any chart U C M and for any partial 
differential operator Da in t E lR+ and x E U, 

Dapt (x,·) E £2 (M) (7.76) 

and, for any f E £2 (M), 

Dapt!(x) = 1M DaptCx,y)f(y)dj.J,(Y)· (7.77) 

PROOF. Fix a relatively compact chart U C M, and let X be a closed 
ball in U. We will assume that x varies in X and denote by oa partial 
derivatives in x in chart U. Recall that, by Theorem 7.13, oapt (x, y) is a 
smooth function in t, x for any fixed y. 

Let us first prove the following claim, which constitutes the main part 
of the proof. 

CLAIM. Function oapt (x,y) is continuous in x locally uniformly in t,y. 

By Theorem 7.6, we have, for any f E £2 (M) and any multiindex a, 

sup loa Pt!1 ~ FX,lal (t) Ilfll£2 (7.78) 
X 

where FX,k (t) is a locally bounded function of t E lR+. Since (7.78) can be 
also applied to the derivatives {)j{)C!I., it follows that, for all x,x' EX, 

loa Pt! (x) - {)apt! (x') I ~ Fx ,IC!l.I+l (t) IIfllL21x - x'I, 

where Ix - x'I is the Euclidean distance computed in the chart U. 

(7.79) 
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For all t, 8> 0, y EM, and x, x' E X, we have by (7.56) 

PHs (x, y) - PHs (x', y) = PtPs,y (x) - PtPs,y (X') , 
which implies by (7.79). 
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18QpHs (x, y) - {PPHs (x', y) I :::; FX ,/Q/+1 (t) iiPs,yiiL2IX - x'I· 

Restricting y to a compact set Y c M and applying the inequality (7.25) of 
Theorem 7.7 to estimate IIPs,yiiL2, we obtain 

18QpHs (x, y) - 8
Q
PHs (x', y) I :::; FX ,/QI+1 (t) Fy (8) Ix - x'I, (7.80) 

for all x, x' E X and y E Y. Hence, 8
Q
PHs (x, y) is continuous in x locally 

uniformly in t, y. Since 8 > 0 is arbitrary, the same holds for 8Q pt (x, y), 
which was claimed. 

By Theorem 7.13, Pt (x, y) is a continuous function in t, y for a fixed x. 
By the above Claim, Pt (x, y) is continuous in x locally uniformly in t, y, 
which implies that Pt (x, y) is continuous jointly in t, x, y. 

Denote by D.x the operator D.p. with respect to the variable x. It follows 
from the above Claim that D.xPt (x, y) is continuous in x locally uniformly 
in t, y. Since by Theorem 7.13 

8 
D.xPt (x,y) = atPdx,y) = D.ypdx,y) (7.81) 

and D.yPt (x, y) is continuous in t, y, we conclude that all three functions in 
(7.81) are continuous jointly in t, x, y. 

Now consider the manifold N = M x M with the product metric tensor 
and the product measure dv = dp, dp,. Since Pt (x, y) and its derivatives 
(7.81) are continuous functions on lR+ x N, all these derivatives are also 
the distributional derivatives of Pt (x, y) on lR+ x N. Hence, we have the 
following equation 

8 1 
8tPt = "2 (~x + D.y ) Pt, 

which is satisfied in the distributional sense in lR+ x N. Since 

~x + ~y = D.!I' 

where ~!I is the Laplace operator on (N, v), the function Pt (x, y) satisfies 
the heat equation on lR+ x N (up to the time change t t-+ 2t). By Theorem 
7.4, we conclude that Pt (x, y) is Coo smooth on lR+ x N, which was to be 
proved. 

Let DQ be any partial derivative in t and x. By the previous part of the 
proof, DQpt (x, y) is a smooth function in t, x, y, which implies that, for any 
f E COO (M) 

DQ fMPt(x, y) f (y) dp, (y) = 1M DQpt(x, y) f (y) dp, (y), (7.82) 

because the the function Pt (x, y) f (y) is Coo-smooth in t, x, y and the range 
of t, x, y can be restricted to a compact set. 
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Observe that the estimate (7.78) holds also for the derivative DcY. in place 
of aO!, because by (7.81) the time derivative operator at on Pt (x, y) can be 
replaced by ~x and, hence, by a combination of operators aO!. Then (7.78) 
implies that, for fixed t, x, the left hand side of (7.82) is a bounded linear 
functional on f E L2 (M). By the Riesz representation theorem, there exists 
a function ht,x E L2 (M) such that this functional has the form (ht,x, f). It 
follows from (7.82) that, for all f E Off (M), 

L DcY.pt (x, y) f (y) dj.t (y) = (ht,x, f) . 

By Lemma 3.13, we conclude that 

DcY.pt (x,·) = ht,x a.e., 

whence 
(7.83) 

Finally, to prove the identity (7.82) for all f E L2 (M), observe that, by 
(7.83), the right hand side of (7.82) is also a bounded linear functional on 
f E L2 (M). Hence, the identity (7.82) extends by continuity from Off (M) 
to L2 (M) (cf. Exercise 4.4), which finishes the proof. 0 

In what follows we will give an alternative proof of Theorem 7.20, without the 
parabolic regularity theory. As we will see, the joint smoothness of the heat kernel in 
t, x, y follows directly from the smoothness of Pd (x) for any f E £2 (M), by means of 
some abstract result concerning the differentiability of functions taking values in a Hilbert 
space. 

Consider an open set fl c Rn
, a Hilbert space 1£, and a function h : fl -+ 1£. Denote 

by (".) the inner product in 1£. We say that the function h is weakly C k if, for any 'P E 1£, 
the numerical function 

XH-(h(x),'P) 

belongs to C k (fl). The function h is strongly continuous if it is continuous with respect 
to the norm of 1£, that is, for any x E fl, 

IIh(y) - h(x)lI-+ 0 as y -+ x. 

The Gateaux partial derivative oih is defined by 

oih (x) = lim h (x + sei) - h (x) , 
8 .... 0 s 

where ei is the unit vector in the direction of the coordinate Xi and the limit is understood 
in the norm of 1£. One inductively defines the Gateaux partial derivative 0'" h for any 
multiindex 01. We say that the function h is strongly C k if all Gateaux partial derivatives 
0'" h up to the order k exist and are strongly continuous. 

Since the norm limit commutes with the inner product, one easily obtains that if h is 
strongly C k then h is weakly C k and 

0'" (h (x) ,'P) = (a""h (x), 'P) for any 'P E 1£, (7.84) 

provided IcY.I ::::; k. It turns out that a partial converse to this statement is true as well. 

LEMMA 7.21. For any non-negative integer k, if h is weakly C k +1 then h is strongly 
Ck • Consequently, h is weakly Coo if and only if h is strongly Coo . 
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PROOF. We use induction in k. 
Inductive basis for k = O. Fix a point x E n and prove that h is strongly continuous 

at x. Fix also cP E 1£ and consider a numerical function 

f(x) = (h(x),cp), 

which, by hypothesis, belongs to 0 1 (n). Choose c > 0 so small that the closed Euclidean 
ball B" (x) lies in n. Then, for any vector v E ~n such that Ivl < c, the straight line 
segment connecting the points x and x+v lies in n. Restricting function f to this segment 
and applying the mean-value theorem, we obtain 

If(x+v)-f(x)l~ sup lV'fllvl· 
13.(",) 

Rewrite this inequality in the form 

I (
h (x + v) - h (x) ) I < C ( ) Ivl ' cp - x, cp , (7.85) 

where 0 (x, cp) := sUP13"(,,,) IV' fl, and consider h(x+ilih(x) as a family of vectors in 1£ 
parametrized by v (while x is fixed). Then (7.85) means that this family is weakly bounded. 
By the principle of uniform boundedness, any weakly bounded family in a Hilbert space 
is norm bounded, that is, there is a constant 0 = C (x) such that 

(7.86) 

for all values of the parameter v (that is, Ivl < c and v f:. 0). Obviously, (7.86) implies 
that h is strongly continuous at x. 

Inductive step from k - 1 to k. We assume here k ;:: 1. Then, for any cp E 1£, the 
function (h (x), cp) belongs to 0 1 (n), and consider its partial derivative Oi (h (x) ,cp) at a 
fixed point x E n as a linear functional of cp E 1£. This functional is bounded because by 
(7.86) 

and, hence, 

10. (h (x) ,cp)1 ~ 0 (x) IIcplI· 

By the Riesz representation theorem, there exists a unique vector hi = h. (x) E 1£ such 
that 

Oi (h (x) ,cp) = (hi (x) ,cp) for all cp E 1£. (7.87) 

The function hi (x) is, hence, a weak derivative of h (x). The condition that (h (x), cp) 
belongs to C k+1 (n) implies that (hi (x) ,cp) belongs to Ok (n), that is, h. is weakly Ck. 
By the inductive hypothesis, we conclude that hi is strongly Ok-I. 

To finish the proof, it suffices to show that the Gateaux derivative oih exists and is 
equal to h., which will imply that h is strongly Ok. We will verify this for the index i = nj 
for i < n, it is done similarly. Consider a piecewise-smooth path 'Y : [0, T] --+ n such that 
'Y (0) = Xo and 'Y (T) = x, and show that 

foT hd'Y (t» -i (t) dt = h (x) - h (xo). (7.88) 
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Denoting the integral in (7.88) by I and using (7.87) and the fundamental theorem of 
calculus, we obtain, for any tp E 11., 

whence (7.88) follows. 

(I,tp) !aT (hi (l'(t)) ,tp)'/(tjdt 

faT ai (h (-) , tp)I...,(t) "/ (t) dt 

faT ! (h b (t)) ,tp) dt 

= (h(x),tp)-(h(xo),tp), 

Now fix a point x E n and choose c: > 0 so that the cube (x - e. x - £)" lies in 
n. For simplicity of notation, assume that the origin 0 of JR." is contained in this cube, 
and consider the polygonal path I' connecting 0 and x inside the cube. whose consecutive 
vertices are as follows: 

(0,0, ... ,0,0), (XI,O, ... ,O,O), ... , (XI
,X

2
, ... ,X"-1,0), (X

I
,X

2
, •••• x"-:,x"). 

By (7.88), we have 

h (x) = h (0) + !aT hi b (t)) "l (t) dt. (7.89) 

The integral in (7.89) splits into the sum of n integral over the legs of ~(: and only the 
last one depends on x". Hence, to differentiate (7.89) in xT1., it suffices to differentiate the 
integral over the last leg of 1'. Parametrizing this leg by 

l'(t) = (XI,X2, ••• ,xn-l,t) , O~t~xn, 

we obtain 
a {~n a {Xn 

anh (x) = axn 10 hi b (t)) ,'/ (t) dt = axn 10 hn (Xl .... , X n
-:, t) dt = h... (x) , 

which was to be proved. o 

SECOND PROOF OF THEOREM 7.20. Let n be a chart on the manifold Lx .W, and 
consider Pt,~ as a mapping n --t L2 (M). By Theorem 7.10. for any f E L2 (_"1), the 
function Pt! (x) = (Pt,x, fh2 is COO-smooth in t, x. Hence, the mapping Pt.", is weakly 
Coo. By Lemma 7.21, the mapping Pt, .. is strongly Coo. Let n' be another chart on 
~+ x M which will be the range of the variables s, y. Since Ps,,, is also strongly Coo as a 
mapping from ,0' --t L2 (M), we obtain by (7.56) 

PHs (x,y) = (Pt,x,PS,1Jh2 = Coo (n x n'), 
which implies that Pt (x, y) is Coo -smooth in t, x, y. 

Let DOl be a partial differential operator in variables (t, x) E n. By (7.84), we have, 
for any f E L2 (M), 

(7.90) 

where DCXpt,~ is understood as the Gateaux derivative. Since the left hand sides of (7.82) 
and (7.90) coincide, so do the right hand sides, whence we obtain by Lemma 3.13 

DOlpt (x,·) = Da.Pt,~ a.e. 

Consequently, DCXpt (x,.) E L2 (M) and, for any f E L2 (M), 

DOl 1M Pt (x, y) f (y) dp, = DOl (pt,,., f) = (DOlPt,x, f) = 1M DOlpt (x, y) f (y) dp" 

which finishes the proof. o 
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Exercises. 

7.39. Let f : M -+ [-00, +00] be a measurable function on M. 

(a) Prove that, if f ;::: 0 then the function 

Ptf(x):= IMPt(x,Y)f(Y)d/l-(Y) 

is measurable on M for any t > O. 
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(7.91) 

(b) Prove that if f is signed and the integral (7.91) converges for almost all x then 
Ptf (x) is measurable on M. 

(c) Prove the identity 
PHsf = Pt (Ps!) 

for any non-negative measurable function f. 

7.40. For any open set n C M, denote bypP (x,y) the heat kernel of the manifold (n,g,/l-). 

(a) Prove that PP (x, y) :s Pt (x, y) for all x, yEn and t > O. 
(b) Let {n.} be an exhaustion sequence in M. Prove that 

° C
oo

(llt+xMXM) 
Pti(x,y) --+ Pt(x,y) asi-+oo. 

(c) Prove that, for any non-negative measurable function f (x), 

PtO, f (x) -+ Ptf (x) as i -+ 00, 

for any fixed t > 0 and x E M. 
(d) Prove that if f E Cb (M) then 

P
t
O, f (x) COO~XM) Pd (x) as i -+ 00. 

7.41. Let (X,gx,/l-x) and (Y,gY,/l-Y) be two weighted manifold and (M,g,/l-) be their 
direct product (see Section 3.8). Denote by pf and pi the heat kernels on X and Y, 
respectively. Prove that the heat kernel Pt on M satisfies the identity 

Pt ((x, y) , (x', y')) = pf (x, x') pi (y, y') , (7.92) 

for all t > 0, x,x' EX, y,y' E Y (note that (x,y) and (x',y') are points on M). 

7.42. For any t > 0, consider the quadratic form in L2 (M), defined by 

Ct (f) = (f -Pd , f) 
t £2 

(cf. Exercise 4.38). Prove that if the heat kernel is stochastically complete, that is, for all 
x EM and t > 0, 

1M Pt (x, y) d/l- (y) = 1, 

then the following identity holds: 

Ct (j) = ;t 1M 1M (f(x) - f(y»2 pt (X, y)d/l-(y)d/l-(x), 

for: all t > 0 and f E L2 (M). 

7.43. Prove that, for any real k > 0 and for any f E L2 (M), 

1
00 tk-l 

(£+id)-k f(x) = 0 r(k)e-tPtf(x)dt, 

for almost all x EM, where r is the gamma function. 
HINT. Use Exercise 5.11. 

(7.93) 

(7.94) 

(7.95) 
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7.44. Assume that the heat kernel satisfies the following condition 

Pt (x, x) ~ ct-'Y for all x E M and 0 < t < 1. (7.96) 

where '1, c > O. Fix a real number k > '1/2. 

(a) Prove that, for any I E L2 (M), the function (.c + id)-k I is continuous and 

s~p I(.c + id)-k II ~ CII/II L 2, (7.97) 

where C = C (c, '1, k). 
(b) Prove that, for any u E dom.ck, we have u E C (M) and 

Sl;p lui ~ C (lIullL2 + lI.ckuIlL2) . (7.98) 

7.45. Prove that if (7.98) holds for all u E dom.ck with some k > 0 then the heat kernel 
satisfies the estimate (7.96) with '1 = 2k. 

7.46. The purpose of this question is to give an alternative proof of Theorem 6.1 (Sobolev 
embedding theorem). 

(a) Prove that if u E Wk (JRn) where k is a positiv~ integer then u E dom.ck/ 2, where.c 
is the Dirichlet Laplace operator in Rn. Prove also that, for any u E Wk (Rn), 

II (.c + id)k/2 ullL2 ~ CIIullwk, 

where C is a constant depending only on n and k. 
(b) Prove that if u E Wk (JRn

) where k is an integer such that k > n/2 then u E C (JRn
) 

and 

(c) Prove that if k > m + n/2 where m is a positive integer then u E Wk (Rn) implies 
u E C m (JRn ) and 

IIUIlC1n(Rn) ~ CliuIlWk(Rn). 

(d) Prove that if n is an open subset of JRn and k and m are non-negative integers such 
that k > m + n/2 then u E W!~c (n) implies u E Cm (n). Moreover, for any open 
sets n' <s nil <s n, 

lIu llc1n(n/) ~ CIIullwk(OIl), 

with a constant C depending on n', nil, k, m, n. 

HINT. Use Exercise 4.25 for part (a) and Exercise 7.44 for part (b) 

7.47. (Compact embedding theorems) 

(a) Assume that p, (M) < 00 and 

sup Pt (x, x) < 00 for all t > O. 
",EM 

Prove that the identical embedding WJ (M) yL2 (M) is a compact operator. 

(7.99) 

(b) Prove that, on any weighted manifold M and for any non-empty relatively open 
compact set n c M, the identical embedding WJ (n) Y L2 (n) is a compact operator 
(cf. Theorem 6.3 and Corollary 10.21). 

HINT. Use for part (a) the weak compactness of bounded sets in L2 and Exercises 7.36, 
4.40. 

7.48. Let I be an open interval in JR and 11. be a Hilbert space. Prove that if a mapping 
h : I -+ 11. is weakly differentiable then h is strongly continuous. 
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7.6. Notes 

One of the main results of Chapter 7 is the existence of the heat kernel satisfying vari­
ous nice properties (Theorems 7.7, 7.13, and 7.20). The classical approach to construction 
of the heat kernel on a Riemannian manifold, which originated from [275], [276], uses a 
parametrix of the heat equation, that is, a smooth function which satisfies the necessary 
conditions in some asymptotic sense. The parametrix itself is constructed using as a model 
the heat kernel in Rn. A detailed account of this approach can be found in many sources, 
see for example [36]' [37], [51], [58], [317], [326]. This approach has certain advantages 
as it gives immediately the short time asymptotics of the heat kernel and requires less of 
abstract functional analysis. 

On the other hand, the theory of elliptic and parabolic equations with singular (mea­
surable) coefficients, developed by de Giorgi [103], Nash [292]' Moser [279], [280J, and 
Aronson [9], has demonstrated that the fundamental solutions for such equations can be 
constructed using certain a priori estimates, whereas the parametrix method is not avail­
able. The method of construction of the heat kernel via a priori estimates of solutions has 
been successfully applied in analysis on more general spaces - metric measure spaces with 
energy forms. 

In our approach, the key a priori estimate (7.18) of the heat seroigroup is given by 
Theorem 7.6. The proof of (7.18) uses the elliptic regularity theory and the Sobolev 
embedding theorem. As soon as one has (7.18), the existence of the heat kernel follows 
as in Theorem 7.7. This approach gives at the same token the smoothness of Pt! (x) in 
variable x. There are other proofs of (7.18) based only on the local isoperimetric properties 
of manifolds, which can be used in more general settings (cf. Corollary 15.7 in Chapter 
15). 

The heat kernel obtained as above is not yet symmetric. Its symmetrization (and 
regularization) is done in Theorem 7.13 using a general method of J.-A. Yan [360]. The 
smoothness of the heat kernel Pt (x, y) is proved in three installments: first, smoothness 
of Pt! (x) in x (Theorem 7.6), then smoothness of Pt (x, y) in (t, x) (Theorems 7.lO and 
7.13) and, finally, smoothness of pt(x, y) in (t, x, y) (Theorem 7.20; the second proof of 
this theorem uses the approach from [96, Theorem 5.2.1] and [92, Corollary 1.42]). 

Other methods for construction of the heat kernel are outlined in Section 16.4. 
An somewhat similar approach for construction of the heat kernel via the smoothness 

of Pt! was used by Strichartz [330], although without quantitative estimates of Pt!. That 
method was also briefly outlined in [96]. 

After the heat kernel has been constructed, the heat semigroup Ptf can be extended 

from L2 to other function classes as an integral operator. We consider here only extensions 

to L 1 and Cb. A good account of the properties of the heat semigroup in spaces L q can 
be found in [330]. 



CHAPTER 8 

Positive solutions 

This Chapter can be regarded as a continuation of Chapter 5. However, 
the treatment of the Markovian properties is now different because of the 
use of the smoothness of solutions. 

8.1. The minimality of the heat semigroup 

We say that a smooth function u (t, x) is a supersolution of the heat 
equation if it satisfies the inequality 

au 
at ~ .6.J.£u 

in a specified domain. The following statement can be considered as an 
extension of Corollary 5.17. 

THEOREM 8.1. Set I = (0, T) where T E (0, +00]. Let u (t, x) be a 
non-negative smooth supersolution to the heat equation in I x M such that 

L2 
u (t,') ~ f as t --+ 0, (8.1) 

for some f E Lroc (M). Then Pt! (x) is also a smooth solution to the heat 
equation in I x M, satisfying the initial condition (8.1), and 

u(t,x)~Pt!(x), (8.2) 

for all tEl and x EM. 

PROOF. Note that f ~ 0. Let (8.2) be already proved. Then Pt! (x) is 
locally bounded and, by Theorem 7.15, it is a smooth solution to the heat 
equation. Let us verify the initial condition 

L2 
Pt! ~c fast --+ 0. (8.3) 

Indeed, for any relatively compact open set n eM, we have 

Pt (fIn) :::; Pt! :::; u (t,·) . 

Since both functions Pt (fIn) and u (t,') converge to f in L2 (n) as t --+ 0, 

we conclude that Pt! L~) f, which implies (8.3). 
In order to prove (8.2), we reduce the present setting to the L2-Cauchy 

problem (5.55) of Corollary 5.17. Choose an open set n <s M. The smooth­
ness of u implies that u (t,·) E WI (n) and the strong derivative ~~ in L2 (n) 
obviously coincides with the classical derivative !!if. Hence, u (t, .) as a path 

217 
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in WI (n) satisfies the conditions (5.55), and we conclude by Corollary 5.17, 
that 1 

u(t")2: Pf2f. (8.4) 

Let {nk} be a compact exhaustion sequence in M, and set fk = fInk' It 
follows from (8.4) that 

u (t,·) 2: ptnk fi, 

for all i and k. Since fi E L2 (M), by Theorem 5.23 we obtain 

n L2 
Pt k Ii --+ Pdi as k ~ 00, 

whence it follows that 
u (t, .) 2: Pdi a.e. 

Letting i ~ 00, we obtain 

u (t,') 2: Pd a.e. (8.5) 

This implies Pd E L~c (I x M), and we conclude by Theorem 7.15 that 
the function Pd (x) is smooth in t, x. Hence, (8.5) implies the pointwise 
estimate (8.2). 0 

COROLLARY 8.2. Let u (t, x) be a non-negative smooth solution to the 
heat equation in I x M such that 

L2 
u(t")~fast~O 

for some f E Lfoc (M), and 

u (t, x) ~ 0 as x ~ 00 in M, (8.6) 

where the convergence is uniform in tEl. Then u (t, x) == Pd (x). 

The hypotheses of Corollary 8.2 are exactly those of Theorem 8.1 except 
for the additional condition (8.6), which leads to the identity of u (t, x) and 
Pd(x). 

PROOF. It follows from Theorem 8.1 that the function v Ct, x) := u (t, x)-
L2 

Pd (x) satisfies the heat equation in IxM and the initial condition v (t,') ~c 
o as t ~ O. Besides, (8.6) implies v (t, x) ~ 0 as x ~ 00. Hence, by Corol­
lary 5.20, v == 0, which was to be proved. 0 

COROLLARY 8.3. For any non-negative f E Cb (M), the function u (t, x) = 
Pd (x) is the minimal non-negative solution to the following Cauchy problem 

{ 
~~ = D.Jl.u, in lR+ x M, (8.7) 
ult=o = f, 

where ult=o = f means that u (t,') ~ f as t -+ 0 locally uniformly in x. 

lCorollary 5.17 says that (8.4) holds almost everywhere on M (for any t E J). How­
ever, since by Theorem 7.10 pf f is a smooth function, (8.4) holds, in fact, everywhere on 
M. 
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PROOF. Indeed, by Theorem 7.16, the function Pd (x) does solve (8.7), 
and by Theorem 8.1, u (t, x) ~ Pd (x) for any other non-negative solution 
u. 0 

Exercises. 

8.1. Prove that if h is a non-negative function satisfying on M the equation 

-f:lp.h + exh = 0, 

where ex is a real constant, then Pth:::; e"'th for all t > O. 

8.2. Extension of resolvent 

Our goal here is to extend the resolvent Red to a larger class offunctions 
I and to prove the properties of ROt similar to the properties of the heat 
seroigroup Pt given by Theorems 7.15 and 8.l. 

Recall that, for any a > 0, the resolvent Ret. is a bounded operator in 
L2 (M) defined by 

Rex = (£ + aid)-l, 

where £ is the Dirichlet Laplace operator (cf. Section 4.2). For any I E 

L2 (M), the function u = Red satisfies the equation 

-D.Jl.u + au = I (8.8) 

in the distributional sense. 
As an operator in L2, the resolvent is related to the heat semigroup by 

the identity 

(Ret.I,g)L2 = 10
00 

e-et.t (Pd,g)£2 dt, (8.9) 

for all I, g E L2 (M) (cf. Theorem 4.5 and Lemma 5.10). 
Now we extend Ral to a more general class of functions I by setting 

Ral (x):= 10
00 

e-at Pd (x) dt = 10
00 1M e-et.tpdx, y) I (y) dp, (y) dt, 

(8.10) 
whenever the right hand side of (8.10) makes sense. Note that the function 
ROI.l (x) is defined by (8.10) pointwise rather than almost everywhere. 

If I is a non-negative measurable function then the right hand side of 
(8.10) is always a measurable function by Fubini's theorem, although it may 
take value 00. If, in addition, I E L2 (M) then substituting ROI.l from (8.10) 
into (8.9), we obtain, again by Fubini's theorem, that (8.9) holds for all non­
negative 9 E L2 (M), which implies that the new definition of RaJ matches 
the old one. For a signed I E L2 (M), the same conclusion follows using 

1=1+ - 1-· 
THEOREM 8.4. Fix a non-negative lunction I E L~oc (M) and a constant 

a> O. 
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(a) II u E Lroc (M) is a non-negative solution to the equation 

-b.p.u + au = I (8.11) 

then u ~ Ral. 
(b) II Ral E Lroc (M) then the function u = Ral satisfies the equation 

(8.11). 

PROOF. Let {nd be a compact exhaustion sequence in M and set 

Ik = min (k, J) 10",. 

(a) It follows from (8.11) that b.p.u E Lroc (M), and we conclude by 
Exercise 7.9 that u E Wi~c (M). Then u E WI (Ok) and, applying Corollary 
5.15 in nk, we obtain u ~ R~'" I. Consequently, we have, for all indices i, k, 

u~ R~"'k 

Since Ii E L2 (M), Theorem 5.22 yields R~'" li ~ Bali as k -700, whence 
it follows u 2: Rak Passing to the limit as i -7 00, we finish the proof. 

(b) Since Ik E L2 (M), the function and Uk = Ralk belongs to L2 (M) 
and satisfies the equation 

-b.p.Uk + aUk = Ik 

(cf. Theorem 4.5). Hence, for any cP E 1) (M), we have 

1M ud -b.p.CP + acp) df.l = 1M Ikcpdf.l. (8.12) 

Since the sequence Ik is monotone increasing and converges to I a.e., we 
obtain by (8.10) and the monotone convergence theorem that Uk (x) t u (x) 
pointwise. Since u and I belong to Ll (supp cp), we can pass to the limit in 
(8.12) by the dominated convergence theorem and obtain that u also satisfies 
this identity, which is equivalent to the equation (8.11). 0 

REMARK 8.5. Part (a) of Theorem 8.4 can be modified as follows: if 
u E Wl~c (M), u 2: 0, and u satisfies the inequality 

-b.p.u + au 2: I, 

then u 2: Ral. This is proved in the same way because the only place where 
the equality in (8.11) was used, is to conclude that b.jJ.u E Lroc and, hence, 
UEW1~' 

COROLLARY 8.6. II I E Loo (M) and a > 0 then Ral is bounded, 

sup IRati :::; a-1 11/1ILoo, (8.13) 

and u = Ral is a distributional solution to the equation (8.8). 

PROOF. The estimate (8.13) follows from (8.10) and sup IH/I :::; II/l1Loo 
(cf. Exercise 7.33). If I 2: 0 then the fact that Ral solves (8.8) follows 
from Theorem 8.4(b). For a signed I, the same follows from, Ral = Ral + -
Ral-. 0 
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Some cases when one can claim the smoothness of Rocf are stated in the 
following theorem. 

THEOREM 8.7. Let f E Coo (M) and a > O. 

(i) If f ~ 0 and and Rocf E Lroc (M) then Rocf E Coo (M) . 
(ii) If f is bounded then Rocf E Coo (M). 

PROOF. Consider first a special case when f ~ 0 and f E C[f (M), 
and prove that Rocf E Coo (M). Since the function u = Rocf satisfies the 
equation (8.8), it is tempting to conclude that u E Coo applying Corollary 
7.3. Indeed, the latter says that every distributional solution to (8.8) is a 
smooth function, which means that u as a distribution is represented by 
a Coo function, that is, there is a function U E Coo such that u = U a.e .. 
However, our aim now is to show that u (x) itself is Coo. 

Recall that, by Theorem 7.13, function Pt! is Coo smooth in [0, +oo)xM 
(cf. (7.53)). Therefore, the function 

Ul (x) = 11 e-octPt! (x) dt 

is Coo smooth on M for any finite l > 0 and, moreover, any partial derivative 
of Uz can be computed by differentiating under the integral sign. Using the 
properties of the heat semigroup, we obtain 

~p.Ul = 11 e-oct ~p. (Pt!) dt = 11 e-oct %t (Pt!) dt 

I 

[e-atPt!]~ + a 10 e-octPt! dt, 

which implies that 

-~Uz + auz = fl := f - e-oc1pz!. 

By the estimate (7.20) of Theorem 7.6, we have, for any compact set K that 
is contained in a chart, and for any positive integer m, 

IIPtfllcm(K) ::; FK,m (l) IIfllL2(M), 

where FK,m (l) is a function of l that remains bounded as l -+ 00. This 
implies 

I COO e-a Ptf --t 0 as l -+ 00 

coo 
and, hence, fl --t f. The sequence {UI (x)} increases and converges to u (x) 
pointwise as l -+ 00. Since u E L2 (M), this implies by Exercise 7.13 that 
u (x) belongs to Coo, which finishes the proof in the special case. 

(i) Let {Ok} be a compact exhaustion sequence in M and let 'lj;k be a 
cutoff function of Ok in Ok+1' Set fk = 'lj;kf so that fk E C[f (M). By 
the special case above, the function Uk = Rafk belongs to Coo. Since the 
sequence {fk} increases and converges pointwise to f, by (8.10) the sequence 
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Uk (X) also increases and converges pointwise to u = Ral. Since U E Ltoc 
coo 

and Ik ~ J, we conclude by Exercise 7.13 that U E Coo. 
(ii) By Corollary 8.6, Ral is bounded and, hence, belongs to Ltoc' If 

I 2 0 then Ral is smooth by part (i). For a signed I, the smoothness of 
Ral follows from the representation 

I = ef - (ef - J) , 
because both function ef and ef - I are bounded, smooth, and non-negative. 

D 

REMARK 8.8. If I is a non-negative function from Coo n L2 then Ral E 
L2 and we obtain by Theorem 8.7 that Raj E Coo. This was stated in 
Exercise 7.15, but using the definition of Ra as an operator in L2. In other 
words, the statement of Exercise 7.15 means that the L2-function Ral has 
a smooth modification, whereas the statement of Theorem 8.7 means that 
the function Ra/, which is defined pointwise by (8.10), is Coo itself. 

Exercises. 

8.2. If U E L~oc (M) is a non-negative solution to the equation 

-~!,u + o:u = f 
where 0: > 0 and f E Lfoc (M), f 2: o. Prove that if 

U (x) -t 0 as x -t 00, 

then U = Ra.f. 

8.3. Let U E L2 (M) satisfy in M the equation 

~!,U+AU = 0, 

where A E JR, and 
U (x) -t 0 as x -t 00. 

Prove that U E WJ (M). 
REMARK. Since by the equation ~!'u E L2 (M), it follows that U E dom (£) and, hence, u 
satisfies the equation £u = -AU. Assuming that u =f- 0 we obtain that u is an eigenfunction 
of the Dirichlet Laplace operator. 

8.3. Strong maximum/minimum principle 

8.3.1. The heat equation. As before, let (M, g, f.L) be a weighted 
manifold. For an open set 0 C ]R x M, define its top boundary OtopO as 
the set of points (t, x) E 00 for which exists an open neighborhood U C M 
of x and e > 0 such that the cylinder (t - e, t) x U is contained in 0 (see 
Fig. 8.1). 

For example, if 0 = (a, b) x Q where a < b and Q is an open subset of 
M, then OtopO = {b} x Q. If M = ]Rn and 0 is a Euclidean ball in ]Rn+1 
then OtopO = 0. 
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FIGURE 8.1. The top boundary of a set n. 

DEFINITION 8.9. The parabolic boundary opO of an open set 0 C lR x M 
is defined by 

OpO := 00 \ OtopO. 

If n is non-empty and the value of t in 0 has a lower bound then opn is 
non-empty - indeed, a point (t, x) E 0 with the minimal value of t cannot 
belong to OtopO. The importance of this notion for the heat equation is 
determined by the following theorem, which generalizes Lemma 1.5. 

THEOREM 8.10. (Parabolic minimum principle) Let n be a non-empty 
relatively compact open set in R x M, and let a function u E C2 (n) satisfy 
in 0 the inequality 

au 
at ~ AlJ.u. (8.14) 

Then 
infu = inf u. (8.15) 
n 8p O 

REMARK. Any function u E C2 satisfying (8.14) is called a supersolution to 
the heat equation, while a function satisfying the opposite inequality 

au 
at ~ AJJu, 

is called a subsolution. Obviously, Theorem 8.10 can be equivalently stated 
as the maximum principle for subsolutions: 

supu = supu. 
n 8p O 

In Particular, if u ~ 0 on the parabolic boundary of 0 then u ~ 0 in O. 
Let 0 = (0, T) x Q where Q is a relatively compact open subset of M. 

Then the condition u ~ 0 on opO can be split into two parts: 

• u (t, x) ~ 0 for all x E oQ and t E (0, T) 
• u(O,x) ~ 0 for all x E Q, 
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which imply the following (assuming u E C (0)): 
• u+ (t,x) =4 0 as x -t 00 in Q (considering Q is a manifold itself) 
• u+ (t,x) =4 0 as t -t O. 

Then the conclusion that u ~ 0 in D follows from Corollary 5.20. Hence, 
for cylindrical domains D, Theorem 8.10 is contained in Corollary 5.20. 
However, we will need Theorem 8.10 also for non-cylindrical domains, and 
for this reason we provide below an independent proof of this theorem. 

PROOF OF THEOREM 8.10. The proof is similar to that of Lemma 1.5. 
Assume first that u satisfies a strict inequality in D: 

au 
at > 6.p.u. (8.16) 

Let (to, xo) be a point of minimum of function u in n. If (to, xo) E apD then 
(8.15) is trivially satisfied. Let us show that, in fact, this point cannot be 
located elsewhere. Assume from the contrary that (to, xo) is contained in n 
or in atopn. In the both cases, there exists an open neighborhood U C M of 
Xo and c > 0 such that the cylinder r := (to - c, to) x U is contained in n. 
Since function t f-+ u (t, xo) in [to - c, to] takes the minimal value at (to, xo), 
we necessarily have 

au 
at (to, xo) ~ O. (8.17) 

By the choice of U, we can assume that U is a chart, with the coordinates 
xl, ... , xn. Let 9 be the matrix of the metric tensor g in the coordinates 
xl, ''', xn and 9 be the matrix of g in another coordinate system yl, ... , yn in 
U (yet to be defined). By (3.25), we have 

g= JTgJ, 

where J is the Jacobi matrix defined by 

J~ = ax
k 

~ ayi . 

It is well known from linear algebra that any quadratic form can be brought 
to a diagonal form by a linear change of the variables. The quadratic form 
~ f-+ 9ij (xo) ~i~j is positive definite and, hence, can be transform to the 
form (~'l)2 + '" + ({n)2 by a linear change ei = A;{j, where A is a numerical 
non-singular matrix. This implies that 

AT 9 (xo) A = id. 

Defining the new coordinates yi by the linear equations xi = A;yj, we obtain 
that J (xo) = A and, hence, 9 (xo) = id. 

So, renaming yi back to xi, we obtain from (3.46) that the Laplace 
operator 6.J.I. at point Xo has the form 

6. I = "'~ bi~ 
p. xo "T-' (axi)2 + ax i ' 
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for some constants bi . Since Xo is a point of minimum of function x t---+ 
u (to, x) in U, we obtain that 

au a2u 
axi (to, xo) = 0 and (oxi)2 (to, xo) ~ o. 

This implies 

l:lp.u (to, xo) ~ 0, 

which together with (8.17) contradicts (8.16). 
In the general case of a non-strict inequality in (8.14), consider for any 

c > 0 the function U g = U + ct, which obviously satisfies (8.16). Hence, by 
the previous case, we obtain 

i~f(u+ct) = inf (U+Et), 
n 8p n 

whence (8.15) follows by letting c -+ o. o 
THEOREM 8.11. (Strong parabolic minimum principle) Let (M, g, /1) be 

a connected weighted manifold, and I c ~ be an open interval. Let a non­
negative function U (t, x) E C 2 (I x M) satisfy in I x M the inequality 

au 
at :2': l:lp.u. 

If U vanishes at a point (t', x') E I x M then U vanishes at all points (t, x) E 

I x M with t ::; t'. 

Under the conditions of Theorem 8.11, one cannot claim that U (t, x) = 0 
for t > t' - see Remark 9.22 in Section 9.3. 

Note that the function u in Theorem 8.11 is a supersolution to the heat 
equation. Since u+const is also supersolution, one can state Theorem 8.11 as 
follows: if u is a bounded below supersolution then u (t', x') = inf u at some 
point implies u (t, x) = inf u for all t ::; t' and x. Equivalently, Theorem 8.11 
can be stated·as the strong parabolic maximum principle for subsolutions: 
if u is a bounded subsolution in I x M then u (t', x') = sup u at some point 
implies u (t, x) = sup u for all t ::; tf and x. 

PROOF. The main part of the proof is contained in the following claim. 

CLAIM. Let V be a chart in M and xo, Xl be two points in V such that the 
straight line segment between xc, Xl is also in V. If u is a function as in the 
hypotheses of Theorem 8.11 then 

u (to, xc) > 0 ==> u (tl, Xl) > 0 for all tl > to, 

assuming that to, tl E I. 

(8.18) 

For simplicity of notation, set to = O. By shrinking V, we can assume 
that V is relatively compact and its closure V is contained in a chart. Let 
r > 0 be so small that the Euclidean 2r-neighborhood of the straight line 
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segment [xo, Xl] is also in V. Let U be the Euclidean ball in V of radius r 
centered at Xo. By further reducing r, we can assume that also 

inf u (0, x) > 0. (8.19) 
xEU 

Setting ~ = t~ (Xl - Xo) we obtain that the translates U + t~ are all in V for 
any t E [0, tIl. Consider the following tilted cylinder (see Fig. 8.2) 

r = {(t, x) : ° < t < tI, X E U + t~}". 

i . ~-' . ~". ,~ ". 1 
,. ·_ .. ··Xl 'j 
.~, ...... 

v 

FIGURE 8.2. Tilted cylinder r. 

This cylinder is chosen so that the center of the bottom is (0, xo) while 
the center of the top is (tr, Xl). We will prove that, under condition (8.19), 
u is strictly positive in r, except for possibly the lateral surface of rj in 
particular, this will imply that u (h, Xl) > 0. 

To that end, construct a non-negative function v E C2 (I') such that 

av at ~ t:.p,v in r, (8.20) 

and 

v = ° on the lateral surface of r, and v > ° otherwise. (8.21) 

Assuming that such a function v exists, let us compare v and cu, where 
c > ° is chosen so small that 

infu(O,x) 2:csupv(O,x). 
xEU xEU 

Due to this choice of c, we have u 2: cv at the bottom of r. Since v = ° on 
the lateral surface of rand u is non-negative, we conclude that inequality 
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u 2:: cV holds on the whole parabolic boundary of r. The function u - e:v 
satisfies the hypotheses of Theorem 8.10, and we conclude by this theorem 
that u 2:: e:v in r. By (8.21), this implies that u is positive in r except for 
the lateral surface, which was to be proved. 

Assume for simplicity that Xo = 0 is the origin in the chart V. Let us 
look for v in the form 

v (t, x) = e-Ott f (Ix - ~tI2) , 
where 0 > 0 and function f are to be specified, and 1·1 stands for the 
Euclidean length of a vector. Note that (t, x) E r implies x - ~t E U, 
which means Ix - ~t12 < r2. Hence, to satisfy conditions (8.21), function 
f (.) should be positive in [0, r2) and vanish at r2. Let us impose also the 
conditions 

l' ::; 0 and f" 2:: 0 in [0, r2], (8.22) 
which will be satisfied in the final choice of f. Denoting by xl, ... , xn the 
coordinates in V and setting 

n 
2 " . . 2 w (t, x) := Ix - etl = L..,. (x~ - ~~t) , 

i=l 

we obtain, for (t, x) E r, 

~~ = _ae-at f (w) + e-at f' (w) 2ei (~it - xi) ::; _e-Ott (af (w) + G f' (w)) , 

where G is a large enough constant (we have used that the ranges of t and 
x are bounded, ~ is fixed, and f' ::; 0). 

Observe that, by (3.46), 

., f)2w ·8w 
b"iJ.w = g~J f)xif)xj + b~ f)xi ' 

where bi are smooth functions, which yields 

b"iJ.w = 2ii + 2bi (xi - eit) ::; G, 

where G is a large enough constant. Computing the gradient of w and using 
the positive definiteness of the matrix (gij) , we obtain 

2 ij f)w 8w ,~ (f)w) 2 lV'wlg = 9 f)xi f)x j 2:: c ~ f)xi = CW, 
~=l 

where c' and c = d /4 are (small) positive constants. Using the chain rule 
for b"iJ. (see Exercise 3.9) and (8.22), we obtain from the above estimates 

AiJ.v = e-at (1" (w) lV'wl! + I' (w) b"iJ.w) 2:: e-at (cwf" (w) + Gf' (w)) , 

which yields 

f)v 
8t - b"iJ.v::; _e-at (of (w) + Gf' (w) + cwl" (w)) , 
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where we have merged two similar terms Cf' (w). Now specify f as follows: 

f (w) = (r2 - w) 2 . 

Obviously, this function is smooth, positive in [0, r2), vanishes at r2, and 
satisfies (8.22). We are left to verify that, for a choice of a, 

af (w) + OJ' (w) + c:wf" (w) ~ 0 for all wE [0, r2], 

which will imply (8.20). Indeed, we have 

af (w) + Cf' (w) + c:wf" (w) = a (r2 - w)2 - 2C (r2 - w) + 2c:w 

= az2 
- 2 (0 + c) z + 2cr2

, 

where z = r2 - w. Clearly, for large enough a, this quadratic polynomial is 
positive for all real z, which finishes the proof of the Claim. 

The proof of Theorem 8.11 can now be completed as follows. Assuming 
u (t', x') = 0, let us show that u (t, x) = 0 for all (t, x) E I x M with t ~ t'. 
By the continuity of u, it suffices to prove that for t < t'. Since M is 
connected, it is possible to find a finite sequence {Xi} ~o so that Xo = x, 

Xk = x', and any two consecutive points Xi and Xi+! are contained in the 
same chart together with the straight line segment between them. 

t 

C( x') ---- ---- -- -----._- -- -- ---------1 
t3 ---- ---- ------------ -- ------- -- --- -- .. 

te - -- ----- --- ------- - -- - -~ 

tJ -- - - -- -------- ----- - - 'l 
Ct,x) ! 

t=to ---- ------ -. 

FIGURE 8.3. If non-negative supersolution u vanishes at 
(tf, x') then it vanishes also at any point (t, x) with t < t'. 

Choosing arbitrarily a sequence of times (see Fig. 8.3) 
I t = to < h < ... < tk = t , 

we can apply the above Claim: ifu(to,xo) =u(t,x) > o then also u (h,Xl) > 
o and, continuing by induction, u (tk' Xk) > 0, which contradicts the assump­
tion u (t', x') = O. 0 

The strong maximum/minimum principle has numerous applications. 
Let us state some immediate consequences. 
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COROLLARY 8.12. On a connected manifold (M,g,J..t), the heat kernel 
Pt (x, y) is strictly positive for all t > ° and x, y E M. 

PROOF. Assume that Pt' (x',y') = ° for some t' > 0, x',y' EM. Since 
the function u (t, x) = Pt (x, y') satisfies the heat equation (see Theorem 
7.20), we obtain by Theorem 8.11 that Pt (x, y') = ° for all 0 < t ::; t' and 
all x E M. Consider any function f E ego (M) such that f (y') -# O. By 
Theorem 7.13, we have 

1M Pt (x, y') f (x) dJ..t (x) --+ f (y') as t --+ 0, 

which, however, is not possible if Pt (x, y') == 0 for small t > O. 0 

Note that, by Example 9.10 below, if M is disconnected then Pt (x, y) = 0 
whenever x and y belong to different connected components of M. 

8.3.2. Super- and subharmonic functions. 

DEFINITION 8.13. Let a E JR. A function u E C2 (M) is called a­
superharmonic on M if it satisfies the inequality -b.J.!u+au 2: O. It is called 
a-subharmonic if -b..J.!u + au::; 0, and a-harmonic if -b..J.!u + au = O. 

Of course, in the latter case u E Coo (M) by Corollary 7.3. If a = 0 
then the prefix "a-" is suppressed, that is, u is superharmonic if b.J.!u ::; 0, 
subharmonic if b..J.!u ::; 0, and harmonic if b..J.!u = O. 

COROLLARY 8.14. (Strong elliptic minimum principle) Let M be a con­
nected weighted manifold and u be a non-negative a-superharmonic function 
on M, where a E R. If u (xo) = 0 at some point Xo E M then u (x) == O. 

PROOF. Consider function v (t, x) = eDl.tu (x). The condition 

-b.J.!u + au 2: 0 

implies that v is a supersolution to the heat equation in R x M, because 

av _ b.. v = aeatu - eatb. u > O. at J.! J.! -

If u (xo) = 0 then also v (t, xo) = 0 for any t, which implies by Theorem 8.11 
that v (t, x) == 0 and, hence, u = O. 0 

There is a direct "elliptic" proof of the strong elliptic minimum principle, 
which does not use the heat equation and which is simpler than the proof 
of Theorem 8.11 (see Exercise 8.4). 

COROLLARY 8.15. Let M be a connected weighted manifold. If u is a 
superharmonic function in M and u (xo) = inf u at some point Xo then 
u == inf u. If u is a subharmonic function in M and u (xo) = sup u as some 
point Xo then u == sup u. 

PROOF. The first , claim follows from Corollary 8.14 because the function 
u - inf u is non-negative and superharmonic. The second claim trivially 
follows from the first one. 0 
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COROLLARY 8.16. (Elliptic minimum principle) Let M be a connected 
weighted manifold and 0 be a relatively compact open subset of M with non­
empty boundary. If U E C (0) n C2 (0) is a superharmonic function in 0 
then 

infu = infu. 
IT an 

PROOF. Set m = infITu and consider the set 

s = {x E n : u (x) = m}. 

We just need to show that S intersects the boundary 80. Assuming the 
contrary, consider any point xES. Then x E 0 and, in any connected 
open neighborhood U C 0 of x, function u takes its minimal value at the 
point x. By Corollary 8.15, we conclude that u == m in U, which means 
that U C S and, hence, S is an open set. Since set S is also closed and 
non-empty, the connectedness of M implies S = M, which contradicts to 
SCOCM\M. 0 

A companion statement to Corollary 8.16 is the maximum principle for 
subharmonic functions: under the same conditions, if u is subharmonic then 

supu = supu. 
IT an 

Exercises. 

8.4. Let M be a connected weighted manifold and E, F be two compact subsets of M. 
Prove that, for any real 0: there is a constant C = C (0:, E, F) such that, for any non­
negative o:-superharmonic function u on M, 

infu < Cinfu. 
E - F 

8.5. (A version of the elliptic minimum principle) Let M be a non-compact connected 
weighted manifold and let u (t, x) E C 2 (M) be a superharmonic function. Prove that if 

lim sup u (Xlc) 2:: 0 (8.23) 
Ic-+oo 

for any sequence {Xlc} such that Xlc -+ 00 in M, then u (x) ~ 0 for all x E M. 

8.6. (A version of the parabolic minimum principle) Fix T E (0, +ooJ and consider the 
manifold N = (0, T) x M. We say that a sequence {(tic, Xlc)}:=l of points in N escapes 
from N if one of the following two alternatives takes place as k -+ 00; 

1. Xic -+ 00 in M and tic -+ t E [O,TJi 
2. Xlc -+ x E M and tk -+ O. 

Let u (t, x) E C2 (N) be a supersolution to the heat equation in N. Prove that if 

lim sup u (tic, Xk) ~ 0 
k-+oo 

for any sequence {(tic, XIc)} that escapes from N, then u (t, x) ~ 0 for all (t, x) E N. 

(8.24) 
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8.4. Stochastic completeness 

DEFINITION 8.17. A weighted manifold (M, g, p,) is called stochastically 
complete if the heat kernel Pt (x, y) satisfies the identity 

fMPdx,y)dP,(Y) = 1, (8.25) 

for all t > 0 and x EM. 

The condition (8.25) can also be stated as Pt 1 == 1. Note that in general 
we have 0 ~ Pt 1 ~ 1 (cf. Theorems 5.11 and 7.16). If the condition 
(8.25) fails, that is, Pt 1 =1= 1 then the manifold M is called stochastically 
incomplete. 

Our purpose here is to provide conditions for the stochastic completeness 
(or incompleteness) in various terms. 

8.4.1. Uniqueness for the bounded Cauchy problem. Fix 0 < 
T ~ 00, set 1= (0, T) and consider the Cauchy problem in I x M 

{ 
~~ = b./ku, in I x M, (8.26) 
u!t=o = f, 

where f is a given function from Cb (M). The problem (8.26) is under­
stood in the classical sense, that is, U E Coo (I x M) and u (t, x) -+ f (x) 
locally uniformly in x E M as t -+ O. Here we consider the question of the 
uniqueness of a bounded solution of (8.26). 

THEOREM 8.18. Fix a > 0 and T E (0,00]. For any weighted manifold 
(M, g, p,), the following conditions are equivalent. 

( a) M is stochastically complete. 
(b) The equation b./kv = av in M has the only bounded non-negative 

solution v = O. 
(c) The Cauchy problem in (0, T) x M has at most one bounded solu­

tion. 

REMARK 8.19. As we will see from the proof, in condition (b) the as­
sumption that v is non-negative can be dropped without violating the state­
ment. 

PROOF. We first assume T < 00 and prove the following sequence of 
implications 

-, (a) =? -, (b) =? -, (c) =? -, (a) , 

where -, means the negation of the statement. 
Proof of -, (a) =} -, (b). So, we assume that M is stochastically incom­

plete and prove that there exists a non-zero bounded solution to the equation 
-b./kV + av = O. Consider the function 

u (t, x) = Pt 1 (x) = fM Pt (x, y) dp, (y) , 
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which is Coo smooth, 0 ::; u ::; 1 and, by the hypothesis of stochastic incom­
pleteness, u ¢ 1. Consider also the function 

w(x) =RQ1(x) = 10
00 

e-Qtu(t,x)dt, (8.27) 

which, by Theorem 8.7 and Corollary 8.6, is Coo-smooth, satisfies the esti­
mate 

(8.28) 

and the equation 
-~JJ.w + o:w = 1. (8.29) 

It follows from u ¢ 1 that there exist x E M and t > 0 such that u (t, x) < l. 
Then (8.27) implies that, for this value of x, we have a strict inequality 
w(x) < 0:-1 . Hence, w ¢ 0:-1. 

Finally, consider the function v = 1 - o:w, which by (8.29) satisfies the 
equation ~JJ.v = o:v. It follows from (8.28) that 0 ::; v ::; 1, and W ¢ 0:-1 

implies v ¢ O. Hence, we have constructed a non-zero non-negative bounded 
solution to ~JJ.v = o:v, which finishes the proof. 

Proof of --, (b) * -, (c). Let v be a bounded non-zero solution to equation 
~J.Lv = o:v. By Corollary 7.3, v E Coo (M). Then the function 

u (t, x) = eQtv (x) (8.30) 

satisfies the heat equation because 

A at A at 8u 
uJJ.u = e uJJ.v = o:e V = 8t' 

Hence, u solves the Cauchy problem in lR+ x M with the initial condition 
u (0, x) = v (x), and this solution u is bounded on (0, T) x M (note that T is 
finite). Let us compare u(t,x) with another bounded solution to the same 
Cauchy problem, namely with Ptv (x). By Theorem 7.16, we have 

sup IPtvl ::; sup lvi, 
whereas by (8.30) 

sup lu (t, ')1 = eat sup Ivl > sup Ivl. 
Therefore, u ¢ Ptv, and the bounded Cauchy problem in (0, T) x M has 
two different solutions with the same initial function v. 

Proof of -, (c) =} -, (a). Assume that the problem (4.43) has two dif­
ferent bounded solutions with the same initial function. Subtracting these 
solutions, we obtain a non-zero bounded solution u (t, x) to (4.43) with the 
initial function f = O. Without loss of generality, we can assume that 
o < sup u ::; 1. Consider the function w = 1 - u, for which we have 
o ::; inf w < 1. The function w is a non-negative solution to the Cauchy 
problem (4.43) with the initial function f = 1. By Theorem 8.1 (or Corol­
lary 8.3), we conclude that w (t,') ~ Ptl. Hence, inf Pt 1 < 1 and M is 
stochastically incomplete. 
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Finally, let us prove the equivalence of (a), (b), (c) in the case T = 00. 

Since the condition (c) with T = 00 is weaker than that for T < 00, it 
suffices to show that (c) with T = 00 implies (a). Assume from the contrary 
that M is stochastically incomplete, that is, Pt1 ¢. 1. Then the functions 
UI = 1 and U2 = Ptl are two different bounded solutions to the Cauchy 
problem (4.43) in R+ x M with the same initial function f == 1, so that (a) 
fails, which was to be proved. 0 

Exercises. 

8.7. Prove that any compact weighted manifold is stochastically complete. 

8.8. Prove that Rn is stochastically complete (cf. Exercise 8.11). 

8.9. Prove that if Pt 1 (x) = 1 for some t > 0, x E M then Ptl (x) = 1 for all t > 0, x E M. 

8.10. Fix a > O. Prove that M is stochastically complete if and only if He"l == a-I. 

8.4.2. a-Super- and sub harmonic functions. We prove here con­
venient sufficient conditions for stochastic completeness and incompleteness 
in terms of the existence of certain a-super- and a-subharmonic functions 
(see Sections 8.3.2 for the definitions). 

THEOREM 8.20. Let M be a connected weighted manifold and K c 
M be a compact set. Assume that, for some a ~ 0, there exists an a­
superharmonic function v in M \ K such that v (x) ~ +00 as x ~ 00

2
. 

Then M is stochastically complete. 

PROOF. By enlarging K, we can assume v is defined also on aK and 
that v > ° in M \ K. Then v is also ,B-superharmonic in M \ K for any 
,B > a so we can assume a > 0. 

By Theorem 8.18, in order to prove that M is stochastically complete, it 
suffices to verify that any non-negative bounded solution M to the equation 
D./Lu = au is identical zero. Assume that ° :::; u :::; 1 and set 

m=maxu. 
K 

Then, for any E. > 0, we have 

E.V ~ 0 ~ u - m on aK. (8.31) 

By hypothesis v (x) ~ +00 as x ~ 00 and Exercise 5.18, the set {v < E.-I} 
is relatively compact; therefore, there exists a relatively compact open set 
n c M that contains {v < E.-I} and K. Compare the functions E.V and u-m 
in n \ K. By the choice of n, we have v ~ E.-Ion an and, consequently, 

E.V ~ 1 ~ u - m on an. 
In n \ K, the function €V satisfies the equation 

-D./L (ev) + a (E.v) = 0, 

2See Definition 5.18. 

(8.32) 
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whereas 
-6.Jl. (U - m) + a (u - m) = -am ~ 0, 

whence it following that the function €v - (u - m) is superharmonic in n \ K. 
By (8.31) and (8.32), we have cv 2: u-m on the boundary a (n \ K), which 
implies by Corollary 8.16 that €v 2: u - m in n \ K. Exhausting M by a 
sequence of sets n, we obtain that cv 2: u - m holds in M\ Kj finally, letting 
c ~ 0, we obtain u ~ m in M \ K. 

Hence, m is the supremum of u on the entire manifold M, and this 
supremum is attained at a point in K. Since 6.p.u = au 2: 0, that is, 
the function u is subharmonic, Corollary 8.14 implies that u == m on M. 
The equation 6.p.u = au then yields m = 0 and u = 0, which was to be 
proved. 0 

THEOREM 8.21. Let M be a connected weighted manifold. Assume that 
there exists a non-negative superharmonic function u on M such that u =1= 

const and u E Ll (M). Then M is stochastically incomplete. 

PROOF. Let us first construct another non-negative superharmonic func­
tion v on M such that v E Ll (M) and 6.Jl.v =1= O. Fix a point Xo EM such 
that 'Vu (xo) f. 0 and set c = u (xo). Then the function U := min (u, c) is 
not differentiable at Xo. 

Consider the function Ptu. Since u is superharmonic, we have by Exer­
cise 7.29 

which together with 

yields 

Therefore, 

that is, 
a D~ 
atrtU ~ o. 

(8.33) 

(8.34) 

Since Ptu is a smooth function for any t > 0, and u is not, we see that there 
is t > 0 and x E M such that 

:tPtU (x) < O. (8.35) 

Set v = Ptu and observe that, by (8.33), (8.34), and (8.35), 

v E Ll (M), -6.Jl.v 2: 0 and D..Jl.v =1= O. 

Therefore, there exists a non-negative function f E Cgo (M) such that f =f:. 0 
and -D..Jl.v 2: f on M. Since v E Wl~c (M) and v satisfies for any a > 0 the 
inequality 
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Theorem 8.4 yields v ;::: Raj a.e.(cf. Remark 8.5). Since Raj is smooth 
by Theorem 8.7, we obtain v ;::: Raf pointwise. Letting a -+ ° and using 
(8.10), we obtain, for all x E M, 

v (x) ;::: 10
00 

Pt! (x) dt = 10
00 

IMPt (x, y) f (y) dp, (y) dt. 

Integrating in x and using the condition v E Ll (M), y.re obtain 

1M 10
00 

IM PtCx , y) f (y) dp, (y) dtdp, (x) < 00, 

whence it follows by interchanging the order of integration that 

10
00 

1M Pt 1 (y) f (y) dp, (y) dt < 00. 

However, if M is stochastically complete and, hence, Pt 1 == 1, this integral 
should be equal to 

10
00 

(1M f (y) dp, (y)) dt = 00. 

This contradiction finishes the proof. o 
REMARK 8.22. The hypothesis u:t const cannot be dropped because it 

can happen that 1 E Ll (M) and M is stochastically complete, for example, 
if M is a compact manifold (see Exercise 8.7). 

THEOREM 8.23. Assume that, for some a > 0, there exists a non-zero 
non-negative bounded a-subharmonic function v on M. Then M is stochas­
tically incomplete. 

PROOF. By hypothesis, we have D.p.v ;::: av and, without loss of gener­
ality, we can assume that 0 ~ v ~ 1. Let {Ok} be a compact exhaustion 
sequence in M. Consider in each Ok the following weak Dirichlet problem 

{ 
-D.p.Uk + aUk = 0 
Uk = 1 mod WJ (Ok) . (8.36) 

Since 1 E Wl (Ok), this problem has a unique solution Uk, by Exercise 4.29 
(or by Theorem 4.5). We will show that 

v ~ Uk+l ~ Uk ~ 1 (8.37) 

(see Fig. 8.4), which will imply that the sequence {Uk} has a limit U that, 
hence, satisfies the equation D.p.u = au on M and v ~ U ~ 1. The latter 
means that u is bounded but non-zero, which implies by Theorem 8.18 that 
M is stochastically incomplete. 

To prove (8.37), observe that function v belongs to Wl (Ok) and obvi­
ously satisfies the conditions 

{ 
-D.p.v + av ~ 0, (8.38) 
v ~ 1. 
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1 

FIGURE 8.4. FUnctions v, Uk, Uk+! 

Comparing (8.36) and (8.38) and using Corollary 5.14, we conclude v ~ Uk. 

Since the constant function 1 satisfies the condition 

-~Jk1 + a1 2:: 0, 

the comparison with (8.36) shows that Uk ~ 1. Of course, the same applies 
also to uk+!. Noticing that Uk+! satisfies in .ok the conditions 

{ 
-~JkUk+l + aUk+l = 0, 
Uk+! ~ 1, 

and comparing them to (8.36), we obtain Uk+l ~ 
proof. 

Exercises. 

8.11. Prove the following claims. 

Uk, which finishes the 
o 

(a) Rn is stochastically complete for all n ~ 1. (cf. Exercise 8.8). 
(b) Rn 

\ {O} is stochastically complete if n ~ 2, whereas ]Rl \ {O} is stochastically 
incomplete. 

(c) Any open set n c Rn such that n:l Rn
, is stochastically incomplete. 

8.12. Let n be an open subset of Rn and h be a positive smooth function in n such that 

{ 

t!.h = 0 in n, 
h(x) -t 0 as x -t an, 
h (x) = eOO"'!) as Ixl-t 00 

Prove that PP h = h for all t > O. 

8.13. Let I be a non-negative superharmonic function on M. 

(a) Prove that the function 

v (x) := lim HI (x) 
t-+oo 

(8.39) 

satisfies the identity Hv = v for all t > 0 and, hence, is harmonic on M (the limit 
in (8.39) exists and is finite because by Exercise 7.29 the function HI (x) is finite 
and decreases in t). 

(b) Assume in addition that manifold M is stochastically complete and I is bounded. 
Prove that, for any non-negative harmonic function h on M, the condition h ~ f 
implies h ~ v. 
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REMARK. The maximal non-negative harmonic function that is bounded by f is called the 
largest harmonic minorant of f. Hence, the function v is the largest harmonic minorant 
of f. 

8.14. Set v (x) = limt-+oo Pt1 (x). Prove that either v == 0 or supv = 1. Prove also that 
either v == 1 or infv = O. 

8.15. Let n be the exterior of the unit ball in ]R", n 2: 2. Evaluate limt--+oo pF'l (x). 

8.4.3. Model. manifolds. Let (M, g, J.L) be a weighted model based on 
M = Rn as it was defined in Section 3.10. This means that, in the polar 
coordinates (r, e) in Rn , the metric g and measure J.L are expressed as follows: 

g = dr2 + 'if! (r)2 g§n-l, (8.40) 

where 'if! (r) is a smooth positive function on (0, +(0), and 

dJ.L = T (r) 'if! (rt-1 drde, (8.41) 

where de is the Riemannian measure on §n-l and T (r) is a smooth positive 
function on (0, +(0). Recall that 

S (r) := Wn T (r) 'if!n-l (r) 

is the area function of M, and 

V (r) := J.L (Br) = for S (t) dt 

is the volume function of M. By (3.93), the weighted Laplace operator of 
(M, g, J.L) has in the polar coordinates the following form: 

a2 Sf (r) a 1 
f:J.J.J. = ar2 + S (r) ar + 'if!2 (r) f:J.§n-l . (8.42) 

It is important to observe that, away from a neighborhood of 0, the 
functions 'if! (r) and T (r) can be chosen arbitrarily as long as they are smooth 
and positive. Near 0 some care should be taken to ensure that the metric 
g, defined by (8.40), extends smoothly to the origin. If 'if! (r) and T (r) are 
prescribed for large r then it is always possible to extend them to all r > 0 
so that 'if! (r) = rand T (r) = 1 for small enough r. This ensures that the 
metric and measure in a neighborhood of the origin are exactly Euclidean 
and, hence, can be extended to the origin. 

It follows from this observation that any function S (r) can serve as 
the area function for large r, as long as S (r) is smooth and positive. Fur­
thermore, setting T == 1, we can realize S (r) as the area function of a 
Riemannian model. 

Our main result here is the following criterion of the stochastic com­
pleteness of the model manifold. 
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THEOREM 8.24. The weighted model (M, g, J.t) as above is stochastically 
complete if and only if 

JOO V (r) 
S(r)dr=oo. (8.43) 

For example, if V (r) = exp rCi. for large r then M is stochastically com­
plete if a ~ 2 and incomplete if a > 2. The manifolds ]Rn and lHIn with 
their canonical metrics satisfy (8.43) because S (r) = wnrn- 1 for ]Rn and 
S (r) = Wn sinhn- 1 r for lHIn (see Section 3.10). Hence, both ]Rn and lHIn are 
stochastically complete. Note that §n is stochastically complete by Exercise 
8.7. 

PROOF. Let us show that (8.43) implies the stochastic completeness of 
M. By Theorem 8.20, it suffices to construct a 1-superharmonic function 
v = v (r) in the domain {r > 1} such that v (r) --t +00 as r --t 00. 

In fact, we construct vasa solution to the equation !:l.J1.v = v, which in 
the polar coordinates has the form 

" S', v + SV -v = O. (8.44) 

So, let v be the solution of the ordinary differential equation (8.44) on 
[1, +00) with the initial values vel) = land v'(1) = O. The function vCr) 
is monotone increasing because the equation (8.44) after multiplying by Sv 
and integrating from 1 to R, amounts to 

Svv'(R) = lR S (v'2 + v2) dr ~ O. 

Hence, we have v ~ 1. 
Multiplying (8.44) by S, we obtain 

(Sv')' = Sv, 
which implies by two integrations 

vCR) = 1 + lR S~~) l r 

S(t)v(t)dt. 

Using v ~ 1 in the right hand side, we obtain, for R > 2, 

vCR) > rR ~ rR 
S(t)dt = rR 

(V(r) - V(1»dr > c rR 
V(r)dr, 

- Jl S(r) Jl Jl S(r) - J2 S(r) 

where c = 1 - ~m > O. Finally, (8.43) implies v (R) --t 00 as R --t 00. 
Now we assume that 

JOO V (r) 
S(r)dr<oo, (8.45) 

and prove that M is stochastically incomplete. By Theorem 8.21, it suffices 
to construct on M a non-negative function u E Ll (M) such that 

-!:l.J1.u = f, (8.46) 
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where where I E Cf) (M), I ~ 0 and I ¢. O. Both functions u and I 
will depend only on r so that (8.46) in the domain of the polar coordinates 
becomes 

S' 
u" + SUI = f. (8.47) 

Choose I (r) to be any non-negative non-zero function from Cf) (1, 2), and 
set, for any R> 0, 

t)Q dr r 
u(R) = JR S(r) Jo S(t)/(t)dt. (8.48) 

Since I is bounded, the condition (8.43) implies that u is finite. It is easy 
to see that u satisfies the equation 

(Su')' = -SI, 

which is equivalent to (8.47). The function u (R) is constant on the interval 
0< R < 1 because I (t) = 0 for 0 < t < 1. Hence, u extends by continuity 
to th~ origin and satisfies (8.46) on the whole manifold. 

We are left to verify that u E L1 (M). Since I (t) = 0 for t > 2, we have 
for R > 2 

u (R) = C koo 

Sd~) 
where C = fg S (t) I (t) dt. Therefore, 

f udJ-t = f
2

00 

u (R) S (R) dR 
J{R>2} J2 

which gives u E L1 (M). 

C 100 (koo 

s~:)) S (R) dR 

C 100 (I T 

S (R) dR) Sd~) 
fOO V (r) 

< C J2 S (r) dr < 00, 

o 
EXAMPLE 8.25. Let us show that, for any continuous positive increasing 

function F (r) on (0, +(0) such that F (r) -t 00 as r -t 00, there exists a 
stochastically complete model M for which 

F(r) -1::; V(r)::; F(r), (8.49) 

for large enough r. Indeed, for large r, the volume function V (r) of a 
weighted model M may be any smooth positive increasing function. Choose 
first any such function V (r) satisfying 

F (r) - 1/2::; V (r) ::; F (r), (8.50) 
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and then modify V (r) as follows. Select a sequence of disjoint intervals 
(ak' bk) such that ak --t 00 and 

F (bk) = F (ak) + 1/2. (8.51) 

Now reduce V (r) on each interval (ak' bk) to create inside (ak' bk) the points 
with very small derivative V' (r) while keeping the values of V (r) at the ends 
and the monotonicity, which together with (8.50) and (8.51) will ensure 
(8.49) for the modified V (see Fig. 8.5). 

~ ___ F(r) 

V(r) 
~_-- F(r) _'h 

~_--F(r)-l 

modified VCr) 

r 

FIGURE 8.5. Modification of function V (r) on the interval (ak' bk). 

By doing so, we can make the value of integral J:: ~y:) dr arbitrarily 
large, say, larger than 1, which implies 

/

00 V (r) 
V' (r) dr = 00. 

Therefore, M is stochastically complete by Theorem 8.24. 

Exercises. 

8.16. (A model with two ends) Set M = R x §n-l (where n ~ 1) so that every point 
x E M can be represented as a couple (r, ()) where r E R and () E §n-l. Fix smooth 
positive functions "p (r) and Y (r) on R, and consider the Riemannian metric on M 

g = dr2 +"p2 (r)&,,-l, 

and measure J.L on (M, g) with the density function Y. Define the area function S (r) by 

S (r) = Wn Y (r) 1jJn-l (r) 

and volume function V (R) by 

so that V (R) ~ O. 

V(R)= r S(r) dr, 
i[O,R] 

(a) Show that the expression (8.42) for 1::1/> remains true in this setting. 



NOTES 

(b) Prove that if function V (r) is even then the following are equivalent: 
(i) (M,g,l-£) is stochastically complete. 
(ii) There is a non-constant non-negative harmonic function u E L1 (M,I-£). 
( 
... ) Joo V(r) d nz S(r) r = 00. 

(c) Let S (r) satisfy the following relations for some a > 2: 

S(r) _ { exp(r
a
), r > 1, 

- exp(-Irl a
), r <-l. 
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Prove that (M, g, 1-£) is stochastically incomplete. Prove that any non-negative har­
monic function u E L1 (M, p.) is identical zero. 

Notes 

The material of Sections 8.1 and 8.2 extends the Markovian properties of Chapter 5. 
The proofs of the parabolic maximum/minimum principles (Theorems 8.10 and 8.11) 

are taken from [243]. 

Theorems 8.18, 8.20, 8.23 are due to Khas'minskii [223] (see also [93], [155]), Theo­

rems 8.21, 8.24 were proved in [142] (see also [155]). 



CHAPTER 9 

Heat kernel as a fundamental solution 

Recall that the heat kernel was introduced in Chapter 7 as the inte­
gral kernel of the heat semigroup. Here we prove that the heat kernel can 
be characterized as the minimal positive fundamental solution of the heat 
equation. This equivalent definition of the heat kernel is frequently useful 
in applications. 

9.1. Fundamental solutions 

DEFINITION 9.1. Any smooth function u on lR+ x M satisfying the fol-
lowing conditions 

{ 
~~ = AJ1.u in lR+ x M, 

1)1 

u (t,') ---78y as t -t 0, 
(9.1) 

is called a fundamental solution to the heat equation at the point y. If in 
addition u 2 0 and, for all t > 0, 

1M u (t, .) dJ1. ::; 1, 

then u is called a regular fundamental solution. 

(9.2) 

As it follows from Theorem 7.13, the heat kernel Pt (x, y) as a function 
of t, x is a regular fundamental solution at y. 

The following elementary lemma is frequently useful for checking that a 
given solution to the heat equation is a regular fundamental solution. 

LEMMA 9.2. Let u (t~ x) be a smooth non-negative function on lR+ x M 
satisfying (9.2). Then the following conditions are equivalent: 

1)1 
(a) u (t,.) ---78y as t -t O. 
(b) For any open set U containing y, 

iuU(t")dJ1.-t1 ast-tO. 

(c) For any f E Cb (M), 

1M u (t, .) f dJ1. -+ f (y) as t -t O. 
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(9.3) 

(9.4) 
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PROOF. The implication (c) => (a) is trivial because u (t,·) ~ 8y is 
equivalent to (9.4) for all f E 1) (M). 

(a) => (b). Let f E 1) (U) be a cutoff function of the set {y} in U. Then 
(9.4) holds for this f. Since f (y) = 1 and 

1M u (t,·) f dp, s i u (t,·) dp, s 1, 

(9.3) follows from (9.4). 

(b) => (c). For any open set U containing y, we have 

1M u(t,x)f(x)dp,(x) = IM\U u(t,x)f(x)dp,(x) 

+ i u (t, x) (f (x) - f (y)) dp, (x) 

+f(y) i u(t,x)dp,(x). 

The last term here tends to f (y) by (9.3). The other terms are estimated 
as follows: 

r u(t,x)f(x)dp, ssuplfl r u(t,x) dp, (x) (9.5) 
JM\U JM\U 

and 

Ii u (t, x) (f (x) - f (y)) dP,1 < sup If (x) - f (y)1 r u (t, x) dp, (x) 
xEU Ju 

< sup If (x) - f (y)l. (9.6) 
xEU 

Obviously, the right hand side of (9.5) tends to 0 as t -+ 0 due to (9.2) 
and (9.3). By the continuity of f at y, the right hand side of (9.6) can be 
made arbitrarily small uniformly in t by choosing U to be a small enough 
neighborhood of y. Combining the above three lines, we obtain (9.4). 0 

REMARK 9.3. As we see from the last part of the proof, (9.4), in fact, 
holds for arbitrary f E LOO (M) provided f is continuous at the point y. 

The next lemma is needed for the proof of main result of this section -
Theorem 9.5. 

LEMMA 9.4. Let u (t, x) be a non-negative smooth function on R+ x M 
1)1 

such that u (t,·) ---+ 8y as t -+ O. Then, for any open set n ~ M and any 
f E eben), 

r { f (y) if YEn, 
Jnu(t,x)f(x)dp,(x)-+. 0, 'ifYEM\n, (9.7) 

as t -+ o. 
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REMARK. Extend f to M by setting f = ° outside n. Then in the both 
cases in (9.7), f is continuous at y. Hence, (9.7) follows from Lemma 9.2 
and Remark 9.3, provided u satisfies (9.2). However, we need (9.7) without 
the hypothesis (9.2), which requires a more elaborate argument. 

V' 
PROOF. If f E V (0) then, by hypothesis u (t,·) --+ ~y, we have (9.4), 

which implies (9.7). 
Representing f E Cb (0) as f = f+ - f-, it suffices to prove (9.7) for 

non-negative f. By scaling f, we can assume without loss of generality that 

° ::; f ::; 1. 
Let us first prove (9.7) for y E M\O. Let"p E V (M) be a cutoff function 

of 0 in M \ {y} (see Fig. 9.1). 

-M 

FIGURE 9.1. Functions f and "p. 

Then f ::; "p,whence it follows that 

in u(t,·)fdI-LS in u(t,·)"pdl-L--*"p(y)=Oast--*O, 

which implies 

in u (t,·) f dl-L --* O. 

Assume now yEO and set f (y) = a. By the continuity of f at y, for 
any c > 0 there exists an open neighborhood U <s 0 of y such that 

a-c<f<a+c inU. 

Let tp be a cutoff function of {y} in U and "p be a cutoff function of U in 0 
so that 

(a - c) tp sf::; (a + c)"p in U. 

M---:c±:7~~_ ............. _r ........ :_! ___ ~_~_(....;:;;..-_f_! __ 
y 

FIGURE 9.2. Functions f, tp,,,p. 
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Therefore, we have 

(a - c:) fu u (t,·) <pdp, ~ fu u (t,·) f dp, ~ (a + c) in u (t,') 'lj;dp,. 

Passing to the limit as t -;. 0, we obtain 

limsup ( u (t,·) f dp, ~ (a + c) 'lj; (y) = a + c (9.8) 
HO lu 

and 

liminf ( u (t,') f dp, "2 (a - c:) <p (y) = a - c. 
t-+O lu 

Let us show that 

{ u(t,·)fdp,-;.O. 
lo\U 

(9.9) 

(9.10) 

Indeed, let V <E U be an open neighborhood of y. Since n \ V is a relatively 
compact open set and y ~ n \ V, we obtain by the first part of the proof 
that 

whence (9.10) follows. 
Finally, combining together (9.8), (9.9), (9.10) and letting £ -;. 0, we 

obtain in u (t, .) f dp, -;. a = f (y) as t -;. O. 

o 
The next theorem provides a characterization of the heat kernel, which 

can serve as an alternative definition. 

THEOREM 9.5. For any y E M, the heat kernel Pt (x, y) is the minimal 
non-negative fundamental solution of the heat equation at y. 

PROOF. Let u (t, x) be another non-negative fundamental solution at y, 
and fix s > O. The function t,x t-+ u (t + s,x) satisfies the heat equation in 
lR+ x M and, hence, u (t + 8, x) can be considered as a non-negative solution 
to the Cauchy problem in ~+ x M with the initial function f (x) = u (s, x). 
Since u is a smooth function, we have f E Lroc (M) and 

L2 
u(t+s")~f ast-;.O. 

By Theorem 8.1, we conclude that, for all t > 0 and x E M, 

u (t + s, x) "2 Pd (x) = Lpt (x, z) u (s, z) dp, (z). (9.11) 

Fix now t > 0, x E M and choose an open set 0 <s M containing y. Then 
Pt (x,·) E Cb (0) and, by Lemma 9.4, 

in Pt (x, z) u (s, z) dp, (z) -;. Pt (x, y) as s -;. O. 
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Hence, letting s -+ 0 in (9.11), we obtain u (t, x) ~ Pt (x, y), which was to 
be proved. 0 

COROLLARY 9.6. Let (M, g, /-l) be a stochastically complete weighted 
manifold. If u (t, x) is a regular fundamental solution at a point y EM, 
then u (t, x) == Pt (x, y). 

PROOF. By Theorem 9.5, we have u (t, x) ~ Pt (x, y), which implies 

1 ~ 1 u (t, x) d/-l (x) ~ 1 pt{x, y) d/-l (x) = 1, MM. 
where in the last part we have used the stochastic completeness of M. We 
conclude that all the inequalities above are actually equalities, which is only 
possible when u (t, x) = Pt (x, y). 0 

The next theorem helps establishing the identity of a fundamental so­
lution and the heat kernel using the "boundary condition", which may be 
useful in the case of stochastic incompleteness. 

THEOREM 9.7. Let u (t, x) be a non-negative fundamental solution to the 
heat equation at y E M. If u (t, x) ~ 0 as x -+ 00 where the convergence is 
uniform in t E (0, T) for any T > 0, then u (t, x) == Pt (x, y). 

REMARK 9.8. The hypothesis that u (t, x) is non-negative can be relaxed 
to the assumption that 

lim sup u (tk, Xk) ~ 0, 
k-+oo 

(9.12) 

for any sequence (tk' Xk) such that tk -+ 0 and Xk -+ x E M. Indeed, 
by the maximum principle of Exercise 8.6, (9.12) together with the other 
hypotheses implies u ~ O. 

PROOF. By Theorem 9.5, we have u (t, x) ~ Pt (x, y) so that we only 
need to prove the opposite inequality. Fix some s > 0 and notice that 
the function v(t,x) = u(t+s,x) solves the heat equation with the initial 
function f (x) = v (0, x) = u (s, x). Since v (t, x) ~ 0 as x -+ 00, we obtain 
by Corollary 8.2 that v(t,x) = Ptf(x) that is, 

u (t + s, x) = Ptf (x) = fM Pt (x,·) u (s,·) d/-l. 

Let {Ok}:'l be a compact exhaustion sequence in M. For any k, we have 

u(t+s,x)- r pt{x,·)u(s,·)d/-l r Pt(x,,)u(s,.)d/-l 
ink iM\nk 

< sup u (s,·) r Pt (x,·) d/-l. 
M\nk iM\nk 

Since the total integral of the heat kernel is bounded by 1 and 

sup sup u (s, z) -+ 0 as k -+ 00, 
sE(O,T) zEM\nk 
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we see that, for any E > 0 there is k so big that, for all s E (0, T), 

u(t+s,x)- { pdx,·)u(s,·)dp,5:.E. 
10k 

Letting here s -t 0 and applying Lemma 9.4 in Ok with function f = Pt (x, .), 
we obtain 

u (t, x) - pdx, y) 5:. E. 

Since E > 0 is arbitrary, we conclude u(t,x) 5:. Pt (x,y), which was to be 
proved. 0 

EXAMPLE 9.9. By Lemma 1.1, the Gauss-Weierstrass function 

Pt (x, y) = (4,,~)"/2 exp ( Jx :;/1') (9.13) 

is a regular fundamental solution of the heat equation in jRn. Since jRn is 
stochastically complete, we conclude by Corollary 9.6 that Pt (x, y) is the 
heat kernel in jRn. Alternatively, this can be concluded by Theorem 9.7 
because Pt (x, y) -t 0 as x -t 00 uniformly in t (cf. Exercise 1.5). Yet 
another proof of the fact that Pt (x, y) is the heat kernel in jRn was given in 
Example 4.12. 

EXAMPLE 9.10. For any weighted manifold (M, g, p,) and an open set 
OeM, denote as before by pp (x, y) the heat kernel in (0, g, p,). Extend 
pp (x, y) to all x, y E M by setting it to 0 if either x or y is outside O. Let 
us show that if 01 and 02 are two disjoint open sets and 0 = 0 1 U O2 then 

Po _ pOl + p
0 2 

t - t t· (9.14) 

Indeed, if y E 0 1 thenpfl (x, y) is a fundamental solution not only in 0 1 but 
also in 0 because, being identical zero in O2 , it satisfies the heat equation also 
in O2 • Therefore, by the minimality of pp, we conclude pp (x, y) 5:. pfl (x, y). 
On the other hand, since 01 C 0, we have the opposite inequality by Exercise 
7.40. Hence, 

pp (x, y) = pfl (x, y) , 

which implies (9.14) becausepf2 (x,y) = O. Similarly, (9.14) holds ify E O2 . 

The identity (9.14) implies that Pt (x, y) = 0 if the points x, y belong 
to different connected components of M (assuming, of course, that M is 
disconnected). Indeed, if x is contained in a connected component 0 1 and 

- 0 O2 := M \ 0 1 then y E 02 and, hence, Pt ;. (x, y) = 0 for i = 1,2, whence 

Pt (x, y) = pfl (x, y) + pf2 (x, y) = o. 

9.2. Some examples 

We give here some examples of application of the techniques developed 
in the previous sections. 
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9.2.1. Heat kernels on products. Let (X,gX,f..Lx) and (Y,gy,f..LY) 
be two weighted manifold and (M, g, f..L) is their direct (see Section 3.8). 
Denote by pf and pi the heat kernels on X and Y, respectively. 

THEOREM 9.11. Assume that (M, g, f..L) is stochastically complete. Then 
the heat kernel Pt on M satisfies the identity 

Pt ((x, y), (x', yl)) = pf (x, x') pi (y, v') , (9.15) 

fOT all t > 0 and x, x' EX, y, y' E Y. 

The statement is true without the hypothesis of stochastic completeness, 
but the proof of that requires a different argument (see Exercise 7.41). 

PROOF. Denote by .6.x and .6.y the Laplace operators on X and Y, 
respectively. Then the Laplace operator .6./-10 on M is given by 

.6./-ioU = .6.xu + .6.yu, 

where u (x, y) is a smooth function on M, and .6.x acts on the variable x, 
.6.y acts on the variable y (see Section 3.8). 

Fix (x', V') E M and prove that the function 

u (t, (x, V)) = pf (x, x') pi (y, v') 

is a regular fundamental solution at (x', y'), which will imply (9.15) by Corol­
lary 9.6. 

Indeed, the heat equation for u is verified as follows: 

au 
at 

a x ( ') y ( ') x ( ') a y ( ') = 8tPt x, x Pt y, Y + Pt x, x atPt y, y 

= .6.x pf (x, x') pi (y, v') + pf (x, x') .6.ypi (y, v') 
= (.6.x + .6.y) u = .6./-ioU' 

The integral of u is evaluated by 

L u (t,') df..L = iMPf (-, x') df..Lx iM Pi (-, v') dp,y ~ 1. 

To check the condition (9.3) of Lemma 9.2, it suffices to take the set U eM 
in the form U = V x W where V c X and W c Y. If (X',y') E U then 
x' E V and y' E W, which implies 

as t -+ O. Hence, by Lemma 9.2, u is a regular fundamental solution at 
(x', V'). 0 
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9.2.2. Heat kernels and isometries. We use here the notion of isom­
etry of weighted manifolds introduced in Section 3.12. 

THEOREM 9.12. Let J : M ---+ M be an isometry of a weighted manifold 
(M, g, J..£). Then the heat kernel of M is J -invariant, that is, for all t > 0 
and x,y EM, 

pt(Jx, Jy) = Pt (x, y) 

See also Exercise 7.24 for an alternative proof. 

(9.16) 

PROOF. Let us first show that the function u (t, x) = Pt (Jx, Jy) is a 
fundamental solution at y. Indeed, by Lemma 3.27, for any smooth function 
fonM, 

(Ap.f) (Jx) = Ap. (f (Jx». 
Applying this for f = Pt (', Jy), we obtain 

au a 
at = atPt (Jx, Jy) = (Ap.pt) (Jx, Jy) = Ap.u, 

so that u solves the heat equation. 
By Lemma 3.27, we have the identity 

L f (Jx) dJ.L (x) = 1M f (x) dJ.L (x), 

for any integrable function f. Hence, for any cp E V (M), 

1M u(t,x) cp (x) dJ.L (x) lM Pt (JX,Jy)cp(x)dJ.L(x) 

lM Pt (x, Jy) cp (J-1x) dJ.L (x). 

(9.17) 

Since Pt (x, Jy) is a fundamental solution at Jy, the last integral converges 
as t ---+ 0 to 

(cp 0 J-1) (Jy) = cp (y), 

which proves that u (t, x) .!!..;. 8y. Hence, u (t, x) is a non-negative funda­
mental solution at y, which implies by Theorem 9.5 

u(t,x) ~pdx,y), 

that is, 
Pt (Jx, Jy) ~ Pt (x, y) . 

Applying the same argument to J-1 instead of J, we obtain the opposite 
inequality, which finishes the proof. 0 

EXAMPLE 9.13. By Exercise 3.46, for any four points x, y, x', y' E mrn 
such that 

d (x', yl) = d (x, y) , 
there exists a Riemannian isometry J : JH[n ---+ JH[n such that J x' = x and 
Jy' = y. By Theorem 9.12, we conclude 

pt{ x' ,yl) = Pt (x, y) . 
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Hence, Pt (x, y), as a function of x, y, depends only on the distance d (x, y). 

9.2.3. Heat kernel on model manifolds. Let (M, g, Jl) be a weighed 
model as in Sections 3.10 and 8.4.3. That is, M is either a ball Bro = 
{Ixl < ro} in Rn or M = Rn (in this case ro = 00), and the metric g and 
the density function of Jl depend only on the polar radius. Let S (r) be the 
area function of (M, g, Jl) and Pt (x, y) be the heat kernel. 

Let (M, g, ji) be another weighted model based on the same smooth 
manifold M, and let S (r) and Pt (x, y) be its area function and heat kernel, 
respectively. 

THEOREM 9.14. If S (r) = S (r) then Pt (x, 0) = Pt (y, 0) for all x, y E M 
such that Ixl = IYI· 

Note that the area function S (r) does not fully identify the structure of 
the weighted model unless the latter is a Riemannian model. Nevertheless, 
Pt (x, 0) is completely determined by this function. 

PROOF. Let us first show that Pt (x, 0) = Pt (y, 0) if Ixl = Iyl. Indeed, 
there is a rotation J of Rn such that Jx = Jy and JO = O. Since J is 
an isometry of (M, g, Jl), we obtain by Theorem 9.12 that Pt is J-invariant, 
which implies the claim. 

By Lemma 9.2, the fact that a smooth non-negative function u (t, x) on 
lR+ x M is a regular fundamental solution at 0, is equivalent to the conditions 

ou 
ot = !:J.J.l.u , 

1M u (t, x) dJl (x) ~ 1, (9.18) 

{ u(t,x)dJl(x)-tl ast-tO, 
lB" 

for all 0 < € < roo The heat kernel Pt (x, 0) is a regular fundamental solution 
on (M, g, Jl) at the point 0, and it depends only on t and r = Ixl so that we 
can write Pt (x, 0) = u (t, r). 

Using the fact that u does not depend on the polar angle, we obtain 
from (3.93) 

02u Sf (r) OU 
!:J.J.l.u = or2 + S (r) or' 

For 0 < € < ro, we have by (3.86), (3.88), (3.91) 

{ udJl = ~ r { u (t, r) S (r) dOdr = r u (t, r) S (r) dr. 1Be Wn 10 lsn-l 10 
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Hence, we obtain the following equivalent form of (9.18): 

au a2u Sf (r) au 
at = ar2 + S(r) ar' 

lTou(t,r)S(r)dr ~ 1, (9.19) 

leU(t,r)s(r)dr~1 ast~O. 

Since by hypothesis S (r) = S (r), the conditions (9.19) are satisfied also 
with S replaced by 5, which means that u (t, r) is a regular fundamental 
solution at 0 also on the manifold (M, g, Ji). By Theorem 9.5, we conclude 
that u (t, Ixl) ~ Pt (x, 0), that is, 

Pt (x, 0) ~ Pt (x, 0) . 

The opposite inequality follows in the same way by switching Pt and fit, 
which finishes the proof. 0 

9.2.4. Heat kernel and change of measure. Let (M, g, h) be a 
weighted manifold. Any smooth positive function h on M determines a 
new measure Ji on M by 

(9.20) 

and, hence, a new weighted manifold (M, g, Ji). Denote by Pt and fit respec­
tively the heat semigroup and the heat kernel on (M, g, Ji). 

THEOREM 9.15. Let h be a smooth positive function on M that satisfies 
the equation 

ilf.J.h+ ah = 0, (9.21) 

where a is a real constant. Then the following identities holds 

6.jl = ~ 0 (6.f.J. + aid) 0 h, (9.22) 

- t 1 
Pt = eOt - 0 Pt 0 h, 

h 
(9.23) 

- ( ) Ott Pt(x,y) 
Pt x,y =e h(x)h(y)' (9.24) 

for all t > 0 and x, y EM. 

In (9.22) and (9.23), hand k are regarded as multiplication operators, 
the domain of the operators in (9.22) is Coo (M), and the domain of the 
operators in (9.23) is L2 (M, Ji). 

The change of measure (9.20) satisfying (9.21) and the associated change 
of operator (9.22) are referred to as Doob's h-transform. 
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PROOF. By the definition ofthe weighted Laplace operator (see Section 
3.6), we obtain, for any smooth function! on M, 

I~:ji,! h~ divJ.£(h2Vf) = divJ.£(Vf) + :2 (Vh2, VJ)g 

Vh 
- !:lJ.£! + 2( -,;' V J)g. (9.25) 

On the other hand, using the equation (9.21) and the product rule for flJ.£ 
(cf. Exercise 3.8) and (9.21), we obtain 

1 1 
y;,flJ.£ (hf) y;, (hflJ.£! + 2(Vh, V J)g + ! flJ.£h) 

Vh flJ.£h 
flJ.£! +2(-,;' V!)g+!T 

!:l'ji.! - oJ. 

Hence, we have the identity 

1 
!:lId = y;,flJ.£ (hf) + a!, (9.26) 

which is equivalent to (9.22). 
Next, fix a point y E M, set 

( ) 
cd Pt(X,y) 

u t,x =e h(x)h(y) 

and show that u (t, x) is a fundamental solution on (M, g, Ii) at point y. 
Using (9.26), we obtain 

QU at a Pt (x, y) 
at - au + e at h (x) h (y) 

eat 

- au + h (x) h (y) flJ.£pt{x, y) 

1 A (h ( ) at pt{X, y) ) 
- au + h (x) UJ.£ x e h (x) h (y) 

1 
- au + y;,flJ.£ (hu) = au + !:l'ji.u - au = fl'ji.u, 

so that u solves the heat equation on (M, g, 'ji). 
For any function tp E TJ (M), we have 

1M u (t, x) tp (x) d'ji (x) _ (eCttPt(x'Y)h(x)tp(x)dj.£(x) 
1M h (y) 

eat 
- h (y) Pt (htp) (y) . (9.27) 

Since h (x) tp (x) E TJ (M), we have 

Pt (hcp) (y) -+ hcp (y) as t -+ 0, 
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whence it follows that 

fM u (t, x) cp (x) d/1 (x) -+ cp (y), 

V' _ 
and, hence, u (t,·) --+ Oy on (M, g, J.L). 

Therefore, u is a non-negative fundamental solution on (M, g, /1) at point 
y and, by Theorem 9.5, we conclude that u (t, x) 2:: Pt (x, y), that is, 

at Pt(x,y) >-( ) 
e h(x)h(y) _Pt x,y . (9.28) 

To prove the opposite inequality, observe that the function h := k sat­
isfies the equation - -D.'jih - ah = 0, 

which follows from (9.26) because hh = 1 and 

- 1 - - -
D.'jih = hD.JL(hh) + ah = ah. 

Switching the roles of J.L and /1, replacing a by -a and h by h, we obtain by 
the above argument 

e-at pt{x:.. y) > P (x y) 
h (x) h (y) - t , , 

which is exactly the opposite inequality in (9.28). 
Finally, using (9.20) and (9.24), we obtain, for any f E L2 (M, /1), 

Pd = fMPt (x, y) f (y) d/1 (y) 

- L eat :c~~x~ (~) f (y) h2 (y) dJ.L (y) 

- eat~Pt Uh), 

whence (9.23) follows. o 
EXAMPLE 9.16. The heat kernel in (Rn, g]Rn, J.L) with the Lebesgue mea­

sure J.L is given by 

1 ( IX- YI2 ) Pt (x,y) = (47rt)n/2 exp 4t . (9.29) 

Let h be any positive smooth function on Rn that determines a new measure 
Ji on Rn by d/1 = h2 dJ.L. Then we have D.JL = ~ and 

d2 h' d 
D.'ji = dx2 + 2h dx (9.30) 

(cf. (9.25)). The equation (9.21) becomes 

hlf +ah = 0, 
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which is satisfied, for example, if h (x) = cosh,8x and a = _,82. In this case, 
we have by (9.30) 

d2 d 
6.Ji = -2 + 2,8 coth ,8x-

d 
. 

dx x 
By Theorem 9.15, we obtain 

iit{x, y) = at Pt (x, y) 
e h (x) h (y) 

1 1 ( Ix - Yl2 f-I2t) ---:-= ---:---:--=- exp - - /J 
(471"t)1/2 cosh,8x cosh,8y 4t . 

EXAMPLE 9.17. Using the notation of the previous Example, observe 
that the heat kernel (9.29) is a regular fundamental solution also on (M, g]R"', J-t) 
where M := JRn \ {o}. If n 2 2 then by Exercise 8.11, M is stochastically 
complete, which implies by Corollary 9.6 that Pt is the heat kernel also in 
M. 

Assuming n > 2, consider the following function 

h (x) = IxJ2-n , 

that is harmonic in M (cf. Exercise 3.24). Hence, (9.21) holds for this 
function with a = O. Defining measure ji by dji = h2 dJ-t , we obtain by 
Theorem 9.15 that the heat kernel in (M, g, ji) is given by 

~ () 1 I In-21 In-2 (IX - Y12) 
Pt x, Y = (471"tt/2 X Y exp - 4t . 

EXAMPLE 9.18. Consider in JRl measure J-t is given by 
2 

dJ-t = eX dx, 

where dx is the Lebesgue measure. Then, by (9.30) with h = e!x2, 
d2 d 

6./1- = dx2 + 2x dx' (9.31) 

We claim that the heat kernel Pt (x, y) of (JR, gR, J-t) is given by the explicit 
formula: 

1 (2xy e-2t 
- x2 

_ y2 ) 
Pt(x,y) = . 1/2 exp 1 -4t -t, 

(271" smh 2t) - e 
(9.32) 

which is a modification of the Mehler kernel (cf. Exercise 11.18). It is a 
matter of a routine (but hideous) computation to verify that the function 
(9.32) does solve the heat equation and satisfy the conditions of Lemma 9.2, 
which implies that is it a regular fundamental solution. It is easy to see that 

( ) < 1 exp ( Ix - Yl2 t) 
Pt X,y - (471"tt/2 4t - , 

which implies that Pt (x, y) -t 0 as x -t 00 uniformly in t (cf. Exercise 1.5). 
Hence, we conclude by Theorem 9.7 that Pt (x, y) is indeed the heat kernel. 
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Alternatively, this follows from Corollary 9.6 provided we know that the 
manifold (R, gjR, It) is stochastically complete. To prove the latter, observe 
that (R, g]R, It) fits the description of "a model with two ends" of Exercise 
8.16. Its area function is S(r) = er2

, and the volume function 

V (r) = r ex2 dx 
J[o,rj 

is even and satisfies the condition 

/

+00 V (r) 
S (r) dr = 00, 

because 
V (r) 1 
S (r) rv 2r as r -t +00. 

Hence, by Exercise 8.16, (R, g]R, It) is stochastically complete. Alternatively, 
this conclusion follows also from Theorem 11.8, which will be proved in 
Chapter 11, because R is geodesic ally complete and, for large r, 

V (r) ~ exp (Cr2
) . 

EXAMPLE 9.19. Continuing the previous example, it easily follows from 
(9.31) that function 

_ 2 
h(x)=e x 

satisfies the equation 
D..fJ,h + 2h = O. 

Clearly, the change of measure dJi, = h2dJ.£ is equivalent to 

d- -x2d J.£=e x. 

By Theorem 9.15 and (9.32), we obtain that the heat kernel Pt of (R, gR, Ji,) 
is given by 

pt{x,y) = 2tPt(X,y) () (22 ) 
e h(x)h(y) =Pt x,y exp x +y +2t 

1 (2xy e-2t 
- (x2 + y2) e-4t 

) 
- exp +t . 

(27rsinh2t)1/2 1- e-4t 

9.2.5. Heat kernel in JH[3. As was shown in Example 9.13, the heat 
kernel Pt (x, y) in the hyperbolic space JH[n is a function of r = d (x, y) and 
t. The following formulas for Pt (x, y) are known: if n = 2m + 1 then 

(_l)m (1 o)m _m2t_r2 
pt(x,y) = (27r)m(47rt)1/2 sinhror e 4t, 

(9.33) 

and if n = 2m + 2 then 
.2 

(-l)my12 _(2m+l)2 t ( 1 f) )ml°O se-'4tds 
Pt (x, y) = 3/2 e 4 --:--h £:l 1 • 

(27r)m (47rt) sm r ur r (coshs - cosh r) '2 

(9.34) 
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In particular, the heat kernel in JH[2 is given by 
8 2 

v'2 _It 100 se- 4t ds 
Pt (x,y) = 3/2e 4 1 , 

(41ft) r (coshs - coshr)2 
(9.35) 

and the heat kernel in JH[3 is expressed by a particularly simple formula 

1 r (r2) 
Pt(x,y) = (41rt)3/2 sinhr exp - 4t - t . (9.36) 

Of course, once the formula is known, one can prove it by checking that it 
is a regular fundamental solution, and then applying Corollary 9.6, because 
JH[n is stochastically complete. 

We will give here a non-computational proof of (9.36), which to some 
extend also explains why the heat kernel has this form. Rename y by 0 and 
let (r, e) be the polar coordinates (r, e) in JH[3 \ {o}. By means of the polar 
coordinates, JH[3 can be identified with IR3 and considered as a model (see 
Sections 3.10 and 9.2.3). The area function of JH[3 is given by 

S (r) = 41r sinh2 r, 

and the Laplacian in the polar coordinates is as follows: 

a2 8 1 
.6.H3 = !} 2 + 2 coth r-a + . 2 .6.§2. 

vr r smhr 
(9.37) 

Denote by J1. the Riemannian measure of JH[3. For a smooth positive function 
h on JH[3, depending only on r, consider the weighted model (JH[3, 'ji) where 
d'ji = h2dJ1.. The area function of (JH[3, Ii) is given by 

S(r)=h2(r)S(r). 

Choose function h as follows: 
r 

h (r) = -=--h ' sm r 

so that S (r) = 41fr2 is equal to the area function of IR3. By a miraculous 
coincidence, function h happens to satisfy in JH[3 \ {o} the equation 

.6.!.£h + h = 0, (9.38) 

which follows from (9.37) by a straightforward computation. The function 
h extends by continuity to the origin 0 by setting h ( 0) = 1. In fact, the 
extended function is smoothl in JH[3, which can be seen, for example, by 
representing h in another coordinate system (cf. Exercise 3.23). 

Denoting by Pt the heat kernel of (JH[3, Ii), we obtain by Theorem 9.15 
that 

(9.39) 

lIt is true for any weighted manifold of dimension n ?:: 2 that any bounded solution 
to (9.38) in a punctured neighborhood of a point extends smoothly to this point, but we 
do not prove this result here. 
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Since the area functions of the weighted models (JHI3, 'ji) and IR3 are the same, 
we conclude by Theorem 9.14 that their heat kernels at the origin are the 
same, that is 

1 ( r2) Pt (x, 0) = (47l't)3/2 exp - 4t . 

Combining with (9.39), we obtain 

-t- () () 1 r (r2) pt{x,o)=e Pt(x,o)h x h ° = 3/2' h exp --4 -t , 
( 47l't ) sm r t 

which was to be proved. 

Exercises. 

9.1. Let p, be a measure in IRn defined by 

dp, = exp (2c· x) dx 

where dx is the Lebesgue measure and c is a constant vector from ]R". Prove that the 
heat kernel of (]Rn, gR" , p,) is given by 

Pt (x, y) = 1 /2 exp (-c. (x + y) - Icl 2 t - Ix ~tYI2) . (9.40) 
(47rt)n 

9.2. (Heat kernel in halj-space) Let 

M = { (Xl, ... , X1'1) E ]R" : X" > o} . 
Prove that the heat kernel of M with the canonical Euclidean metric and the Lebesgue 
measure is given by 

pt{x, y) = (47r:)1'1(2 ( exp (_IX ~tYI2) - exp (_Ix ~tYI2) ) 
where y is the reflection of y at the hyperplane x" = 0, that is, 

y= (yl, ... ,y .. -l,_y"). 

9.3. (Heat kernel in Weyl's chamber) Let 

M = {(xl, ... , xn) E ]Rn : Xl < X2 < ... < X"} . 

(9.41) 

Prove that the heat kernel of M with the canonical Euclidean metric and the Lebesgue 
measure is given by 

Pt (x,y) = det (pf (xi,V))~._ ' 
"',3-1 

(9.42) 

where pf is the heat kernel in ]Ri. 

9.4. Let (M, g, p,) be a weighted manifold, and let h be a smooth positive function on M 
satisfying the equation 

-tl",h + if!h = 0, (9.43) 

where if! is a smooth function on M. Define measure ji. on M by dji. = h2 dp,. 

(a) Prove that, for any j E Coo (M), 

tl",f - if! f = htl/i (h -1 f) . (9.44) 

(b) Prove that, for any f E 'D (M), 

L (IV fl2 + if! 12) dp, ~ O. (9.45) 
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9.5. Applying (9.45) in JRn\{O} with suitable functions h and q., prove the Hardy inequality: 
for any f E V (JRn \ {O}) , 

(9.46) 

9.3. Eternal solutions 

In this section, we consider solutions to the heat equation defined for 
all t E (-00, +00), which, hence, are called eternal solutions. 

Let u (t, x) be a regular fundamental solution at a point y E M. Let us 
extend u (t, x) to t ~ 0 by setting u (t, x) == O. Since for any t E JR, 

1M u(t,x)dp,(x) ~ 1, (9.47) 

we see that u (t, x) E Lfoc (JR x M). In particular, u (t, x) can be regarded 
as a distribution on JR x M. 

THEOREM 9.20. Let u (t, x) be a regular fundamental solution of the heat 
equation at y E M, extended to t ~ 0 by setting u (t, x) == O. Then u (t, x) 
satisfies in JR x M the following equation 

(9.48) 

Here c5(o,y) is the delta function at the point (0, y) on the manifold JRxM, 
defined by 

(c5(o,y) , cp) = cp (0, y) for any cp E 1) (JR x M) . 

The equation (9.48) means that u (t, x) is a fundamental solution of the 
operator Bt - All- in JR x M. 

PROOF. The equation (9.48) is equivalent to the identity 

- r (OtCP + All-ip) udp,dt = ip (0, y), 
JRXM 

(9.49) 

which should be satisfied for any cP E 1) (JR x M). Since u == 0 for t ~ 0, the 
integral in (9.49) is equal to 
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Next, we have, for any e > 0, 

100 £ (OtCP + Dop.CP) udJ.Ldt 

- 100 £ (Ot (cpu) - CPOtu ) dJ.Ldt + 100 

(1M Dop.CPUdJ.L) dt 

- 100 

(Ot 1M CPUdJ.L) dt -100 

1M cpatudJ.Ldt + 100 

1M cpDop.udJ.Ldt 

- 1M cP (e,·) u (e,·) dJ.L, (9.50) 

where we have used the Green formula for Dop. and the fact that u (t, x) 
satisfies the heat equation for t > 0. We are left to verify that the integral in 
(9.50) tends to cP (0, y) when e -+ 0. By the definition (9.1) of a fundamental 
solution, we have 

1M cP (0,·) u (e,') dJ.L -+ cP (0, y) as e -+ 0. (9.51) 

Using the regularity (9.2) of the fundamental solution, we obtain 

1£ cP (e,') u (e,·) dJ.L - 1M cP (0,.) U (e,') dJ.L1 

- 11M (cp (e,·) - cP (0, .)) U (e,·) dJ.L1 

< sup Icp (e, x) - cP (0, x)1 -7 ° as e -+ 0. 
xEM 

Together with (9.51), this proves that the integral in (9.50) tends to cP (0, y), 
which was to be proved. 0 

Since the heat kernel Pt (x, y) is a regular fundamental solution for any 
fixed y (or x), Theorem 9.20 can be applied to it as well. The next statement 
contains the ultimate result on the smoothness of the heat kernel jointly in 
t,x, y. Set 

diag := {(x, y) EM x M : x = y}, 
and denote by Dox , Doy the operator Dop. with respect to the variables x and 
y, respectively. 

COROLLARY 9.21. Let us extend Pt (x, y) for t ~ ° by setting Pt (x, y) = 
0. Then, as a function on JR x M x M, the heat kernel Pt (x, y) is Coo 
smooth away from {o} x diag (see Fig. 9.3), and it satisfies in this domain 
the equation 

(9.52) 

PROOF. Let N = M x M be the product manifold with the product 
measure dv = dJ.LdJ.L. It follows from (9.47) that Pt (x, y) E Ltoc (JR x N). If 
we show that Pt (x, y) satisfies in IR x N \ {o} x diag the equation (9.52) in 
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FIGURE 9.3. The heat kernel is singular at the set 0 x diag 
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the distributional sense, then this will imply the COO-smoothness of Pt (x, y) 
in this domain. Indeed, the Laplace operator .6// on N can be represented 
as .6// = .6x + .6y (cf. the proof of Theorem 7.20), so that (9.52) implies 

1 
8tpt = 2.6//Pt. 

Hence, the function Pt (x, y) satisfies the heat equation in t E JR (up to the 
change t 1-7 2t) and (x, y) E N (away from {O} x diag) which implies the 
COO-smoothness of Pt (x, y) by Theorem 7.4. 

Since Pt (x, y) is symmetric in x, y, it suffices to prove the first of the 
equations (9.52). This equation is equivalent to the identity 

r (8t<p+.6x <p)pt(x,y)df.L(x)df.L(y)dt=0, (9.53) 
J~XMxM 

which should be satisfied for any function <p (t, x, y) E 1) (JR x N) supported 
away from {O} x diag. Expanding the integral in (9.53) by Fubini's theorem 
with the external integration in y, we see that it suffices to prove that, for 
anyyEM, 

r (8t<P + .6x<P) pt(x, y) df.L(x)dt = O. (9.54) 
),R{XM 

Since y is fixed here, we obtain by Theorem 9.20 (more precisely, by (9.49)) 
that 

r (8t <p + !:l.x<P) Pt (x, y) df.L(x)dt = -<P (0, x, y) Ix=y = -<P (0, x, y). J~XM 
By hypothesis, we have <p (0, y, y) = 0 whence (9.54) follows. o 

REMARK 9.22. Let M be connected so that the heat kernel Pt (x, y) 
is strictly positive for t > 0 (cf. Corollary 8.12). Considering function 
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u (t, X) = pdx, y) in R x (M \ {y}), we obtain an example of a solution to 
the heat equation which is identical zero for t :::; 0 and strictly positive for 
t > O. This example shows that, in the parabolic strong minimum principle 
(Theorem 8.11), the time direction is essential: the fact that a non-negative 
solution vanishes at a point does not imply that it will vanish in the future, 
although it does imply that it was identical zero in the past. 

Exercises. 

9.6. Prove that if u and v are two regular fundamental solutions at point y E M then the 
difference u - v is a Coo -smooth function on R x M satisfying in R x M the heat equation. 

9.7. Let n c M be an open set. Prove that the function Ut (x, y) := Pt (x, y) - PP (x, y) 
is Coo smooth jointly in t E R and x, yEn. 

9.8. Let a smooth function U (t, x) on R+ x M satisfy the following conditions 

{ 

~~ = D.p.u in R+ x M, 
L1 

u(t")~f ast~O, 

where I E Ltoc (M). Extend u (t, x) to t :::; 0 by setting u (t, x) == O. 

(a) Prove that the function u (t, x) satisfies in R x M the equation 

au 
at - D.p.u = F, 

where F is a distribution on R x M defined by 

(F,<p) = 1M <p(O,x)/(x)dJ.h(x), 

for any <p E V (R x M). 
(b) Prove that if in (9.55) 1==0 in M then u E Coo (R x M). 
(c) Prove that if f E Coo (M) then 

COO(M) 
u (t,.) -'-1- I as t ~ 0 + . 

Consequently, the function 

- (t ) _ { u (t, x) , 
u ,x - I(x), 

belongs to Coo (R x M). 

HINT. Use Exercise 7.19. 

t> 0, 
t:::; 0, 

(9.55) 

(9.56) 

9.9. Prove that, on any weighted manifold M, for any open set n, any compact set Ken, 
and any N > 0, 

sup r Pt (x, y) dJ.h (y) = 0 (tN
) as t ~ O. 

xEK joe 
(9.57) 

9.10. Define the resolvent kernel T", (x, y) by 

r", (x, y) = 100 

e-",tpt (x, y) dt. (9.58) 

Prove that, for any a > 0, rOo (x, y) is a non-negative smooth function on M x M \ diag. 
Furthermore, for any y E M, rOo (" y) satisfies the equation 

(9.59) 



NOTES 

Notes 

Theorem 9.5 was proved by Dodziuk [108]. 
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Theorem 9.14 can be regarded as a simple model case for comparison theorems of 
[58] and [104]. 

The idea of changing the measure by dJi = h2 dp" where h is a harmonic function, 
is widely used in the theory of stochastic processes where it is referred to as Doob's h­
transform (probabilistically this means conditioning of the diffusion process to exit in the 
direction h on the Martin boundary). 

The Mehler kernel is by definition the heat kernel of the operator --fl.z + (x2 - 1) 
that is the Hamiltonian of the quantum harmonic oscillator. The Mehler kernel is given 
explicitly by the Mehler formula (11.21) ( see Exercise 11.18). The formula (9.32) for the 

2 
heat kernel in (R, gR, eX dx) is equivalent to the Mehler formula. The proof of the latter 
can be found in [92]. 

The formula (9.35) for the heat kernel pr2 
in JB[2 was stated by McKean [272]2, and 

the formula (9.36) for p~3 was stated in [104] (the derivation of (9.36) in Section 9.2.5 
seems to be new). The formulas (9.33) and (9.34) for pr" follow then by the recursive 
relation between pr' and p~n-2 (see [51], [104], [96]). A direct proof of (9.33) and (9.34), 
based on the reduction to the wave equation, can be found in [175]. Convenient explicit 
estimates of p~n can be found in [102]. 

The extension of the heat kernel to negative times is a standard procedure for evolu­
tion equations (see, for example, [356]). 

2It was privately communicated to the author by Peter Laurence, that Henry McKean 
attributed (9.35) to the book [311, p.154]. 



CHAPTER 10 

Spectral properties 

Here we consider some spectral properties of the Dirichlet Laplace oper­
ator such as the discreetness of the spectrum, the positivity of the bottom 
of the spectrum, and others. The notion of the bottom of the spectrum will 
be essentially used in Chapters 13, 14, 15. 

10.1. Spectra of operators in Hilbert spaces 

We start with some basic properties of spectra of self-adjoint operators 
in a Hilbert space. The knowledge of the relevant material from Appendix 
A is assumed here. 

10.1.1. General background. Let A be a densely defined self-adjoint 
operator in a Hilbert space 1-l. Denote by Amin (A) the bottom of the spec­
trum of A, that is, 

Amin (A) := inf spec A. 

Since spec A is a closed subset of R, Amin (A) is the minimal point of spec A 
provided Amin (A) > -00. It is a general fact that Amin (A) admits the 
following variational characterization: 

A . (A) - inf (Ax, x) 
mIll - xEdomA\(O) IIxl12 (10.1) 

(cf. Exercise A.26). 

DEFINITION 10.1. The discrete spectrum of A consists of all a E spec A 
such that 

• a is an eigenvalue of A of a finite multiplicity; 
• and a is an isolated point of spec A, that is, for some € > 0, the 

interval (a - c:, a + c:) contains no other points from spec A, except 
for a. 

The essential spectrum of A is the complement in spec A of the discrete 
spectrum of A. 

It easily follows from the definition that the discrete spectrum is at most 
countable, and any point of accumulation of the discrete spectrum belongs 
to the essential spectrum or is ±oo. 

265 
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Let {E~} AElR be the spectral resolution of A. For any Borel set U c JR, 
set 

Eu := 1u (A) = r dE~ = r dEA• 
Ju JUnspecA 

The operator Eu is a projector in 11. (cf. Exercise A.27). Moreover, if a is an 
eigenvalue of A then E{a} is the projector onto the eigenspace ker (A - aid) 
of a (cf. Exercise A.28). 

LEMMA 10.2. Let S be the essential spectrum of A. Then the space 
(ranEs)l. (the orthogonal complement of ranEs in 11.) admits at most 
countable orthonormal basis {Vk}t'=l such that each Vk is an eigenvector of 
A. Moreover, if Ak is the eigenvalue ofvk then the sequence {Ak}t'=l consists 
of all the points of the discrete spectrum of A counted with multiplicities. 

In particular, if S is empty, that is, if the entire spectrum of A is discrete, 
then ran Es = {O} and, hence, such a basis {Vk} exists in the entire space 
11.. Assuming that dim 11. = 00, we obtain that in this case the basis {Vk} 
is countable, and IAkl -+ 00 as k -+ 00, because 00 is the only possible 
accumulation point of the sequence {IAkl}. 

PROOF. Let {ai} be a sequence of all distinct points in the discrete 
spectrum of A, enumerated in some order. By the spectral theorem, we 
have 

whence it follows that, for any x...LranEs, 

(10.2) 

(a priori, the convergence of the series in (10.2) is weak, which, however, 
implies the strong convergence by Exercise AA). Since ranE{ai} is the 
eigenspace of the eigenvalue ai, it admits an orthonormal basis that consists 
of the eigenvectors of A. Since the eigenspaces of different eigenvalues are 
orthogonal, merging the bases of the eigenspaces across all ai, we obtain an 
orthonormal sequence, say {Vk} (this sequence is at most countable because 
each eigenspace is finitely dimensional and the number of points ai is at 
most countable). Since E{CXi}X is a linear combination of some vectors Vk, it 
follows from (10.2) that every x E (ranEs)l. can be expanded into a series 
LkckVk, which means that {Vk} is a basis in (ranEs)l.. 

Let now Ak be the eigenvalue of Vk. By construction, the number of the 
eigenvectors Vk with the given eigenvalue ai is equal to dim ran E{ai} , which 
is the multiplicity of ai. Hence, each ai is counted in the sequence {Ak} as 
many times as its multiplicity. 0 
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10.1.2. Counting measure. The counting measure of the operator 
A is the following function defined on all Borel sets U C lR: 

m(U):= dimranEu. (10.3) 

The value of m (U) is a non-negative integer or +00. 

As was mentioned above, if a is a real number then 

ran E{a} = ker (A - aid) , 

which implies 
m ( { a }) = dim ker (A - a id) . (10.4) 

Hence, if a is an eigenvalue of A then m ({ a}) is the multiplicity of the 
eigenvalue a; otherwise, m ({a}) = O. 

THEOREM 10.3. Let m (U) be the counting measure of a self-adjoint 
operator A. Then the following is true: 

(i) m (U) is a Borel measure on lR. 
(ii) For any open interval U C lR, m (U) > 0 if and only if the inter­

section U n spec A is non-empty. 
(iii) A point a E specA belongs to the discrete spectrum of A if and 

only if m (U) < 00 for some open interval U containing a. 

PROOF. (i) The proof of this part consists of two claims. 

CLAIM 1. If U and V two disjoint Borel subsets of lR then 

m (U U V) = m (U) + m (V). (10.5) 

Indeed, if U and V disjoint then luI v = 0 and hence EuEv = 0, that 
is, the ranges of Eu and Ev are orthogonal subspaces. On the other hand, 
1uuv = 1u + Iv whence 

Euuv = Eu +Ev· 

Therefore, Euuv is the projector onto ran Eu EB ran Ev whence 

dim ran Euuv = dim ran Eu + dim ran Ev , 

which is equivalent to (10.5). 
Consequently, we obtain from Claim 1 that if U c V then m (U) < 

m (V), because m (V) = m (U) + m (V \ U). 
CLAIM 2. If {Uk}:'l is a sequence of disjoint Borel sets in lR and U = Uk Uk 
then 

00 

m(U) = Lm(Uk). (10.6) 
k=l 

Consider first a particular case when m (Uk) = 0 for all k and show that 
m (U) = O. The condition m (Uk) = 0 means that EUk = O. Since 

1u = L 1Uk , 

k 
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we obtain by Lemma 4.8 that, for any x E 1-£, 

Eux = { (L 1Uk) dE)..x = L ( 1ukdE)..x = L EUkX = 0, 
JIR k k JIR k 

whence Eu = 0 and m (U) = O. 
In the general case, the previous Claim implies that 

m (U) ~ L m (Uk) . 
k 

If L.k m (Uk) = 00 then this yields (10.6). If L.k m (Uk) < 00 then only 
finitely many terms m (Uk) are non-zero, say, for k = 1,2, ... , K. Let 

V= U Uk 
k>K 

so that m (V) = 0 by the first part of the proof. Since U is a disjoint union 
of V and Ul, ... , UK, we obtain by the previous Claim, that 

K K 00 

m(U) = Lm(Uk) +m(V) = Lm(Uk) = Lm(Uk). 
k=l k=l k=l 

(ii) Let cp be any continuous function on R supported in U and such 
that 0::; cp ::; 1 and cP (A) = 1 for some A E Un specA. Then by (A.53) 

IIcp (A) II = sup Icpl = 1, 
spec A 

so that there is x E 1-£ \ {O} such that cp (A) x f=. O. Then we have by (A.50) 

IIEuxl12 L 1u (A)2 dll E)..x II 2 = fu dllE)..x 112 

> fu cp (A)2 dll E)..x II 2 = IIcp (A) xll2 > 0, 

whence it follows that Eu f=. 0 and, hence, m (U) > O. 
(iii) Let a belong to the discrete spectrum of A. Then there is an open 

interval U containing no spectrum of A except for a, whence it follows by 
parts (i), (ii) and (lOA), that 

m(U) = m({a}) = dimker(A - aid) < 00. 

Conversely, assume that m (U) < 00 for some open interval U containing a. 
Since m is a O'-additive measure, we have 

m({a}) = infm(U), 
U3a 

where the infimum is taken over all open intervals U containing a. By part 
(ii), we have m (U) ~ 1 for any such interval U, and by hypothesis, we have 
m (U) < 00 for some interval U. Hence, we conclude that 

1::; m({a}) < 00, 
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which together with (lOA) implies that U is an eigenvalue of A of a finite 
multiplicity. 

Let us show that U is an isolated point of the spectrum. If not, then 
there exists a sequence {Uk} C spec A such that Uk -t u, all Uk are disjoint, 
and Uk =I u. There exists a sequence {Uk} of disjoint open intervals such 
that Uk contains Uk and Uk -t u. Then any open interval U containing u, 
contains infinitely many of the intervals Uk, whence it follows by parts (i) 
and (ii) that 

m(U) 2:: L m(Uk) 2:: L 1 = 00, 

UkCU UkCU 

thus, contradicting the hypothesis m (U) < 00. o 
Exercises. 

10.1. Let (X, d) be a separable metric space and SeX be a subset of X. Prove that if 
all points of S are isolated then S is at most countable. 

10.1.3. Trace. In this section, A is a densely defined self-adjoint op­
erator in a Hilbert space 11. such that 

spec A E [0, +00). (10.7) 

The condition (10.7) is equivalent to A being non-negative definite, that is, 
to 

(Ax,x) 2:: 0 for all x E domA 

(cf. Exercise A.26). 
Define the trace of such an operator by 

trace A = r Adm (A) , 
J(O,+oo) 

(10.8) 

where m is the counting measure of A defined by (10.3). Note that the point 
o is excluded from the domain ofintegration in (10.8), and that trace A takes 
values in [0, +00]. 

LEMMA IDA. If {Vk} is an orthonormal basis in 11. such that all Vk E 
domA then 

trace A = L(Avk,Vk). 
k 

PROOF. We have by (AA9) 

(10.9) 

(AVk' Vk) = 1, Ad (E>,Vk' Vk) = r AdllE>.vkll2 = r AdIIE>,VkI12. 
spec A J[O,+oo) J(O,+oo) 

(10.10) 
Fix a Borel set U C R and let {Ui} be an orthonormal basis in ran Eu. Then 

EUVk = L (Vb Ui) Ui 
i 
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and, applying twice the Parseval Identity, we obtain 

IIEuvkll2 = L (Vk' Ui)2 
i 

and 

- L L (Vk' Ui)2 = L L (Vk' Ui)2 
k k 

- L lIuill 2 = L 1 = dimranEu = m (U). (10.11) 

Since the right hand side of (10.10) is a Lebesgue integral against the mea­
sure U 1---7 IIEuvkl12, when adding up in k we obtain a Lebesgue integral 
against the measure m (U), that is, 

L(Avk,Vk)= ( Adm (A) = trace A, 
k i(o,+oo) 

which was to be proved. o 
REMARK 10.5. The identity (10.9) can be used as the alternative defi­

nition of the trace. In this case, Lemma 10.4 means that the definition of 
the trace is independent of the choice of the basis {Vk}' For a direct proof 
of this fact see Exercise 10.4. 

LEMMA 10.6. For any non-negative Borel function rp on [0, +(0), 

tracerp(A) = is rp (A)dm (A) , (10.12) 

where 
S := {A 2 0 : rp (A) > O} . (10.13) 

PROOF. By (10.9), we have 

tracerp (A) = L (rp (A) Vk, Vk) 
k 

where {Vk} is an orthonormal basis. Similarly, to (10.10), we have 

(rp (A) Vk, Vk) = { rp (A) dllE>.vkl1 2 = { rp (A),dIIE>.vkIl2
. 

i[o,+oo) is 
Summing up in k and using (10.11), we obtain (10.12). o 

LEMMA 10.7. Let rp be a non-negative continuous function on [0, +(0). 
(i) If trace rp (A) < 00 then the spectrum of A in the set S is discrete, 

where S is defined by (10.13). 
(ii) If the spectrum of A in S is discrete then 

trace rp (A) = L rp (Ak) , (10.14) 
k 

where {Ak} is the sequence of all the eigenvalues of A in S counted 
with multiplicities. 
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PROOF. (i) Let a E S be a point of the essential spectrum of A. By 
Theorem 10.3, for any open interval U containing a, we have m (U) = 00. 
Since cp is continuous, the set S is open and, hence, there is a bounded open 
interval U C S containing a. Furthermore, we can assume that the closed 
interval U is also contained in S. Then by (10.12) 

tracecp (A) ;::: fu cp (.\) dm (.\) ;::: (iW cp) m (U) = 00, 

because infu cp > 0 and m (U) = 00. 
(ii) By hypothesis, the set S n spec A consists of isolated eigenvalues of 

finite multiplicity. In particular, the set S n spec A is at most countable 
and, hence, can be enumerated as a sequence {ai} (where each eigenvalue 
is counted once). The set S \ spec A is open and is outside the spectrum. It 
follows from Theorem 10.3, that measure m does not charge this set. Hence, 
measure m in S sits at the sequence {ai} whence by (10.12) 

trace cp (A) = J cp (.\) dm (.\) = L cp (ai) m ( { ai} ) . 
{ail i 

Noticing that by (1004) m ({ad) is the multiplicity of the eigenvalue ai, we 
obtain (10.14). 0 

Exercises. 

10.2. Prove that, for any Borel set U, 

m (U) = trace Eu· 

10.3. Prove that if A is a non-negative definite self-adjoint operator with a finite trace 
then A is a compact operator. 

lOA. For any non-negative definite operator A with dom A = 1i, define its trace by 

trace A = L (AVk,Vk) , 
k 

where {Vk} is any orthonormal basis of 1i. Prove that the trace does not depend on the 
choice of the basis {Vk}. 

10.2. Bottom of the spectrum 

The Dirichlet Laplace operator I:- = -~JLIW6(M'JL) constructed in Sec­
tion 4.2, is a self-adjoint operator, and spec I:- C [0, +00). Here we investigate 
further properties of the spectrum of 1:-. Denote by .\min (M) the bottom of 
the spectrum of 1:-, that is 

.\min (M) = inf spec 1:-. 

This notation reflect the point of view that the spectral properties of I:- are 
regarded as the properties of manifold M itself. 



272 10. SPECTRAL PROPERTIES 

For any non-zero function I E WI (M), define its Rayleigh quotient by 

R (f) := fJ~V~~:fL . (10.15) 

THEOREM 10.8. (The variational principle) The following identity is true 

Amin(M) = inf R (f) , (10.16) 
/ET\{O} 

where T is any class of functions such that 

Co (M) eTc wJ (M) . (10.17) 

Furthermore, the infimum in (10.16) can be restricted to non-negative func­
tions lET. 

PROOF. It is obvious that the functional R is continuous on WI \ {O}. 
Since Cff C WJ and that Cff is dense in WJ in WI-norm, the infimum 
in the right hand side of (10.16) is the same for any functional class T 
satisfying (10.17). Since Cff C W6 c WJ, it suffices to verify (10.16) for 
T = W6 = dome. 

By (10.1), we have 

. f £ . f (£f,/) 
m spec = fEdo~.c\{O} 11/112 . (10.18) 

By Lemma 4.4, we obtain, for any f E dom £, 

(£1'/)£2=- fMlflp,ldfL= fMIVfl2dfL 

whence 
. . fM IV 112 dfL 
mf spec £ = mf J j2d ' 

/Edom.c\{O} M fL 
which proves (10.16). 

Let us show that the infimum in (10.16) can be restricted to non-negative 
functions, that is, 

Amin(M) = inf R (f). 
O~/ET\{O} 

(10.19) 

It suffices to consider the borderline cases T = Co and T = WJ. By 
Lemma 5.4, for any non-negative function f E WJ there is a sequence {Ik} 
of non-negative functions from Cff that converges to I in WI. Therefore, 
the right hand side of (10.19) has the same value for T = Cff and T = WJ. 

Hence, it suffices to prove (10.19) in the case T = WJ. For simplicity 
of notation, let us allow also I = 0 in (10.19) by setting R (0) = +00. As 
follows from Lemma 5.2, for any f E WJ, also the functions 1+ and 1-
belong to WJ and 

V/+ = l{/>o}VI and V/- = -l{/<o}Vf (10.20) 
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(see (5.9) and (5.10)). Let us show that 

R (f) ? min (R (f+), R (f-)) . (10.21) 

If 1+ = 0 or 1- = 0 then this is obvious. Otherwise, observe that, by (10.20), 
V' 1+ and V' I-are orthogonal in i}. Since 1 = 1+ - 1-, we obtain 

IIV'/I12 IIV'/+1I2 + IIV'f_//2 . 
R(f)= /////2 = ///+//2+///_//2 ?mm(R(f+),R(f-)). 

Set R (0) = 0 so that the infimum in (10.19) can be taken for all 1 E WJ. 
It follows from (10.21) that 

inf R (f)? inf R (f+) = inf R (f), 
fEWJ fEWJ O~fEWJ 

whereas the opposite inequality 

inf R (f) ~ inf R (f) 
fEWJ O~fEWJ 

is trivial. We conclude that 

Amin (M) = inf R (f) = inf R (f), 
fEWJ O~fEWJ 

which finishes the proof. o 
EXAMPLE 10.9. Let us show that 

Amin (lR.n) = O. (10.22) 

Choose a non-zero function i.p E Cff (]R.n) and set 

i.pk (x) = i.p (x/k) , k = 1,2, .... 

Then we have 

r i.p~ (x) dx = kn r i.p2 (x) dx 
J~n J~n 

and 

whence 

R ( i.p k) = k - 2R ( i.p) . 

Letting k ---+ 00, we obtain (10.22). 
It is possible to show that the spectrum of the Dirichlet Laplace operator 

in ]R.n is the interval [0, +00). 

THEOREM 10.10. Assume that the infimum of R (f) in (10.16) is at­
tained on a function 1 E wJ (M) \ {o}. Then 1 E dome and 

£f = Amin (M) f. 
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PROOF. Denote for simplicity). = ).min (M) and observe that, for any 
cp E Co (M) and real t, we have 

that is 

We have 

and 

whence 

n (f + tcp) ~ ). = n (f) , 

IIV' (f + tcp) 112 - ).llf + tCPl12 ~ 0 = IIV' fll2 - ).lIfIl2. 

IIV' f + tV'CP112 = IIV' fll2 + 2t (V' f, V'cp) + t211V'cp1l2 

IIf + tCPl12 = IIfll2 + 2 (f, cp) + t2 11cp112, 

IIV' (f + tcp) 112 - ).II! + tcpl12 = 2t ((V'!, V'cp) - ). (f, cp)) + t2 (11V'cpIl2 - ).cp2) . 

Since the left hand side is non-negative for all real t, the linear in t term in 
the right hand side must vanish, that is 

(V' f, V'cp) -). (f, cp) = O. 

This implies 
(f, ~Jl.cp)v + ). (f, cp)v = 0 

whence it follows that ~Jl.! +).f = 0 in the distributional sense. Therefore, 
~Jl.f E L2, whence f E W6 = domC and C! = ).f, which was to be 
proved. 0 

Exercises. 

10.5. Prove that, for any f E L2 (M), 

(Pd, f) ~ exp (-Amin (M) t) IIflli2' 
10.6. Prove the following properties of Amin for subsets of a weighted manifold M. 

(a) If n l C n2 are two open sets then 

Amin (nl) ~ Amin (n2) . 

(b) If {nk} is a finite or countable sequence of disjoint open sets and n = Uk nk then 

Amin (n) = inf Amin (nk ) . 
k 

(c) If {nk}~1 is an increasing sequence of open sets and n = Uk nk then 

Amin (n) = lim Amin (nk ) • 
k-+oo 

10.7. Let (M,g,l-£) and (M,g,ji.) be two weighted manifolds based on the same smooth 
manifold M of dimension n. Assume that they are quasi-isometric, that is, for some 
positive constant A and B, 

A-I < ~ < A and B-1 < f < B -g- -Y- , (10.23) 

where Y and T are the density functions of measures 1-£ and ji. respectively. Prove that 

G-l 
Amin (M) ~ Amin (M) ~ GAmin (M) (10.24) 

where G = C (A, B, n) is a positive constant, Amin (M) is the bottom of the spectrum of 
the Dirichlet Laplacian on (M, g, 1-£), and Amin (M) is the bottom of the spectrum of the 
Dirichlet Laplacian on (M, g, ji,). 
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10.8. (Cheeger's inequality) The Cheeger constant of a manifold is defined by 

h(M)'- inf fMIV'/ldj..t (1025) 
.- fEC~(M)\{O} fM III dj..t . . 

Prove that 
1 2 ( 

Amin (M) :2: 4h M). 

10.3. The bottom eigenfunction 

A non-zero function 1 E dom (£) such that 

£1 = Amin (M) f, 

is called the bottom eigenfunction of £. 

(10.26) 

The bottom eigenfunction does not always exist (for example, it does not 
exist in ]Rn). Theorem 10.10 provides a sufficient condition for the existence 
of the bottom eigenfunction. The next theorem ensures that the bottom 
eigenfunction does not change the sign and, hence, can be assumed to be 
positive. 

THEOREM 10.11. Iff is the bottom eigenfunction on a connected weighted 
manifold M then f never vanishes on M. 

The connectedness of M is essential. Indeed, if M is disconnected and 
contains a compact component n then the function 1 = In is the bottom 
eigenfunction with the eigenvalue Amin (M) = 0, while f vanishes in M \ n. 

PROOF. Denote for simplicity A = Amin (M) so that £f = Af in M. 
Then we have 

R(j) = (£f,f) = A 
(j,f) . (10.27) 

Let us prove that either f + or f - is identical zero. Assume from the contrary 
that the both functions f+ and f- are non-zero as elements of L2 (M). Since 
f E WJ (M), by Lemma 5.2 both f+ and f- belong to WJ (M) and 

- V f + = lU>o} V f, V f - = lU<o} V f (10.28) 

(cf. Example 5.3). By Theorem 10.8, we have 

(10.29) 

Assume that one of these two inequalities is strict, say the first one. Then 
we obtain by (10.28) and (10.29) 

1 IV fl2 df.t > Al f 2df.t 
{f>O} {f>O} 

and 
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Adding up these inequalities yields 

1M IV 112 dp > A 1M 12
dp, 

which contradicts (10.27). 
Hence, the both inequalities in (10.29) turn to be equalities. By Theorem 

10.10, we conclude that both functions 1+ and 1- are eigenfunctions of £, 
with the eigenvalue A, whence 

A/l-I± + AI± = o. (10.30) 

By Corollary 7.3, 1+ and 1- are Coo smooth functions in M, and, by the 
strong minimum principle (cf. Corollary 8.14), they cannot vanish in M. 
However, this contradicts the fact that the inequalities 1+ (x) > 0 and 
1- (x) > 0 cannot occur at the same point x. 

This proves that either 1+ or I_is identical O. Changing the sign of 
I, if necessary, we can assume I ::::: O. Since I ¢. 0, applying again the 
strong minimum principle, we conclude that I > 0 in M, which was to be 
proved. 0 

SECOND PROOF. Since inf spec Pt = e-At , it follows that ilPtil£2-+£2 = 
e-At and, hence, 

(10.31) 

Since I is the eigenfunction of £, with the eigenvalue A, I is also the eigen­
function of Pt = e-t£ with the eigenvalue e-At , that is, 

Pd = e-Atj. 

On the other hand, the identity 

Ptl = Pd+ - Pd-

implies that 
Pd+ ::::: (Pd)+ = e-tA 1+. 

The comparison with (10.31) shows that we have, in fact, 

Pd+ = e-tA/+. 

A similar identity holds for 1-, so that we obtain (10 .30). The proof is then 
finished in the same way as the previous proof. 0 

COROLLARY 10.12. For any connected weighted manilold, 

dim ker (£, - Amin id) :0:::; 1. 

In other words, il the bottom eigenfunction exists then it is unique up to a 
constant multiple. 

PROOF. Indeed, let I and 9 be two linearly independent bottom eigen­
functions. By Theorem 10.11, we can assume that both I and 9 are positive 
on M. Fix a point Xo E M and choose a real constant c so that 

I (xo) + cg (xo) = O. 
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The function h = f+cg is obviously contained in ker (.c - Amin id). However, 
h cannot be the bottom eigenfunction because it vanishes at point Xo. The 
only alternative left is that h == 0, which contradicts the assumption of the 
linear independence of f, g. 0 

It follows from Theorem 10.11 and Corollary 10.12 that if the bottom 
eigenfunction f exists then f can be normalized to satisfy the conditions 

Ilfllp = 1 and f > 0, (10.32) 

which determines f uniquely. 

10.4. The heat kernel in relatively compact regions 

Let (M, g, J..L) be a weighted manifold. To simplify the terminology, we 
will call by the spectrum of M the spectrum of the Dirichlet Laplace operator 
.c = -.6.J.L1w.2 on M, and the same convention applies to the eigenvalues and 

o 
the eigenfunctions of .c. 

The next statement is one of the main results of this chapter. 

THEOREM 10.13. Let 0 be a non-empty relatively compact open subset 
of a weighted manifold (M,g,J..L). Then the following is true. 

(i) The spectrum of 0 is discrete and consists of an increasing se­
quence {Ak}~l of non-negative eigenvalues (counted according to 
multiplicity) such that limk-l-oo Ak = +00. There is an orthonormal 
basis {'Pd~1 in L2 (0) such that each function 'Pk is an eigenfunc­
tion of 0 with the eigenvalue Ak. 

(ii) In any such basis {'Pk}, the heat kemelpp(x,y) of 0 admits the 
following expansion 

00 

pp(x,y) = Le-Akt'Pk(X)'Pk(Y)' (10.33) 
k=1 

The series in (10.33) converges absolutely and uniformly in the 
domain t ~ E, x, yEO for any E > 0, as well as in the topology of 
coo (IR+ x 0 x 0). 

Clearly, Theorem 10.13 applies when M is compact and 0 = M. 
In a more general context, the eigenvalue Ak of 0 will be denoted by 

Ak (0). One can consider Ak (0) as a function of k and 0, and this function 
is tightly linked to various analytic and geometric properties of the set 0, 
the identity (10.33) being one of them. 

Note that the first eigenvalue Al (0) is the bottom of the spectrum of 0, 
that is, 

Al (0) = Amin (0) . (10.34) 

It is also worth mentioning that 

Ak (0) = R('Pk). (10.35) 
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Indeed, we have 'Pk E wJl (0) and 

-D..Jl.'Pk = Cn'Pk = Ak (0) 'Pk, 

which implies by the Green formula (4.12) 

in 1V''PkI2 dfJ- = -in 'PkD.Jl.'PkdfJ- = Ak (0) in 'P2dfJ-, 

whence (10.35) follows. 
For the proof of Theorem 10.13, we need the following abstract lemma. 

LEMMA 10.14. Let (X, fJ-) be a measure space such that L2 = L2 (X, fJ-) 
is a separable Hilbert space. Set L2,2 := L2 (X X X, fJ- x fJ-) and consider a 
non-negative symmetric function q (x, y) E L2,2 and the operator Q defined 
on measurable functions on X by 

Qf(x) = Lq(x,Y)f(Y)dfJ-(Y) , (10.36) 

whenever the right hand side of (10.36) make sense. Then Q is a bounded 
self-adjoint operator in L2 and 

traceQ2 = Iiqll1,2,2. (10.37) 

PROOF. The fact that Q is bounded as an operator from L2 to L2 follows 
from the Cauchy-Schwarz inequality: 

IQf (x)12:::; L q2 (x, y) dfJ- (y) Ilfll~ 
and 

L IQf (x)12 dfJ- (x) :::; L L q2 (x, y) dfJ- (y) dfJ- (x) IIfll1,2 = IIqll1,2,2I1fll1,2. 

Let us show that the operator Q is symmetric. For all f, 9 E L2, we have by 
Fubini's theorem 

(Qf, g) = r Qf (x) 9 (x) dfJ- (x) = r 1 q (x, y) f (y) 9 (x) dfJ- (x) dfJ- (y) Jx Jx x 
and similarly 

(/, Qg) = L L q (x, y) f (x) 9 (y) dfJ- (x) dfJ- (y) . 

Switching x and y and using q (x, y) = q (y, x), we obtain (Qf, g) = (/, Qg). 
The operator Q2 is, hence, also bounded and self-adjoint. Besides, Q2 

is non-negative definite because for any f E L2, 

(Q2 f, f) = (Qf, Qf) ~ O. 

To prove (10.37), choose any orthonormal basis {Vk}~l in L2. Write (10.36) 
in the form 

Qf (x) = (qx, f), 
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where qx := q (x, .). By Lemma 10.4 and (10.36), we have 

traceQ2 = L(Q2vk ,Vk) = L(QVk,Qvk) = L r (Qx,Vk)2dp,(x), 
k k k Jx 

Expanding qx E £2 in the basis {Vk} we obtain 

qx = L (qx, Vk) Vk 
k 

whence, by the Parseval identity, 

L (qx, Vk)2 = IlqxllI2' 
k 

Hence, (10.38) and (10.40) yield 

traceQ2 = Ix IIqx II 12dp, (x) = IlqII12,2, 

which was to be proved. 

(10.38) 

(10.39) 

(10.40) 

(10.41) 

o 
PROOF OF THEOREM 10.13. (i) Since 0 is relatively compact, by the 

estimate (7.25) of Theorem 7.7 (cf. Theorem 7.6) we obtain 

sup IIpt,xll£2 ::; Fn (t) := C (1 + C U
) , (10.42) 

xEn 

where 17 is any integer larger than n/4 and C is a constant depending on O. 
Since P~x ::; Pt,x (cf. Exercise 7.40 or Theorem 5.23), (10.42) implies 

sup IlpPxll£2 ::; Fn (t) (10.43) 
xEn ' 

and 

IIpPIII2,2 = 10 IlpP,xIlI2 dp,::; F~ (t) p, (0), (10.44) 

whence it follows that IlpPII£2,2 < 00. 

Applying Lemma 10.14 to the operator Q = PP and noticing that Q2 = 
P~, we obtain that 

traceP~ = IIpPlliz,2 < 00. (1O.~5) 
Since P~ = exp (-2t£n), we conclude by Lemma 10.7, that the spectrum 
of £0. is discrete on the set where the function A Me-20. is positive; hence, 
all the spectrum of £0. is discrete. 

By Lemma 10.2, there is an orthonormal basis {'Pk}~l of eigenfunctions 
of £0. in £2 (0) such that the sequence {Ad of their eigenvalues consists of all 
eigenvalues of £0. counted with multiplicity. Besides, we have IAkl --t 00 and 
Ak 2: 0, which implies that Ak --t +00. Since any bounded interval contains 
only a finite number of terms Ak, the sequence {Ak} can be renumbered in 
the increasing order. 

(ii) Noticing that 

( n ) nO. () -t.cP () -tAk () Pt,x,'Pk £2 =.rt 'Pk X = e 'Pk x = e 'Pk X , (10.46) 
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we obtain the following expansion of prx in the basis {)Ok}: , 

o ~ -t>"k () Pt,x = L.J e )Ok x )Ok, (10.47) 
k 

that is, 
pf (x, y) = L e-tAk)Ok (X))Ok (y), (10.48) 

k 

where the series converges in L2 (D) in variable y for any xED and t > O. 
Note that, by (10.14) and (10.45), 

L e-2tAk = traceP~ = IIpflli2,2 < 00. (10.49) 
k 

The sequence {)Ok (X))Ok (Y)}~l is obviously orthonormal in L2 (D x D), 
which together with (10.49) implies that the series (10.48) converges in 
L2 (D x D). 

To show the absolute and uniform convergence, observe that by (10.43), 
for any 1 E L2 (D), 

sup IpF1 (x)1 = sup i(p~x,1)£2i ~ Fo (t) 11111£2· 
xEO xEO 

Applying this to 1 = )Ok and using (10.46), we obtain 

sup ie-tAk)Ok (x)! ~ Fo (t), 
xEO 

whence 
sup ie-2tAk)ok (X))Ok (y)i ~ Fo (t)2 . 

x,yEO 

Since function Fo (t) is decreasing in t, we obtain, for any c > 0, 

(10.50) 

L sup !e-3tAk )ok (x) )Ody)! ::; Fo (c)2 L e-eAk, (10.51) 
k ~~ k tze 

where the right hand side is finite by (10.49). Renaming 3t to t and 3c to c, 
we obtain that the series (10.48) converges absolutely and uniformly in the 
domain t ~ €, X,y E D. 

Finally, let us show that the series (10.48) converges in Coo (lR+ x D x D). 
The function U (t, x, y) = p~ (x, y) satisfies the heat equation 

OU 
at = (~x + ~y) U 

with respect to the Laplace operator ~x + ~y of the manifold D x D (cf. 
the proof of Theorem 7.20), and its is straightforward to check that each 
function Uk (t, x, y) = e-2tAk <pk (X))Ok (y) also satisfies the same equation. It 
follows from the previous argument that the series Ek Uk converges to U in 
Ltoc (lR+ x D x D), which implies by Theorem 7.4 that it converges also in 
Coo (lR+ x D x D). 0 
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REMARK 10.15. It follows from (10.51) that, for any t > 0 and n E N, 

Since Sn (t) is a decreasing function of t, it follows that, for all t ~ to > 0 

Sn (t) ~ e-Ant/2Sn (t/2) ~ e-Ant/2Sn (to/2). (10.52) 

In particular, if An > 0, then Sn (t) -+ 0 as t -+ 00. 

EXAMPLE 10.16. Let us show that if n is a non-empty relatively compact 
open subset of a weighted manifold, then, for all large enough k, 

Ak (n) ~ ck1/(2u) , (10.53) 

where (J' is the exponent from (10.42) and c is a positive constant depending 
on n (better estimates for Ak (n) will be proved later in Corollary 15.12). 

Write for simplicity Ak = Ak (n). Since the sequence {Ak}!:l is increas­
ing, we have, for any k ~ 1, 

00 

L e-2tAk ~ ke-2tAk . 

k=l 

It follows from (10.49) that 

ke-2tAk < IIpnl12 - t L2,2 

and, hence, 
1 k 

Ak (n) ~ - log " n 112 . 2t Pt £2,2 

Assuming 0 < t ~ 1, we obtain from (10.42) and (10.44), 

IIptll1.2 ,2 ~ cr2u
, 

for some constant C depending on n, whence 

1 kt2u 

Ak (n) ~ 2t log c· 
Let us choose t from the condition k~O" = e, that is 

t = (~e) 1/(2u) 

(10.54) 

(10.55) 

(10.56) 

Since we want t ~ 1, this is only possible if k ~ Ceo Assuming that k is 
that large and substituting (10.56) into (10.55), we obtain (10.53). 

EXAMPLE 10.17. It is easy to show that the eigenvalues of the circle 
§1 are given by the sequence {k2}:0' all with multiplicity 1 (see Exercise 
10.18). For the sphere §n, the distinct eigenvalues are given by 

ak=k(k+n-l), k=O,l, ... , 
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(see Exercise 10.19), where the multiplicity of ao is 1 and the multiplicity 
of ak, k 2:: 1, is equal to 

(k+n-2)! 
(n-1)!k! (2k+n-l). 

Exercises. 

10.9. In the setting of Lemma 10.14, prove that the integral operator Q is compact without 
using the trace. 

10.10. Let M be a.compact weighted manifold, which has a finite number m of connected 
components. 

(a) Prove that A1 (M) = ... = Am (M) = 0 and Am+! (M) > O. 
(b) Show that the estimate (10.53) holds for all k ;::: m + 1 and does not hold for k 5 m. 

10.11. Let M be a compact connected weighted manifold. Prove that 

1 
Pt (x, y) =4 p, (M) as t -+ 00, 

where the convergence is uniform for all x, y E M. 

10.12. Let n be a non-empty relatively compact connected open subset of a weighted 
manifold M. Using the notation of Theorem 10.13, prove that, for all x, YEn, 

pr (x, y) '" e-A1tipl (x) ipl (y) as t -+ 00. 

10.13. Prove that, under the conditions of Theorem 10.13, 

sup lipk (x)1 5 C (1 + Ak), for all k ;::: 1, 
",en 

(10.57) 

where (j is the exponent from (10.42) and C is a constant that does not depend on k. 

10.14. Let (M,g,p,) be a weighted manifold with the discrete spectrum. Let {ipk} be an 
orthonormal basis in L2 (M) that consists of the eigenfunctions of M, and let Ak be the 
eigenvalue of ipk. 

(a) Prove that, for any f E L2 (M), if f = I:k akipk is the expansion of f in the basis 
{ipk} in L2 (M) then 

Ptf = L e-Alctakipk, (10.58) 
k 

where the series converges in L2 (M) for any t > O. Show also that the series 
converges in Coo (lR+ x M) . 

(b) Assume in addition that 

for all t > O. Prove that 

trace,Pt = Le-Akt < 00 

k 

Pt (x, y) = L e-Alctipk (x) ipk (y), 

where the series converges in Coo (lR+ x M x M) . 

(10.59) 

10.15. On an arbitrary weighted manifold, consider the resolvent R = (id +C)-1 and its­
powers RS = (id +.c) -8, where .c is the Dirichlet Laplace operator and s > O. 

(a) Prove that 

(10.60) 
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(b) Assuming in addition that p, (M) < 00 and 

Pt (x, x) ::; CCv for all 0 < t < 1, x E M, 

where C and v are positive constants, prove that trace R S is finite for all 8 > v. 

10.16. Let n be a relatively compact open subset of a weighted manifold M of dimension 
n. Let {ipk} be an orthonormal basis in L2 (n) that consists of the eigenfunctions of M, 
and let {Ak} be the sequence of the corresponding eigenvalues. 

(a) Prove that if 8 > 80 = 80 (n) then 
00 

(b) Prove that if f E Co (n) then the Fourier series 

f = 2:Ckr,ok 
k 

of function f converges to f absolutely and uniformly in n. 

(10.61) 

10.17. Let (M,g,p,) be a compact weighted manifold and {r,ok} be an orthonormal basis 
in L2 (M) that consists of the eigenfunctions of M. Prove that the set of all finite linear 
combinations of functions ipk is dense in C (M). 

REMARK. This can be considered as a generalization of the classical Stone-Weierstrass 
theorem that any continuous 27r-periodic function on JR can be uniformly approximated 
by trigonometric polynomials. 

10.18. In this problem, the circle §1 is identified with JR/27rZ. 

(i) Prove that the heat kernel Pt (x, y) of §1 is given by 

1 1 2:00 

_k2 t pt{x,y)=-+- e cosk(x-y). 
27r 7r 

k=l 

(10.62) 

(ii) Show that the heat kernel Pt (x, y) Of§l can be obtained from the heat kernelpt (x, y) 
of JRl by 

(10.63) 
nEZ 

(iii) Prove the Poisson summation formula 

(10.64) 

10.19. Let P(x) be a homogeneous of degree k harmonic polynomial on JRn +1. Prove 
that the function f = Plsn is an eigenfunction of the Laplacian of §n with the eigenvalue 
a=k(k+n-1). 

REMARK. It is possible to prove that such eigenfunctions exhaust all eigenfunctions on 
§n. 

2 
10.20. Consider the weighted manifold (JR, ga, p,) where dp, = e-x dx. Prove that the 
spectrum of this manifold is discrete, its eigenvalues are Ak = 2k, k = 0, I, ... , and the 
eigenfunctions are hk (x) - the Hermite polynomials (see Exercise 3.10). Hence, show that 
the heat kernel of this manifold satisfies the identity 

( ) 
_ ~ -2kt hk (x) hk (y) 

Pt x, Y - L..; e 'ir2 k k" 
k=O V", 

(10.65) 
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REMARK. The same heat kernel is given by the formula 

1 (2Xy e-2t 
_ (x2 + y2) e-4t 

) 

Pt (x,y) = (211"sinh2t)1/2 exp 1- e-4t +t , 

cf. Example 9.19. 

10.5. Minimax principle 

Let (M, g, p,) be a weighted manifold with discrete spectrum, and let 
Pk (M)}k::1 be the increasing sequence of all the eigenvalues of M, counted 
according to multiplicity. The following theorem generalizes the variational 
formula (10.1) for Amin (M). 

THEOREM 10.18. If the spectrum of (M, g, p,) is discrete then the follow­
ing identities hold: 

Ak (M) = sup inf 'R (J), 
dimE=k-l fEE-i\{O} 

(10.66) 

where the supremum is taken over all subspaces E C WJ (M) of dimension 
k-1 and the infimum is taken over all non-zero functions f in the orthogonal 
complement of E in WJ (M), and 

Ak (M) = . inf sup 'R (J) , (10.67) 
dlmF=k fEF\{O} 

which is understood similarly. 

For example, for k = 1 (10.66) and (10.67) yield 

Al (M) = inf 'R (J) , 
fEWJ\{O} 

matching Theorem 10.8. 

PROOF. Let {'Pd be an orthonormal basis in L2 (M) such that 'Pk is an 
eigenfunction of M with the eigenvalue Ak = Ak (M) (cf. Lemma 10.2). 

CLAIM 1. For any f E WJ (M) and i ~ 1, 

(V f, V 'Pi) £2 = Ai (j, 'Pi) £2 • (10.68) 

Indeed, since f E WJ (M) and 

I::1J.1.'Pi = -Ai'Pi E L2 (M), 

the Green formula 4.12 yields 

(V f, V'Pi)£2 = - 1M f 1::1J.1. 'Pi dp, = Ai L f'PidJ.L, 

which is equivalent to (10.68). 
In particular, applying (10.68) to f = 'Pj, we obtain 

(~ ~) {Ai, i = j, 
v 'Pi, V'Pj £2 = 0 . -t. . , ~ ,J. 

(10.69) 
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CLAIM 2. If E is a (k - 1) -dimensional subspace of a Hilbert space 1-£ and 
F is a k-dimensional subspace of 1-£ then there exists a non-zero vector v E 

FnEJ... 
Indeed, let {'PI,"" 'P k} be a basis in F and let us look for v in the form 

k 

v = LCi'Pi , 
i=1 

where CI, ... , Ck are unknown reals. If {el' .. . ek-I} is a basis in E then the 
condition v E EJ.. means (v, ej) = 0 for all j = 1, ... , k - 1, which amounts 
to a linear system for Ci: 

k 

L ('Pi, ej) Ci = 0, j = 1, ... , k - 1. 
i=1 

Since the number of the equations in this homogeneous system is less than 
the number of unknowns, there is a non-zero solution {Ci}, which determines 
to a non-zero vector v E F n EJ.. . 

Now we can prove (10.66) and (10.67). Consider the space 

E = span {'PI, ... , 'Pk-I} , 

which is a (k - I)-dimensional subspace of WJ (M). Any function f E 
EJ.. \ {O} can represented in the form 

f = LCi'Pi, 
i~k 

whence we obtain, using (10.69), 

R(f) = (,'Vf, "Vf)p = Li,j>kCiCj ("V'Pi. "V'Pj)p = Li>kAiCr 2:: Ak. 

(f, f)p Li,j~k CiCj ('Pi, 'Pj) £2 Li~k cr 
Hence, we obtain, for this particular space E 

(10.70) 

If F is any k-dimensional subspace of WJ (M) then, by Claim 2, there exists 
a non-zero function f E F n El., which implies that 

sup R (f) 2:: Ak. 
/EF\{O} 

(10.71) 

Hence, taking in (10.70) supremum over subspaces E and in (10.71) infimum 
over F, we obtain upper bounds for Ak in (10.66) and (10.67), respectively. 

To prove the lower bounds, consider the k-dimensional subspace 

F = span {'PI, .. , 'Pk}. 

Writing a function f E F \ {O} in the form 

f = LCi'Pi, 
i:S;k 
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we obtain, similarly to the first part of the proof, 

R (1) = I:i<k Ai~~ ~ Ak. 
I:i~k ci 

Hence, for this particular space F, 

sup R (1) ~ Ak' 
fEF\{O} 

(10.72) 

If E is any (k - I)-dimensional subspace of WJ (M) then, by Claim 2, there 
is a non-zero function f E F n EJ.., which implies that 

(10.73) 

Taking in (10.72) infimum over all subspaces F and in (10.73) supremum over 
E, we obtain the lower bounds for Ak in (10.67) and (10.66), respectively, 
which finishes the proof. 0 

COROLLARY 10.19. If nand n' are non-empty relatively compact open 
subsets of M and n' c n then, for any k ::::: 1, 

Ak (n') ~ Ak (n) . 

PROOF. Note that the space WJ (n') can be considered as a subspace 
of WJ (n) by identifying any function f E WJ (n') with its trivial extension 
(cf. Section 5.5), and the trivial extension does not change R (1). Hence, 
any k-dimensional subspace F of WJ (0') is also that of WJ (0), and the 
value of the functional 

R (F):= sup R (1) 
fEF\{O} 

does not depend on whether F is considered as a subspace of WJ (n') or 
WJ (n). By (10.67), we obtain 

Ak (n') = inf R (F) ~ inf R (F) = Ak (n), 
FCWJ<O') FcWJeO) 

which was to be proved. o 
Exercises. 

10.21. Let (M,g,p,) be a weighted manifold with discrete spectrum, and let {rph} be an 
orthonormal basis in L2 (M) ofthe eigenfunctions of M with eigenvalues {Ah}. 

(a) Prove that {rph} is an orthogonal basis also in WJ (M). 
(b) Let f E L2 (M) and assume that f = Eh a,.rp,. is its expansion in the basis {rp,.} in 

L2 (M). Prove that if, in addition, f E WJ (M) then 
~ ~2 Y'f= L.JakY'CPk inL (M) (10.74) 

k 

and 

(10.75) 
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( c) Prove that if I E W~ (M) then 

and 

-f:l.p.1 = EAkal<<Pk in L2 (M) 
k 

(10.76) 

(10.77) 

10.22. Let manifold M admit k non-zero functions iI, ... , Ik E WJ (M) with disjoint 
supports such that R (fi) S a for all i = 1, ... , k and some number a. Assuming that the 
spectrum of'c is discrete, prove that Ak (M) S a. 

", 

10.6. Discrete spectrum and compact embedding theorem 

Recall that, on any weighted manifold (M, g, ;.t), the identical mapping 
WI (M) --+ L2 (M) is an embedding (cf. Section 4.1). In this section, we 
discuss the conditions when the embedding operator WJ (M) '-tL2 (M) is 
compact. 

THEOREM 10.20. Let (M, g,;.t) be a weighted manifold. Then the follow-
ing conditions are equivalent. 

(a) The spectrum of M is discrete. 
(b) The embedding operator WJ (M) '-tL2 (M) is compact. 
(c) The resolvent Ra. = (.c + a id)-I is a compact operator in L2 (M), 

for some/all a> O. 

PROOF. (a) =} (b). If the spectrum of the Dirichlet Laplace operator .c 
is discrete, then, by Lemma 10.2, there exists an orthonormal basis {'Pk}~l 
in L2 (M) such that each 'Pk is an eigenfunction of.c, and the corresponding 
eigenvalues Ak tend to +00 as k --+ 00. 

It follows from (10.68) that, for any f E WJ (M) and any k ::::: 1, 

(j, 'Pk)Wl = (1 + Ak) (j, 'Pkh2 . (10.78) 

In particular, (10.78) implies that 

II'Pkll~l = 1 + Ak' 

By Exercise 10.21, the sequence {'Pk} forms an orthogonal basis in WJ (M). 
Hence, any function f E L2 (M) can be expanded in the basis {'Pk} as 
follows: 

00 

f = Lak'Pk, 
k=l 

where ak = (j, 'Pkh2, and if f E WJ (M) then the same series converges in 
WJ (M). By the Parseval identity, we have 

00 

IIflli2 = La~ 
k=1 
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and 
00 

11/11~1 = ~ (1 + Ak) a%. 
k=1 

Now assume that we have a sequence {In} in WJ (M), which is bounded 
in the norm WI (M)) and prove that there exists a subsequence that con­
verges in L2 (M), which will prove that the embedding WJ (M) "-t L2 (M) 
is compact. Set ank = (In, 'Pk)p and observe that, by the boundedness of 
IIlnllwl, there exists a constant C such that, for all n, 

00 

(10.79) 
k=1 

In particular, all the coefficients ank are uniformly bounded. Consider the 
infinite matrix 

au a21 a31 anI 
a2I a22 a32 an2 

The boundedness of the entries implies that, in any row, there is a conver­
gent subsequence. Using the diagonal process, choose a sequence of column 
indices nl, n2, ... --+ 00 such that the subsequence {a1lik}:1 converges for 
any k. 

Let us show that the subsequence {In,} converges in L2 (M). For sim­
plicity of notation, renumber this sequence back to Un}. Then we have, for 
all indices n, m, K, 

00 K 00 

"In - Imll;'z = ~ (ank - amk)2 = ~ (ank - amk)2 + ~ (ank - amk)2. 
k=1 k=l k=K +1 

The condition (10.79) implies 

~ ( )2 ~ ~ < 4C L...t ank - amk ~ 2 L...t ank + 2 L...t amk - 1 + A 
k=K+l k=K+l k=K+l K 

whence 

2 ~ 2 4C 
"In - 1m lip ~ L...t (ank - amk) + 1 + A . 

k=1 K 
Given € > 0, choose K so big that 

4C € 

l+AK<'2' 
which is possible because AK --+ 00 as K --+ 00. For the already chosen K, 
we have 

K 
~ 2 € L...t (ank - amk) < '2 for large enough n, m, 
k=1 
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because by construction the sequence {ank}~=l is Cauchy for any k. Hence, 
for large enough n, m, 

IIln - Imlll2 < €, 

that is, {In} is a Cauchy sequence in L2 (M), which was to be proved. 
(b) =? (c). Recall that, by Theorem 4.6, the resolvent Ra = (C + aid)-l 

is a bounded self-adjoint operator in L2 (M). For any IE L2 (M), we have 

u:= Ral E domC C wJ (M) 

and 
Cu+au = I 

whence 

(Vu, VUh2 + a (u, u)£2 = (u, CU)£2 + (u, aU)£2 = (u, /)£2 

(cf. (4.21». Therefore, 

min (l,a) IIull~rl :::; II u llL211/11L2:::; IIullwl/l//lL2 

and 
/lUI/WI:::; max (1, a-I) I//IIL2. (10.80) 

Consider the operator Ra : L2 (M) --+ WJ (M) defined by Ral = Ral (the 
difference between Ra and Ra is that they have different target spaces). By 
(10.80), the operator Ra is bounded. The resolvent Rc~ : L2 (M) --+ L2 (M) 
is the composition of Ra and the embedding operator, as follows: 

L2 (M) Ra) WJ (M) yL2 (M) . 

Since Ra is bounded and the embedding operator WJ (M) yL2 (M) is com­
pact, their composition is a compact operator. 

(c) =} (a). Note that ker Ra = {O} because Ral = 0 implies I = 
(C + aid) 0 = O. By the Hilbert-Schmidt theorem, there is an orthonormal 
basis {IPd in L2 (M) that consists of the eigenfunctions IPk of Ra with the 
eigenvalues Pk =1= 0 such that Pk --+ 0 as k --+ 00. Since C = R;;l-a, function 
IPk is also an eigenfunction of C with the eigenvalue Ak = p,;I - a. Since 
Ak --+ 00, there is no finite accumulation point of the sequence P.d. Using 
this, the operator (C - Aid)-1 can be explicitly constructed for any A =1= Ak 
as follows: if I = 2:k ak<Pk in L2 (M) then 

(C - Aid)-l 1= L Aka~ A <Pk, 
k 

and this operator is bounded because infk IAk - AI > O. Hence, the entire 
spectrum of C coincides with the sequence {Ak}, which implies that the 
spectrum of C is discrete. 0 

COROLLARY 10.21. (Compact embedding theorem) lin is a non-empty 
relatively compact open subset 01 a weighted manilold M then the embedding 
operator WJ (0.) Y L2 (0.) is compact. 
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PROOF. By Theorem 10.13, the spectrum of co. is discrete, whence the 
result follows from Theorem 10.20. 0 

SECOND PROOF. Let us present a more direct proof, without using Theorems 10.13 
and 10.20. Instead, we assume that the compact embedding theorem is known for the 
case M = ]Rn (see Theorem 6.3). 

Let us show that, for any bounded sequence Uk} in WJ cn), there is a subsequence 
Uk.} that converges in L2 (n). Since Co (n) is dense in WJ (n), we can assume without 
loss of generality that all functions !k are in Co (n). Since n c M is relatively compact, 
there is a finite family {Uj} of small enough relatively compact charts such that 

ncUUj =: U. 
j 

By Theorem 3.5, there exist functions 'Pj E Co (Uj) such that 2:j 'Pj == 1 in a neighbor­
hood ofn. 

Fix j and observe that the sequence {!k'Pj };;:1 is bounded in WJ, because (suppress­
ing indices k, j) 

lI!ipll~J lIfiplli· + 11\7 (fip) IIi. 
< IIfll~. + 211\7fll~2 + 2supl\7'Plllfll~2 
~ const. 

Since WJ (Uj ) embeds compactly into L 2 (Uj ), there is a subsequence {A. 'Pj }:1 that 
converges in L2 (Uj ). Using the diagonal process, one can ensure that this subsequence 
converges in L2 CUj) for any j. Since 2:j 'Pj == 1 in n, we conclude that {fkJ converges 
in L2 (n), which finishes the proof. 0 

Applying further Theorem 10.20, we obtain that the spectrum of £0 is discrete, which 
is the main part of Theorem 10.13. Hence, this approach allows to prove Theorem 10.13 
without Theorem 7.6. However, we use Theorem 7.6 also to prove the existence and 
smoothness of the heat kernel and, at the same token, it leads to a short proof of Theorem 
10.13 via the properties of trace. 

Yet another approach to the proof of Corollary 10.21 is presented in Exercise 7.47. 
That proof also uses the heat kernel, but in a more direct way. 

Exercises. 

10.23. Prove that if the spectrum of a weighted manifold (M, g, p,) is discrete then also 
the spectrum of any non-empty open subset n c M is discrete. 

10.24. Let (M', g', p/) and (Mil, gil, p,") be two weighted manifold with discrete spectra, 
whose eigenvalues are given by the sequences {ai} and {,Bj} , respectively (each eigenvalue 
is counted with multiplicity). Prove that the spectrum of the direct product (M, g, p,) is 
also discrete, and the eigenvalues are given by the double sequence {ai + ,Bj}. 

10.25. (Compactness of the embedding Wi~c "--t L~oc) Let {Uk} be a sequence of functions 
from 'Wj~c (M) such that {Uk} is bounded in WI (n) for any relatively compact open set 
n c M. Prove that there exists a subsequence {Uk,} that converges in Moe (M). 
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10.7. Positivity of Al 

Throughout this section, 0 is a non-empty relatively compact open sub­
set of a weighted manifold (M, g, p,). Recall that, by Theorem 10.13, the 
spectrum of the Dirichlet Laplace operator CP' is discrete and consists of a 
sequence {Ak (0)}~1 of non-negative eigenvalues such that Ak (0) -+ 00 as 
k -+ 00. 

THEOREM 10.22. Let (M, g, f-l) be a connected weighted mani101d. 11 
OeM is a non-empty relatively compact open set such that M \ 0 is non­
empty then Al (0) > O. 

Neither connectedness of M nor the fact that 0 =1= M can be dropped. 
Indeed, if a disconnected manifold is allowed then let M consist of two 
disjoint copies of §n and 0 be one of these copies. Obviously, function 
rp = 1 is an eigenfunction in 0 and, hence, Al (0) = O. If 0 = M is allowed 
then take 0 = M = §n with the same effect. 

PROOF. Assume that Al (0) = 0 so that there is an eigenfunction I of 
CP' with the eigenvalue 0, that is, CP'1 = O. By Lemma 4.4, we have 

(VI, Vf)L2(n) = (£0,1,1)£2(0,) = 0 

so that V I = 0 in O. By Corollary 7.3, I E Coo (0). Hence, 1 is a constant 
on any connected component of O. Since 1 i= 0, there is a component of 0 
where 1 is a non-zero constant, say, I == 1. Denote this component again 
by O. 

The set 0 is closed and its complement is non-empty. Since M is con­
nected, 0 is not open, which implies that the boundary ao is not empty. 
Choose a point Xo E ao and let U be any connected open neighborhood of 
Xo. Consider the set 0' = 0 U U, which is a connected open set. Note that, 
by construction, 0' \ 0 is non-empty. 

Since I E dom£o' C WJ (0), extending I to 0' by setting I = 0 in 
0' \ 0, we obtain a function from WJ (0') (see Section 5.5). Since 1=0 on 
0' \ 0, by (5.11) we have V I = 0 in 0' \ O. Since also V 1 = 0 in 0, we 
conclude that V 1= 0 in 0'. This implies, that, for any rp E V (0'), 

(b.fJ,I, cp)v = (I, b.fJ,rp)v = - (V 1, Vrp)v = O. 

Hence, we have 1 E wJ (0') and b.fJ,1 = 0 in 0', which implies by Theorem 
7.1 that I E Coo (0'). Since 'V 1 == 0 in 0', we conclude that I == const in 0', 
which contradicts to the construction that 1 = 1 in 0 and 1 = 0 in 0' \ O. 

Theorem 10.22 is complemented by the following statement. 0 

THEOREM 10.23. For any a weighted manilold (M, g, f-l) and any non­
empty relatively compact connected open set 0 eM, 

(10.81) 

PROOF. Indeed, by Corollary 10.12, the eigenvalue Al (0) is simple whence 
(10.81) follows. 0 
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10.8. Long time asYlllptotic of logpt 

We will show here that the bottom of the spectrum Amin (M) determines 
the long time behavior of the heat kerneL 

THEOREM 10.24. On any connected weighted manifold (M, g, J.t), we 
have, for all x, y E M, 

1· log Pt (x, y) - _ \ . (M) 1m - I\mm • 
t--+= t 

(10.82) 

PROOF. Set A = Amin (M). Since the spectrum of operator Pt = e-t.c is 
bounded by e-,\.t, we obtain that IIPtll ~ e-,\.t and, hence, for any f E L2, 

IIPdllp ~ e-,\.tllfIlL2. (10.83) 

Applying this to f = Ps,x (where s > 0 and x E M) and notices that 
PtPs,x = Pt+s,x, we obtain 

(10.84) 

whence 

1. log IIpt,x II p < \ 1m sup -1\. 
t--+= t -

It follows from (7.48) that 

Pt (x, y) = (Pt/2,x,Pt/2,y) ~ IIpt/2,x II £2 IIpt/2,y 11£2 , 
whence 

1
. logpt (x, y) < \ 
1m sup -1\. 
t--+= t -

To prove the opposite inequality, take any connected relatively compact open 
set n c M and recall that, by Theorem 10.13, the spectrum of the Dirichlet 
Laplace operator £,0, is discrete, and the heat kernel PP is given by the 
expansion (10.33). By Theorem 10.23, Ak (n) > Al (n) for any k > 1 and, 
by Theorem 10.11, the first eigenfunction 'PI (x) of 1ft is strictly positive in 
n. Hence, the first term in expansion (10.33) is the leading one as t -+ 00, 

that is, 
PP (x,y) '" e-'\'l(n)t'PI (x) <PI (y) as t -+ 00, 

for all x, YEn, which implies 

lim logpP (x,y) = -Al (n). 
t--+= t 

Since Pt ~ PP (cf. Theorem 5.23 and Exercise 7.40), it follows that 

liminf logpt (x, y) ~ -Amin (n). 
t--+= t 

Exhausting M be such sets n and noticing that Amin (n) -+ A (see Exercise 
10.6), we finish the proof. 0 
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Exercises. 

10.26. Let j E 0 2 (M) be a non-negative function on a connected weighted manifold M 
that satisfies the inequality 

A,.d+ o:j ~ 0 
with a real constant 0:. Prove that either j == 0 or 0: ~ Amin (M). 
REMARK. The converse is also true, that is, for any 0: ;::: Amin (M) there exists a positive 
solution to the equation A".! + 0:/ = O. This will be proved later in Chapter 13 (cf. 
Theorem 13.16). Exercise 10.27 contains a partial result in this direction. 

10.27. Let 0: be a real number. 
(a) Prove that if 0: < Amin (M) then the operator £ - 0: id has the inverse in L 2 (M) and 

(£ - o:id)-l = 100 

e"'t Ptdt. (10.85) 

(b) Prove that if /.L (M) < 00 and 0: < Amin (M) then the weak Dirichlet problem 

{ 
A~u+o:u= 0 
u E 1 mod WJ (M) 

has a unique solution that is given by the formula 

u = 1 + 0:1

00 

e"'t (Pt 1) dt (10.86) 

Deduce that u > O. 

10.28. (Maximum principle) Let n be a non-empty relatively compact open set in a 
connected weighted manifold M such that M \ n is non-empty. Prove that if u E 0 (0) n 
0 2 (n) is a subharmonic function in !l then 

supu = supu. 
n ao 

(10.87) 

REMARK. Of course, this statement follows from Corollary 8.16. Find another proof using 
Theorem 10.22 and Exercise 4.28. 

10.29. Prove that, for all x, y E M and t ;::: s > 0, 

Pt (x, y) ~ Jps (x, x)Ps (y, y) exp (-Amin (M) (t - s». 

Notes 

Most of the material of this Chapter is an adaptation of the classical spectral theory, 
that is associated with the names of Rayleigh, Courant, Neumann, Weyl, to the particular 
case of the Dirichlet Laplacian. 

The computation of the spectra ofS" and some other compact manifolds can be found 
in [36] (see also [51]). 



CHAPTER 11 

Distance function and completeness 

Here we introduce the techniques of Lipschitz test functions (Section 
11.2), which allow to relate the geodesic distance to the properties of solu­
tions of the Laplace and heat equations. Apart from the applications within 
the present Chapter, this techniques will also be used in Chapters 12, 15, 
16. 

11.1. The notion of completeness 

Let (M, g) be a Riemannian manifold and d (x, y) be the geodesic dis­
tance on M (see Section 3.11 for the definition). The manifold (M, g) is 
said to be metrically complete if the metric space (M, d) is complete, that 
is, any Cauchy sequence in (M, d) converges. 

A smooth path , (t) : (a, b) -+ M is called a geodesics if, for any 
t E (a, b) and for all 8 close enough to t, the path ,1ft,s) is a shortest path 
between the points, (t) and, (8). A Riemannian manifold (M, g) is called 
geodesically complete if, for any x E M and e E TxM \ {OJ, there is a 
geodesics, : [0, +(0) -+ M of infinite length such that, (0) = x and 
ry (0) = e. It is known that, on a geodesically complete connected manifold, 
any two points can be connected by a shortest geodesics. 

We state the following theorem without proof. 

HOPF-RINOW THEOREM. For a Riemannian manifold (M, g), the following 
conditions are equivalent: 

(a) (M, g) is metrically complete. 
(b) (M, g) is geodesically complete. 
(c) All geodesic balls in M are relatively compact sets. 

This theorem will not be used, but it motivates us to give the following 
definition. 

DEFINITION 11.1. A Riemannian manifold (M, g) is said to be complete 
if all the geodesic balls in M are relatively compact. 

For example, any compact manifold is complete. 

Exercises. 
11.1. Let g be a metric in Rn, which is given in the polar coordinates (r,O) by 

g = dr2 + 'if;2 (r) gg ... -l, (11.1) 

where 'if; (r) is a smooth positive function (cf. Sections 3.10 and 8.4.3). Prove that the 
Riemannian model (Rn, g) is complete. 

295 



296 11. DISTANCE FUNCTION AND COMPLETENESS 

11.2. Prove the implication (c) '* (a) of Hopf-Rinow Theorem, that is, if all geodesic balls 
are relatively compact then (M, d) is a complete metric space. 

11.2. Lipschitz functions 

Let d be the geodesic distance on a Riemannian manifold (M, g). Let f 
be a function defined on a set ScM. We say that f is Lipschitz on S if 
there exists a finite constant C such that 

If (x) - f(y)l:::; Cd(x,y) for all x,y E S. 

The constant C is called the Lipschitz constant of f . The smallest possible 
value of C is called the Lipschitz seminorm of f and is denoted by IlfIlLip(S); 
that is, 

If (x) - f (y)1 
IIfIILip(S):= sup d ( ) 

x,yES,x=ly x, Y 

The set of all Lipschitz functions on M is denoted by Lip (M). It 
is obvious that Lip(M) is a linear space (cf. Exercise 11.5). It follows 
from Lemma 3.24 that any Lipschitz function on M is continuous, that is, 
Lip(M) C C (M). 

A large variety of Lipschitz functions arise from the following construc­
tion. For any non-empty set E C M and any point x EM, define the 
distance from x to E by 

d(x,E) :=inf{d(x,z) :ZEE}. 

LEMMA 11.2. If manifold M is connected then the function x I-t d (x, E) 
is Lipschitz on M with the Lipschitz constant 1. 

PROOF. The connectedness of M ensures that d (x, E) is finite. Let us 
show that, for any two points x, y E M, 

d (x, E) - d (y, E) :::; d (x, y), (11.2) 

which will imply the claim. For any E > 0, there exists Z E E such that 

d(y,E) 2: d(y,z) -E. 

Then we have by the triangle inequality 

d (x, E)-d (y, E) :::; d (x, z)-(d (y, z) - c) :::; d (x, z)-d (y, z)+c :::; d (x, y)+c. 

Since c > 0 is arbitrary, (11.2) follows. 0 

It is important for applications that any Lipschitz function has the weak 
gradient as stated below. 

THEOREM 11.3. Let (M, g, J.L) be a weighted manifold. Then, for any 
f E Lip (M), the distributional gradient \7 f is an LOO-vector field on M and 

11\7 fliLoo :::; IIfllLip. (11.3) 
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FIRST PROOF. Let U be a chart on M such that 

d (x, y) ~ a Ix - yl for all x, y E U, 

where Ix - yl is the Euclidean distance in the local coordinates in U. By 
Lemma 3.24, the manifold M can be covered by charts with this property. 
It follows that the function flu is Lipschitz with respect to the Euclidean 
distance. 

We will take without proof the following fact from the theory of functions 
of real variables. 

RADEMACHER'S THEOREM. Any Lipschitz function f in a an open set U C 
~n is differentiable at almost all points x E U in the following sense: there 
exists a covecior u (x) E ~n, such that 

f(x+~)-f(x)=(u(x),e)+o(I~I), ase-tO. (11.4) 

Moreover, the components Ui (x) of U (x) coincide with the distributional 

derivatives l!r of f· 

The Lipschitz condition implies that all the components Ui = ~ belong 
to Loo (U). By Exercise 4.11, the vector field v with components 

is the distributional gradient of f in U with respect to the Riemannian 
metric g. In particular, if x E U is a point where (11.4) holds then, for any 
vector ~ E TxM, we have 

i k i' k i (v,e)g=gikve =gikgJU~~ =Ui~ = (u,f.). (11.5) 

Let us show that Ivlg ~ a a.e. where a = IIfllLip, which will prove 
(11.3). It suffices to show that, for any point x E U where (11.4) holds and 
for any tangent vector e E TxM, 

(11.6) 

Choose a smooth path, in U such that, (0) = x and 'r (0) = e. Then 

, (t) -, (0) = f.t + 0 (t) as t -t 0, 

whence, by (11.4) and (11.5), 

f(f(t»-f(f(O» = (u,,(t)-,(O»)+o(t) = (u,~)t+o(t) = (v,f.)gt+o(t). 

On the other hand, the Lipschitz condition implies 

If (f (t» - f (f (0»1 ~ af (,i[o,tl) = a lot l'r (s )Ig ds = a 1f.lg t + 0 (t) . 

Comparing the above two lines and letting t -t 0, we obtain (11.6), which 
was to be proved. 0 
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SECOND PROOF. In this proof, we do not use Rademacher's theorem, 
but instead, we will use Exercise 2.23, which proves the statement of Theo­
rem 11.3 in the case when M is an open set in]Rn and the metric is Euclidean. 

Let us first prove the following claim. 

CLAIM. For any point p EM and for any C > I, there exists a chart U 3 P 
such that for all x E U, e E TxM, 1] E T;M, 

gij (x) eiej ~ C2 ((e)2 + ... + (en )2) (11.7) 

and 
(11.8) 

Let so far U be any chart containing p. Arguing as in the proof of 
Theorem 8.10, the coordinates xl, ... , xn in U can be chosen so that gij (P) = 
id. By continuity, the matrix 9 is close enough to id in a small enough 
neighborhood V of p. More precisely, by choosing V small enough, we can 
ensure that the matrices 9ij and ~j satisfy the conditions (11.7) and (11.8), 
respectively. We are left to rename V to U, yi to xi, and 9 to g. 

Shrinking further the chart U from the above Claim, we can assume that 
U is a ball in the coordinates xl, ... , xn centered at p. Then, for any two 
points x, y E U, the straight line segment between x, y is also contained in U. 
By (11.7), the Riemannian length of this segment is bounded by C jx - yj, 
which implies that 

d(x,y)~Clx-yj. (11.9) 

Let now f be a Lipschitz function on M with the Lipschitz constant K. 
In a chart U as above, we have 

jf(x)-f(y)1 ~Kd(x,y) ~CKjx-yj, 

so that f is Lipschitz with a Lipschitz constant C K in the Euclidean metric 
in U. By Exercise 2.23, we conclude that f has the distributional partial 
derivatives -G!r E Loo (U) such that 

n (8f )2 2 ~ axi ~ (CK) a.e .. (11.10) 

By Exercise 4.11, the Riemannian distributional gradient V' gf is given by 

(V' gf)k = gki88f" 
Xl 

and 
jV' fj2 = gij of, 8f .. 

g axlaxJ 

It follows (11.8) and (11.10) that 

IV gfl' $ c't. (:~ r $ C' (C K)' a.e. 
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that is, in U, 
(11.11) 

Since M can be covered by a countable family of such charts U, (11.11) 
holds also in M. Finally, since C > 1 was arbitrary, we obtain IV' gfl ~ K 
a.e., which finishes the proof. 0 

Denote by Lipo (M) the set of all Lipschitz functions on M with compact 
support. It is obvious that 

Lipo (M) c LP (M) , 

for all 1 ~ p ~ 00. 

COROLLARY 11.4. We have the following inclusions: 

CJ (M) c Lipo (M) c WJ (M) . (11.12) 

PROOF. By Theorem 11.3, any function f E Lipo (M) has distributional 
gradient V'f E £00 (M). Since suppf is compact, it follows that f E L2 (M) 
and V'f E £2 (M), that is, f E WI (M). By Lemma 5.5, the compactness of 
supp f implies f E WJ (M), which proves the second inclusion in (11.12). 

Let now f E CJ (M). Set 

C:= sup IV'fl < 00 
M 

and show that, for any two points x, y EM, 

If(x) -f(y)1 ~ Cd(x,y), (11.13) 

which will prove the first inclusion in (11.12). If the points x, y E M cannot 
be connected by a smooth path then d (x, y) = 00 and (11.13) holds. Let 
I (t) : [a, b] -+ M be a smooth path such that I (a) = x and I (b) = y. Then 

f(y)-f(x)= lb !f(r(t»)dt= lb(df ,-r)dt= l b

(V'f,-r)gdt, 

whence 

If (y) - f (x)1 ~ lb IV' fll-rl dt ~ C lb l-rl dt = Cf (r). 

Minimizing over all I, we obtain (11.13). o 
A function f on M is said to be locally Lipschitz if f is Lipschitz on any 

compact subset of M. The class of all locally Lipschitz functions is denoted 
by LiPloc (M), so that we have 

LiPo (M) cLip (M) c LiPloc (M). 

Some additional properties of Lipschitz and locally Lipschitz functions 
are stated in the following Exercises. 
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Exercises. 
11.3. Prove that a function I E C1 (M) is Lipschitz if and only if I'V II is bounded, and 

II III Lip = sup I'V II· 
M 

11.4. Prove the following properties of Lipschitz functions. 
(a) Let /l, ... , 1m E Lip (M) and let I,. = I,. (M) be the range of I,.. Let ip be a Lipschitz 

function on the set h x ... x 1m C JR."". Then the composite function 

ql (x) := ip (/1 (x) , ... , 1m (x» 

is Lipschitz on M and 

(
Tn) 1/2 

IIqlllLip ~ IIipilLip ~ II/,.IIiiP (11.14) 

(b) If I E LiPo (M) and ip E Lip (JR.) is such that ip (0) = 0 then ip 0 IE Lipo (M). 

11.5. Prove that I,g E Lip(M) then also the functions 1+ g, max(f, g), min (f,g) are 
Lipschitz; moreover, I 9 is also Lipschitz provided one of the functions I, 9 is bounded on 
the support of the other. 

Hence show, that if f, 9 E Lipo (M) then also the functions 1+ g, Ig, max (f,g), 
min (f,g) belong to Lipo (M). 

11.6. Prove that for any open set fl c M and any compact set K c fl there is a function 
f E Lipo (fl) such that 0 ~ I ~ 1 in fl, flK == 1, and IIfilLip ~ d(K~nC). 
REMARK. A function f with the above properties is called a Lipsch~tz cutoff function of 
Kin fl. 

11.7. Let I be a real valued function on a Riemannian manifold M. 
(a) Prove that if {U,,} is a countable family of open sets covering the manifold M such 

that 
C := sup IIfllLiP(ua ) < 00, 

'" 
then I E Lip (M) and II/IILip(M) ~ C. 

(b) Prove that if E1, E2 are two closed sets in M such that E1 U E2 = M and f is 
Lipschitz in each set E1, E2 with the Lipschitz constant C, then f is also Lipschitz 
in M with the Lipschitz constant C. 

11.8. Prove that 
C 1 (M) C Liploc (M) C WI~e (M) . 

11.9. Prove that the set of functions from LiPloc (M) with compact support is identical 
to Lipo (M). 

11.10. Prove that if /1, ... , ITn E Liploc (M) and ip E LiPloe (JRm
) then the composite 

function ql (x) := cP (/1 (x) , ... , fm (x» is locally Lipschitz on M. 

11.11. Prove that if f, 9 E LiPloe (M) then the functions 1+ g, Ig, max (j, g), min (j, g) 
are also in LiPloe (/It!) . 

11.12. Prove that if f E LiPloe (M) then the distributional gradient 'Vf belongs to 
lic:c (M). 

11.13. (Product rule for Lipschitz functions) 

(a) Prove that, for all I,g E LiPloe (M), 

'V(jg)=f'Vg+g'Vf. (11.15) 

(b) Prove that if f E Lip (M) nL"" (M) and 9 E WJ (M) then Ig E WJ (M) and (11.15) 
holds. 
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(c) Prove that if f E Lipo (M) and 9 E W!~c (M) then fg E WJ (M) and (11.15) holds. 

11.14. (Chain rule for Lipschitz functions) Prove that if f E Liploc (M) and 1/J E C 1 (JR), 
then 1/J (I) E Liploc (M) and 

V1/J (I) = 1/J' (I) V f. 

11.3. Essential self-adjointness 

Apart from the Dirichlet Laplace operator, the operator 6./-Lb may 
have other self-adjoint extensions related to other boundary conditions. A 
densely defined operator in L2 is said to be essentially self-adjoint if it admits 
a unique self-adjoint extension. 

THEOREM 11.5. If the weighted manifold (M, g, f.1) is complete then the 
operator 6./-Llv is essentially self-adjoint in L2 (M). 

We precede the proof by lemmas of independent interest. 

LEMMA 11.6. Let (M, g, f.1) be a complete weighted manifold. If a func­
tion u E L2 (M) satisfies the equation 6./-Lu - AU = 0 with a constant A ~ 0, 
then u = const on each connected component of M. If in addition A > 0 
then U = O. 

PROOF. By Theorem 7.1, we have U E Coo (M). Let f E Lipo (M), 
that is, f is a Lipschitz function on M with compact support. Then also 
up E Lipo (M) and, hence, up E WJ (M) (cf. Corollary 11.4). Multiplying 
the equation 6./-Lu = AU by up, we obtain up 6./-Lu ~ 0. Integrating this 
inequality and using the Green formula (4.12), we obtain 

o > - 1M uf26./-Ludf.1 = 1M (\7 (Uf2) , \7u)gdf.1 

- 1M l\7ul2 f
2

df.1 + 2 1M (\7u, \7 f)gu f df.1, 

whence 

1M l\7ul
2 

f
2

df.1 < -21M (\7u, \7 f)gu f df.1 

< % 1M l\7ul2 f
2

df.1 + 2 L 1\7 fl2 u
2

df.1 

and 

1M l\7ul
2 

f
2

df.1 S 4 1M 1\7 fl2 u2df.1. (11.16) 

Fix a point oEM, numbers R> r > 0, and specify f as follows: 

f(x) = (R-d(x,o»+. 

Alternatively, this function can be defined by f = 'P 0 d (', 0) where 'P (s) = 
(R - s) +. Since both functions 'P and d (', 0) are Lipschitz function on lR and 
M, respectively, with Lipschitz constants 1, the function f is also Lipschitz 
with the Lipschitz constant 1 (cf. Exercise 11.4). Obviously, supp f coincides 
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with the closed geodesic ball B (0, R). By hypotheses, all the geodesic balls 
on M are relatively compact, whence it follows that supp f is compact. 
Hence, f E Lipo (M), and (11.16) holds with this f. 

Since f ~ R-r on B(o,r) and, by Theorem 11.3, I~fl::; 1 a.e., we 
obtain from (11.16) 

r l~ul2 dj.t ::; 4 2 r u2dj.t. 
iB(o,r) (R - r) iM 

Letting R -+ 00 and using u E L2 (M), we obtain 

r l~ul2 dj.t = O. 
iB(o,r) 

Since r is arbitrary, we conclude ~u == 0 and hence u == canst on any 
connected component of M. In the case .A > 0 it follows that u == 0 because 
o is the only constant that satisfies the equation D.J.tu - .Au = O. 0 

LEMMA 11.7. On a complete weighted manifold, if u E L2 (M) and 
D.J.tu E L2 (M) then u E W6 (M). 

PROOF. By Theorem 4.5, the equation -D.J.Lv + v = f has a solution 
v = Rd E W6 (M) for any f E L2 (M). Set f = -D.J.Lu + u and observe 
that, for the function v = Rd, we have 

-D.J.L (u - v) + (u - v) = O. 

Since u - v E L2 (M) we conclude by Lemma 11.6 that u - v = 0 whence 
uE W6(M). 0 

PROOF OF THEOREM 11.5. Let £, = -D.J.L1w.2 and £'0 = -D.J.LI1). The 
o 

inclusion £'0 C £"implies £, = £,* C £'0' By (4.10), we have 

dom£'o = {u E L2 (M): D.J.tu E L2 (M)} , 

whence by Lemma 11.7, 

dom£'o C W5 (M) = dom£" 

which implies £'0 = £,. 
lf £'1 is another self-adjoint extension of £'0 then £'0 C £'1 implies £'1 = 

£,i C £'0 and, hence, £'1 C £,. In turn, this implies £,* C £,i whence £, = 
£'1. 0 

Exercises. 

11.15. Prove that if (M, g, f.1-) is a complete weighted manifold then WJ (M) = Wi (M). 

11.16. Let (M, g, f.1-) be a complete weighted manifold. 
(a) Let {Uk}~l be a sequence from Wl (M) such that, for all 'P E err (M), 

for some U E Wi, and 
(Uk, 'Ph2 -+ Cv, 'Ph2 , 

for some v E £2 (M). Prove that U = v. 

(11.17) 

(11.18) 
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(b) Show that without the hypothesis of completeness, the claim of (a) is not true in 
general. 

11.17. Let (M, g, p,) be a complete weighted manifold, and let h be a smooth positive 
function on M satisfying (9.43). Set dji. = h2 dp,. 

(a) Let l = -.6.;:;:IW2 be the Dirichlet Laplace operator of (M,g,ji.). Prove that the 
o 

operator -.6.p. + CI>lv is essentially self-adjoint in L2 (M, p,), and its unique self-
adjoint extension, denoted by £if?, is given by 

£if? = fir 1 
, (11.19) 

where J is a bijection L2 (M, ji.) -+ L2 (M, p,) defined by J f = hf. 
(b) Prove that the heat semigroup e-t.c<l> ofthe operator £if? in L2 (M, p,) has the integral 

kernel pi (x,y), given by 

pi (x, y) = h (x) h (y) Pt (x, y). (11.20) 

11.18. Consider in IR the function CI> (x) = x2 - 1. Verify that the function h (x) = e-~",2 
satisfies (9.43) with this function. Hence, prove that 

if? et 
( (x _ y)2 x2 + y2 ) 

Pt (x,y) = 1/2 exp 2' h2 - --2- tanht . 
(211" sinh 2t) sm t 

REMARK. The function (11.21) is called the Mehler kernel. 

HINT. Use Example 9.19. 

(11.21) 

11.4. Stochastic completeness and the volume growth 

Define the volume function V (x, r) of a weighted manifold (M, g, J1.) r-v 

V (x, r) := J1. (B (x, r)) , 

where B (x, r) is the geodesic balL Note that V (x, r) < 00 for all x E M 
and r > 0 provided M is complete. 

Recall that a manifold M is stochastically complete, if the heat kernel 
Pt (x, y) satisfies the identity 

JMPdx,y)dJ1.(y) = 1, 

for all x E M and t > 0 (see Section 8.4.1). The result of this section is the 
following volume test for the stochastic completeness. 

THEOREM 11.8. Let (M, g, 1-£) be a complete connected weighted mani­
fold. If, for some point Xo EM, 

J

oo rdr 
logV(xo,r) = 00, 

(11.22) 

then M is stochastically complete. 
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Condition (11.22) holds, in particular, if 

V(xo,r) ~ exp (Cr2
) 

for all r large enough or even if 

V(xo,rk) ~ exp (Cr~), 

(11.23) 

(11.24) 

for a sequence rk -+ 00 as k -+ 00 (cf. Exercise 11.19). This provides yet 
another proof of the stochastic completeness of Rn and lH[n. See Exercise 
12.4 for an alternative proof of the stochastic completeness of M under the 
condition (11.24). 

Fix 0 < T ~ 00, set I = (0, T) and consider the following Cauchy 
problem iIi I x M 

{ &;: = /).Jl.u in I x M, (11.25) 
ult=o = o. 

A solution is sought in the class u E Coo (I x M), and the initial condition 
means that u (t, x) -+ 0 locally uniformly in x E Mast -+ 0 (cf. Section 
8.4.1). By Theorem 8.18, the stochastic completeness of M is equivalent 
to the uniqueness property of the Cauchy problem in the class of bounded 
solutions. In other words, in order to prove Theorem 11.8, it suffices to 
verify that the only bounded solution to (11.25) is u == O. 

The assertion will follow from the following more general fact. 

THEOREM 11.9. Let (M, g, /-l) be a complete connected weighted mani­
fold, and let u(x, t) be a solution to the Cauchy problem (11.25). Assume 
that, for some Xo E M and for all R > 0, 

{T ( u2(x, t) d/-l(x)dt ~ exp (f(R» , (11.26) 
Jo JB(xo,R) 

where fer) is a positive increasing function on (0, +00) such that 

Joo rdr 
f(r) = 00. (11.27) 

Then u == 0 in I x M. 

Theorem 11.9 provides the uniqueness class (11.26) for the Cauchy 
problem. The condition (11.27) holds if, for example, f (r) = Cr2, but fails 
for f (r) = Cr2+e when c > o. 

Before we embark on the proof, let us mention the following conse­
quence. 

COROLLARY 11.10. If M = lRn and u Ct, x) be a solution to (11.25) 
satisfying the condition 

lu(t, x)1 ~ Cexp (C Ix12) for aUt E I, x E lRn
, (11.28) 

then u == O. Moreover, the same is true if u satisfies instead of (11.28) the 
condition 

lu(t, x)1 ~ C exp (f (Ixl) for all tEl, x E lRn
, (11.29) 
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where f (r) is a convex increasing function on (0, +00) satisfying (11.27). 

PROOF. Since (11.28) is a particular case of (11.29) for the function 
f (r) = Cr2, it suffices to treat the condition (11.29). In lRn we have 
V(x,r) = crn. Therefore, (11.29) implies that 

{T ( u2(x,t)df.L(x)dt <S:.CRn exp(J(R»=Cexp(i(R», 
Jo JB(O,R) 

where 1 (r) := f (r) +nlogr. The convexity of f implies that logr <S:. Cf (r) 
for large enough r. Hence, 1 (r) <S:. C f (r) and function 1 also satisfies the 
condition (11.27). By Theorem 11.9, we conclude u == O. 0 

The class of functions u satisfying (11.28) is called the Tikhonov class, 
and the conditions (11.29) and (11.27) define the Tiicklind class. The 
uniqueness of the Cauchy problem in lRn in each of these classes is a classical 
result, generalizing Theorem 1.7. 

PROOF OF THEOREM 11.8. By Theorem 8.18, it suffices to verify that 
the only bounded solution to the Cauchy value problem (11.25) is u == O. 
Indeed, if u is a bounded solution of (11.25), then setting 

S := sup lui < 00 

we obtain 

{T ( u2(t, x)df.L(x) <S:. S2TV(xo, R) = exp (J (R» , 
Jo JB(XD,R) 

where 
f(r) := log (S2TV(xo, r») . 

It follows from the hypothesis (11.22) that the function f satisfies (11.27). 
Hence, by Theorem 11.9, we obtain u = O. 0 

PROOF OF THEOREM 11.9. Denote for simplicity Br = B(xo, r) . .the 
main technical part of the proof is the following claim. 

CLAIM. Let u (t, x) solve the heat equation in (b, a) x M where b < a are 
reals, and assume that u (t, x) extends to a continuous function in [b, a] x M. 
Assume also that, for all R > 0, 

{b ( u2(x, t) df.L(x)dt <S:. exp (J(R» , 
Ja JBR 

where f is a function as in Theorem 11.8. Then, for any R > 0 satisfying 
the condition 

R2 
a- b <s:'8f(4R)' 

the following inequality holds: 

{ u2 (a,·)df.L<s:' { u2(b,.)df.L+ ~2. 
JBR JB4R 

(11.30) 

(11.31) 
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Let us first show how this Claim allows to prove that any solution u to 
(11.25), satisfying (11.26), is identical 0. Extend u (t, x) to t = ° by setting 
u (0, x) = ° so that u is continuous in [0, T) x M. Fix R > ° and t E (0, T). 
For any non-negative integer k, set 

Rk = 4kR 

and, for any k ~ 1, choose (so far arbitrarily) a number Tk to satisfy the 
condition 

(11.32) 

where c = 1~8' Then define a decreasing sequence of times {tk} inductively 
by to = t and tk = tk-l - Tk (see Fig. 11.1). 

.; - . 

M 

- . _ .... -. -, 
.. - '--'-. '. '" :~; ::=.;.::: ... ~.~~~.-=:.:.~ .. 

........ -.-... . ... - --' ... _- ._.- .. - ........... -" 

.. ... - .. .. .. -. -- .... -- ., ....... .. . 
...... 00-

FIGURE 11.1. The sequence of the balls BRk and the time 
moments tk' 

If tk ~ ° then function u satisfies all the conditions of the Claim with 
a = tk-l and b = tk, and we obtain from (11.31) 

r 2 { 2 4 JIe u (tk-b ·)dp, ~ Jf u (tk, ·)dp, + ~' 
BRk_l BRk k-l 

(11.33) 

which implies by induction that 

(11.34) 

If it happens that tk = ° for some k then, by the initial condition in (11.25), 

r u2(tk,.)dp, = 0. 
JBRk 
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In this case, it follows from (11.34) that 

1 
00 4 C 

u
2
(t, ·)dj.L ~ L R? = R2' 

BR i=l ~-1 

which implies by letting R -+ 00 that u(·, t) == 0 (here we use the connect­
edness of M). 

Hence, to finish the proof, it suffices to construct, for any R > 0 and 
t E (0, T), a sequence {tk} as above that vanishes at a finite k. The condition 
tk = 0 is equivalent to 

t = T1 + T2 + ... + Tk . (11.35) 

The only restriction on Tk is the inequality (11.32). The hypothesis that 
f (r) is an increasing function implies that 

roo rdr ~ r Rk
+1 rdr ~ RZ+1, 

JR f (r) ~ ~JRk f (r) ~ t:o f (Rk) 

which together with (11.27) yields 

00 R2 t; f(~k) = 00. 

Therefore, the sequence {Td %':1 can be chosen to satisfy simultaneously 
(11.32) and 

00 

LTk =00. 

k=l 

By diminishing some of Tb we can achieve (11.35) for any finite t, which 
finishes the proof. 

Now we prove the above Claim. Since the both integrals in (11.31) are 
continuous with respect to a and b, we can slightly reduce a and slightly 
increase b; hence, we can assume that u (t, x) is not only continuous in 
[b, a] x M but also smooth. 

Let p( x) be a Lipschitz function on M (to be specified below) with the 
Lipschitz constant 1. Fix a real s 1. [b, a] (also to be specified below) and 
consider the following the function 

p2(x) 
e(t,x):= 4(t-s)' 

which is defined on IR x M except for t = s, in particular, on [b, a] x M. By 
Theorem 11.3, the distributional gradient V' p is in Loo (M) and satisfies the 
inequality IV' pi ~ 1, which implies, for any T=I= s, 

Since 

p(x) 
lV'e(t,x)1 ~ 2(t-s), 

ae p2 (x) 
at 4(t-s)2' 
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we obtain 

: + IV~12:::; o. (11.36) 

For a given R > 0, define a function cp (x) by 

cp (x) = min ( (3 - d(X:o)) + ,1) 

(see Fig. 11.2). Obviously, we have 0 ~ cp ~ 1 on M, cp == 1 in B2R, and 
cp == 0 outside B3R. Since the function d (., xo) is Lipschitz"\\. 1 the Lipschitz 
constant 1, we obtain that cp is Lipschitz with the Lipschitz constant 1/ R. 
By Theorem 11.3, we have IVcpl ~ 1/ R. By the completeness of M, all the 
balls in M are relatively compact sets, which implies cp E Lipo (M). 

FIGURE 11.2. Function cp (x) 

Consider the function ucp2ee as a function of x for any fixed t E [b, a]. 
Since it is obtained from locally Lipschitz functions by taking product and 
composition, this function is locally Lipschitz on M (cf. Exercise 11.11). 
Since this function has a compact support, it belongs to Lipo (M), whence 
by Corollary 11.4 

ucp2ee E W; (M) . 

Multiplying the heat equation 

au 
at = Clp.u 

by ucp2ee and integrating it over [b, a] x M, we obtain 

(11.37) 
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Since both functions u and e are smooth in t E [b, al, the time integral on 
the left hand side can be computed as follows: 

l1a 
8(u

2
) 1 [ a l1a 

8e - --cp2el;dt = - u2cp2 el;] - - -u2cp2el;dt. 
2b 8t 2 b 2b8t 

(11.38) 

Using the Green formula (4.12) (cf. Exercise 5.9) to evaluate the spatial 
integral on the right hand side of (11.37), we obtain 

fM (tl/-,u)ucp2eedp, = - fM (Vu, V(ucp2el;)'>dp,. 

Applying the product rule and the chain rule to compute V(ucp2el;) (cf. 
Exercises 11.13 and 11.14), we obtain 

-(Vu, V(ucp2el;)) - -IVuI2 cp2el; - (Vu, Ve)ucp2el; - 2 (V'u, V'cp)ucpee 

< -IVuI2 cp2el; + IVul IVel lui cp2el; 

+ (~ IVul2 cp2 + 21Vcpl2 u2) el; 

_ (-~ IVul2 + IVul lV'el lui) cp
2 el; + 21VCPl2 u2e( 

Combining with (11.37), (11.38), and using (11.36), we obtain 

whence 

a 

:s; f f ( -IVeI2 
u2 

- IVul2 + 21Vul lV'el lui) cp2et;dj.Ldt 
b M 

a 

+4 f f IVcpl2 u2 el;dj.Ldt 

b M 
a - -f f (IVellul - IVul)2 cp2el;dj.Ldt 

b M 
a 

+4 f f IVcpl2 u2el;dp,dt 

b M 

(11.39) 
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Using the properties offunction <p(x), in particular, 1\7<p1 ~ l/R, we obtain 
from (11.39) 

a 

[ u2(a, .)e{(a')d/-L ~ [ u2(b, ')ee(b'·)dJ.L + ~ J J u2e~dp,dt. 
JBR JB4R R 

b B4R\B2R 
(11.40) 

Let us now specify p(x) and s. Set p(x) to be the distance function from the 
ball BR, that is,. 

p(x) = (d(x, xo) - R)+ 
(see Fig. 11.3). 

FIGURE 11.3. Function p (x). 

Set s = 2a - b so that, for all t E [b, al, 
a - b ::; s - t ::; 2 (a - b), 

whence 
p2(X) p2(x) 

~(t,x) = - 4(8 -t) ~ 8 (a _ b) ~ O. (11.41) 

Consequently, we can drop the factor e{ on the left hand side of (11.40) 
because ~ = 0 in B R, and drop the factor e~ in the first integral on the right 
hand side of (11.40) because ~ ::; O. Clearly, if x E B4R\B2R then p(x) 2: R, 
which together with (11.41) implies that 

R2 
~(t,x)~ 8(a-b) in [b,al xB4R\B2R' 

Hence, we obtain from (11.40) 
a 

isR u
2
(a, ·)d/-L 5:.k4R u

2(b, ·)d).£ + ~2 exp ( - 8 (:~ b») J J u2
d/-Ldt. 

b B4R 
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By (11.26) we have 

whence 

a 

/ / u2dp,dt ~ exp (J(4R)) 

b B4R 

LR u2
(a, .)dp, ~ L4R u2

(b, ·)dp, + ;2 exp ( - 8 (:~ b) + f(4R)) . 

Finally, applying the hypothesis (11.30), we obtain (11.31). o 
EXAMPLE 11.11. The hypothesis 

/

00 rdr 
log V(xo, r) = 00 (11.42) 

of Theorem 11.8 is sufficient for the stochastic completeness of M but not 
necessary as one can see from Example 8.25. Nevertheless, let us show that 
the condition (11.42) is sharp in the following sense: if f (r) is a smooth 
positive convex function on (0, +00) with I' (r) > 0 and such that 

/

00 rdr 
f (r) < 00, (11.43) 

then there exists a complete but stochastically incomplete weighted manifold 
M such that 

log V (xo, r) = f (r), 

for some Xo E M and large enough r. Indeed, let M be a weighted model 
as in Section 8.4.3. Note that M is complete by Exercise 11.1. Define its 
volume function V (r) for large r by 

V (r) = exp (f (r» 

so that 
V (r) 1 
V' (r) = f' (rr 

Let us show that, for all r :;::: 1, 

where 

. (1'(1) ) c = mm f (1) ,1 > O. 

Indeed, the function 
h (r) = r!, (r) - cf (r) 

is non-negative for r = 1 and its derivative is 

. h' (r) = r f" (r) + (1 - c) !' (r) :;::: O. 

(11.44) 

(11.45) 

Hence, h is increasing and h (r) :;::: 0 for r :;::: 1, whence (11.45) follows. 
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Combining (11.44), (11.45), and (11.43), we obtain 

;

00 V (r) 
V' (r) dr < 00, 

which implies by Theorem 8.24 the stochastic incompleteness of M. 

EXAMPLE 11.12. We say that a weighted manifold (M, g, 1-£) has bounded 
geometry if there exists c > 0 such that all the geodesic balls B (x, c) are 
uniformly quasi-isometric to the Euclidean ball Be; that is, there is a con­
stant C and, for any x E M, a diffeomorphism 'Px : B (x, c) -7 Be such that 
'Px changes the Riemannian metric and the measure at most by the factor 
C (see Fig. 11.4). 

FIGURE 11.4. A manifold of bounded geometry is "patched" 
by uniformly distorted Euclidean balls. 

For example, ]Rn and JH[n have bounded geometry. Any manifold of 
bounded geometry is stochastically complete, which follows from the fact 
that it is complete and its volume function satisfies the estimate 

V(x,r):S exp(Cr), 

for all x E M and large r (see Exercise 11.20 for the details). 

Exercises. 

11.19. Let f (r) be a positive increasing function on (0, +(0) and assume that there exists 
a sequence {Tk} -t 00 such that 

f (rk) ::; Cr~ for all k. 

Prove that 

/

00 rdr 
f (r) = 00. 

11.20. Let M be a connected manifold with bounded geometry as in Example 11.12. 
(a) Prove that there is a constant N such that for any x EM, the ball B (x, e) can be 

covered by at most N balls of radius e/2. 
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(b-) Prove that for any x E M and integer k > 1, the ball B (x, kc/2) can be covered by 
at most N k -

1 balls of radii c/2. 
(c) Prove that any geodesic ball on M is relatively compact. 
(d) Prove that, V(x,r) ~ exp(Cr) for all x E M and r ~ 1. Conclude that M is 

stochastically complete. 

11.21. Let (M, J-t) be a complete connected weighted manifold with J-t (M) < 00. Prove 
that, for all x, y E M, 

1 
Pt (x, y) -+ J.t (M) as t -+ 00. (11.46) 

'11.22. Let (M,J-t) be a complete connected weighted manifold and let h be a positive 
harmonic function on M such that, for some Xo EM, the function 

v (r):= r h2dJ-t 
} B(xo,r) 

satisfies the condition 

/

00 rdr 
log v (r) = 00. 

(11.47) 

Prove that Pth = h. 

11.5. Parabolic manifolds 

DEFINITION 11.13. A weighted manifold (M, g, J.t) is called parabolic if 
,any positive superharmonic function on M is constant. 

THEOREM 11.14. Let (M, g, J.t) be a complete connected weighted mani­
fold. If, for some point Xo EM, 

/

00 rdr = 00, 

V(xo, r) 
(11.48) 

then M is parabolic. 

For example, (11.48) holds if V (xo, r) ~ Cr2 for all r large enough or 
even if 

V(xo, rk) ~ Cr~, (11.49) 

for a sequence rk -+ 00 as k -+ 00 (cf. Exercise 11.19) . 

. ' PROOF. Let U E C 2 (M) be a positive superharmonic function on M. 
Choose any Lipschitz function v on M with compact support. Multiplying 
~he inequality tiJLu ~ 0 by ~ and integrating using the Green formula (4.12) 
~~ote that v2 E WJ (M)), we obtain 

r IV~12 v2dp, ~ 2 r (Vu, Vv) v dp, 
JM U JM U 

< 2 (L 1:~12 V2dl') 1/2 (L l'i7vl2 dl') 1/2, 
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(11.50) 

Set p (x) = d (x, xo) and choose v (x) in the form v (x) = <p (p (x)) where 
<p is a function on [0, +00) to be defined. Denote for simplicity V (r) = 
V (xo, r) and Br = B (xo, r). Fix a finite sequence 

° < ro < rl < .,. < rk < 00 

and define function <p by the conditions that it is continuous and piecewise 
linear on [0, +00), 

<per) = 1 if 0 ::; r::; rO, <per) = 0 ifr ~ rk, (11.51) 

and, for any i = 1, ... , k, 

u/ (r) = -ariV-(r~~.·)-l f r • i ri-l < r < ri, (11.52) 

where 

(see Fig. 11.5). 

<p(r) 

o ro rj_! rj r 

FIGURE 11.5. Function <p (r). 

For this value of a, we have 

'( ) d ~ • '() d ~ ri - ri-l 1 i rk k i r . k ( )2 
<p r r = L...J <p r r = -a L...J = - , 

ro i=l ri-l i=l Veri) 

which makes the conditions (11.51) and (11.52) compatible. 
Clearly, <p (r) is a Lipschitz function, which implies that v = <p 0 P is 

Lipschitz on M. By (11.51), suppv C Brk and, since the balls are relatively 
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compact v E Lipo (M). Obviously, "\l<p = 0 in BTo and outside B Tk • 
, 1 

Since 
IV pI ~ 1 a.e., in each annulus Bri \ B Ti _ 1 we have 

I I 
ri - ri-l 

'Vv ~ a V(ri) a.e., (11.53) 

which implies 

k k ( )2 
{ 2 "" ( 2 2 "" ri - ri-1 () 

JMI'Vvl dJ.L= f=tJBr;\Br;_ll'Vvl dJ.L~a f=t V(ri)2 V ri =a. 

(11.54) 
On the other hand, using the monotonicity of V (r), we obtain 

j Tk rdr ~ l.THI rdr ~ 1 l rH1 
_ 1 ~ rr+1 - rr 

--=6 --<6-- rdr--LJ . 
rl V(r) i=l T; V(r) - i=l V(n) T; 2 i=l V (ri) 

Specifying {ri} to be a geometric sequence with ri = 2ri-1. we obtain 

r;+1 - r; = 3r; = 12 (ri - ri_l)2 , 

which implies 

I
T d k-l ( )2 

10 ~ ~ 6 L ri - ri-1 ~ 6a-1. 
Tl V (r) i=l V (ri) 

Comparing with (11.54), we conclude that 

1M l"\lvl2 
dJ.L ~ 6 (l~k ;~~))-1 

Returning to (11.50) and using the fact that v = 1 on Bro, we obtain 

{ 1'V~12 dJ.L ~ 24 (ITk 

;d(r))-l 
JBro U Tl r 

We can still choose ro and k. By the hypothesis (11.48), for any ro > 0 and 
E > 0, there exists k so big that 

ITk rdr -1 

Tl V (r) > C , 

lStrictly speaking, we can apply the chain rule V'v = <p' (p) V'p and, hence, obtain 
(11.53) only in the open set Br. \ Br'_l' Then (11.53) in Brl \ Bri_1 follows from the fact 
that the boundary of any geodesic ball has measure zero. However, the proof of this fact 
requires more Riemannian geometry than we would like to use here. Without this fact, 
one can argue as follows. The volume function V (r) is monotone and, hence, the set S 
of the points of discontinuity of V (r) is at most countable. We can choose the sequence 
{T .. } to avoid S, which implies that 

1-£ (aBr .) = lim (V (ri + e) - V (ri)) = O. 
? e--ioQ 
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which implies 

f IVul
2 

df.l :::; 24c:. 
lBf U2 

TO 

Since ro and c: are arbitrary, we conclude Vu == 0 and u = const, which was 
to be proved. 0 

REMARK 11.15. Assume that the volume function V (r) belongs to C1 (lR+) 
and V' (r) > O. Then one can choose function <p (r) is a simpler manner. 
Namely, for fixed 0 < ro < R, define <p (r) by 

<p (r) = 1 if 0 :::; r :::; ro, <p (r) = 0 if r 2: R, 

and 
b 

<per) = -V' (r) if ro < r < R, 

where 

b= ~ ( R )-1 
10 v' (r) 

Then we have 

l IVVI2df.l:::; f V/~2 )2df.l = fR vlbt )2 dV (r) = b21R V~r( ) = b, 
M lBR\Bro P lro r ro r 

whence it follows that 

L., IVul' dl-':<' 4 (f V~(r)) -1 

Letting R -+ 00 and ro -+ 00, we obtain that u = const provided the 
following condition holds: 

JOO dr ' 
V'er) =00. 

(11.55) 

Note that (11.48) implies (11.55) by Exercise 11.23. 

EXAMPLE 11.16. Set M = lRn and let (M,g,f.l) be a weighted model as 
in Section 8.4.3. Let V (r) be the volume function of M, that is, V (r) = 
V (0, r). Let us show that in this case the condition (11.55) is not only 
sufficient but is also necessary for the parabolicity of M. Denoting as in 
Section 8.4.3 S (r) = V' (r) and assuming that 

Joo Sd~) < 00, (11.56) 

consider the function u (R) from the proof of Theorem 8.24 defined by (8A8), 
that is, . 

u (R) = loo Sd~) for S (t) f (t) dt, 

where f E Co (1,2) is a non-negative non-zero function. It was shown in 
the proof of Theorem 8.24 that u extends to a smooth function on M and 
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D..!-£u = - f on M so that u is a positive superharmonic function on M. Since 
u ¢. const, we conclude that M is non-parabolic. 

The non-parabolicity test (11.56) implies that]Rn is non-parabolic if ana 
only if n > 2, and lHIn is non-parabolic for any n 2: 2. 

Exercises. 

11.23. Let I (r) be a CI-function on (0, +(0) such that l' (r) > O. Prove that 

J
oo rdr Joo dr 

I (r) = 00 ==> I' (r) = 00. 

11.24. Prove that any parabolic manifold is stochastically complete. 

11.6. Spectrum and the distance function 

We present here some estimates of Amin (M) using the geodesic distance. 

THEOREM 11.17. Assume that, on a weighted manifold (M, g, j.t), there 
exists a Lipschitz function p with the Lipschitz constant 1 such that 

D..!-£p 2: a, 

where a is a positive constant and the inequality is understood in the distri­
butional sense. Then 

(11.57) 

PROOF. For any function <.p E 'D (M), we have by hypothesis 

(D..!-£p, <.p2) 2: a 1M <.p2dj.t. (11.58) 

By Theorem 11.3, V p E ZOO (M) and IV pi ::; 1 so that 

(D..lJp, <.p2) - (~iv IJ (V p) , <.p2) = - (V p, V <.p2) 

= -21M (V p, V<.p)g<.p dj.t ::; 2 (1M IV<.p12 dj.t) 1/2 (1M <.p2dj.t) 1/2 

Combining with (11.58), we obtain 

a (L <.p2dj.t) 1/2 ::; 2 (1M IV<.p12 dj.t) 1/2, 

which implies (11.57) by Theorem 10.8. o 
EXAMPLE 11.18. Let 0 be the origin of the polar coordinate system in 

JH[n, and set p (x) = d (0, x). Function p is Lipschitz with the Lipschitz 
constant 1 (cf. Lemma 11.2). Evaluating by (3.85) its Laplacian away from 
o and noticing that, in the polar coordinates (r, 0), p (x) = r, we obtain 

82p ap 
D..Hn p = 8r2 + (n - 1) coth r or = (n - 1) coth r 2: n - 1. 
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Therefore, for any open set 0 C JH[n not containing 0, we obtain by Theorem 
11.17 

A . (0) > (n-1)2. 
mm - 4 (11.59) 

Observe that the origin 0 may be taken to be any point of JH[n (cf. Exercise 
3.46), which implies that (11.59) holds for any open subset 0 c JH[n with 
non-empty complement. Finally, applying (11.59) to an exhaustion sequence 
{Ok} and using Exercise 10.6, we obtain 

A . (JH[n) > (n _1)2 (11.60) 
mm - 4 

Alternatively, by Exercise 11.26, (11.60) follows from (11.59) with 0 = JH[n \ 

{o}. 

THEOREM 11.19. Assume that, on a weighted manifold (M, g, p), there 
exists a Lipschitz function p with the Lipschitz constant 1 such that p (x) -+ 
+00 as x -+ 00 and e-/3p E Ll (MJ for some (3 > O. Then 

(32 
Amin (M) ~ 4' (11.61) 

PROOF. Set f (x) = e-~/3p(x) so that f E L2 (M) and notice that, by 
Exercise 11.14, 

whence 

1M IV fl2 dp = ~2 1M f21V pl2 dj.t ~ ~2 1M f 2dj.t. 

In particular, we see that f E WI (M) and R (I) ~ (32/4. The hypothesis 
p (x) -+ +00 implies f (x) -+ 0 as x -+ 00, whence f (x) -+ 0 as x -+ 00. 

By Exercise 5.7, we obtain that f E WJ (M). Hence, (11.61) follows from 
Theorem 10.8. 0 

EXAMPLE 11.20. Consider again JH[n, and let p be the same function as 
in Example 11.18. Using the area function 

S (r) = Wn sinhn - 1 r 

of JH[n (see Section 3.10), we obtain 

lI e-/3Plh = f e-/3Pdj.t = rX) e-/3r S (r) dr. 
iBn io 

Since S (r) rv const e(n-l)r, the above integral converges for any (3 > n - 1, 
which implies by Theorem 11.19 that 

A . (r) < (n - 1)2 
nun - 4 
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Comparing to (11.60), we obtain 

Amin (JBIn ) = (n - 1)2 
4 
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It is possible to show that the spectrum of the Dirichlet Laplace operator in 
r is the full interval [(n~1)2, +00). 

Exercises. 

11.25. Prove that, for any bounded open set n c ]Rn, 

1 
Amin (n) 2: n (diamn)2· (11.62) 

Hence or otherwise show that there exists a constant en > 0 such that, for any ball 
Br CRT>, 

Amin (Br) = enr-2. 

11.26. Let (M, g, p,) be a weighted manifold of dimension n 2: 2, and 0 be a point in M. 
(a) Prove that, for any open neighborhood U of 0 and for any c > 0, there exists a cutoff 

function 1/J of {o} in U such that 

L 1\71/J12 dp, < c. 

(b) Prove that 
Amin (M \ {o}) = Amin (M) . (11.63) 

(c) Show that (11.63) fails if n = 1. 

11.27. Let (M, g, p,) be a complete weighted manifold. Fix a point Xo EM and set 

a = lim sup .! logp, (B (xo, r». 
r-too r 

(11.64) 

Prove that 

11.28. Let (M, g, p,) be a weighted model based on ]Rn as in Sections 3.10 and 8.4.3, and 
let 8 (r) be the area function of this model. Set 

, ·nf 8' (r) d 1. 8' (r) 
a = 1 -8 () an a = 1m sup -8 ( ) . 

~o r r~oo r 
(11.65) 

Prove that 
( ,)2 2 
~<A· (M)<~. 4 _mm -4 

Notes 

The proof of the Hopf-Rinow theorem can be found in the most of standard courses on 
Riemannian geometry (see for example [227], [299]). The proof of Rademacher's theorem, 
that was used in the first proof of Theorem 11.3, can be found in [119, p.281]. 

The essential self-adjointness of the Dirichlet Laplacian on a complete manifold was 
proved by Gaffney [126] (see also [63] and [316]). The proof presented here is due to 
RStrichartz [330]. The key ingredient of the proof - Lemma 11.6, was proved by S.-T. 
Yau [363]. 

A statement that any harmonic function from a function class S on a manifold M is 
identical constant is called the S-Liouville theorem. Lemma 11.6 is a particular case of a 
more general result of [363] that the LP-Liouville theorem holds on any complete manifold 
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for any p E (1, +(0). Although L 00 -Liouville theorem does hold in ~1' by the classical 
Liouville theorem (cf. Exercise 13.23), on an arbitrary complete manifold the L oo

_ and 
L1-Liouville theorems are not necessarily true (see [72], [142], [155], [240]' [246]). 

The uniqueness class (11.28) for the Cauchy problem in Rn was obtained by Tikhonov 
[347] and (11.29) - by Tii.cklind [342]. Similar integrated uniqueness classes for parabolic 
equations in unbounded domains in Ra were introduced by Oleinik and Radkevich [298] 
and by Gushchin [192], using different methods. 

The fact that the condition V (xo, r) $ exp (Cr2
) on complete manifolds and other 

similar settings implies the stochastic completeness was proved by various methods in 
[97], [209], [222), [338], [343]. Historically, the first result in this direction is due to 
Gaffney [127] who obtained the stochastic completeness under a stronger assumption 
log V (x, r) = 0 (r). Theorems 11.8 and 11.9 in the present form were proved in [137] (see 
also [143]' [155j). 

Let M be a geodesically complete manifold with bounded below Ricci curvature, and 
let J-L be its Riemannian measure. It follows from the Bishop-Gromov volume comparison 
theorem that 

V (x, r) $ exp (Cr) (11.66) 

(see for example [48]) so that M is stochastically complete. The stochastic completeness 
for Riemannian manifolds with bounded below Ricci curvature was first proved by S.­
T.Yau [364] (see also (155], [209J, [212], [286], [352] for extensions of this result). 

It was proved earlier by Azencott (16] that a Cart an-Hadamard manifold with bounded 
below sectional curvature is stochastically complete. Azencott also gave the first example 
of a geodesically complete manifold that is stochastically incomplete. Note that Theorem 
8.24 provides plenty of examples of such manifolds (cf. Example 11.11). It was shown 
by T.Lyons [266] that the stochastic completeness is in general not stable under quasi­
isometry. It is also worth mentioning that on manifolds of bounded geometry not only 
a regular fundamental solution is unique but also any positive fundamental solution is 
unique that hence coincides with the heat kernel (see [214], [231]' [286]). 

The condition (11.49) for the parabolicity of a complete manifold is due to Cheng 
and Yau [62J. Theorem 11.14 was proved in [134], [136], [221J, (352J (see also [110J, 
[155J, [211J, [206], [274] for related results). The stability of the parabolicity under 
quasi-isometry was proved in [136J using the capacity criterion (see also [155]). 

Theorem 11.17 was proved in [362], Theorem 11.19 is due to R.Brooks [47]. The fact 

that the spectrum of 1812 fills the interval [1/4, +(0) was proved in [272]. 



CHAPTER 12 

Gaussian estimates in the integrated form 

As one can see from explicit examples of heat kernels (9.13), (9.32), 
(9.36), (9.40), the dependence of the heat kernel Pt (x, y) on the points x, y 

is frequently given by the term exp ( _ctt2(~,y)) that is called the Gaussian 

factor. The Gaussian pointwise upper bounds of the heat kernel, that is, the 
estimates containing the Gaussian factor, will bB obtained in Chapters 15 
and 16 after introduction of the necessary techniques. These bounds require 
additional hypotheses on the manifolds in question. 

On the contrary, it is relatively straightforward to obtain the integrated 
upper bounds of the heat kernel, which is the main topic of this Chapter. 
From the previous Chapters, we use general the properties of solutions of 
the heat equation, including those of the heat semigroup Pt , as well as the 
properties of Lipschitz functions from Section 11.2. 

The results of this Chapters are used in the subsequent chapters as 
follows: 

• Theorem 12.1 (the integrated maximum principle) - in Chapters 
15 and 16 . 

• Theorem 12.3 (the Davies-Gaffney inequality) and depending on it 
Lemma 12.7 - in Chapter 13 from Section 13.3 onwards. Theorem 
12.3 is also used in the proof of Theorem 16.2 in Chapter 16. 

The results of Sections 12.3 and 12.5 do not have applications within 
this book. 

12.1. The integrated maximum principle 

Recall that, by Theorem 11.3, any function f E Liploc (M) has the 
distributional gradient V' f E l~c (M). 

THEOREM 12.1. (The integrated maximum principle) Let ~(t, x) be a 
continuous function on I x M, where I c [0, +(0) is an interval. Assume 
that, for any tEl, ~ (t, x) is locally Lipschitz in x EM, the partial derivative 
~ exists and is continuous in I x M, and the following inequality holds on 
IXM: 

: + ~ 1V'~12 ::; O. (12.1) 

321 
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Then, for any function f E L2 (M), the function 

J(t):= 1M (Ptf)2 (x) e{(t,x)dj.£(x) (12.2) 

is non-increasing in t E I. Furthermore, for all t, to E I, ift > to then 

J (t) ~ J (to) e-2Amin(M) (t-to) . (12.3) 

REMARK 12.2. Let d(x) be a Lipschitz function on M with the Lipschitz 
constant 1. By Theorem 11.3, we have l\7dl ~ 1. It follows that the following 
functions satisfy (12.1): 

~(t, x) = d22~) 
and 

a2 
~(t, x) = ad(x) - 2t, 

where a is a real constant. In applications d (x) is normally chosen to be the 
distance from x to some set (cf. Lemma 11. 2). 

PROOF. Let us first reduce the problem to the case of non-negative f. 
Indeed, if f is signed then set 9 = IPtofl and notice that 

IPtfl = IPt-toPtofl ~ Pt-tog· 

Assuming that Theorem 12.1 has been already proved for function g, we 
obtain 

L (Ptf)2 e{(t")d/-l < 1M (Pt_to g)2 e{(t")d/-l 

< e-2Amin(t-tO) 1M g2e{(to,·) dj.£ 

= e-2Amin(t-tO) 1M (Pto/)2 e{(to'·)d/-l. 

Hence, we can assume in the sequel that f ~ O. In the view of Theorem 
5.23, it suffices to prove that, for any relatively compact open set n c M, 
the function 

In (t):= k (Pt
n f)2 (x) e{(t,x)dj.£(x) 

is non-increasing in t E I. Since u (t,') := PPf E L2 (n) and ~ (t,·) is 
bounded in n, the function In (t) is finite (unlike J (t) that a priori may 
be equal to (0). Note also that In (t) is continuous in t E I. Indeed, by 
Theorem 4.9 the path t f-7 u (t,·) is continuous in t E [0, +(0) in L2 (n) and 
the path t f-7 e~{(t,.) is obviously continuous in t E I in the sup-norm in 
Cb (n) , which implies that the path t f-7 u (t,·) e~{(t,·) is continuous in t E-1 
in L2 (n) (cf. Exercise 4.46). 

To prove that In (t) is non-increasing in 1 it suffices to show that the 
derivative ~ exists and is non-positive for all t E 10 := 1 \ {O}. Fix some 
t E 10. Since the functions ~ (t,·) and ~ (t,·) are continuous and bounded 
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in 0, they both belong to Cb (0). Therefore, the partial derivative ~ is at 
the same time the strong derivative ~ in Cb (0) (cf. Exercise 4.47). In the 
same way, the function eW ,') is strongly differentiable in Cb (0) and 

del; _ ael; _ ~ ae 
dt - at - e at' (12.4) 

By Theorem 4.9, the function u (t,·) is strongly differentiable in L2 (0) and 
its strong derivative ~~ in L2 (0) is given by 

du 
dt = flp.u. (12.5) 

Using the product rules for strong derivatives (see Exercise 4.46), we con­
clude that ue~ is strongly differentiable in L2 (0) and 

d ( c) du c de~ 
dt ue'" = dt e'" + u dt . (12.6) 

It follows that the inner product (u, uel;) = In (t) is differentiable as a real 
valued function of t and, by the product rule and by (12.4), (12.5), (12.6), 

d~n _ ( ~; , ue') + (u, d ~;') ) 

_ 2 (~~,ue~) + (u2, d~l;) 

- 2 (flp.u,ue~) + (u2, ~;el;). (12.7) 

By the chain rule for Lipschitz functions (see Exercise 11.14), we have e~( t,·) E 

LiPloc (M). Since the function eW ,') is bounded and Lipschitz in 0 and 
u (t,·) E WJ (0), we obtain by Exercise 11.13 that ue~ E WJ (0). By the 
Green formula of Lemma 4.4, we obtain 

2 (flp.u, ue~) = -2!n (\7u, \7 (ue~)df.t. 

Since both functions u and eW ,') are locally Lipschitz, the product rule and 
the chain rule apply for expanding \7 (ue~) (cf. Exercises 11.13, 11.14). 
Substituting the result into (12.7) and using (12.1), we obtain 

d~n < -2!n (l\7u I2 e~ + uel;(\7u, \7e) '*" ~u21\7eI2 el;) df.t 

_ -2!n ( \7u + ~U\7e) 2 e~df.t, (12.8) 
whence % :::; O. To prove (12.3), observe that 

(\7U + ~U\7e) e~/2 = \7(uel;/2). 
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Since uet;/2 E WJ (n), we can apply the variational principle (Theorem 10.8) 
which yields 

In (V'u+ ~uV'~) 2 et;dp, - In 1V'(uet;/2)12dp, 

> Amin (n) k /uet;/2/2dp, = Amin (n) In<tl)2.9) 

Hence, (12.8) yields 
dJn dt ~ -2Amin (n) In (t), 

whence (12.3) follows. 

Exercises. 

12.1. Let ~ be a C2-function in 1:= [0, +00) such that ~,~/, ~" ~ 0 and 

.p".p ~ 8 (.pI) 2 , 

o 

(12.10) 

for some 8 > O. Let ~(t, x) be a continuous function on I x M and assume that ~ (t, x) is 
locally Lipschitz in x E M for any tEl, ~ exists and is continuous on I x M, and the 
following inequality holds on I x M: 

: + 418 1\7~12 :$ 0. 

Prove that the quantity 

J (t) := 1M .p (Pt!) eW'-)dj.£ 

is non-increasing in tEl for any non-negative f E L2 (M). 

12.2. The Davies-Gaffney inequality 

For any set A on a weighted manifold M and any r > 0, denote by Ar 
the r-neighborhood of A, that is, 

Ar = {x EM: d (x, A) < r}. 

Write also A~ = (Art = M \ AT' 

THEOREM 12.3. Let A be a measurable subset of a weighted manifold 
M. Then, for any function f E L2(M) and for all positive r, t, 

L~ (Ptf)2 dp, ~ Lc f 2dj.t + exp ( - ;: - 2At) L f 2dp" (12.11) 

where A = Amin(M). In particular, if f E L2 (A) then 

Lc (Ptf)2 dp, ~ Ilfll~ exp ( - ;: - 2At) 
r 

(12.12) 

(see Fig. 12.1). 
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FIGURE 12.1. Sets A and A~ 

PROOF. Fix some s > t and ("om;ider the function 

( 

» _ (p(:1:. A~) 
~ T. X - ( ) , 

2T-S 

defined for x E AI and T E [0. s). Set also 

J (T):= r (Pd)2 ('~(T")dJ1. 
1.\1 

Since the function ~ satisfies the condition 

oe + .!.1'VcI2 < 0 DT 2 ., - 1 

we obtain by Theorem 12.1 that 

.] (t) ::; .] (0) exp (-2At). 

Since e (T,X) = 0 for x E A~. we have 

J (t) ~ 1 (Pd)2 (ill. 
...t~ 

On the other hand, using the fact that e (0. or) ::; 0 for all x and 
.) 

r-e (0 :1') < -- for all :1: E A , - 2s ' 

we obtain 
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(12.13) 

(12.14) 

(12.15) 

Combining together (12.13). (12.14), (12.15) and letting S -7 t+. we obtain 
(12.11). 

The inequality (12.12) triYially follows from (12.11) and the observation 

J ,> 
that .ole j-d,l = O. 0 
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COROLLARY 12.4. (The Davies-Gaffney inequality). If A and B are two 
disjoint measurable subsets of M and 1 E L2(A), 9 E L2(B), then, for all 
t > 0, 

1 (Ptf, 9)1 s 11/112119112 exp ( - d
2
(:; B) - tXt) 

(see Fig. 12.2). 

1\4--- d(A,B) 

FIGURE 12.2. Sets A and B 

PROOF. Set r = d (A, B). Then B C A; and by (12.12) 

l (Ptf)2 dJl S II/II§ exp ( - ;: - 2tXt) . 

Applying the Cauchy-Schwarz inequality, we obtain 

1 (Ptf, 9)1 < (l (Ptf)2 dJl) 1/2119112 

< IIfll2119112 exp ( - ~: - tXt) , 

which was to be proved. 

(12.16) 

o 
Note that (12.16) is in fact equivalent to (12.12) since the latter follows 

from (12.16) by dividing by 1191b and taking sup in all 9 E L2 (B) with 
B=A~. 

Assuming that the sets A and B in (12.16) have finite measures and 
setting 1 = 1A and 9 = 1B, we obtain from (12.16) 

(Pt1A,IB) S V Jl(A)J.l(B) exp ( d
2
(:; B) - tXt) , 

or, in terms of the heat kernel, 

II Pt(x,y)dJ.l(x)dJl(Y) S VJl(A)J.l(B)exp (- d2(~B) - tXt). (12.17) 

AB 

This can be considered as an integrated form of the Gaussian upper bound 
of the heat kernel. Note that, unlike the pointwise bounds, the estimate 
(12.17) holds on an arbitrary manifold. 
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Exercises. 

12.2. Give an alternative proof of (12.12) applying Theorem 12.1 with the function 

a? 
~(t, x) := o:d(x, A) - 2t, 

where 0: is an arbitrary real parameter. 

12.3. The purpose of this question is to prove the following enhanced version of (12.16): 
if f and g are two functions from L2 (M) such that 

d (supp f, supp g) 2: r, 

where r 2: 0, then, for all t > 0, 

(12.18) 

( a) (Finite propagation speed for the wave equation) Let u (t, x) be a Coo function on 
lR x M that solves in lR x M the wave equation 

a2 u 
at2 = AJJ.U. 

Set K t = suppu (t,·). Prove that K t is contained in the closed It I-neighborhood of 
Ko. 

(b) Prove (12.18) using part (a) and the transmutation formula of Exercise 4.52. 

REMARK. See Exercise 13.25 concerning the additional factor e->.t in (12.18). 

12.3. Upper bounds of higher eigenvalues 

We give here an application of Corollary 12.4 to eigenvalue estimates on a 
compact weighted manifold M. Recall that by Theorem 10.13 the spectrum 
of the Dirichlet Laplace operator £ on M is discrete. As before, denote by 
Ak(M) be the k-th smallest eigenvalue of £ counted with the multiplicity. 
Recall that Ak(M) 2: 0 and Al(M) = 0 (cf. Exercise 10.10). 

THEOREM 12.5. Let M be a connected compact weighted manifold. Let 
AI, A 2 , ••• , Ak be k 2: 2 disjoint measurable sets on M, and set 

6:= ~nd(Ai,Aj). 
~..,..J 

Then 

(12.19) 

In particular, if we have two sets Al = A and A2 = B then (12.19) 
becomes 

(12.20) 

where 6 := d(A, B). 
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PROOF. We first prove (12.20). Let {'Pk}~1 be an orthonormal basis 
in L2(M, J.L) that consists of the eigenfunctions of C, so that 'Pk has the 
eigenvalue Ak = Ak(M). By the eigenfunction expansion (10.33), we have 
for any t > 0 

IIAB Pt(x, y)dJ.L(x)dJ.L(Y) = t, e-O
.
i L 'Pi (x)dJ.L(x) is 'Pi (y)dJ.L(Y) 

00 - L e-t>"iaibi, (12.21) 
i=l 

where 
ai = (lA, 'Pi) and bi = (lB' 'Pi) . 

By the Parseval identity 
00 00 

L a~ = 1I1AII~ = J.L(A) and Lb~ = 1I1BII~ = J.L(B). 
i=l i=l 

Since Al = 0, the first eigenfunction 'PI is identical constant. By the nor­
malization condition lI'PIil2 = 1 we obtain 'PI == 1/.J J.L(M) , which implies 

J.L( A) J.L( B) 
al = (lA, 'PI) = y/i(M) and bi = (IB, 'PI) = y/i(M)' 

J.L(M) J.L(M) 

Therefore, (12.21) yields 

I LB Pt(X, y)dJ.L(x)dJ.L(Y) 
00 

- albl + L e-t>"iaibi 
i=2 

> alb, - ,-t>, (t, a;) 1/2 (t, ~ ) 1/2 

> J.L(:l~~B) - e-t>"2.J J.L(A)J.L(B). 

Comparing with (12.17), we obtain 

.J J.L(A)J.L(B)e-!~ > J.L(A)J.L(B) - e-t>"2.J J.L(A)J.L(B) 
- J.L(M) , 

whence 
-t>"2 > .J J.L(A)J.L(B) _0

2 
e - e 4t 

- J.L{M) 
Choosing t from the identity 

_02 1 .J J.L(A)J.L(B) 
e 4t = 2 J.L(M) , 

we conclude 

A II 2J.L{M) 4 I 2J.L{M) 
( )

2 

2 S t og .J J.L(A)J.L(B) = 82 og.J J.L(A)J.L(B) , 
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which was to be proved. 
Let us now turn to the general case k > 2. Consider the following 

integrals 

and set 

JZm := r 1 p(t, x, y)df.L(x)df.L(y) 
JA! Am. 

Exactly as above, we have 
00 

J "" -t>"i (l) (m) Zm = ~e ai ai 
i=l 

i=2 

On the other hand, by (12.17) 

02 

JZm ::; J f.L(AZ)J.L(Am)e- 4t. 

(12.22) 

(12.23) 

Therefore, we can further argue as in the case k = 2 provided the term in 
(12.22) can be discarded, which the case when 

k-1 
"" ->"it (Z) (m) > 0 
~e ai ai _. 

i=2 

(12.24) 

Let us show that (12.24) can be achieved by choosing l, m. To that end, let 
us interpret the sequence 

aU) '= (aU) aU) aU)) . 2' 3 , ... , k-1 

as a (k - 2)-dimensional vector in Rk-2. Here j ranges from 1 to k so that 
we have k vectors a(j) in ]Rk-2, Let us introduce the inner product of two 
vectors U = (U2' ... ,Uk-I) and v = (V2' ... ,Vk-1) in Rk-2 by 

k-I 

(u, v}t := L e->"ituivi 

i=2 

and apply the following elementary fact: 

(12.25) 

LEMMA 12.6. From any n+2 vectors in a n-dimensional Euclidean space, 
it is possible to choose two vectors with non-negative inner product. 
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Note that n+2 is the smallest number for which the statement of Lemma 
12.6 is true. Indeed, choose an orthonormal basis el, e2, ... , en in the given 
Euclidean space and consider the vector 

v := -el - e2 - ... - en· 

Then any two of the following n + 1 vectors 

el + cv, e2 + cV, .... , en + cV, v 

have a negative inner product, provided c > 0 is small enough. 
Lemma 12.6 is easily proved by induction in n. The inductive basis 

for n = 1 is trivial. The inductive step is shown on Fig. 12.3. Indeed, 
assume that the n + 2 vectors VI, V2, .'" Vn+2 in lRn have pairwise obtuse 
angles. Denote by E the orthogonal complement of Vn+2 in lRn and by v~ 
the orthogonal projection of Vi onto E. 

; I 
I I 

- - - - - - - -I' - - ;;t ...... 
...... I 

'.......... i E 
....... ...: 
~ 

FIGURE 12.3. The vectors v~ are the orthognal projections 
of Vi onto E. 

For any i ::; n + 1, the vector Vi can be represented as 

where 

Therefore, we have 

(Vi, Vj) = (v~, V;) + CiCj IVn+212 . 
By the inductive hypothesis, we have (vL vj) ~ 0 for some i,}, which implies 
(Vi, Vj) ~ 0, contradicting the assumption. 

Now we can finish the proof of Theorem 12.5. Fix some t > O. By 
Lemma 12.6, we can find l, m so that (a(l), a(m»)t ~ 0; that is (12.24) holds. 
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Then (12.22) and (12.23) yield 

-tAlc > v' J.t(Az)J.t(Am ) _0
2 

e _ J.t(M) - e 4t, 

and we are left to choose t. However, t should not depend on 1, m because 
we use t to define the inner product (12.25) before choosing 1, m. So, we 
first write 

and then define t by 

whence (12.19) follows. o 

12.4. Semigroup solutions with a harmonic initial function 

The next statement can be viewed as an example of application of The­
orem 12.3. On the other hand, it will be used in Section 13.3 in the proof 
of Theorem 13.9. 

LEMMA 12.7. Let V be an exterior of a compact subset of M and let f 
be a function from WJ (M) such that l':!..p.f = 0 in V. Then, for any open 
set U C V such that U c V, the following holds: 

E~" Pdt - f IL2(U) = O. (12.26) 

REMARK 12.8. Since the function Pd satisfies the heat equation in ~+ x 
V with the initial function f E Coo (V), by Exercise 9.8 the function 

(t .) = {Pd, t > 0, 
u, f, t::; 0 

is Coo smooth in lR xV. Since f is harmonic in V, it follows that u satisfies 
the heat equation in lR xV. Hence, we have in Vast -* 0+ 

Pd-f _ u(t,·)-u(O,·) aul _ A (0.)- A f-O ---- -* -t..J.p.u, -t..J.p. -
t t att=o ' 

where the convergence is local uniform in V. If U is relatively compact then 
it follows that also 

"Pdt- f IIL2(u) -* 0 as t -* O. 

However, this argument does not work in the general case when U is non­
compact, and the latter case requires a different argument as below. 
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PROOF. Let us first prove (12.26) in the case when I is a function from 
L2 (M) such that I = 0 in V. Noticing that r := d (Fl, vc) > 0 and applying 
the inequality (12.12) of Theorem 12.3 with A = VC, we obtain 

II PtfllL2(u) ::; 1I/IIi2 exp (-;:) = 0 (t) as t -+ O. 

Together with 1I/11L2(u) = 0, this yields (12.26). 
Let us now prove (12.26) in the case when I E WJ (M) and b..p,1 = 0 in 

U. By Exercise 4.41, we have 

Ptf - I L2(M) b.. ItO 
t -+ p,as-+, 

whence it follows that 

Ptf - I L~) 0 as t -+ 0 
t ' 

which is equivalent to (12.26). 

u· 

FIGURE 12.4. Illustration to the proof of Lemma 12.7 

Finally, consider the general case, when I E WJ (M) and b..p,1 = 0 in 
V. Let <p be a cutoff function of the compact set VC in the open set UC (see 
Fig. 12.4). Since <pI = 0 in V' = (supp<p)C and U c V', we conclude by 
the first of the above cases that 

Pt (<pt) - cpl L~) 0 as t -+ O. (12.27) 
t 

Next, we claim that the function 

g=(l-cp)1 

belongs to WJ (M). Indeed, by Exercise 4.21 (or 11.13), we have cpl E WJ 
whence 9 E WJ. In a neighborhood of V e , where cP = 1, we have 9 = 0 and, 
hence, b..p,g = O. On the other hand, using the hypothesis b..p,1 = 0 in V, 
we obtain that the following identity holds in V: 

b..p,g = (1- cp) b..p,1 - 2\lcp\l 1- (b..p,CP) 1= -2\lcp\l 1- (b..p,<p) I (12.28) 
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(cf. Exercise 3.8) Since \lcp and I::1I-'CP are bounded, while f and \l f belong 
to L2, we obtain that I::1l-'g E L2 (V). It follows that I::1l-'g E L2 (M) and, 
hence, 9 E W6 (M). Since in U we have cp == 0, which implies by (12.28) 
that I::1l-'g = 0, we obtain by the second of the above cases, that 

Ptg - 9 L~) 0 as t --+ O. (12.29) 
t 

Since f = cpf + g, adding up (12.27) and (12.29), we obtain (12.26). 0 

12.5. Takeda's inequality 

Similarly to Theorem 12.3, the next theorem provides a certain L2_ 
estimate for a solution to the heat equation. However, the setting and the 
estimate are essentially different. 

THEOREM 12.9. Let A, B be two relatively compact open subsets of a 
weighted manifold M such that A (S B and let R = d (A, BC). Let u (t, x) be 
a non-negative bounded C2-function in (0, T) x B such that 

• f!Jf -l::1l-'u ~ 0 in (0, T) x B, 
L2(B) . 

• and u (t,') --+ 0 as t -+ 0 (see F1,g. 12.5). 

Then, for any t E (0, T), 

L u2 
(t,·) djt ~ jt(B \A) lIullloo max (~:, ~;) exp (- ~: + 1). 

t 

o 

C AX{t}~ 
I 

O~U~C 
U(t,x)~ _____ --,----

A 

FIGURE 12.5. The function u (t, x) in (0, T) x B. 

(12.30) 

REMARK. The hypotheses of Theorem 12.9 are in particular satisfied if 
u (t,') = Pd where f is a non-negative function from Loo (BC) (see Exercise 
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12.5). Let us mention for comparison that Theorem 12.3 yields in this case 
the following estimate 

L u
2 

(t,·) djj::; Ilfll~exp (- ~:) , 
assuming that f E L2 (BC). The advantage of (12.30) is that it can be 
applied to functions like f = 1Be that are bounded but are not necessarily 
in L2. There are also applications of Theorem 12.9 for solutions u that do 
not have the form Pd (see Exercise 12.4). 

PROOF. Without loss of generality, we can assume throughout that 0 ::; 
u ::; 1. Let e (t, x) be a continuous function on [0, TJ x B such that e (t, x) is 
Lipschitz in x, continuously differentiable in t, and the following inequality 
holds almost everywhere on [0, TJ x B: 

e' + ~ lV'el2 
::; ° (12.31) 

for some a > 1, where e' == ~. We claim that the following inequality is 
true for any t E (0, T) and any cp E WJ (B): 

{ u (t, .)2 cp2eW ,') djj ::; ~ ft ( l\7cpl2 ef.(s,,) djjds (12.32) 
JB a-I Jo JB 

(cf. the inequality (11.39) from the proof of Theorem 11.9). Since the 
functions u, e and cp are uniformly bounded in the domain of integration, 
the both sides of (12.32) are continuous as functionals of cp in W1-norm. 
Hence, it suffices to prove (12.32) for cp E C~ (B), which will be assumed in 
the sequel. 

Let us differentiate in t the left hand side of (12.32). Note that the 
time derivative it and IB are interchangeable because the function under 
the integral is continuous differentiable in time and the integration can be 
restricted to a compact set supp cp. We obtain 

i. f u2cp2ef.djj _ 2 f u'ucp2ef.djj+ f u2cp2e'ef.dj.t &h JB h 
< 2l (b.,."u) ucp2ef.djj + l u2cp2e' e/;dj.t 

= -2l (lV'uI2 cp2 e/; + (\7u, \7e)ucp2 ef. + 2(\7u, V'cp)ucpef.) 

+ l u2(cp2e/;djj. 

Here we have applied the Green formula (4.12) using that u E Wfoc (B) and 
ucp2ef. E W; (B) (cf. Exercise 5.9), and the product and chain rules for 
Lipschitz functions to evaluate \7 (ucp2ef.) (cf. Exercises 11.13 and 11.14). 
Applying the inequalities 

(\7u, \7e)u ;:::: -1\7ull\7el u 
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and 

2(V'u, V'cp)ucp ~ - (~u21V'cpI2 + c: lV'u l2 cp2) 

where c: E (0,1) is to be specified later, we obtain 

.!i r u2cp2ef.dp ~ ~ r u2 1V'cpl2 ef.dp 
dtiB c:iB 
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-2l ((1- c:) lV'ul 2 - lV'ullV'~1 u - ~u2~') cp2 ef.dp. 

Using (12.31) we see that the expression in brackets in the last integral above 
is bounded below by 

(1 - c:) IV'u12 -1V'ul IV'~I u + ~u2 IV'~I2 , 
which is identical to a complete square 

(~IV'ul- v'a/4u lV'elr 
provided 

(1-c:)a = 1. 

Choosing c: to satisfy this condition, that is, c: = 1 - a-1 , we obtain 

.!i r u2ef.cp2 dp ~ ~ r u2 1V'cp12 ef.dp. 
dt iB E: iB 

Integrating this inequality against dt from ° to t and using the hypotheses 
V(~ . 

u (t,') --7 ° as t ---+ ° and u2 ~ 1, we obtam (12.32). 
Now we will specify the functions cp and ~ in (12.32). In all cases, we 

will have cp == 1 on A, whence also lV'cpl = ° on A, so that (12.32) implies 

r u (t, .)2 ef.Ct'·)dp ~ ~ r IV'CPI2 ( rt 
ef.Cs,.) dS) dp. (12.33) 

iA a-I iB\A io 

In order to prove (12.30) for R = d (A, BC), it suffices to prove (12.30) for 
any R < d (A, Be). Fix R < d (A, B C

), t E (0, T), set 

p(x) = d(x,A), 

and consider the function 

cp (x) = 'ljJ (p (x)) 

where 'ljJ (r) is a Lipschitz function on [0, +(0) such that 

'ljJ (0) = 1 and 'ljJ (r) = ° if r ~ R 

(see Fig. 12.6). 
This ensures that 'P E Lipo (B) c WJ (B) (cf. Corollary 11.4), and 

'P = 1 on A. The function 'ljJ will be chosen to be smooth in (0, R). Then by 
Exercise 11.14 we have 

V'cp = 'ljJ' (p) V' p, 
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____ --__ cp(x)='l/(p(x» 

FIGURE 12.6. Function <p (x) 

and since IIV' pilL'''' S 1 (see Theorem 11.3), it follows that 

lV'cp (x)1 S 11/J' (p (x»1 for almost all x E B \ A. 

To specify further ¢ and .;, consider two cases. 
Case 1. Let 

then set ~ == 0 and 

R2 
-<1 2t - , 

1/J (r) = (R ~r)+. 

By (12.34) we have lV'cpl S -h, and it follows from (12.33) that 

r 2 2a t J A u (t,·) dJ.L S a-I R2J.L (B \ A). 

Letting a --+ 00, we obtain 

r 2t 2t R2 JA u2
(t,.) dJ.L S R2J.L(B\A) S R2 e-u-+1J.L(B\A). 

Case 2. Let 

In this case, set 
~ (s, x) = -2ap (x) - bs, 

(12.34) 

(12.35) 

where a and b are positive constants to he chosen below. Clearly, e satisfies 
(12.31) provided 

Note also that 

e~(s,x) ds = - e e-2ap(x). lo
t I-bt 

o b 
(12.36) 
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Next, define 'l/J as follows: 

Then we have 
1jJ' (r) = _cear for r E (0, R) , 

where 

whence it follows that 

a 
c:= aR l' e -
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I 'Vip (x)12 ~ c2e2ap(x) (12.37) 

for almost all x E B \ A. Substituting (12.36) and (12.37) into (12.33) and 
observing that elA = -bt, we obtain 

i u (t, .)2 dj..t - ebt i u (t, .)2 et;.(t'·)dj..t 

Setting further 

< ~ebt r l'Vipl2 ( rt et;.(s,.) dS) dj..t 
a-I JB\A Jo 

< a 2~ 1 ebt b- 1 c2 j..t (B \ A) 

1 e2a2at - 1 
a - 1 (eaR _ 1) 2 j..t (B \ A) . 

R2 8+1 R 
6 = 2t - 1, a = -8- and a = 2ta' 

we obtain the identities 
R2 1 

2a2at=aR= - = 8=--
2ta a -1' 

whence 

r u(t,.? dj..t~ ~1j..t(B\A). 
JA e -

Since eO 2: 1 + 8, we have 

eO 1 + 8 1 + 8 
-eo---1 ~ (1 + 8) -1 - -8-' 

whence 

and r 2 R2 R2 
JA u(t,·) dj..t~ U e--u+1j..t(B\A). 

Combining (12.35) and (12.38), we obtain (12.30). 

(12.38) 

o 
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REMARK 12.10. As one can see from the proof, if u satisfies the heat 
equation EJ;t = b.p,u in (0, T) x B then the assumption u ~ ° can be dropped. 

COROLLARY 12.11. Under the conditions of Theorem 12.9, the following 
inequalities are satisfied: 

J u2 (t,·) d/-L ~ /-L (B) Ilui/ioo max (~:, 1) exp ( - ~: + 1) (12.39) 

A 

and 

J u (t, .) d/-L ~ J /-L (A) /-L (B)l/uIILoo max (~, 1) exp ( - ~: + ~) . 
A 

(12.40) 

PROOF. If R2/2t > 1 then (12.39) trivially follows irom (12.30). If 
R2 /2t ~ 1 then 

J u2 (t,·) d/-L ~ /-L (A) Iluilioo S /-L (B) Iluilioo exp ( - ~: + 1) , 

A 

which implies (12.39). 
Inequality (12.40) follows from (12.39) and the Cauchy-Schwarz inequal-

~ 0 

In fact, the following inequality is true: 

J u (t, .) d/-L ~ 16/-L (B) IluliLoo ()O 1 1/2 exp (- r4
2

) dr, J R (47l"t) t 
A 

(12.41) 

which is called Takeda '8 inequality. Estimating in a certain way the integral 
in the right hand side, one obtains 

J 16 vt (R2) u (t,') d/-L ~ yl7rJ.L (B) IlullLoo]f exp -4t" . 
A 

For large ratios :A, this inequality is somewhat better than (12.40). The 

inequalities (12.30) and (12.39) can be considered as L2 versions of Takeda's 
inequality. 

For applications of Theorem 12.9 and Corollary 12.11 see Exercises 12.4, 
12.5, 15.1, 9.9. 

Exercises. 

12.4. Using Corollary 12.11, prove that if the weighted manifold M is geodesically complete 
and, for some point x E M, a constant C > 0, and a sequence {rk} -+ 00, 

p, (B (x, rk)) ~ exp (Cr~) (12.42) 

then M is stochastically complete. 
REMARK. Of course, this follows from Theorem 11.8 but the purpose of this Exercise is 
to give an alternative proof. 



NOTES 

12.5. Let A and B be sets as in Theorem 12.9. 
(a) Prove that, for any function f E Loo (Be), 

r R2 R2 J
A 

(Ptf)2 dt-'~t-'(B)lIflli""max(2t,1)e-2t+l. 

(b) Prove that 

where C = Ve72. 

Notes 
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(12.43) 

(12.44) 

The integrated maximum principle goes back to Aronson [10]' [9]. A good account of 
it in the context of parabolic equations in jRn can be found in [306]. Here we follow [147], 
[146] and [154J. For the integrated maximum principle in a discrete setting see [85J. 

The Davies-Gaffney inequality was proved by B.Davies [97] with reference to [127J. 
The present proof is taken from [147J. A somewhat sharper version of (12.16), 

I(Pt/,g)1 ~ IIfIl2I1gI12l:,B) vk exp ( - ::) ds, 

was proved in [154J, using the finite propagation speed approach of [57]. 
The upper bounds of eigenvalues of Section 12.3 were proved in [65], [66]. See also 

[43] for further results. 
A slightly weaker version of Takeda's inequality (12.41) was first proved by M.Takeda 

[343J using a probabilistic argument. It was improved and brought to the form (12.41) 
by T.Lyons [265J. An analytic proof of an L2 version of Takeda's inequality (12.30) was 
obtained in [147]. Here we reproduce the proof of [147] with some simplifications. An 
interesting application of Takeda's inequality to the escape rate of the Brownian motion 
on M can be found in [152]. 



CHAPTER 13 

Green function and Green operator 

Here we introduce the Green function and apply it to prove the local 
Harnack inequality, which requires a substantial use of the heat kernel. The 
results will not be used in the subsequent chapters. 

13.1. The Green operator 

By definition, the Green operator G acts on non-negative measurable 
functions f on a weighted manifold M as follows: 

Gf(x) = loooPtf (x)dt. (13.1) 

More generally, Gf is defined whenever the right hand side of (13.1) makes 
sense. If n is an open subset of M then set 

Go. f = 1000 

pp f (x) dt. 

LEMMA 13.1. Let f be a non-negative function from L?oc (M) such that 
G f E L?oc (M). Then the function u = G f is the minimal non-negative so­
lution in L?oc (M) of the equation -~J1.u = f considered in the distributional 
sense. If in addition f E Coo then also u E Coo. 

PROOF. Let us use the resolvent operator Roo a > 0, as it was defined 
in Section 8.2, that is 

Raf(x) = 1000 1M e-atpt (x,y)f(y) df.£(y)dt. 

If f ~ ° then by the monotone convergence theorem, Raf (x) t Gf (x) as 
a.J..O .. 

If J ~ 0, J E Lroc' and G J E Lroc then also Raj E Lroc and, by Theorem 
8.4, the function Ua = Raf satisfies the equation 

-~J1.Ua + aUa = J. 

Passing to the limit as a --+ 0 and noticing that U a E; u, we obtain -~J.Lu = 
J. 

If v E Lroc is another non-negative solution to the equation -~J1.v = J 
then, for any a > 0, 

-~J1.V + av = J + av E Ltoc. 

341 
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Therefore, by Theorem 8.4, 

v ~ Ra (f + av) ~ RaJ. 

Letting a ---+ 0, we obtain v ~ u. 
If f E Coo then Ua E Coo by Theorem 8.7. As a -l.. 0, the sequence Uo: (x) 

increases and converges to u (x) pointwise. By Exercise 7.13 we conclude 
that u E Coo. 0 

It follows from (13.1) that, for any non-negative measurable function f 
onM, 

Gf(x) 

where the function 

10
00 

1M pt{x, y) f (y) dJ.l (y) dt 

L 9 (x, y) f (y) dJ.l (y) (13.2) 

9 (x, y) = 10
00 

pt{x, y) dt (13.3) 

is called the Green function of M. Note that 9 takes values in [0, +00]. The 
Green function is called finite if 9 (x, y) < 00 for all distinct x, y E M. 

If n is an open subset of M then define the Green function of n by 
similarly 

(13.4) 

EXAMPLE 13.2. Applying (13.3) with the Gauss-Weierstrass heat kernel 
(2.50) and using the identity (A. 60) from Solution to Exercise 5.14, we obtain 
the following formulas for the Green function in ]Rn: 

( ) { 
Cn Ix - yl2-n n > 2, 

9 x,y = +00, ' n ::; 2, 
(13.5) 

where 
r (n/2 - 1) r (n/2) 1 en - - - ---.,..---

- 47rn/2 - 27rn/2 (n - 2) (n - 2)wn 
(cf. (3.94». Hence, the Green function in lRn is finite if and only if n > 2. 

DEFINITION 13.3. A function hE Lfoc (M) is called a fundamental solu­
tion of the Laplace operator at a point x E M if -!J..f.Lh = bx . 

In particular, a fundamental solution h is harmonic away from x and, 
hence, is smooth in M \ {x} (cf. Theorem 7.4 and Exercise 7.10). 

THEOREM 13.4. If Amin (M) > 0, then the following is true. 

(i) The Green function 9 of M is finite and, for any x EM, 9 (x,·) is 
a fundamental solution of!J..Jl- at x. 

(ii) The Green operator G maps L2 (M) into itself. Moreover, it is 
a bounded self-adjoint operator in L2 (M), and G = £-1, where 
£ = -!J..Jl-I W;2 is the Dirichlet Laplace operator. 

o 
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(iii) If f E COO (M) then Gf E Coo (M). 

PROOF. Let us first show that the integral in (13.3) converges for distinct 
x, y. Indeed, the convergence at 0 follows from the fact that Pt (x, y) --+ 0 
as t --+ 0 (cf. Corollary 9.21), and the convergence at 00 follows from 
,\ := '\min (M) > 0 and the inequality 

pt{x, y) S; Jps (x, x) Ps (y, y) exp (-,\ (t - s)) (13.6) 

(cf. Exercise 10.29). Fix s > 0, a compact set K c M, and set 

C = sup Jps (y, y), 
yEK 

so that, for all x E M, y E K, and t ~ s, the following inequality takes 
place: 

Pt (x, y) S; CJps (x, x)e->-(t-s). (13.7) 
Using (7.50), (13.3), and (13.7), we obtain 

s 00 

L 9 (x, y) dp, (y) = I I pt(x, y) dp, (y) dt + I I Pt (x, y) dt dp, (y) 
o K K s 

C 
< s + ):/-b (K) Jps (x, x). 

Hence, the integral 

i 9 (x, y) d/-b (y) 

is finite and, moreover, it is locally bounded as a function of x. It follows 
that 9 (x,·) E Lfoc (M). Let us also mention the following consequence of the 
above estimate and of the symmetry of 9 (x, y): for any function f E Ll (M) 
with compact support, we have 

LIGfl dp,S; 1M (ig(x,y) d/-b(X)) If(y)ldp,(y) <00 

that is, G f E Lfoc (M) . 
The spectrum of £ is contained in [A, +(0) and hence, £-1 exists as a 

bounded operator, and 11£-111 ::; ,\-1. By the functional calculus, we have 

looo (e-tC f) dt = £-1 f (13.8) 

for any f E L2 (M). Comparing (13.8) with (13.1), we see that the left hand 
side here coincides with G J. Hence, the Green operator G maps L2 (M) into 
itself and coincides in L2 (M) with £-1. Consequently, for any f E L2 (M) 
there is a unique solution U E W~ (M) to the equation 

-Llf.Lu = f, (13.9) 

and this solution is given by u = G f. 
The fact that f E COO (M) implies G f E Coo (M) follows from Lemma 

13.1 if f ~ O. If f is signed then it can be represented as a difference of two 
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non-negative functions from Cif (M) (cf. Exercise 4.6), which settles the 
claim. 

Finally, let us prove that 9 (x,,) is a fundamental solution at x, that is, 

-~f.Lg (x, .) = Jx · (13.10) 

We need to verify that, for any U E Cif (M), 

- JMg(x'Y)~f.LU(Y)dJ.h(Y) =u(x). (13.11) 

Indeed, any such function u satisfies the equation (13.9) with the right hand 
side f := -~f.J.u. Hence, by, the uniqueness of the solution in WJ (M), 
functions U and G f coincide as L2-functions. Since both functions u (x) and 
G f (x) are Coo (the latter being true because f E Cif (M)), it follows that 
they coincide pointwise, which proves (13.11). 0 

As one can see from (13.5), the Green function 9 (x,.) does not have to 
belong to L2 (M). Indeed, in JR4 the integral of g2 (x,·) diverges both at 
x and at 00. The following statement shows that, in a restricted setting, 
a "cut-down" Green function belongs even to WJ (M). This is a technical 
result that has many applications. 

LEMMA 13.5. Assume that "min (M) > 0 and f.L (M) < 00. Let 'if; (s) be 
a Coo-function on [0, +00) such that, for some constant C > 0, 

'if; (0) = 0, 0 ~ 'if; ~ C, 0 ~ 'if;' ~ C (13.12) 

Then, for any Xo EM, the function u = 'if; (g (xo, .)) belongs to WJ (M) and 

II~u1112 ~ fooo I'if;' (s)1
2 

ds 

PROOF. Define a new function cp on [0, +00) by 

cp (r) = for 1 'if;' (s) 12 ds. (13.13) 

Clearly, cp also satisfies the conditions (13.12) with the constant C2 instead 
of C. Extending oddly 'if; and cp to (-00,0), we obtain that cp and 'if; are 
smooth Lipschitz functions on JR that vanish at O. 

Since 'if; is bounded, the function U = 'if; (g (xo , .)) is also bounded. Since 
f.L (M) < 00, it follows that u E L2 (this is the only place where the finiteness 
of J.h (M) is used). The main difficulty lies in the proof of the fact that 
U E WJ. By Theorem 13.4, the Green operator is bounded in L2 and 
coincides with the inverse of C. Consider for any t > 0 the function 

gt = GPt (xo,·), 

which is hence in L2 (M) and, moreover, 

gt E dom(C) = WJ C WJ. 

It follows that 
-~f.Lgt = Pt (xo,·). (13.14) 



13.1. THE GREEN OPERATOR 

On the other hand, we have 

gdx) - iMg(x,y)pdxo,Y)dJ.L(Y) 

- iM (100 

Ps (x, y) dS) pt(xo, y) dJ.L (y) 

- 100 

(iM Ps (x, y) Pt (xo, y) dJ.L (y)) ds 

- 100 

PHs (x,xo) ds 

- l OO

ps (x, xo) ds. 

It follows from (13.15) that gt is increasing as t decreases, and 

gt( x) t 9 (xo, x) as t.t. o. 
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(13.15) 

(13.16) 

By Lemma 5.1, the functions ?jJ (gt) and cp (gt) belong to WJ. Using the 
chain rule, the Green formula of Lemma 4.4, (13.13) and (13.14), we obtain 

1M 1\1'I/J (gtW dJ.L 1M I'I/J' (gt) 121\1 gtl
2 

dJ.L 

1M cp' (gt) 1\1 gtl
2 

- 1M (\1cp (gt) , \1gt) dJ.L 

= - 1M cp (gt) t:..j.Lgt dJ.L 

= 1M cp (gt) pdxo,') dJ.L 

= Ptcp (gt) IXQ' (13.17) 

It follows that, for all t > 0, 

L 1\1'I/J (gt)1 2 dJ.L ~ supcp < 00. (13.18) 

In particular, the integral in (13.18) remains bounded as t.....-+ O. 
By (13.16), the sequence 'I/J (gt) increases and converges pointwise to 'I/J (g) 

as t.t. 0, where we write for simplicity 9 = 9 (xo, .). Using the uniform bound 
(13.18) and that 'I/J (g) E L2, we conclude by Exercise 4.18 that?jJ (g) E WI, 

'I/J (gt) ~ ?jJ (g), and 

iM 1\1'I/J (g)12 dJ.L ~ sup cp = 10
00 

1?jJ' (s)1
2 

ds. 

Finally, since?jJ (gt) E WJ and WJ is weakly closed in Wi (cf. Exercise A.5), 
it follows that also 'I/J (g) E WJ, which finishes the:proof. 0 
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COROLLARY 13.6. Assume that Amin (M) > 0 and Ji. (M) < 00. Then, 
for any constant c > 0 and any Xo EM, the function 

u = min (g (xo,'), c) 

belongs to WJ (M) and IIVulliz ::; C. 

PROOF. Clearly, we have u = 'if; (g (xo, .)) where 

'if; (8) =min(s,c). 

It is easy to see that there is a sequence {'if;k}~1 of smooth non-negative 
functions on [0, +00) such that 0 ::; 'if;~ ::; 1 and 

'if;k (8) t 'if; (8) as k -+ 00. 

(see Fig. 13.1). 

'I'(s)=min(s,c)'1" - - - - -
/ i 

/ i 

;:.~)~::::::::::F:::::::::::::::::: 
-:.:~ .. , 'l'k(S) 1 

;.,~::.. ! 
,+"'~" I 

o c s o c s 

FIGURE 13.1. Construction of functions 'if;k (8) via their derivatives 

Since each 'if;k satisfies the hypothesis of Lemma 13.5, we conclude that 
'if;k (g) E WJ and 

1M IV'if;k (g)12 dJi.::; 100 

I'if;~ (8)1
2 

d8 ::; 100 

'if;~ (8) d8 = sup'if;k ::; c. 

Letting k -+ 00, we conclude by Exercise 4.18 that 'if; (g) E WJ and 

L IV'if; (g)12 dJi. ::; c. 

o 
REMARK 13.7. The hypotheses Amin (M) > 0 and Ji. (M) < 00 in Corol­

lary 13.6 (as well as in Lemma 13.5) can be dropped but the conclusion will 
change as follows: u E Wi~c and IIVulliz ::; c - see Exercise 13.12. 
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Exercises. 

13.1. Prove that if M is a compact manifold then 

(a) 9 (x, y) == OOj 

(b) there is no fundamental solution of the Laplace operator on M. 
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13.2. Let M be a weighted model (cf. Section 3.10) and S (r) be the area function of M. 

(a) Prove that, for any positive real R that is smaller than the radius of M, the following 
function 

l R dr 
h(x)= l"'IS(r) 

is a fundamental solution in BR of the Laplace operator at the pole o. 
(b) Using (a), evaluate the fundamental solutions on Rn and lHF. 

13.3. Prove that if the manifold M is connected then 9 (x, y) > 0 for all x, y E M. 

13.4. Prove that if the Green function 9 is finite then the following identity takes place 
for all t > 0 and Xo E M: 

Ptg(Xo,·) = Gpt{xo,·). 

13.5. Prove that if Amin (M) > 0 then the Green function 9 (x, y) is Coo smooth jointly in 
x, y in M x M \ wag. 

13.6. Prove that if Amin (M) > 0 then 

1 
IIGIIL2-+L2 ::; Amin (M) . (13.19) 

13.7. Prove that if Amin (M) > 0 and p, (M) < 00 then 9 (x, y) E Ll (M x M). 

13.8. Prove that if {nk} is any exhaustion sequence in M then, for all x, y E M, 

gnk (x, y) t 9 (x, y) as k -7 00. 

13.9. Let n be an open subset of a weighted manifold M. Prove that, for any compact 
set K c 0 and for any non-negative function f E L2 (M), 

G f ::; Gn f + esup G f· (13.20) 
M\K 

13.10. Let 0 be a non-empty relatively compact open subset of a connected manifold M 
such that M \ 0 is non-empty. Fix a point Xo E O. 

(a) Let rp be a cutoff function of {xo} in O. Prove that 

(1 - rp) g'l (xo,·) E wJ- (0) . 

(b) Prove that for any open set U C 0, containing Xo, 

gfl (xo,.) - gU (xo,·) E wJ- (0) . 

13.11. Assume that Amin (M) > 0 and p, (M) < 00. Prove that, for all 0 ::; a < b and any 
Xo EM, the function 

belongs to WI (M) and 

{ 

g(xo,x) 
v (x) = a, 

b, 

if 9 (xo, x) E [a, b] , 
if 9 (xo, x) < a, 
if 9 (xo,x) > b, 

IIV'vll~2 ::; b - a. 

13.12. Prove that, for any weighted manifold M and for all c> 0, Xo E M, the function 
u = min (g (xo,·) ,c) belongs to Wl~c (M) and 

IIV'uliia ::; c. 
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13.13. Let D be a non-empty relatively compact connected open subset of a weighted 
manifold M. Prove that 

1 0 1 
sup g (x, y) dJ1- (y) 2: A . (D)' 
"'EO 0 mm 

(13.21) 

13.14. Let M be a connected weighted manifold and D be a relatively compact open subset 
of M such that M \ n is non-empty. Let {!p1o}~l be an orthonormal basis in L2 (D) of 
eigenfunctions of D and {A1o} be the corresponding sequence of eigenfunctions. Prove the 
identity 

00 1 
gO (x,y) = L:: A!P1< (x) !pI< (y), 

10=1 I< 
where the series converges in V' (D x D). 

13.2. Superaveraging functions 

We say that a function f on Mis superaveraging if f E Lloc (M), f ~ 0, 
and 

Pt! ~ f for all t > O. 
By Exercise 7.30, if f is superaveraging then Pt! is a smooth solution of the 

£1 
heat equation, which is decreasing in t, and Pt! ~ fast -t 0; besides, 
D.J.£f ~ 0 in the distributional sense. Furthermore, if f E WZ;c (M) and 
f ~ 0 then f is superaveraging if and only if D.fJ,f ~ 0 (cf. Exercise 7.29). 
In particular, any non-negative superharmonic function is superaveraging. 

LEMMA 13.8. Let U be an open subset of M such that Amin (U) > 0 and 
UC is compact. Fix a function f E WI (M), a cutoff function 'Ij; of UC in 
M, and let u E Wi (U) be the solution to the weak Dirichlet problem in U: 

{ 
D.J.£u = 0, (13.22) 
u = f'lj; mod WJ (U) . 

Define the function f on M by 

- {f f= u 

(see Fig. 13.2). 

(a) Then 1 E wJ (M). 

in UC, 
in U 

(b) If in !!ddition f is superaveraging then also f is superaveraging and 

o ~ f ~ f· 

PROOF. (a) By Corollary 5.6, we have f'lj; E WJ (M), and by (13.22) 
v := f'lj; - u E WJ (U). Extending v to M by setting v = 0 in U, we obtain 
v E WJ (M). Observe that 

f = f'lj; -v in M. (13.23) 

Indeed, in UC we have 
f = f = f'lj;-v 
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f= 

i i ... ____ ......... · .. ·-·-___ .. w_ .1 ..... __ 

. i 

FIGURE 13.2. Function f in Lemma 13.8 

because 'IjJ == 1 and v == 0 in UC, and in U we have 

f = u = f1j; - v 

by the definition of v. It follows from (13.23) that 1 E wJ (M). 

349 

(b) Since f1jJ ~ 0 and Amin (U) > 0, by Theorem 5.13 we obtain from 
(13.22) that u ~ O. Hence, 1 ~ O. Since f is superaveraging, we have in U 

-flp, (u - f) = -~p,u + ~J1.f ~ 0 

and 
u - J ~ u - J'l/J = 0 mod WJ (U) . 

Hence, by Theorem 5.13, u - f ~ 0 in U. It follows that 1 ~ fin M. In 
particular, 1 E L2 (M). ~ 

We are left to prove that Iif ~ J. In UC, we have 

ptl ~ Pt! ~ f = 1. 
To prove that ptl ~ 1 in U, observe that the functions WI (t, .) = ptl and 
W2 (t,.) = 1 as paths in WI (M) satisfy the conditions 

{ 

d~1 _ ~p,Wl = 0 ~ d~2 - ~J1.W2' 
WI ~ W2 mod WJ (M) , 
limwt{t,·) = limwdt,·) = 1. 
t-tO t-tO 

Hence, by Theorem 5.16, Wl ~ W2, which finishes the proof. 0 

Exercises. 

13.15. Prove the following properties of superaveraging functions. 

(a) If {fk}~l is an increasing sequence of super averaging functions and fk -+ f E Lfoc 
then f is also superaveraging. 
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(a) If {lihEI is a family of superaveraging functions depending on a parameter i then 
the function 

is also superaveraging. 

1= inf Ii 
iEI 

13.16. Let M be a connected, stochastically complete weighted manifold, and let f be a 
non-negative continuous superaveraging function on M. 

(a) Prove that the inequality Pd ~ I is satisfied pointwise and that Pd -+ I as t -+ 0 
pointwise. 

(b) (Strong minimum principle) Prove that if I (x) = inf I at some point x E M then 
1== const on M. 

(b) (Minimum principle) Let 0 be a relatively compact open subset of M with non­
empty boundary. Prove that 

inf 1= inf f. n an 

13.17. Prove that if the Green function is finite then it is superaveraging with respect to 
each of its arguments. 

13.18. Let 0 be a relatively compact open subset of M such that ).min (0) > O. Let u be 
a solution of the following weak Dirichlet problem in 0 

where I E WI (M), and set 

(see Fig. 13.3). 

{ 
AJ.'u = 0, 
U = I mod WJ (fl) , 

- {f 1= u 
in flc, 
in fl, 

M 

FIGURE 13.3. Function f in Exercise 13.18 

(a) Prove that if IE WJ (M) then also 1 E wJ (M). 

(13.24) 

(b) Prove that if I is superaveraging then also 1 is superaveraging and 0 ~ 1 ~ I. 
13.19. Let f and h be two superaveraging functions from WJ (M). Then, for any t > 0, 

(13.25) 
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13.20. Let f E WJ (M) and {Ok} be a compact exhaustion sequence in M. Let Uk E 
Wi (Ok) solve in Ok the weak Dirichlet problem problem 

{ 
Ap.Uk = 0, 
Uk = f mod WJ (Ok) . 

Then 
IIV'UkIlL2 -+ ° as k -+ 00. 

13.21. Let f and h be two superaveraging functions from WJ (M). If {Ok}~i is a compact 
exhaustion sequence such that Amin (Ok) > 0 for any k, then 

sup r (-Ap.Ptf) h dfJ, -+ ° as k -+ 00. 
t>o J M\fI./c 

13.3. Local Harnack inequality 

The next statement contains a useful technical result, which will be then 
used to prove the local Harnack inequality in Theorem 13.10. 

THEOREM 13.9. Let M be a weighted manifold with Amin (M) > 0, and 
let no <s n1 <s n2 be relatively compact open subsets of M. Then, for any 
non-negative harmonic function f E W l (M), we have 

sup f ~ C inf f (13.26) 
00 00 

where 

C -- 9(X,y) sup 
x,x'EOo 9 (x', y) 

yE02\01 

and 9 is the Green function of M. 

(13.27) 

REMARK. Note that, due to the hypothesis Amin (M) > 0, the Green func­
tion 9 is finite (cf. Theorem 13.4). 

The hypotheses Amin (M) > 0 and f E WI (M) are not restrictive be­
cause this theorem is normally applied when M is a relatively compact open 
subset of another manifold. 

PROOF. Choose an open set n such that n1 <s n <s n2 , and let 'Ij; be 
a cutoff function of n in n2 • Let u be the solution to the following weak 
Dirichlet problem in nC: 

{ 
!:1p.u = 0, 
u = f'lj; mod WJ (TIC). 

Consider the function 

1 = {f ~n nb 
u mn. 

Since f = 1 in n ::> no, it suffices to prove (13.26) for 1 instead of f (see 
Fig. 13.4). 

Let us mention the following properties of f, which will be used. Since f 
is harmonic and, hence, superaveraging, we conclude by Lemma 13.8, that 
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f 

. .-" ._ ..... _ ..... -.................... . 

: ! 

\ / 
.............. . ... 

...... -.. .. ................ . -- .. --...... .. ...... . 
............. _ ........ _ .................................................................... -..... _ ....... . 

FIGURE 13.4. Illustration to the proof of Theorem 13.9 

1 E wJ (M) and 1 is superaveraging. Since th:. both functions J and u are 
harmonic in th..:ir domains, we obtain that D.p./ = 0 outside an. Renaming 
for simplicity J back to J, we have by (13.1) 

G (f - Pd) = 10
00 

Ps (f - Pd) ds 

10
00 

Psi ds - 10
00 

Ps (Pd) ds 

- 10
00 

Pd ds - 10
00 

Ps+d ds 

- loT Pd ds -100 

Psi ds 

- lot Pd ds. 

Since Pd !:! I as t ---+ 0, we obtain that 

G(/-tPd) ~I as t ---+ O. 

Observe that function I satisfies the hypotheses of Lemma 12.7 with V = 
M \ an and U = n1 U n~. Hence, we conclude by Lemma 12.7 that 

I - Pd L2(~) 0 as t ---+ 0 
t 

Since by Theorem 13.4 the Green operator is bounded in L2, it follows that 

G (I -tPtf 1u ) ~ 0 as t ---+ 0, 
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whence 

ht := G (I -tPt! 1Uc) ~ I as t -+ O. 

Noticing that UC = O2 \ 0 1 , we can write 

ht(x) = r g (x, y) 1- Pt! (y) dJ-L (y). 
JTIZ\Ol t 

Since I - Pt! ~ 0, it follows from (13.27) that 

sup ht (x) ::; C inf ht (x). 
xEOo xEOo 

Since ht ~ I as t -+ 0, the same inequality holds for I. Indeed, there is a 
sequence tk -+ 0 such that htk ~. I as k -+ 00. It follows that 

esup I ::; C einf I. 
00 00 

However, since I is continuous in 00, esup a .:f einf can be replaced by sup 
and inf, respectively, which yields (13.26). 0 

Now we can prove the main result of this section. 

THEOREM 13.10. (The local Harnack inequality) Let M be an arbitrary 
connected weighted manilold and K be a compact subset 01 M. Then there 
is a constant C = C (K) such that, lor any non-negative harmonic lunction 
10nM, 

(13.28) 

PROOF. If M is compact then any harmonic function I on M is constant 
because in this case IE Cff (M) and, hence, 

1M 1\7/12 dJ-£ = - 1M I t::./l-I dJ-L = O. 

Therefore, (13.28) is satisfied with C = 1. 
Assuming in the sequel that M is non-compact, choose a sequence 00 E 

0 1 E O2 cs 0 of relatively compact open subsets of M such that Keno. 
By Theorem 10.22, we have Amin (0) > O. Applying Theorem 13.9 to the 
manifold 0 and noticing that I E WI (0), we obtain that (13.28) holds with 
the constant C defined by (13.27) with .gO instead of g, that is, 

where 

C = sup F (x,x',y) , 
x,x'EOo 

yEOZ\Ol 

F ( 
') go. (x, y) 

x, x ,y = 0. (' ) . g x ,y 
We have still to make sure that C < 00. For that, it suffices to show that 
function F is finite and continuous in the compact domain 

(x,x',y) E no x 00 x (02 \ nl)' (13.29) 
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By Theorem 13.4, go. (x, y) < 00 because x =1= y. Choosing the set n to 
be connected, we obtain by Exercise 13.3 that go. (x', y) > 0, whence F is 
finite in the domain (13.29). Finally, by Exercise 13.5, go. (x, y) is continuous 
jointly in x, y away from the diagonal, which implies that F is continuous 
in (13.29). 0 

The next theorem extends the local Harnack inequality to a-harmonic 
functions. 

THEOREM 13.11. Let M be an arbitrary connected weighted manifold 
and assume that there is a positive function h on M such that 

-D..p.h + ah = 0, 

where a is a real constant. Then, for any compact K C M and for any 
13 ~ a, there is a constant C = C (K, 13) such that, for any non-negative 
13 -harmonic function f on M, 

s~p f ::; C i~f f. (13.30) 

Moreover, the constant C (K, 13) as a function of 13 - [a, +(0) is uniformly 
bounded on any bounded interval. 

PROOF. Let us first prove the statement in the case 13 = a, that is, 
when f is a-harmonic. By Corollary 7.3, we have hE Coo. Consider a new 
measure Ji on M defined by 

dJi = h2d/-L. 

By (9.26), we have, for any smooth function function u on M, 
1 

D..jJ.u = hD..p. (hu) - au. (13.31) 

Setting u = f / h, we obtain 
1 1 

D..jJ.u = hD..p.f - haf = O. 

Hence, u is a non-negative harmonic function on the weighted manifold 
(M,g,Ji). By Theorem 13.10, we have 

s~ u ::; CK i~f u, 

for some constant CK. Then (13.30) holds with the constant 

suPKh 
C = CK a := CK. f h' , In K 

To handle the case 13 > a, fix a compact K eM, a relatively compact 
connected open set n containing K, and construct a positive f3-harmonic 
function hf3 on n. Consider the weak Dirichlet problem on the weighted 
manifold (n, g, Ji): 

{ 
-D..jJ.u + (13 - a) u = 0, 
u = 1 mod WJ (n) , 

(13.32) 
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which has a unique solution u E WI (0) by Exercise 4.29. Since the constant 
function v == 1 satisfies the inequality 

-flj1v + (fJ - a) v ~ 0, 

we obtain by the comparison principle of Corollary 5.14 that u :::; 1. Sim­
ilarly, we have u ~ O. Moreover, by the strong minimum principle (cf. 
Corollary 8.14), we conclude that u > 0 in O. 

Observe that the function u decreases when the parameter fJ increases. 
Indeed, if function u' solves the problem (13.32) with fJ' instead of fJ and if 
fJ' > fJ then 

-flj1u' + (fJ - a) u' :::; 0, 

which implies by Corollary 5.14 that u' :::; u. 
The function h(3 := hu is positive in 0 and is fJ-harmonic in (0, g, J.t), 

which easily follows from (13.31). By the first part of the proof, we conclude 
that, for any positive fJ-harmonic function f in 0, (13.30) holds with the 
constant 

SUPK h(3 
C = CK,(3 := CK·

nf 
h . 

1 K (3 

We are left to verify that CK ,/3 is uniformly bounded from above if fJ is 
bounded. By the monotonicity of u in fJ mentioned above, we have that 
h(3 decreases when fJ increases. Therefore, if fJ varies in an interval [fJl, fJ2] 
where fJl < fJ2 then 

C < C SUPK h(31 
K,(3 - k. f h ' 

III K (32 

whence the uniform boundedness of CK,/3 follows. 

Exercises. 

o 

13.22. Prove the classical Harnack inequality: if f (x) is a positive harmonic function in 
a ball B (x, r) in]R" then 

sup f ~ On inf f, 
B(,",r/2) B(,",r/2) 

(13.33) 

where the constant On depends only on n. 

13.23. (The Liouville theorem) Prove that any positive harmonic function in]Rn is identical 
constant. 

13.4. Convergence of sequences of a-harmonic functions 

THEOREM 13.12. (The compactness principle) Let {Uk} be a sequence 
of non-negative harmonic functions on a connected weighted manifold M. 
If the sequence {Uk (x)} is bounded at some point x E M then there is a 
subsequence {Uki} that converges to a harmonic function u on M in the 
sense of COO (M). 
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PROOF. By the Harnack inequality of Theorem 13.10, if the sequence 
{Uk (x)} is bounded at some point x then it is uniformly bounded in any 
compact set K 3 x. Hence, the sequence {ud is locally uniformly bounded 
on M. In particular, this sequence is uniformly bounded in L2 (0) for any 
relatively compact open set 0 C M. Using Exercise 7.9 and .D.p.Uk = 0, 
we conclude that the sequence {Uk} is uniformly bounded in WI (0), also 
for any relatively compact open set 0 C M. By Exercise 10.25, there is a 
subsequence {UkJ that converges in Ltoc (M). By Exercise 7.11, the limit 

function U of the sequence {Uki} is also harmonic and Uki Coo) U. 0 

COROLLARY 13.13. (Harnack's principle) Let {ud be a monotone se­
quence of harmonic functions on a connected weighted manifold M. If 
limk-too Uk (x) is finite at some point x E M then it is finite at all points 
x EM. Moreover, the function 

U (x) = lim Uk (x) 
k-too 

is harmonic and 
COO(M) 

Uk ~ U as k -+ 00. 

PROOF. Assume for certainty that {ud is monotone increasing. Re­
placing Uk by Uk - Ul, we can assume that Uk 2: O. By Theorem 13.12, there 
is a subsequence {uk.} that converges locally uniformly. Since the sequence 
{Uk} is monotone increasing, the entire sequence {Uk} must converge locally 
uniformly as well. Then the convergence is in Coo by Exercise 7.11. 0 

The following theorem extends the compactness principle to a-harmonic 
functions. 

THEOREM 13.14. Let {ud~l be a sequence of non-negative functions 
on a connected weighted manifold M such that Uk is ak-harmonic for some 
real ak. Assume that the sequence {ak} is bounded and {Uk (x)} is bounded 
for some x EM. Then there is a subsequence {Uk,} that converges to an 
a-harmonic function U on M in the sense of Coo (M), for some real a. 

PROOF. Passing to a convergent subsequence of {ak}, we can assume 
that {ak} converges and set a = limk-too O!k. Fix a connected relatively 
compact open subset 0 C M such that Amin (0) 2: sUPk (-ak), that is, 

ak 2: -Amin (0) for all k 2: 1 (13.34) 

(the question of existence of such sets will be addressed below). Set ao = 
-Arnin (0) and observe that, by Theorem 10.11, there is a positive ao­
harmonic function on 0 (namely, the first eigenfunction of CP·). Therefore, 
by Theorem 13.11, we conclude that the Harnack inequality (13.30) holds 
for any compact K C 0 and any positive ,8-harmonic function f in O. More­
over, the constant C in (13.30) can be taken to be the same for any bounded 
range of,8. In particular, if ,8 takes only the values a and ak, k = 1,2, ... 
then the constant C can be assumed to be the same. 
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Now we can argue as in the proof of Theorem 13.12. By the Harnack 
inequality (13.30) if the sequence {Uk (x)} is bounded at some point x E 51 
then it is uniformly bounded in any compact set K 3 x. In particular, the 
sequence {Uk} is uniformly bounded in L2 (51') for any relatively compact 
open set 51' <s 51. Using Exercise 7.9 and D.p,uk = akUk, we conclude that 
the sequence {Uk} is uniformly bounded in WI (51'), also for any relatively 
compact open set 51' <s 51. By Exercise 10.25, there is a subsequence {Uk .. } 

that converges in Lroc (51). By Exercise 7.12, the limit function U of the 

{ }
. h . d COO ((2) 

sequence uk;. IS a- armomc an Uk. -----'+ U. 
To ensure the convergence of {uk;.} on M, let us observe that, for any 

point x E M, there is a connected relatively compact open subset 51 c M 
such that x E 51 and Amin (51) is arbitrarily large. Indeed, choose first a 
chart containing x and then take 51 to be a little Euclidean ball in this 
chart centered at x. By Exercise 11.25, the bottom eigenvalue of 51 in the 
Euclidean metric is enr-2 where en is a positive constant depending only on 
the dimension n = dim M and r is the radius of the balL Taking r small 
enough, we can get Cnr-2 arbitrarily large. At the same time, in a small 
neighborhood of x, the ratio of the Riemannian metric g and the Euclidean 
metric remains uniformly bounded, and so is the ratio of the measure f-L and 
the Lebesgue measure. This implies by Exercise 10.7 that the eigenvalue 
Amin (51, g, f-L) is also large enough. 

Hence, for any point x E M there is a set 51 as above and such that 
(13.34) is satisfied. Choose a cover of M be a countable sequence {51j}.f=l 
of such sets and order then so that any two consecutive sets overlap, which 
is possible by the connectedness of M. We can assume also that 511 contains 
the point x where the sequence {Uk (x)} is bounded. Then by the above 
argument there is a subsequence that converges in 511 . Since this subse­
quence converges in 511 n 512 , there is a sub-subsequence that converges in 
512 , etc. Applying the diagonal process, we obtain finally a subsequence that 
converges on M. 0 

Exercises. 

13.24. Let M be a connected weighted manifold. Prove that if g (x, y) < 00 for some 
couple x, y EM then g (x, y) is finite, that is, g (x, y) < 00 for all distinct points x, y E M. 

REMARK. Hence, the following dichotomy takes places: either g (x, y) == 00 for all x, y E M 
or g (x, y) < 00 for all distinct x, y E M. 

13.5. The positive spectrum 

DEFINITION 13.15. The positive spectrum of (the Laplace operator on) 
a weighted manifold M is the set of all real a such that the equation 

D.p,u + au = 0 (13.35) 

has a positive solution U on M. 
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THEOREM 13.16. For any connected weighted manifold M, the positive 
spectrum coincides with the interval (-00, Amin (M)J. 

In particular, there is always a positive solution on M of the equation 

tlp,u + Amin (M) U = 0, 

which is called the ground state of the manifold M. For comparison, let 
us recall that, by the definition of Amin (M), the spectrum of the Dirichlet 
Laplace operator is contained in [Amin (M) ,+00). Hence, Amin (M) is the 
only common point of the L2-spectrum and the positive spectrum of the 
Laplacian. 

In terms of a-harmonic functions, Theorem 13.16 can be stated as fol­
lows: a positive a-harmonic function exists if and only is a 2:: -Amin (M). 

PROOF. That any a from the positive spectrum satisfies a ~ Amin (M) 
follows from Exercise 10.26. We need to prove the converse, that is, if 
a ~ Amin (M) then there is a positive solution of (13.35) on M. Choose a 
compact exhaustion sequence {Od in M such that all Ok are connected. 
Since by Exercise 10.6 

Amin (Ok) t Amin (M) as k -t 00, 

there is a sequence {ak} such that ak < Amin (Ok) for any k and ak t a as 
k -t 00. By Exercise 4.29, the weak Dirichlet problem in Ok 

{ 
tlf.LUk + akuk = 0, 
Uk = 1 mod WJ (Ok) , 

has a unique solution Uk. Moreover, we have Uk > ° by Theorem 5.13 and 
Corollary 8.14. Alternatively, the solution of this problem is given explicitly 
by the formula 

(see Exercise 10.27). 
Select some point Xo E 0 1 and consider functions 

Uk 
vk = ---;-'7' 

Uk (Xo) 

so that Vk (xo) = 1. Using Theorem 13.14, we conclude that there is a 
subsequence {VkJ that converges to function von M, that satisfies (13.35). 
This function is clearly non-negative; moreover, since v (xo) = 1, it is strictly 
positive by Corollary 8.14. 0 

Exercises. 

13.25. Prove the following improved version of (12.18): if! and 9 are two functions from 
L 2 (M) such that 

d (supp !, supp g) 2:: r, 

where r 2:: 0, then, for all t > 0, 

I (Pt!, 9)1 ~ II!II2 119112 e-Amin(M)t [>0 vk exp ( - ~:) ds. (13.36) 
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13.6. Green function as a fundamental solution 

THEOREM 13.17. Let M be a connected weighted manifold and Xo be a 
point of M. 

(a) If the Green function 9 of M is finite, then 9 (xo,') is a positive 
fundamental solution of the Laplace operator at Xo. 

(b) If h (x) is a positive fundamental solution at Xo then 9 (xo, x) :::; 
h (x) for all x =1= Xo· 

This can be equivalently stated as follows: 9 (xo, .) is the infimum of all 
positive fundamental solutions at Xo (using the convention that the infimum 
of an empty set is 00). 

PROOF. If M is compact then all is settled by Exercise 13.1, which says 
that 9 == 00 and there is no fundamental solution. Assume that M is non­
compact, and let {nk}~1 be a compact exhaustion sequence in M. Then 
all nk are relatively compact and, hence, M \ nk =1= 0. By Theorem 10.22 
we have Amin (nk) > 0, and by Theorem 13.4 the weighted manifold nk has 
the Green function gnk E Lloc (nk ) satisfying the equation 

i\ nk _ 5: • n 
-up.g - Uxo In Hk· (13.37) 

By Exercise 13.8, the sequence {gnk} increases and converges pointwise to 
gas k -+ 00. 

(a) The identity (13.37) implies that, for all k > m, 

~p. (gnk _ gnTn) = 0 in nm . 

It follows from Corollary 7.5 that the function gnk - gnm is smooth (and 
hence harmonic) in nm ; more precisely, this function being a priori smooth 
in nm \ {xo}, can be extended to Xo to become C= (nm ). By the Harnack 
principle of Corollary 13.13, the function 

9 _ gnm = lim (gnk _ gn=) 
k-+oo 

is also harmonic in nm , and the convergence takes places in Coo (nm ). 

Hence, 9 E Lloc (nm ) and 9 satisfies (13.10) in nm . Letting m -+ 00 we 
conclude that 9 E Ltoc (M) and 9 satisfies (13.10) in M, that is, 9 is a 
fundamental solution. The positivity of 9 follows from Exercise 13.3. 

(b) Let us first observe that, for any open set U such that Xo E U ~ nk 
(see Fig. 13.5), 

gnk E L oo U WI (nk \ V) . (13.38) 

Indeed, we have gnk :::; gnl<+l, and the function gnl<+l is smooth in nk+1 \ 

{xo}. It follows that gnk+1 is bounded on nk \ U, whence the boundedness 
of gnk follows. Next, set 

C:= sup gnk 
nk\U 

and notice that gnk = min (gnk, C) in nk \ U. Since by Corollary 13.6 the 
function min (gnk, C) belongs to WI (nk), it follows that its restriction to 
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FIGURE 13.5. The Green function go.k 

Ok \ U, that is go.k, belongs to WI (Ok \ U), which finishes the proof of 
(13.38). 

Let h be a positive fundamental solution at Xo, that is, -D..!J.h = d:CQ' 
We need to verify that h ~ g, and it suffices to show that h ~ go." for all k. 
For any index k consider a function 

Uk = go." - h. 

Clearly, D..!J.Uk = 0 on Ok so that Uk is a smooth harmonic function in Ok. 
We need to prove that Uk :::; 0, and we will do it in four steps. 

1. The function Uk belongs to WI (Ok), that is, Uk and !VUk! belong to 
L2 (Ok)' Indeed, let U be an open set as above. Then Uk.!VUk! E L2 (U) 
just by the smoothness of Uk in Ok, while Uk, !VUk! E L2 (Ok \ If) because 
both functions go.k and h belong to WI (Ok \ U). 

2. The function Uk is bounded from above in Ok. Indeed, Uk is bounded 
in U by continuity, and is bounded in Ok \ U because Uk :::; go.k and go." is 
bounded in Ok \ U. 

3. We have 

Uk :::; 0 mod WJ (Ok) . (13.39) 

Set C = sUPo./c Uk. Then the following inequality holds in Ok: 

Uk:::; min (go." , C) =: Vk. 

By Corollary 13.6, the function Vk belongs to WJ (Ok)' whence (13.39) fol­
lows. 

4. Since the function Uk belongs to WI (Ok), satisfies in Ok the Laplace 
equation D..!J.Uk = 0 and the boundary condition (13.39), we conclude by 
Theorem 5.13 that Uk :::; O. 0 
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Exercises. 

13.26. Let M be a connected non-compact manifold and 0 be a relatively compact open 
subset of M. 

(a) Prove that, for any p E [1, +00], GO is a bounded operator from £P (0) to £P (0). 
(b) Prove that the function u = GO f satisfies the equation -A/<u = f for any f E LP (0). 

13.27. Let M be a connected weighted manifold and let f E Lioe (M) and f 2:: O. Prove 
that if Gf (x) is finite then Gf belongs to £toe and -t::./< (Gf) = f· 

13.28. Let M be a connected weighted manifold with a finite Green function 9 (x, y). Fix 
a point Xo E M and a compact set K eM. Prove that if u is a harmonic function on M 
and 

u(x)::; g(x,xo) for all x E M\K, 

then u (x) ::; 0 for all x E M. 

13.29. Let M be a connected weighted manifold. Prove that if h (x) is a fundamental 
solution of the Laplace operator at a point Xo E M such that h (x) -+ 0 as x -+ 00, then 
h (x) = 9 (x, xo). 

13.30. Prove that, on an arbitrary connected weighted manifold M, the following condi­
tions are equivalent: 

(i) the Green function is finite; 
(ii) there exists a positive non-oonstant superharmonic function (that is, M is non-

parabolic) ; 
(iii) there exists a positive non-constant superaveraging function. 

13.31. Let M be a connected weighted manifold and 0 be a non-empty relatively compact 
open subset of M such tp.at M \ n is non-empty. Prove that, for all x E M, yEO, 

9 (x, y) ::; gO (x, y) + sup 9 (z, y). (13.40) 
zEao 

Here 'we set g"! (x,y) = 0 if x rf- 0 or y rf- O. 

13.32. Prove that a fundamental solution of the Laplace operator exists on any non­
compact connected weighted manifold. 

13.33. Prove that if, for some x E M and a compact set K C M, 

( g(x,y) dJ.L(Y) < 00 
JM\K 

(13.41) 

then M is stochastically incomplete. 

13.34. Let M be a weighted model of dimension n 2:: 2, and 8 (r) be its boundary area 
function (cf. Section 3.10). Prove that the Green function of the central ball BR satisfies 
the identity 

BR ( ) _ r d8 
9 x,O - J

r 
8(8)' 

where r = Ixl. Deduce that the Green function of M satisfies the identity 

r'" ds 
g(x,o)=Jr 8(8)" 

(13.42) 

(13.43) 

Hence or otherwise give an example of a complete manifold M where the Green function 
belongs to L 1 (M). 

13.35. Prove that the Green function of the ball B = BR (0) in]Rn is given by the following 
formulas, for all x, y E B: 
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(a) If n > 2 then 

B 1 
g (x, y) = Wn (n - 2) ( 

1 (R )n-2 1 
Ix - yin 2 - TYT IX _ y* In (13.44) 

where y* is the inversion of y with respect to the ball B, that is 

* y R2 y=JYj2 . 

(b) Ifn=2then 
gB (x y) = ~ log Ix - y* IIYI. 

, 211" Ix - yl R 
(c) If n = 1 then 

B 1 1 R 
9 (x,y) = 2Ix-yl- 2Rxy + 2' 

13.36. Let F (t) be a positive monotone increasing function on R+ and assume that 

Pt (x,y) ~ F (~ exp (_cr:) 
for some x, y E M and all t > 0, where r = d (x, y) and c > O. Prove that if F satisfies 
the doubling property 

then 

where C = C (A, c). 

F(2s) ~ AF(s) for all s > 0, 

roo sds 
g(x,y) ~ CiT F(s)' 

If in addition F satisfies the condition 

F(s) >a(s)a foralls>s'>O, 
F(s') - ;;- , 

where a > 0 and O! > 2 then 
r2 

g(x,y) ~ C F(r)' 

where C = C (A, a, O!, c). 

Notes 

(13.45) 

(13.46) 

(13.47) 

(13.48) 

The present account of the Green function is somewhat different from the traditional 
approach (cf. [1,55]). Some proofs would have been simpler, had we used the fact that 
the Green function gO (x, y) in a relatively compact open set n with smooth boundary 
vanishes at every point x E 8n while yEn. For example, the proof of the minimality 
of g in Theorem 13.17(b) would be as short as this: since h (x) - gO (x, xo) is a harmonic 
function in n that takes non-negative value on 8n, by the classical maximum principle 
this function is non-negative in n, that is, h (x) ~ gO (x, xo); letting n -+ M, we obtain 
h (x) ~ 9 (x, xo). 

However, following the general approach adopted in this book, we avoid using the 
boundary regularity of solutions and employ instead other methods, based on the Sobolev 
space WJ (n). Despite of technical complications, we feel that this strategy has good 
prospects for the future applications in more singular settings. 

The idea to use the Green function for the proof of the local Harnack inequality 
(Section 13.3) goes back to A.Boukricha [46] and W.Hansen [197]. However, the present 
implementation of this idea is entirely new. This approach allows us to avoid at this stage 
the technically involved proofs of the uniform Harnack inequalities, although at expense 
of loosing the uniformity of the Harnack constant. However, the local Harnack inequality 
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is sufficient to prove the convergence properties of sequences of harmonic functions as we 
do in Section 13.4. 

The treatment of the positive spectrum in Section 13.5 follows S.-T.Yau [362] and 
D.Sullivan [340]. We wanted necessarily to demonstrate how the convergence properties 
allow to prove the existence of the ground state. The latter is an important tool that is 

used in many applications (cf. Section 9.2.5). 



CHAPTER 14 

Ultracontractive estimates and eigenvalues 

In the Chapter we study the problem of obtaining the uniform on­
diagonal upper bounds of the heat kernel of the form 

1 
Pt (x, x) ::::; ,(t) (14.1) 

with some increasing function , (t). If A = Amin (M) > 0 then by Exercise 
10.29 the heat kernel Pt (x, y) decays as exp (-At) when t -+ 00. However, 
if A = 0 then we do not get any decay of Pt (x, y) from the spectral theory, 
and more subtle methods are required. As we will see below, the function 
,(t) in (14.1) can be determined by a lower bound of Amin (n) via fJ- (n), 
which shows the rate of Amin (n) approaching 0 when n exhausts M. 

14.1. Ultracontractivity and heat kernel bounds 

By Theorems 4.9 and 7.19 the heat semigroup {Pt} on any weighted 
manifold (M, g, fJ-) admits the estimates 

IIPt112~2 ::::; 1, IIPtIl1~1::::; I, 

so that Pt is a contraction in L2 and L1. In fact, by Exercises 7.33 and 7.36, 

IlPtllr~r ::::; 1 

for any r E [1, +00]. Here we consider some estimates of IlPtllp-+q withp < q. 

DEFINITION 14.1. Let 1 ::::; P < q ::::; +00. We say that the semigroup 
{Pt} is £P -+ Lq ultra contractive if there exists a positive function (j (t) on 
(0, +(0) such that, for all f E V n L2 and t > 0, we have Ptf E U and 

IIPtfll q ::::; O(t)lIfllp • 

We write in this case 
IIPtllp-+q ::::; (j(t). 

The function e is called the rate junction of ultracontractivity. 
For any r E [I, +00]' denote by r* its Holder conjugate, that is 

1 1 
-+-=1. 
r r* 

For example, 2* = 2, 1* = +00, and +00* = 1. 

THEOREM 14.2. Let the heat semigroup {Pt} be V -+ Lq ultra contractive 
with the rate junction OCt). Then {Pt} is also Lq* -+ V* ultracontractive 
with the same rate function. 

365 
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PROOF. By the hypothesis, we have for any 9 E V n L2 and t > 0 

IlPtgllq :::; OCt) Ilgllp· 
Then for any f E Lq* n L2 we obtain by the Holder inequality 

(Hf, g) = (f,Ptg):::; IIfllq*IIPtgll q :::; eCt)lIfllq*lIglip' 

Therefore, 
(Ptf, g) ()I I 

IlPtfll p* = sup II II :::; e t Ifl q*, 
gELPnL2\{O} 9 p 

whence the claim follows. o 
COROLLARY 14.3. The semigroup {Pt} is L1 -7 L2 ultracontractive if 

and only if it is L2 -7 Loo ultra contractive, with the same rate function. 

The following statement elucidates the importance of the notion of ul­
tracontractivity. 

THEOREM 14.4. The heat sernigroup {Pt} is L1 -7 L2 ultra contractive 
with the rate function OCt) if and only if the heat kernel satisfies estimate 

P2t (x, x) :::; 02(t), (14.2) 

for all t > 0 and x EM. 

PROOF. By Theorem 14.2, the hypothesis that {Pt } is L1 -7 L2 ultra­
contractive with the rate function O(t) is equivalent to the fact that L2 -7 Loo 

is ultracontractive with the same rate function; that is, for all f E L2 and 
t>O 

(14.3) 

Substitute in (14.3) f = Pt (x,·) for some fixed t > 0 and x E M. Then, 
using the properties of the heat kernel from Theorem 7.13, we obtain 

Pd (x) = fMPdx, z)pdx, z) dp, (z) = P2t (x, x) 

and 
IIfll~ = P2t (x, x) , 

whence by (14.3) 

which proves (14.2). 
Conversely, if the heat kernel satisfies (14.2) then, for all t > 0 and 

xEM, 

IPtf(x) I - !,LPt(X, y)f(y)dp,(y) I 
< (fM p; (x, y) dp, (y») 1/211f1l2 

P2t (x,x)1/2I1fIl2 
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whence 
II Ptf (x) 1100 ~ O(t)llflb 

which proves (14.3). o 
REMARK 14.5. Using the inequality 

Pt (x, y) ~ V'-Pt--:-( x-,-x"-) Pt--=-(y-, y-"-) 

(see Exercise 7.21), we obtain the following version of Theorem 14.4: the 
heat semigroup {Pt } is L1 -+ L2 ultracontractive with the rate function OCt) 
if and only if the heat kernel satisfies estimate 

P2t (x, y) ~ 02(t), 

for all t > 0 and x, y EM. 

Exercises. 

14.1. Prove that if the heat semigroup {Pt } is LP -t L2 uitracontractive with the rate 
function B(t) where 1 :5 p < 2 then {Pt } is also LP -t £P* ultracontractive with the rate 
function (P(t/2). 

14.2. Faber-Krahn inequalities 

Given a non-negative non-increasing function A on (0,+00), we say 
that a weighted manifold (M, g, p.) satisfies the Faber-Krahn inequality with 
function A if, for any non-empty relatively compact open set 0 eM, 

Amin (0) 2': A (p. (0)) . (14.4) 

Of course, since the spectrum of the Dirichlet Laplacian rp· is discrete in 0, 
we can replace here Amin (0) by A1 (0). However, for most applications we 
do not need to use the fact that Amin (0) is an eigenvalue. 

If 0 is an open subset of lRn then, by the Faber-Krahn theorem, 

A1 (0) 2': A1 (0*) , 

where 0* is a ball of the same volume as O. If the radius of 0* is r then 
A1 (0*) = ~ with some positive constant en (see Exercise 11.25). Since by 
(3.90) 

it follows that 

where a = a (n) 
av-2jn • 

p. (0) = p. (0*) = Wn r n , 
n 

Al (0) 2': ap. (0)-2 j n , (14.5) 

> O. Therefore, (14.4) holds with the function A (v) = 

An alternative proof of (14.5) (although with a non-sharp constant a) 
can be found below in Example 14.31. 

REMARK 14.6. It is known that the Faber-Krahn inequality (14.5) with 
some constant a > 0 holds on the following two classes of n-dimensional 
Riemannian manifolds: 
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(1) Cartan-Hadamard manifolds, that is, complete simply connected 
manifolds of non-positive sectional curvature. This class includes, 
in particular, Rn and JH[n. 

(2) Minimal submanifolds of RN. 

See the Notes at the end of this Chapter for bibliographic references. 

Exercises. 

14.2. Prove that if (14.4) holds for all relatively compact open sets D then it holds also 
for all open sets D with J.' (D) < 00. 

14.3. The Nash inequality 

LEMMA 14.7. (The generalized Nash inequality) Let (M, g, J.L) a weighted 
manifold satisfying the Faber-Krahn inequality with a function A : (0, +00) -+ 
[0, +00) that is monotone decreasing and right continuous. Then, for any ° < € < 1 and for any function u E L1 n WJ (M) \ {O}, the following 
inequality holds 

f lV'ul 2 dp, ~ (1 _ €) Ilull§A (~lIull~) . 1M € lIull2 
(14.6) 

For example, for the function 

A (v) = av-2/ n 

we obtain from (14.6) 

L lV'ul 2 dJ.L ~ c (1M lui dJ.L) -4/n (1M u2dJ.L) 1+2/n , (14.7) 

where c = c (a, n) > 0. In particular, (14.7) holds in Rn where it is referred 
to as the (classical) Nash inequality. 

PROOF. It suffices to consider non-negative u since by (5.13) lV'ul = 
1V'lull. Consider first the case when u is in addition continuous. For any 
s> 0, consider the open set 

ns = {x EM: u(x) > s} 

and observe by Exercise 5.22 (u - s)+ E WJ (ns ), and by (5.12) 

f IV' (u - 8)+1
2 

dp, ~ f lV'ul 2 dp,. In. 1M 
(14.8) 

By Theorem 10.8, we have 

Amin (ns) f (u - s)! dJ.L ~ f IV' (u - s)+12 dJ.L. In. lns (14.9) 

Set for simplicity 
A = lIull1 and B = lIull§. 
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Integrating the obvious inequality, 

u2 - 2su ~ (u - s)~ , 

we obtain 

B - 2sA ~ L (u - s)~d/-L, 
which together with (14.8) and (14.9) yields 

Amin (ns) (B - 2sA) ~ 1M IV'ul2 
d/-L. 

On the other hand, by the definition of n, we have 

/-L(ns ) ~! r ud/-L = !A, 
s JM S 

whence by the Faber-Krahn inequality 
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(14.10) 

(14.11) 

1 
Amin (ns) ;:::: A (/-L (ns)) ;:::: A( -A), (14.12) 

s -
where we have used the hypotheses that A is monotone decreasing. Com­
bining (14.11) and (14.12), we obtain 

A( !A) (B - 2sA) ~ r IV'ul2 dj.L, 
s JM 

whence (14.6) follows upon setting here s = ~~. 
To treat the general case u E L1 n WJ (M), we will use the following 

observation. 

CLAIM. If {Wk} is a sequence of functions from Ll n wJ (M) such that 

Ilwk - Ull1 -* 0, IIWk - ul12 -* 0, /lV'Wk - V'uII2 -* 0, (14.13) 

as k -* 00 and if (14.6) holds for each function Wk then (14.6) holds also 
for u. 

Indeed, it follows from the hypotheses that the function A is lower semi­
continuous that is, for any convergent sequence {rk} of positive reals, 

(14.14) 

Hence, using (14.13), we can pass to the limit in the inequality (14.6) for Wk 
and obtain (14.6) for u. 

Consider now the case when u is a non-negative function from W; (M). 
Let n be a relatively compact open neighborhood of supp u. Since by Lemma 
5.5 u E WJ (n), and ego (n) is dense in WJ (n), there exists a sequence 
{Uk} C err (M) such that 

\luk - ul12 -* ° and \lV'Uk - V'ul/2 -* 0. (14.15) 

By the Cauchy-Schwarz inequality, we have u, Uk E Ll (n) and 

Iluk - ull1 ~ v' /-L(n) \I Uk - u\l2 -* O. (14.16) 
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Since (14.6) holds for each function Uk by the first part of the proof, the 
above Claim applies, and we obtain (14.6) for function u. 

Finally, let U be an arbitrary non-negative function from L1 n WJ (M). 
As above, there is a sequence {Uk} C Co (M) such that (14.15) holds. By 
Lemma 5.4, we can assume that Uk ~ O. Let Ok be any relatively compact 
open set that contains SUPPUk' Consider the function 

Wk := min (u, Uk) = U - (u - Uk)+ 

and observe that Wk E WJ (M) (cf. Example 5.3 and Exercise 5.3). Since 
supp Wk C supp Uk, we conclude by the previous part of the proof that (14.6) 
holds for the function Wk. We are left to prove that a subsequence of {wd 
satisfies (14.13). We have 

II\7wk - \7ulI~ = (r + r ) 1\7 (Wk - u)12 dJL 
J{Uk5:.U} J{Uk>U} 

- r 1\7 (Uk - u)12 dtt 
J{Uk5:.U} 

< lI\7uk - \7ull~, 

because on the set {Uk> u} we have Wk = U and, hence, \7 (Wk - u) = 0 (cf. 
(5.11)) and on the set {Uk ~ U} we have Wk = Uk and, hence, \7 (Wk - u) = 
\7 (Uk - u). It follows that 

lI\7wk - \7u1I2 -t 0 as k -t 00, 

and similarly one proves that 

IIwk - uII2 -t 0 as k -t 00. 

Therefore, there is a subsequence {Wk;} such that Wk; -t U almost every­
where. Since 0 ~ Wk; ~ U and U E L1, the dominated convergence theorem 
yields 

IIwki - uII1 -t 0 as k -t 00. 

Hence, the subsequence {Wki} satisfies all the conditions of the Claim, which 
finishes the proof. 0 

Exercises. 

14.3. Assume that the following Nash inequality holds: 

1M 1\71412 dJk ~ 1I141l~A ( ::::I~) , 
for any non-zero function 14 E CO' (M), where A is a decreasing function on [0, +00). 
Prove the Faber-Krahn inequality 

Amin (11) ~ A (Jk (11», 

for any open set 11 C M with finite measure. 

14.4. Give an example of a manifold where the Faber-Krahn inequality can holds only 
with function A (v) == O. 
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14.5. Prove that the Faber-Krahn inequality with function 

A (v) = av-2
/

v 
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(14.17) 

where a and v are positive constants, implies that, for any relatively compact ball B (x, r), 

p, (B (x, r» ~ ca"/2r ,,, (14.18) 

where c = c(v) > O. 
HINT. First prove that 

2 " " p.(B(x,r» ~ c(ar )V+2 p.(B(x,r/2»V+'1 

and then iterate this inequality. 

14.6. Prove that the Faber-Krahn inequality with function (14.17) with v> 2 is equivalent 
to the Sobolev inequality: 

1'-2 L IVul2 dp. ?: c (L lul~ dP,) -,,- (14.19) 

for any u E WJ (M), where c = c (a, v) > O. 

14.7. Prove that the Sobolev inequality (14.19) implies the following inequality, for any 
uE CO'(M): 

L IVul2 
dp, ~ c (L lui" dp, ) -a (!M lul i3 dp, ) b 

for any set of positive reals a, [3, a, b that satisfy the following conditions: 
2v 

a<[3<--2 

and 
v-

{ 
b-a=1-e, 
[3b - aa = 2. 

(14.20) 

(14.21) 

(14.22) 

REMARK. Under the conditions (14.21), the numbers a, b solving (14.22) always exist and 
are positive. For example, if a = 1 and [3 = 2 then a = 4/1/ and b = 1 + 2/v, so that 
(14.20) coincides with the Nash inequality (14.7). If a = 2 and f3 = 2 + 4/v then a = 2/v 
and b = 1, and we obtain the Moser inequality 

L IVul2 dp, ?: c (L lul2 dp, ) -2/1' (!M lul2+4/" dp, ) . 

14.4. The function classes L and r 
We consider here a certain ordinary differential equation, which will be 

used in Section 14.5. The main results are Lemmas 14.10 and 14.18. This 
section can be skipped at first reading and be consulted in case of need. 

DEFINITION 14.8. We say that a function A : (0, +(0) -+ R belongs to 
the class L if 

(i) A is non-negative, monotone decreasing, and right continuous; 
(ii) A is positive in a right neighborhood of 0 and 

( dv 
Jo vA(v) < 00. 

(14.23) 
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For example, if a function A satisfies (i) and A (v) = v-a (a > 0) for 
small v, then A belongs to L, while if A (v) == const then A t:J. L. 

DEFINITION 14.9. We say that a function, : (0, +(0) --+ lR belongs to 
the class r if, is positive, monotone increasing, log-concave, and ,(0+) = 0. 

Consequently, for any , E r, the function log, is monotone increas­
ing and concave. Hence, log, is absolutely continuous, and its derivative 
(log,)' exists almost everywhere and is monotone decreasing. Taking the 
right continuous version of (log -y)', we can assume that (log,)' is defined 
pointwise. We see that , E r if and only if 

(i) the function, is positive, monotone increasing, absolutely contin­
uous, and ,(0+) = OJ 

(ii) the function ,'/, is monotone decreasing. 
For example, the functions, (t) = to. and, (t) = exp (_ea ) belong to 

r for any a > O. 

LEMMA 14.10. For any function A E L, the following Cauchy problem 
on (0, +(0) 

d, 
dt = ,Ab), ,(0+) = ° 

has a unique positive absolutely continuous solution ,( t). 
longs to r and can be determined by 

where 

o vA(v) , 0< t < to, 

{ 

t 
__ l'Y(t) _dv 

,(t) = vo, t ~ to, 

ro dv 
vo=sup{v:A(v»O} and to= io vA(v)" 

(14.24) 

This solution be-

(14.25) 

(14.26) 

Conversely, for any function, E r, there exists a unique non-negative, 
monotone decreasing, right continuous function A satisfying {14.25}. This 
function belongs to L and can be determined by 

{ 

Ab(t)) = ~ (t), 

A(v) = 0, 

t> 0, 

v ~ sup,. 

(14.27) 

Hence, the equation (14.24) (and each of the identities (14.25) and 
(14.27)) can be considered as the definition of a bijective mapping from L 
to r and back. 

DEFINITION 14.11. For any A E L, the function " defined by (14.25), 
is called the r-transform of A. For any, E r, the function A, defined by 
(14.27), is called the L-transform of ,. 
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PROOF OF LEMMA 14.10. Uniqueness of,. Let (O,vo) be the maximal 
interval of positivity of A, that is Vo is defined by (14.26). By (14.24) we 
have " ~ 0 so that, is monotone increasing. Let (0, to) be the maximal 
interval where ,(t) < va, that is 

to :=sup{t:,(t) <vol. 

For any t E (0, to), we have Ab(t») > 0 so that (14.24) implies upon inte­
gration 

(t ,'dt 
io ,A(,) = t. 

Changing v = ,(t) we arrive at the identity 

t __ l1'(t) _dv , 
o vA(v) 

for all 0 < t < to. (14.28) 

By continuity, (14.28) holds also for t = to. By the definition of to, we have 
,(to) ::s; Vo. Let us prove that in fact ,(to) = vo, that is to satisfies (14.26). 
Indeed, if ,(to) < Vo then (14.28) and (14.23) imply 

r(to) dv 
to = io vA(v) < 00. 

However, for a finite to, we have ,(to) = Vo just by continuity. 
Hence, we have proved that the function , is determined for t ::s; to by 

(14.28) where to is determined by (14.26). For t > to we have ,(t) ~ Vo 
_ whence Ab(t)) = O. Therefore, (14.24) implies ,'et) == 0 and 

,(t) == Vo for all t ~ to, (14.29) 

which finishes the proof of the uniqueness of ,. 
It follows directly from (14.24) that, E r (the fact that ,'/, is decreas­

ing follows from " /, = A ( ,) and the mono tonicity properties of A and ,). 

Existence of ,. Define ,(t) by (14.25), where va and to are defined by 
(14.26). Observe that if to is finite then also va is finite. Indeed, if vo = 00 

then we obtain from (14.26) and the monotonicity of A 

roo dv roo dv 1 t)O dv 
to = io vA(v) ~ 1r vA(v) ~ A(1) il --;; = 00. 

Hence, (14.25) defines a positive absolutely continuous function, on (0, +00 ). 

It is straightforward to check that, solves (14.24). 

Uniqueness of A. Set Vo := sup, and let (0, to) be the maximal interval 
where ,(t) < vo, that is 

to := sup{t : ,(t) < vol· 
w' , e claim that t > 0 on the interval (0, to). Indeed, if t(tl) = 0 for some 

0< tl < to then by the monotonicity *(t) = 0 for all t ~ fr. Therefore, , 
attains its maximum at t = tl, which cannot be the case because ,(tl) < Vo. 
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Ijence, "I' > 0 on (0, to), and the function "I is strictly monotone on this 
interval and has the range (0, vo). It follows from (14.24) that 

, 
Ab(t)) = l(t), for all 0 < t < to, (14.30) 

"I 

which uniquely determines A(v) on the interval (0, va). If Vo = 00 then 
(14.30) proves the uniqueness of A. 

Assume now Vo < 00 and show that in this case A(vo) = 0; this would 
imply by monotonicity that 

A(v) == ° for all v ~ Vo (14.31) 

and prove the uniqueness of A in this case. Indeed, if to < 00 then for all 
t ~ to we have 'Y(t) == Vo and hence 'Y'(t) = 0, which implies by (14.24) 
A(vo) = O. 

Assume now to = 00 and show that 

. "I' 
hm -(t) = 0. 

t-+oo "I 

Indeed, the function "1'/"1 is monotone decreasing and has a non-negative 
limit at 00; denote it by c. If c > 0 then "I' /"1 ~ c implies that 'Y(t) grows 
at least exponentially as t -j- 00, which contradicts the assumption sup "I = 
Vo < 00. Hence, we conclude c = 0, which implies by (14.24) 

lim Ab(t)) = o. 
t-+oo 

It follows by the monotonicity of A that A(vo) = 0. 
Finally, let us verify (14.23) that would prove A E L. Indeed, dividing 

(14.30) by the left hand side and integrating it as above we obtain again the 
identity (14.28), for any t E (0, to), whence (14.23) follows. 

Existence of A. Define A by (14.27). Set Vo = sUP'Y and observe that 
the first line (14.27) defines A(v) for all v in the range of "I, which is either 
(0, vo) or (0, vol. If Vo = 00 then the second line in (14.27) is void. If Va < 00 
and the range of "I is (0, va) then the second line in (14.27) extends A to 
be ° in [vo, +(0). If the range of "I is (0, vol then "I attains its supremum; 
therefore at a point of the maximum of "y we have "I' (t+) = ° and hence 
A(va) = 0, which is compatible with the second line in (14.27). 

It is obvious that this function A satisfies (14.24). 0 

EXAMPLE 14.12. For all a, C > 0, the function 

A (v) = cv-a 

belongs to L and its r-transform is 

"I (t) = (cat)l/a . 

In the next examples, let us always assume that A ELand 

A (v) = cov-a for v < 1, 
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where co, 0> O. Set 

r1 
dv ( )-1 

to = Jo vA (v) = COO . 

Let 'Y (t) be the r-transform of A. For all t < to, we obtain by (14.25) 

'Y (t) = (coot)l/a . 

Let 
A (v) = cv-/1 for v 2: 1, 

where f3, c > 0 and c ~ co. Then the identity 

_ ret) dv 
t-to- Jl vA (v) 

implies that 

'Y (t) = (cf3t + cl
) 1//1 for t 2: to 

where c' = 1 - .E!..-. It follows that in this case coa 

Let 

{ 
tl/a t < 1 

'Y (t) ~ t 1//1: t 2: 1: 

A (v) = c for v 2: 1, 

where 0 < C ~ co. Then by (14.32) 

'Y (t) = exp (c (t - to)) for t 2: to· 

Let 
A (v) == 0 for v 2: 1. 

Then by (14.25) we obtain 

'Y (t) == 1 for t 2: to· 

Formally this follows also from (14.33) with c = O. 
Let 

A (v) = clog-/1 v for v 2: 2. 
Then it follows from (14.32) that, for large enough t, 

'Y (t) = exp ((Cit + cll
) .B~l) , 

where c' = c (f3 + 1) and c" is a real number. 

(14.32) 

(14.33) 

LEMMA 14.13. Let A ELand 'Y be its r-transform. If f(t) is a positive 
absolutely continuous function satisfying on an interval (0, T) the inequality 

f' 2: f AU), (14.34) 

then 

f(t) 2: 'Y(t) for all 0 < t < T. 



376 14. ULTRACONTRACTIVE ESTIMATES AND EIGENVALUES 

PROOF. Let (0, vo) be the maximal interval of positivity of A( v), and let 
(0,7) be the maximal interval where J(t) < Vo. For all t E (0,7) we obtain 
from (14.34) 

whence 

rt J'dt 
Jo JAU) ~ t, 

J,1(t) dv 
-->t. 

1(0) vA(v) -

Comparing with (14.25), we obtain J(t) ~ 'Y(t) for all t E (0,7). If 7 = T 
then this finishes the proof. 

If 7 < T (which includes also the case 7 = 0) then for all t E (7, T) we 
have J(t) ~ vo, which implies J(t) ~ I'(t) simply because I'(t) S Vo. 0 

DEFINITION 14.14. Fix 8 E (0,1) and let 'Y be a function from class r 
and A be its L-transform. We say that 'Y belongs to the class r 6 (and A 
belongs to the class L6) if, for all t > 0, 

'Y' 'Y' 8-1 

-(2t) - 8-(t) + 1+6 ~ 0. 
'Y 'Y (1 + t) 

(14.35) 

We say that 'Y belongs to the class I'6 (and A belongs to the class L6) if, for 
all t > 0, 

(14.36) 

Clearly, (14.36) implies (14.35) so that I'6 c r6. Observe also that the 
parameter 8 occurs in (14.35) three times. One could have three different 
parameters instead but the fact that the left hand side of (14.35) is monotone 
decreasing with 8 allows to manage with a single parameter. This also 
implies that the class r 6 increases when 8 decreases. 

It is obvious that if I' E r6 or'Y E I'6 then the function a'Y (bt) belongs 
to the same class for any positive constants a, b. 

Recall that, for any I' E r, the function 1"11' is monotone decreasing. 
The condition I' E I'6 means that the rate of decay of 'Y'I'Y is at most 
polynomial. For example, the function I' (t) = tet

, a > 0, satisfies (14.36) 
. 1 -Wlth 8 = 2" and, hence, belongs to r 1/ 2. 

To have more examples, let ~ first prove the following lemma that helps 
in checking that 'Y E r 6 or I' E r 6. 

LEMMA 14.15. Let ° < a < b < 00. 

(a) IJ (14.35) holds Jor all t < a and t ~ b, then'Y E r61 Jor some 8' >_0. 
(b) IJ (14.36) holds Jor all t < a and t ~ band 'Y' (2b) > ° then'Y E r61 

Jor some 8' > 0. 

PROOF. Denote J = ¥ and recall that J is non-increasing. 
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(a) Then, for all t E [a, b), we have 

f(t) ~ C:= f(a) 

and, for a small enough 8', 

, (H)-l 
(!(2t) - 8 f(t)) ~ C ~ l+ci" 

- (1 + t) 
Hence, for t E [a, b), (14.35) is satisfied with 8 = 8'. Since for t outside [a, b) 
(14.35) is satisfied by hypothesis, we conclude that, E rt5/ • 

(b) If t E [a, b) then 

f (2t) ~ f (2b) = ef (a) ~ ef (t) , 

where e = ~~~) > O. Hence, replacing 8 in (14.36) by min (8, e), we obtain 
that (14.36) holds for all t > O. 0 

EXAMPLE 14.16. 1. The function 
1 

,(t) = 1 + t-a 

belongs to rt5 with 8 = 2-a - 1. 

2. The function 

,(t) = {tt;,' t < 1
1

, 
t ~ , 

_where cr., f3 > 0, belongs to some r 15. Indeed, each of the function, (t) = ta 

and, (t) = tf3 belong to fl/2' and the claim follows by Lemma 14.15. 
3. In the same way, the functions 

and 

belong to some r 15. 

4. The function 

() {
ta, t<1, 

, t = exp (tf3 - 1), t ~ 1 

() { 
ta, t < 1, 

, t = 1 + logf3 t, t ~ 1 

(t) = { ta
,' t < 1, 

, 1, t ~ 1 (14.37) 

obviously satisfies (14.36) if t < ~ or t ~ 1. By Lemma 14.15,_, E rt5 for 

some 8. Note that , ~ rt5 because in the range t E [~, 1) we have i (2t) = 0 
while " (t) > 0, and (14.36) fails for any 8 > O. 

LEMMA 14.17. If, E r 15 with 8 ~ i then there exists a smooth function 
9 on [0, +(0) such that 

1 ~ 9 ~ et5-
3

, g' > 0, 

and such that the function -:y := ,g belongs to r 15 . 
. , 

(14.38) 
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PROOF. Define function 9 (t) to be the solution of the Cauchy problem 

g' 6-2 

- (t) = 1+0' g(O) = 1, 
9 (1 + t) 

that is, 

9 (t) = exp (6-2 rt d8 1+8) . 
Jo (1+8) 

The properties (14.38) are obvious. Set ;:y = ,g so that 

whence 

;:Y' " g' -::=-=-+-
, , 9 

[" i] [g' g'] :y(2t) - 15-;y(t) + g(2t) - 6g (t) 

15-1 8-2 6-1 
> + - ---::--= 

(1 + t)1+8 (1 + 2t)1+8 (1 + t)1+8 
8-2 28-1 

- (1 + 2t)1H (1 + t)1+O' 
(14.39) 

We are left to verify that the right hand side of (14.39) is non-negative, 
which is true provided 6 ~ ! because 

( )1+8 
1 + 2t < 21+0 < ~ < 1.6-1 . 
(1 + t)1+8 - 2 - 2 

To state the next result, we use the notation log+ 8 := (log 8) +. 

LEMMA 14.18. If, E r 0 then, for any v > 0, 

o 

1 ,(t) 8 
sup -log+ - ~ -2A(Cov) , (14.40) 
t>O t v 

where A is the L-transform of, and Co ~ 1 is a constant that depends only 
on 8. 

If, E f8 then (14.40) is true with C8 = l. 

PROOF. Assume first that , E f o. If v ~ sup, then A (v) = 0 and 
(14.40) is trivially satisfied. If v < sup, then there exists t > 0 such that 
v = ,(t/2). Using the concavity oflog, we obtain 

~ log+ ,~t) ~ log,(t) ~/~g,(t/2) ~ (log,)' (t) = ~ (t). 

By (14.36) and (14.24) we obtain 
, , 

let) ~ 82.(t/2) = 8A (T(t/2» = 8A(v), , , 
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whence 
sup! log+ ,(t) 2:: ~2A(v). 
t>O t v 

(14.41) 

Let now, E r o. Without loss of generality, we can assume 8 ::=:; k. Let 9 

be the function from Lemma 14.17 so that -::y:= ,g E ro. Taking a multiple 
of g, we can assume that 

co::=:; g::=:; 1, 

where Co > o. Therefore, -::y ::=:; , and, by the first part of the proof, 

1 ,(t) 1 -::Y(t) o~ 
sup -log+ - 2:: sup -log+ - 2:: -A(v), 
t>O t v t>O t v 2 

where A is is the L-transform of-::Y. 
If v < sup-::Y then v = -::y (t) for some t. Using g' 2:: 0 and, ::=:; ci1-::y, we 

obtain 
~ - -::Y',' g' i 
A (v) = A (-::y) = := = - + - 2:: - = A (,) 2:: A (cil-::y) = A (Cov) , , , 9 , 

where Co = ci1. Combining the previous two lines, we obtain (14.40). 
If v 2:: sup-::Y then Cov 2:: sup, and A (Cov) = 0 so that (14.40) is trivially 

satisfied. 0 

Exercises. 

14.8. Prove that if AI, A2 are two functions of class L then also Al +AI and max (AI, A2 ) 

belong to L. 

14.9. Let A be a function of class L such that 

where 01,Cl,VI > 0, 02,C2 ~ 0, and V2 > VI. Prove that A E LeS for some 8> O. 

14.10. For any function 'Y E r, denote by A"'( the L-transform of 'Y, and for any function 
A E L, denote bY'YA the r-transform of A. Let a, b be positive constants. 

(a) Set A (V) = aA (00). Prove that 

'YA (t) = b-1'YA (at) . 

(b) Set 7 (t) = a'Y (bt). Prove that 

A:y (v) = bA"'( (a-Iv). 

'(c) Prove that if Al and A2 are two functions from L and Al S A2 then 'YAl S 'YA2. 

14.11. Prove that the product of two functions from reS belongs to reS, and the product 
of two functions from reS belongs to reS/2. 

14.12. Show that there is a function 'Y E r that does not belong to any class reS, 

14.13. Let F (8) be a positive function of class C2 on [0, +00) such that F' (8) does not 
vanish for large 8. Assume that 

and 

(00 d8 
10 F(8) = 00 

F"F 
c:= lim -)2 (8) i= O. 

8-+00 (F' 
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Prove that 

it ds c-1 

o F(s) "'-F'(t) ast-+oo. 

14.14. Let A be a function of class L such that 

A (v) = exp (_v.8) for v ~ 1, 

where f3 > O. Evaluate the asymptotic of its r-transform "I (t) as t -+ 00. 

14.5. Faber-Krahn implies ultracontractivity 

As before, denote by Pt the heat semigroup of a weighted manifolc 
(M, g, j.t) and by PP the heat semigroup of n, for any open set n c M 
We use in this section the functional classes L and r defined in Section 14.4 

THEOREM 14.19. Assume that the Faber-Krahn inequality holds on G 

weighted manifold (M, g, j.t) with a function A E L. Then, for any functior. 
fELl n L2 (M, J.L) and for all t > 0, 

IlPdll~ ::; 'Y~) IIflli , (14.42) 

where 'Y(t) is the r-transform of A. 
Consequently, for all t > 0 and x, y EM, 

4 
Pt (x, y) ::; 'Y(t/2)' 

~ROOF. Without loss of generality, we can also assume that 

IIfll1 = 1. 

For any t ~ 0, set u (t, .) = Pd and consider the function 

J(t) := lIu(t, ')II~ = IIPdll~· 
By Theorem 4.9(iv), we have for any t > 0 

u(t,·) E domC c wJ (M) 

and 
du 
dt = -Cu E L2 (M) , 

(14.43) 

(14.44) 

(14.45) 

where it is the strong derivative in L2 and C is the Dirichlet Laplace oper­
ator. It follows that function J (t) differentiable in (0, +(0) and 

dJ d du 
dt = dt (u, u)L2 = 2( dt' Uh2 = -2 (Cu, u)L2 . 

On the other hand, by the Green formula (4.12), 

(Cu, u) = - (L\~u, u) = 1M l\lul2 
dj.t, 

whence we obtain 
dJ r 2 
dt = -2 J M l\lul dJ.L. (14.46) 
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In particular, function J(t) is monotone decreasing. Let (0, T) be the max­
imal interval where J(t) > O. For any t ~ T we have J(t) = 0, and (14.42) 
is trivially satisfied. Assuming in the sequel that t E (0, T) and applying 
Lemma 14.7 (with e = ~), we obtain 

r IV'ul2 dlt > ~lIu/l2A (4I1u/l~) (14.47) 1M - 2 2 lIull~' 

Theorem 7.19 and condition (14.44) imply 

/lull! S 1. (14.48) 

Combining (14.45), (14.46), (14.47), and (14.48), we obtain the following 
differential inequality for J on the interval (0, T): 

Consequently, the function 

-<-JA - . dJ (4) 
dt - J 

4 
f(t) := J(t) 

satisfies on (0, T) the inequality 

f' ~ JA(J). 

(14.49) 

Resolving this inequality by Lemma 14.13, we conclude J(t) ~ ,(t) whence 
J(t) S 4/,(t), which is equivalent to (14.42). 

The estimate (14.43) follows from (14.42) by Theorem 14.4 and Remark 
-14.5. 0 

Exercises. 
14.15. Prove that the claim of Theorem 14.19 remains true for any fELl (M). 

14.6. Ultracontractivity implies a Faber-Krahn inequality 

Here we prove a theorem which is "almost" converse to 14.19. 

THEOREM 14.20. Let (M, g, It) be a weighted manifold, and assume that 
the heat kernel satisfies the estimate 

1 
pt{x, x) S , (t) 

for all t > 0 and x EM, where, (t) is a positive function on (0, +00 ). Then 
M satisfies the Faber-Krahn inequality with the function A( v) defined by 

~ 1 ,(t) 
A(v) = sup -log+ -. (14.50) 

t>O t v 
If in addition , E r 8 then M satisfies the Faber-Krahn inequality with the 
function ~A(C8V) where A is the L-transform of, and C8 is the constant 
from Lemma 14.18. 

The proof of Theorem 14.20 will be preceded by a lemma. 
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LEMMA 14.21. For any function f E WJ (M) such that IIfll2 = 1 and 
for any t ~ 0, the following inequality holds 

exp ( -t L IV' fl2 dJ.L ) ~ IIPdIl2. (14.51) 

PROOF. Let {E~} be the spectral resolution of the Dirichlet Laplacian 
C. Then, for any f E dom (C) = W6 such that IIfll2 = 1 we have 

1 = IIIII~ = 10
00 

d11E~f112 
and 

1M l\7fl2 dJ.L = - 1M (D..Jl.J) f dJ.L = (Cf, J) = 10
00 

)'dIIE~fIl2 (14.52) 

(cf. Exercise 4.24). Since the measure d11E~f112 has the total mass 1, we 
can apply Jensen's inequality which yields 

exp ( -1000 

2t). dIlE~fI12) ~ faoo exp (-2t).) dIlE~fIl2. 
Using (14.52) and the identity 

IIPtfll~ = faoo exp (-2t).) dIlE~fI12, 
we-obtain 

exp ( -2t 1M 1\7 fl2 dJ.L) ~ IlPdli~, 
which coincides with (14.51). 

Assume now that f E WJ and 111112 = 1. Since C~ is dense WJ, there 

is a sequence {fk} C Co such that !k ~ f. Then Ck := IIfkll2 -+ 1, which 

implies that also c;;l fk ~ f. The inequality (14.51) holds for each function 
c;;lfk. Since both sides of (14.51) survive when passing to the limit in the 
norm 1I·lIwl, we obtain (14.51) for f. 0 

See Exercise 4.36 for an alternative proof. 

PROOF OF THEOREM 14.20. By Theorem 14.4, the heat semigroup Pt 
on M is L1 -t L2 ultracontractive with the rate function y'llr(2t), that is 

2 1 
. II Pt/2111-t2 ~ 'Y(t) (14.53) 

Let 0 eM be an open set with finite measure and f E wJ (0) be a function 
such that IIfll2 = 1. Then also f E WJ (M) and we obtain by Lemma 14.21 
and (14.53) 



14.6. ULTRACONTRACTIVITY IMPLIES A FABER-KRAHN INEQUALITY 383 

Since by the Cauchy-Schwarz inequality IIflli ~ pen), it follows that 

r 2 1 'Y(t) 
J M 1\7 fl dp 2: t log+ p(n)' 

Taking the infimum in f and the supremum in t, we obtain 

Amin (n) 2: A(p(n», (14.54) 

which was to be proved. 
If 'Y E ro then by Lemma 14.18 

- 8 
A(v) 2: 2A(Cov), 

which proves the second claim. o 
REMARK 14.22. It follows from (14.50) that A (v) > 0 provided sUP'Y = 

00. By (14.54), we conclude that Amin (n) > 0 for any open set n with finite 
measure. 

Recall that by Theorem 14.19 if M satisfies the Faber-Krahn inequality 
with a function A E L then the heat kernel satisfies the estimate 

4 
Pt (x, x) ~ 'Y (t/2) , 

where'Y is the r-transform of A. Hence, putting together Theorems 14.19 
and 14.20 and assuming 'Y E ro (which is equivalent to A E Lo), we obtain 

- essentially the equivalence 

1 
Pt(x,x) ~ 'Y(t) 

where all the constants factors are discarded. 

(14.55) 

COROLLARY 14.23. For any weighted manifold and any n > 0, the fol­
lowing conditions are equivalent: 

(a) The on-diagonal estimate Pt (x, x) ~ ccn/ 2 , for all t > 0 and 
xEM. 

(b) The Faber-Krahn inequality with function A (v) = cv-2/ n where 
c> O. 

(c) The Nash inequality (14.7). 
(d) The Sobolev inequality (14.19), provided n > 2. 

PROOF. Indeed, the equivalence (a) ¢:} (b) follows from the above Re­
mark 14.22 because the A-transform of the function 'Y (t) = C-1tn / 2 is 
A (v) = cv-2/ n . The equivalence (b) ¢:} (c) holds by Lemma 14.7 and Exer­
cise 14.3, and (b) ¢:} (d) holds by Exercise 14.6. 0 

REMARK 14.24. As it follows from Corollary 14.23 and Remark 14.6, 
all the equivalent conditions (a) - (d) are satisfied on Cartan-Hadamard 
manifolds and minimal submanifolds of ]RN. 
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14.7. Lower bounds of higher eigenvalues 

Here we prove a remarkable consequence of the equivalence (14.55) that 
the Faber-Krahn inequality, that is, the lower bound Al (n) ~ A (J.L (n)) 
for the bottom eigenvalue for any relatively compact open subsets n eM, 
implies a similar estimate for the higher eigenvalues 

Ak (n) ~ cA ( CJ.L ~n») , 
subject to a mild restriction on the function A (see Corollary 14.28). 

THEOREM 14.25. Assume that the heat kernel on a weighted manifold 
M satisfies for all t > 0 the following estimate 

Lpt (x, x) dJ.L (x) S p(t), (14.56) 

where p is a positive function on (0, +(0). Then the spectrum of the Dirich­
let Laplace operator.c is discrete, and its k-th smallest eigenvalue Ak (M) 
satisfies for all k = 1,2, ... the inequality 

1 k 
Ak (M) ~ sup -log+ -( ). (14.57) 

t>O t P t 
PROOF. Note that 

L pdx, x) dJ.L (x) = 1M L Pt/2 (x, y)2 dJ.L (x) dJ.L (y) = IIPt/2I1i2,2' 

By Lemma 10.14 and (14.56), we have 

tracee-
tC = traCePt~2 = IIpt/21112,2 S P (t), 

and by Lemma 10.7 we conclude that the spectrum of .c is discrete. Fur­
thermore, by (10.14) we have 

00 

L e-tAk = trace e-tC S p(t). (14.58) 
k=l 

Since the sequence {Ak}~l is arranged in the increasing order, the left hand 
side of (14.58) is bounded below by ke-tAk for any index k. Therefore, 

which implies 

ke-tAk S p(t) , 

1 k 
Ak ~ t log p(t)" 

Since Ak ~ 0, the function log can be replaced by log+; since t > 0 is 
arbitrary, we obtain (14.57) by taking the supremum in t. 0 

COROLLARY 14.26. If the heat kernel on M satisfies the estimate 

1 
Pt (x, x) S 'Y (t) (14.59) 
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for all t > 0 and x E M, where'Y is a function of the class ro then, for any 
open set n c M with finite measure the spectrum of the Dirichlet Laplace 
operator Cp- is discrete and, for any k ~ 1, 

A (n) > ~A (c J.l(0») 
Ie -2 0 k ' (14.60) 

where A is the L-transform of'Y and Co is the constant from Lemma 14.18. 

Applying (14.60) for k = 1, we obtain the alternative proof of Theorem 
14.20. 

PROOF. We have 

r 0 ) J.l(0) 
JoPt (x,x)dJ.l(x ::::; 'Y(t) 

so that 0 as a manifold satisfies the hypotheses of Theorem 14.25 with 
function 

J.l (0) 
p (t) = 'Y (t) . 

By Theorem 14.25, we obtain that the spectrum of £0 is discrete and 

Ale (0) ~ sup ~ log+ k'Y(~». 
t>O t J.l H 

If 'Y E ro then by Lemma 14.18 we obtain that 

1 k'Y (t) 6 ( J.l (0») 
~~R t log+ J.l (0) ~ '2A Co- k -

which finishes the proof. o 
EXAMPLE 14.27. Let us show that, for any weighted n-dimensional man­

ifold M and for any relatively compact open set 0 eM, there exist constant 
c, C > 0 such that 

( 
k ) 1/(2u) 

Ak (U) ~ c J.l (U) (14.61) 

for all open U C 0 and k ~ CJ.l (U), where 0' is the same as in Theorem 7.6, 
that is, the smallest integer larger than n/4 (cf. Example 10.16). 

Indeed, it follows from Theorem 7.6, that, for any f E L2 (0), 

IJPP flloo ::::; B (t) IIfl12 
where B (t) = C (1 + t-U

) and C = C (0). Hence, the semigroup {pP} is 
L2 -t Loo ultracontractive with the rate function B (t), which implies by 
Theorem 14.4 that 

02 1 
Pt (x, x) ::::; B (t/2)::::; 'Y (t)' 

where 

'Y(t) = C' {t12,U, t < 1, 
t ~ 1. 
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As was shown in Example 14.16, 'Y E roo Evaluating A from (14.27), we 
obtain 

A (v) 2: cv-l /(2u) for v ~ va, 

for some c, va > O. By Corollary 14.26 we obtain that (14.61) is true when­

ever CoJ.'r) ~ va, which is equivalent to k 2: CJ1.(U) with C = Coval. 
As we will see later, (14.61) holds with (J" = n/4 (see Corollary 15.12). 

COROLLARY 14.28. Assume that M satisfies the Faber-Krahn inequality 
with a function A E Lo. Then, for any open set 0 C M with finite measure, 
the spectrum of the Dirichlet Laplace operator rP' is discrete and satisfies 
for all k 2: 1 the estimate 

>.. (O) > ~A (c J1. (0») 
k -4 0 k ' 

where Co > 0 depends only on 8. 

PROOF. By Theorem 14.19, we have the estimate 

4 
pdx, x) ~ 'Y (t/2)' 

(14.62) 

for all t > 0 and x E M, where 'Y is the r-transform of A. Since the function 
7 (t) = ~'Y (t/2) belongs to r a, we obtain by Corollary 14.26 the estimate 
(14.60-) with function A that is the L-transform of 7, whence (14.62) follows 
(cf. Exercise 14.10). 0 

14.8. Faber-Krahn inequality on direct products 

Here we give another example of application of the equivalence (14.55). 

THEOREM 14.29. If X and Yare two weighted manifolds satisfying the 
Faber-Krahn inequalities with functions AI, A2 E La, respectively, then the 
product manifold M = X x Y satisfies the Faber-Krahn inequality with the 
function 

where 

(14.63) 

and Co > 0 depends only on 8. 

PROOF. By Theorem 14.19, the heat kernels on X and Y admit the 
estimates 

for all Xl> X2 E X and Y1, Y2 E Y, where 'Yl and 'Y2 are the r-transforms of 
Al and A2, respectively. 
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The heat kernel Pt on M is the product of if and pi in the following 
sense: if Zi = (Xi, Yi) E Ml X M2 where i = 1,2 then 

Pt(zr, Z2) = p? (Xl, X2)p[ (Yl, Y2). 

(see Theorem 9.11 and Exercise 7.41). Hence, we obtain for all Zl, Z2 EM, 

where "I = "In2· By hypothesis, the functions "11 and "12 are in the class 
ro; then "I is in r O/ 2 by Exercise 14.11. Therefore, by Theorem 14.20, M 
satisfies the Faber-Krahn inequality with the function 

6-
v H 4A(Cov) , 

where A is the L-transform of "I. We are left to show that A (v) ~ A (v) 
where A is defined by (14.63). If v < sup "I and, hence, v = "I (t) for some t 
then by (14.27) and (14.63) 

, , , 
A(v) = A("I(t)) = 'l = "11 + "12 = Albl (t)) +A2b2 (t)) ~ A(v). 

"I "11 "12 

If v ~ sup "I then we can choose numbers u ~ sup "11 and w ~ sup "12 such 
that uw = v. Since Al (u) = A2 (w) = 0, it follows from (14.63) that 
A (v) = O. Hence, in the both cases, A (v) ~ A (v), which finishes the 

- proof. 0 

EXAMPLE 14.30. Let Al (u) = ClU-2/ n and A2 (w) = C2W-2/m. Then 
(14.63) gives 

A(v) = inf (cru- 2/ n + C2W - 2/ m ) = cv-2/(n+m) , 
uw=v 

where C = c(Cl, C2, n, m) > O. Since both AI. A2 belong to Lo for some 
8 > 0, we conclude that X x Y satisfies the Faber-Krahn inequality with 
the function const v-2/(n+m). 

EXAMPLE 14.31. Let us show how the above example allows to prove the 
Faber-Krahn inequality in ~n with function A (v) = Cnv-2/ n by induction 
hi n. In JRl any open set n is a disjoint union of open intervals {h}. Set 
rk = J-£ (h), where J-£ is the Lebesgue measure. Then we have, for some c > 0, 

Amin (n) ~ i~f Amin (h) = if ~ ~ CJ-£ ([2)-2 

(cf. Exercises 10.6 and 11.25), which proves the above claim in the case 
n = 1. Assuming that the Faber-Krahn inequality in lRn holds with function 
A (v) = Cnv-2/ n , we obtain by Example 14.30 that it holds inlRn +1 = JRnxJRl 

with function A(v) = constv-2(n+l), which was to be proved. 
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EXAMPLE 14.32. Let X satisfy the Faber-Krahn inequality with the 
function Al (u) = CIU-2/ n ; for example, X may be any Cartan-Hadamard 
manifold of dimension n. Let Y be any compact manifold of dimension m. 
By Exercise 15.2, Y satisfies the Faber-Krahn inequality with the function 

A2 (w) = C2W , W - wo, 
{ 

-2/m < 
0, w > wo, 

which belongs to La by Exercise 14.9. By (14.63), we have 

A (v) = min ( inf CIU-2/n , inf (CIU- 2/n + C2w-2/m)) 
uw=v uw=v 
w>wo w~wo 

C { v-2/(n+m), v ~ vo, 
< v-2/ n v> Vo , , (14.64) 

with some c, Vo > O. Hence, we conclude by Theorem 14.29 than X x Y 
satisfies the Faber-Krahn inequality with the function (14.64). 

Notes 

The proof of the classical Faber-Krahn theorem in Rn as well as its extensions to §n 

and lBF can be found in the book by LChavel [51J that is a good general reference for the 
properties of the eigenvalues of the Laplace operator on manifolds. 

The fact that the ultracontractivity of the heat semigroup is equivalent to a heat 
kernel on-diagonal upper bound is widely known. Moreover, the argument that is used to 
prove the upper bound, can be turned into the proof of the existence of the heat kernel in 
a rather general setting - see [49J, [96], [163J, [184J. 

The method of obtaining the heat kernel upper bound from the Nash inequality, 
which was used in of Theorem 14.19, goes back to a seminar paper of J. Nash [292]. The 
equivalence of the Sobolev inequality and the heat kernel upper bound 

Pt (x, x) :$ Gt-n
/

2 (14.65) 

was first proved by N.Varopoulos [353], [355J. The equivalence of the classical Nash 
inequality and (14.65) was proved by Carlen, Kusuoka and Stroock in [49]. 

The equivalence of the Faber-Krahn inequalities and the heat kernel upper bounds 
in full generality (Theorems 14.19 and 14.20) was proved in [146]. A particular case that 
(14.65) is equivalent to 

(14.66) 

was obtained independently by G.Carron [50]. 
The equivalence of the generalized Nash inequality and the heat kernel upper bounds 

in full generality was proved by T.Coulhon [77J. In particular, Lemma 14.21 is taken 
from [77]. A direct derivation of various types of Nash and Sobolev inequalities each from 
others can be found in [17]. 

The discreteness of the spectrum in the setting of Theorem 14.25 was proved by 
L. Gross [188J. The fact that the lower estimates for Al (n) implies non-trivial lower 
estimates for Ail: (n) (Corollary 14.28) was proved in [146]. Further results in this direction 
can be found in [67] and [l84J. 

We do not use here a geometric tool for obtaining Faber-Krahn inequalities: the 
isoperimetric inequalities of the form 

(T(an) ~ F(JL(n)), (14.67) 
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where n is any relatively compact open subset of M with smooth boundary an and u is 
the induced measure on an, and F is a non-negative function on [0,+00). For example, 
in Rn the isoperimetric inequality (14.67) holds with the function 

,,-1 

F(v)=cv---n (14.68) 

(see, for example, [53], [196]). By the Cheeger inequality, if (14.67) holds with function 
F such that F (v) Iv is monotone decreasing then the Faber-Krahn inequality holds with 
function 

(cf. [56], [146]). 
For example, the isoperimetric inequality with the function (14.68) implies the Faber­

Krahn inequality (14.66). This can be used to prove the Faber-Krahn inequality (14.66) 
on Cartan-Hadamard manifolds and minimal submanifolds of RN as was mentioned in 
Remark 14.6, because the corresponding isoperimetric inequalities on such manifolds are 
known - see [203], [325] for Canan-Hadamard manifolds, [44] for minimal submanifolds, 
and [67], [154] for the both classes. 

A far reaching extension of Cheeger's inequality - Maz'ya's inequality, and its ap­
plications can be found in [153], [268], [269], [270]. Further relations of isoperimetric 
inequalities and heat kernels can be found in [54], [55], [76], [153]. Faber-Krahn inequal­
ities on direct products were proved in [83] without using heat kernBls. Isoperimetric 
inequalities on direct products were proved in [135], [278]. 

A powerful isoperimetric inequality on groups and covering manifolds was proved by 
T.Coulhon and L.Saloff-Coste [86], which provides plenty of examples of manifolds with 
explicit functions F and A in the isoperimetric and Faber-Krahn inequalities, respectively. 



CHAPTER 15 

Pointwise Gaussian estimates I 

In this Chapter we obtain the pointwise Gaussian upper bounds of the 

heat kernel, that is, the estimates containing the factor exp ( - ct2~,Y»). The 

key ingredient is a mean value inequality that is deduced from the Faber­
Krahn inequality. The mean value inequality enables one to obtain upper 
bounds for a certain weighted L 2-norm of the heat kernel, which then im­
plies the pointwise estimates. In contrast to Chapter 14, the Faber-Krahn 
inequality is assumed to hold in some balls rather than on the entire mani­
fold. 

In the core part of this chapter, we use from the previous chapters only 
the properties of Lipschitz functions (Section 11.2) and the integrated max­
imum principle (Section 12.1). 

15.1. L2-mean value inequality 

Consider a weighted manifold N = 1R x M with the product measure 
dv = dtdf-£. Let I be an interval in 1R and n be an open set in M so that the 
cylinder I x n can be considered as a subset of N. A function u : I x n -+ 1R 
is called a subsolution to the heat equation if u E C2 (I x n) and 

(15.1) 

THEOREM 15.1. Let B (x, R) be a relatively compact ball in M and as­
sume that, for some a, n > 0, the Faber-Krahn inequality 

(15.2) 

holds for any open set U c B (x, R). Then, for any T > 0 and for any 
subsolution u (t, y) of the heat equation in the cylinder C = (0, T] x B(x, R), 
we have 

Ca-n / 2 r 
u! (T, x) ::; n+2 Jc u!dv, 

min (n,R) C 

(15.3) 

where C = C(n). 

Although n does not have to be the dimension of M, in most applications 
of Theorem 15.1 one has n = dimM. We prove first two lemmas. 

391 
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LEMMA 15.2. Let n be an open subset of M and To < T. Let "7 (t, x) 
be a Lipschitz function in the cylinder C = [To, T] x n such that "7 (t,.) is 
supported in some compact set Ken for any t. Let u be a subsolution to 
the heat equation in C and set v = (u - B)+ with some B ~ o. Then the 
following inequality holds: 

~ [in V2
"7

2 
(t,·) dJl] ~=TO + 11\7 (V"7) 12 dv ~ 1 v

2 (1\7"712 + 1"7 ~~ D dv. 

(15.4) 
In particular, if "7 (To, .) = 0 then 

in V2
"7

2 
(t,·) dJl ~ 21 v2 (1\7"712 + 1"7 ~~ D dv (15.5) 

for any t E [To, T], and 

11\7 (V1]) 12 dv ~ 1 v
2 (1\7"712 + 1"7 ~~ D dv. (15.6) 

PROOF. Since u (t,·) E Wi~c (n), by Exercise 5.8 we have v (t,.) E 

Wi~c (n) and 

which implies 

(\7v, \7u) = l\7vl 2 and v\7u = v\7v. 

Since "7 (t,·) E Lipo (n), by Exercise 11.13 we have v1]2 E WJ (n) for any 
fixed time t and 

whence 

(\7u, \7 (V1]2)) = 2v1](\7v, \71]) + 1]21\7vI2 . 

Multiplying the inequality (15.1) by V"72 and integrating over C, we obtain 

1 ~~ V"72dv < £~ in (~JLU) V"72dJldt 

_ - rT r (\7u, \7 (V1]2) )dJldt 
lTD ln 

= -1 (2v"7{Vv, \7v) + "721\7vI2) dv, 

where we have used the Green formula of Lemma 4.4. Since 

2v"7{\7v, \7v) + "721\7vI2 = IV (V"7) 12 ~ v2 1\7"712 , 
we obtain 
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For any fixed x, all functions u, v, 1] are Lipschitz in t E [To, T]. Therefore, 
using the integration by parts formula for Lipschitz functions (see Exercise 
2.25) we obtain, for any fixed x E n, 

i

T au liT a (v2
) 

-V1]2dt = - --",2dt 
To at 2 To at 

1 T liT a _ - [V2",2] _ _ v 2_ (1]2) dt 
2 To 2 To at 
1 [ 2 2]T rT 

2 a", 
- 2" v 1] To - lTo v ", at dt. 

Integrating this identity over n and combining with (15.7), we obtain (15.4). 
The estimate (15.5) follows from (15.4) if one replaces T by t, and (15.6) 

is an obvious consequence of (15.4). 0 

LEMMA 15.3. Under the hypotheses of Theorem 15.1, consider the cylin­
ders 

Ck = [Tk' T] x B(x, Rk), k = 0,1, 

where 0 < Rl < Ro :s; Rand 0 :s; To < Tl < T (see Fig. 15.1). Choose 
(h > 00 2: 0 and set 

Jk = r (u - Ok)! dv. 
lCk 

Then the following inequality holds 

C],1+2/n 
J < 0 

1 - a81+2/ n (fh _ 00)4/n' 

where C = C (n) and 

(15.8) 

PROOF. Replacing function u by u - 00 we can assume that 00 = 0 and 
rename 01 to O. Consider function", (t, y) = <p (t) 'I/J (y) where 

(t 11 ) { 1, t 2: Tb 
In (t) = - 0 + A 1 = ;"-To 110 _< t <_ Tl, 
T' Tl - To 1 -To' 

0, t :s; To 
(15.9) 

and 

(R1/ 4 -d(x,y))+ 
'I/J(y)= R R AI, 

1/4 - 1/2 

where R>. = >"R1 + (1- >..) Ro. Obviously, supp'I/J = B (x, R 1/ 4 ) is a com­
pact subset of B (x, Ro) because the ball B (x, Ro) is relatively compact by 
hypothesis. 
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• • • T :-.-.. -.-. ..-------.-.,,.,..... 

· · · • 

Tl _ .. _. _. _______ . ____ ._._.~...:........:"'-'---'....:::;...O.~ 
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I 
I To'--·····_· . 

i ! ! B(X;.Rl)! i M ___ L _______ ~ __________ 1: __________________ ~ ___________ ' ________ _ 
, J 

-y-
B(x,Ro) 

FIGURE 15.1. Cylinders Co and Cl 

Applying the estimate (15.6) of Lemma 15.2 in the cylinder Co for TImc­
tion v = u+ with t E [Tl' T] and noticing that 'P (t) = 1 in this range and 
'lj; = 1 in B (x, R1/ 2) , we obtain 

( u! (t,·) dtt ~ 2 { u! (1'V'1]1 2 + 1'1] 88'1] I) dv ~ 3; Jo, (15.10) 
1 B(x.Rl/2) leo t u 

where we have also used that 

and 

I 8'1]1 < 1 < ~ 
'1] 8t - Tl - To - 8' 

For any t E [Tl' T], consider the set 

Ut = {Y E B (x,R3/ 4) : u(t,y) > B} 
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Consider now a different function 'IjJ: 

(R3/4 - d(x,y))+ 
tf; (y) = R R t\ 1. 

3/4 - 1 
(15.12) 

Applying (15.6) for function v = (u - e)+ with 'T/ (t, x) = cp (t) tf; (y) where 
cp is given by (15.9) and tf; is given by (15.12), we obtain 

10 IV (V'T/) 12 dll S 10 v2 (IV'T/12 + I'T/ ~~ I) dll S ~ 10 v2
dll S ~ Jo· 

(15.13) 
For a fixed t, the function V'T/ (t, y) can take a non-zero value only if y E 

B (x,R3/ 4) and u(t,y) > e. It follows that 

supp (V'T/ (t, .)) C Ut , 

whence V'T/ (t,·) E Lipo (n) for any open set n containing Ut . Choose such 
an n with additional conditions nCB (x, Ro) and 

68 
J1. (n) S 2J1. CiTt) ~ e26 Jo, 

where we have used (15.11) (still assuming that t E [1'1, TD. Then we obtain 
by the variational principle and (15.2) 

where we have used that 'T/ (t, y) = 1 for t E [TI' T] and y E B (x, RI)' 
Integrating this inequality from Tl to T and using (15.13), we obtain 

17 Jo > 
6 

rT r IV (V'T/) 12 dv 
JTl J B(x,Ro) 

> a (e6
2

8
6) 2/n Jr;2/n rT r v2 (t,.) dJ1.dt 

JTl J B(x,Rl) 

(
e26) 2/n J,-2/n J 

- a 68 0 1, 

whence (15.8) follows. 

PROOF OF THEOREM 15.1. Consider a sequence of cylinders 

o 
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where {Tk}~D is a strictly increasing sequence such that To = 0 and Tk :::; 
T/2 for all k, {Rk}~o is a strictly decreasing sequence such that Ro = R 
and Rk ;::: R/2 for all k. Assume also that 

(15.14) 

In particular, the sequence of cylinders {Ck}~o is nested, Co = C and Ck 
contains [T/2, T] x B (x, R/2) for all k. 

Fix some () > 0 and set ()k = (1 - 2-(k+l)) () and 

Jk = { (u - ()k)2 dv. 
Jc,. 

Clearly, the sequence {Jk}~o is decreasing. We will find e such that Jk -+ 0 
as k -+ 00, which will implies that 

{T { (u-())!dv=O. 
JT/2 ) B(x,R/2) 

In particular, it follows that u (T, x) :::; () and, hence, u+ (T, x) :::; (J2. For an 
appropriate choice of (), this will lead us to (15.3). 

Applying Lemma 15.3 for two consecutive cylinders Ck :) Ck+l, we obtain 

GJ1+2/n G'16k/nJ1+2/n 
Jk 1 < k = k 

+ - ac5~+2/n (()kH - ()k)4/n ac5~+2/ne4/n 
(15.15) 

where 9/ = 162/nG. Assume that c5k is chosen so that for any k 

G/16-k/n J?/n 1 __ ~---,o~ __ 
ac5~+2/n()4/n - 16' 

(15.16) 

We claim that then 
Jk :::; 16-k Jo, (15.17) 

which in particular yields Jk -+ O. Indeed, for k = 0 (15.17) is trivial. If 
(15.17) is true for some k then (15.15) and (15.16) imply 

G/16k/n (16-k Jo) 2/n G/16-k / n J?/n 1 
Jk 1 < Jk - 0 J - J 

+ - ac5~+2/n()4/n - ac5~+2/n()4/n k - 16 k 

whence JkH :::; 16-(kH) Jo. 
The equation (15.16) can be used to define c5k, that is, 

_ (G/161-k/nJ~/n)n~2 C"16-n~2Jon;2 
c5k - a()4/n -" 4 a n+2 ()n+2 

(15.18) 

where G" = (16G') n~2 , but we must make sure that this choice of Ok does 
not violate the conditions Tk :::; T /2 and Rk ;::: R/2. Since by (15.14) 

k-l k-l 

Tk=L 8i and Rk=R-L~' 
i=D i=O 
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the sequence {{)k} must satisfy the inequalities 
00 00 

L {)k ~ T /2 and L.,ft; ~ R/2. 
k=O k=O 

Substituting Dk from (15.18) and observing that {{)k} is a decreasing geo­
metric sequence, we obtain that the following inequalities must be satisfied: 

2 (2 ) 1/2 ], .. +2 J,n+2 

n
O 

4 ~ c2T and ~ _4_ ~ cR, 
a n+2 (J n+2 a n+2 (J n+2 

for some c = c (n) > O. There conditions can be satisfied by choosing (J as 
follows: 

-n/2 T 
(J2 > a tlO and 

- (cv'T) n+2 

Taking 
(J2 _ a-n

/ 2Jo 

- cn+2 min ( v'T, R) n+2 

and recalling that ut (T, x) ~ (J2, we finish the proof. o 
Exercises. 

15.1. Fix Xo E M, R> r > 0 and let the ball B (xo, R) be relatively compact. Assume 
also that, for some a, n > 0, the Faber-Krahn inequality 

Amin(U) ~ aJ1. (U)-2/n , (15.19) 

holds for any open set U C B(xo, r). Let u (t, x) be a non-negative bounded C2-function 
(0, T) X B (xo, R), where T > 0, such that 

(i) ~~ - .6"u ::; 0, 
(ii) u (t, .) ~ 0 as t -+ 0 in L2 (B (xo, R» . 
Prove that, for all x E B (xo, r/2) and t E (0, T), 

u (t, x) ::; CllullLoo J1. (B (xo,/~»! max (1, 0) i+l max (1, ~) e- ~~ 
(~)n r vt 

where r5 = R -r and C = C(n). 

15.2. Faber-Krahn inequality in balls 

(15.20) 

Here we show how the local geometry of a manifold and the mean value 
inequality of Theorem 15.1 can be used to give an alternative proof (of the 
improved version) of the key estimate (7.18) of Theorem 7.6. 

THEOREM 15.4. On any weighted manifold (M, g, f..£) of dimension n 
there is a continuous function r (x) > 0 and a constant a = a (n) > 0 
such that any ball B (x, r (x)) is relatively compact and, for any open set 
U C B (x,r (x)), 

Amin (U) ~ af..£ (U)-2/n . (15.21) 
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PROOF. For any point x E M, one can always choose P = p(x) so small 
that the ball B (x, P (x)) is relatively compact and is contained in a chart. 
Furthermore, reducing P further, one can achieve that the Riemannian met­
ric g and the Euclidean metric e in this ball are in a fixed finite ratio, say 

1 
-e < g < 2e 2 - -

(cf. Lemma 3.24), and the density function T of measure J-L with respect to 
the Lebesgue measure A in the chart is almost constant, say 

sup T ~ 2infT. 

Then the Faber-Krahn inequality (14.5) in Rn implies the Faber-Krahn in­
equality (15.21) in B(x,p(x)) with n = dimM and with a fixed constant 
a = a(n). 

To make a continuous function from P (x), denote by Po (x) the supre­
mum of all possible values of p (x) such that the above conditions are satis­
fied, capped by 1 (the latter is to ensure the finiteness of Po (x)). Let us show 
that the function Po (x) is continuous. Indeed, if y E B (x, Po (x)) then the 
ball B (y, p (y)) satisfies the above conditions with p (y) = Po (x) - d (x, y), 
which implies -

Po (y) ~ Po (x) - d (x, y). 
Swapping x and y, we obtain 

Ipo (x) - Po (y)1 ~ d (x, y), 

which proves the continuity of Po (x). 
Finally, setting r (x) = ~Po (x), we obtain the required function r (x). 

o 
REMARK 15.5. If M has bounded geometry (see Example 11.12) then 

the function r (x) is uniformly bounded below by some e > O. 

COROLLARY 15.6. Under the hypotheses of Theorem 15.1, for any f E 

L2 (M) and for all t > 0, 

sup IPdl ~ Ca-n
/
4 (R-n

/
2 + c n

/
4

) IIfllp, (15.22) 
B(x,R/2) 

where C = C (n). 

PROOF. The function u (t, .) = Pd satisfies the hypotheses of Theorem 
15.1. Since lIu (t,') IIL2 ~ IIfllp, we obtain 

rt r u~dv ~ tllflli2 
J o JB(x,R) 

whence 
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Applyin~ the same argument to u = - Pt!, we obtain a similar estimate for 
!Pt! (x)! . Finally, replacing x by any point x, E B (x, R/2) and applying 
the above estimates in the ball B (x', R/2) instead of B (x, R), we obtain 
(15.22). 0 

Now we can improve the inequality (7.18) of Theorem 7.6 as follows. 

COROLLARY 15.7. For any weighted manifold M of dimension n and for 
any set K <s M, there exists a constant C such that, for any f E L2 (M) 
and all t > 0, 

(15.23) 

PROOF. Let r (x) be the function from Theorem 15.4. Then any ball 
B (x, r (x») satisfies the hypotheses of Theorem 15.1, and we obtain by Corol­
lary 15.6 that, for all x E M, 

1Pt! (x)! ~ C (r (x)-n/2 + c n/4
) IIfllL2, 

where C = C (n). Replacing r (x) by infKr (x), which is positive by the 
continuity of r (x), we obtain (15.23). 0 

15.3. The weighted L2-norm of heat kernel 

For any D > 0, define the function ED (t, x) on lR+ x M by 

ED (t,x) = Lp; (x,y)exp (d2 

~~y») dp,(y). (15.24) 

This quantity may take value 00. For example, in lRn we have ED (t, x) = 00 

for any D ~ 2. 
If D 2: 2 then the function 

t(t )=d
2

(x,y) 
.. ,y Dt 

satisfies (12.1). It follows from Theorem 12.1 that ED (t, x) is a non-increasing 
function of t > 0, because we can represent it in the form 

ED (t, x) = 1M (Pt _ s f)2 eW'·)dp, 

where ° < s < t and f = Ps (x,·) E L2. Furthermore, by (12.3) 

ED (t,x) ~ ED (to, x) e-2)..min(M)(t-to) , (15.25) 

for all t 2: to > O. 
One can naturally extend the definition (15.24) to D = 00 by setting 

Eoo (t,x) = Lp; (x,y) dp, (y) = P2t (x,x). 

Then (15.25) remains true also for D = 00 (cf. (10.84) and Exercise 10.29). 
Observe also that ED (t, x) is non-increasing in D E (0, +00]. 
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THEOREM 15.8. Let B (x, r) be a relatively compact ball on a weighted 
manifold M. Assume that the following Faber-Krahn inequality holds: for 
any open set U c B(x, r), 

(15.26) 

where a, n are positive constants. Then, for any t > 0 and DE (2, +ooJ 
C (a<5)-n/2 

En (t, x) S min(t, r 2)n/2' (15.27) 

where C = C(n) and <5 = min (D - 2,1). 

By Theorem 15.4, for any x E M there exists r > 0 that satisfies the 
hypotheses of Theorem 15.8 with n = dimM. In particular, this implies the 
following statement: 

COROLLARY 15.9. On any weighted manifold M and for all t > 0, x E 
M, and D > 2, 

En (t, x) < 00. 

The main part of the proof of Theorem 15.8 is contained in the following 
lemma. 

LEMMA 15.10. Under the conditions of Theorem 15.8, set 

p (y) = (d (x, y) - r)+ . 

Then, fOT- all t > 0, 

r (p2 (y)) Ca-n
/
2 

JM P; (x,y)exp -u dJ.L(Y) S min (t,r2t/2 , 

where C = C (n). 

(15.28) 

PROOF. By Theorem 12.1, the left hand side of (15.28) is a non-increasing 
function of t > o. Hence, it suffices to prove (15.28) for t S r2. Fix a func­
tion f E L2 (M) and set u = Pd. Applying the mean value inequality of 
Theorem 15.1 in cylinder [t/2, tJ x B (x, r), we obtain 

t 

Ca-
n

/
2 J J u 2(t,x) S t1+n /2 u 2 (s,y)dJ.L(y)ds. (15.29) 

o B(x,r) 

Consider the function 
p2 (y) 

~ (s, y) = 2 (s - t)' 

defined for 0 S s < t and y E M. Since function ~ vanishes in B (x, r), we 
can rewrite (15.29) as follows: 

2 a 2 e C -n/2 It I 
u (t, x) S t1+n / 2 u e dJ.Lds. (15.30) 

o B(x,r) 



15.3. THE WEIGHTED L2_NORM OF HEAT KERNEL 401 

Function e obviously satisfies the condition (12.1) of Theorem 12.1. Hence, 
the function 

J (s) := iM u2 (s,·) eeCs'·)df.L 

is non-increasing in s E [0, t), in particular, J (s) ::; J (0) for all s E [0, t). It 
follows from (15.30) that 

u2 (t, x) ::; C (at)-n/2 J (0) . 

Since 

we obtain 

u2(t,x)::; C(at)-n/2 iMj2exp (-~:) df.L. (15.31) 

Now choose function j as follows 

j (y) = pt(x, y) exp (p22~Y)) rp (y), 

. where rp is any cutoff function. Applying (15.31) with this function j, we 
obtain 

_ (iMP; (x,·) exp (~:) rpdf.L) 2 ::; C (at)-n/2 Lp; (x,·) exp (~:) rp2df.L. 

Using the inequality rp2 ::; rp and cancelling by the integral in the right hand 
side, we obtain 

L p; (x, .) exp (~:) rpdf.L ::; C (at) -n/2 , 

whence (15.28) follows. o 
PROOF OF THEOREM 15.8. Since ED (t, x) is decreasing in D, it suffices 

to prove (15.27) for D ::; 3. Since ED (t, x) is decreasing in t, it suffices to 
prove (15.27) for t ::; r2. 

Set 8 = D - 2 and observe that ...;Tt, ::; r, so that the Faber-Krahn 
inequality (15.26) holds in B (x, ...;Tt,). Applying Lemma 15.10 with ...;Tt, in 
place of r, we obtain 

{ ((d(x,y)-...;Tt,r) Ca-n/2 
JMP;(x,y)exp 2t + df.L(Y)::; (8tt/2' (15.32) 

Using the elementary inequality 

a2 b2 (a+b)2 
T + -; ;:: -'--t +---'s-' 
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which is true for real a, b and positive t, s, we obtain 

(d(x,y) - vTt): (vTtr > d2 (x,y) 

2t + 8t - (2 + 8) t' 

whence 

(d (x, y) - vTt): > d2 (x, y) -l. 
2t - Dt 

Substituting into (15.32), we obtain (15.27). o 

15.4. Faber-Krahn inequality in unions of balls 

In this Section we demonstrate the heat kernel techniques for merging the 
Faber-Krahn inequalities, that is, obtaining the Faber-Krahn inequality in a 
union n of a family of balls assuming that it holds in each ball separately. At 
the same token, we obtain non-trivial lower estimate for higher eigenvalues, 
similarly to Corollary 14.26 but in a different setting. 

THEOREM 15.11. Let a, n, r be positive numbers and {xihEI be a family 
of points on M where I is any index set. Assume that, for any i E I the ball 
B (Xi, r) is relatively compact and, for any open set U c B (Xi, r), 

Al (U) 2:: aJ1. (U)-2/n . (15.33) 

Let n be the union of all the balls B(Xi' ~r), i E I. Then, for any open set 
U c n with finite measure (see Fig. 15.2), the spectrum of .cY is discrete 
and 

( 
k )2/n 

Ak (U) 2:: ca J1. (U) 

for any k such that 

k 2:: Ca-n/2r-nJ1. (U), 

where c, C are positive constants depending only on n. In particular, 

J1. (U) ~ C- I an/2rn ==} Al (U) 2:: caJ1. (U)-2/n 

PROOF. If x E n then x E B(Xi' ~r) for some i E I. Therefore, 
B(x, !r) c B(Xi' r) which implies that the Faber-Krahn inequality (15.33) 
holds for any open set U c B(x, ~r). By Theorem 15.8 with D = 00, we 
obtain 

Ca-n/ 2 

pt{x,x) ~ . ( 2)n/2' 
mm t,r 

(15.34) 

Fix now an open set U c n with finite measure. It follows from (15.34) that 

suPPY (x,x) ~ Ca-n/2 (rn/2 +r-n) = _1_ 
xEU l' (t) 

.'. 
" 
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FIGURE 15.2. Set U 

where 
C-1an / 2 

"I (t) = t-n / 2 + r-n . 

By Corollary 14.26, the spectrum of cY is discrete and 

Ak (U) 2: cA (J1, ~U)) , 
- where c = c (n) > 0 and A is the L-transform of ,. 

If v = "I (t) for some t ~ r2 then 

and by (14.27) 

(att/2 

v 2: 2C ' 

"I' (t) n r n/ 2- 1 n -2/n 
A (v) = "I (t) = 2" t-n / 2 + r-n 2: 4t 2: cav , 

(15.35) 

where c = c (n) > O. The condition t ~ r2 is equivalent to "I (t) < 
(2C)-1 an / 2rn. Hence, we conclude that 

v ~ (2C) -1 an/ 2rn :::=:::} A (v) 2: cav -2/n, 

which together with (15.35) finishes the proof. 0 

COROLLARY 15.12. On any connected weighted manifold M and for any 
relatively compact open set n eM, such that M \ n is non-empty, there 
exists a > 0 such for any open subset U c n and any kEN, 

Ak (U) 2: a (J1, tU) ) 2/n , (15.36) 

where n = dimM. In particular, the Faber-Krahn inequality holds in n with 
function A (v) = av-2/ n . 
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PROOF. Since the function r (x) from Theorem 15.15 is continuous, we 
have 

R := inf r (x) > O. 
xEn 

By Theorem 15.15, the family of ball {B (x, R)}xEn satisfies the hypotheses 
of Theorem 15.11 with n = dimM. By Theorem 15.11, we obtain 

Ak (U) 2: Co C.t ~) ) 2/n , 

where CO = CO (n) > 0, provided k satisfies k 2: CJ.t (U), where C = C (n, 0). 
Since M\O is non-empty, by Theorem 10.22 we have Al (0) > O. There­

fore, if k ~ C J.t (U) then 

Ak (U) 2: Al (0) 2: Al (0) ( C-1 J.t tU») 2/n = Cl (J.t tU») 2/n 

where Cl = Al (0) C-2/ n . Hence, (15.36) holds with a = min (CO, Cl) for all 
k2:l. 0 

Exercises. 

15.2. Prove that the Faber-Krahn inequality holds on a weighted n-dimensional manifold 
M with function 

A (v) = cv ,v Vo, 
{ 

-2/n < 
0, v ~ Vo, 

where c, Va are some positive constants, provided M belongs to one of the following classes: 

(a) M is COIJlpactj 
(b) M has bounded geometry (see Example 11.12). 

REMARK. If M is non-compact and has bounded geometry then the Faber-Krahn function 
A can be improved by setting A (v) = cv-2 for v ~ Va - see [148J. 

15.5. Off-diagonal upper bounds 

Our main result in this section is Theorem 15.14 that provides Gaussian 
upper bounds of the heat kernel assuming the validity of the Faber-Krahn 
inequalities in some balls. It is preceded by a lemma showing how the 
weighted norm En (t, x), defined by (15.24), can be used to obtain pointwise 
upper bounds of the heat kernel. 

LEMMA 15.13. For any weighted manifold M, for any D > 0 and all 
x, y E M, t 2: to > 0, the following inequality is true: 

Pt(x, y) ~ J En(!to, x)En(~to, y) exp ( - :~t - A (t - to») , (15.37) 

where p = d(x,y) and A = Amin(M). 

In particular, setting t = to we obtain 

/ 1 1 ( d
2(X,y») 

Pt(x, y) ~ V En(2t , x)En(-2 t ,y) exp - 2Dt . (15.38) 
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PROOF. For any points x, y, Z E M, let us denote a = dey, z), /3 = 
d(x,z) and'Y = d(x,y) (see Fig. 15.3). By the triangle inequality, we have 
a 2 + /32 2: ~'Y2. 

FIGURE 15.3. Distances a, /3, 'Y 

Applying the semigroup identity (7.51), we obtain 

Pt(x, y) = 1M Pt/2(X, Z)Pt/2(y, z)dJ.L(z) 

r (32 ",2 ~ 
< J M Pt/2(X, z.)e Dt Pt/2(y, z)e Dt e- 2DtdJ.L(z) 

z 

< (!M P;/2(x,z)e¥:dJ.L(Z») ~ (!M P;/2(y,z)/E: dJ.L(Z») ~ e- 2'£t 

/ (1 ) (1 ) (d2
(X'Y») - VED "2t ,x ED "2t ,y exp - 2Dt ' 

which proves (15.38). Combining (15.38) with (15.25), we obtain (15.37). 
o 

THEOREM 15.14. Let M be a weighted manifold and let {B (Xi, ri)}iEI 
be a family of relatively compact balls in M, where I is an arbitrary index 
set. Assume that, for any i E I, the Faber-Krahn inequality holds 

(15.39) 

for any open set U c B (Xi, ri), where ai > 0. Let n be the union of all the 
balls B(Xi' ~ri)' i E I. Then, for all x, yEn and t 2: to > 0, 

C (n) (1 + ~) n/2 exp ( -ft - A (t - to») 
Pt(x, y) ~ n/4' (15.40) 

(aiaj min(to, rn min (to , rJ») 
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where p = d(x,y), i and j are the indices such that x E B(xi,~ri) and 
y E B(xj, ~rj), and A = Amin (M). 

PROOF. If x E B(Xi' ~ri) then B(x, ~ri) C B (Xi, ri) so that the Faber­
Krahn inequality (15.39) holds for any open set U c B(x, ~ri)' Applying 
Theorem 15.8, we obtain, for all t > 0 and D > 2, 

C (aio)-n/2 
ED (t, x) ~ . ( ) /2' mIn t,ri n 

Using a similar inequality for ED (t, V), we obtain by (15.37) 

Co-n/2 exp ( -~ - Amin(M) (t - to») 
Pt(x, y) ~ n/4 . 

(aiaj min(to, r;) min(to, TJ») 
Setting here 

0= (1 + ~2)-1 
and, consequently, D = 2 + 0, we obtain that 

p2 p2 0 p2 
4t - 2Dt = 4D t < 1, 

(15.41) 

(15.42) 

2 2 
so that the term rfiH in (15.41) can be replaced by ft. Substituting (15.42) 
into (15.41), we obtain (15.40). 0 

COROLLARY 15.15. On any weighted manifold M there is a continuous 
function r (x) > 0 such that, for all x, y E M and t ~ to > 0, 

C (1 + e;) n/2 exp ( - ft - A (t - to») 

Pt(x, y) ~ . ( ()2) /4 . ( ()2) /4 ' (15.43) mm to, T X n mm to, r y n 

where n = dimM, p = d (x, V), A = Amin (M), and C = C (n). 

PROOF. Let r (x) be the function from Theorem 15.4. Then the family 
{B (x, r (x»}xEM of balls satisfies the hypotheses of Theorem 15.14, and 
(15.43) follows from (15.40). 0 

COROLLARY 15.16. For any weighted manifold, and for all x, y E M, 

limsup4tlogpt(x,y) ~ -d2 (x,y). (15.44) 
t--+O+ 

PROOF. Indeed, setting in (15.43) t = to < min (r (x), r (y», we obtain 

t log Pt (x, y) ~ t log ( crn/2) + tlog (1 + ~2) n/2 _ : . 

Letting t 4- 0, we obtain (15.44). o 
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In fact, the matching lower bound in (15.44) is also true. More precisely, 
on any weighted manifold the following asymptotic takes place: 

lim 4t logpt(x, y) = -d2 (x, y). (15.45) 
t---7O+ 

2 
Hence, the term ~ in (15.43) is sharp. Note also that if Amin (M) > 0 then 
the term Amin (M) t in (15.43) gives a sharp exponential rate of decay of 

Pt (x, y) as t -t' 00 - see Theorem 10.24. The term (1 + e;) n/2 in (15.43) 

is almost sharp: as it was shown in [277], on n-dimensional sphere the 
following asymptotic is true 

Pt(x,y) rv t~2 (~2) n/2-1 exp (_~:) , 
provided x and yare the conjugate points and t -t O. 

COROLLARY 15.17. Let M be a complete weighted manifold of dimension 
n. Then the following conditions are equivalent: 

(a) The Faber-Krahn inequality holds on M with function A (v) = 
c:u-2/ n for some positive constant c. 

(b) The heat kernel on M satisfies for all x, y E M and t ~ to > 0 the 
estimate 

Pt(x,y) OS; t~2 (1+ ~r2 exp (-~ -A(t-to)) , (15.46) 

where p = d (x, y), A = Amin (M), and C is a positive constant. 
( c) The heat kernel on M satisfies the estimate 

pdx, x) ::; crn
/

2 (15.47) 

for all x E M, t > 0, and for some positive constant C. 

PROOF. The implication (a) ::::} (b) follows from Theorem 15.14 by tak­
ing ri = rj = 0 (by the completeness of M, all balls B (x, 0) are relatively 
compact). The implication (b) ::::} (c) is trivial, and (c) ::::} (a) is true by The­
orem 14.20 (or Corollary 14.26). 0 

Sometimes it is convenient to use (15.46) in the following form: 

Pt(x,y) OS; min(~T)"/2 (1+ ~r/2 exp (-~ - A(t-T)+) , (15.48) 

for all t, T > 0, which is obtained from (15.46) by setting to = min (t, T). 
The statement of Corollary 15.17 remains true without assuming the 

completeness of M. Indeed, the only place where the completeness was 
used is (a) ::::} (b), and this can be proved by a different method without 
completeness - see Exercise 16.4. 
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Examples of manifolds satisfying (a) were mentioned in Remark 14.24. 
Hence, on such manifolds, the heat kernel satisfies the estimates (15.46) and 
(15.47). 

Observe that, under the conditions of Corollary 15.17, the heat kernel 
satisfies also the following estimate, for any c > 0 and all x, y E M, t > 0: 

Pt(x, y) ~ crn
/

2 
exp ( - (4 :c) t) , (15.49) 

where the constant C depends on c. Indeed, this follows from (15.46) by 
setting to = t and then using the inequality 

(1 + et/2 
exp ( -~) ~ Ce,n exp ( - 4! c) , (15.50) 

which is true for all e 2: O. 

COROLLARY 15.18. Let (M, g,J..L) be a complete weighted manifold whose 
heat kernel satisfies any of the equivalent upper bounds (15.46), (15.47), 
(15.49). If a weighted manifold (M, g, 'ji) is quasi-isometric to (M, g,J..L) 
then the heat kernel on (M, g, Ji) satisfies all the estimates (15.46), (15.47), 
(15.49). 

PROOF. Thanks to Corollary 15.17, it suffices to prove that the Faber­
Krahn inequality with function A (v) = cv-2/ n is stable under quasi-isometry. 
For simplicity of notation, let us identify M and M as smooth manifolds. It 
follows from_Exercise 10.7 or 3.44 that, for any open set U c M, 

Amin (U) =:: );min (U) , 

where Amin (U) and );min (U) are the bottoms of the spectrum of the Dirichlet 
Laplacians in U on the manifolds (M, g, J..L) and (M, g, Ji) respectively. By 
Exercise 3.44, we have also 

J..L (U) =:: Ji (U) . 

Hence, the Faber-Krahn inequality 

Amin (U) 2: CJ..L (U)-2/n 

implies 
);min (U) 2: CJ..L (U) -2/n , 

which was to be proved. o 
Exercises. 
In the following exercises, we use the notation p = d (x, y). 

15.3. Prove that, on any weighted manifold M there is a positive continuous function 
F (x, s) on M x 1R+, which is monotone increasing in s and such that the heat kernel on 
M satisfies the following estimate 

C (1 + 4 r/2 

( p2 ) 
Pt(X,y)::; ( .1+\1/2 ( .1+\1/2 exp - 4t ' (15.51) 

F x, vt, F y, vt, 
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for all x,y E M and t > O,where n = dimM and C = C(n) (cf. Exercise 16.3). 

15.4. Prove that if M has bounded geometry then, for some constant e, 

C (1 + 4-r/2 

(p2 ) 
Pt(x, y)::; min (1, t)"'/2 exp - 4t ' 

for all x, y E M and t > O. 

(15.52) 

15.5. Under the hypotheses of Corollary 15.17, assume in addition that n > 2 and 

J1- (B (x, r» ::; er'" 

for all r > O. Prove that each of the conditions (a) - (c) is equivalent to the following 
estimate of the Green function: 

g(x,y)::; Cd(x,y)2-n, 

for all distinct x, y EM. 
REMARK. Note for comparison that the Faber-Krahn inequality of Corollary 15.17 implies 
J1- (B (x, r») ~ const rn - see Exercise 14.5. 

15.6. Under conditions of Corollary 15.17, let n ~ 2 and A := Amin (M) > O. Prove that, 
for any c E (0,1), the Green function of M satisfies the estimate 

9 (x y) < Ce -(l-e)v'Ap { p(2-n, ) n> 2, (15.53) 
, - 1 + log+ ~ , n = 2, 

for all x # y, where C = C (n, c, A, c). 

15.7. Let M be an arbitrary weighted manifold of dimension n ~ 2. Prove that if the 
Green function of M is finite then, for any x E M and for all y close enough to x, 

9 (x, y) ::; C {i:;i: ~ ~ ~: (15.54) 

where C = C (n). 

15.6. Relative Faber-Krahn inequality and Li-Yau upper bounds 

DEFINITION 15.19. We say that a weighted manifold M admits the rel­
ative Faber-Krahn inequality if there exist positive constants b and v such 
that, for any ball B(x, r) C M and for any relatively compact open set 
U C B(x,r), 

>. (U) > ~ (J.L(B(X,r)))2/V 
1 - r2 J.L(U) (15.55) 

In ]Rn (15.55) holds with v = n, because it amounts to (14.5). It is 
possible to prove that the relative Faber-Krahn inequality holds on any 
complete non-compact manifold of non-negative Ricci curvature - see the 
Notes at the end of this Chapter for bibliographic references. 

DEFINITION 15.20. 'We say that the measure J.L on M is doubling if the 
volume function 

V(x, r) := J.L (B (x, r)) 
satisfies the inequality 

V(x, 2r) ~ CV(x, r), (15.56) 
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for some constant C and for all x E M and r > o. 
If (15.56) holds then one also says that the manifold M satisfies the 

doubling volume property. 

Now we can state and prove the main theorem of this section. 

THEOREM 15.21. Let (M, g, p,) be a connected, complete, non-compact 
manifold. Then the following conditions are equivalent: 

(a) M admits the relative Faber-Krahn inequality (15.55). 
(b) The measure p, is doubling and the heat kernel satisfies the upper 

bound 

C (1 + ~ r /2 ( p2) 
Pt (x,y) ~ ( fi.)1/2 ( .1+1 1/ 2 exp - 4t ' (15.57) 

V x,vt V y, vt) 

for all for all x, y EM, t > 0, and for some positive constants C, v, 
where p = d (x, y). 

(c) The measure p, is doubling and the heat kernel satisfies the inequal­
ity 

C 
Pt(x,x)~ (.1+'1' 

V x,vt) 
(15.58) 

for all for all x E M, t> 0, and for some constant C. 

REMARK 15.22. For the implication (a) =? (b), the value of v in (15.57) 
is the same as in (15.55). In this case, the estimate (15.57) can be slightly 
improved by replacing v /2 by (v - 1) /2 - see Exercise 15.9. 

REMARK 15.23. As we will see later (cf. Corollary 16.7), under any of 
the conditions (a) - (c) of Theorem 15.21 we have also the matching lower 
bound 

c 
pt{x, x) 2': ( .1+1' 

V x, vt) 

for all x E M, t> 0 and for some constant c> O. 

PROOF. (a) ~ (b) ByDefinition15.19,wehave,foranyballB(x,r) C 

M and any relatively compact open set U c B (x, r), 

(15.59) 

where 

a (x, r) = ~ Vex, r)2/1l. (15.60) 
r 

Applying Theorem 15.14 with the family of balls {B (x, r)}XEM' we obtain 
that, for all x, y E M and r, t > 0, 

C (1 + ~ r /2 ( p2) 
Pt(x, y) ~ /4 exp -- . 

(a (x, r) a (y, r) min(t, r2) min(t, r2)t 4t 
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Note that r is arbitrary here. Choosing r = -It and substituting a from 
(15.60) we obtain (15.57). An alternative proof of this part will be given in 
Section 16.2. 

By Exercise 14.5, the Faber-Krahn inequality (15.59) in the ball B (x, R) 
implies that, for any r :s: R. 

j..L(B(x,r)) 2: ca(x,Ry-'/2 r lo', 

where c = c (v) > O. Substituting a (x, R) from (15.60), we obtain 

V (x,r) 2: c' (~r V (x,R) , 

where the doubling property follows. 
(b) =} (c) Trivial. 

(15.61) 

(c) =} (a) It follows easily from the volume doubling property (15.56) 
that there exists v > 0 such that 

V (x, R) < C (R) v (15.62) 
V(x,r) - r ' 

for all x E M and 0 < r :s: R. Fix a ball n = B (x,r) and consider an open 
set U en. Then, by (14.58) and (15.58), 

e-A1 (U)t :s: 1 pf (y, y) df-L (y) :s: c r dJ-l (y) . (15.63) 
u Ju V (y, Vi) 

For any y E U and t :s: r2, we have by (15.62) 

V (x, r) < V (y, 2r) < C (.!.-)Io' 
V (y, -It) - V (y, v't) - -It 

Therefore, 
r dj..L(Y) < j..L(U) C (~)V 

Ju V (y, v't) - V (x, r) -It (15.64) 

Now choose t from the condition 

(.!.-)Io' =cV(x,r) 
-It j..L (U) 

(15.65) 

for some c E (0,1). Since we need to have t :s: r2, we have to assume for a 
while that 

J-l (U) :s: cV (x, r) . 

If so then we obtain from (15.63), (15.64), and (15.65) that 

1 1 
Al (U) 2: t log C2c' 

Choosing £ = e-1C-2 and evaluating t from (15.65), we obtain 

',\ (U»!(v(x,r))2/1o' 
1 - r2 j..L (U) 

where b> 0 is a positive constant, which was to be proved. 

(15.66) 

(15.67) 
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We are left to extend (15.67) to any U c B (x, r) without the restriction 
(15.66). For that, we will use the following fact. 

CLAIM. If M is connected, complete, non-compact and satisfies the doubling 
volume properly then there are positive numbers c, v' such that 

V(x,R) >C(R)VI 
V(x,r) - r 

(15.68) 

for all x E M and 0 < r ~ R. 

The inequality (15.68) is called the reverse volume doubling. Assume 
first R = 2r. The connectedness of M implies that there is a point y E M 
such that d (x, y) = ~r. Then B (y, !r) ~ B (x, 2r) \ B (x, r), which implies 

By (15.56), we have 

whence 

1 
V (x, 2r) ~ V (x, r) + V(y, 2"r). 

V(x,r) < V(y,4r) < C3 

V(y, !r) - V (y, !r) - , 

, V (x, 2r) ~ (1 + C-3 ) V (x, r) . 

Iterating this inequality, we obtain (15.68) with v' = 10g2 (1 + C-3 ). 

Returning to the proof of (15.67), find R > r so big that 

V(x,R) > ~ 
V(x,r) -c' 

were c was chosen above. Due to (15.68), we can take R in the form R = Ar, 
where A is a constant, depending on the other constants in question. Then 
U c B (x,R) and 

J.t (U) ~ cV (x, R) , 

which implies by the first part of the proof that 

A (U) > ~ (V(X,R»)2/V > _b_ (v(x,r»)2/V 
1 - R2 J.t (U) - (Ar)2 J.t (U) , 

which was to be proved. 

Using (15.61), we obtain, for p = d (x, y), 

V (x,Vt) < V(y,0+p) <c(0+P)V <C(I+P2)v/2 
V (y, Vt) - V (y, Vt) - 0 - t 

o 

Replacing V (y, Vt) in (15.57) according to the above estimate, we obtain 

C ( 2)3V/4 ( 2) pt{x,~) ~ V (x, 0) 1 + ~ exp - ~t (15.69) 
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( 

2 )3V/4 
where C = C (b, v). Absorbing the term 1 + if in (15.69) into the 

exponential by means of the inequality (15.50), we obtain 

pt(x, y) ::; V (~Vi) exp ( - (4 ~2c) t) , . (15.70) 

where c > 0 is arbitrary and C = C (b, v, c). 
It follows from Theorem 15.21 that all the estimates (15.57), (15.58), 

(15.69), (15.70) are equivalent!, provided the measure p, is doubling. 

DEFINITION 15.24. Each of the equivalent estimates (15.57), (15.58), 
(15.69), (15.70) are referred to as the Li- Yau upper estimate of the heat 
kernel. 

COROLLARY 15.25. Assume that (M, g, p,) is connected, complete, non­
compact weighted manifold and measure p, be doubling. Let (M, g, ji) be 
another weighed manifold that is quasi-isometric to M. If the heat kernel 
on M admits the the Li- Yau upper estimate then so does the heat kernel 
on M. In other words, the Li- Yau upper estimates are stable under quasi­
isometry. 

Consequently, the Li-Yau upper estimate holds on manifolds that are 
quasi-isometric to complete non-compact manifolds of non-negative Ricci 
curvature. 

PROOF. In the view of Theorem 15.21, it suffices to prove that the rel­
ative Faber-Krahn inequality (15.55) is stable under quasi-isometry. Fo:. 
simplicity of notation, let us identify M and M as smooth manifolds. Let d 
be the geodesic distance of the metric g , B (x, r) be a metric ball of d. By 
Exercise 3.44, there is a constant K > 1 such that 

K-1d (x, y) ::; d(x, y) ::; K d (x, y) . 

Hence, any open set U c B (x, r) is also contained in B (x, K r ), and we 
obtain by the relative Faber-Krahn inequality on (M, g, p,) that 

_b _ (p, (B(x, Kr»)2/V 
Amin(U) ~ 2 ) (Kr) p,(U 

> _b_ (P,(B(X, r») 2/v 

K2r2 p,(U) 

~ (ji(B(X, r») 2/v 

r2 f.£(U) 
(15.71) 

INote that the equivalence of (15.58) and (15.70) can be proved without the hypothesis 
of completeness - see Exercise 16.5. 
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Let 'Xmin (U) be the bottom of the spectrum of the Dirichlet Laplacian in 
U on the manifold (M,g,ji). By Exercise 10.7, we have that 'Xmin (U) ~ 
Amin (U), which together with (15.71) implies the relative Faber-Krahn in­
equality on (M, g, ji). 0 

Exercises. 

15.8. Let M be a complete manifold satisfying the relative Faber-Krahn inequality. Prove 
that the Green function 9 (x, y) is finite if and only if, for all x EM, 

/
"" rdr 

V(x,r) < 00. 

Prove also the estimate for all x, y E M: 

1"" rdr 
g(x,y) S C -V()' 

d(""y) x,r 

15.9. Under conditions of Theorem 15.21, prove that the relative Faber-Krahn inequality 
(15.55) implies the following enhanced version of (15.57): 

,,-1 

c(1+4)-r ( p2) 
Pt (x, y) S ( . fi\ 1/2 ( . fi\ 1/2 exp - 4t . (15.72) 

Vx,vt, Vy,yt) 

HINT. Use the mean-value inequality of Theorem 15.1 and (12.18). 

Notes 

The L2-mean value inequality of Section 15.1 was introduced and proved by J.Moser 
[279), [280) for solutions of uniformly elliptic and parabolic equations in R". Moser used 
for the proof his celebrated iteration techniques when one estimates the Loo-norm of a 
solution via its L2-norm in a larger ball my means of a series of iterations through LP­
norms with p ~ 00. A possibility to increase the exponent of P comes from the Sobolev 
inequality. 

Here we use a different approach, which goes back to de Giorgi and employs the 
Faber-Krahn inequality in the level sets of a solution. We follow the account of this 
method in [145J, which in turn is based on [241) and [242). A more general mean value 
inequality under the Faber-Krahn inequality with an arbitrary function A (v) was proved 
in [145) and [146). See also [105) for extension of the mean value inequality to non-linear 
operators. 

The use of the weighted L2-norm of the heat kernel in conjunction with the mean 
value inequality was introduced by Aronson[9J, [10) in the context of parabolic equations 
in Rn. A good account of Aronson's estimates of the heat kernel as well as of the Har­
nack inequality of Moser can be found in [306), [333). The relation between the mean 
value inequality and the heat kernel upper bound was extensively studied in [255). An 
alternative method of obtaining Gaussian upper bounds can be found [94], [95). 

Our treatment of Gaussian upper bounds follows [141) and (146), where all the results 
of Sections 15.3 and 15.5 were obtained. Let us emphasize that Theorem 15.14, which 
provides the main Gaussian upper bound of the heat kernel, applies even when the Faber­
Krahn inequality is known locally, in some balls. The output of this theorem varies 
depending on how much is known about the Faber-Krahn properties of the manifold in 
question. 

The short time asymptotics (15.45) of logpt (x, y) was proved by Varadhan [351) (see 
also [296], [326)). 
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The relative Faber-Krahn inequality (15.55) was introduced in [145], where it was 
shown that (15.55) holds on complete non-compact Riemannian manifolds of non-negative 
Ricci curvature (see (128), [154]' (325) for alternative proofs). The equivalence of (15.55) 
and the Li-Yau upper estimate was proved in [146]. The two-sided Li-Yau estimates for 
the heat kernel on complete manifolds of non-negative Ricci curvature was first proved by 
P.Li and S.-T. Yau [258], using the gradient estimates. 

Let us briefly outline an alternative approach to obtaining the Li-Yau upper bound 
from the relative Faber-Krahn inequality (Theorem 15.21), which is due to [81], (154) and 
which avoids using Theorem 15.14. 

Stepl. Observe that under the relative Faber-Krahn inequality, the L2-mean value 
inequality Theorem 15.1 becomes 

2 ) CT Ii 2 u+(T,x :::; ,.IT u+dJ.tdt, 
J.t(B(x, T» c 

provided R = ,.IT, which follows from (15.3) by substitution 

a = ~2 J.t (B (x, R»2/v . 

(15.73) 

Step 2. The L2-mean value inequality (15.73) together with the doubling volume 
property (which is also a consequence of the relative Faber-Krahn inequality - see the 
proof of Theorem 15.21) implies its L1-counterpart - see [248], [255]. 

Step 3. Combining the Ll-mean value inequality with the Davies-Gaffney inequality 
(12.17) yields (15.57). 
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Denoting the integral in (7.88) by I and using (7.87) and the fundamental theorem of 
calculus, we obtain, for any cp E 11., 

whence (7.88) follows. 

(I, cp) loT (h.(1 (t)) ,cp)''/ (t) dt 

loT 8i (h(·),cp)ll'(t)'Y'(t)dt 

loT ! (h (t (t)) ,cp) dt 

(h(x) ,cp) - (h (xo) , cp), 

Now fix a point x E 0 and choose e > ° so that the cube (x - e, x + e)n lies in 
O. For simplicity of notation, assume that the origin ° of Rn is contained in this cube, 
and consider the polygonal path I connecting ° and x inside the cube, whose consecutive 
vertices are as follows: 

(0,0, ... ,0,0), (x1,0, ... ,0,0), ... , (X
1
,X

2
, ••• ,X

n- 1 ,0) , (xl,x2
, ••• ,xn- 1 ,xn

). 

By (7.88), we have 

h (x) = h (0) + loT hi (t (t))':'/ (t) dt. (7.89) 

The integral in (7.89) splits into the sum of n integral over the legs of I, and only the 
last one depends on xn. Hence, to differentiate (7.89) in x n

, it suffices to differentiate the 
integral over the last leg of f. Parametrizing this leg by 

I(t) = (X
1
,X

2
, ... ,X

n -l,t) , O~t~xn, 
we obtain 

8nh (x) = 8~n lox" h.(1 (t)) ,:/ (t) dt = 8~n Io
xn 

hn (Xl, ... , xn-l, t) dt = hn (x) , 

which was to be proved. o 

SECOND PROOF OF THEOREM 7.20. Let 0 be a chart on the manifold R+ x M, and 
consider Pt,x as a mapping 0 ---+ L2 (M). By Theorem 7.10, for any f E L2 (M), the 
function Pt! (x) = (Pt,x, fh2 is COO-smooth in t, x. Hence, the mapping Pt,x is weakly 
Coo. By Lemma 7.21, the mapping Pt,x is strongly Coo. Let 0' be another chart on 
R+ x M which will be the range of the variables s, y. Since Ps,y is also strongly Coo as a 
mapping from 0' ---+ L2 (M), we obtain by (7.56) 

PHs (x, y) = (Pt,x,Ps,yh2 = Coo (0 x 0') , 
which implies that Pt (x,y) is COO-smooth in t,x,Y. 

Let DOl. be a partial differential operator in variables (t, x) E O. By (7.84), we have, 
for any f E L2 (M), 

D'" (pt,x,!) = (D"'pt,x,!) , (7.90) 

where D"'pt,x is understood as the Gateaux derivative. Since the left hand sides of (7.82) 
and (7.90) coincide, so do the right hand sides, whence we obtain by Lemma 3.13 

DOtpt (x,·) = DOtpt.x a.e. 

Consequently, DOtpt (x,·) E L2 (M) and, for any f E L2 (M), 

DOt 1M Pt (x, y) f (y) dp, = DOt (Pt,x, f) = (DCCpt.x, f) = 1M DOI.pt{x, y) f (y) dp" 

which finishes the proof. o 



CHAPTER 16 

Pointwise Gaussian estimates II 

In this Chapter we describe another approach to the off-diagonal upper 
bounds of the heat kernel. This method allows to deduce the Gaussian 
estimates for pt( x, y) directly from the estimates of Pt (x, x) and pt{y, y) 
and does not require the completeness of the manifold in question. 

16.1. The weighted L2-norm of Ptf 

DEFINITION 16.1. We say that a function, defined on an interval (0, T) 
is regular if, is an increasing positive function such that, for some A ~ 1, 
a > 1 and all 0 < tl < t2 < T / a, 

,(atl) < A ,(at2) . (16.1) 
,(tl) - ,(t2) 

Here are two simple situations when (16.1) holds: 

• ,(t) satisfies the doubling condition, that is, for some A > 1, and 
all 0 < t < T/2 

,(2t) ~ A,(t). 

Then (16.1) holds with a = 2 because 

,(2tl) < A < A ,(2t2) . 
,(h) - - ,(t2) 

(16.2) 

• ,(t) has at least a polynomial growth in the sense that, for some 
a> 1, the function ,(at)/,(t) is increasing in t. Then (16.1) holds 
for A = 1. 

Let T = +00 and, be differentiable. Set leT) := log,(eT
) and observe 

that 1 is defined on (-00, +(0). We claim that, is regular provided one of 
the following two conditions holds: 

• l' is uniformly bounded (for example, this is the case when ,(t) = tN 

or ,(t) = logN (1 + t) where N > 0); 
• l' is monotone increasing (for example, ,(t) = exp(tN)). 

On the other hand, (16.1) fails if l' = exp (-T) (which is unbounded as 
r -t -(0), that is ,(t) = exp (_C1). Also, (16.1) may fail if l' is oscillating. 

THEOREM 16.2. Let (lvI, g, p,) be a weighted manifold and S C 1'.1 be a a 
non-empty measurable subset of JI. For any function f E L2(M) and t > 0 

417 
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and D > 0 set 

ED(t, f) = L (Pt!)2 exp (
d2bt)) dp,. (16.3) 

Assume that, for some f E L2 (8) and for all t > 0, 

IIPd"~ ::; -y~t)' (16.4) 

where -yet) is a regular function on (0, +00) in the sense of Definition 16.1. 
Then, for all D > 2 and t > 0, 

6A 
ED(t, f) ::; -y(ct) , (16.5) 

where c = c(a, D) > 0 and A, a are the constants from (16.1). 

PROOF. The proof will be split into four steps. 
Step 1. For any t > 0 and r > 0 define the following quantity 

Jr(t):= r (Pd)2 dp" 
is; 

where 8r is the open r-neighborhood of 8. By the inequality (12.11) of 
Theorem 12.3, we have, for all 0 < r < Rand 0 < t < T, 

1. (IT/)' d/L S 1, (lU)' d/L + exp ( ~~T-:' ~;) is. (Ptl)' d/L. 

By (16.4), we have 

r 2 1 i Sr (Pt!) dp,::; -y (t)' 

whence it follows that 

1 ((R-r)2) 
JR(T) ::; Jr(t) + -yet) exp - 2 (T - t) . (16.6) 

Step 2. Let us prove that 

3A (r2) 
Jr(t) ::; -yet/a) exp -eT ' (16.7) 

for some e = e(a) > O. Let {rk}~o and {tk}~O be two strictly decreasing 
sequences of positive reals such that 

ro = r, rk -l- 0, to = t, tk -l- 0 

as k --+ 00. By (16.6), we have, for any k ~ 1, 

1 ((rk- 1 - rk)2) 
Jrk _ 1 (tk-d ::; Jrk (tk) + -y(tk) exp 2(tk-1 - tk) . (16.8) 
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When k --+ 00 we obtain 

Jr,c (tk) = { (Ptk f)2 dJ1:5 { (PtJ)2 dJ1 --+ ( f 2dJ1 = 0, (16.9) 
JS~k Jsc Jsc 

where we have used the fact that Pd --+ fin L2(M) as t --+ 0+ (cf. Theorem 
4.9) and the hypothesis that f == 0 in se. 

Adding up the inequalities (16.8) for all k from 1 to 00 and using (16.9), 
we obtain 

~ 1 ((rk- 1 - rk)2) 
Jr(t) :5 L..J -(t ) exp - 2(t __ t) . 

k=l'"'( k k I k 

Let us specify the sequences {rk} and {td as follows: 

r / k rk = k ...p.-1 and tk = t a , 

where a is the constant from (16.1). For all k 2:: 1 we have 

r (a -l)t 
rk-1-rk=k(k+1) and tk-l- tk= ak ' 

whence 
(r r )2 ak r2 r2 k-l- k _ >c(k+1)-
2(tk-1 - tk) 2(a - 1)k2(k + 1)2 t - t 

where 
ak 

c = c(a) = ~{ 2(a _ 1)k2(k + 1)3 > O. 

By the regularity condition (16.1) we have 

'"'((tk-l) < A '"'((to) 
'"'((tk) - '"'((tl) , 

which implies 

where 

Consider the following two cases: 

(16.10) 

(16.11) 



420 16. POINTWISE GAUSSIAN ESTIMATES II 

(1) If cr; - L ~ 1 then 

(2) If c r
t
2 

- L < 1 then we estimate Jr(t) in a trivial way: 

whence 

< _1_ exp (1 + L _ c r2) = _e_A ,(to) exp (-c r2) 
,(t) t ~' ,(t) ,(tI) t 

< ,~1a) exp ( _crt
2

) • 

Hence, in the both cases we obtain (16.7). 

Step 3. Let us prove the inequality 

6A 
ED(t, f) ~ ,(t/a) 

under the additional restriction that 

where c was defined by (16.11) in the previous step. 

(16.12) 

(16.13) 

Set p(x) = d(x, S) and split the integral in the definition (16.3) of 
ED(t, f) into the ,series 

where r is a positive number to be chosen below. The integral over the set 
{p ~ r} is estimated using (16.4): 

~psr} (Ptf)2 exp (~2t) d/-L < exp (;2t ) 1M (Ptf)2d/-L 

< ,~t) exp (;:) . (16.15) 
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The k-th term in the sum in (16.14) is estimated by (16.7) as follows 

r (Pd)2 exp (t.-) dj.£ 
J {2k-1r<pS2kr } Dt 

< exp (4~2) he (Pd)2 dj.£ 
2k- 1r 

_ exp (4~2) J2k-l r (t) 

3A (4kr2 4k-1r2) < --exp ---c--
,(t/a) Dt t 

3A (4k-1r2) 
< ,(t/a) exp - Dt ' (16.16) 

where in the last line we have used (16.13). 
Let us choose r = #t. Then we obtain from (16.14), (16.15), and 

(16.16) 

3 '00 3A 3 + 3A ' 
ED(t, f) ~ ,(t) + tr ,(t/a) exp ( _4

k
-

1
) S; ,(t/a) ' 

whence (16.12) follows. 

Step 4. We are left to prove (16.5) in the case 

2 < D < Do := 5c-1. (16.17) 

By Theorem 12.1, we have for any s > 0 and all 0 < 7 < t 

1M (Pd)2 exp (2(:~ s») dj.£ S; 1M (Pr f)2 exp (2(:: s») dj.£. (16.18) 

Given t > 0 and D as in (16.17), let us choose the values of sand 7 so that 
the left hand side of (16.17) be equal to ED(t, I) whereas the right hand side 
be equal to EDo (7, f). In other words, s and 7 must satisfy the simultaneous 
equations' 

whence we obtain 

{ 
2(t+s)=Dt, 
2(7 + s) = D07, 

D-2 D-2 
s = --t and T = D t < t. 

2 0-2 

Hence, we can rewrite (16.18) in the form 

ED(t, I) S; EDo(7, I). 

By (16.12), we have 
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whence we conclude 
6A 

ED(t, J) ~ (D-2 a-It)' 
, Do-2 

thus finishing the proof of (16.5). 

16.2. Gaussian upper bounds of the heat kernel 

We will again use the notation 

ED(t, x) := 1M p;(x, y) exp (d2~; y)) dj.£(Y)· 

o 

THEOREM 16.3. If, for some x E M and all t > 0, 
1 

Pt(x, x) ~ ,(t) , (16.19) 

where, is a regular function on (0, +CX?y"then, for all D > 2 and t > 0, 

C 
ED(t, x) ~ ,(et) , (16.20) 

where C = 6A, c = c(a, D) > 0, and a, A are the constants from (16.1). 

PROOF. Let U be an open relatively compact neighborhood of the point 
x, and let cP be a cutoff function of {x} in U. For any s > ° define the 
function CPs on M by 

CPs(z) = Ps(x, z)cp (z) . 
Clearly, we have CPs ~ Ps(x,·) whence 

PtCPs ~ PtPs (x,·) = Pt+s(x,·) 

and 
2 2 2 1 

IIPtCPsib ~ IIpt+s(x, ')112 ~ Ilpt(x, ')112 = P2t(X, x) ::; ,(2t)' 

By Theorem 16.2, we conclude that, for any D > 2, 

r 2 (d2
(., U)) C 1M (PtCPs) exp Dt dj.£::; ,(ct)' (16.21) 

Fix y E M and observe that, by the definition of cps, 

Ptcp s (y) = 1M Pt (y, z) P s (x, z) cP (z) dj.£ (z) = Ps '!f;t (x) , 

where 
'!f;t(z) := Pt(Y, z)cp (z) 

Since function '!f;t (-) is continuous and bounded (cf. Exercise 7.27), we con­
clude by Theorem 7.16 that 

Ps'!f;t (x) -+ '!f;t (x) as s -+ 0, 

that is, 
PtCPs(Y) -+ Pt(x, y) as s -+ O. 
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Passing to the limit in (16.21) as s -+ 0, we obtain by Fatou's lemma 

f 2 (d2
(., U») C J M Pt (x, .) exp Dt dp, ~ ,( ct)" 

Finally, shrinking U to the point x, we obtain (16.20). o 
COROLLARY 16.4. Let,l and,2 be two regular functions on (0, +(0), 

and assume that, for two points x, y E M and all t > 0 

1 1 
Pt(x,x) ~ ,l(t) and Pt(Y,Y) ~ ,2(t)" (16.22) 

Then, for all D > 2 and t > 0, 

C ( d
2
(X,y)) 

Pt(x,y) ~ V,l(ct),2(ct) exp - 2Dt ' 

where C and c depend on the constants from the regularity condition, and c 
depends in addition on D. ,: 

PROOF. By Theorem 16.3, we obtain 

C C 
ED(t,X) ~ -( -) and ED(t,y) ~ -( -). ,I ct ,2 ct 

Substituting these inequalities into the estimate (15.38) of Lemma 15.13, we 
finish the proof. 0 

In particular, if , (t) is regular and 

for all x E M and t > 0 then 

1 
Pt(x,X)~,(t) 

C (d2
(x,y») 

Pt(x, y) ~ ,(ct) exp - 2Dt ' 

for all x, y E M and t > o. If the manifold M is complete and the function 
, is of the form, (t) = ctn / 2 then this was proved in Corollary 15.17. 

Exercises. 

16.1. Let for some x E M and all t E (0, T) 

1 
Pt(X, x) ~ 'Y(t)' (16.23) 

where T E (0, +00] and 'Y is a monotone incr~asing function on (0, T) satisfying the 
doubling property 

'Y(2t) ~ Ay(t), 

for some A ~ 1 and all t < T /2. Prove that, for all D > 2 and t > 0, 

C 
ED(t, x) ~ 'Y (t A T)' 

where C = C(A). 

(16.24) 

(16.25) 
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16.2. Using Exercise 16.1, give an alternative proof of Corollary 15.9: on any weighted 
manifold M, 

ED(t,X) < 00 

for all D > 2, x E M, t > 0. 

16.3. Using Lemma 15.13, prove that on any weighted manifold M, for any D > 2 there 
exists a function <.p(t, x) that is decreasing in t and such that the following inequality holds 

( 
d2(X,y) ) 

Pt(x, y) ::; <.p(t, x)<.p(t, y) exp -2Jjt - Amin (M) t , (16.26) 

for all X,y E M and t > ° (cf. Exercise 15.3). 

16.4. Assume that a weighted manifold M admits the Faber-Krahn inequality with a 
function A ELand let 'Y be its L-transform. Assume that 'Y is regular in the sense of 
Definition 16.1. Prove that, for any D > 2 and for all t > ° and x, y E M, 

C (d2
(x,y») 

Pt (x, y) ::; 'Y (ct) exp 2Dt ' 

where C depends on D and on the regularity const~ts of 'Y. 
'I 

16.5. Assume that the volume function V (x, r)-:= J1. (B (x, r» of a weighted manifold M 
is doubling and that the heat kernel of M admits the estimate . 

C 
pdx, x) ::; ( u)' V x,vt 

for all x E M and t E (0, T), where T E (0, +00] and C is a constant. Prove that 

( ) < C ( d
2

(X,y») 
Pt X,y - V (x, Vi) exp - 2Dt ' 

for all D > 2, x, y E M, t E (0, T) and some constant C. 
REMARK. If T = +00 and the manifold M is complete and non-compact, then this follows 
from Theorem 15.21. 

16.3. On-diagonal lower bounds 

Here we demonstrate the use of the quantity ED(t, x) for the proof of 
some lower bounds of the heat kernel in two settings. For any x E M and 
r> 0, set 

V(x,r) =J.L(B(x,r)). 
Observe that V (x, r) is positive and finite provided M is complete. 

THEOREM 16.5. Let M be a complete weighted manifold. Assume that, 
for some x E M and all r ;::: ro, 

Vex, r) ~ Cr1/, (16.27) 

where C, v, ro are positive constants. Then, for all t ~ to, 

1/4 
P (X x) > --:-;-~;£;::;=:;::=::=;­

t , - Vex, yfKtlogt) ' 

where K = K (x, ro, C, v) > 0 and to = max(r@,3). 

(16.28) 

Furthermore, for any K > v there exists large enough to such that 
(16.28) holds for all t ;::: to. 
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Of course, (16.28) implies 

Pt (x, x) ~ c (t log t) -11/2 . 

In general, one cannot get rid of logt here - see [169]. 

PROOF. For any r > 0, we obtain by the semigroup identity and the 
Cauchy-Schwarz inequality 

P2t(X, x) = r p;(x, .)dp, ~ r p;(x, ·)dp, 
JM JB(x,r) 

> V( 
1 

) ( r Pt(x, ')dP,) 

2 

x, r J B(x,r) 
(16.29) 

Since M is complete and the condition (16.27) obviously implies (11.22), we 
obtain by Theorem 11.8 that M is stochastically complete, that is 

fMPt(x, ·)dp, = l. 

Using also that Pt(x, x) ~ P2t(X, x) (cf. Exercise 7.22) we obtain from (16.29) 

Pt(x, x) ~ V( 
1 

) (1- r Pt(x, ')dP,) 

2 

(16.30) 
x, r J M\B(x,r) 

Choose r = ret) so that 

r Pt(x, ·)dp, :::; ~. 
JM\B(x,r) 

Assume for a moment that (16.31) holds. Then (16.30) yields 

1/4 
Pt(x, x) ~ Vex, ret))" 

To match (16.28), we need the following estimate of r (t): 

ret) :::; y'Ktlogt. 

(16.31) 

(16.32) 

Let us prove (16.31) with r = ret) satisfying (16.32). Setting p = d(x,·) 
and fixing some D > 2, we obtain by the Cauchy-Schwarz inequality 

( r Pt(X,.)dP,)2 
JM\B(x,r) 

< J p;(x,.) exp (~2t) dp, f exp (- ~t) dp, 
M M\B(x,r) 

- ED(t, x) f exp ( - ~:) dp" (16.33) 

M\B(x,r) 
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where ED(t, x) is defined by (15.24). By Theorem 12.1 and Corollary 15.9, 
we have, for all t > to, 

ED(t, x) ~ ED(to, x) < 00. 

Since x is fixed, we can consider ED (to, x) as a constant. 
Let us now estimate the integral in (16.33) assuming that 

r = r(t) ~ ro. 

By splitting the complement of B(x, r) into the union of the annuli 

B(x, 2k+1r) \ B(x, 2kr), k = 0, 1, 2, ... , 

and using the hypothesis (16.27), we obtain 

(16.34) 

(16.35) 

J exp (- ~:) dJ-t < I:exp (-4~2) V(x,2k+lr) (16.36) 

M\B(x,r) k=O",' 

. 00 k 2 

< Orv L 2v (k+1) exp ( - ~ ) . (16.37) 
k=O 

Assuming 
r2 
->1 Dt - , 

the sum in (16.37) is majorized by a geometric series whence 

J exp ( - ;2
t
) dJ-t ~ O'rvexp (- ;2

t
) , 

M\B(x,r) 

where 0' depends on 0 and 1/. Set 

r(t) = vKtlogt, 

(16.38) 

(16.39) 

(16.40) 

where the constant K will be chosen below; in any case, it will be larger 
than D. If so then assuming that 

t ~ to = max (r5, 3) 
we obtain that both conditions (16.35) and (16.38) are satisfied. 

Substituting (16.40) into (16.39), we obtain 

J exp ( - ~:) dJ-t ~ C' Kv/2 C~1~1) v/2 
M\B(x,r) 

(16.41) 

If a > 1 then the function l~zt is decreasing for t > 3. Hence assuming 
K> ND we obtain from (16.41) and (16.33) 

2 () v/2 
( r Pt(X,.)dJ-t) ~C'Kv/2 l~~to ED(to,X). 

iM\B(x,r) tvD-1 

° 
(16.42) 
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Choosing K large enough, we can make the right hand side arbitrarily small, 
which finishes the proof of the first claim. 

If K > II then choosing D close enough to 2 we can ensure that 

2K 
liD -1 > 0. 

Therefore, the right hand side in (16.42) can be made arbitrarily small pro­
vided to large enough, whence the second claim follows. 0 

THEOREM 16.6. Let M be a complete weighted manifold. Assume that, 
for some point x E M and all r> ° 

V(x,2r) S CV(x, r), (16.43) 

and, for all t E (0, T), 
At' . C 

Pt(x, x) s Vex, 0)' (16.44) 

where T E (0, +00] and C > 0. Then, for all t E (0, T), 

Pt(x, x) ~ V(X~ 0)' (16.45) 

where c > ° depends on C. 

PROOF. It follows from (16.43) that V (x, r) S Crv for all r ~ 1 and 
some lI. Hence, by Theorem 11.8, M is stochastically complete. Following 
the argument in the proof of Theorem 16.5, we need to find r = r (t) so that 

which implies 

r Pt(x, ·)dp, S ~, 
JM\B(:c,r) 

1/4 
Pt(x,x) ~ V(x,r(t))' (16.46) 

If in addition r (t) S K 0 for some constant K then (16.45) follows from 
(16.46) and (16.43). 

Let us use the estimate (16.33) from the proof of Theorem 16.5, that is, 

( r Pt(x, ')dP,) 2 S ED(t, x) r exp (-~ ) dp, (16.47) 
J M\B(:c,r) J M\B(:c,r) t 

where p = d (x,·) and D > 2 (for example, set D = 3). Next, instead of 
using the monotonicity of ED(t, x) as in the proof of Theorem 16.5, we apply 
Theorem 16.3. Indeed, by Theorem 16.3 and Exercise 16.1, the hypotheses 
(16.43) and (16.44) yield, for all t E (0, T), 

C 
ED(t, x) s ( 0)' (16.48) 

V x, t 
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Applying the doubling property (16.43) we obtain 

! exp (-~:) dtt < fexp (_ 4~2) V(x,2k+lr) 
M\B(x,r) k=O 

00 ( 4k 2) < I:ek+1 exp - ~ V(x,r) 
k=O 

< e'v (x, r) exp (-;t) , (16.49) 

provided r2 ~ Dt. It follows from (16.47), (16.48), and (16.49) that, for any 
t E (O,T), 

( r Pt(x, .)dtt) 
2 

::; e" exp (_Dr2) . 
JM\B(x,r) t 

Obviously, the expression exp ( - ~t) ca~ . .be made arbitrarily small by 

choosing r = .Ji[i with K large enough, which finishes the proof. 0 

COROLLARY 16.7. If M is a complete non-compact weighted manifold 
and M admits the relative Faber-Krahn inequality then 

c 
pdx, x) ~ V (x, v't) 

for some c> ° and for all x E M, t> O. 

PROOF. Indeed, by Theorem 15.21(a), the relativeFaber-Krahn inequal­
ity implies both conditions (16.43) and (16.44) with T = +00, whence the 
claim follows from Theorem 16.6. 0 

16.4. Epilogue: alternative ways of constructing the heat kernel 

Recall that the existence of the heat kernel was proved in Chapter 7 
using the key estimate (7.18) of the semigroup Pt , that is, 

sup IPdl ::; e (1 + ro") IlfIIL2(M) , 
K 

(16.50) 

for all t > 0 and f E L2 (M), where K is any relatively compact subset of 
M, (j = (j (n) > 0, and the constant e depends on K. The estimate (16.50) 

- ---"'-h~.ined in Theorem 7.6 as a consequence of the Sobolev embedding 
j e (K) provided (j is large enough. 

j
haVe methods of construction of the heat kernel, which 
Ie use of the smoothness properties as possible, to be 
ing of metric measure spaces. Let us sketch three alter-
f~nstructing the heat kernel, which satisfy this require­
F ize that in all cases the existence of the heat kernel is 
~tain local properties of the underlying space. , 
I 
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1. The estimate (16.50) has received one more proof in Corollary 15.7, 
which depends on the following two ingredients: 

• Theorem 15.4 that provides the Faber-Krahn inequality in small 
balls; 

• Theorem 15.1 that provides a mean-value inequality for solutions 
of the heat equation assuming the Faber-Krahn inequality. 

The properties of manifolds that are used in this approach are the Faber­
Krahn inequality in small ball, which is a consequence of a local Euclidean 
structure, and \ "V d\ ::; 1, which reflects a special role of the geodesic distance 
in contrast to other possible distance functions. Although the proof of the 
key Theorem 15.1 is relatively long and technical, this approach has a certain 
advantage since it allows to jump quickly to Gaussian off-diagonal estimates 
of the heat kernel (d. Theorem 15.14 and Corollaries 15.17, 15.15). 

2. It suffices to construct heat kernels pf in all relatively compact open 
subsets D of M. Indeed, th~;n""one proves define Pt as the limit of pPk as 
k -+ 00 where {Dd is any 'compact exhaustion sequence. The fact that 
the limit exists follows from the monotonicity of pf with respect to D (d. 
Theorem 5.23) and from 

(16.51) 

That Pt is indeed the integral kernel of the heat semigroup Pt , was proved 
by J. Dodziuk [108J (see also [51, p.188]). 

Let us describe two methods for construction of pf. 
(i) One first shows that the Dirichlet Laplace operator en has a discrete 

spectrum. This was proved in Theorem 10.13 using the heat kernel and the 
estimate (16.50). However, to realize the present approach, it is necessary 
to have a proof of of the discreteness of the spectrum without using the 
heat kernel - see, for example, the second proof of Corollary 10.21. Then 
one can define the heat kernel pf by the explicit formula (10.33) via the 
eigenfunctions of en. Certain efforts are needed to verify that pf ~ 0 and 
(16.51), for which one employs the maximum principle. 

(ii) Starting with the Faber-Krahn inequality in small balls (cf. Theorem 
15.4), one first obtains the same inequality in any relatively compact open 
set D. This follows from Theorem 15.11, but one should have a different 
proof for merging Faber-Krahn inequalities without using the heat kernel 
(a relevant argument can be found in [179]). Then, by Theorem 14.19, the 
heat semigroup pf is L1 -+ L2 ultracontractive, and the ultracontractivity 
implies the existence of the heat kernel (see, for example, [49], [96]' or 
[163]). 

Yet another method for construction of the heat kernel under a weaker 
version of the Faber-Krahn inequality can be found in [184]. 

Notes and further references 

The key idea of Theorem 16.2, that the upper bound (16.4) for IlPtfll implies a 
Gaussian estimate (16.7) for the the integral of (Ptf)2 away f~om the support of t, is due 
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to Ushakov [350] in the context of parabolic equations in R" (see also [193]). The present 
proofs of Theorems 16.2 and 16.3 were taken from (151]. 

The finiteness of ED (t, x) on any manifold for D > 2 was proved in [141] and [146]. 
The on-diagonal lower bound of the heat kernel in Theorems 16.5 and 16.6 were 

proved in [80J, [79]. Moreover, Theorem 16.5 was proved in [80] under the hypothesis 
V (x, r) ::; F (r) with a more general function F (r) than in (16.27). 

Further results on the topics related to this book can be found in the following refer­
ences. 

- the Gaussian bounds of heat kernels and Harnack inequalities: [13], [15], (35], [54], 
[55], [74], [75], [78], [87], (94], [95], (96], (98], (101]' [120), [145), [148), [149], [150), 
[157), [176], [177), [179], [180], [198], [199], [230], [295], [312], [319], [320], [322], 
[324], (345]; 

- a short time behavior of the heat kernel: (36], [131]' (132], (267], [275], [276), 
[277], [295], [336], [349]. 

- heat semigroups and functional inequalities: [20], [94], [95], [96], [188], [190], 
[313], [314], [315], [369]; 

- heat kernels and curvature: [18], [61], [258], [267], [307], [361), [365], [366); 
- heat kernels on symmetric spaces and groups: [2k[3), [7], [8], [33), [34], [84], [114], 

[189]' [218], [219], [287], (303], [304], [312]' [355);,: 
- heat kernels on metric measure spaces and fractals: [14], [22], [23]' [24), [27), 

[124], [125]' [156], [158], [162]' (163], [164], [165), [166), [167), [172], [195], [202]' 
[224), [225], [238]' (331), [332), [337), [339]; 

- heat kernels and random walks on graphs: [5], (25), [26), [64), (68], (70]' [69], [82], 
[99], (111), [129], (181), [182), "[191]' (233), (234), (323), [358), (359); 

- heat kernels of non-linear operators: (105), [107); 
- heat kernels of higher order elliptic operators: [19], [100], [237]' (312); 
- heat kernels of non-symmetric operators: [117J, [236], [300]; 
- heat kernels of subelliptic operators: [30], [31], [215J, [216], [239J; 
- heat kernels in infinite dimensional spaces: [32], [34), [112], [113J; 
- heat kernels and stochastic processes: [152], [155), [161), [168), [169], [170), [171], 

[178), [210], [334); 
- heat kernels for Schrodinger operators: [21], [71], [157]' [160]' [201], [259], [260], 

[282], [283), (344], [371], (370); 
- Liouville theorems and related topics: [4], [6], [28], [62], [72], [90], [91], [109], 

[138], [139], [140], [143], [144), [159], [173], [204], [205], [220], [247], [248], [250], 
[251J, [252]' [254], [261J, [262], [264], [284], [285), [288), [301), [338], [341). 

- eigenvalues and eigenfunctions on manifolds: [36], [51], [59], [60), [174], [183), 
[185), [232]' [247], [253], [256], [257], [289], [290), [291]' [326]' [362], [367); 

- various aspects of isoperimetric inequalities: [11), [40), [42), [48), [53], [116], [128], 
[249), [302], [305], [321], [354), (362]. 



APPENDIX A 

Reference material 

For convenience of the reader, we briefly review here some background 
material frequently used in the main body of the book. The detailed ac­
counts can be found in numerous textbooks on Functional Analysis and 
Measure Theory, see for example, [73], (88], [89], [194]' [226], [229], [235], 
[263], [281]' [310]' [318], [33q], [346], [368]. 

A.I. Hilbert spaces 

We assume throughout that 1l is a real Hilbert space with the inner 
product (x, y) and the associated norm Ilxll = (x, x)1/2. 
CAUCHy-SCHWARZ INEQUALITY. For all x, y E 1l, 

l(x,y)1 ~ IlxlIIIYII· 

PROJECTION. If S is a closed subspace of 1l then for any x E 1l there is a 
unique point yES such that (x - y) ..is. 

The point y is called the projection of x onto S. The mapping P : 1l -+ 1l 
defined by Px = y is called the projector onto S. In fact, P is a linear 
bounded self-adjoint operator in 1l, and IIPII ~ 1 (see Section A.5 below). 

Let D be a dense subspace of 1l and 1 : D -+ lR be a linear functional. 
The norm of 1 is defined by 

, 1 (x) 
Illll = sup -II -II . 

xED\{O} x 

The functionall is said to be bounded if IIIIl < 00. The boundedness of 1 
is equivalent to the continuity and to the uniform continuity of I. Hence, a 
bounded linear functional uniquely extends to a bounded linear functional 
defined on the whole space 1l. 

For example, any vector a E 1l gives rise to a bounded linear functional 
la as follows: La (x) = (x, a). It follows from the Cauchy-Schwarz inequality 
that IIlall = lIali. The next theorem implies that the family {la}aE1i exhausts 
all the bounded linear functional. 

RIESZ REPRESENTATION THEOREM. For any bounded linear functionall 
on 1l, there exists a unique vector a E 1l such thllt 1 (x) = (x, a) for all x 
from the domain of l. Furthermore, IIlll = lIali. 

431 
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BESSEL'S INEQUALITY. Let {Vk} be a orthonormal sequence in a Hilbert 
space H. Fix a vector x E H and set 

Then 

Xk = (X,Vk). 

L IXkl2 ~ Ilxll2. 
k 

PARSEVAL'S IDENTITY. Let {Vk} be an orthonormal sequence in a Hilbert 
space. Fix a vector x E H and a sequence of reals {Xk}. Then the identity 

x = LXkVk 
k 

holds if and only if Xk = (x, Vk) for all k; and 

L IXkl2 = IIx1I2. 
k 

ORTHONORMAL BASIS. In any separable Hilbert space H, there is an at most 
countable orthonormal basis, that is, a finite or countable sequence {Vk}f"=l 

such that 

( ) { 
0, k =1= I, 

Vk,VZ = 1 k = l , , 
and that any vector x E H can be uniquely represented as the sum 

N 

x = LXkVk; 

k=l 

for some real Xk. In the case N = 00 the series converges in the norm of 
H. 

The series :Lk XkVk is called the Fourier series of the vector x in the 
basis {Vk}, and the numbers Xk are called the coordinates (or the Fourier 
coefficients) of x. 

A.2. Weak topology 

A sequence {Xk} in a Hilbert space H converges weakly to x E H if for 
all y E H 

(Xk, y) -+ (x, y). 
In this case one writes Xk ~ x or x = w-limxk' Alternatively, the weak 
convergence is determined by the weak topology of H, which is defined by 
the family of semi-norms 

Ny (x) = l(x,y)I, 
where y varies in H. 

In contrast to that, the topology of H that is determined by the norm 
of H, is called the strong topology. Clearly, the strong convergence implies 
the weak convergence. 
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PRINCIPLE OF UNIFORM BOUNDEDNESS. Any weakly bounded (that is, bounded 
in any semi-norm) subset of a Hilbert space is strongly bounded (that is, 
bounded in the norm). 

Hence, the boundedness of a subset in the weak sense is equivalent to 
that in the strong sense. 

We say that a set S C 1-£ is weakly compact if any sequence {Xk} C S 
contains a subsequence {XkJ that converges weakly to some XES. 
WEAK COMPACTNESS OF A BALL. In any Hilbert space 1-£, the ball 

B := {x E 1-£ : IIxll ~ I} 

is weakly compact. 

For comparison let us mention that the ball B is strongly compact if and 
only if dim 1-£ < 00. 

It is also worth mentioni~g' that any strongly closed subspace of 1-£ is 
weakly closed, too - see Exercise A.5. Hence, the closedness of a subspace 
in the weak sense is equivalent to that in the strong sense. 

Exercises. 

A.I. Prove that if {Xk} and {Yk} are two sequences in 1{ such that Xk -+ x and Yk -t Y 

then 

A.2. Prove that if Xk -' x then 

IIxll ~ liminfllxkll· 
k-->oo 

A.3. Let {Xk} be a sequence of vectors in a Hilbert space 1{ and x E 1{. 

(a) Prove that Xk -t x if and only of 

Xk ->. X and IIxkll-t Ilxll· 

That is, the strong convergence is equivalent to the weak convergence and the con­
vergence of the norms. 

(b) Prove that Xk ->. X if and only if the numerical sequence {IIXkll} is bounded and, for 
a dense subset V of 1{, 

(Xk, y) -t (x, y) for any y E V. 

That is, the weak convergence is equivalent to the convergence "in distribution" and 
the boundedness of the norms. 

AA. Let {Vk}:=l be an orthonormal sequence in 1{. 

(a) Prove that Vk ->. 0 as k -t 00. 

(b) Prove that, for any sequence of reals Ck, the series 
00 

LCkVk 

k=l 

converges weakly if and only if it converges strongly. 

A.5. A subset S of a Hilbert space 1l if called weakly closed if it contains all weak limits 
of all sequences from S. Prove that any closed subspace of 1{ is also weakly closed. 
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A.3. Compact operators 

Let X, Y be two Banach spaces. A linear operator A : X -+ Y is called 
bounded if 

. II A xlly IIAII:= mf II II < 00. 
XEX\{O} x x 

A linear operator A : X -+ Y is called compact if, for any bounded set 
8 c X, its images A (8) is a relatively compact subset of Y. Equivalently, 
this means that, for any bounded sequence {Xn}~=l C X, there exists a 
subsequence {xni } such that A (xnJ converges in Y. 
THEOREM. Any compact operator is bounded. Composition of a compact 
operator and a bounded operator is compact. 

Let 1£ be a Hilbert space. A a bounded operator A : 1£ -+ 1£ is called 
self-adjoint if 

(Ax, y) = (x, Ay) for all x, y E 1£. 
A vector x E 1£ is called an eigenvector of A. if x =1= 0 and Ax = AX for some 
scalar A, which is called the eigenvalue of x. 
THE HILBERT-SCHMIDT THEOREM. Let A be a compact self-adjoint operator 
in a Hilbert space 1£. Then, in the orthogonal complement (ker A).l. of the 
kernel of A, there exists an at most countable orthonormal basis {vd ~=v ' 
such that each Vk is an eigenvectors of the operator A. The corresponding 
eigenvalues Ak are real, and if N = 00 then the sequence {Ak} tends to 0 as 
k -+ 00. 

Note that all the eigenvalues Ak are non-zero because Vk rt ker A. If 
the space 1£ is separable then ker A admits at most countable orthonormal 
basis, say {wd. Obviously, Wi is an eigenvector of A with the eigenvalue O. 
Merging the bases {Vk} and {Wi}, we obtain an orthonormal basis in 1£ that 
consists of the eigenvectors of A. 

A.4. Measure theory and integration 

A.4.1. Measure and extension. Let M be a set and 8 be a family 
of subsets of M containing the empty set 0. A measure on 8 is a function 
J-L: 8 -+ [0, +00] such that J-L (0) = 0 and, for any finite or countable sequence 
{Ei} of disjoint sets from 8, if the union E = UiEi is in 8 then 

J-L (E) = L J-L (Ei) . 
i 

Measure J-L is called CT-jinite if there exists a countable sequence of sets 
{Ei}:'l from 8 covering M and such that J-L (Ei) < 00. 

A non-empty family 8 of subsets of M is called a semi-ring if the fol­
lowing two conditions holds: 

• E,F E 8 =} EnF E 8j 
• E, F E 8 =} E \ F is a disjoint union of a finite family of sets 

from 8. 
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For example, the family of all intervals 1 in lR is a semi-ring, and so is 
the family of all boxes2 in lRn. 

A non-empty family R of subsets of M is called a ring if 

E, FER ~ E U F and E \ F are also in R. (A.I) 

It follows from (A.I) that also En FER. Hence, a ring is a semi-ring. 
A family I: of subsets of M is called a a-ring if it is a ring and, for 

any countable sequence {Ei}f:,l of sets from I:, also their union UiEi is in 
I:. This implies that the intersection niEi is also in I:. Hence, a a-ring 
I: is closed with respect to the set-theoretic operations n) u, \ on countable 
sequences of sets. A a-ring I: is called a a-algebra if M E I:. 

For any semi-ring S) there is the minimal ring R = R (S) containing 
S, which is obtained as the intersection of all rings containing S. In fact, 
R (S) consists of sets which are finite disjoint unions of sets from S. If J.l is a 
measure on S then J.l uniquely, extends to a measure on R (S), also denoted 
by J.l, and this extension is given by 

(A.2) 
i=l 

whenever A E R(S) is a finite disjoint union of sets AI, ... ,An'E S. 
For any ring R, there is the minimal a-ring I: = I: (R) containing R, 

which is obtained as the intersection of all a-rings containing R. 
CARATHEODORY EXTENSION THEOREM. Any measure J.l defined on a ring. 
R extends to a measure on the a-ring I: (R); besides, this extension is unique 
provided measure J.l is (J'-finite. 

The extended measure, again denoted by J.l, is defined for any A E I: (R) 
by 

I'(A) ~ inf {t,I'(Ai): Ai E R, A c QAi}. (A.3) 

Let J.l be a measure defined on a (J'-ring E. A subset of M is called a null 
set if it is a subset of a set from E with J.l-measure O. Measure J.l is called 
complete if all null sets belong to I:. An arbitrary measure can be extended 
to a compete measure as follows. Denote by E the family of sets of the form 
E U N where E E E and N is a null set. Then E is a (J'-ring, and J.l can be 
extended to E by setting J.l (E U N) = J.l (E). Measure J.l with domain E is 
complete. 

In fact, the formula (A.3) is valid for all A E E (R). The extension of a 
measure J.l from a ring R (or from a semi-ring S) to a complete measure on 
E (R) is called the Caratheodory extension. 

1 Including open, closed, and semi-open intervals. 
2 A box in JRn is a set of the form 

II X ... X In 

where Ik C lR are intervals. 
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As an example of application of this procedure, consider construction 
of the Lebesgue measure in ~n. Let S be the semi-ring of all intervals in 
R and A (1) be the length of any interval I E Sj in other words, if a ~ b 
are the ends of I (that is, I is one of the sets (a,b), [a,b], [a,b), (a,b]) 
then set A (1) = b - a. It is easy to see that A is a measure on Sand, 
moreover, this measure is o--finite. More generally, for any box E eRn, 
define its n-volume An (E) as the product of the lengths of the sides of E. 
It is not difficult to prove that An is a o--finite measure on the semi-ring S 
of all boxes. Hence, An admits a unique extension to the minimal o--ring (in 
fact, o--algebra) containing S. This o--algebra is denoted by B (Rn) , and the 
elements of B (Rn) are called Borel sets.3 Null sets in Rn are not necessarily 
Borel. Completing the o--algebra B (Rn) by adding the null sets, we obtain 
the o--algebra A (Rn) of Lebesgue measurable sets. The extension of measure 
An to A (Rn) is called the n-dimensional Lebesgue measure. 

The Lebesgue measure has an additional property, stated in the next 
theorem, which is called regularity and w~ch links the measure with the 
topology. 

THEOREM. Let 1-£ be the Lebesgue measure in Rn. For any compact set 
KeRn, the measure 1-£ (K) is finite, and, for any Lebesgue measurable set 
A eRn, I-£(A) satisfies the identities: 

1-£ (A) = sup {I-£ (K) : K C A, K compact} (A A) 

and 
1-£ (A) = inf {I-£ (U) : A c n, n open}. (A.5) 

AA.2. Measurable functions. Let 1-£ be a measure defined on a 0-­

algebra in a set M, We say that a subset A C M is measurable (or 1-£­
measurable) if A belongs to the domain of measure 1-£. We will be consider­
ing functions on M, taking values in the extended real line [-00, +00]. A 
function f : M -+ [-00, +ooJ is called measurable if the set 

{x EM: f (x) < t} 

is measurable for any real t. 
All algebraic operations on measurable functions result in measurable 

functions provided they do not contain indeterminacies g, :' and 00 -
00. Moreover, if iI, ... , fn are measurable functions on M taking values in 
Rand F (Xl, ... , xn) is a continuous function on Rn then F (II, .. " fn) is a 

3The class B OR") of Borel sets is very large. In particular, it contains all open and 
closed sets in IRn, Denote by g the family of all open sets and by F the family of all closed 
sets. Next, denote by g. the family of all countable intersections of open sets, and by F" 
the family of all countable unions of closed sets, Similarly, one defines even larger families 
g.", F"., g."., F".", etc, which all are called Baire classes. Since B (JRn

) is a O'-algebra, 
it contains all the Baire classes, even those of transfinite order. It is a deep result from 
the set theory that, in fact, B (IRn) coincides with the union of all the Baire classes. 
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measurable function on M. If {fn}~=l is a sequence of measurable functions 
then lim sup 1 n and lim inf 1 n are always measurable. 

A.4.3. Lebesgue integration. We say that a couple (M, f.l) is a mea­
sure space if f.l is a complete a-finite measure defined on a O"-algebra in the 
set M. 

Let (M, f.l) be a measure space and 1 : M ~ [0, +ooJ be a measurable 
function on M. Define a partition of [0, +00] as a finite increasing sequence 
of positive reals. For any partition {tk}k=l' consider the corresponding 
Lebesgue integral sum: 

n 

Ltkf.l{X EM: tk:::; 1 (x) < tk+!} , 
k=l 

where we set tn+! := +00. The supremum of all Lebesgue integral sums 
over all partitions {tk} is called the Lebesgue integral of 1 against measure 
f.l and is denoted by ~\ / L ldf.l. 

Note that this integral takes values in [0, +ooJ. 
Another point of view on this definition is as follows. By definition, a 

simple lunction is a finite linear combination of the indicator functions of 
disjoint measurable sets. Any partition {tk}k=l of [0, +00] is associated with 
the simple function 

n 

g(x) = LtklEk , 
k=l 

where 
Ek:= f.l{x EM: tk:::; l(x) < tk+d· 

It is natural to define the integral of 9 (x) by 

r gdf.l:= t tkf.l (Ek) . 
JM k=l 

(A.6) 

Obviously, we have 1 2: g. On the other hand, considering a sequence of 
nested partitions like {2k} ~=-n' we obtain an increasing sequence {gn} of 
simple functions that converges to 1 pointwise ~s n ~ 00. Hence, it is 
natural to set 

1M fdf.l = s~p {1M 9df.l} , 

where sup is taken over all simple functions 9 as in (A.6). Clearly, this 
definition of the integral is equivalent to the one with the Lebesgue integral 
sums. 

A measurable function 1 : M ~ [-00, +00] is said to be integrable 
against f.l if 

1M 111 df.l < 00. 
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Equivalently, I is integrable if both function 1+ and I-are integrable, where 
I ± := If':f are the positive and negative parts of I. For an integrable 
function, define its integral against J-L by 

1M IdJ-L:= 1M l+dJ-L - 1M l_dJ-L. (A.7) 

In this case, the value of J M I dJ-L is a real number. The set of integrable 
functions is a linear space, and the integral is a linear functional on this 
space. 

If I ~ 0 is a measurable function and A is a measurable subset of M 
then set 

lldJ-L:= 1M lAldJ-L. 

The identity v (A) := JA IdJ-L defines a measure v on the same <7-algebra 
as J-L. The function I is called the density of measure l/ with respect to J-L 
(or the Radon-Nikodym derivative of v) and is denoted by ~~. The integral 

JA IdJ-L for a signed function I is defined simil~ply to (A.7). 
We say that two measurable functions I, g are equal almost everywhere 

and write 
1=9 a.e. 

if f (x) = 9 (x) everywhere except for a null set, that is, 

J-L{x EM: f (x) =1= g (x)} = o. 
In the same way, a.e. applies to inequalities and other relations. 

It follows easily from the definition of the integral that, for a non-negative 
measurable function f, 

1M I dJ-L < oo:=} I < 00 a.e. 

and 

1M f dJ-L = 0 -<===} f = 0 a.e. 

Since the measure J-L is complete, changing a measurable function on a null 
set results in a measurable function. If I = 9 a.e. then the properties of 
I and 9 with respect to integration are identical: they are integrable or 
not synchronously, and in the former case their integrals are equal. This 
allows to extend the notion of integral to functions that are defined almost 
everywhere (that is, outside a set of measure 0). 

A.4.4. Convergence theorems. We state below the theorems about 
passage to the limit under the integral sign, which are most useful in appli­
cations. 

FATOU'S LEMMA. If{/k} is a sequence 01 non-negative measurable functions 
then 

r lim inf Ik dp. :::; lim inf r fkdp.. J M k-+oo k-+oo J M 
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MONOTONE CONVERGENCE THEOREM. (B. Levi's theorem)If {fk} is an 
increasing sequence of non-negative measurable functions then 

r lim fk d/-l = lim r fkd/-l. (A.8) 
) M k-+oo k-+oo } M 

DOMINATED CONVERGENCE THEOREM. (Lebesgue's theorem) Let {fk} be 
a sequence of measurable functions satisfying the following two conditions: 

• for some non-negative integrable function F, 

lik (x)1 ~ F (x) a.e. 

• the limit limk-+oo ik (x) exists a.e .. 

Then (A.S) holds. 

If /-l (M) < 00 then any bounded measurable function is integrable. 
Hence, we obtain the following .particular case of the dominated convergence 
theorem. . 

BOUNDED CONVERGENCE THEOREM. Let /-l (M) < 00 and {fd be a se­
quence of measurable junctions satisfying the following two conditions: 

• for some positive constant C, 

lik (x)1 ~ C a.e. 

• the limit limk-+oo ik (x) exists a.e .. 

Then (A.S) holds. 

A.4.5. Lebesgue function spaces. Let (M, /-l) be a measure space. 
The relation f = g a.e. is obviously an equivalence relation between measur­
able functions. For any measurable function f, denote its equivalence class 
by [fJ. 

by 
For any 1 ~ p ~ 00, define the p-norm of a measurable function f on M 

Ilfllp 

Ilflloo 

(1M Iff d/-l) liP, 1 ~ P < 00 

esup If I := inf sup 191. 
M 9E[J] M 

We say that the parameters p, q E [1, +ooJ are Holder conjugate if 

1 1 
-+-=1. 
p q 

HOLDER INEQUALITY. If p, q are Holder conjugate then, for all measurable 
functions f, g, 
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Furthermore, the following identity holds 

IIfllp = sup (r f9dJ-L) 
IIgllq9 1M 

Two important particular cases of the Holder inequality are: 

1M Ifgl dJ-L ~ IIflloollgll1 

and the Cauchy-Schwarz inequality 

1M Ifgl dJ-L ~ Ilf11211gl12-

The p-norm possesses also the following properties: 

• IIf + 911p ~ IIfllp + Ilgllp· 
• II>-fll p = 1>-lllfllp for any real >-. ,,-, 
• IIfllp = 0 if and only if f = 0 a.e/'that is, [fJ = o. 

In particular, [f] = [gJ implies IIfllp = IIgllp, which allows to extend the 
p-norm to the equivalence classes of measurable functions. 

Define the Lebesgue space V = V (M) = V (M,J-L) by 

V = {[fl : f is a measurable function on M and Ilflip < oo}. 

It follows from the above properties of the p-norm, that V is a linear space 
and the p-norm is a norm on V. In fact, we will only use the spaces L1, L2, 
Loo, where the space L2 is of particular importance. 

To simplify the terminology, it is customary to say that a certain function 
f belongs to V and to write f E V, while in fact [f] E V. The p-norm of 
a function f E V will also be denoted by IIfllL1' or IlfIiL1'(M) or IIfIlL1'(M,fIo) 

The following theorem is of paramount importance and justifies alone 
the measure theory and Lebesgue integration. 

THEOREM. The normed space V (M, J-L) is complete for any 1 ~ p ~ 00; 

that is, V (M, J-L) is a Banach space. 

The space L2 (M, J-L) is particularly useful, because its norm is associated 
with the following inner product4 

(f,g)L2 = IMfgdJ-L. 

Hence, L2 (M, J-L) is a Hilbert space. 

4Here we consider only real valued functions. For complex valued functions, the 
definition of the inner product in L2 should be modified as follows: 

(j,gh2 = 1M jgdJio, 

where 9 is the complex conjugate of g. 
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We say that a sequence {fk} of functions converges to a function f 
almost everywhere and write ik ~. f (or fk -+ f a.e.) if 

J.L{x EM: fk (x) f+ f (x)} = O. 

Also, we write fk !:!..t f if fk converges to f in the norm V (M, J.L), that is, 
IIfk - flip -+ O. 

The following result is a version of the dominated convergence theorem. 

DOMINATED CONVERGENCE THEOREM IN V. Letp E [1, +(0) and {ik} be a 
sequence of functions from V (M, J.L) satisfying the following two conditions: 

• for some non-negative function FE V (M, J.L), 

Ifk (x)1 ::; F (x) a.e. 

• Ik ~. f for some function f· 

Then f E V (M,J..l) and fk/ v) f. 

PROOF. Function f is measurable as the limit of measurable functions. 
Since Ilkl ::; F a.e. and, hence, also If I ::; F a.e., function f belongs to 
V (M,J.L). Since If - iklP -+ 0 a.e., 

If - fkl P ::; 2P FP, 

and the function FP is integrable, the dominated convergence theorem yields 

o 

The following partial converse is true. 
LP 

THEOREM. If {fk} a sequence of functions V (M, J..l) and ik -+ f then 
there exists a subsequence Uk;} such that fki ~. f. 

Recall that a simple function is a function of the form 

n 

f = 2::::Ck1Ek , 
k=l 

where n E N, Ck E R \ {O} and Ek are disjoint measurable sets. Assuming 
that all Ck i= 0, it is easy to see that a simple function f is integrable if and 
only if all sets Ek have finite measures, and in this case f E V (M, J..l) for 
any p E [1,00]. The following useful property of simple functions follows 
directly from the definition of the integral. 

THEOREM. The set of integrable simple functions is dense in V (M, J.L) for 
any p E [1, (0). 
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Exercises. 
L2 

A.6. Let {he} be a sequence of functions from L2 (M, p,) such that Jk -" J. Prove that 

esup J $liminf (esup Jk) 
k-+oo 

(A.9) 

and 

einf f ~ lim sup (einf fk) . (A.l0) 
k-+oo 

A.7. Prove that if fk ~ f then f~ ~ f2.Hence or otherwise show that, for any function 
9 E Loo, 

A.4.6. Product measures. Let Xl, X 2 be two non-empty sets and 
81, 82 be semi-rings of subsets of Xl and X'2?, "~espectively. Consider the 
following family of subsets of the set Xl x X2: 

81 x 82 := {A x B: A E 81, BE 82}, 

which is also a semi-ring. 

THEOREM. Assume that /-ll and /-l2 are cr-finite measures on semi-rings 81 

and 82 on the sets Xl and X2 respectively. Then the functional 

/-l (A x B) := /-ldA) X /-l2 (B) , 

is a cr-finite measure on 81 x 82. 

By CaratModory's extension theorem, /-l can be then uniquely extended 
to the cr-algebra of measurable sets on Xl x X2. The extended measure is 
denoted by /-ll x /-l2 or /-ll 0 /-l2 and is called the product measure of J-LI and 
J-L2· 

Observe that the product~measure is cr-finite (and complete). H~nce, 
one can define by induction the product /-ll x ... x /-In of a finite sequence of 
O"-finite measures /-ll, ... , /-In. This product satisfies the associative law. 

The following property of the product measures is frequently useful. 

THEOREM. The set of all finite linear combinations of functions of the form 
lAxB is dense in LP (X x Y, /-l x v), 1 ::; p < 00, where A and B run over 
all measurable subsets with finite measures of X and Y, respectively. 

A.4.7. Fubini's theorem. Given a function f (x, y) on the product 
X x Y of two sets X, Y, we refer to the function y f-t f (x, y) for a fixed 
x E X as the x-section of f. Similarly, the function x t-+ f (x, y) for a fixed 
y E Y is called the y-section of f. 
FUBINI'S THEOREM. Let /-l and v be complete cr-finite measure on sets X 
and Y, respectively. Consider the product space X x Y with measure /-l x v. 
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(i) If a function f : X x Y -+ [0, +00] is measurable on X x Y then 
f-t-almost all x- and v-almost all y-sections of f are measurable, the 
functions 

XH [f(x,Y)dv(y) and yH Lf(x,Y)df-t(X) 

are measurable on X and Y, respectively, and 

LxY fd (f-t x v) = L [[ f (x, y) dv (y) ] df-t (x) 

[[Lf(x,Y)dtt(x)] dv(y). 

(A. 11) 

(A.12) 

(ii) If f : X x Y -+ lR is integrable on X x Y then f-t-almost all x- and 
v-almost all y-sections' of f are integrable, the functions (A.11) are 
integrable on X and Y respectively, and (A.12) holds. 

The part (i) is known also as Tonelli's theorem. 
The following corollary is frequently usefuL 

COROLLARY. If a function f: X x Y -+ lR is measurable and its almost 
all x-sections are integrable on Y then the function 

x H [f (x, y) dv (y) (A.13) 

is measurable. 

PROOF. The integrability of the x-sections of f means that the x-sections 
of f + and f - are integrable. Hence, the functions ' 

are finite almost everywhere. By part (i) of Fubini's theorem, these two 
functions are measurable. Therefore, the function (A.13) is measurable as 
the difference of two finite measurable functions. 0 

EXAMPLE A.I. A classical application of Fubini's theorem is the evalu­
ation of the following integral 

100 2 

1= e-x dx. 
-00 
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Indeed, using Fubini's theorem, we obtain 

12 = (1: e-
x2 

dX) (1: e-
y2 

dY) 

- 1: (1: e-
y2 

dY) e-
x2 

dx 

1: (1: e-(x
2

+
y2

)dY) dx 

_ r e-(x2+y2)dA, 
JIR2 

where A is the Lebesgue measure in ]R2. Switching to the polar coordinates 
(cf. Example 3.23), we obtain 

Hence, 12 = 7r and 1 = y1i, that is, 

1
00 

_x2 
e dx = ..Ji. 

-00 

A.5. Self-adjoint operators 

A.5.l. Operators in a Hilbert space. An operator A in a Hilbert 
space ti is a linear mapping A : D -+ ti where D is a linear subspace of ti 
called the domain of A and denoted by dom A. We say that A is densely 
defined if domA is dense in ti. Define the norm of the operator A by 

IIAII = sup IIAxll. (A.14) 
xEdomA\{O} IIxll 

The finiteness of the norm IIAII is equivalent to the continuity of A and to the 
uniform continuity of A. Hence, if A is densely defined and IIAII < 00 then 
the operator A uniquely extends to an operator defined on ti and having 
the same norm. The operator A is said to be bounded5 if dom A = ti and 
IIAII < 00. 

For any two operators A and B, their sum A + B and product AB are 
defined as follows: 

(A+B)x = Ax+Bx for x E dom(A+B):= domAn domB 

and 

(AB) (x) = A (B (x)) for x E dom (AB) := {x E domB : Bx E domA}. 

5Unlike the notion of a bounded linear functional, the definition of a bounded operator 
includes the requirement that the domain is the whole space ti, which is motivated by 
certain results of the spectral theory. 
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Clearly, if A and B are bounded then also A + Band AB are bounded and 
IIA+BII ~ "All + liB" and IIABII ~ IIAIIIIBII· Therefore, the set 8 (ti) of all 
bounded operators on ti is a normed algebra. Furthermore, it is complete 
and hence is a Banach algebra. Alongside the topology associated with the 
operator norm, 8 (ti) features the strong operator topology, which induces 
the strong convergence as follows: Ak -t A strongly if AkX -t Ax for all 
x E ti. The weak operator topology corresponds to the weak convergence 
defined as follows: Ak -t A weakly if (AkX, y) -t (Ax, y) for all x, yEti. 

Let A be a densely defined linear operator in ti with the domain D. 
Consider the subspace 

D* = {y E ti : x t-+ (Ax, y) is a bounded functional in XED}. (A.15) 

Using the Riesz representation theorem, (A.I5) can be rewritten as follows: 

D* = {y E ti : 3!a E ti su91i'that (Ax, y) = (x, a) for all XED}. 
. (A.16) 

The adjoint operator A * is defined as follows: set dom A * = D* and, for 
any y E D*, set A*y = a. As a consequence of this definition, we obtain the 
identity 

(Ax,y) = (x,A*y) for all x E domA and y E domA*. 

Let us emphasize that the adjoint operator is defined only if A is densely 
defined, but in general A * is not necessarily densely defined. 

An operator B is called an extension of an operator A if 

domA c domB and BldomA = A. 

In this case we write A c B. Obviously, if A c B then B* c A * . 
An operator A is called symmetric if 

(Ax,y) = (x,Ay) for all X,y E domA. (A.17) 

If A is a symmetric (and densely defined) operator then obviously A c A*. 
In particular, for any densely defined symmetric operator, its adjoint is also 
densely defined. 

We say that the operator A is self-adjoint if A* = A. Any self-adjoint 
operator is symmetric but the converse is in general not true. However, if 
A is a bounded operator then it is self-adjoint if and only if it is symmetric. 
If A is a symmetric operator and B is a self-adjoint extension of A then we 
have 

A c B =B* c A*. 

The operator A is called non-negative definite if 

(Ax, x) ~ 0 for all x E domA. 
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Exercises. 

A.S. If an operator A in 1l is injective and surjective then one defines the inverse operator 
A-I such that, for any x E 1l, A-IX is the unique vector y E domA such that Ay = x. 

(a) Prove that if A-I exists then AA-I = id and A-I ACid. 
(b) Prove that if A and B are two operators such that 

AB = id and BA C id 

then A-I exists and A-I = B. 

A.9. Prove that, for any operator A in a Hilbert space, 

IIAII = sup (Ax, y) . (A.18) 
xEdomA,IIxll:5l,lIyIl9 

A.IO. Prove that, for any bounded operator A, the adjoint operator A* is also bounded 
and 

IIAII = IIA*II and IIA* All = IIAII2. 

A.H. Let A be a densely defined symmetric non-negative definite operator. 

(a) Prove that, for all X,y E domA, ' 
~ 

(Ax, y)2 ::; (Ax, x)(A.y, y). 

(b) Prove that 
IIAII = sup (Ax, x) . 

"'EdomA,II"'II::;l 

A.12. Let A be a densely defined self-adjoint operator. 

(a) Prove that (ranA)..l = ker A and (ker A)..l = ranA. 

(A.19) 

(b) Prove that A is invertible and the inverse A-I is bounded if and only if there exists 
c > 0 such that 

II Ax II 2: cllxll for all x E dom A. (A.20) 

A.13. A densely defined operator A in a Hilbert space 1l is called closed if, for any sequence 
{Xk} C domA, the conditions Xk --+ x and AXk --+ y imply x E domA and Ax = y. 
( a) Prove that any self-adjoint operator is closed. 
(b) Prove that if A is a non-negative definite self-adjoint operator then dom A is a Hilbert 

space with respect to the following inner product: 

(x,y) + (Ax,Ay). 

A.5.2. Lebesgue-Stieltjes integration. Let F (A) be a function on 
lR satisfying the following conditions: 

F is monotone increasing, left-continuous, F ( -00) = 0, F ( -00) < 00. 
(A.21) 

Function F can be used to define a new Borel measure Fu on R Indeed, 
first define Fu when U is a semi-open interval [a, b): 

F[a,b) = F (b) - F (a). 

This includes also FC-oo,b) = F (b). It is obvious that all semi-open intervals 
form a semi-ring. It is possible to prove that Fu is a O'-additive function on 
this semi-ring and hence, by the Caratheodory extension theorem, Fu can 
be extended to all Borel sets U. The measure Fu on Borel sets is called 
the Lebesgue-Stieltjes m~asure. Note that the measure Fu is finite because 
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F( -00,+00) = F( +00) < 00, which implies, in particular, that the extension 
Fu is unique. 

Hence, we can integrate any Borel function6 t.p (>.) on R against the 
measure Fu. Such an integral is called the Lebesgue-Stieltjes integral of cp 
against F and it is denoted by 

1
+00 -00 cp (>.) dF (>.) , 

when it exists. The function cp is called integrable against F if 

[:00 Icp (>')1 dF (>.) < 00. 

In particular, any bounded Borel function is integrable against F. 
ample, for cp == 1 we have 

[:oo.tjF (>.) = F (+00) < 00, 

and, for all a < b, 

[:00 l[a,b)dF (>.) = F[a,b) = F (b) - F (a). 

(A.22) 

For ex-

(A.23) 

Let us now extend the definition of the integral (A.22) to a larger class 
offunctions F. Let F be any function on R We say that a Borel function cp 
is integrable against F if there are two functions FI and F2 satisfying (A.21) 
such that F = FI - H and cp is integrable against FI and F2 • In this case,. 
set 

[:00 cp (>.) dF (>.) := [:00 cp (>.) dFI (>.) _ [:00 cp (>.) dF2 (>.). (A.24) 

In fact, the value of the riglit hand side in (A.24) does not depend on the 
choice of FI and F2 (see Exercise A.18). 

Exercises. 

A.14. Let F be a function satisfying (A.2I), and let Fu be the associated Lebesgue-Stieltjes 
measure on lR. Set F (a+) := lim.x ..... a+ F (.>.) and prove that, for all a < b, 

F(a,b) F (b) - F (a+) , 
F[a,b] F (b+) - F (a), 
F{a} F (a+) - F (a), 

F(a,b] F (b+) - F (a+). 

A.15. Let {Sk};:_oo be a double sequence of rea Is and let {tk}~=_oo be a double sequence 
of positive reals such that Ek tk < 00. Define function F by 

F (.>.) = L tk' (A.25) 

(a) Prove that F satisfies the conditions (A.2I). 

6 A function 'P is called Borel if the set {A : 'P (A) < c} is Borel for any real c. This 
condition enables one to define Lebesgue integral sums of 'P ,against any Borel measure. 
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(b) Prove that, for any Borel set U, 

Pu = 2: tk. 

{k:Sk EU } 

(c) Prove that, for any non-negative Borel function <p on JR., 

(d) Prove that a Borel function <p on JR. is integrable against P if and only if 

2:tk 1<p(s,,)1 < 00, 

kEZ 

and its integral against F is given by (A.27). 

(A.26) 

(A.27) 

A.16. Prove that if function P satisfies (A.21) and P is continuously differentiable then 

r+ co r+oo 

Loo <p (A) dP (A) = i -00 ~P) P' (A) dA, 
.t 

for any non-negative Borel function <po 

A.17. For any function P on JR., defined its total variation on JR. by 

var P := sup 2: IF (Ak+l) - P (Ak)1 
{>'k} kEZ 

(A.28) 

(A.29)' 

where the supremum is taken over all increasing double sequences {AkhEZ such that 
Ak -t -00 as k -t -00 and Ak -+ +00 as k -+ +00. 

(a) Show that P is the difference of two bounded monotone increasing functions if and 
only if var P < 00. 

(b) Show that P is the difference of two functions satisfying (A.21) if and only if Pis 
left-continuous and var P < 00. 

(c) Let P be a left-continuous function on JR. such that var P < 00. Prove that 

1
+00 

var P = sup <p (A) dF (A) , 
1'P1~1 -00 

where the supremum is taken over all continuous functions <p on JR. such that l<p (A)I ::; 
1 for all A. 

(d) Show that if FE 0 1 (JR.) then 

roo 
varP= i-oo JF' (A)J dA. 

A.18. Let F be any function on R We say that a Borel function <p is integrable against P 
if there are two functions p(1) and p(2) satisfying (A.21) such that P = p(l) - p(2) and 
<p is integrable against p(l) and p(2). In this case, set 

roo r+oo roo 
Loo <p (A) dP (A) := Loo <p (A) dP(l) (A) - Loo <p (A) dF(2) (A). (~.30) 

Prove that the value of the right hand side of (A.30) does not depend on the choice of 
p(l) and p(2). 
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A.5.3. Spectral resolution. With any closed subspace S C 1-£ and 
any x E 1-£, there is a unique vector yES such that x - yl..S. The vector 
y is called the (orthogonal) projection of x onto S. The projector P is 
the operator with the domain 1-£ such that Px is the projection of x onto 
S. For example, the identity operator id is the projector onto 1-£, and zero 
operator is the projector onto the trivial subspace {o}. It turns out that 
P is a bounded linear operator and IIPII :::; 1. It is obvious that p2 = P. 
Furthermore, P is non-negative definite and self-adjoint. 

DEFINITION A.2. A family {E,\hER. of operators in 1-£ is called a spectral 
resolution (or resolution of identity) if the following conditions are satisfied: 

• E,\ is a projector for any>. E R 
• The mapping>. I---t E,\ is monotone in the sense that>. < AI implies 

ran E>. C ran EN' 
• The mapping>. I---t E,\ is strongly left continuous, and 

lim Et = 0, lim E,\ = id, 
'\-+-00' '\-++00 

where the limits are understood also in the strong sense. 

It follows from this definition that, for any x E 1-£, the function F (>.) := 
IIE'\xIl2 satisfies the condition (A.21); in addition, we have F.(+oo) = Ilx112. 

EXAMPLE A.3. It follows from (A.23) that 1: d1lE,\x11
2 

= Ilx11 2
. (A.31) 

For any two vectors x, y E 1-£, we have 
1 

(E,\x, y) = (E~x, y) = (E,\x, E,\y) = 4 (IIE,\ (x + y) 112 - IIE,\ (x - y) 112) . 
We see that the function F (>.) = (E,\x, y) is the difference of two functions 
satisfying (A.21) and hence can be integrated against. In particular, we 
obtain from the above two lines 1:00 

d (E>.x, y) = ~ 1: dlIE>. (x + y) 112 - ~ 1: dlIE,\ (x - y) 112 

1 - 4 (lix + yl12 -llx - Y1l2) 

~,~. (A.32) 

LEMMA. Let cp (>.) be a Borel function on R If 1: Icp (>')1
2 

d1lE,\x11
2 < 00 

then the integral 1:00 

cp (>.) d (E,\x, y) 

exists for any y E 1-£ and determines a bounded linear functional of y. 
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Hence, by the Riesz representation theorem, there exists a unique vector, 
denoted by Jepx, which satisfies the identity 

1
+00 ' 

(Jepx, y) = -00 <p (>..) d (E),x, y) . (A.33) 

THEOREM. Mapping x 1--7 Jepx is a linear operator in 1£ with domain 

dam Jep := {X E 1£ : 1:00 

l<p (>")1 2 dllE)'xlI2 < 00 } , (A.34) 

which is a dense linear subspace of 1£. Moreover, Jep is a self-adjoint oper­
ator. Also, for any x Edam Jep, 

...... 

Now, we can define the integral J~: <p(>..jdE), by 

1
+00 

-00 <p(>..)dE), := Jep. 

We will also use the notation 1: cp(>")dE),x:= Jepx, 

so that the defining identity (A.33) becomes 

(1:00 

<p(>")dE>.x, y) = 1:00 

cp (>..) d (E),x, y) . 

If S is a Borel subset of JR and cp is a Borel function on S then set 

( cp(>..)dE),:= 1+00 

<p (>..) dE), 
is -00 

where <P is the extension of cp to JR, which vanishes outside S. 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

EXAMPLE A.4. If cp == 0 then (A.33) implies that Jep = O. If cp == 1 then 
it follows from (A.32) and (A.33) that 

(Jepx, y) = 1:00 

d (E),x, y) = (x, y) 

whence Jep = id. In other words, 

1
+00 

dE), = id. 
-00 

EXAMPLE A.5. Let <p be a bounded Borel function. It follows from 
(A.31) and (A.34) that dam Jep = 1£. Moreover, (A.35) implies that 

II Jepx II 2 :s sup 1<p12I1xIl2 . 
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Hence, in this case Jep is a bounded operator and 

IPepll :::; sup I'PI . 

Exercises. 

A.19. Prove the following properties of projectors in a Hilbert space. 

(a) Any projector P is a linear bounded self-adjoint operator and p2 = P. 
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(b) For any bounded self-adjoint operator A such that A 2 = A, its range ran A is a 
closed subspace and A is the projector onto ran A. 

(c) Any projector P is non-negative definite, and IIPII = 1 unless P = O. 

A.20. Let P be a projector and let {Vk} be an orthonormal basis in 1{. Prove that 

L II PVkl1 2 = dimranP. 
k 

A.21. Let {E>.L.EIR be a spectral resolution in a Hilbert space 11.. 
( a) Prove that if a :s b then 

(A.39) 

(b) Prove that Eb - Ea is a projector for all a :s b. Hence or otherwise prove that the 
function A t-+ IIE>.xll is monotone increasing, for any x E 11.. 

(c) For a Borel set U c JR, define the operator 

Eu:= idE>.. 

Prove that, for all -00 < a < b < +00, 

E[a,b) = Eb - Ea. (AAO) 

(d) Prove that ifthe intervals [a1' b1) and [a2, b2) are disjoint then the subspaces ran E[a1.bl) 

and ran E[a2 ,b2) are orthogonal. 

A.22. Let P1, ... ,Pk be projectors in 11. such that ranPi..LranPj for i i= j. Consider the 
operator 

i=l 

where Ai are reals. Let ip (A) = 0:0 + O:lA + ".O:nAn be a polynomial with real coefficients, 
and define the operator 

Prove that 
k 

ip (A) = Lip (Ai) P.; (AA1) 
i=l 

and, for any x E 11., 
k 

IIIP (A) xll 2 = Lip (Ai)21IPixI1 2
• 

i=l 

Prove also that if ip and 'if; are two polynomials then 

ip(A) + 'if; (A) = (ip+'if;) (A) (A.42) 

and 
ip(A)'if;(A) = (ip'if;) (A). (AA3) 
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A.5.4. Spectrum and Spectral Theorem. For any linear operator 
A in a complex Hilbert space H, we say that a complex number A is a regular 
value of A if the operator A - A id has a bounded inverse; that is, if 

ker (A - Aid) = {O}, ran (A - Aid) = H, and II (A - Aid)-l" < 00. 

Any A E C which is not a regular value is called a singular value. The set 
of all regular values is called the resolvent of A, and the set of all singular 
values is called the spectrum of A and is denoted by spec A. It is known 
that spec A is a closed subset of <C. 

For example, if A is an eigenvalue of A, that A if Ax = AX for some 
x =1= 0 then A belongs to the spectrum of A. In this case, dimker (A - Aid) 
is positive and is called the multiplicity of A. If the multiplicity of A is 1 
then A is called a simple eigenvalue. 

If A is an operator in a real Hilbert space H then define first the com­
plexified space HC = 'H $ iH, extend A by linearity to an operator AC in 
'Hc, and then set spec A = spec AI/:. We ,¥,ill apply the notion of spectrum 
only to self-adjoint operators. l 

THEOREM. For any self-adjoint operator A, the spectrum spec A is a non­
empty closed subset of JR. Also, we have 

"All = sup IAI· (A.4~) 
.xEspecA 

Hence, a posteriori, we do not need to consider a complexified operator 
AI/: when we deal with the spectrum of a self-adjoint operator. It follows 
from (A.44) that A is bounded if and only if its spectrum is bounded. 

The full strength of the notion of spectrum is determined by the following 
theorem. 

SPECTRAL THEOREM. Let A be a self-adjoint operator in a real Hilbert 
space H. Then there exists a unique spectral resolution {E.x} in'H such that 
the following spectral decomposition takes place: 

J
+OO 

A = -00 AdE.x. (A.45) 

Furthermore, for any Borel function cp vanishing on spec A, 

J
+OO 

-00 cP (A) dE.x = O. 

In particular, the second statement implies that also 

A = 1 AdE.x . (A.46) 
spec A 

The integrals (A.45) and (A.46) are understood in the sense (A.36). In other 
words, the operator A coincides with the operator Jtp defined by (A.36) with 
the function cp(A) == A or, more generally, with any function cP (A) that is 
equal to A on spec A. 
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For any Borel function cp defined on spec A, define the operator cp (A) 
by setting cp (A) = J<p; that is, 

cp(A) := 1 cp (.\) dE).., (A.47) 
spec A 

and 

dam 'P(A) := {x E 1£: 1 I'P (.\) 12 dllE)..xll 2 < co} . 
spec A 

(A.48) 

Hence, 'P (A) is a self-adjoint operator. It follows from (A.38), for all x E 
dom'P (A) and y E 1£, 

('P (A) x, y) = 1 cp (>.) d (E)..x, y). (A.49) 
spec A 

Also, (A.35) implies, for all x Edam 'P(A) , 

1I'P(A)xI12 ~:. f I'P (.\) 12 dIIE)..xIl 2. 
ispecA 

(A.50) 

In particular, if the function cp is bounded on spec A then 'P(A) is a bounded 
operator and 

II'P(A)II ~ sup I'PI· 
spec A 

(A.51) 

EXAMPLE A.6. If cp (.\) = >. then 'P (A) = A. If 'P == 1 then cp (A) = id. 
More generally, if cp (.\) = 1[a,b) then 'P (A) = Eb - Ea. 

SPECTRAL MAPPING THEOREM. For any Borel function cp on spec A, 

(A.52) 

where the bar means taking closure in R. If'P is continuous then, in fact, 

spec'P (A) = 'P (spec A). 

It follows that, for a continuous function 'P, 

II'P (A) II = sup lsi = sup Icp (>')1· (A.53) 
sEspec <peA) )..Espec A 

In the case when spec A is compact, this implies that the mapping 

'P 1-7 'P (A) (A.54) 

is a norm-preserving mapping between the Banach spaces C (spec A) and 
B (1£). 
FUNCTIONAL CALCULUS OF OPERATORS. For any self-adjoint operator A 
and for all Borel functions cp, 'lj; on spec A, we have 

'P (A)+'lj; (A) c ('P + 'lji)(A) , dam ('P (A) + 'if; (A» = domcp (A)ndom 'if; (A). 
(A.55) 
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and 

cp(A)'ljI(A) c (cp'ljl) (A), dom (cp(A)'ljI(A)) = dom (cp'ljl) (A) n dom'ljl (A) . 
(A. 56) 

In particular, if both functions cp and 'ljI are bounded then we have 

cp (A) + 'ljI (A) = (cp + 'ljI) (A) and cp(A)'ljI(A) = (cp'ljl) (A) . (A.57) 

Hence, the mapping (A.54) is in fact a homomorphism from the Banach 
algebra of functions C (spec A) to the Banach algebra of operators B (11.). 

In fact, (A.57) holds if only 'ljI is assumed bounded. 

Exercises. 

A.23. Let A be self-adjoint operator, and <p and 'Ij; be Borel functions on spec A. 
( a) Prove that 

<p (A) + 'Ij; (A) = (cp + 'Ij;) (A) , 
provided either both functions cp, 'Ij; are non-nei;;'tive or one of them is bounded. 

(b) Prove that 
<p (A) 'Ij; (A) = (<p'lj;) (A) , 

provided 'Ij; is bounded. 

A.24. Let A be a densely defined self-adjoint operator. 

(a) Prove that if the inverse A-1 exists and is a bounded operator then A-1 = *. Here 
the operator * is defined by * := 'Ij; (A) where 'Ij; (A) = t on spec A. 

(b) Prove that if spec A C [0, +(0) then there exists a non-negative definite self-adjoint 
operator X such that X 2 = A. 

(c) Prove that if spec A C [0, +(0) then rane-A C domA. 

A.25. Let A be a compact self-adjoint operator, and let {vd be an orthonormal basis in 
(ker A).L of the. eigenvectors of A with the eigenvalues {Ak}, which is guaranteed by the 
Hilbert-Schmidt theorem. Prove that spec A consists of the sequence {Ak} and, possibly, 
0. 

A.26. Let A be a densely defined self-adjoint operator. 

(a) Prove that A is non-negative definite if and only if spec A C [0, +(0). 
(b) Set 

a = inf (Ax, x) and b = sup (Ax, x). 
"'EdomA "'EdomA 

110:11=1 11"'11=1 
Prove that 

inf spec A = a and sup spec A = b. 

A.27. Let {E>.} be a spectral resolution of a self-adjoint operator A. For any Borel set 
U C JR, define the operator Eu by 

Eu := lu (A) = idE>., 

The mapping U t-+ Eu is called a spectral measure. 

(a) ProvethatEu is a projector. ShowthatifU = [a,b) where a < bthenEu = Eb-Ea. 
In particular, EC-oo,b) = Eb. 

(b) Prove that if U1 C U2 then ran EUl C ran EU2' 
(c) Prove that if U1 and U2 are disjoint then ran EUl1. ran E U2 . 
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(d) Prove that if {Ui }:'l is an increasing sequence of Borel sets in Rand U = U:'l Ui 

then EUi ~ Eu in the strong topology. Prove that the same is true if the sequence 
{Ui} is decreasing and U = n:'l Ui . 

A.28. Let A be a densely defined self-adjoint operator and {E>.} be its spectral resolution. 

(a) Prove that if a is an eigenvalue of A then E{a} := l{a} (A) is the projector onto the 
eigenspace of a. 

(b) Prove that if a is an eigenvalue of A with an eigenvector x then, for any Borel 
function c.p on spec A, x E dom c.p (A) and 

c.p (A) x = c.p (a) x. 

A.29. Let A be a self-adjoint operator whose spectrum consists of a finite sequence 
AI, ... , Ak. Let Pi be the projector onto the eigenspace of Ai, that is, ran Pi = ker (A - Ai id) . 
Prove that A = E~=l AiPi. 

A.30. Let A be a densely defined non-negative definite self-adjoint operator in 1l and 
{E>.} be its spectral resolution. Let {c.pn} :=1 be a sequence of Borel functions on [0, +00) 
such that, for all n and A E [0, +00), 

~J?\\ (A)I ~ cP (A) , 

where cP is a non-negative Borel function on [0, +00) such that 

100 

cp2 (A) d1lE>.x112 < 00, (A.58) 

for some x E 1l. Prove that if c.pn (A) ~ c.p(A) for any A E [0,+00) then x E domc.p(A) n 
~~W~ . 

c.pn (A)x ~ c.p (A) x. 

A.6. Gamma function 

The gamma function is defined by the identity 

r (z) = 100 

e-1e-tdt, 

for all z > O. Here are some useful properties of r (z). 

(A.59) 

(1) r (z + 1) = zr (z) for all z > 0, which follows from (A.59) by 
integration by parts using ztZ-1dt = d (tZ). 

(2) r (1) = 1 and r (~) = ..ji (the latter follows from (1.13)). 
(3) If n is a positive integer then r (n) = (n - 1)! and 

r(n+~) = '{:1.3 ..... (2n-1). 

(4) For all a > 2 and r > 0, the following identity holds 

100 

s-a/2 exp ( - ~:) ds = r (a/2 - 1) 4a/2-1r2-a, 

which is proved by the change t = ~: in the integral. 

(A.60) 
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