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Preface

The development of Mathematics in the past few decades has witnessed
an unprecedented rise in the usage of the notion of heat kernel in the diverse
and seemingly remote sections of Mathematics. In the paper [217], titled
“The ubiquitous heat kernel”, Jay Jorgenson and Serge Lang called the heat

kernel “... a universal gadget which is a dominant factor practically every-
where in mathematics, also in physics, and has very simple and powerful
properties.”

Already in a first Analysis course, one sees a special role of the exponen-
tial function ¢ — e%. No wonder that a far reaching generalization of the
exponential function — the heat semigroup {e‘tA} +>p» Where A is a positive
definite linear operator, plays similarly an indispensable role in Mathemat-
ics and Physics, not the least because it solves the associated heat equation
@+ Au = 0. If the operator A acts in a function space then frequently the
action of the semigroup e~*4 is given by an integral operator, whose kernel
is called then the heat kernel of A.

Needless to say that any knowledge of the heat kernel, for example,
upper and/or lower estimates, can help in solving various problems related
to the operator A and its spectrum, the solutions to the heat equation, as
well as to the properties of the underlying space. If in addition the operator
A is Markovian, that is, generates a Markov process (for exarple, this is
the case when A is a second order elliptic differential operator), then one
can use information about the heat kernel to answer questions concerning
the process itself.

This book is devoted to the study of the heat equation and the heat
kernel of the Laplace operator on Riemannian manifolds. Over 140 years
ago, in 1867, Eugenio Beltrami [29] introduced the Laplace operator for a
Riemannian metric, which is also referred to as the Laplace-Beltrami op-
erator. The next key step towards analysis of this operator was made in
1954 by Matthew Gaffney [126], who showed that on geodesically complete
manifolds the Laplace operator is essentially self-adjoint in L2. Gaffney also
proved in [127] the first non-trivial sufficient condition for the stochastic
completeness of the heat semigroup, that is, for the preservation of the L1-
norm by this semigroup. Nearly at the same time S. Minakshisundaram
[275] constructed the heat kernel on compact Riemannian manifolds using
the parametrix method.

xi
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However, it was not until the mid-1970s when the geometric analysis
of the Laplace operator and the heat equation was revolutionized in the
groundbreaking work of Shing-Tung Yau, which completely reshaped the
area. The culmination of this work was the proof by Li and Yau [258] in 1986
of the parabolic Harnack inequality and the heat kernel two-sided estimates
on complete manifolds of non-negative Ricci curvature, which stimulated
further research on heat kernel estimates by many authors. Apart from
the general wide influence on geometric analysis, the gradient estimates
of Li and Yau motivated Richard Hamilton in his program on Ricci flow
that eventually lead to the resolution of the Poincaré conjecture by Grigory
Perel’'man, which can be viewed as a most spectacular application of heat
kernels in geometry?.

Another direction in heat kernel research was developed by Brian Davies
[96] and Nick Varopoulos [353], [355], who used primarily function-analytic
methods to relate heat kernel estimates to certain functional inequalities.

The purpose of this book is to provide an accessible for graduate students
introduction to the geometric analysis of the Laplace operator and the heat
equation, which would bridge the gap between the foundations of the subject
and the current research. The book focuses on the following aspects of these
notions, which form separate chapters or groups of chapters.

I. Local geometric background. A detailed introduction to Riemannian
geometry is given, with emphasis on construction of the Riemannian measure
and the Riemannian Laplace operator as an elliptic differential operator of
second order, whose coefficients are determined by the Riemannian metric
tensor.

II.  Spectral-theoretic properties. It is a crucial observation that the
Laplace operator can be extended to a self-adjoint operator in L? space,
which enables one to invoke the spectral theory and functional calculus of
self-adjoint operator and, hence, to construct the associated heat semigroup.
To treat properly the domains of the self-adjoint Laplacian and that of the
associated energy form, one needs the Sobolev function spaces on manifolds.
A detailed introduction to the theory of distributions and Sobolev spaces is
given in the setting of R™ and Riemannian manifolds.

III. Markovian properties and maozimum principles. The above spectral-
theoretic aspect of the Laplace operator exploits its ellipticity and symme-
try. The fact that its order is 2 leads to the so-called Markovian properties,
that is, to maximum and minimum principles for solutions to the Laplace
equation and the heat equation. Various versions of maximum/minimum
principles are presented in different parts of the book, in the weak, normal,
and strong forms. The Markovian properties are tightly related to the dif-
fusion Markov process associated with the Laplacian, where is reflected in

1Another striking application of heat kernels is the heat equation approach to the
Atiyah-Singer index theorem — see [12], [132], [317].
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the terminology. However, we do not treat stochastic processes here, leaving
this topic for a prospective second volume.

IV. Smoothness properties. As it is well-known, elliptic and parabolic
equations feature an added regularity phenomenon, when the degree of
smoothness of solutions is higher than a priori necessary. A detailed account
of the local regularity theory in R™ (and consequently on manifolds) is given
for elliptic and parabolic operators with smooth coefficients. This includes
the study of the smoothness of solutions in the scale of Sobolev spaces of
positive and negative orders, as well as the embedding theorems of Sobolev
spaces into C¥. The local estimates of solutions are used, in particular, to
prove the existence of the heat kernel on an arbitrary manifold.

V. Global geometric aspects. These are those properties of solutions
which depend on the geometry of the manifold in the large, such as the
essential self-adjointness of the Laplace operator (that is, the uniqueness of
the self-adjoint extension), the stochastic completeness of the heat kernel,
the uniqueness in the bounded Cauchy problem for the heat equation, and
the quantitative estimates of solutions, in particular, of the heat kernel. A
special attention is given to upper bounds of the heat kernel, especially the
on-diagonal upper bounds with the long-time dependence, and the Gaussian
upper bounds reflecting the long-distance behavior. The lower bounds as
well as the related uniform Harnack inequalities and gradient estimates are
omitted and will be included in the second volume.

The prerequisites for reading of this books are Analysis in R™ and the ba-
sics of Functional Analysis, including Measure Theory, Hilbert spaces, and
Spectral Theorem for self-adjoint operators (the necessary material from
Functional Analysis is briefly surveyed in Appendix). The book can be used
as a source for a number of graduate lecture courses on the following topics:
Riemannian Geometry, Analysis on Manifolds, Sobolev Spaces, Partial Dif-
ferential Equations, Heat Semigroups, Heat Kernel Estimates, and others.
In fact, it grew up from a graduate course “Analysis on Manifolds” that was
taught by the author in 1995-2005 at Imperial College London and in 2002,
2005 at Chinese University of Hong Kong.

The book is equipped with over 400 exercises whose level of difficulty
ranges from “general nonsense” to quite involved. The exercises extend and
illustrate the main text, some of them are used in the main text as lemmas.
The detailed solutions of the exercises (about 200 pages) as well as their
IATEX sources are available on the web page of the AMS

http : //www.ams.org/bookpages/amsip-47

where also additional material on the subject of the book will be posted.
The book has little intersection with the existing monographs on the
subject. The above mentioned upper bounds of heat kernels, which were
obtained mostly by the author in 1990s, are presented for the first time in a
book format. However, the background material is also significantly differer:
from the previous accounts. The main distinctive feature of the foundatior
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part of this book is a new method of construction of the heat kernel on
an arbitrary Riemannian manifold. Since the above mentioned work by
Minskshisundaram, the traditional method of constructing the heat kernel
was by using the parametrix method (see, for example, [36], [37], [51],
[317], [326]). However, a recent development of analysis on metric spaces,
including fractals (see [22], [186], [187], [224]), has lead to emergence of
other methods that are not linked so much to the local Euclidean structure
of the underlying space.

Although singular spaces are not treated here, we still employ whenever
possible those methods that could be applied also on such spaces. This
desire has resulted in the abandonment of the parametrix method as well
as the tools using smooth hypersurfaces such as the coarea formula and the
boundary regularity of solutions, sometimes at expense of more technical
arguments. Consequently, many proofs in this book are entirely new, even
for the old well-known properties of the heat kernel and the Green function.
A number of key theorems are presented with more than one proof, which
should provide enough flexibility for building lecture courses for audiences
with diverse background.

The material of Chapters 1 - 10, the first part of Chapter 11, and Chapter
13, belongs to the foundation of the subject. The rest of the book — the
second part of Chapter 11, Chapters 12 and 14 - 16, contains more advanced
results, obtained in the 1980s -1990s.

Let us briefly describe the contents of the individual chapters.

Chapters 1, 2, 6 contain the necessary material on the analysis in R™
and the regularity theory of elliptic and parabolic equations in R”. They do
not depend on the other chapters and can be either read independently or
used as a reference source on the subject.

Chapter 3 contains a rather elementary introduction to Riemannian ge-
ometry, which focuses on the Laplace-Beltrami operator and the Green for-
mula.

Chapter 4 introduces the Dirichlet Laplace operator as a self-adjoint
operator in L?, which allows then to define the associated heat semigroup
and to prove its basic properties. The spectral theorem is the main tool in
this part.

Chapter 5 treats the Markovian properties of the heat semigroup, which
amounts to the chain rule for the weak gradient, and the weak maximum
principle for elliptic and parabolic problems. The account here does not use
the smoothness of solutions; hence, the main tools are the Sobolev spaces.

Chapter 7 introduces the heat kernel on an arbitrary manifold as the
integral kernel of the heat semigroup. The main tool is the regularity theory
of Chapter 6, transplanted to manifolds. The existence of the heat kernel
is derived from a local L? — L estimate of the heat semigroup, which in
turn is a consequence of the Sobolev embedding theorem and the regularity
theory. The latter implies also the smoothness of the heat kernel.
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Chapter 8 deals with a number of issues related to the positivity or
boundedness of solutions to the heat equation, which can be regarded as an
extension of Chapter 5 using the smoothness of the solutions. It contains the
results on the minimality of the heat semigroup and resolvent, the strong
minimum principle for positive supersolutions, and some basic criteria for
the stochastic completeness.

Chapter 9 treats the heat kernel as a fundamental solution. Based on
that, some useful tools are introduced for verifying that a given function is
the heat kernel, and some examples of heat kernels are given.

Chapter 10 deals with basic spectral properties of the Dirichlet Lapla-
cian. It contains the variational principle for the bottom of the spectrum A1,
the positivity of the bottom eigenfunction, the discreteness of the spectrum
and the positivity of A; in relatively compact domains, and the characteri-
zation of the long time behavior of the heat kernel in terms of A;.

Chapter 11 contains the material related to the use of the geodesic dis-
tance. It starts with the properties of Lipschitz functions, in particular,
their weak differentiability, which allows then to use Lipschitz functions as
test functions in various proofs. The following results are proved using the
distance function: the essential self-adjointness of the Dirichlet Laplacian
on geodesically complete manifolds, the volume tests for the stochastic com-
pleteness and parabolicity, and the estimates of the bottom of the spectrum.

Chapter 12 is the first of the four chapters dealing with upper bounds of
the heat kernel. It contains the results on the integrated Gaussian estimates
that are valid on an arbitrary manifold: the integrated maximum principle,
the Davies-Gaffney inequality, Takeda’s inequality, and some consequences.
The proofs use the carefully chosen test functions based on the geodesic
distance.

Chapter 13 is devoted to the Green function of the Laplace operator,
which is constructed by integrating the heat kernel in time. Using the Green
function together with the strong minimum principle allows to prove the
local Harnack inequality for a-harmonic functions and its consequences —
convergence theorems. As an example of application, the existence of the
ground state on an arbitrary manifold is proved. Logically this Chapter
belongs to the foundations of the subject and should have been placed much
earlier in the sequence of the chapters. However, the proof of the local
Harnack inequality requires one of the results of Chapter 12, which has
necessitated the present order.

Chapter 14 deals with the on-diagonal upper bounds of the heat kernel,
which requires additional hypothesis on the manifold in question. Normally
such hypotheses are stated in terms of some isoperimetric or functional in-
equalities. We use here the approach based on the Faber-Krahn inequality
for the bottom eigenvalue, which creates useful links with the spectral prop-
erties. The main result is that, to a certain extent, the on-diagonal upper
bounds of the heat kernel are equivalent to the Faber-Krahn inequalities.
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Chapter 15 continues the topic of the Gaussian estimates. The main
technical result is Moser’s mean-value inequality for sclutions of the heat
equation, which together with the integrated maximum principle allows to
obtain pointwise Gaussian upper bounds of the heat kernel. We consider
such estimates in the following three settings: arbitrary manifolds, the man-
ifolds with the global Faber-Krahn inequality, and the manifolds with the
relative Faber-Krahn inequality that leads to the Li-Yau estimates of the
heat kernel.

Chapter 16 introduces alternative tools to deal with the Gaussian esti-
mates. The main point is that the Gaussian upper bounds can be deduced
directly from the on-diagonal upper bounds, although in a quite elaborate
manner. As an application of these techniques, some on-diagonal lower es-
timates are proved.

Finally, Appendix A contains some reference material as was already
mentioned above.
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CHAPTER 1

Laplace operator and the heat equation in R”

The Laplace operator in R™ is a partial differential operator defined by
n
82
A=) 3
= oz,
where 21, ..., £, are the Cartesian coordinates in R™. This operator plays a
crucial role in many areas of mathematics and physics. In this Chapter we

present some basic facts about the Laplace operator and the associated heat
equation to motivate a similar study on manifolds.

1.1. Historical background

The Laplace operator came to Mathematics from Physics.

Laplace equation. Pierre-Simon Laplace discovered in 1784-85 that a
gravitational field can be represented as the gradient of a potential function
U (z), and that this function satisfies in a free space the equation AU =
0. This equation is referred to as the Laplace equation. The gravitational
potential of a particle placed at the origin o € R® is given by U(z) = _—l%l

where m is the mass of the particle. It is easy to verify that Al—ﬂlv—l =0 in

R3\ {0} whence AU = 0 follows. The potential of a body located in an open

set Q C R3 is given by
d
Ulz) = ~/ p(y) y
oz -yl
where p is the mass density of the body. Then it follows that AU(z) = 0
outside ).
Heat equation. Fourier’s law of heat conductivity (“Théorie analytique

de la chaleur”!, 1822) implies that the temperature u (t,z) at time ¢t and
point z € R? satisfies the heat equation

ou
E = :ICAU,

in any region that is free of sources and sinks of the heat (here k > 0 is the
coefficient of heat conductivity).

b The analytic theory of heat”
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Wave equation. It follows from Maxwell’s equations (“Ireatise on Elec-
tricity and Magnetism”, 1873), that each component u = u (t,z) of an elec-
tromagnetic field satisfies the wave equation,

oy,

— = c*Au,

ot?
in anyv region that is free of charges and currents (here c is the speed of
light). The wave equation appears also in other physical phenomena related
to wave propagation.

Diffusion equation. Albert Einstein suggested a mathematical explana-
tion of the Brownian motion in his paper “Uber die von der molekulakinetis-
chen Theorie der Warme gefoderte Bewegung von in ruhenden fliissigkeite
suspendierten Teilchen”? published in Annalen der Physik, 1905. He showed
that the density u (¢,z) of the probability that the particle started at the
origin o € X3 reaches the point z in time ¢ satisfies the diffusion equation

ou
5{ = DA'LL

(here D > 0 is the diffusion coefficient). Using this equation, Einstein
predicted that the mean displacement of the particle after time ¢ was vV4.Dt.
The latter was verified experimentally by Jean Perrin in 1908, for which he
was honored with the 1926 Nobel Prize for Physics. That work was a strong
argument in favor of the molecular-kinetic theory and thereby confirmed the
atomic structure of matter.

Schrédinger equation. In 1926, Erwin Schridinger developed a new ap-
proach for describing motion of elementary particles in Quantum Mechanics.
Developing further the idea of Louis de Broglie that the motion of a par-
ticle is governed by the wave function (¢, z), Schrédinger formulated the
following equation describing the dynamic of the wave function of a spin-less
particle:

oY k2

thsr = zmAw + U1,
where m is the mass of the particle, U is the potential field, # is the Planck
constant, and i = v/—1. He then applied this equation to the hydrogen
atom and predicted many of its properties with remarkable accuracy. Erwin
Schrodinger shared the 1933 Nobel Prize for Physics with Paul Dirac.

1.2. The Green formula

The Laplace operator appears in many applications (including all the
physical laws) through the Green formula, which is a consequence of the
divergence theorem. Let §2 be a bounded open subset of R® with smooth

240n the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat”
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boundary. Then the divergence theorem says that, for any vector field F
that is C! in 2 and continuous in Q,

F.vdo= / div F dz, (1.1)
o Q

where o is the boundary area on 99 and v is the outward normal unit vector
field on 892,

For any continuous function f defined in an open subset 2 of R™, define
its support by

supp f = {z € Q: f(z) # 0}, (1.2)
where the closure is taken in Q. If u,v € C!(Q) and one of the supports
of u and v is compact then the following integration-by-parts formula takes

place:
ou ov
et __ —d 1.
A 8mkvd$ Quaxk z, (1.3)
which follows from (1.1) for F = uveg, where e is the unit vector in the

direction of the axis zy.
If u,v € C% () and one of the supports of u and v is compact then the
following Green formula takes place:

/uAvdmz—/Vu-Vv da:=/Auvda:, (1.4)
Q Q Q

which follows from (1.1) for F = uVv and F = vVu. Alternatively, (1.4)
follows easily from (1.3):

i Ou Ov
/uAvd:v Z/ E)xk __;/5—50_% r = /Vu Vv dz.

Exercises.
1.1. Denote by S (z) the sphere of radius » > 0 centered at the point z € R™, that is
Se(z)={y€R": |z —y|l=r}.

Let o be the (n — 1)-volume on S (z), and note that o (S, (z)) = w,r""! where wn, is the
area of the unit (n — 1)-sphere in R”. Prove that, for any f € C* (R") and for all z € R™,

m(/s;(x)fda)—f(w)*Af(x)E;;—i-o(r) asr — 0. (1.5)
1.2. Denote a round ball in R™ by
Br(z)={yeR":|z~y| <R}

and note that its volume is equal to ¢, R™ where ¢, is the volume of the unit ball in R™.
Prove that, for any f € C? (R™) and for all z € R",

cn]‘én </Bﬁ(m)f(y)dy> - f(=)= (w)Z( +2) +35(R?) asR-s0. (1.6)
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1.3. The heat equation

Our main subject will be the heat equation

ou
oU _ A
g o

where u = u(t,z), ¢ varies in an interval of R, and z € R™. According to the
classification theory of partial differential equations, the Laplace operator
belongs to the family of elliptic operators, whereas the heat operator a% - A
belongs to the family of parabolic operators. The difference between these
families manifests in many properties of the equations, in particular, which
boundary and initial value problems are well-posed.

One of the most interesting problems associated with the heat equation
is the Cauchy problem (known also as the initial value problem): given a
function f(z) on R™, find u(¢, z) such that

{% =Au  inRy xR (1.7)

ult:O = f)

where the function u is sought in the class C?(R; x R") so that the heat
equation makes sense. The exact meaning of the initial data uli=g = f
depends on the degree of smoothness of the function f. In this section, we
consider only continuous functions f, and in this case u|:=g = f means, by
definition, that u (¢,z) — f (z) as t — 0 locally uniformly in z. Equivalently,
this means that the function u (¢, z), extended to ¢ = 0 by setting « (0,z) =
f (z), is continuous in [0,00) x R™.

We investigate here the existence and uniqueness in the Cauchy problem
in the class of bounded solutions.

1.3.1. Heat kernel and existence in the Cauchy problem. The
following function plays the main role in the existence problem:

1 jz?
pi(z) = (arty2 exp <—4—t) ; (1.8)

where ¢t > 0 and z € R™. The function p; (z) is called the Gauss- Weierstrass
function or the heat kernel (see Fig. 1.1 and 1.2).
The main properties of the heat kernel are stated in the following lemma.

LEMMA 1.1. The function p: (z) is C* smooth in R+ x R™, positive,
satisfies the heat equation

- = Ap, (1.9)
the identity
/ pe(z)dz = 1, (1.10)
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FIGURE 1.1. The graphs of the function z — p; (z) in R for
t =1 (thin), ¢ = 3 (medium), and t = 9 (thick).

—_— -

FIGURE 1.2. The graphs of the function ¢ — p; (z) in X I:=
z =0 (left) and z = 1 (right)

and, for any r > 0,

/ pi(z)dr — 0 ast— 0. Iz
{lz|>r}

Teetmmex Te -

PrOOF. The smoothness and positivity of p; (z) are chvic=s I- s zas
to verify the equation (1.9) using the function

n ir®
u(t,z) :=logp: (z) = —Elogt— o XM=

Differentiating the identity p; = €%, we obtain

Op: _ Ou , &%y [P -
o~ ot ™ m T \am T =,
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Denoting by Vuthe gradient of u, that is

ou ou
Vu = (5-:1:—1, ey —3711) 3

we see that the equation (1.9) is equivalent to

o
5% = Au+ |Vul. (1.12)
Computing the derivatives of u,
ou_ _n o
ot 2t 42
" of
_n 1 2 |z
Ay = 57 Vu = T (15 s Zn), |Vul® = e
we obtain (1.12).
To prove (1.10), let us use the identity
00
/ e~ ds = T (1.13)
-0

(cf. Example A.1), which implies by a change in the integral that
(o.0]
/ e~/ dg = \/dnt.
-0

Reducing the integration in R™ to repeated integrals, we obtain

I%“I"‘"“‘_m%‘

1
/Rn pi(z)dzr = ———~—(47rt)n/2 /}R“ exp <—————————4t > dzy - - - doy,
1 e xﬁ
= _—(47rt)”/2 I;E[l/l;exp (—E> dzxy

= (47;)”/2 ( 47rt>n
= 1.

Finally, to verify (1.11), let us make the change y = t~1/22 in the integral
(1.11). Since dy = t~™/2dx, the factor t~™/? cancels and we obtain

1 2
z)dz = ——/ e W/ Agy, 1.14
/{Izl>r}pt( : (4m)™2 Jpyi> =120 v (1.14)

Since the integral in the right hand side is convergent and t~Y/?r — 0o as
t — 0o, we obtain that it tends to 0 as t — co, which was to be proved. 0O

REMARK 1.2. It is obvious from (1.14) that, in fact,

2
/ pe(2)dz < const exp (_r_) ,
{lz|>r} ot

so that the integral tends to 0 as ¢t — 0 faster than any power of t.
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For any two continuous functions f, g in R™, their convolution f * g is
defined by

fro@=[ fa-vswa

provided the integral converges for all x € R™. It turns out that the Cauchy
problem can be solved by taking the convolution of the heat kernel with the
initial function f.

THEOREM 1.3. If f is a bounded continuous function in R™ then the
following function
u(t,z) =pe* f (z) (1.15)
is O smooth in Ry x R™, satisfies the heat equation
Ou

?9—t—=A'LL

and the initial data uli—g = f in the sense that
u(t,z) = f(z) ast—=0 (1.16)

locally uniformly i x. Moreover, the function u is bounded and, for allt > 0
and z € R",
inf f <wu(t,z) <supf. (1.17)

PROOF. By the definition of the convolution, we have

2
wha)= [ ne-vi@a=[ pew (—'g’—gjf'—)f(wdy.

(1.18)
The function (¢, z) — p; (x — y) is infinitely smooth in Ry x R™ whence the
same property of u follows from the fact that we can interchange the order of
differentiation in ¢ and z and integration in (1.18) (note that the integral in
(1.18) converges locally uniformly in (¢, z) and so does any integral obtained
by differentiation of the integrand in ¢ and z, thanks to the boundedness of
f)- In particular, using (1.9) we obtain

5 ~du= /Rn (% - A) pi(z —y)f(y)dy = 0.

Let us verify (1.16). Using the identity (1.10), we can write
ut.a)~ 1@) = [ pe-0)f@dy= [ me—-1)f@y
~ [ a0 - fa)dy

Since f is continuous at z, for any € > 0 there exists § > 0 such that
ly —z| <d=|f(z) - fly)l <e.
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Furthermore, since f is locally uniformly continuous, the same 6 can be
chosen for all x varying in a bounded set. Then we have

/ (@ — 1) () — F())dy
{ly—=|<d}

and, changing z =z — y,

/ pelz — ) (f) — F(2))dy
{ly—=z|>8}

The right hand side in the last integral tends to 0 as ¢t — 0 by (1.11). Hence,
we conclude that

[ nle =)0 - ey - 0as £ 50,

and the convergence is local uniform in z, which proves (1.16).
Finally, the positivity of the heat kernel and (1.10) imply that

u(z) <supf /Rn pt_(:c —y)dy =sup f

and in the same way u > inf f. ad

Se/ plz—y)dy=c¢
Rn

<2sup]f[/ pi(z)dz.

IZI>5}

REMARK 1.4. It is clear from the proof that if f (z) is uniformly contin-
uous in R™ then u (¢,z) — f (z) uniformly in z € R™.

Exercises.

The next two questions provide a step-by-step guide for alternative proofs of Lemma
1.1 and (a version of) Theorem 1.3, using the Fourier transform. Recall that, for any
function u € L* (R™), its Fourier transform 7 (£) is defined by

z(§) = /Rn ey (z) da.

Using the Plancherel identity, the Fourier transform extends to all u € L? (R™).
In all questions here, p¢ (z) is the heat kernel in R™ defined by (1.8).

1.3. Prove the following properties of the heat kernel.

(a) For allt >0 and £ € R",

(o) = eI, (1.19)

(b) fgn Pt (z)dz =1.

(¢) For all t,5 > 0, pt * ps = pe+s.

(c) % = Ap..
1.4. Fix a function f € L? (R™) and set us = p: * f for any t > 0. Prove the following
properties of the function u;.

(a) B (§) = " F ().

(b) us (z) is smooth and satisfies the heat equation in Ry x R™.

(©) |luellze < |Ifllpe for all £ > 0.

(d) u(t,z) = f(z) as t — 0 in the norm of L* (R™).

(e) If f € L* (R™) then u (t,z) — f (z) as t — 0 uniformly in z € R™.

1.5. Prove the following properties of the heat kernel.
(a) For any € > 0, p: (x) — 0 as t — O uniformly in {z : |z| > &}.
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(b) pt(x) = 0 as £ — co uniformly in ¢ € (0, +00).
(c) For any € > 0, p: (¢) is continuous in {z : |z} > £} uniformly in ¢ € (0, +00).

1.3.2. Maximum principle and uniqueness in the Cauchy prob-
lem. The uniqueness in the bounded Cauchy problem will follow from the
mazimum principle, which is of its own interest. Let U C R™ be a bounded
open set. Fix some positive real T and consider the cylinder I" = (0,T) x U
as a subset in R”*. The boundary 8T can be split into three parts: the top
{T} x U, the bottom {0} x U and the lateral boundary [0,T] x U (where
0U is the boundary of U in R"). Define the parabolic boundary 8,I" of the
cylinder T" as the union of its bottom and the lateral boundary, that is

OpI" := ({0} x U) U ([0, T] x 8U)
(see Fig. 1.3). Note that 8,I" is a closed subset of R**1.

HT o' butnot OpI"
T

B T~ ar :
ol

Rn

F1Gure 1.3. The parabolic boundary 8,I' contains the bot-
tom and the lateral surface of the cylinder I', but does not
include the top.

LEMMA 1.5. (Parabolic maximum principle) If u € C2(I') N C (I_‘) and

ou
— <03
5 Au<0m?T
then
SUp % = Sup u. (1.20)
T 8,T

In particular, ifu <0 ondpl thenu <0 inT.
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By changing u to —u, we obtain the minimum principle: if
Ou

a—t—Au?_OinI‘

then

inf u = inf u.
T 8T

In particular, if u solves the heat equation in I' then the maximum and
minimum of v in I' are attained also in §,T.

PrOOF. Assume first that « satisfies a strict inequality in I':

ou

By slightly reducing T, we can assume that (1.21) holds also at the top of
I'. Let (to,z0) be a point of maximum of function u in I'. Let us show that
(to, o) € 8pI', which will imply (1.20). If (t9,x0) ¢ 8,0 then (to,zo) lies
either inside I' or at the top of I'. In the both cases, zp € T" and ¢ty > 0.
Since the function z — u (tg, z) in U attains the maximum at z = z¢, we
have

0%u

Bw?

whence Au (tg, g) < 0.

(to,zp) <Oforall j=1,...,n

FIGURE 1.4. The restriction of u(t,z) to the lines in the
direction z; and in the direction of ¢ (downwards) attains
the maximum at (tg, zo).

On the other hand, the function ¢ — (¢, z) in (0, tp] attains its maxi-
mum at t = £y whence

ou
= >
5 (to,x0) = 0
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(if tp < T then, in fact, % (o, zo) = 0). Hence, we conclude that

contradicting (1.21).
Consider now the general case. Set u, = u — €t where ¢ is a positive

parameter. Clearly, we have

Ou, Ou
5 — Ay = (Q—Au) —e<0.

Hence, the previous case applies to the function u., and we conclude that

sup (u — et) = sup (u — €t) .
r &1

P

Letting € — 0 we obtain (1.20). a

REMARK 1.6. The statement remains true for a more general operator
9 N, 8
Z A=\
ot Z 7z N ’
=1

where b; are arbitrary functions in T'. Indeed, the first order terms vanish
at the point (¢p,z) because % (to,z0) = 0, and the proof goes through
unchanged.

Now we can prove the uniqueness theorem.

THEOREM 1.7. For any continuous function f (x), the Cauchy problem
(1.7) has at most one bounded solution u(t,x).

Proor. It suffices to prove that if u is a bounded solution to the Cauchy
problem with f = 0 then u = 0. Compare u to the function

v(t,z) = |z|? + 2nt,

which is non-negative and obviously satisfies the heat equation

% -~ Av =0.

Fix € > 0 and compare u and ev in a cylinder I = (0,7) x Bg. At the
bottom of the cylinder (that is, at £ = 0) we have u = 0 < ev. At the lateral
boundary of the cylinder (that is, at |z| = R) we have u(z) < C where
C := sup |ul, and ev(z) > eR?. Choosing R so big that eR? > C, we obtain
that u < ev on the lateral boundary of T.

Hence, the function u —ev satisfies the heat equation in " and u—ev < 0
on the parabolic boundary 8,I". By Lemma 1.5, we conclude that u—ev < 0
inT. Letting R — oo and T — 0o we obtain u—ev < 0 in Ry x R”. Letting
€ — 0, we obtain u < 0. In the same way u > 0, whence u = 0. O
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h?

il B

; u=0<ev
Br 0

Rn
F1GURE 1.5. Comparison of functions u and ev on §,I"

‘REMARK 1.8. In fact, the uniqueness class for solutions to the Cauchy
problem is much wider than the set of bounded functions. For example, the
Tikhonov theorem says that if w (¢, z) solves the Cauchy problem with f =0
and

[u(t,2) < Cexp (Claf?)

for some constant C' and all £ > 0, 2 € R, then u = 0. We do not prove
this theorem here because it will easily follow from a much more general
result of Chapter 11 (see Corollary 11.10).

Theorems 1.3 and 1.7 imply that, for any bounded continuous function
f, the Cauchy problem has a unique bounded solution, given by p; x f. Let
us show an amusing example of application of this result to the heat kernel.

ExAMPLE 1.9. Let us prove that, for all 0 < s < ¢,
Di—s * Ds = Dt- (1.22)

(cf. Exercise 1.3). Let f be continuous function in R"™ with compact support.
By Theorem 1.3, the function us = py* f solves the bounded Cauchy problem
with the initial function f. Consider now the Cauchy problem with the
initial function us. Obviously, the function u; gives the bounded solution to
this problem at time ¢ — s. On the other hand, the solution at time ¢t — s is
given by p;—, * us. Hence, we obtain the identity

Ut = Pt—s * Us,

that is
pt*f:pt—s*(ps*f)‘
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By the associative law of convolution (which follows just by changing the
order of integration), we have

Dt—s * (ps * f) = (pt—-s *ps) * f,
whence
pe*f= (pt—s *ps) * f.
Since this is true for all functions f as above, we conclude that p; = pr_s*ps.

Naturally, this identity can be proved by a direct computation, but such
a computation is not very simple.

Exercises.

1.6. (Elliptic mazimum principle) Let  be a bounded open set in R”, and consider the
following differential operator in §2

L= A+zb (a:)

j=1
where b; are smooth bounded functions in Q.
(a) Show that there exists a function v € C* (Q) N C (Q) such that Lv > 0 in Q.
(b) Prove that if u € C*(2) N C () and Lu > 0 in §2 then

sup U = SUp U.
aQ

1.7. Evaluate the bounded solution u (¢, z) of the Cauchy problem with the initial function
f (z) = exp(—|z|?).

Notes

The material of this Chapter is standard and can be found in many textbooks on
partial differential equations — see for example, [38], [118], [121], [130], [243].



CHAPTER 2

Function spaces in R"

We have collected in this Chapter some properties of distributions and
Sobolev spaces in R™ mostly related to the techniques of mollifiers. The
knowledge of the Lebesgue measure, Lebesgue integration, and Hilbert spaces
is assumed here. The reader is referred to Appendix A for the necessary
background.

The full strength of the results of this Chapter will be used only in
Chapter 6 in the regularity theory of elliptic and parabolic equations.

For the next Chapter 3, we will need only the material of Section 2.2
(the cutoff functions and partition of unity). In Chapter 4, we will introduce
distributions and Sobolev spaces on manifolds, where the understanding of
similar notions in R™ will be an advantage. At technical level, we will need
there only the material of Section 2.3 (in fact, only Corollary 2.5). Chapter
5 does not use any results from the present Chapter.

Sections 2.1-2.6 are self-contained. Section 2.7 is somewhat away from
the mainstream of this Chapter (although it depends on the results of the
preceding sections) and can be considered as a continuation of Chapter 1.
Also, it provides a certain motivation for the L2-Cauchy problem on man-
ifolds, which will be considered in Section 4.3. Technically, the results of
Section 2.7 are used to prove the embedding theorems in Chapter 6, although
alternative proofs are available as well.

2.1. Spaces C* and L?

Let z',...,z™ be the Cartesian coordinates in R". We use the following
short notation for partial derivatives:

and, for any multiinder a = (ay, ..., @),

gled
© (0x1)% (822)*2 ... (Oz™) "
where |a| := og + ... + o, is the order of the multiindex. In particular, if
@ =0 then 8% = .
For any open set @ ¢ R™, C(Q) denotes the class of all continuous
functions in Q, and C* () denotes the class of all functions f from C ()
such 9°f € C(Q) for all |a| < k (here k is a non-negative integer). Let

15

5° = 9198, 0n, (2.1)
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C* (f2) be the intersection of all C* (Q), and C$° (Q2) be the subspace of
C™ (92), which consists of functions with compact support in Q.
The sup-norm of any function u € C () is defined by

flulloq) = sup Jul,
Q

and the Ck-norm of u € C* () is defined by

= 0%ul .
llullcr (o) ﬂ%sgpl ul

Despite the terminology, |jufjcx(q) is not a norm in C* (Q) because it may

take the value co. In fact, the topology of the space C* (Q) is defined by the
family of seminorms ||ul|cr(qy Where € is any open subset of Q such that
' € Q. The relation E € Q (compact inclusion) means that the closure E
of the set F is compact and E C Q.

Denote by p the Lebesgue measure in R™. By “a measurable function”
we always mean a function measurable with respect to measure y. For any
open set  C R™, LP () stands for the Lebesgue space LP (Q,u), 1 <p <
oo (see Section A.4.5). The local Lebesgue space LY () is the set of all
measurable functions f in 2 such that f € LP (') for any open set ' € Q.
Clearly, Lfo . (Q) is a linear space, and it has a natural topology, defined by
the family of seminorms || || z» () Where €' runs over all open sets compactly
contained in ).

If V and W are two linear topological spaces then an embedding of V' to
W is a linear continuous injection V' — W. We will apply this notion when
V,W are spaces of functions on the same set and a natural embedding of V'
to W is obtained by identifying functions from V as elements from W. In
this case, we denote the embedding by V<— W and will normally consider
V as a subspace of W (although, in general, the topology of V is stronger
than that of W).

Obviously, we have the embeddings

Ck(Q) =C(Q) — LZ(Q).

For another example, let ) be an open subset of 2. Any function from
f € LP (§Y) can be identified as a function from L? () just by setting f =0
in Q\ . Since this mapping from L? (V') to LP (Q) is injective and bounded
(in fact, norm preserving), we obtain a natural embedding L? (') — L? (£2).
One can, of course, define also a mapping from L? (Q2) to LP (V') just by
restricting a function on 2 to . Although this mapping is bounded, it is
not injective and, hence, is not an embedding.

Cram. L} (Q)<—=Li, () for any p € [1, +o].

loc
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PrOOF. Indeed, for all f € L?
inequality

i/p
s = [ 110w (@) ([ 1Pde) =il

(2.2)
where C = u (& )1_1/ P < oo (strictly speaking, the above computations
is valid only if p < oo, but the case p = oo is trivial — cf. Exercise 2.1).
Therefore, any function from L? _(£2) belongs also to L}, (), which defines
a natural linear injection from L (Q) to L}, (), and this injection is
continuous by (2.2). O

() and ¥ € Q, we have by the Holder

loc

It follows that all the function spaces considered above embed into
loc (Rn)
Exercises.

2.1. Prove that LY

loc

Q) = LY (@) foralll <p<g< +oo.

2.2. Let {fx} be a sequence of functions from L? (2) that converges to a function f in L?
norm, 1 < p < co. Prove that if fi > 0 a.e. then also f > 0 a.e..

2.2. Convolution and partition of unity

The purpose on this section is to approximate functions from L' and
L} . by smooth functions. The main technical tool for that is the notion of
convolution. Recall that, for any two measurable functions f, g on R®, their
convolution f * g is defined by

=/Rnf(x—y)g(y)d#(y), (23)

provided the integral converges in the Lebesgue sense. Note that the function

f (z —y) ¢ (v) is measurable as a function of z,y and, by Fubini’s theorem,

if the above integral converges then it defines a measurable function of z.
Denote by B, (z) the ball of radius r centered at z, that is,

Br(z)={y eR": |z —y| <r}.
LemMa 2.1. If f € L} (R") and ¢ € C§°(R™) then the convolution
f * @ belongs to C*® (R™) and, for any multiindez o,
0% (fxp)=f*0%. (2.4)
Also, if supp p C B, (0) then supp (f * @) is contained in the r-neighborhood
of supp f.

ProOOF. Assuming that supp ¢ C B, (0) and changing z = 2 —y in (2.3),
we obtain

frol /fz)so(:c—z)dZ—/Br(x)f(Z)so(x—z)dZ- 2.5)
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Since f € L' (B, (z)) and ¢ is bounded, we see that the integral in the right
hand side converges for all z. If z is away from the r-neighborhood of supp f
then B, (z) and supp f are disjoint, whence it follows that f * ¢ (z) = 0,
which proves the second claim of Lemma 2.1.

Let us show that f * ¢ is continuous. If 2 is close enough to z, namely,
|z — 2’| < r then we have

f*cp(x’):/ f(z)go(x’—z)dz:-f f(z)p (2 - z) de.
Br(z) Bar(z)
Since f is integrable in Ba, (z) and ¢ (2’ — 2) = ¢ (z — 2) as 2’ — z, we can
pass to the limit in the above integral and obtain that fx¢ (z') = f*¢ (z).

Let us show that the derivative 8; (f * ¢) exists and is equal to f * d;¢p.
If h is a non-zero vector in the direction 27 then we have

f*(p($+h>—f*(p($)= f(z)cp(:c—kh—z)—go(a:—z)dz'
A R |A]
Again, if |h| is small enough then the integration can be restricted to z €
By, (). Since f is integrable in this ball and
p(a+h—2)=p(s—2)
[h]

as h — 0, we can pass to the limit under the integral and conclude that

i LX P& +R) — fro(a)

= djp (z — 2)

8 (f+¢)(@) = lim i
- [ f@0pe-2)ds
= f*0;p(x).
Applying the same argument to f * 0;¢ and continuing by induction, we
obtain (2.4) for an arbitrary « and f *p € C® (R™). d

We say that a function ¢ € C§° (R™) is a mollifier if suppp C B (0),
¢ >0, and

/ wdp = 1. (2.6)
For example, the following function
_ 1
p(z)=1{ °FP ( (|m|2—1/4)§> =l < 1/2 (2.7)
0, lz| > 1/2

is a mollifier, for a suitable normalizing constant ¢ > 0 (see Fig. 2.1).
If ¢ is a mollifier then, for any 0 < € < 1, the function
x

e =g " (E)

is also a mollifier, and supp ¢ C B, (0).
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o

0.25 05

05

FIGURE 2.1. The mollifier (2.7) in R.

THEOREM 2.2. (Partition of unity) Let K be a compact subset of R™
and {Uj};?:1 be a finite family of open sets covering K. Then there ex-
ist non-negative functions ; € C§° (U;) such that 3 . ¢; =1 in an open
neighbourhood of K and 3. ¢; <1 in R™.

Such a family of functions ¢; is called a partition of unity at K subor-
dinate to the covering {U;}.

PRrOOF. Consider first the case when the family {U;} consists of a single
set U. Then we will construct a function ¥ € C§° (U) such that 0 < <1
and ¢ = 1 in an open neighbourhood of K. Such a function ¥ is called a
cutoff function of K in U.

Let V be an open neighborhood of K such that V' € U, and set f = 1y.
Fix a mollifier . Since f € L' (R™), by Lemma 2.1 we have f x o, €
C* (R™). If ¢ is small enough then f * ¢, is supported in U so that f . €
C§° (U). Clearly, f * . > 0 and

frpee) <swlfl [ pel)dy=splfi=1

Finally, if £ is small enough then, for any z € K, we have B.(z) C V,
whence f|p,(;) = 1 and

f*%(w):/B()f(z)ws(m—z)dz=/3 we (z — 2)dz=1.

e (z)
Hence, the function 1 = f * ¢ satisfies all the requirements, provided ¢ is
small enough.
Consider now the general case of an arbitrary finite family {U;}. Any
point z € K belongs to a set U;. Hence, there is a ball B, centered at
and such that B, € U;. The family of balls {B;}, . obviously covers K.
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Select a finite subfamily with the same property, say {Bz,}, and denote by
V; the union of those balls By, for which Bz, € U; (see Fig. 2.2).

o

L —=
Z
Set V; is the k
union of balls

FIGURE 2.2. Function ¥, is a cutofl function of Vj in Uj.

By construction, the set V; is open, V; € Uj, and the union of all sets
V; covers K. Let 4; be a cutoff function of V; in Uj, and set

01 =1, pa=Po (L ~U1), o0y P& = Ve (L =1) .. (1 — hg_1).
Obviously, ¢; € C§° (U;) and ¢; > 0. 1t is easy to check the identity

1—Z@j=(1—¢1)---(1“¢k)a (2.8)

which, in particular, implies » ¢; < 1. Since 1 —1; = 0 on V}, (2.8) implies
also that > ;%5 =1 on the union of sets V; and, in particular, on K. i

2.3. Approximation of integrable functions by smooth ones

THEOREM 2.3. For any 1 < p < oo and for any open set & C R",
C8° (Q) is dense in LP (), and the space LP (§2) is separable.

PRrROOF. We need to show that any function f € L? (Q) can be approx-
imated in LP norm by a sequence of functions from Cg° (). Recall that a
simple function in € is a linear combination of the indicator functions 1z
where E C ) is a measurable set with finite measure. Since the class of sim-
ple functions in dense in LP (Q) (see Section A.4.3), it suffices to prove the
above claim in the case f = 1g. By the regularity of the Lebesgue measure
(see Section A.4.1), for any € > 0 there exist a compact set K and an open
set U C Q such that

KCECU,

and
pU) < p(K)+e
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Let ¢ € C§° (U) be a cutoff function of K in U. Then ¢ =1 =15 on K,
¥ = 1g = 0 outside U, whereas in U \ K we have |1g — 9| < 1. Therefore,

T =/ g — P du < p(U\K) <e,
Q

which settles the first claim.
To prove the separability of L (), consider the following functions in
L? (Q):

k
> ailg, (2.9)
=1

where k is & positive integer, «; are rationals, and @); are disjoint open boxes
in  with rationals coordinates of the corners!. Clearly, the family of all such
functions is countable. Let us show that this family is dense in L? (Q2), which
will prove the separability. As in the first part, it suffices to prove that, for
any measurable set F C Q) of finite measure, the indicator function 15 can
be approximated in L? norm by functions (2.9).

Let ¢, K,U be as in the first part of the proof. Fix a rational 6 > 0 and
consider the lattice 4Z™, which induces the splitting of R™ into the cubes of
the size 6. Let @1, ..., @ be those (open) cubes that are contained in Q. If
6 is small enough then the closed cubes @1, ..., Q; cover the compact set K.
Hence,

k k
p(K) <Y (@) =) #(@)<p),
i=1 i=1

whence it follows that

k
e — Z 1Q¢”I[),p <g,
i=1
which finishes the proof. O

Mollifiers allow to construct smooth approximations to integrable func-
tion with additional properties. The following lemma has numerous exten-
sions to other functional classes (cf. Lemma 2.10, Theorems 2.11, 2.13, 2.16,
and Exercise 2.18).

LEMMA 2.4. Let ¢ be a mollifier.

(1) If f is a uniformly continuous function on R™ then fx . = f as
e—=0. If fe C(R") then f*xp. — f as e — 0 locally uniformly.
(i3) If f € L* (R™) then also f *x ¢ € L' (R™) and
LYURP
—

Froe TED 7 ase 0. (2.10)

IHere 2 box in R™ is a set of the forma I X ... X I, where each I is a bounded open
interval (ax,bx) C R. We choose the boxes with rational ax, b.
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(ii1) If f € L} . (R™) then

loc

L} (R™
I * e lﬂ)f as € — 0.

PRrROOF. (i) We have

frpe(z)—flz) = /B(O)f(:v—y)cpe(y)dy—f(w)/ ve (y) dy

{0
=/ (f @ ~y) - f (@) pe () dy.
B.(0)

The uniform continuity of f yields

sup  |f(z—y)—f(z)] =0 ase—0,
z€R",|yl<e

which implies f * . = f.
If f € C(R") then f(z) is uniformly continuous on compact sets, and
the same argument works when z varies in a compact set rather than in R™.
(1) Using Fubini’s theorem and (2.6), we obtain

|f*p(2)lde < 1fl(z~v)e(y)dy | dz
e o U )
= /n</mn§f|(w—y)dw)<ﬁ(y)dy

= |l
that is,

If*ellze < e (2.11)
By Theorem 2.3, C§° (R") is dense in L* (R™). Hence, for a given § > 0,
there exists g € C§° (R™) such that ||f — g||,1 < § (in fact, we need only
that g is a continuous function with compact support). Then we have

I1f % 0e = fllzs SNf % e — g% wella + lg % 0e — gllzr +llg = fllzr-

Using (2.11), we obtain

If *0e = gx el =1 (f = 9) * el SN — gl <6,

whence
If *we — fllzr < llg*we — gllr + 26. (2.12)

By part (i), we have g * ¢, =3 g as ¢ — 0. Obviously, supp (g * e) is
contained in the e-neighborhood of supp g, which implies

i
g*Pe — G-
Hence, (2.12) yields
limsup || f * e — fllr1 < 29,
e—0
and, since § > 0 is arbitrary, we obtain (2.10).

(i31) It suffices to prove that, for any bounded open set 2 C R”, fx¢, —
f in L' (Q). Let € be the 1-neighborhood of Q and set g = 1g, f. Then
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g € L' (R™) and, by part (¢1), we have g* ¢ — g in L' (R®). Since f = ¢
in 2; and supp ¢, C B (0), we obtain that f x ¢, = g *x ¢, in Q. Therefore,

we conclude that f* p. — fin L' (Q). . O
COROLLARY 2.5. For any open set Q C R™, if f € L (Q) and
/ fopdp =0 for any ¢ € C§°(Q), (2.13)
Q

then f =0 a.e. in Q.

PROOF. Let ¢ be a mollifier and fix an open set & € Q. Ife > 0 is
small enough then, for any z € €/, the function ¢, (z — <) is supported in
B. (z) C Q, which implies by (2.13)

f*%(x)=/Qf(z)gog(m—z)dz=0.

By Lemma 2.4, f * ¢ — f in L} (R™), whence it follows that f = 0 a.e.

loc

in 2. Since ¥ was arbitrary, we conclude f = 0 a.e.in §2, which was to be
proved. 0
Exercises.

2.3. Prove that if f € L™ (R™) and g € L* (R") then f xg € L= (R™) and
1 *gllzee < fifllzeellglze.
2.4. Prove that if f,g € L* (R™) then f*g € L' (R™) and
(1 *gllzr < lifllzellgllzs
2.5. Prove that if f,g,h € L* (R™) then f+g =g+ f and
(Frg)xh=7[x(gxh).
2.6. Prove that if C* (R™) and ¢ € C§° (R™) then, for any multiindex o« with |a| < k&,
0% (fxp) =(0%f) xp.

2.7. Prove that if f € C* (R™) and ¢ is a mollifier in R™ then f* . — f as € — 0 in the
topology of C* (R™).

2.8. Let f € L}, (Q). Prove that f > 0 a.e. if and only if
[ roauzo,
Q

for all non-negative function 1 € Cg° (2).

2.4. Distributions

For any open set 2 C R”, define the space of test functions D (Q) as
follows. As a set, D () is identical to C§° (2) but, in addition, D (Q) is
endowed with the following convergence: a sequence {y} converges to ¢ in
D(Q) if

(1) 8%pr = 8%y for any multiindex «;
(2) all supports supp ¢, are contained in some compact set K C €.
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. D
If these two conditions are satisfied then we will write ¢ -(—QQ @ or

Pk 2, . It is possible to prove that this convergence comes from a certain
topology, which makes D () into a linear topological space®. It is easy to

see that if ¢ N ¢ then also 0%y N 0%p for any multiindex «.

Denote by D’ (2) the dual space to D (), that is, the space of all linear
continuous functionals on D (2). The elements of D’ () are called distribu-
tions in Q. If u € D' (Q2) then the action of u at a test function ¢ € D (Q)
is denoted by (u,y). The bracket (u,) is also referred to as the pair-
ing of a distribution and a test function. The continuity of u means that

(u, px) = (u, ) whenever pj N ®.
Obviously, D’ (Q) is a linear space. We will use the following convergence

in D/ (2): ug Dy uif (ug, ) = (u, ) for any ¢ € D (Q) (this convergence
is associated with the weak topology of D' (Q0))
Any function u € L} _(f) can be identified as a distribution by the

loc
following rule®
(u,p) = /Qucp du for any ¢ € D(Q), (2.14)

where p is the Lebesgue measure. Clearly, ¢ N @ implies (u, @) — (u, @)
so that (2.14), indeed, defines a distribution. If u € L} _(Q) defines by

loc

(2.14) the zero distribution then Corollary 2.5 yields that u = 0 as an

element of L}, (Q2). If a sequence uy converges to u in L} (Q2) then obviously

(uk, @) = (u,¢) for any p € D (), that is, uy 2 Therefore, the relation
(4.1) defines an embedding

Lie () = D' ().

From now on, we will regard L}, (Q) as a subspace of D’ (2). Hence, all

other function spaces C* (2), L (Q), and L} () also become subspaces of
D (Q).

Another example of a distribution is the delta function §,: for any fixed
point z € Q, ¢, is defined by

(02,9) = ¢ (2) forany ¢ € D(Q).

2Any topology determines a convergence, which in this context is called a topological
convergence. However, not every convergence is topological. For example, convergence
almost everywhere is not a topological one. Although the convergence in D is topological,
we never actually need the topology in D and will work only with the convergence.

3The notation (u, ¢) is consistent with the usage of the brackets to denote the inner
product in L?. Hence, if u € L? then (u, ) means both the inner product of u and ¢ and
the pairing of ¢ and ¢ in the sense of distributions. If it is still necessary to distinguish
these notions then we will use (-,-);2 to denote the inner product in L?. For example,
the difference occurs when one considers complex valued functions (which we normally do
not). In this case, (u, )2 = (u,P) where B is the complex conjugate of .
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This example shows that there are distributions that are not obtained from
functions by the rule (2.14). The delta function belongs to a class of distri-
butions that arise from measures. Indeed, any Radon (signed) measure v in
1 determines a distribution by

(v, ) = /ﬂ pdv.

Using the integration by parts formula, we see that, for all u € C! (Q)
and € D (),

/(%U)sodu=—/u5j<pdu.
Q Q

This suggests the following extension of the operator 9; to the space D’ (2):
for any distribution u € D’ (2), define its derivative 9;u € D’ (Q) by the rule

(B5u, ) = — (u, B5p), forall p e D(NQ). (2.15)

Obviously, the right hand side of (2.15) is, indeed, a continuous linear func-
tional on D (2) and, hence, 0;u is defined as an element of D' (2). Now
we can define 8%u for any multiindex o either inductively, using (2.1), or
directly by

(8%, ) = (=1)1 (u,8%), for all p € D(Q). (2.16)

It is worth mentioning that 0 is a continuous operator in D’ () (cf. Exer-
cise 2.13). Clearly, we have 8*6%u = 8%+Py for any u € D' (Q) and for all
multiindices «, (5.

It is a consequence of the definition that all distributions are differen-
tiable infinitely many times. In particular, any function v € Llloc (Q) has all
partial derivatives 0%u as distributions. However, a function can be differen-
tiated also in the classical sense, when Oju is defined pointwise as the limit
of the difference quotient. We will distinguish the two kinds of derivatives
by referring to them as distributional versus classical derivatives. I is clear
from the above definition that if u € C* (Q) then all the classical derivatives
0% of the order |a| < k coincide with their distributional counterparts.

Let us define one more operation on distributions: multiplication by a
smooth function. If u € LZ_(Q) and f € C°° () then we have obviously
the identity

/ (fu) pdp = / u(fy)dp for any ¢ € D(Q).
Q Q

Hence, for a distribution u € D' (Q) and a function f € O (), define a
distribution fu by the identity

(fu, ) = (u, fp) forall p € D(Q).

We say that a distribution u € D' () vanishes in an open set U C Q if
(u,) = 0 for any ¢ € D (U). It is possible to prove that if u vanishes in a
family of open sets then it vanishes also in their union (cf. Exercise 2.10).
Hence, there is a maximal open set in 2 where u vanishes. Its complement
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in  is called the support of u and is denoted by suppu. Clearly, suppwu is
a closed subset of Q. For any function u € L}, (), its support suppu is
defined as the support of the associated distribution u. If u € C(Q) then
this definition of the support is consistent with (1.2) (cf. Exercise 2.11).

Let us state for the record the following properties of distributions (the
proofs are straightforward and are omitted).

CramM. Let u e D' (Q).

(i) For any derivative 3%, we have supp 0%u C supp u.
(12) If 1,02 € D(Q) and @1 = @2 m a neighborhood of suppu then

(u, p1) = (u, p2).
If supp v is a compact subset of €2 then u can be canonically extended
to a distribution in R™ as follows. Let 9 € D (Q) be a cutoff function of a

neighborhood of suppu in €2 (see Theorem 2.2). Then, for any ¢ € D (R"),
the function ¢ belongs to D (), which allows to define (u, ) by

(u, ) = (u,P). (2.17)

Note that if ¢ € D (Q) then ¢ = ¢ in a neighborhood of supp v and, hence,
(u, ) = (u, ). Therefore, the above extension of u is consistent with the
action of u in D (). Also, this extension is independent of the choice of ¥
because if 1’ is another cut-off function then 4 = 4/ in a neighborhood of

supp u, which implies (u, ¥¢) = (u,¥'p).

LEMMA 2.6. Let u be a distribution in Q with compact support and let
v = 0%. Let v and v/ be the canonical extensions of u and v to R™ as
described above. Then v = 0%y’ in R™.

PROOF. In other words, this statement says that the extension operator
commutes with 9%*. It suffices to show that for the first order derivative.
Hence, let us prove that, for any ¢ € D (R"),

W, 059) = = (v 9),
which, in the view of (2.17), amounts to
(u, ¥05¢0) = — (Bju, ¥y) .
We have
— (Byu, ¥p) = (u, 05 ().
and
0; (bp) = (07%) ¢ + PO

Since 9j9 = 0 in a neighborhood of supp« and hence, (u, (8;9) ¢) = 0, we
obtain

(u: 8.7 (Ilplp)) = (U, %6&0) ’
which finishes the proof. 0
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LEMMA 2.7. For any distribution u € D' (Q) and for any open set U €
Q, there exist a positive integer N and a real C > 0 such that, for any
¢ € D(U),
|(u, )] < C max sup|0%p|. (2.18)
lel<N U

PROOF. Assume that (2.18) does not hold for any C and N. Then, for
any positive integer k, there exists ¢ € D (U) such that

(u, k) > k max sup [0%py| .
led<k U
Multiplying @k by a constant, we can assume that (u, ¢%) = 1, which implies

1
g% < =,
ﬁ%’is‘ép‘ er| < %

It follows that, for any «, 0% converges to 0 uniformly on U. Since all

supp wx are contained in U, we conclude that ¢y ENY By the continuity
of u, this should imply (u, %) — 0, which contradicts (u, ¢g) = 1. O

Exercises.

2.9. For a function f on R, denote by fj;,. its distributional derivative, reserving f' for
the classical derivative.
(a) Prove that if f € C* (R) then fl,, = f'-
(b) Prove that the same is true if f is continuous and piecewise continuously differen-
tiable.
(c) Evaluate fg,,; for f (z) = |=|.
(d) Let f = 1jp,400). Prove that fy,, = 6, where § is the Dirac delta-function at 0.

2.10. Let © C R™ be an open set. We say that two distributions u,v € D’ (§2) are equal
on an open subset U C Q if (u, ¢) = (v, p) for all ¢ € D(U).

(a) Let {Qa} be a family of open subsets of Q. Prove that if ¢ and v are equal on each
of the sets €2, then they are equal on their union Uag.

(b) Prove that for any u € D’ (Q) there exists the maximal open set U C Q such that
u=0inT.

REMARK. The closed set 2\ U is called the support of the distribution u and is denoted
by supp u.

2.11. For any function « (z), defined pointwise in Q, set
S(u)={z €:u(z) #0},

where the bar means the closure in Q.

(a) Prove that if u € C (£2) then its support supp u in the distributional sense coincides
with S (u).
(8) If w € L}, (Q) then its support suppu in the distributional sense can be identified
by
suppu= (] 5(v),
v=ya e,
where the intersection is taken over all functions v in 2, defined pointwise, which
are equal to u almost everywhere.
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2.12. Prove the product rule: if u € D' (2) and f € C* (2) then

8% (fuy=> (g) 8°~ f 8u, (2.19)

B«

)= (5)-(x)

is the product of the binomial coefficients, and § < @ means that 8; < o, foralli =1, ..., n.

where

’
2.13. Let {ux} be a sequence of distributions in {2 such that us w)) Uu.

(a) Prove that 0%ux 2y 5%y for any multiindex o.
(b) Prove that fux z, fu for any f € C* ().

2.14. Let X be a topological space. Prove that a sequence {zx} C X converges to z € X
(in the topology of X) if and only if any subsequence of {zx} contains a sub-subsequence
that converges to z.

2.15. Prove that the convergence “almost everywhere” is not topological, that is, it is not
determined by any topology.

2.16. Prove that the convergence in the space D () is topological.

2.5. Approximation of distributions by smooth functions

For any distribution v € D’ (R™) and a function ¢ € D (R"™), define the
convolution u * ¢ as a function in R™ by
(uxop) (@) = (u,p(x~")).
If u € L} _ (R™) then this definition obviously matches the one from Section

loc

2.2 (cf. (2.5)).

LEMMA 2.8. For allu € D' (R™) and ¢ € D(R™), the function u * ¢ is
continuous and, for any ¢ € D(R"™),

(u*p, %) = (u,¢ *p) (2.20)

where ¢’ (z) = ¢ (—x).
PROOF. Let us show that u*¢ is a continuous function. Indeed, ify — =
then obviously
D

ey—")—pz—)

whence we conclude that
(uxp) (@) =(wey—)) — (we—") =(u*rp)(y).

In particular, function u * ¢ can be considered as a distribution, which

validates the left hand side of (2.20).
To prove (2.20), transform the left hand side of (2.20) as follows:

wro)= [ wee-)v@do= [ @o@)d,
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where
®(z,y) =z —-y)¥ ().
CLAM. For any function ® (z,y) € D (Rzn), we have

[ weene=(u] o6am). (2.21)

Using (2.21), the proof of (2.20) is finished by the observation that

[ e@ne=[ /u-2v@d=(/ ).

To prove (2.21), let us approximate the integral of ® by the Riemann sums,
as follows:

— 11 n
/]Rn ®(z,y)dz = ;%kezzn O (ck,y)e™. (2.22)

Since the sum here is, in fact, finite, the both sides of (2.22) belong to
D (R™) as functions of y, and the support of the right hand side is uniformly
bounded for all € > 0. Since |V®| is uniformly bounded, the limit in (2.22)
is uniform with respect to y. Applying the same argument for any derivative
Oy ®, we obtain that the limit in (2.22) can be understood in the sense of
the convergence in D (R™). Therefore, (2.22) implies

u, ®(z,)dz) = ;1_r)n U, Z O (ek,-)e"
n 0

keZn

= lim > (u,®(ek,))e
keZn

/ (u, ® (z,-)) da,
R'n.
which finishes the proof. O

H

The following statement extends Lemma 2.1 to distributions.

LeMMA 2.9. Ifu € D' (R®) and ¢ € D (R") then u x ¢ € C® (R™) and,
" for any multiindez o,
0% (u * @) = (0%u) * © = u * (8%p). (2.23)

If suppp C B, (0) then supp (u * @) is contained in the r-neighborhood of
suppu.

PROOF. Since
suppy (z — ) C B (z),

if  is away from the r-neighborhood of supp » then supp ¢ {z —-) and suppu
~ are disjoint whence w * ¢ (z) = 0, which proves the second claim.
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The second equality in (2.23) is easily proved as follows:

(@) *xp@) = (@up@—) =D @ [p@~)
= (u,(0%) (z —-)) =ux*(8%) (x) .

Before we prove the first equality in (2.23) and the smoothness of u x ¢,
recall that, by Lemma 2.8, u x ¢ € C (R™). For any ¥ € D (R"), we have by
Lemma 2.8

(0% (ux),¥) = (1% (uxp,8%) = (=1)* (u, ' *9*Y) , (2.24)
where the derivative 8% (u * ¢) is understood in the distributional sense. By
Lemma 2.1, we have

¢ * 0% = 0% (¢' *¢),
whence
(=1)% (u, ¢ % 8%Y) = (-1)* (u, 0% (¢ * %)) = (8%, ¢ x¥) = ((8%) x o, ¥) .

Together with (2.24), this proves the first equality in (2.23).

We still need to prove that u * ¢ € C (R™). What we already know is
that u * ¢ is continuous and all its distributional derivatives 8% (u * @) are
continuous as well. The proof will be completed if we prove the following
fact (here 8%t and 8°4¢ stand for the distributional and classical derivatives,
respectively).

Cramm. If f € C(R™) and 6;-““ f € C(R") then 3;?“‘3 [ exists at any point
and 1s equal to Bfi“ f.

Let ¢ be a mollifier. By Lemma 2.1, the function f * ¢ is C*°-smooth.
Setting g = B;.l”t f, using the identity (2.4) of Lemma 2.1 and the identity
(2.23), we obtain

35 (f % pe) = B (f % ) = (B f) * e = g % pe.
By Lemma 2.4, we obtain f x ¢, — f as € — 0 and
B (f % pe) =g xpe — g,
where the convergence is locally uniform. This implies that 6;.1‘” [ exists at
any point and is equal to g. O

, In the rest of this section, we extend Lemma 2.4 to the spaces D’ and
L=,
LEMMA 2.10. Let @ be a mollifier in R™.
(1) If u € D(R™) then u* ¢, 2,
(1) If u € D' (R™) then u * @ .
PROOF. (i) By Lemma 2.4, we have u * ¢ =3 u. Using Lemma 2.1 or
2.9, we obtain, for any multiindex «,

0% (ux pc) = (9%u) * pe = I%u.
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Finally, since all the supports of u * ¢, are uniformly bounded when £ — 0,

we obtain that u * . N
(i7) By Lemma 2.8, for any ¢ € D (R"),

('U'*QDE,"/)) = (uicp; *1/)) .
Since L *x 1 2, ¥ by part (%), we conclude that
(U * QDE?Qp) - (u7 1p)
which implies w * . —D—,—> Uu. [
THEOREM 2.11. Let ¢ be a mollifier in R™.
(1) Ifu € L? (R™) then ux y is also in L? (R™) and
llu* ollr2 < flufl 2. (2.25)
Moreover, we have
L2
Uxpe —u ase— 0.
(i) Ifue LZ_(R") then

LZ
Uk -3 u ase — 0.
(i55) Ifu e D' (R") and
liir_l_)itl)lf [lw* pellre < o0
then u € L? (R™) and
o2 < lmint o e . (2.26)

PROOF. (i) + (ii) Applying the Cauchy-Schwarz inequality and using

/Rnso(y)dy=1,

we obtain
2
fux (@) = ( nor )dy)

2
= ([ ewre 0 (- )
< /n y)dy/ o) v? (z—y)dy
- / o (v) v (@ —y) dy,

-
whence

lux ]2 < / / (W) (z — ) ddy = lul%a.

?{lternatlvely, (2.25) follows from Exercise 2.20 with ¢ (z,y) = ¢ (z — y) and
=1.
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After we have proved using (2.25), the convergencies in L? and Ll -
treated in the same way as those in L' and L}  in Lemma 2.4.
(1i1) Let e — 0 be a sequence such that

liminf |lu * @e|lz2 = lm |Ju* @, || 72
e—0 k—o0

Set ug = u * @, . Since the sequence {ux} is bounded in L?, by the weak
compactness of a ball in L?, there exists a subsequence {ug, } that converges
weakly in L?, say tov € L2 The weak convergence in L? obviously implies

the convergence in D’, whence u; 2) v. By Lemma 2.10, we have ug —D—+ U,
which implies u = v and, hence, u € L2
We are left to verify (2.26). The fact that uy converges to u weakly in
L? implies, in particular, that
(ug, w)p2 = (w, u)r2 .
Using the Cauchy-Schwarz inequality, we obtain

luli2a < Jim flugllzelfullz2,

whence (2.26) follows. a

REMARK 2.12. It is useful to observe that the proof of inequality (2.25)
works for a more general class of functions ¢, in particular, if ¢ is a non-
negative integrable function on R™ satisfying

/ ¢ (y)dy <1
Rﬂ.
(cf. Exercise 2.19).

Exercises.
2.17. Prove that if u,v € L?(R") and 6;u, d;v € L? (R™) for some index ¢, then
(Biw,v) 2 = — (v, 0:0) 12 - (2.27)

2.18. Let 1 < p < 00, u € L (R™), and ¢ be a mollifier in R™.

(a) Prove that u*¢p € L? and

llu % pllzo < s
(b) Prove that
U * O L uase 0.

2.19. Prove that if f € L? (R™), 1 < p < 00, and g € L (R™) then f * g exists, belongs to
L? (R™), and
If = glle < 15 T2lglls.

2.20. (Lemma of Schur) Let (M, ;1) be a measure space with a o-finite measure p. Let
g (z,y) be a non-negative measurable function M x M such that, for a constant X,

/ q(z,y)du(y) < K for almost all 2 (2.28)
M

/ g(z,y)du(z) < K for almost all y. (2.29)
M
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Prove that, for any f € L™ (M, 1), 1 < r < oo, the function
Qf @)= [ a@n)f W duw

belongs to L” (M, 1) and

lRfllzr < K| fliz-. (2.30)
2.21. Under the condition of Exercise 2.20, assume in addition that, for some constant C,
q(z,y) <C,

for almost all z,y € M. Prove that, for any f € L™ (M, i), 1 < r < +00, the function @f
belongs to L*® (M, ) for any s € (r, +-oo] and

1QF e < YK £, (2:31)
where r’ is the Holder conjugate to 7.

2.22. A function f on a set S C R™ is called Lipschitz if, for some constant L, called the
Lipschitz constant, the following holds:

If@) - fWI<Llz—y| forallz,yeSs.

Let U be an open subset of R™ and let f be a Lipschitz function in U with the Lipschitz
constant L. For any € > 0, set

Ue={seU:B(5) cU}.

Let ¢ be a mollifier in R™.
(a) Show that U, is an open set and

U=\ U (2.32)

k=1
Extend f to R™ by setting f = 0 outside U. Prove that f * p, is Lipschitz in U
with the same Lipschitz constant L.

(b) Prove that, for any § > 0, f *w. =% f in Us as € — 0.

2.23. Prove that if f is a Lipschitz function in an open set U C R™ then all the distribu-
tional partial derivatives 8; f belong to L™ (U) and |V f| < L a.e. where

n 1/2
IVl = (Zj (3jf)2>

Jj=1
and L is the Lipschitz constant of f.

2.24. Prove that if f and g are two bounded Lipschitz functions in an open set U C R™
then fg is also Lipschitz. Prove the product rule for the distributional derivatives:

9 (f9) = (8;f) g+ f(;9).

2.25. Let f(z) be a Lipschitz function on an interval [a,b] C R. Prove that if f' is its
distributional derivative then

b
/f’(w)dw=f(b)—f(a)-

1:"I'OVe that if g is another Lipschitz function on [a, ] then

b b
[ rats=ifalt - [ 1ga (2.33)
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2.6. Weak derivatives and Sobolev spaces

2.6.1. Spaces of positive order. Ifu € leoc () and its distributional
2

derivative 8%u happens to belong to L . (©) then we say that 6%u is a weak
derivative* of u.
For any non-negative integer &, consider the following space:
WE(Q) = {ue L2(Q) : 0% € L*(Q) for all & with |a| <k},

which is a linear space with the following inner product:

(u, V)wr(q) = Z /an‘uao‘vd,u,: Z (0%u, 0%v) [2(q -

| <k la| <k

The associated norm is given by

ey = D /Qwau’zd“ = 2 [18°ulfaq)

la<k lel<k

In fact, W¥ (Q) is a Hilbert space (cf. Exercise 2.28).
The spaces W¥ (Q) are called the Sobolev spaces. For example, W° (Q) =
L2 (),
W Q) ={uel?(Q):8uecl*Q), j=1,..,n},

and

n
(u,v)ppr = (u,v) 2 + Z (Oju, Bjv) ;2 .
j=1
Obviously, we have
WL Q) = WH (@),
for any £ > 0.
Let us mention the following simple properties of the Sobolev spaces.
CLAM. (a) If u € W* and |a] < k then 8% € Wk—lol,
(b) If 8%u € W* for all o with |o] < m then u € Wk+™,

PRroOOF. The first property is obvious. To prove the second one, observe
that any multiindex 8 with |8] < k 4+ m can be presented in the form 8 =
o+ o where |a] < m and |o/| < k. Hence, 8%y = 8% (8%u) € Wkl c L2,
whence the claim follows. O

Let £ be an open subset of Q. For any u € W¥ (Q), the restriction of u
to § belongs to W* () and

lullwr@y < ullwrg-
Define the local Sobolev space W, (2) as the class of all distributions u €
D’ () such that u € W* () for any open set ' € Q. The topology in

4The weak derivative 8%u can be equivalenlty defined as a function from L%, () that
satisfies the identity (2.16).
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W, (Q) is defined by the family of the seminorms ||ul|yx(qy. Let us mention
also that

WE(Q) = {ue LE, (Q) : 8% € L}, (Q) for all o with |af < k}.
The scale of spaces W, () is in some sense analogous to that of C* (),
although, for the spaces I/Vl’gc, we use weak derivatives, whereas the spaces C*
are associated with continuous derivatives. If u € C* then all the classical
derivatives of u are also weak derivatives and, for any open set ¥ € Q,

lullwr ey < Cliullerry-
Hence, we have an embedding
C* (Q) =W ().
The next statement extends Theorem 2.11 to the spaces W*.

THEOREM 2.13. Let v be a mollifier in R™ and k be a non-negative
integer.
(i) If u € W* (R™) then ux g is also in W¥* (R™) and

[l * @llwe < fluflye. (2.34)

Moreover, we have
u*cpeﬂuass—->0. (2.35)

(i) If u e D' (R") and
hzsli,%lf lu * @ellpx < o0, (2.36)

then u € Wk (R") and

s < lmige fu x el

PRrROOF. (i) By Lemma 2.9, we have
0% (ux p) = (8%u) * . (2.37)
Applying Theorem 2.11 to 8%u, where |a| < k, we obtain
6% (u= @) 12 < [|0%u| L2
and
L2
9%(u* ) — 8%,
whence (2.34) and (2.35) follow.
(#4) For any multiindex o with |a| < k, we have by (2.36) and (2.37)
that .
li];rgglf || (6%u) * @ell 12 < 0.
By Theorem 2.11, we conclude that 8%u € L? and
|0%u)| 2 < liminf ||0% (u* @e) || 2,
€0

whence the both claims follows. g
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Exercises.
2.26. Let f € C* (1), where k is a non-negative integer.
(a) Prove that if
N fllcr(ny < o0
then, for any u € W* (), also fu € W* (Q) and
I fullws @y < Cllfllor @ llullwe @y (2.38)

where the constant C depends only on k, 7.
(b) Prove that if u € Wk, () then fu € Wk, (Q).

2.27. Assume that fi, — f in W* and 8%f — g in W*, for some multiindex o such that
|| < k. Prove that g = 8%f.

2.28. Prove that, for any open set £ C R”, the space W* (Q) is complete.

2.29. Denote by W (Q) the subset of W* (2), which consists of functions with compact
support in 2. Prove that D (Q) is dense in W (Q).

2.30. Prove that D (R™) is dense in W* (R™), for any non-negative integer k. Warning:
for an arbitrary open set O C R™, D (£2) may not be dense in W* (Q).

2.31. Denote by W§ (Q) the closure of D () in W* (Q). Prove that, for any u € W' (Q)
and v € W§ (),

(Gsu,v) g2 = — (u, Biv) 12 . (2.39)

2.32. Let u € L? (R™) and 8%u € L? (R™) for some multiindex a.
(a) Prove that
Bou = (i£)* T (8), (2.40)

where 7 is the Fourier transform of u and £% = ¢71..457, 1% = ilel,
(b) Prove the following identity

o, 2 1 -~ 3
6wl = gorye | P 1€ e (241)

2.33. Let u € L2 (R™). Prove that if the right hand side of {2.41) is finite then 8%« belongs
to L? (R™) and, hence, the identity (2.41) holds.

2.34. Prove that the space W¥* (R™) (where k is a positive integer) can be characterized
in terms of the Fourier transform as follows: a function u € L? (R™) belongs to W* (R")
if and only if

[ mOF @ +1)* & <oo.
Moreover, the following relation holds:
Wl = [ 1B (1+167)* de, (242)
R™

where the sign ~ means that the ratio of the both sides is bounded from above and below
by positive constants.
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2.6.2. Spaces of negative order. In the previous section, the Socbolev
space WF of order k was defined for any non-negative integer k. Our next
goal is to define the Sobolev spaces of negative orders.

Fix an open set 2 C R™ and, for any positive integer k and a distribution
u € D' (Q), set

lulgor = sup P (2.43)
wep(@\{o} lellwr

Then the space W—* (Q) is defined by
Wr(Q) = {ueD (Q):|ully-+ < oo}.
It follows directly from the definition (2.43) that
Hu, ©)| < llullw-r@)llelwe @y »

for all w € W% (Q2) and ¢ € D ().

Here are some simple properties of the spaces W* (Q) for all k € Z.
Cram. If k < m then

lullwe < llullwm (2.44)

and, consequently, Wm—Wk. In particular, if k < 0 then L2« W¥.

ProoF. If k > 0 then this property is already known, so assume k < 0.
If m > 0 then we can replace it by m = 0. Hence, we can assume k < m < 0.
Observe that the definition (2.43) is valid also for k¥ = 0, that is, for
the L2-norm, which follows from the fact that D (2) is dense in L? () (see
Theorem 2.3). Since |k| > |m|, we have ||@llyyix = |l¢llwimi, and (2.44)
follows from (2.43). O

CrAaM. Ifk € Z and u € W* (Q) then d;u € W51 (Q) and
18 ullwr—r < [lullyx. (2.45)

PRroOF. If £ > 1 then this is already known, so assume k < 0. For any
¢ € D, we have

(aju, QD) = - (U, 8390) ’
whence
(B5u, ) < llullwellBiellwin < llullwellellypmi,
and (2.45) follows. a

In particular, we obtain that if u € L? then 8% € W™l which gives
‘many examples of distributions from W* with negative k.

Cram. If Q¥ c Q then, for any k € Z,

lullwe @y < llullweey-
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ProoOF. For k£ > 0 this is already known. For k < 0 it follows from
(2.43) and the fact that D (Q') C D (Q2). a

The function space WS, (Q) for k£ < 0 is defined in the same way as
that for £ > 0 in the previous section. Namely, a distribution v € D' (Q)
belongs to W_ () if u € W¥ (V') for any open set ' € 9. The topology in
Wi, () is defined by the family of the seminorms ||y« (. It follows from
the above statements that W_ () increases when Q expands and when k

decreases.
It is interesting to mention that any function from L} _(Q) belongs to

loc
Wi % (Q) if k > n/2 — see Example 6.2 below.

loc
LEMMA 2.14. Let k € Z.
(@) If f € D(Q) and u € W[, (Q) then fu € W*(Q) and

I Fullwey < Cllfll gy llullwe ), (2.46)

where Q) is an open set contamning supp f and the constant C de-

pends on k,n.
(b) If f € C® () and u € W[ (Q) then fu € WE_(Q).

PROOF. (a) If k > 0 then we obtain by Exercise 2.26 fu € W* (@) and

I fullwey < Cllifllor@yllullwey

whence the claim follows.
Let now k < 0. Assuming that ¢ ranges in D () and “‘P”WIM(Q) =1,
we have

| fullwwy = sup (fu,0) = Sup (u, fo) < sup || follwirian lullwe @),
7]

where the last inequality holds because fy € D (). We are left to notice
that

| Follwminy < Cllifllgmlieliwr = Cliflicm,

whence the claim follows.

(b) Let us show that fu € W* () for any open set ¥ € . Fix a
function ¢ € D (Q) such that ¢ = 1in . Then ¢f € D () and, by the
previous part, pfu € W*(Q). It follows that wfu € W* () and, hence,
fu e Wk Q). O

LEMMA 2.15. Let k be a positive integer. For any u € WF (R"®), there
exists a unique function v € W* (R™) such that

u= Y (-1)ld g%y, (2.47)
<k

Moreover, we have the identity
lullw—+ = [[v]|ws- (2.48)
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Note that, for any v € W* (R™), the equation (2.47) defines u € W—* (R?).
Hence, we obtain a norm preserving bijection between W* (R™) and W—* (R™).

PROOF. By definition, u € W* (R™) means that
U,
fulws= sup L&)
eeD(R™)\{0} ol

Hence, u can be considered as a linear functional on D (R™) bounded in
the norm W¥. Since D(R") is dense in W* (R") (see Exercise 2.30), this
functional uniquely extends to a bounded functional on W* (R™), with the
same norm. Denote it by Fy, ().

However, W* is Hilbert space and, by the Riesz representation theorem,
there exists a unique function v € W* (R™) such that

F,(p) = (v,@)ye for all p € WF(R™).
In particular, this means, that for all ¢ € D (R"),

(ua (P) = (U7SD)W’° = Z (aav)aa(p)[,z
o<k

= Z (8"‘1},3“(,0) = Z (__1)'04 (620111, (P) )
o)<k lo}<k

which proves the first claim.
The functional ¢ = (v, )y on WF(R™) has the norm ||v||yx, whence

it follows that ||Fy,| = ||vllw* where ||Fy| is the norm of the function F,
on W¥ (R™). By the first part of the proof, ||F,|| = ||lu||y—#, whence (2.48)
follows. 0

The following statement extends Theorem 2.13 to the Sobolev spaces of
negative order.

THEOREM 2.16. Let k be a positive integer. If u € W% (R™) and ¢ is
a mollifier in R™ then

W—k
uxp: —>uase —0.

PRrROOF. Consider the following differential operator
D= (-1l g%,
o<k

Wl}ich maps W* into W—*. By Lemma 2.15, for any u € W% (R?), there
exists a unique v € W* (R™) such that v = Dv, and also

IDvllw— = [[vllys.
Using Lemma, 2.9, we obtain

Uk e —u = (Dv)* e — Dv=D(v*p, —v),
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whence
lu* e — ully—k = [|D(v* ge — v)llw-x = [lv * 0 — v|lppr.

Since, by Theorem 2.13, the right hand side here tends to 0, we obtain that
u * 9. — u in W, which was to be proved. O

Exercises.

2.35. Let k be a positive integer. Prove that if u € W" (R™) and g is a mollifier in R™
then
llu * ollw-» < lullw-s. (2.49)

2.36. Prove that, for any positive integer k, the space W™ with the norm || - {|yy—+ is a
Hilbert space.

2.7. Heat semigroup in R"

Let A be the Laplace operator in R™ and

1 |z|?
pt(z) = () exp (—4—t> (2.50)

be the heat kernel in R” (cf. Section 1.3). For any ¢ > 0, denote by P; the
following operator on functions

. pt*fa t>0’
Ptf—{f7 t=0,

whenever the convolution p; * f makes sense. Denote by Cj (R™) the class of
bounded continuous functions in R™. By Theorem 1.3, if f € Cj (R™) then
the function P;f (z) is C*°-smooth in Ry x R™ and solves in R, x R™ the
heat equation

0P f) = A(RS). (2.51)
Besides, P;f (z) is bounded and continuous in [0, +00) x R™.

In particular, for any fixed ¢ > 0, we can consider P; as an operator
from Cj (R™) to Cj (R™) such that P;f — f as ¢t — 0 locally uniformly. The
identity

Dt * Ps = Pt+s (2.52)
(see Example 1.9) implies

-PtP s = -Pt+87
for all ¢t,5 > 0. Hence, the family {P,},., is a semigroup. It is called the
heat semigroup of the Laplace operator in R™.

Here we consider some properties of the heat semigroup, which extend
Theorem 1.3 to the class L?. These properties are closely related to the
properties of mollifiers considered in the previous sections, which is not
surprising because the heat kernel as a function of x in many respects looks
like a mollifier although with non-compact support {compare, for example,
Fig. 1.1 and 2.1).
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In Chapters 4 and 7, the heat semigroup will be considered on an ar-
bitrary weighted manifold, and most of these properties will be retained,
although from a difference perspective.

We use the notation 0; = gi and 0; = 5% for 7 = 1,...,n. Denote
by Ck (R™) the subspace of C* (R"™) that consists of functions u whose all
partial derivatives up to the order k are bounded functions.

LEMMA 2.17. If f € C° (R™) then Pif € C5°([0,400) x R™). More-
over, the following identities hold in [0, +o0) x R™:

9j (Pof) = P (8;f) (2.53)

and
0 (Pf) = R (Af). (2.54)

PROOF. The function P;f is bounded and C'*®-smooth in (0, +o0) x R™
by Theorem 1.3. The identity (2.53) for ¢ > 0 follows from Lemma 2.1
because
8; (P.f) = 05 (pr * f) = pt x 0;f = P (9;). (2.55)
This proves also (2.54), because using the heat equation (2.51) and iterating
(2.53), we obtain
o (Rf) =A(Rf)=FR(Af).
To extend all this to ¢t = 0, observe that the right hand sides of (2.53) and
(2.54) are continuos functions up to t = 0. Therefore, the derivatives in
the left hand side exist and satisfy these identities also up to t = 0. In
particular, we obtain that P;f is Cl-smooth up to ¢t = 0. Since 0;f and Af

are bounded functions, the identities (2.53) and (2.54) imply that 8; (P.f)
and 8; (P, f) are bounded in [0, +00) x R”, that is,

Pif € C} ([0, +00) x R™), (2.56)

Since 8; f and Af belong to C§° (R™), we obtain by (2.53), (2.54) and (2.56)
that 8; (P.f) and 0, (P.f) are also in the class C} ([0, +c0) x R™), which
implies that

Pif € CZ([0,+c0) x R").

Continuing by induction, we conclude the proof. O

The following statement is similar to Theorem 2.11 but a mollifier is
replaced by the heat kernel.

LEMMA 2.18. If f € L? (R™) then P;f € L? (R™) for any t > 0, and
1B fllz2 < 1 fllze- (2.57)

Moreover, we have

Pf 5 ast—o. (2.58)
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PrRoOOF. For t = 0 the claim is trivial. If ¢ > 0 then we have by Lemma
1.1

/ P (x)dz = 1. (2.59)
R™

Since P;f = f *p, the first claim follows from an extension of Theorem 2.11
by Remark 2.12.

Thanks to (2.57) and the fact that C§° (R™) is dense in L*(R™) (see
Theorem 2.3), it suffices to prove (2.58) for f € C§° (R"). Assuming that,
we have by Theorem 1.3,

sup |P.f — f| = 0 ast =0,
Rn

because the function f is uniformly continuos (cf. Remark 1.4). Since (2.59)
implies
NPefllr < | Fllza
(cf. Lemma, 2.4), we obtain
IPef = F1B2 < suplPif = f1I1Pef = flls < 2sup|Pef = 1] Flz: 0.
a

See also Exercise 1.4 for an alternative proof of (2.57) and (2.58).
Hence, P; can be now considered as a bounded operator from L? to L2.
The semigroup property
PPy, =Py, (2.60)

obviously extends to L? because C§° is dense in L. A new feature of B
which comes with L? spaces, is the symmetry, in the following sense:

(Ptf7 g)L2 = (fa Ptg)LZ s (261)
for all f,g € L?. Indeed, if f,g € C§° then this trivially follows from

®ho) = [ ([ re-niei)oe
- [ pGe-0f@o@dus

and from a similar expression for (f, P;g), because p: (z —y) = p: (y — 2);
then the extension to L? is obvious.

In the next statement, we will use the notion of convexity. Recall that
a function ¢ (t) on [0,+00) is called convex if, for all t,s > 0 and ¢ € (0,1),

plet+(1-¢e)s)<ep(t)+ (1 —¢)p(s). (2.62)

If ¢ is continuous then it suffices to have this property for ¢ = 1/2, that is,

t+s) _p()+e(s)
(p( )< . (2.63)

2 - 2



2.7. HEAT SEMIGROUP IN R» 43

Indeed, by iterating (2.63), one obtains (2.62) for all binary fractions e,
and then for all real £ by continuity. A non-negative function ¢ is called
log-convex if log ¢ is convex. The latter obviously amounts to

@ (t—;‘z) < Ve ) e (s). (2.64)

Comparing (2.63) and (2.64) we see that the log-convexity implies the con-
vexity.
The following convezity lemma is frequently useful.

LEMMA 2.19. For any f € L? (R™), the function
o (t) == (Bf, [z

on t € [0,+00) is non-negative, decreasing, continuous, and log-convez.

ProoF. The proof is based only on the properties (2.57), (2.58), (2.60),
(2.61) of the semigroup P; and, hence, the statement of Lemma, 2.19 remains
true in any other setting where these properties can be verified. In particular,
this will be the case for the heat semigroup on an arbitrary manifold — see
Section 4.3.

We start with the observation that, by (2.60) and (2.61),

@ (t) = (Py2Piyaf, f) = (Pyaf: Pyaf) = | P % (2.65)
which implies ¢ (t) > 0. Using (2.60) and (2.57), we obtain, for all ¢,s > 0,
[ Persfll = 1P (Pef) || < 1RSI,

that is, the function t — ||P;f|} is decreasing, which implies by (2.65) that
@ (t) is also decreasing. The triangle inequality and (2.58) yield

1BS N = 1Pt fll S WS — Peasfll = |1 P (f = B f) N < NI = Pef = 0

as s — 0+ (and the same holds if s — 0—), which implies that the function
t+ ||P.f|| is continuous and, hence, so is ¢ (t).
Finally, we have by the Cauchy-Schwarz inequality

@ (2t +25) = (Persf, f) = (Pof, B f) S NP FINPSN = Vo (28) 9 (28),
which proves the log-convexity of (. O

In the next statement, we show that the rate of convergence P,f — f
as t — 0 depends on the regularity of f. If f € W' then denote by Vf the
“vector” (01f,...,0,f) of its first order partial derivatives, and set

IVFR =165
j=1

and [[V£li2 = || [Vf] || 2 so that
1122 UV FIZe = || £l
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If f € W? then its distributional Laplacian Af belongs to L? and

1Aflzz < 183 fllz2 < nllfllwa.

=1
LeMMA 2.20. If f € W' (R™) then, for any t >0,
IP:f = flizz < VIVl a. (2.66)
If f € W2 (R™) then, for anyt > 0,
|1 Pf — flize < tAS] 2. (2.67)

PROOF. It suffices to prove the both claims for f € D (R™) because
D (R") is dense both in W' (R™) and W2 (R") (cf. Exercise 2.30) and the
expressions in (2.66) and (2.67) are continuous in W' and W2, respectively.
Using the notation ¢ (¢) = (P:f, f) as in Lemma 2.19, we have

1B:f = FII? = (Bef, Pof) =2 (Pef, £)+(f, ) = 9 (28) =20 (1) + 0 (0) . (2.68)
Since ¢ (2t) < @ (t), this implies
1B:f = P <9 (0)—¢ (). (2.69)

Using Lemma 2.17 and the Green formula, we can compute the derivative
&' (0) as follows:

@' (0) = (OePef) li=0, f) = (Af, f) = — /R . IVf2dz = ~|VF|2., (2.70)
which together with the convexity of ¢ yields

p(t) — ¢ (0) =o' (&) 2 ty' (0) = ~t| V|, (2.71)

where £ € (0,t). Combining (2.69) and (2.71), we obtain (2.66).
To prove (2.67), we need the second derivative of ¢, which is computed
as follows using Lemma 2.17:

¢ () = @ (Pef), f) = (A(RS), f) = (Bf,AF),
and
¢ (t) = (P f, Af) = (B (Af),Af). (2.72)
By Lemma 2.19, (P; (Af),Af) is non-increasing in t; hence, ¢” (t) is non-
increasing. Using (2.68) and (2.72) for t = 0, we obtain
IBf — FlI? = 0 (2t) = 20 () + ¢ (0) = ¢ (£) 1 < " (0) % = || AF|?,
which finishes the proof. 0

See Exercise 2.39 for a Fourier transform proof of Lemma 2.20, and
Exercises 4.39, 4.40 for an extension of Lemma 2.20 to a general setting of

manifolds.
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DEFINITION 2.21. Let B be a Banach space and I be an interval in R.
A path u : I — B is said to be strong differentiable at t € I, if the limit

i ) —u(t)
e—0 £

exists in the norm of B. The value of the limit is called the strong derivative
of u at t and is denoted by u’ (t) or %'

(2.73)

The word “strong” refers to the fact that the limit in (2.73) is understood
in the strong topology of B, that is, the norm topology. If the limit is
understood in the weak topology of B then one obtains the weak derivative.

In the next statement, we consider the function ¢t — P;f as a path in

L2

THEOREM 2.22. If f € W2 (R") then the path t — P.f is strongly dif-
ferentiable in L% (R™) for allt € [0, +00), and

d
T (Pef) = A(Pf). (2.74)

Combining with Lemma 2.18, we see that the path u (t) = P;f solves
the Cauchy problem in the L? sense: it satisfies the heat equation and the
initial data

{ & = A,
ult=0 = f )

where the limits in the both conditions are understood in the L2-norm.

ProOOF. Let us prove first that, when ¢ — 0,

Qif = RS t_ AN\ f in L*(R™). (2.75)

Assume that f € D (R™). Then, by Lemma 2.17, the function P, f is smooth
in [0,400) x R®, bounded, and all its derivatives are bounded. Therefore,
by (2.54),

_Mt‘_f@ = 8,P,f () [s=o0 = AS (z).

It follows that, for any bounded open set & C R”, Q.f — Af in L?(Q).
Choose 2 to contain K := supp f, and prove that also

Q:f - Af in L?(Q°), (2.76)

which will imply (2.75). Since in Q° we have f = Af =0 and Q;f = %Ptf,
(2.76) amounts to

|P:fllr2e) = o(t) ast— .
Since function P, f (z) is bounded, it suffices to prove that
”Ptf”Ll(Qc) =0 (t) as t — oo. (277)
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Denoting by ¢ the distance from K to the boundary of €2, we obtain

Pl < [ ([ mta-n)lswidy)as

= /K (fncpt (@—y) dw) |f ()] dy
/K </{Iz—yl>e} =y dm) I W)l dy

[z /{ Racre

By Remark 1.2, the last integral decays as ¢ — 0 faster than any power of
t, which proves (2.77).

Let us prove (2.75) for f € W2 (R"). By Exercise 2.30, there exists a
sequence {fx} C D (R™) such that fr — f in W2 (R"™). Observing that, by
Lemma 2.20,

IA

Q¢ (f = fi) llzz S NA(f — fi) lz2,

we obtain

1Qcf —Aflle < Qtf — Qefrllpe +11Qefe — Afulle + 1Afk — Afll 2
< |Qufe — Afillp + 20| Afk — Afllg2-

Letting ¢t — 0 and then k — oo, we obtain (2.75).
Note that (2.75) is a particular case of (2.74) for ¢ = 0. Let us prove
(2.74) for all t > 0. First show that, for any multiindex o of order < 2,

0% (Bf) = P (0%f), (2.78)

which will imply P;f € W2. Indeed, for any test function ¢ € D (R™), we
have

e = [ ([ rre-nnwa)vede

/Rn (/Rn *flz-v)Y (=) dw) e (y) dy

—_  (_1\ld _ a
o [ ([ re-nosE)nm
= (-)RN(BS,0%9) = (0°Pif,¥),
whence (2.78) follows. Applying (2.75) to function P,f € W2, we obtain

Bivsf — Bif _ P (Bf) — Bf BN
s s

I

A(P.f) ass—0,

which finishes the proof. O
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Exercises.
2.37. Evaluate function ¢ (t) from Lemma 2.19 for f (z) = exp (— |m|2) .
2.38. Show that Lemma 2.17 remains true for f € Cg° (R™).

2.39. Give an alternative proof of Lemma 2.20 using the Fourier transform and Exercises
1.4, 2.32.

Notes

This Chapter contains a standard material on distributions and mollifiers in R™ — see,
for example, [207], [327], [3586].



CHAPTER 3

Laplace operator on a Riemannian manifold

We introduce in this Chapter the notions of smooth and Riemannian
manifolds, Riemannian measure, and the Riemannian Laplace operator.
From the previous Chapters, we use here only the material of Section 2.2.
However, acquaintance with measure theory and integration is required (see
Appendix A).

The core of this Chapter is the material of Sections 3.1-3.6, which is
needed in the rest of the book except for Chapter 6. The material of Sections
3.7-3.10 is mostly used for constructing examples of manifolds. In Section
3.11, we introduce the geodesic distance, which will be seriously used only
in Chapters 11 and 15.

3.1. Smooth manifolds

Let M be a topological space. Recall M is called Hausdorff if, for any
two disjoint points z,y € M, there exist two disjoint open sets U,V € M
containing = and y, respectively. We say that M has a countable base if
there exists a countable family {B;} of open sets in M such that any other
open set is a union of some sets B;. The family {B;} is called a base of the
topology of M.

DEFINITION 3.1. A n-dimensional chart on M is any couple (U, @) where
U is an open subset of M and ¢ is a homeomorphism of U onto an open
subset of R™ (which is called the image of the chart).

DEFINITION 3.2. A C-manifold of dimension n is a Hausdorff topological
space M with a countable base such that any point of M belongs to a n-
dimensional chart.

Let M be a C-manifold of dimension n. For any chart (U, ) on M,
the local coordinate system z!,2?,...,z" is defined in U by taking the -
pullback of the Cartesian coordinate system in R™. Hence, loosely speaking,
a chart is an open set U C M with a local coordinate system. Normally,
we will identify U with its image so that the coordinates z!,22,...,2" can
be regarded as the Cartesian coordinates in a region in R™. However, there
are some subtleties with this identification, which we would like to clarify
before we proceed further.

If U C M is an open set and E C M then the relation F € U (compact
inclusion) means that the closure E of E in M is compact and E C U. The

49



50 3. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD

compact inclusion will be frequently used but it may become ambiguous if
U is a chart on M because in this case E € U can be understood also in the
sense of the topology of R™. Let us show that the two meanings of E € U
are identical. Assume E' C U and denote temporarily by E the closure of Ef
in R™. If E € U in the topology of R" then E is compact in R™ and, hence,
its pullback to M (also denoted by E) is compact in M. The fact that M
is Hausdorff implies that any compact subset of M is closed. Therefore, E
is closed in M, which implies E C F and, hence, the inclusion £ € U holds
also in M. The converse is proved in the same way.

If U and V are two charts on a C-manifold M then in the intersection
UNV two coordinate systems are defined, say z!,z?, ..., 2™ and ¢, %2, ..., y"
The change of the coordinates is given then by continuous functions y* =
yi (=}, ...,2") and 7 = ' (y?,...,y™). Indeed, if ¢ is the mapping of U to R”
and 7 is the mapping of V' to R" then the functions y* = =y (:L' , -y T) are
the components of the mapping 1 o ¢~ and the functions z* ( sy Y )
the components of the mapping @ o 9~! (see Fig. 3.1).

Y

.
>

FIGURE 3.1. The mapping ¢ o1

A family A of charts on a C-manifold is called a C*-atlas (where k is a,
positive integer or +o00) if the charts from A covers all M and the change
of coordinates in the intersection of any two charts from A is given by C*-
functions. Two C*-atlases are said to be compatible if their union is again a
C*-atlas. The union of all compatible C*-atlases determines a C*-structure
on M.

DEFINITION 3.3. A smooth manifold is a C-manifold endowed with a
C°-structure.
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Alternatively, one can say that a smooth manifold is a couple (M, A),
where M is a C-manifold and A is a C*-atlas on M.

By a chart on a smooth manifold we will always mean a chart from its
C*®-structure, that is, any chart compatible with the defining atlas A.

A trivial example of a smooth manifold is R™ with the C*°-atlas consist-
ing of a single chart (R",id). By default, the term “manifold” will be used
as a synonymous of “smooth manifold”.

If f is a (real valued) function on a manifold M and k is a non-negative
integer or oo then we write f € C*(M) (or f € C¥) if the restriction of f
to any chart is a C* function of the local coordinates z',z?, ..., z". The set
C* (M) is a linear space with respect to the usual addition of functions and
multiplication by constant.

For any function f € C (M), its support is defined by

supp f = {z € M : f (x) # 0},
where the bar stands for the closure of the set in M. Denote by C§(M) the
subspace of C* (M), which consists of functions whose support is compact.
The fact that compact sets in M are closed implies that if f vanishes outside
a compact set K C M then supp f C K.

If Q is an open subset of M then ) naturally inherits all the above
structures of M and becomes a smooth manifold if M is so. Indeed, the
open sets in 2 are defined as the intersections of open sets in M with £,
and in the same way one defines charts and atlases in Q.

The hypothesis of a countable base will be mostly used via the next
simple lemma.

LEMMA 3.4. For any manifold M, there is a countable family {U;}:2;
of relatively compact charts covering all M and such that the closure Uy is
contained in a chart.

PROOF. Any point z € M is contained in a chart, say V. Choose
U, @ V, to be a small open ball around z so that U, is also a chart. By
definition, manifold M has a countable base, say {B;}3,. Let us mark each
set B; which is contained in some set U,. Since U, is open, it is a union of
some marked sets B;. It follows that all marked B; cover M. Select for each
marked B; exactly one set U containing B;. Thus, we obtain a countable
family of sets U, covering M, which finishes the proof. O

In particular, we see that a manifold M is a locally compact topological
space.

The following statement extends Theorem 2.2 and provides a convenient
vehicle for transporting the local properties of R™ to manifolds.

THEOREM 3.5. Let K be a compact subset of a smooth manifold M
and {Uj};?zl be a finite family of open sets covering K. Then there ex-
ist non-negative functions ; € C§° (Uj) such that 35 ¢; = 1 in an open
neighbourhood of K and 3-;¢; <1 in M.
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A sequence of functions {p;} as in Theorem 3.5 is called a partition of
unity at K subordinate to the cover {U;}.

A particular case of Theorem 3.5 with k£ = 1 says that, for any compact
K and any open set U D K, there exists a function ¢ € C§° (U) such that
¢ = 1 in a neighborhood of K and, besides, 0 < ¢ < 1. Such a function ¢
is called a cutoff function of K in U.

ProoF. If each set U; is a chart then the proof of Theorem 2.2 goes
through unchanged. In the general case, for any point z € K, there is a
chart V,, containing = and such that V; C U; for some j. Out of the family
{Vz}sex covering K select a finite subfamily {Vi} also covering K. Since
each V; is a chart, there exists a partition of unity {4} at K subordinate to
{V;}. Now define ¢; to be the sum of those functions ¢; which are supported
in Uy; @2 to be the sum of those functions 1; which are supported in U
but not supported in Ut; ... ; g to be the sum of those functions #; which
are supported in Uy but not supported in Uy, ...,Ug_1. Clearly, each ¢; is
non-negative and belongs to C§° (Uj). Since V; is covered by some Uj, each
%; is supported in some U; and, hence, each 4; will be used in the above
construction exactly once. This implies

Z pi = Z "/)_7' )
i J
which finishes the proof. 0

COROLLARY 3.6. Let {Qqa} be an arbitrary covering of M by open sets.
Then, for any function f € C§° (M), there exists a finite sequence { f,-}i.;1
of functions from C§° (M) such that each f; is supported in one of the sets
Q. and

PrROOF. Let K = supp f and let 2y, ..., Q be a finite subfamily of {Q,}
covering K. By Theorem 3.5, there exists a partition of unity {t,o,-}i-;l at K
subordinate to {Qz}f=1 Set f; = fy; so that f; € C3° (§%;). Then

Zfz:f,

because on K we have Y, ¢; = 1, and outside K all functions f, f; vanish.
O

Exercises.

3.1. Prove that, on any C-manifold M, there exists a countable sequence {2} of relatively
compact open sets such that Qx € Qg1 and the union of all Qf is M. Prove also that if
M is connected then the sets {13 can also be taken connected.

REMARK. An increasing sequence {§2;} of open subsets of M whose union is M, is called
an exhaustion sequence. If in addition Qr € Qi1 (that is, Q4 is relatively compact and
Qi C Q1) then the sequence {2} is called a compact ezhaustion sequence.



3.2. TANGENT VECTORS 53

3.2. Prove that, on any C-manifold M, there is a countable locally finite family of relatively
compact charts covering all M. (A family of sets is called locally finite if any compact set
intersects at most finitely many sets from this family).

3.2. Tangent vectors
Let M be a smooth manifold.

DEFINITION 3.7. A mapping £ : C® (M) — R is called an R-differentiation
at a point zg € M if
e ¢ is linear;
e ¢ satisfies the product rule in the following form:

§(f9) =€(f) g (zo0) +£(9) f (z0),
for all f,g € C*°.

The set of all R-differentiations at zg is denoted by Ty, M. For any
&, n € Tz, M one defines the sum £ 4 71 as the sum of two functions on C,
and similarly one defined A¢ for any A € R. It is easy to check that both
€+1n and A are again R-differentiations, so that T, M is a linear space over
R. The linear space Ty, M is called the tangent space of M at zq, and its
elements (that is, R-differentiations) are also called tangent vectors at xq.

THEOREM 3.8. If M is a smooth manifold of dimension n then the tan-
gent space Ty, M is a linear space of the same dimension n.

We will prove this after a series of claims.
CLAIM 1. Let U C M be an open set and Uy € U be its open subset. Then,
for any function f € C*° (U), there exists a function F' € C*® (M) such that
f=F inU.

PRrOOF. Indeed, let 4 be a cutoff function of Uy in U (see Theorem 3.5).
Then define function F by

F=vyf inU,
F=0 inM\U,
which clearly satisfies all the requirements. d

Cram 2. Let f € C® (M) and let f =0 in an open neighbourhood U of a
point o € M. Then £(f) = 0 for any & € Ty, M. Consequently, if Fy and
F5 are smooth functions on M such that Fy = F, in an open neighbourhood
of a point zo € M then & (Fy) = ¢ (Fy) for any £ € T, M.

PrOOF. Let Uy be a neighborhood of g such that Uy € U and let 1 be
a cutoff function of Uy in U. Then we have fi» = 0 on M, which implies the
identity f = f (1 — ). By the product rule, we obtain

§(N)=€(f(1-9)) =€) A —¥)(z0) +£(1 - ¢) f(z0) =0,
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because f(zp) = (1 — 1) (z0) = 0. The second part follows from the first
one applied to the function f = Fy — F>. |

REMARK 3.9. Originally a tangent vector £ € T, M is defined as a
functional on C™ (M). The results of Claims 1 and 2 imply that £ can be
regarded as a functional on C® (U) where U is any neighbourhood of zg.
Indeed, by Claim 1, for any f € C™ (U) there exists a function F € C*® (M)
such that f = F in a neighborhood of zo; hence, set & (f) := & (F). By Claim
2, this definition of & (f) does not depend on the choice of F'.

CLAIM 3. Let f be a smooth function in a ball B = Bg(o0) in R™ where o is
the origin. Then there exist smooth functions hi, hg, ..., hn in B such that,
for any x € B,

F(z) = f(0) + z*hi(2), (3:2)
where we assume summation over the repeated index 1. Also, we have
of
hi(0) = 52(0). (33)

ProOOF. By the fundamental theorem of calculus applied to the function
t — f (tz) on the interval ¢ € [0, 1], we have

1
f@) =)+ [ Zf=)a, (3.4)
whence it follows 1 g
f(@) = £(0) + /0 mia—;:(tx)dt.

Setting

1 ) f
hilz) = /O 22 (t2)dt
we obtain (3.2). Clearly, h; € C®(B). The identity (3.3) follows from the
line above by substitution = o. 0
CLAIM 4. Under the hypothesis of Claim 3, there exist smooth functions hi;
in B, (wherei,j = 1,2,...,n) such that, for any z € B,

£(z) = £(0) + & g2 (o) + w2y (z). (35)

PROOF. Applying (3.2) to the function h; instead of f we obtain that
there exist smooth functions h;; in B, i = 1,2, ..., n such that

hji(z) = hj(o) + z'hi;(z).

Substituting this into the representation (3.2) for f and using h;(0) = az] 2L (o)
we obtain

£(z) = £(0) + 2'hi(e) = £(0) + 22 (o) + aiaohis(a).
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Now we can prove Theorem 3.8.

2 ...,z"™ be local coordinates in a

PROOF OF THEOREM 3.8. Let 2%,z
chart U containing xg. All the partial derivatives azi evaluated at zy are
R-differentiations at z¢, and they are linearly independent. We will prove

that any tangent vector £ € T, M is represented in’the form
9 . )
£= {‘—a—? where &' =¢ (:v’) (3.6)

(note that, by Remark 3.9, the R-differentiation { applies also to smooth
functions defined in a neighborhood of zg), which will imply that {%}:;1
is a basis in the linear space T, M and hence dim T, M = n.

Without loss of generality, we can assume that zq is the origin of the
chart U. For any smooth function f on M, we have by (3.5) the following
representation in a ball B C U centred at zp:

£(z) = F(zo) +* 57 (a0) + z'ahis(z)

where h;; are some smooth functions in B. Using the linearity of £, we
obtain

(N =60 f(z) +£ (&) 5% @) +€ (@Thy). ()
By the product rule, we have
E)=E1-1)=6(1)1+&(1)1=2(1),
whence ¢ (1) = 0. Set u; = 27h;;j. By the linearity and the product rule,
¢ (z*us) = € (2*) wi(zo) + £ () &*(z0) =0,

because z* and hence u; vanish at . Hence, in the right hand side of (3.7),
the first and the third term vanish, and we obtain

. OFf
&~
which was to be proved. a

The numbers £* are referred to as the components of the vector ¢ in
the coordinate system z!,...,z". Omne often uses the following alternative
notation for £ (f):

_of
£(f) = %
Then the identity (3.8) takes the form

Q_f_=€iaf

9~ ° Bat’

which allows to think of & as a direction at zo and to interpret % as a
directional derivative.
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A vector field on a smooth manifold M is a family {v (z)},¢,, of tangent
vectors such that v (z) € TpM for any ¢ € M. In the local coordinates
zl, ...,z it can be represented in the form

v (z) = v* (z) aii.

The vector field v (z) is called smooth if all the functions v* (z) are smooth
in any chart.

Fix a point z € M and let f be a smooth function in a neighborhood
of . Define the notion of the differential df at = as follows: df is a linear
functional on T, M given by

(df, &) = £ (f) for any £ € To M, (3.9)

where (-, -) denotes the pairing of a linear functional on T, Mand a vector
from T, M. Hence, df is an element of the dual space T; M, which is called a
cotangent space. It is known from linear algebra that the dual space is also
a linear space of the same dimension n. The elements of T;M are called
covectors.
Any basis {e1,...,en}in ToM has a dual basis {el,...,e"} in the dual
space Ty M, which is defined by
i on_ s ) L i=1
carion{ 131
For example, the basis {52} has dual {dz*} because
0 0 i
Bar) = B = O

The covector df can be represented in the basis {dz*} as follows:

(dat,

df = f dm , (3.10)

that is, the partial derivatives 55. are the components of the differential df
in the basis {dz’}. Indeed, for any j =1,...,n,
0, Of ia_afi_af
(5% 55! = 35\ 5g3) = 53% = g = (& 8:r;J>

3.3. Riemannian metric

Let M be a smooth n-dimensional manifold. A Riemannian metric (or
a Riemannian metric tensor) on M is a family' g = {g(z)},¢,, such that
g(z) is a symmetric, positive definite, bilinear form on the tangent space
T.M, smoothly depending on z € M.

10ne can also say that g is a smooth (0, 2)-tensor field on M.
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Using the metric tensor, one defines an inner product (:, )¢ in any tan-
gent space T M by?
& meg=glx) &),

for all tangent vectors £, € T, M. Hence, T, M becomes a Euclidean space.
For any tangent vector £ € Ty M, its length is defined by

1/2
Itlg = (66"
In the local coordinates 2, ..., z™, the inner product in Ty M has the form

(€, me = gij (z) £, (3.11)
where (gij (2))};—; is a symmetric positive definite n X n matrix. The func-
tions g;; () are called the components of the tensor g in the coordinates
zl,...,z". The condition that g(z) smoothly depends on z means that all
the components g;; (z) are C*°-functions in the corresponding charts. It

follows from (3.11) that

0 0

9ij = (-8_1:_" %k- (3.12)

DEFINITION 3.10. A Riemannian manifold is a couple (M, g) where g is
a Riemannian metric on a smooth manifold M.

A trivial example of a Riemannian manifold is R™ with the canonical
Euclidean metric gg» defined in the Cartesian coordinates 1, ..., z" by

gR" = (dxl)z + hee + (dwn)2 .

For this metric, we have (g;;) = id.
It is frequently convenient to write the metric tensor g in the form

g = gijdrida’, (3.13)

where dride’ stands for the tensor product of the covectors dx* and dz?,
which is a bilinear functional on 7, M defined by

dz*dz? (€, m) = (dz*,€)(da, ),
where (-, -) is the pairing of covectors and vectors. Indeed, since
(d.’l;%f) = f (xlb) = Ei’
(3.13) is equivalent to g (¢,1) = g;;¢*n’, which is just another form of (3.11).
Let (M,g) be a Riemannian manifold. The metric tensor g provides
a canonical way of identifying the tangent space T,M with the cotangent

space T;M. Indeed, for any vector £ € T, M, denote by g(z) & a covector
that is defined by the identity

(g(x)&,m) = (€ meiorallne T, M (3.14)

2In the context when the metric tensor g is fixed, we will normally drop the subscript
g from all notation.



58 3. LAPLACE OPERATOR ON A RIEMANNIAN MANIFOLD

Clearly, this makes g (z) into a linear mapping from T, M to TyM. In the
local coordinates, we have
(g (2)8); 7 = gi€'n’-
which implies
(8(2)€); = gis¢".
In particular, the components of the linear operator g (z) are g;; — the same

as the components of the metric tensor. With a slight abuse of notation,
one writes §; = (g(z) §) ; 50 that the same letter is used to denote a vector

and the corresponding covector. In this notation, we have &; = gijgi.
Observe that if £ # 0 then g (z) £ is also non-zero as covector, because
(g (z) ¢, &) > 0.Therefore, the mapping

g(z):TuM - T, M
is injective and, hence, also bijective. Consequently, it has the inverse map-
ping
gl (z): T:M - T, M,
whose components are denoted by (g*/) so that
(6) = (g:5) ™.
Hence, for any covector w € Ty M, g~ (z) w is a vector whose components
are given by
w = (g7} (z)w)' = g¥w;. (3.15)
Obviously, g~! (z) can be considered as an inner product in T*M: for all
v,w € Ty M, set
(v,W)g-1 = (g7 (2)v,87" (z) w)g = (v,87" (z) w).
It follows that, in the local coordinates,
(v,wW)g-1 = gIvw,.
For any smooth function f on M, define its gradient V f (z) at a point
z €M by
Vf(z) =g () df (2) (3.16)
that is, Vf (z) is a covector version of df (z). Applying (3.14) with { =
V£ (z), we obtain, for any n € T, M,

(Vf,nbg = (df,m) = g{; (3.17)

which can be considered as an alternative definition of the gradient. In the
local coordinates z!, ..., z", we obtain by (3.15) and (3.16)

i_ i Of
(V)= 9 5 (3.18)
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If h is another smooth function on M then setting in (3.17) n = Vh and
using (3.18), we obtain

ij Of Oh

(V£, Vh)g = (df, Vh) = g7 2= = (df, dh)g-r. (3.19)
Exercises.
3.3. Prove the product rule for 4 and V:
d (uv) = udv + vdu
and
V (wv) = uVv + vV, (3.20)

where u and v are smooth function on M.
3.4. Prove the chain rule for d and V:
df (u) = f' (u)du
and
Vf(u) = f (v) Vu

where u and f are smooth functions on M and R, respectively.

3.4. Riemannian measure

Some basic knowledge of the measure theory is required in this section
(see the reference material in Appendix A, Section A.4).

Let M be a smooth manifold of dimension n. Let B (M) be the smallest
o-algebra containing all open sets in M. The elements of B (M) are called
Borel sets. We say that a set F C M is measurable if, for any chart U, the
intersection ENU is a Lebesgue measurable set in U. Obviously, the family
of all measurable sets in M forms a o-algebra; denote it by A (M). Since
any open subset of M is measurable, it follows that also all Borel sets are
measurable, that is, B(M) C A (M).

The purpose of this section is to show that any Riemannian manifold
(M, g) features a canonical measure v, defined on A (M), which is called the
Riemannian measure (or volume). This measure is defined by means of the
following theorem.

THEOREM 3.11. For any Riemannian manifold (M,g), there exists a
unique measure v on A (M) such that, in any chart U,

dv = 4/det gd, (3.21)
where g = (g;;) is the matriz of the Riemannian metric g in U, and X is the
Lebesgue measure in U. ~

Furthermore, the measure v is complete, v (K) < oo for any compact set
K C M, v(Q) > 0 for any non-empty open set & C M, and v is regular in
the following sense: for any set A € A (M),

v(A) =sup{v(K): K CA, K compact} (3.22)
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and
v(A)=inf{v(U): ACQ, Q open}. (3.23)

For the proof we use the following lemma.

LEMMA 3.12. Let z1,...,z™ and y*,...,y" be the local coordinate systems
in open sets U and V', respectively. Denote by ¢° and g¥ the maitrices of g
in the coordinates z*, ..., z™ and y', ..., 4", respectively. Let J = (J{“)Z’izl be
the Jacobian matriz of the change y =y (x) defined in UNV by
_ o
=5
where k is the row inder and ¢ is the column index. Then we have the
following identity in UNV:

J¥ (3.24)

g =JTg¥J, (3.25)
where JT is the transposed matriz.

PRrROOF. By the chain rule, we have
ozt Ozt Gyt T Oyk’

whence by (3.12)

5 = (o e = M m gle = Skl (320
Noticing that
Jikglgljyl' = (JTgyJ)ij ’
we obtain
g5 = (JT9%J),
whence (3.25) follows. (W

PROOF OF THEOREM 3.11. The condition (3.21) means that, for any
measurable set A C U,

v (A) = /A J/det gd). (3.27)

By measure theory, the identity (3.27), indeed, defines a measure v on the
o-algebra A (U) of Lebesgue measurable sets in U (see Section A.4.3).

We will show that the measure v defined by (3.27) in each chart, can be
uniquely extended to A (M). However, before that, we need to ensure that
the measures in different charts agree on their intersection.

CLaM. IfU and V are two charts on M and A is a measurable set in UNV
then v (A) defined by (3.27) has the same values in both charts.

Let z1,...,z" and 3, ...,y be the local coordinate systems in U and
V, respectively. Denote by g* and ¢¥ the matrices of g in the coordinates
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zt, ..., z" and y1, ..., y", respectively. We need to show that, for any measur-
ableset ACW =UnNnV,

/ v/ det g®dx = / +/ det g¥dy,
A A
where dz and dy stand for the Lebesgue measures in U and V, respectively-
By (3.25), we have
det g° = (det J)? det ¢Y. (3.28)

Next, let us use the following formula for change of variables in multivariable
integration: if f is a non-negative measurable function in W then

/W fdy = /Wf|det J|dx.

Applying this for f = 14+/det g%, where A C W is a measurable set, and
using (3.28), we obtain

/\/detgydy:/\/detgy|detJldoc:/\/detgxdx,
A A A

which was to be proved.

Now let us prove the uniqueness of measure v. By Lemma 3.4, there is &
countable family {U;};2, of relatively compact charts covering M and such
that U; is contained in a chart. For any measurable set A on M, define the
sequence of sets A; C U; by

A1 =ANUy, Ao =ANU\ Uy, ..., Ai=ANU;\ U1\ ...\ Ui—1, ... (3.29)
(see Fig. 3.2).

FiGURE 3.2. Splitting A into disjoint sets A;.

Clearly, A =| |, A; where the sign L means “disjoint union”. Therefore,
for any extension of v, we should have

v(4) = v(4). (3.30)

1
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However, the value v (4;) is uniquely defined because A; is contained in the
chart U;. Hence, v (A) is also uniquely defined, which was to be proved.

To prove the existence of v, we use the same construction: for any
measurable set A, define v (A) by (3.27), using the fact that v (4;) is already
defined. Let us show that v is a measure, that is, v is o-additive. Let {A*}
be a sequence of disjoint measurable sets in M and let

A=| |4
%
Defining the sets A¥ similarly to (3.29), we obtain that
A= Ak
k

Since v is o-additive in each chart U;, we obtain

v (4) = 3 v(4h).

k

Adding up in ¢ and interchanging the summation in ¢ and &, we obtain

v(4) = Zu(Ak) ,
k
which was to be proved.

Let us show that measure v is complete, that is, any null set of v is
measurable. Let N be a null set of v, that is, N C A for some set A with
v (A) = 0. Defining N; similarly to A4; by (3.29), we obtain N; C A;. Since
v (4;) =0, it follow from the formula (3.27) in U; and /det g > 0 that also
A(A;) = 0. Thus, N; is a null set for the Lebesgue measure A in U;. Since
the Lebesgue measure is complete, we conclude that N; is measurable and,
hence, N is measurable.

Any compact set K C M can covered by a finite number of charts U;
and, hence, K is a finite union of some sets K; = K N U;. Applying (3.27)
in a chart containing U; and noticing v/det ¢ is bounded on U;, we obtain
v (K;) < oo, which implies v (K) < oo.

Any non-empty open set & C M contains some chart U, whence it
follows from (3.27) that

v(Q)>vU)= /U\/detgd/\ > 0.

Let us prove the inner regularity of v, that is (3.22). Let A be a relatively
compact measurable subset of M. Then there is a finite family {U;}%; of
charts that cover A. We can assume that each U; is compact and is contained
in another chart V;. By the regularity of the Lebesgue measure, each set
A; = ANVU; can be approximated by a compact set K; C A; such that
Ai (A \ K;) < e; where A; is the Lebesgue measure in V; and €; > 0 is any
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given number. Set C; = supy, vdet g, K = U:il K;, and observe that
m m
v(A\K) <Y v(A\K) <) C
i=1 i=1

Since €; can be chosen arbitrarily small, the right hand side can be made
arbitrarily small, which proves (3.22). If A is an arbitrary measurable subset
of M, then take a compact exhaustion {2z} of M and apply the previous
argument to Ay = AN Q. Let Kj be a compact subset of A such that
v (Ax \ Ki) < e where {e;} is any sequence of positive numbers such that
er — 0 as k — 0o. Then we have

klggo v (Ky) = klggoy (4k) = v (4),

which proves (3.22).

Finally, let us prove the outer regularity of v, that is (3.23). Let now
{U;} be a countable family of charts that cover M and such that each U;
is contained in another chart V;, such that V; is compact and is contained
yet in another chart. By the regularity of the Lebesgue measure, the set
A; = ANU; can be approximated by an open set §2; O A; so that Q; C V;
and X; (Q; \ 4;) < €. Setting C; = supy; v/det g and Q = (J;2, s, we obtain
as above

v(2\A) < icis,;.
i=1

Since the right hand side can be made arbitrarily small by the choice of ¢;,
we obtain (3.23). ad

The extension of measure v from the charts to the whole manifold can also be done
using the Carathéodory extension of measures. Consider the following family of subsets
of M:

§={A C M: Ais a relatively compact measurable set and 4 is contained in a chart} .

Observe that S is a semi-ring and, by the above Claim, v is defined as a measure on S.
Hence, the Carathéodory extension of v exists and is a complete measure on M. It is not
difficult to check that the domain of this measure is exactly A (M). Since the union of
sets U; from Lemma 3.4 is M and v (U;) < oo, the measure v on S is o-finite and, hence,
its extension to A (M) is unique.

Since the Riemannian measure v is finite on compact sets, any contin-
uous function with compact support is integrable against v. Let us record
the following simple property of measure v, which will be used in the next
section.

LemMA 3.13. If f € C (M) and
/ fedv =20 (3.31)
M
for all p € C§° (M) then f=0.
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PROOF. Assume that f (zp) # 0 for some point 2y € M, say, f (zg) > 0.
Then, by the continuity of f, f (z) is strictly positive in a open neighborhood
Q of zg. Let ¢ be a cutoff function of {zp} in 2. Then ¢ =1 in an open
neighborhood U of zg. Since v (U) > 0, it follows that

/f(pdl/—/f(pdu>/fdv>0

which contradicts (3.31). d

Exercises.

3.5. Let g, g be two Riemannian metric tensors on a smooth manifold M and let g and §
be the matrices of g and g respectively in some coordinate system. Prove that the ratio
detg
detg

does not depend on the choice of the coordinates (although separately det g and detg do
depend on the coordinate system).

3.6. Let g, g be two Riemannian metric tensors on a smooth manifold M such that

<c, (3.32)

m® [0’

that is, foral z € M and £ € T M,
g(£,6) <Cg(4¢).

(a) Prove that if v and U are the Riemannian volumes of g and g, respectively. then

dv n/2
— <
dv — ¢

where n = dim M.
(b) Prove that, for any smooth function f on M,

2 2
IVflg<CIVSlz.

3.5. Divergence theorem

For any smooth vector field v (z) on a Riemannian manifold (M, g), its
divergence divwv (z) is a smooth function on M, defined by means of the
following statement.

THEOREM 3.14. (Divergence theorem) For any C'*-vector field v (z) on
a Riemannian manifold M, there exists a unigque smooth function on M,
denoted by divv, such that the following identity holds

/M (divv) udv = —/M(v, Vu)edv, (3.33)

for all u € C§° (M).
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ProoF. The uniqueness of divw is simple: if there are two candidates
for div v, say (divv)’ and (divv)” then, for all u € C§° (M),

/ (dive) udv = / (divv)” udy,
M M

which implies (divv)’ = (divv)” by Lemma 3.13.

To prove the existence of div v, let us first show that divv exists in any
chart. Namely, if U is a chart on M with the coordinates zl, ..., 2" then,
using (3.17), (3.21), and the integration-by-parts formula in U, we obtain,
for any u € C§° (U),

/(U,Vu)gdv = /(v,du)du
U U
Ou
2%/
Uv 5 det gdA
2 k_/

1 9
= —/U\/—a—e_tgF (vk\/detg)udu. (3.34)

Comparing with (3.33) we see that the divergence in U can be defined by

vy = —— 2 (/deigv*
dwv—\/maxk( detgv). (3.35)

If U and V are two charts then (3.35) defines the divergences in U and in
V, which agree in UNV by the uniqueness statement. Hence, (3.35) defines
divv as a function on the entire manifold M, and the divergence defined
in this way satisfies the identity (3.33) for all test functions u compactly
supported in one of the charts.

We are left to extend the identity (3.33) to all functions u € C§° (M). Let
{Q%} be any family of charts covering M. By Corollary 3.6, any function
u € C§° (M) can be represented as a sum uj + ... + uy, where each wu; is
smooth and compactly supported in some 2,. Hence, (3.33) holds for each
of the functions u;, and adding up all such identities, we obtain (3.33) for
function w. O

It follows from (3.35) that

di _8_v’i+ k—a—lo det
1vv—axk Ll g+/det g.

Inkparticular, if det ¢ = 1 then we obtain the same formula as in R™: divv =
fos
8o

COROLLARY 3.15. The identity (3.33) holds also if u(x) is any smooth
function on M and v (x) is a compactly supported smooth vector field on M.
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PRrROOF. Let K = suppv. By Theorem 3.5, there exists a cutoff function
of K, that is, a function ¢ € C§° (M) such that ¢ = 1 in a neighbourhood
of K. Then uyp € C§° (M), and we obtain by Theorem 3.14

/Mdivvudz/ = /Mdivv (up) dv = —/M(v,V(wp))gdu = -—/M('u,Vu)ng.
O

Alternative definition of divergence. Let us define the divergence divv in any
chart by

1 9
v ( det gvk) , (3.36)

and show by a direct compuiation that, in the intersection of any two charts, (3.36)
defines the same function. This approach allows to avoid integration in the definition of
divergence but it is more technically involved (besides, we need integration and Theorem
3.14 anyway).

We will use the following formula: if a = (a}) is a non-singular n X n matrix smoothly
depending on a real parameter ¢ and (d}) is its inverse (where i is the row index and j is
the column index) then

o k
B logdeta =G a;, (3.37)
In the common domain of two coordinate systems !, ..., 2™ and ¢*, ..., y", set
ko 8y oz
2 J = A
J, 6.’1: and k 6y’°
Let g be the matrix of the tensor g and v* be the components of the vector v in coordinates
z',...,z", and let § be the matrix of g and 7 be the components of the vector v in

coordinates 3!, ...,y™. Then we have
1 a — 'Ui Qy_k 8 — i Jf o
Ooxt dx* By By*

v="v
so that

v =i gk,

V/det§ = v/det g|det J|7*,

where J = (JF), the divergence of v in coordinates yl, , 4™ is given by

. . 1 __6_ =k det J 7 -1 +k
dive = ——\/mayk (\/det ) \/de_t”] pwel (\/detgv (det J) J)

i k
= —— et gv* +v et et J)7! + 0t T
1 90 (/3 TIF 4 T IF det 72 (d 157 0

Since by (3.28)

V/det g dz7 Oz k ozd
= 18 i o ,8J'°
= m—a—;{ (\/detgv) v 5—10gdetJ+ Ji == e

where we have used the fact that the matrices (JF) and (J7) are mutually inverse. To
finish the proof, it suffices to show that, for any index ¢,
oJF

9 7i
~ 3 s logdet J + Jka—' =0. (3.38)

By (3.37), we have
aJf

%logdetJ J,’ea 2

8z
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Noticing that
6JJk _ 62yk _ azyk _ B_.Lk
0z’ Bxifr  Ozi8w Oz’

we obtain (3.38).

3.6. Laplace operator and weighted manifolds

Having defined gradient and divergence, we can now define the Laplace
operator (called also the Laplace-Beltrami operator) on any Riemannian
manifold (M, g) as follows:

A = divoV.
That is, for any smooth function f on M,
Af=div(Vf), (3.39)
so that Af is also a smooth function on M. In local coordinates, we have
v/ det .40
\/——det o ( 9" 5 a) (340)

where g = (gs5)-

THEOREM 3.16. (Green formula) If u and v are smooth functions on a
Riemannian manifold M and one of them has a compact support then

/ uAvdy = —/ (Vu, Vu)gdv = / vAudy. (3.41)
M M M

Proor. Consider the vector field Vv. Clearly, supp Vv C supp v so that
either supp u or supp Vv is compact. By Theorem 3.14, Corollary 3.15, and
(3.39), we obtain

/ uAvdy =/ udiv (Vo)dv = —/ (Vu, Vu)gdv.

M M M

The second identity in (3.41) is proved similarly. a
For example, if (g;;) = id then also (g"j ) =id, and (3.40) takes the form

. ; am*)

Any smooth positive function Y (z) on a Riemannian manifold (M, g)
gives rise to a measure 1 on M given by du = Ydv. The function Y is called
the density function of the measure u. For example, the density function of
the Riemannian measure v is 1.

DErFINITION 3.17. A triple (M,g,u) is called a weighted manifold, if
(M, g) is a Riemannian manifold and p is a measure on M with a smooth
Dositive density function.
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The definition of gradient on a weighted manifold (M, g, 1) is the same
as on (M,g), but the definition of divergence changes. For any smooth
vector field v on M, define its weighted divergence div, v by

. 1 ..
divyv = T div (Tv).

It follows immediately from this definition and (3.33) that the following
extension of Theorem 3.14 takes place: for all smooth vector fields v and
functions u,

/ divﬂvud/L:—/ (v, Vu)gdp, (3.42)
M M

provided v or » has a compact support.
Define the weighted Laplace operator A, by

A, = div,oV.

The Green formulas remain true, that is, if ¥ and v are smooth functions on
M and one of them has a compact support then

/ vl vdp = —/ (Vu, Vv)gdu = / vAyudp. (3.43)
M M M
In the local coordinates x?, ..., 2", we have
X 18 ;
divyv = P (ov") (3.44)
and
19 iy 0

where p = Y+/detg. Note also that du = pdA, where A is the Lebesgue

measure in U.
Sometimes is it useful to know that the right hand side of (3.45) can be

expanded as follows:

B 18p .. 8¢9\ &
—_ ¥ _ 2
A=y axiaxj+(paxig 't e )axa (3.46)

ExAMPLE 3.18. Consider the weighted manifold (R, g, 1) where g is the
canonical Euclidean metric and du = Tdz. Then by (3.45) or (3.46)

A =5 (YZ) =1+ T

For example, if T = e~%° then

Auf=f"—2zf. (3.47)
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Exercises.

3.7. (Product rule for divergence) Prove that, for any smooth function « and any smooth
vector field w,

div, (uw) = (Vu,w) + udivy, w (3.48)
3.8. (Product rule for the Laplacian) Prove that, for any two smooth functions v and v,
A, (wv) = uA v + 2(Vu, Vu)g + (Auu)v. (3.49)
3.9. (Chain rule for the Laplacian) Prove that
Auf () = " (W) [Vulg + ' (u) A,
where u and f are smooth functions on M and R, respectively.
3.10. The Hermite polynomials hy () are defined by

2 d" .
hi (@) = (D e Te™,

where £ = 0,1,2,.... Show that the Hermite polynomials are the eigenfunctions of the
operator (3.47).

3.11. Let a(z), b(x) be smooth positive functions on a weighted manifold (M, g, u), and
define new metric g and measure 2 by

g =0ag and di=bdyu.

Prove that the Laplace operator Zi,: of the weighted manifold (M, g, &) is given by
~ 1. b

In particular, if a = b then

~ 1

3.12. Consider the following operator L on a weighted manifold (M, g, u):

Lu= % div, (AVu),

where b = b(z) is a smooth positive function on M and A = A(z) is a smooth field of
positive definite symmetric operators on T=M. Prove that L coincides with the Laplace
operator Ay of the weighted manifold (M, g, i) where

gE=0bgA™! and dfi = bdu.
3.13. Consider the following operator L on a weighted manifold (M, g, n):
Lu = Apu+ (Vv, Vu)g,

where v is a smooth function on M. Prove that I = Az for some measure %, and determine
this measure.
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3.7. Submanifolds

If M is a smooth manifold then any open subset () C M trivially becomes
a smooth manifold by restricting all charts to 2. Also, if g is a Riemannian
metric on M then g|, is a Riemannian metric on 2. Hence, any open subset
Q of M can be considered as a (Riemannian) submanifold of a (Riemannian)
manifold M of the same dimension.

Consider a more interesting notion of a submanifold of smaller dimen-
sion. Any subset S of a smooth manifold M can be regarded as a topological
space with induced topology. It is easy to see that S inherits from M the
properties of being Hausdorff and having a countable base.

A set 8§ C M is called an (embedded) submanifold of dimension m if,
for any point zop € S, there is a chart (U, ¢) on M covering xg such that the
intersection SN U is given in U by the equations

g™l =™ = =" =0
where z',z?,...,z™ are the local coordinates in U (see Fig. 3.3).
o(SNU)
N = % N

/ \
—— F !
5 /
4

p(U)°< -

U I Rn
Rm

FIGURE 3.3. The image ¢ (SNU) lies in R™ C R™.

In particular, this means that the image ¢ (U N S) is contained in the
m-dimensional subspace of R"

{zeR: z™ =22 = =2" =0},

which can be identified with R™, so that ¢|yns can be considered as a
mapping from U NS to R™. Hence, (U N S, ¢|yns) is a m-dimensional chart
on § (with the coordinates z1,z?,...,2™). With the atlas of all such charts,
the submanifold S is a smooth m-dimensional manifold.

Let & be an R-differentiation on S at a point 2y € S. For any smooth
function f on M, its restriction f|s is a smooth function on S. Hence,

setting

§(f) =¢&(fls), (3.50)
we see that £ can be extended to an R-differentiation on M at the same
point xg. Therefore, (3.50) provides a natural identification of Ty,S as a
subspace of T M.
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Let (M, g) be a Riemannian manifold. If o € S then by restricting the
tensor g in Ty, M to the subspace Ty,S, we obtain the Riemannian metric
gs on S, which is called the induced metric.

Let (M, g, ) be a weighted manifold and T be the density function of
measure u. Define the induced measure ps on S by the condition that ug
has the density function Y|g with respect to the Riemannian measure of gg.
Hence, we obtain the weighted manifold (S, gs, us). If dimS =n — 1 then
the measure ug is also referred to as area as opposed to the n-dimensional
measure u, which in this context is called volume.

LEMMA 3.19. Let M be a smooth manifold of dimensionn and F : M —
R be a smooth function on M. Consider the null set of F, that is

N={zeM:F(z)=0}.

If
dF #0on N w3:51)

then N is a submanifold of dimension n — 1.

ProOF. For any point zo € N, there is a chart U on M containing zg
and such that dF # 0 in U. This means that the row-vector (%) does
not vanish in U. By the implicit function theorem, there exists an open
set V C U containing g and an index i € {1,...,n} such that the equation
F(z) = 0 in V can be resolved with respect to the coordinate z*; that is,

the equation F (z) = 0 is equivalent in V to
: ,
2t = f(z,..v ..., "),

T
where f is a smooth function and the sign v/ means that the coordinate z*
is omitted from the list.
For simplicity of notation, set ¢ = n so that the equation of set N in V'
becomes
a" = f(z},...,a"1).
After the change of coordinates

yl = ml7
yn—l — xn—l
yr = " —f (wl, ™)
the equation of N in V becomes 3™ = 0 and hence N is a (n — 1)-dimensional
submanifold. t

ExaMpLE 3.20. Consider in R**! the following equation
@) + .. + (") =1,
which defines the unit sphere S”. Since S™ is the null set of the function
F(2)= (") +..+ () -1,
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whose differential dF' = (2z%,...,22™+!) does not vanish on S, we conclude
that S™ is a submanifold of R™*! of dimension n. Furthermore, considering
R™*! as a Riemannian manifold with the canonical Euclidean metric, we see
that S™ can be regarded as Riemannian manifold with the induced metric,
which is called the canonical spherical metric and is denoted by gsn.

Exercises.

3.14. Let M be a smooth manifold of dimension n and N be its submanifold of dimension
n — 1 given by the equation F(z) = O where F is a smooth function on M such that
dF # 0 on N. Prove that, for any z € N, the tangent space T[NV is determined as a
subspace of T, M by the equation

T,N = { € T.M : (dF,£) = 0}. (3.52)

In the case when M = R", show that the tangent space T> N can be naturally identified
with the hyperplane in R™ that goes through z and has the normal

vp= (26, 2F).

8z’ " Oxn

In other words, the tangent space TN is identified with the tangent hyperplane to the
hypersurface N at the point z.

3.8. Product manifolds

Let X,Y be smooth manifolds of dimensions n and m, respectively,
and let M = X x Y be the direct product of X and Y as topological
spaces. The space M consists of the couples (z,y) where z € X and y € Y,
and it can be naturally endowed with a structure of a smooth manifold.
Indeed, if U and V are charts on X and Y respectively, with the coordinates
zl,...,2"™ and y*,...,y™ then U X V is a chart on M with the coordinates
z',...,2% 9%, ...,4™. The atlas of all such charts makes M into a smooth
manifold.

For any point (z,y) € M, the tangent space T, )M is naturally identi-
fied as the direct sum T, X @ 7,Y of the linear spaces. Indeed, fix a point
(z,y) € M. Any R-differentiation £ € T;X can be considered as an R-
differentiation on functions f (z,y) on M by freezing the variable y, that
is

§WN =600
This identifies T, X as a subspace of T, )M, and the same applied to T,Y.
Let us show that the intersection of T, X and T,Y in T, )M is {0} . Indeed,
if £ € T,X NT,Y then, for some vectors a € T X and b € T,Y and all
feC= (M),
EN)=a(f( ) =0b(f (=),

whence it follows that

a‘b

=y f
Bt (m7y) = bjayj ("E:y) )
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which is not possible for all f, unless all a* = ¥/ = 0. Since dim T X = n,
dimT,Y = m, and dim T}, ,) = n +m, we conclude that

TepwM =T, X 0 T,Y. (3.53)

If gx and gy are Riemannian metric tensors on X and Y, respectively,
then define the metric tensor g on M as the direct sum

g =8x t+8y- (3.54)

Namely, for any (z,y) € M, any vector £ € T(,,yM uniquely splits into the
sum

§=¢&x + &,
where {x € T X and {y € T,Y; then set
(8x +8Y)(z,9) (§;m) = 8x () €x,mx) + 8y (¥) €y, ny) -
In the local coordinates 2%, ...,z", y1, ..., y™, we have
gx +8y = (gX)ij datdz’ + (9 )i dyFdyt.

The manifold (M, g) is called the Riemannian (or direct) product of (X, gx)
and (Y, gy).
Note that the matrix g of the metric tensor g has the block form

9x 0

g= 0 P )

1 and

which implies a similar form for g
det g = det gx det gy.

If vx and vy are the Riemannian measures on X and Y, respectively, then
the Riemannian measure v of M is given by

dv = /det gdz*...dz"dy"...dy™ = dvxdvy.
Hence, v is the product of measures vx and vy, that is,
V=Vx XVlVy

(see Section A.4.6 for the definition of products of measures).

Denoting by Ax and Ay the Laplace operator on X and Y, respec-
tively, and by z1,...,2"t™ the coordinates z!,...,x",y%,...,4™, we obtain
the following expression of the Laplace operator A on M:

1 0 .. B
A = — | 1/ u___
Vdetg 82" ( det 99 0z )
T detg oz (V 99% 5 J) Jdetg Oy (Vdetgg’fa a‘)
1 — 1 0 ——
Vet gx Ozt ( dethgXa J) Vdet gy 0yt ( detgnga J>

0
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that is,
A=Ax+ Ay.
Let (X, gx, ux) and (Y, gy, uy) be weighted manifold. Setting M = X x
Y, g =gx+gy and u = pux X uy, we obtain a weighted manifold (M, g, u),
which is called the direct product of weighted manifolds (X, gx,sx) and
(Y,gy,py)- A computation similar to the above shows that
Ay =0uy + 8.

There are other possibility to define a Riemannian tensor g on the prod-
uct manifold M = X xY. For example, if ¢ (z) is a smooth positive function
on X then consider the metric

g=gx +9° (z)ev. (3.55)
The Riemannian manifold (M, g) with this metric is called a warped product
of (X,gx) and (Y, gy). In the local coordinates, we have

g = (9x),; dz*dz’ + 9* (z) (gv)y, dy*dy/.
Exercises.

3.15. Prove that the Riemannian measure v of the metric (3.55) is given by
dv = 9™ (z) dvxdvy, (3.56)
and the Laplace operator A of this metric is given by

Af=Axf+m(Vxlog¥,Vxflex .

+ 5@ Ay f, (357)

where Vx is gradient on X.

3.9. Polar coordinates in R", S", H"

Euclidean space. In R™, n > 2, every point z # o can be represented in
the polar coordinates as a couple (r,6) where r := |z| > 0 is the polar radius
and 8 := ‘—:—( € S"1 is the polar angle.

CLAIM. The canonical Euclidean metric grn has the following representa-
tion in the polar coordinates:

gr~ = dr? + r’ggn-1, (3.58)

where gsn—1 is the canonical spherical metric.

PROOF. Let 61, ...,0"! be local coordinates on S*! and let

gsn~1 = ")’ijdeidej. (3.59)
Then r,6%, ...,6™ ! are local coordinates on R”, and (3.58) means that
grr = dr? + r27ijd9id9j. (3.60)

We start with the identity z = ré, which implies that the Cartesian coordi-
nates z1,...,z™ can be expressed via the polar coordinates r,61,...,0""! as
follows:

gt =rfi(6%,...,6"1), (3.61)
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where f* is the zi-coordinate in R™ of the point 6 € S*~ . Clearly, f1,..., f*
are smooth functions of 41, ..., and

() + e+ (M=t (3.62)
Applying differential d to z* and using the product rule for d, we obtain

dz* = fidr + rdf?,
whence, taking the tensor product,
(dz?)? = ()2 dr® + (rdr) (Fidf¥) + (Fdf?) (rdr) + 72 (df%)°.
Summing up these identities for all < and using (3.62) and its consequence
> fidft =0, (3.63)
i

we obtain

gre = Y (dz')” = dr? + 12 > (df?)?

i

i 2 i 1
i (af doﬂ) OF OF 163 ag*,

Clearly, we have

o002 967 56k
which implies that the sum 3, (df“)2 can be represented in the form
3 (@) = ydo as*, (3.64)
i

where ;) are smooth functions of 8%, ...,6" 1. Hence, we obtain the identity
(3.60).

We are left to verify that +;;d6°df’ is the canonical spherical metric.
Indeed, the metric gg»—1 is obtained by restricting the metric ggn to S?~1.
On S"~1 we have the coordinates 8%, ..., 6" while r = 1 and dr = 0. Indeed,
for any ¢ € T,S"™1, we have

(dr,§) =&(r) =& (rlsn-1) =£(1) = 0.
Therefore, substituting in (3.60) r = 1 and dr = 0, we obtain (3.59). O

Sphere. Consider now the polar coordinates on S*. Let p be the north
pole of S and ¢ be the south pole of S™ (that is, p is the point (0, ...,0, 1)
in R™*! and ¢ = —p). For any point z € S™ \ {p, ¢}, define r € (0, 7r) and
f €Sy

xl
cosr =z and f= Zak (3.65)
where 2/ is the projection of z onto R = {z € R™*1 : z"+1 = 0}. Clearly,
the polar radius r is the angle between the position vectors of = and p, and
T can be regarded as the latitude of the point z measured from the pole.

The polar angle 6 can be regarded as the longitude of the point z (see Fig.
3.4).
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Axn+1

FIGURE 3.4. Polar coordinates on S™

CLAIM. The canonical spherical metric gs» has the following representation
in the polar coordinates: i

gsn = dr? 4 sin® rggn-1. (3.66)

PROOF. Let 6, ...,0" ! are local coordinates on S*~! and let us write
down the metric gs~ in the local coordinates r, 61,...,6" L. Obviously, for
any point z € S™ \ {p, ¢}, we have |z'| = sinr whence 2’ = (sinr) §. Hence,
the Cartesian coordinates z!,...,z™*! of the point = can be expressed as

follows:

gt = sinrft(6,..,60"Y), i=1,..,n,

2"t = cosr,
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where f* are the same functions as in (3.61). Therefore, we obtain using
(3.62), (3.63), and (3.64),

(dz')? + ... + (da™)? + (dz™+1)?

= Z (f* cosrdr + sin rdfi)2 4 sin? rdr?

=1
n
= > ((fi)2 cos® rdr? + sin® r (df*) 2)
=1
n . . n . .
+ Z (sinrcosrdr) (f'df*) + Z (f*df*) (sinr cosrdr)
=1 i=1
+sin® rdr?
n
= cos® rdr? +sin’r Z (dfi)2 + sin? rdr?
=1
= dr? + sin? Y5 detde’ .
Since we already know that v;;d6*d6? is the canonical metric on S"~!, we
obtain (3.66). O

Hyperbolic space. The hyperbolic space H™, n > 2, is defined as follows.
Consider in R} a hyperboloid H given by the equation’

(@)? - (¢)* =1, (3.67)
where 2/ = (acl,...,a:“) € R and z"™! > 0. By Lemma 3.19, H is a

submanifold of R**1 of dimension n.
Consider in R**! the Minkowski metric

gntink = (dz?)’ + ... + (dz™)? — (dz™+1)?, (3.68)

which is a bilinear symmetric form in any tangent space TpR"*! but not
positive definite (so, garink is not a Riemannian metric, but is a pseudo-
Riemannian metric). Let gy be the restriction of the tensor gasink to H. We
will prove below that gy is positive definite so that (H, gg) is a Riemannian
manifold. By definition, this manifold is called the hyperbolic space and is
denoted by H"”, and the metric gy is called the canonical hyperbolic metric
and is denoted also by gyn.

Our main purpose here is to introduce the polar coordinates in H" and
to represent g~ in the polar coordinates. As a by-product, we will see that
gm~ is positive definite.

Let p be the pole of H", that is p = (0, ...,0,1) € R**1. For any point
z € H*\ {p}, define r > 0 and 6 € S ! by

wl

||
-_——
3For comparison, the equation of S™ can be written in the form (:1:""'1)2 +(z) =1

coshr =z"*! and 0= (3.69)
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(see Fig. 3.5).

r= 2(21?ded area)

______________________________________________________

Ficure 3.5. Polar coordinates on H"

CLAmM. The canonical hyperbolic metric gun has the following representa-
tion in the polar coordinates:

ghr = dr? + sinh? rgga_1. (3.70)

In particular, we see from (3.70) that the tensor gy~ is positive definite
on T,H™ for any z € H" \ {p}. The fact that gy~ is positive definite on
T,H" follows directly from (3.68) because dz™*! = 0 on T,H".

PRrOOF. Let 8, ...,6™ ! be local coordinates on S ! and let us write
down the metric gg» in the local coordinates r, 41, ...,6"1. For any point
z € H™ \ {p}, we have

|2'| = V/]e"*1]2 — 1 = V/cosh®r — 1 = sinhr,

whence =/ = (sinhr) §. Hence, the Cartesian coordinates z!, ..., 2" of the
point = can be expressed as follows:

g' = sinhrfi (8.0, i=1,..,n,

2™ = coshr,
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where f* are the same functions as in (3.61). It follows that

(d:cl)2 + oo+ (dz™)? - (da:’““l)2

(]
= Z (f* coshrdr 4 sinh 7'alfi)2 — sinh? rdr?
i=1
n 2 N2
= ((f’) cosh? rdr? 4 sinh?r (df*) )
i=1
n . . n - .
+ Z (sinh 7 coshrdr) (f*df*) + Z (f*df*) (sinhr coshrdr)
i=1 i=1
— sinh? rdr?
n
= cosh?rdr? + sinh?r Z (dfi)2 — sinh? rdr?
i=1
= dr? 4+ sinh? rfyideide .
Since +y;;d6°d#7 is the canonical metric on S”~1, we obtain (3.70). O
Exercises.

3.16. Let g be the south pole of S™. For any point z € §™\ {q}, its stereographic projection
is the point y at the subspace
R*"={z¢€ R™ . m T = 0},

which belongs to the straight line through 2 and ¢q. Show that the stereographic projection
is a bijection z <> y between S" \ {¢} and R given by

mI
e o
where z = (z!,...,#"*') and 2’ = (z',...,2"). Prove that, in the Cartesian coordinates
¥*, ..., ", the canonical spherical metric has the form

y:

4
gsn E— ————g ™
P

where |y|® = 33 (gf)2 and ggn = (dy1)2 + ...+ (dy™)? is the canonical Euclidean metric.

3.17. Prove that the canonical hyperbolic metric gy~ is positive definite using directly the
definition of gy~ as the restriction of the Minkowski metric to the hyperboloid.
3.18. Show that the equation

xl

determines a bijection of the hyperboloid H"™ onto the unit ball B® = {|y| < 1} in R™.
Prove that, in the Cartesian coordinates 4, ...,y™ in B™, the canonical hyperbolic metric
has the form

4
— e, (3.72)
(1 -1y
where Jy}* = 33 (y’)2 and ggn = (dyl)z + ... + (dy™)? is the canonical Euclidean metric.
REMARK. The ball B™ with the metric (3.72) is called the Poincaré model of the hyperbolic
space. Representation of the metric gy~ in this form gives yet another proof of its positive
definiteness.

gan =
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3.19. Prove that the relation between the polar coordinates (r, §) in H™ and the coordinates
y',...,y™ in the Poincaré model of Exercise 3.18 are given by

2
coshr = lmg and 6= Y
1—|y| fyl

3.10. Model manifolds

DEFINITION 3.21. An n-dimensional Riemannian manifold (M, g) is called
a Riemannian model if the following two conditions are satisfied:
(1) There is a chart on M that covers all M, and the image of this
chart in R™ is a ball

By, i={z € R": |z| < 1o}

of radius ry € (0, +oc] (in particular, if rg = oo then B,, = R").
(2) The metric g in the polar coordinates (r,6) in the above chart has
the form
g = dr? +9? (r) ggn-1, (3.73)
where 9 (r) is a smooth positive function on (0, 7).
The number rg is called the radius of the model M.

To simplify the terminology and notation, we usually identify a model
M with the ball By,,. Then the polar coordinates (r, #) are defined in M\ {0}
where o is the origin of R™. If 8, ...,6™ ! are the local coordinates on S*~!
and

gsn—-1 = ’)’ijdezdm,
then r,0*,...,6" ! are local coordinates on M \ {0}, and (3.73) is equivalent
to
g = dr? + 92 (r) vi;d6°d6’. (3.74)

Observe also that away from a neighborhood of o, ¥ (r) may be any smooth
positive function. However, v (r) should satisfy certain conditions near o to
ensure that the metric (3.73) extends smoothly to o (see [133]).

In some cases, the polar coordinates on a Riemannian manifold can be
used to identify this manifold or its part as a model. For example, the results
of Section 3.9 imply the following:

¢ R™ is a model with the radius ro = co and ¥ (r) = r;
e S™ without a pole is a model with the radius 7o = 7 and ¢ (r) =
sinr;
e H" is a model with the radius 7o = oo and % (r) = sinhr.
The following statement is a particular case of Exercise 3.15.

LEMMA 3.22. On a model manifold (M, g) with metric (3.73), the Rie-
mannian measure v is given in the polar coordinates by

dv = (r)* " drd, (3.75)
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where df stands for the Riemannian measure on S*~!, and the Laplace op-
erator on (M, g) has the form
82 d )9, 1
A= o =5+ (—- log Y™ ) ¢2( )Asn 1. (3.76)
PRrROOF. Let g = (gij) be the matrix of the tensor g in coordinates
r, 6, ..., 0" 1. For simplicity of notation, set #° = r and assume that the
indices %, 7 vary from 0 to n — 1. It follows from (3.74) that

1 0 --- 0
0 3.77
=] wow (.10
0
and
1 0 -+~ 0
(¢7)=g"= ° 2 (3.78)
: P72 (r) g
0
In particular, we have
det g = 92" det , (3.79)

where v = (7;;), which implies (3.75).
Using representation (3.40) of A in local coordinates, that is,

- S 9 (aetgg 2 3.80
" Vstg A= 96 99" 503 (3.80)

and that g% = 1, g% = 0 for 4 > 1, we obtain

=\/%tg%<‘/‘ga)+zmaez< det gg" 8‘29). (3.81)

Applying (3.78) and (3.79) and noticing that ¢ depends only on r and -;;
depend only on 4, ...,6™ 1, we obtain

1 0 0 62 0 0
-8—— (\/ det gé;> = w -+ (5? log AV det g) E

v/det g Or
0? d ne1) O

= mot (o) 5
and
7{5 (w/det ) - nf’p_? (r) 0 ( det i 2
o= Vet g 06 97555 ) = L=, Vasty 06° " 207

1
- WASn—l.

Substituting into (3.81), we obtain (3.76). O
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ExaMPLE 3.23. In R™, we have ¢ (r) = r and, hence,
dv = r"1drdf (3.82)
and
? n-106 1

Apn = a2 + B + ﬁASn—-l . (3.83)

In S™, we have % (r) = sinr and, hence,
dv =sin"" ! r drdf
and o2 5 .
Agn = Br ) + (TL 1) cot 7"—67 + é?]_’?;ASn—l . (384:)
In H", we have 9 (r) = sinhr and, hence,
dv = sinh™ ' r drdf

and
2

0 0
Apgn = — -1 hr— n— .
B =5 +(n—1)cothr o + s1nh2 ———Agn-1. (3.85)
The formula (3.84) can be iterated in dimension to obtain a full expansion
of Agn in the polar coordinates (see Exercise 3.22).

Consider now a weighted model (M, g, 1) where (M , g) is a Riemannian
model, and measure p has the density function T (r), which depends only

on 7. Setting
o(r)="(ryv" 1t (r),
we obtain from Lemma 3.22

dp = o (r)drdf (3.86)
and 2 o 8
1
Bu= 53t oo T R (3.87)
Let w, be the full Rlemanman measure of S*71, that is
o = / df. (3.88)
sn—1
Then it follows from (3.86) that, for any R € (0,70),
R
u(Bgr) = wn/ o (r)dr. (3.89)
0
For example, in R" we have o (r) = r"~! and
4 (Br) = %’—‘Rﬂ. (3.90)

The function R~ u (BR) is called the volume function of the model mani-
fold. Define the area function S (r) by

S (r) i= wno (1) = w, T (r) ™1 (r). (3.91)
It obviously follows from (3.89) and (3.87) that
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R
1 (Br) = /0 S (r)dr (3.92)
and \
S'(r) 8
A, = -(;?;5 + g ((r)) ar + ¢21(7') Agn-1. (3.93)

To explain the terminology, consider the sphere
S, ={zeR":|z|=r}

as a submanifold of M of dimension n — 1 (cf. Exarmple 3.20). It is easy to
show that

S (’f’) = I‘I'S'r (ST)7

where pg, is the induced measure on S,. Hence, S(r) is the area of the
sphere S, which explains the term “area function”.

Exercises.

3.20. Let wn be defined by (3.88).

(a) Use (3.89) to obtain a recursive formula for wr.
(b) Evaluate wn for n = 3,4 given wp = 2r. Evaluate the volume functions of R™, 8",
H"™ for n = 2,3,4.

3.21. Prove that, for any n > 1,
7r'n/Z

“n =25 w2y

where I' is the gamma function (cf. Section A.6).

(3.94)

3.22. Using (3.84), obtain a full expansion of As~ in the polar coordinates for n = 2,3.
Hence, obtain a full expansion of Agr and Ay~ in the polar coordinates for n = 2, 3.

3.23. Consider in H® a function u given in the polar coordinates by u = T

(a) Prove that, in the domain of the polar coordinates, this function satisfies the equation
Agsu+u=0. (3.95)
(b) Prove that function v extends to a smooth function in the whole space H® and,

hence, satisfies (3.95) in H®.

HiNT. Write function u in the coordinates of the Poincaré model (cf. Exercises 3.18 and
3.19).

3.24. Let M be a weighted model of radius 7o and u = u(r) be a smooth function on
M \ {0} depending only on the polar radius. Let S (r) be its area function. Prove that «
is harmonic, that is, A u = 0, if and only if

u(r)=0[r£j+cl,

where C, C) arbitrary reals and 7, € (0,70). Hence or otherwise, find all radial harmonic
functions in R™, 8%, S, H?, H°.
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3.25. Let M be a weighted model of radius 7. Fix some 0 < a@ < b < ro and consider the
annulus

A={zeM:a<|z| <b}.
Prove the following Green formulas for any two function u, v of the class C* (A)NC* (A):

/ (Apv)vdy = — / {(Vu, Voydu + | urvdus, — / urvdus, (3.96)
A A Sp Sa
and

/A (Auu)vdy — /A (Apv)udy = /S . (urv — vru) dps,

- [ o= v das,, (3.97)

where u, = g—‘;.

3.26. Let S be a surface of revolution in R™*! given by the equation
] =@ (=),
where @ is a smooth positive function defined on an open interval.

(a) Prove that S is a submanifold of R**! of dimension n.
(b) Prove that the induced metric gs of S is given in the coordinates t = z™*
0= es™ 1y

! and

gs = (1+ &' (¢)%) dt* + @° () ggn—1-
(c) Show that the change of the coordinate

p=/1/l+@’ (©)%dt

brings the metric gg to the model form
gs = dp® + ¥° (p) ggn—1, (3.98)

where ¥ is a smooth positive function.

3.27. Represent in the model form (3.98) the induced metric of the cylinder
Cyl={z eR™":|z'| =1}
and that of the cone
Cone = {z e R : g™ = |2'| > 0}.

3.28. The pseudo-sphere PS is defined as follows

14 4/1—jar|?
PS={zeR"+1:0<|x’|<1, 2™ = /1~ |o'* + log ——— ¢

l|
Show that the model form (3.98) of the induced metric of PS is
gps = dp® + e Pggn1.

HINT. Use a variable s defined by |z’| = —

cosh s *

3.29. For any two-dimensional Riemannian manifold (M, g), the Gauss curvature K¢ (l‘)
is defined in a certain way as a function on M. It is known that if the metric g has in
coordinates z*, z? the form
132 2\2
g =(d2) + ()" (3.99)
f?(z)
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where f is a smooth positive function, then the Gauss curvature can be computed in this

chart as follows
Kug = f’Alog , (3.100)

where A = (aﬁi’z—)g + (—ai—%; is the Laplace operator of the metric (d:r:l)2 + (dmz)z.
{(a) Using (3.100), evaluate the Gauss curvature of R?, §7, HZ.
(b) Consider in the half-plane R} := {(z',2%) € R? : 22 > 0} the metric
(d:t:l)2 + (d$2)2
(=) .

Evaluate the Gauss curvature of this metric.

3.30. Let g be the metric (3.99) on a two-dimensional manifold M. Consider the metric
g= 315 g where h is a smooth positive function on M. Prove that

Kug = (Bumg + Dglogh) b2,
where Ag is the Laplace operator of the metric g.

3.31. Let the metric g on a two-dimensional manifold M have in coordinates (r,8) the
form

g =dr’ + ¢ (r) db. (3.101)
Prove that "
K= —‘fp (SS)‘ (3.102)

3.32. Using (3.102), evaluate the Gauss curvature of the two-dimensional manifolds R?,
§2, H?, Cyl, Cone, PS.

3.33. Find all metrics g of the form (3.101) with constant Gauss curvature.

3.11. Length of paths and the geodesic distance

Let M be a smooth manifold. A path on M is any continuous mapping
v : (a,b) = M where —0co < @ < b < +o00. In local coordinates z!,..., 2™,
the path is given by its components +* (t). If 4¢ () are smooth functions of
t then the path - is also called smooth.

For any smooth path v (), its velocity 4 (t) is an R-differentiation at the
point « (t) defined by

@) (f) = (Foy) (t) forall feC> (M), (3.103)
where the dash ' means derivation in ¢. In the local coordinates, we have,
using the notation 4* = ‘—igt—',

., Of
14 — 'L"—'T
(fen) =755

whence it follows that 5

T
This implies, in particular, that any tangent vector £ € T; M can be repre-
sented as the velocity of a path (for example, the path +* (¢) = z* + t£* will
do).
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Let now (M, g) be a Riemannian manifold. Recall that length of a

tangent vector £ € T, M is defined by [¢] = \/(£,{)g. For any smooth path
v : (a,b) = M, its length £ (y) is defined by

b
e = [ ona (3.104)

If the interval (a,b) is bounded and 7 extends to a smooth mapping from
the closed interval [a,b] to M then £ () < oo.

If the image of + is contained in a chart U with coordinates x?,...,z"
then

5 O] = /o5 (r () ¥ (O (¥)

b
£(v) =/ \/ g ¥Adt.
aQ

For example, if (g;;) = id then

b
E(’y)z/ \/(7'*/1)2+...+('7")2dt.

Let us use the paths to define a distance function on the manifold (M, g).
We say that a path « : [a,b] - M connects points z and y if v (a) = z and
v (b) = y. The geodesic distance d (x,y) between points z,y € M is defined
by

and hence

d(z,y) =1L (v), (3.105)

where the infimum is taken over all smooth paths connecting z and y. If
the infimum in (3.105) is attained on a path -y then 7y is called a shortest (or
a minimizing) geodesics between = and y. If there is no path connecting z
and y then, by definition, d(z,y) = +o0.

Our purpose is to show that the geodesic distance is a metric* on M, and
the topology of the metric space (M, d) coincides with the original topology
of the smooth manifold M (see Corollary 3.26 below). We start with the
following observation.

CLAM. The geodesic distance satisfies the following properties.
(¢) d(=z,y) € [0,+00] and d(z,z) =0.
(i3) Symmetry: d(z,y) =d(y,z).
(%32) The triangle inequality: d(z,y) < d(z,z) +d(y, 2).

4We allow a metric d {(z,y) to take value +oo. It can always be replaced by a finite
metric
7 d(z,y)
d(z,y) i= —1=—,
(@9) 1+d(z,y)

which determines the same topology as d{(z,y).
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PROOF. Properties (i) and (43) trivially follow from (3.105). To prove
(411), consider any smooth path 71 connecting z and z, and a smooth path
v connecting z and y. Let v be the path connecting z and y, which goes
first from z to z along ~1 and then from z to y along 2. Then we obtain
from (3.105) that®

d(z,y) <L(y) =£(n) +£(72),

whence the triangle inequality follows by minimizing in v, and vs. d

We still need to verify that d(z,y) > 0 for all distinct points z,y. A
crucial step towards that is contained in the following lemma.

LEMMA 3.24. For any point p € M, there is a chart U 3 p and C > 1
such that, for all z,y € U,

Clz—y| <d(z,y) < Clo—yl. (3-106)

Proor. Fix a point p € M and a chart W around p with local coordi-
nates z!,...,z". Let V @ W be a Euclidean ball in W of (a small) radius r
centered at p.

For any z € V and any tangent vector { € T; M, its length [¢|, in the
metric g is given by

€1z = g5 (2) €°¢7,
whereas its length |{|, in the Euclidean metric e is given by

n

gl =" ()"

i=1
Since the matrix (g;; (z)) is positive definite and continuously depends on
z, there is a constant C > 1 such that

n n
_ i\ 2 e 2
C2Y () <g (@& <y (697,
i=1 i=1
for all z € V and ¢ € T, M. Hence, we obtain
Clele < élg < Cléle,

which implies that, for any smooth path v in V,

C™MUe (7) <Ly (1) < Cle(v) -

Connecting points z,y € V by a straight line segment vy and noticing that
the image of « is contained in V and 4. () = |z — y| we obtain

d(z,y) <Lg(7) < Clz—yl.

5Some approximation argument is still needed to show d(z,y) < £(v) because the
path v is piecewise smooth rather than smooth.
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Let U be the Euclidean ball in W of radius %7’ centered at p. Let -y be
any smooth path on M connecting points z,y € U. If v stays in V then
fe (7) = |z — y|, whence

e (7) 2 C |z —y (3.107)
(cf. Exercise 3.37)

i

FIGURE 3.6. Path -y connecting the points z, y intersects OV
at a point z.

If -y does not stay in V' then it intersects the sphere 9V (see Fig. 3.6).
Denoting by 74 be the part of v that connects in V' the point z to a point
z € OV, we obtain

b(0) 245 (5) > C Mz —2 207 3r > 0 o -y,
Hence, (3.107) holds for all paths v connecting z and y, which implies
d(z,y) 2 C 7z ~yl.
O

COROLLARY 3.25. We have d (z,y) > 0 for all distinct points z,y € M.
Consequently, the geodesic distance d (z,y) satisfies the axioms of a metric
and, hence, (M,d) is a metric space.
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Proor. Fix a point p € M and let U be a chat as in Lemma 3.24. If
z € U then d (x,p) > 0 by (3.106). We are left to treat the case x € M\ U.
Considering U as a part of R”, denote by B, (p) the Euclidean ball of radius
r > 0 centered at p, that is,

B (p)={yeR":|ly—p|<r}.
Choose r small enough so that B, (p) C U. Then any path from z to p
must intersect the boundary of B, (p), which implies that the length of this

path is at least C~lr, where C is the constant from (3.106). It follows that
d(p,z) > C~'r, which finishes the proof. O

For any x € M and r > 0, denote by B (z,r) the geodesic ball of radius
r centered at x € M, that is

B(z,r)={yeM:d(z,y) <r}.
In other words, B (z,r) are the metric balls in the metric space (M, d). By
definition, the topology of any metric space is generated by metric balls,

which form a base of this topology. Note that the metric balls are open sets
in this topology.

COROLLARY 3.26. The topology of the metric space (M, d) coincides with
the original topology of the smooth manifold M.

Proor. Since the topology of M in any chart U coincides with the
Euclidean topology in U, it suffices to show that the geodesic balls form a
local base of the Euclidean topology in U. Fix a point p € M and let U
be a chart constructed in Lemma 3.24, where (3.106) holds. Considering U
as a part of R™, recall that the Euclidean balls B, (p) form a local base of
the Euclidean topology at the point p. For some ¢ > 0, the ball B, (p) is
contained in U and, hence, can be regarded as a subset of M. The result
will follow if we show that, for any r < 5%, the geodesic ball B (p,r) is
sandwiched between two Euclidean balls as follows:

Bg-1r (p) cB (p’ r) C Ber (p) ) (3.108)

where C is the constant from (3.106). Indeed, if z € Bg-1, (p) then z € U
and
d($7p) < Clx_pl <,
whence z € B (p,r). To prove the second inclusion in (3.108), let us first
verify that B (p,r) C U. Indeed, if z ¢ U then any path v connecting = and
p contains a point y € U such that |y — p| = €/2 (see Fig. 3.7).
By (3.106), we obtain
€

g (1) 2d(y:p) 2C y—pl=55 2,

whence d (z,p) > r and = ¢ B (p,r). Therefore, x € B (p,r) implies x € U

and, hence,
[z - pl < Cd(z,p) < Cr,

that is, z € By (p)- O
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!
‘
]
]
1
[}
[}
3

FIGURE 3.7. If ¢ U then any path v connecting x and p
contains a point y € U such that |y — p| =¢/2

Exercises.

3.34. Prove that the length £(v) does not depend on the parametrization of the path +
as long as the change of the parameter is monotone.

3.35. Prove that the geodesic distance d (z, y) is finite if and only if the points z, y belong
to the same connected component of M.

3.36. Let (M, g) be a Riemannian model, and let z’, " be two points on M with the
polar coordinates (r',8') and (r”, 8"), respectively.
(a) Prove that, for any smooth path v on M connecting the points =’ and z”,

£(y) > | —r"].

Consequently, d (z',z") > |r' —r"|.
(b) Show that if §” = 0" then there exists a path -y of length |7’ — r”/| connecting the
points z’ and z”’. Consequently, d (z',z") = |r' —7"|.

3.37. Let (M, g) be a Riemannian model. Prove that, for any point z = (r,8), we have

d(0,z)=r.
Hence or otherwise prove that in R™ the geodesic distance d(z,y) coincides with

[z — yl.
3.38. Let v be a shortest geodesics between points z,y and let z be a point on the image
of 7v. Prove that the part of 4 connecting = and =z is a shortest geodesics between z and z.

3.39. Fix a point p on a Riemannian manifold M and consider the function f (z) = d (=, p).
Prove that if f (z) is finite and smooth in a neighborhood of a point z then |Vf (z)| < 1.

3.40. Let (M,g) be a Riemannian model with infinite radius. Prove that, for any smooth
even function a on R, the function a o r is smooth on M, where r is the polar radius on

(M, g).
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3.41. Denote by S the class of all smooth, positive, even functions a on R, such that
/ a(t)dt = oo. (3.109)
o

For any function a € S, let C, be the conformal transformation of the metric of a Rie-
mannian model (M, g) with infinite radius given by
Cog=a’(r)g.

(a) Prove that (M, C,g) is also a Riemannian model with infinite radius and that the
polar radius 7 on (M, C,g) is related to the polar radius r on (M, g) by the identity

F:/OTa(s)ds.

(b) For any two functions a,b € S, consider the operation a x b defined by

(a+b) (&) =a (/Otb(s) ds) b). (3.110)

Prove that (S,*) is a group.
(¢) Fix m € N and set for any v € R™
logll r = (log )™ (loglog )% . .. (log. . . logr)"™
e —
m times

assuming that r is a large enough positive number. Let a and b be functions from S
such that, for large enough r,

a(r)~r*"tlogr and b(r)~rfllogly,
for some ¢, 8 € Ry and u,v € R™. Prove that

axb~r " iogly,
where
v=af and w = u+ ow. (3.111)
REMARK. The identity (3.111) leads to the operation
(u,0) * (v, B) = (u + av,ap),

that coincides with the group operation in the semi-direct product R™ » Ry, where the
multiplicative group Ry acts on the additive group R™ by the scalar multiplication.

3.12. Smooth mappings and isometries

Let M and N be two smooth manifolds of dimension m and n, respec-
tively. A mapping J : M — N is called smooth if it is represented in any
charts of M and N by smooth functions. More precisely, this means the
following. Let z',...,2™ be the local coordinates in a chart U ¢ M, and
y',...,y" be the local coordinates in a chart V C N, and let J(U) C V.
Then the mapping J|y is given by n functions 37 (z?,...,#™), and all they
must be smooth.

A smooth mapping J : M — N allows to transfer various objects and
structures either from M to N, or back from N to M. The corresponding
operators in the case “from M to N” are called “push forward” operators,
and in the case “from N to M” they are called “pullback” operators and
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are denoted by J,. For example, any function f on N induces the pullback
function J.f on M by J.f = foJ, that is

Juf (z) = f (Jz) for all z € M.

Clearly, if f is smooth then J. f is also smooth. This allows to push forward
a tangent vector £ € T, M to the tangent vector in 7y, N, which is denoted
by dJ¢ and is defined as an R-differentiation by

dJ¢ (fy=¢&(J.f) forany f e C®(N). (3.112)
The push forward operator
dJ : ToM — Ty N (3.113)

is called the differential or the tangent map of J at the point x. In the local
coordinates, we have

EUN =E5nf U @) =655 L,

that is,
.oy .
J 1
(dJey = ¢

In terms of the differentials dz* and dy?, this equation becomes

.y
dy! = 5 dz*. (3.114)
Given a Riemannian metric tensor g on N, define its pullback J.g by
Jug () (§,n) = g (Jz) (dJ¢, dJn), (3.115)

for all z € M and &, € T,M. Obviously, J.g(z) is a symmetric, non-
negative definite, bilinear form on 7, M, and it is positive definite provided
the differential (3.113) is injective. In the latter case, J.g is a Riemannian
metric on M.

In the local coordinates, we have

o B By
Jig = gijdy'dy’ = Qz’jgg—ka—il z*dx!
whence L
oy* By’
(Ji8)g = 95 5% Bl (3.116)

Assume from now on that M and N have the same dimension n. A
mapping J : M — N is called a diffeomorphism if it is smooth and the
inverse mapping J~! : N — M exists and is also smooth. In this case,
the differentials dJ and dJ~! are mutually inverse, which implies that dJ is
injective.

Two Riemannian manifolds (M, gnr) and (IV, gn) are called isometric if
there is a diffeomorphism J : M — N such that

JLgN = gM.
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Such a mapping J is called a Riemannian isometry. Two weighted manifolds
(M, gn, par) end (N, gn, pn) are called isometric if there is a Riemannian
isometry J : M — N such that

S TN = T,

where T and Tjs are the density functions of uy and ups, respectively.
Similarly, two weighted manifolds (M, gar, puar) and (N, gy, un) are
called quasi-isometric if there is a diffeomorphism J : M — N such that
Jign =gy and J Ty =~ Ty, (3.117)
where the sign ~ means that the ratio of the both sides is bounded by
positive constants from above and below. Such a mapping J is called a
quasi-isometry.

LEMMA 3.27. Let J be an isometry of two weighted manifolds as above.
Then the following is true:

(a) For any integrable function f on N,

[ ) duaa = [ S, (3.118)
M N
(b) For any f € C* (N),

Jo (ANS) = Bm (Jef), (3.119)

where Ay and Ay are the weighted Laplace operators on M and
N, respectively.

PrOOF. By definition of the integral, it suffices to prove (3.118) for func-
tions f with compact supports. Using then a partition of unity of Theorem
3.5, we see that it is enough to consider the case when supp f is contained
in a chart. Let V be a chart on N with coordinates 3!, ..., y™. By shrinking
it if necessary, we can assume that U = J~! (V) is a chart on M; let its
coordinates be z!,...,z". By pushing forward functions z*,...,z" to N, we
can consider z!, ..., 2" as new coordinates in V.

With this identification of U and V, the operator J, becomes the identity
operator. Hence, (3.118) amounts to proving that measures pp and uy
coincide in V. Let gf’j be the components of the tensor gy in V in the
coordinates y', ..., 5™, and let g%, be the components of the tensor gy in V'
in the coordinates z,...,z". By (3.26), we have

3y* By’

9 = gfjé—i—lga—il. (3.120)
Let gx; be the components of the tensor gy in U in the coordinates z1, ..., ™.
Since gyr = J.gnN, we have by (3.116) that

ey

Ikl = 945 5k Byl
whence

Gkl = ghy- (3.121)
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Since measures s and puy have the same density function, say Y, it follows

that
duy = 7T+/detg®dz...dz"
= T+/detgdal..dz"
= duum,
which proves the identity of measures ups and py. In the same way, we

have
Ay = ————1————8— T+/det g% (¢°)¥ —B— = Ay (3.122)
Y+/det g% Oz* 0x?
a

Define the push forward measure Juy on N by
(Tum) (&) = par (71 (4))
where A is a subset of N. The identity (3.118) means that
J:U’M = KN,
provided J is an isometry.

A typical situation when Lemma 3.27 may be useful is the following. Let
J be an isometry of a weighed manifold (M, g, u) onto itself. Then (3.119)
means that A, commutes with J,.. Alternatively, (3.119) can be written in
the form

(ApfloJ=Au(foJ).

In R™ with the canonical Euclidean metric ggn, a translation is a trivial
example of a Riemannian isometry. Another example is an element of the
orthogonal group O (n) (in particular, a rotation). The latter is also an
isometry of S*~! with the canonical spherical metric ggn-1.

Let (M,g, ) be a weighted model with polar coordinates (r,6) (see
Section 3.10) and let J be an isometry of S*~1. Then J induces an isometry
of (M,g,u) by

J (r,0) = (r, J6),

which implies that A, commutes with the rotations of the polar angle 8.

Exercises.

3.42. Let J: M — M be a Riemannian isometry and let S be a submanifold of M such
that J(S) = S. Prove that J|g is a Riemannian isometry of S with respect to the induced
metric of S.

3.43. Let (M, ga) and (N, gnv) be Riemannian manifolds and J : M — N be a Riemannian
isometry. Prove the following identities:
(a) For any smooth path v on M,
Lepe (V) =Lgy (Jo07).
(b) For any two points z,y € M,
du (z,y) = dn (Jz, Jy),
where dir, dn are the geodesic distances on M and N, respectively.
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3.44. Let (M, gn, pan) and (N, gn, un) be two weighted manifolds and J: M — N be a
quasi-isometry. Prove the following relations.
(a) For all smooth paths v on M,
Lep (V) = Ly (J07).
(b) For all couples of points x,y € M,
dum (z,y) ~ dn (Jz, Jy) .

(¢) For all non-negative measurable functions f on N,
/ (Jf) dum :/ fdpn. (3.123)
M N
(d) For all smooth functions f on N,
/M IV (LR, dune = /N VAL, dun (3.124)

3.45. For any real o, consider the mapping y = Jx of R™*! onto itself given by

yl=$1

y* ="t (3.125)

y" = z"coshoa + 2"l sinh o

y"t! = 2" sinh« + 2" cosh g,

which is called a hyperbolic rotation.
(a) Prove that J is an isometry of R™*! with respect to the Minkowski metric

grtink = (da?)” + .+ (de™)? — (da"+1)’.

(b) Prove that J|u~ is a Riemannian isometry of the hyperbolic space H" (cf. Section
3.9).

3.46. Prove that, for any four points p, g, p’,¢ € H" such that
d{p',q') =d(p,9), (3.126)
there exists a Riemannian isometry J of H” such that Jp’ = p and Jq' = q.

Notes

Most of the material of this Chapter belongs to the basics of Riemannian geometry
and can be found in many textbooks, see for example {45], {51], [52], {200], [213], [228],
[227], [244], [299], [326], [329).

The presentation of model manifolds follows [155].



CHAPTER 4

Laplace operator and heat equation in L? (M)

We use here quite substantially measure theory, integration, the theory
of Hilbert spaces, and the spectral theory of self-adjoint operators. The
reader is referred to Appendix A for the necessary reference material. All
subsequent Chapters (except for Chapter 6) depend upon and use the results
of this Chapter.

In Section 4.1, we introduce the Lebesgue spaces, distributions, and
Sobolev spaces on a weighted manifold. This material is similar to the
corresponding parts of Chapter 2, although technically we use from Chapter
2 only Corollary 2.5.

The key Sections 4.2 and 4.3 rest on Section 3.6 from Chapter 3, espe-
cially on the Green formulas (3.43).

4.1. Distributions and Sobolev spaces

For any smooth manifold M, define the space of test functions D (M) as

C§° (M) with the following convergence: ¢y, N @ if the following conditions
are satisfied:

1. In any chart U and for any multiindex o, 0%, =3 8%p in U.

2. All supports supp @ are contained in a compact subset of M.

A distribution is a continuous linear functional on D(M). If u is a
distribution then its value at a function ¢ € D is denoted by (u, ¢). The set
D’ (M) of all distributions is obviously a linear space. The convergence in

D’ (M) is defined as follows: uy 2y uif (uk, p) = (u, @) for all ¢ € D (M).

Since any open set {2 C M is a manifold itself, the spaces D () and
D’ (Q) are defined as above. In any chart U C M, the spaces D (U) and
D' (U) are identical to those defined in U as a part of R™ (cf. Section 2.4).

A distribution u € D’ (M) vanishes in an open set @ C M if (u,¢) =0
for any ¢ € D(2). It is proved in the same way as in R" (cf. Exercise
2.10) that if 4 vanishes in a family of open sets then it vanishes also in their
union. Hence, there is a maximal open set in M where u vanishes, and its
complement in M is called the support of u and is denoted by suppu. By
construction, supp v is a closed subset of M.

Next, we would like to identify a function on M as a distribution, and
for that we need a measure on M. Assume in the sequel that (M, g, u) is a
weighted manifold. The couple (M, 1) can also be considered as a measure
space. Hence, the notions of measurable and integrable functions are defined

97
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as well as the Lebesgue function spaces LP (M) = I (M, u), 1 < p < 00 (see
Section A.4). Note that LP (M) are Banach spaces, and L? (M) is a Hilbert
space. Sometimes it is useful to know that if 1 < p < oo then LP (M) is
separable and D (M) is dense in L? (M) (cf. Theorem 2.3 and Exercise 4.4)

Denote by L (M) the space of all measurable functions f on M such
that f € LP (Q) for any relatively compact open set 2 C M. The space
I? (M) is linear space, and the topology of L? (M) is defined by the
family of seminorms ||f|lz»(q) for all open 2 € M. Clearly, we have the

following embeddings:
LP (M) < L}, (M) < Liy, (M)

loc
(cf. Section 2.1).
Now we can associate any function u € L}, (M) with a distribution by
the following rule:

(u, ) = /Mugod,u for any ¢ € D(M). (4.1)

LEMMA 4.1. Letu € L} ,(M). Then u =0 ae. if and only ifu =0 in
D' (M), that s, if

/ updy =0 for any o € D(M). (4.2)
M

Note that if € C (M) then this was proved in Lemma 3.13.

PrOOF. Let U C M be any chart and A be the Lebesgue measure in
U. Since the density -g—f\f is a smooth positive function, the condition (4.2)
implies that

/unpd/\=0 for any ¢ € D(U).
U

By Corollary 2.5, we obtain u = 0 a.e. in U. Since M can be covered by a
countable family of charts, we obtain © =0 a.e. on M. (]

Lemma 4.1 implies that the linear mapping L}, (M) — D’ (M) defined
by (4.1) is an injection, which enables us to identify L} . (M) as a subspace of
D' (M) . Since the convergence in L}, (M) obviously implies the convergence

in D’ (M), we obtain the embedding
Li,e (M) D' (M).

In particular, this allows to define the support suppu of any function u €
L} (M) as that of the associated distribution.

Let us introduce the vector field versions of all the above spaces. Let
D (M) be the space of all smooth vegtor fields on M with compact supports
endowed with the convergence similar to that in D (M).

The elements of the dual space D’ (M) are called distributional vector
fields. The convergence in D' (M) is defined in the same way as in D’ (M).

A vector field v on M is called measurable if all its components in any
chart are measurable functions. By definition, the space LP (M) consists of
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(the equivalence classes of) measurable vector fields v such that |v| € L? (M)
(where |v| = (v,v)é/ ? is the length of v).
Similarly, the space J#4 (M) is determined by the condition |v| € L} . (M).

loc

The norm in L? (M) is defined by
ol g = [Hol 2.

The spaces LP (M) are also complete (see Exercise 4.9). In particular,
L? (M) is a Hilbert space with the inner product

(v,w)gs = / (v, w)dp.
M
Any vector field v € L} _(M) determines a distributional vector field by
09) = [ (o ¥)du for any v e B (),
M

which defines the embedding L} _ (M) =D’ (M).

Let us define some operators in D’ (M) and D’ (M). For any distribution
u € D' (M), its distributional Laplacian A u € D' (M) is defined by means
of the identity

(Apu, ) = (u,Ayp) forallp € D(M). (4.3)

Note that the right hand side makes sense because A,p € D (M), and it
determines a continuous linear functional of ¢ € D (M). Indeed, it is easy to
see that oy 2 p implies A, @y A A,p and, hence, (u, Aupr) = (u, Ayp).

If u is a smooth function then its classical Laplacian A u satisfies (4.3),
because by the Green formula (3.43)

(Ayu,p) = /J;/I (Ayu) pdy = /MuAu<pdu = (u, Aup).

Hence, in this case the distributional Laplacian coincides with the classical
Laplacian, which justifies the usage of the same notation A, u for the both
of them.

If w € L} (M) and the distribution A,u can be identified as a func-
tion from L2, (M), also denoted by A,u, then the latter is called the weak
Laplacian of u. Alternatively, the weak Laplacian A,u can be defined as a
function from L? , (M) that satisfies the identity (4.3). The weak Laplacian
does not always exist unlike the distributional Laplacian.

_ For any distribution u € D' (M), define its distributional gradient Vu €
D' (M) by means of the identity

(Vu,¥) = — (u,div, 9) for all % € D (M). (4.4)

If u is a smooth function then its classical gradient satisfies (4.4) by Corollary
3.15.

. fuelL (M)and Vue I-/?oc (M) then Vu is called the weak gradient
or u.
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We will always understand the operators A,V in the distributional sense
unless otherwise stated.

The following lemma is frequently useful.

LEMMA 4.2. If ug z, u then Vuyg Z, v Consequently, if ux 2w
and Vuyg DL v then Vu = v.

PrOOF. By the definition of the distributional gradient, we have, for
any ¥ € D (M),
(Vuk,¢) = — (uk, div,, Y).

Passing to the limit as k — oo, we obtain

lim (V'U,k, 1/)) =—- (u7 diV# ¢) = (vua '(;b) 3

k—oo
which implies

Vuy —71) Vu.

The second claim is obvious. ]

Define the following Sobolev space
W (M) =W'(M,g,p) = {ueLl?(M): Vue L*(M)}.

That is, W (M) consists of those functions u € L? (M), whose weak gra-
dient Vu exists and is in L? (M). It is easy to see that W (M) is a linear
space. Furthermore, W' (M) has a natural inner product

(u, V) = (%, 0) 2 + (Vu, Vo) 2 = / uv d,u—i—/ (Vu, Vv)du, (4.5)
M M
and the associated norm
s = fulla +[Vulle = [ wdut [ [VuPda (46
M M
LEMMA 4.3. W' (M) is a Hilbert space.

1
Proor. It follows from (4.6) that the convergence uy Xy win Wt (M)
is equivalent to

L? L?
up —u and Vup — Vu. (4.7)

Let {uz} be a Cauchy sequence in W' (M). Then the sequence {uz} is
Cauchy also in L? (M) and, hence, converges in L?-norm to a function u €
L%(M). Similarly, the sequence {Vu} is Cauchy in L? (M) and, hence,
converges in [?-norm to a vector field v € L? (M). Since convergence in
L? is stronger than the convergence in D/, we conclude by Lemma 4.2 that
Vu = v. It follows that the conditions (4.7) are satisfied and the sequence
{ux} converges in W (M). a
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In the case when M is an open subset of R", the above definition of
W1 (M) matches the one from Section 2.6.1 — see Exercise 4.11.

It is obvious from the definition of the norm (4.6) that [lu|/z2 < ||uflw,
which implies that the identical mapping W* (M) — L% (M) is a bounded
injection, that is, an embedding.

Exercises.

4.1. Prove that if ¢x 3 @ then

(a) px = ¢ on M;

(6) Appr = Dui;

(¢) for -2 for for any f € C (M).
4.2. For any function f € C* (M) and a distribution v € D’ (M), their product fu is
defined as a distribution by

(fu, ) = (u, f) for any ¢ € D(M). (4.8)

Prove the following assertions.

(a) If ug 2, u then fux z, fu.

(b) supp (fu) C supp f Nsuppu.
(¢) Product rule:

V (fu) = fVu+(Vf)u,
where the product fVu of a smooth function by a distributional vector field and

the product (V f)u of a smooth vector field by a distribution are defined similarly
to (4.8).

4.3. Prove that if f € O™ (M) is such that |f| and |V f| are bounded, and u € W' (M)
then fu € W' (M) and

I fullws < Clullw:,
where C = 2max (sup|f|, sup [V f]).

4.4. Prove the extension of Theorem 2.3 to manifold: for any 1 < p < oo and for any
weighted manifold (M, g, ), D (M) is dense in L? (M), and the space L? (M) is separable.

4.5. Prove that D (M) is dense in Co (M), where Co (M) is the space of continuous
functions with compact support, endowed with the sup-norm.

4.6. Let u € D' (M) and (u, ) = 0 for all non-negative functions ¢ € D (M). Prove that
u=0.

4.7. Let u € L} . (M).

(a) Prove that if (u, ) > 0 for all ron-negative functions ¢ € D (M), then u > 0 a.e.
(b) Prove that if (u, p) = 0 for all non-negative functions ¢ € D (M), then u =0 a.e.

4.8. Let {ux} be a sequence from L? (M) such that ux i u, where u € D' (M).
(a) Prove that if the sequence of norms fuk| 2 is bounded then u € L? (M) and
[l 2 < liminf fjugf g2
(b) Assume in addition that Vur € L? and that the sequence of norms ([Vur| L2 is
bounded. Prove that u € W* (M) and

IVuf|z2 < liminf ||[Vui| 2.
k—o0

4.9. Prove that the space [P (M, p) is complete.
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4.10. Define the divergence of a distributional vector field v € D' by
(divpv,) = — (v,V) forall p € D.
Prove that, for any distribution u € 7,
Apu = divy (Vu),
where all operators A,, V, and div, are understood in the distributional sense.

4.11. Let (M, g, 1) be a weighted manifold and U be a chart on M with coordinates
2,...,z" Let f € L. (U).
(a) Assume that all distributional partial derivatives a%ﬁi are in L2, (U), considering U
as a part of R™. Prove that the distributional gradient Vg f in U is given by

(_wd
(Vef) =" 2L,

and o7 of
2 _ i Of OF
‘nglg =g 8Z'i 6.'2:-7 . (4.9)
Conclude that Vg f € L2, (U).
(b) Assuming that Vg f € L2, (U), prove that distributional partial derivatives e%;" are
given by

% = Gis (st)i

and that the identity (4.9) holds. Conclude that 2% € L%, (U).

4.12. For an open set 2 C R”, let W (Q2) be the Sobolev space defined in Section 2.6.1,
and W' (Q,g, \) be the Sobolev space defined in Section 4.1, where g is the canonical
Euclidean metric and A is the Lebesgue measure. Prove that these two Sobolev spaces are
identical.

4.13. Denote by Vais: the distributional gradient in R™ (n > 2) reserving V for the
gradient in the classical sense, and the same applies to the Laplace operators Ag;,: and
A

(a) Let f € C*(R™\ {0}) and assume that
feLi.(R") and Vfeli.(R").

Prove that Vaise f = V{.
(b) Let f € C*(R™\ {0}) and assume that

feli.®R"), Vfe Ll (R"), and Af € L}, (R™).
Prove that Agise f = Af.
(¢) Consider in R® the function f (z) = |z|™'. Show that f € L}, (R%) and Af =0 in
R3\ {0}. Prove that Ag;s: f = —4n6 where & is the Dirac delta-function at the origin
o.

4.14. Consider in R™ (n > 2) the function f (z) = ||, where o is a real parameter.

(a) Prove that f € L%, provided o > —n/2.

(b) Prove that f € L2, and Vf € L}, provided oo > 1 — n/2. Show that in this case
Vdistf = Vf

(c) Prove that f € L},., Vf € L%, , and Au € L},, provided a > 2 — n/2. Show that
in this case Agse f = Af..

4.15. Prove that if {u,} is a sequence of functions from W that is bounded in the norm
of W then there exists a subsequence {ux, } that converges to a function u € W' weakly
in W' and weakly in L2.
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4.16. Prove that if {ux} is a sequence of functions from W* that converges weakly in W*
to a function u € W' then there is a subsequence {ux,} such that

L2 L2
up, —uand Vug, = Vu,

i

where — stands for the weak convergence.

4.17. Let {ux} be a sequence of functions from W* that converges weakly in L? to a
function u € L.
(a) Prove that if the sequence {ux} is bounded in the norm W' then v € W' and
1

Uk v—VA U. .
(b) Prove that if in addition [[ukllws — ||ullw: then ux > .

4.18. Let {ux} be an increasing sequence of non-negative functions from W* that converges
almost everywhere to a function u € L?. Prove that if

IVurlrz <ec

1
for some constant ¢ and all k, then v € W*, u Y. u, and IVullz2 <ec

4.2. Dirichlet Laplace operator and resolvent

Let (M, g, 1) be a weighted manifold. The purpose of this section is
to extend the Laplace operator A, to a self-adjoint operator in the Hilbert
space L? = L2 (M, p).

Initially, the Laplace operator A, is defined on smooth functions, in
particular, on the space D = D (M). Since D is a dense subspace of L?,
we can say that A, is a densely defined operator in L? with the domain D.
Denote this operator by A = A,ly. This operator is symmetric, because,
by Green’s formulas (3.43),

(Apu,v) ;2 = (u, Auv);, for all u,v € D.
However, A is not self-adjoint, which follows from the following statement.
CLAIM. For the operator A = Aulp, the adjoint operator A* has the domain
dom A* = {u e L?: Ayu e L}, (4.10)

and in this domain A*u = Aju.

PROOF. Recall that the adjoint operator is defined by
domA*={ueL?:3fcL? WwedomA (Av,u)2= (v,f)2 },
and
A*u = f.
The equation (Av,u) ;2 = (v, f)2 is equivalent to (u, Auv)p = (f,v)p Which
means that A,u = f in the distributional sense. Hence, u € dom A* if

and only if A,u € L% and in this domain A*u = A,u, which was to be
proved. O
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It is clear from (4.10) that dom A* contains functions, which are not
compactly supported, and, hence, dom A* strictly larger than dom A. For
example, in R, the function u(z) = ~=* belongs to dom A* but not to

dom A.
If A is a densely defined symmetric operator in a Hilbert space # then

we always have

ACA"
If B is a self-adjoint extension of A then
A C B=B*C A",
which implies
dom A C dom B C dom A*.

Hence, the problem of constructing a self-adjoint extension of A amounts to
an appropriate choice of dom B between dom A and dom A* because then
the action of B can defined by restricting A* to dom B.

Consider the following functional spaces on a weighted manifold (M, g, 11):

W¢ (M) = the closure of D (M) in W' (M)
and

W2 (M) ={uec W} (M): Ayue L? (M)}.
That is, W consists of those functions u € W, whose weak Laplacian Aju
exists and belongs to L?. Clearly, D C W¢.

The space W has the same inner product as W' and is a Hilbert space
as a closed subspace of W!. It is natural to consider also the following space®

W2 (M) ={ueW(M): Aue L* (M)} (4.11)
Consider the operator Au'wg as a densely defined operator in L2, which ob-

viously extends the operator A,|p,. As will we prove below, the operator A u|W02
is actually self-adjoint. Let us first verify that it is symmetric.

LEMMA 4.4. (The Green formula) For all functions u € W} (M) and
v € W2 (M), we have

/ uAyvdy = —/ (Vu, Vv) dp. (4.12)
M M

Proor. Indeed, if u € D then by the definitions of the distributional
Laplacian A,v and the distributional gradient Vv, we have

/uA#vd,u, = (Apv,u) = (v,Auu)
M

= (v,div, (Vu)) = —(Vy,Vu) = - /M(Vu, Vv)du.

1Warning. If Q is an open subset of R” then, in general, the space W2 () defined
by (4.11) does not match the space W? (Q) introduced in Section 2.6.1.



4.2. DIRICHLET LAPLACE OPERATOR AND RESOLVENT 105

For any u € W§ there is a sequence {ux} C D that converges to u in wi.
Applying (4.12) to uj, and passing to the limit we obtain the same identity for
u because the both sides of (4.12) are continuous functionals of u € W'. O

In particular, (2.39) applies when u € W} and v € W¢. If the both
functions u, v are in W then we can switch them in (2.27), which yields

(A”’U/, 'U)L2 = (u, AH’U>L2 . (4.13)
Hence, Aulwg is a symmetric operator.
The identity (4.12) also implies that, for any u € Wg,

/ uAyudp = —/ |Vul> dp < 0, (4.14)
M M

that is, the operator A“|W02 is non-positive definite. It is frequently more
convenient to work with a non-negative definite operator, so set

L=— Aulwg~

The operator £ (or its negative AulWOz) is called the Dirichlet Laplace oper-
ator of the weighted manifold (M, g, u).

This terminology is motivated by the following observation. Let Q be
a bounded open subset of R® . Given a function f in 2, the problem of
finding a function v in 2 satisfying the conditions

Au=f in Q,
{ u=0 on J9Q, (4.15)

is refereed to as the Dirichlet problem. In the classical understanding of
this problem, the function u is sought in the class C* (2) N C (Q). However,
in general the Dirichlet problem has no solution in this class unless the
boundary of 2 possesses a certain regularity.

It is more profitable to understand (4.15) in a weak sense. Firstly,
the Laplace operator in the equation Au = f can be understood in the
distributional sense. Secondly, the boundary condition v = 0 can be replaced
by the requirement that u belongs to a certain functional class. It turns out
that a good choice of this class is W{ (Q2). The fact that Wi (Q) is the
closure of C§° (Q2) in W1 () allows to show that functions from W} () do
tend to 0 in a certain average sense when approaching the boundary 9f2.

Hence, the weak Dirichlet problem in Q is stated as follows: assuming
that f € L2 (), find a function u € W () such that Au = f. Obviously,
if u solves this problem then Au € L? and hence u € WZ (). We see that
the space WO2 appears naturally when solving the Dirichlet problem, which
explains the above terminology. Replacing the boundary condition in (4.15)
by the requirement u € W} allows to generalize the weak Dirichlet prob-
lem to an arbitrary manifold. Namely, for a weighted manifold (M, g, 1),
consider the following problem:

{ -Aju+ou=f on M,

uwe Wi (M), (4.16)
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where « is a given constant and f € L? (M) is a given function. If @ < 0
then this problem may have more that one solution. For example, if M is
a compact manifold, & = 0 and f = 0 then u = const is a solution. As we
will see in the next statement, for o > 0 this problem has always exactly
one solution (see Exercise 4.28 for the uniqueness conditions when a = 0,
and Exercise 4.29 for a more general version of the weak Dirichlet problem
with non-zero boundary condition).

Consider the resolvent Ry = (£ + cvid)"1 of the Dirichlet Laplace op-
erator £, which is defined whenever the operator £ + «id is invertible in
L2,

THEOREM 4.5. For any a > 0, the resolvent Ry := (L + aid)™! emists
and is a bounded non-negative definite self-adjoint operator in L2. Moreover,
[Rall < @72

PROOF. Let us show that, for any f € L?, there exists a unique function
u € W such that (£ + aid)u = f, that is,

-Ajutau=f (4.17)

This will prove that the resolvent R, exists and R, f = u. The requirement
u € W here can be relaxed to u € W{. Indeed, if u € W} and u satisfies
(4.17) then Ay u = au — f € L?, whence u € W2 (in particular, this will
imply that the problem (4.16) has a unique solution).

Considering the both sides of (4.17) as distributions and applying them
to a test function ¢ € D, we obtain that (4.17) is equivalent to the equation

~(u, App) + alu, ) = (f,9), (4.18)

for any ¢ € D, where we have used the definition (4.3) of the distributional
A,,. Next, using the fact that u € Wy and the definition of the distributional
gradient Vu, rewrite (4.18) in the equivalent form

(Vu, Vo) + a(u, ) = (£, ). (4.19)

Now, let us interpret the brackets in (4.19) as inner products in L2. Since
D is dense in W§, we can extend to W{ the class of test functions ¢ for
which (4.19) holds. Hence, the problem amounts to proving the existence
and uniqueness of a solution u € W to (4.19) assuming that (4.19) holds
for all p € W§.

Dengte the left hand side of (4.19) by [u, ¢],, that is,

[u, @], = (Vu, V) + a(u,¢),

and observe that [-,-], is an inner product in W. If @ = 1 then [, ],
coincides with the standard inner product in W§. For any o > 0 and
u € W3, we have

min (o, 1) ||ulfy < [u,u], < max (e, 1) [ullf.
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Therefore, the space W& with the inner product [-, -], is complete. Rewriting
the equation (4.19) in the form

[u, 0lo = (), (4.20)

we obtain by the Riesz representation theorem, that a solution u € W} exists
and is unique provided the right hand side of (4.20) is a bounded functional
of p € W}. The latter immediately follows from the estimate

(@) < Wfleellelles < a2 fllze Lo, 0ly?
which finishes the proof of the existence of the resolvent.

Substituting ¢ = w in (4.19) we obtain
IVullfz + allulZ. = (£,u), (4.21)
whence it follows (Rof, f) = (u, f) > 0, that is, R, is non-negative definite.
Another consequence of (4.21) is
allulle < 1 fllzellulize,

which implies | R fll2 < a7t fll2 and, hence, ||R.| < o7
Since R is a bounded operator, in order to prove that it is self-adjoint it
suffices to prove that it is symmetric, that is

(Rf,9) = (f,Rg) forall f,g € L?
Setting R, f = u, Rag = v, and choosing ¢ = v in (4.19), we obtain
(Vu, V) + a (u,2) = (f, Rag) -
Since the left hand side is symmetric in u, v, we conclude that the right hand
side is symmetric in f, g, which implies that R, is symmetric. 0O

Now we can prove the main result of this section.

THEOREM 4.6. On any weighted manifold, the operator Dirichlet Laplace
operator L = -AN|W02 is a self-adjoint non-negative definite operator in
L%, and specL C [0,+00). Furthermore, A“|W02 is a unique self-adjoint
extension of Aulp whose domain is contained in Wy .

ProoF. The fact that £ is symmetric and non-negative definite was
already verified (see (4.13) and (4.14)).

Self-adjointness. By Theorem 4.5, the resolvent R = Ry = (L + id)~?
exists and is a bounded self-adjoint operator. Let us show that £ = R~1—id
is also a self-adjoint operator. It suffices to prove that R~! with the domain
W is a self-adjoint operator. The symmetry of R~ easily follows from the

symmetry of £. Therefore, (R™*)" is an extension of R~1, and all we need
to show is that
dom (R"l)* C dom (R'l) .
By the definition of the adjoint operator,
dom(R™)" ={uel?:3f e L* wedomR™" (R 'v,u)=(vf)}.
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Since Rf is defined and is in dom R™!, we have, by the symmetry of R,
(R, Rf) = (v, R'Rf) = (v, f).
Comparing the above two lines, we conclude
(R 'v,u) = (R™v,Rf) forallv € Wg,

whence v = Rf and u € dom R™L.

Spectrum of H. Since the inverse operator (£ + aid)™! exists and is
bounded for any o > 0, we see that —c is a regular value of £ and hence
spec L C [0,400). The latter follows also from a general fact that the spec-
trum of a self-adjoint non-negative definite operator is contained in [0, +00)
(see Exercise A.26).

Uniqueness of extension. Set Lo := —Ay|p and suppose that £y is a
self-adjoint extension of £y such that
dom L1 C W§. (4.22)

We need to prove that £; = £. By (4.10), we have
dom £§ = {u € L?: Ayu € L*}
and in this domain
o = —A,u.
The inclusion £y C £; implies £1 C L. Combining with (4.22) we obtain
dom £; C Wy Ndom £} = {u € Wy : Ayu € L?} = dom L.

Also, if u € dom £; then

Liu= Lyu = —Ayu = Lu,

whence it follows that £ is an extension of L1, that is, £; C £. This implies
L] D L£* and, hence, £1 = L, because both operators £; and £ are self-
adjoint. U

SECOND PROOF. This proof does not use Theorem 4.5 and is overall shorter but at
the expense of using the theory of quadratic forms. Consider the quadratic form

£ (u,v) = (Vu, V)52

with the domain W{. This form is obviously symmetric and, as follows from Lemma
4.3, it is closed in L?. Hence, the form & has a self-adjoint generator £ such that for all
u€domL and v € dom &,
& (u,v) = (Lu,v).
The operator £ is non-negative definite because, for all © € dom £,
(Lu,u) = &€ (u,u) > 0.
The domain of £ is dense in W3 and is defined by
dom £ = {u € Wy : v+ £ (u,v) is a bounded linear functional of v € W§ in L2} .
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This condition means, by the Riesz representation theorem, that there exists a unique
function f € L? such that

£ (u,v) = (f,v) for allv € Wy. {4.23)
Since D is dense in W¢, we can rewrite (4.23) as follows:
€ (u,v) =(f,v) forallveD. (4.24)

Using the definitions of the distributional Laplacian and gradient, we obtain, for any
u€domL and v € D,

£ (u,v) = (Vu, Vo) = — (u,div, Vo) = — (u, Apv) = — (Auu,v),
and, comparing with (4.24), we see that for the distribution A u and for any v € D,
— (Bpw,v) = (£,v),
whence —A,u = f. In particular, this means that A,u € L? and hence u € W&; further-

more, Lu = f = —A,u. Conversely, it is easy to see that u € W§ implies u € dom L.
Hence, W3 = dom £ and £ = — A”|W02, which finishes the proof of self-adjointness of
A,,|W02. 0

THIRD PROOF. Here we provide yet another proof of the self-adjointness of £, based
on some properties of closed operators. Let us consider gradient V as an operator from L2
to L? with the domain Wa. We claim that V is a closed operator. Indeed, if a sequence
{fx} C W¢ is such that fi — f in L? and Vf, — w in L? then {fi} is Cauchy in W3
and hence converges to f in W¢. Therefore, Vf, — V£ in L? and w = Vf, whence we
conclude that V is closed.

Consider the adjoint operator V* acting from I? to L. By definition, we have

dom V* = {w el* for / {(Vf,w)du is a bounded functional of f € dom V} ,
M

and V*w is a unique function from L2 such that, for all f € W§,
[ wrodu=[ 1o0du.
M M

Since D is dense in W{, we can allow f here to vary in D instead of dom V. Then the
above identity is equivalent to the fact that V*w = — div,, w where div,, is understood in
the distributional sense. Hence, we obtain that

dom V* = {w e’ divawe LQ},

and V*w = —div, w in this domain.
Finally, let us show that £ = V*V, which will imply that £ is self-adjoint. Indeed,
we have
dom(V*'V) = {fe€domV:VfedomV"}

= {feW;:div,VfeL?}

= {fews:Afel?}

= domLZ,
and in this domain V*Vf = —div, Vf = —A,f = Lf, which finishes the proof. ]
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EXAMPLE 4.7. Let us prove that in R™ the domain W§ (R™) of the Dirichlet Laplace
operator coincides with the Sobolev space W2 (R™) (cf. Section 2.6). By Exercise 2.30, in
R™ the space D is dense in W*, which implies that W = W*. Therefore,

uEW? = ueW) and AueL® = uveWg
which means that W2 < W2.

To prove the opposite inclusion W& C W?, we need to show that if u € W' and
Au € L? then all the second derivatives of u are also in L2, Let us first show that if u € D
then

n
> lodulle = |Aulze. (4.25)
1,j=1
By the definition of the Laplace aperator, we have

A2, = /R (5 o)’ e = /R S, dudtuds, (4.26)

For any two indices ¢, §, we obtain, using integration by parts,
(83u,03u) = — (Biu, B:82u) = (8;0:u, B;9ju) = ||Bd;ul|2e,

whence (4.25) follows.
Let us now prove that if u € W and suppu is compact then u € W2 and

n
> l8iduliia < AuZa. (4:27)
i,5=1
Fix a mollifier ¢ and consider the sequence of functions
Up = UX P1/k-
By Lemma 2.9, ux € P and
Ay = (Au) * p1/5.
By Theorem 2.11, we obtain
Auellzz < [|Aul L2,
which together with (4.27) implies

n
> l8ibsuk|za < | Aul|a.
hi=1
Since all norms ||@;8;ux |22 are bounded uniformly in k, we conclude by Theorem 2.11
that 8;0;u € L? and (4.27) is satisfied. In particular, we have u € WZ,
Now let us prove that any function u € W belongs to W=, Let 1 be a cutoff function
of the unit ball B; = {|z| < 1} in R™ so that ¢ € D (R") and ¢ = 1 on Bj. Set

up (z) =9 (%) u(z) (4.28)

where k is a positive integer. Then ur € W' and suppux is compact. Let us show that
Awuy € L?. Using the product rule for second order derivatives (see Exercise (2.12)), we
obtain
=k z “ea) (Z) &, z

Aug = k=2 (A9) (k)u+2k ) (k)a,u+¢(k)Au. (4.29)
Obviously, the right hand side here is in L? and, hence, Aux € L2. Therefore, ur € W§,
and, by the previous part, we conclude uz € W2.

It also follows from (4.29) that
Aukllzz < C (lullwr + [|Aullz2),

where C does not depend on k. From (4.27), we obtain that, for any any multiindex o of

order 2,
l0%uellLe < C ([lullwr + fAulle2),
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4 '
that is, the sequence {8%us }ro ; is bounded in L?. Since up —2- u, we have also 8%uj ~—
8%u. By Exercise 4.8, we conclude that 8*u € L* and, hence, u € W2

Exercises.
4.19. Let M be the unit ball B in R™. Prove that the Laplace operator A with domain
{feC*(B): Af € L*(B)}
is not symmetric in L? (B).

4.20. Let A be an operator in L* (M) defined by Af = —A,f with dom 4 = C§° (M).
Prove that operator A is unbounded.

4.21. Prove that if f € C° (M) and u € W then fu € W} (M).
4.22. Prove that the spaces W (M) and W? (M), endowed with the inner product
(1, V)yp2 = (U, Vg1 + (Bpu, Auv)pa, (4.30)
are Hilbert spaces.
4.23. Prove that, for any u € W§ (M),
lulldys < e (ula + 1AuulZa), (431)
where ¢ = L%Q
4.24. Let {Ex} be the spectral resolution of the Dirichlet Laplace operator £ in L? (M).
Prove that, for any f € W (M),
IVA1E = [ AldBafis. (43)

4.25. Prove that dom £/ = W} (M) and that (4.32) holds for any f € W (M).
HiNT. Use Exercise A.13.

4.26. Prove that dom £'/? = dom (£ + id)"/? and, for any f € W¢ (M),

Il = I (£ +id)™ £l 2. (4.33)
4.27. Prove that, for all f € W3 (M),
“Vf”iz’ > Amin“f“iz’ (4'34)
where
Amin = inf spec L. (4.35)
4.28. Assuming that Amin > 0, prove that the weak Dirichlet problem on M
—-Apu=f,
(s w0
has a unique solution u for any f € L? (M), and that for this solution
lullzz < Aziallfllz2 (4.37)
and
IVullze < A2l ca- (4.38)

4.29. Consider the following version of the weak Dirichlet problem: given a real constant
o and functions f € L (M), w € W' (M), find a function u € L? (M) that satisfies the

conditions
Apu+au=f,
u=w mod W} (M),

Where the second condition means u —w € W3 (M). Prove that if & < Amin then the
problem (4.39) has exactly one solution.

(4.39)
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4.30. Let A be a bounded self-adjoint operator in L? such that, for a constant o > 0 and
for any function f € L*(M),

oI5 < (Af, e < el fl3-
{(a) Prove that the bilinear form
{f,9} = (Vf,V9) +(Af.9)
defines an inner product in W{, and that W} with this inner product is a Hilbert

space.
(b) Prove that, for any h € L?, the equation

—“Apu+Au=~h
has exactly one solution u € W¢.

4.31. Prove that, for any o > 0 and f € L%(M), the function u = R.f is the only
minimizer of the functional

E (v) == |Vl + v - fl3,
in the domain v € W§ (M).

4.32. Prove that for any o > 0 the operators V o Ry : L2 (M) — L? (M) and Lo R, :
L? (M) — L* (M) are bounded and

IV o Ral| < @™/, (4.40)
I£oBall < 1. (4.41)
4.33. Prove that, for any f € L2 (M),

aRof E5 F as o — +oo.
Prove that if f € dom £ then

locRaf = fllzz < ZNEFlLn

4.34. Prove that, for all ¢, 8 > 0,
Ry — Rg = (8 — o) RoRg. (4.42)

4.3. Heat semigroup and L?-Cauchy problem

Let (M, g, u) be a weighted manifold. The classical Cauchy problem is
the problem of finding a function « (t,z) € C? (R4 x M) such that

{ ‘?%—“ =Aju, t>0,
ult:O = f ’
where f is a given continuous function on M and the the initial data is
understood in the sense that u (¢,z) — f(z) as t — 0 locally uniformly in
z. Obviously, if a solution u (¢, z) exists then it can be extended to ¢t = 0 by
setting u (0,z) = f (z) so that u (¢, z) becomes continuous in [0, +00) x M.
The techniques that has been developed so far enables us to solve an
L?-version of this problem, which is stated as follows. Consider the Dirichlet
Laplace operator £ = ——A”|Woz on M. The L2-Cauchy problem is the prob-
lem of finding a function u (¢, z) on (0, +00) x M such that u (¢,-) € L* (M)
for any ¢ > 0 and the following properties are satisfied:

(4.43)
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e The mapping ¢ — u (t,) is strongly differentiable in L? (M) for all

t>0.
e For any t >0, u(¢,-) € dom £ and
du
S L,
dt “

where %— is the strong derivative of u in L% (M).

o u(t,-) Lz) f as t — 0 where f is a given function from L? (M).
Shortly, the L2-Cauchy problem can be written in the form

du
ult=0 = f )
where all the parts are understood as above.

The problem (4.44) is reminiscent of a system of linear ordinary dif-
ferential equations of the first order. Indeed, assume for a moment that
u = u(t) is a path in RN, £ is a linear operator in R, and f € RN. Then
the system (4.44) has a unique solution u given by

u = e_tEfJ
where the exponential of an operator A in RY is defined by
A2 A3
A _ . A0 A7
e =id+A+ o1 + 3l + e
In the case when A = —tL is an unbounded operator in L?, the exponential

series does not help because the domain of the series, that is, the set of
functions f where all the powers A*f are defined and the series converges,
is by far too small. However, one can apply the spectral theory to define
e~ provided £ is a self-adjoint operator.

Let us briefly summarize the necessary information from the spectral
theory (see Section A.5.4 for more details). Let £ be a self-adjoint operator
in a Hilbert space H, and let spec £ be its spectrum. Then any real-valued
Borel function ¢ on spec £ determines a self-adjoint operator ¢ (£) in H
defined by

o0

(L) = / o)y = / o(\)dE) , (4.45)
spec

—0o0
where {E,} is the spectral resolution of £. The domain of ¢ (L) is defined
by
domp(e) = {sem: [ loMPABIP <oof,  (446)

and, for any f € dom ¢ (£), we have

lo(A)fI? = / o ()2 d|[ExfI% (4.47)

spec A

spec L
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If ¢ is bounded on spec £ then the operator ¢(L) is bounded and

lo(L)II < sup |el.
spec L

In this case, dom ¢ (L) = H. If p is continuous on spec £ then

(O = o, ol - (4.48)
If ¢ and 1 are Borel functions on spec £ and 7 is bounded then
(L) +9 (L) = (p+v) (L) (4.49)
and
@ (L)Y (L) = (¢¥) (£) (4.50)

(cf. Exercise A.23). The relations (4.49) and (4.50) include also the identity
of the domains of the both sides.
The following version of the bounded convergence theorem is frequently

useful.

LEMMA 4.8. Let L be a self-adjoint operator in a Hilbert space H and
{¢r} ey be a sequence of Borel functions on spec L. If {px} is uniformly
bounded and converges pointwise to a Borel function ¢ on spec L, then, for
any f €H,

ek (L)Y f =@ (L)f ask — oo. (4.51)

Note that the operators i (£) and ¢ (L) are bounded and their common
domain is H. The convergence in (4.51) is understood in the norm of H,
which means that the sequence of operators ¢y (£) converges to ¢ (L) in the
strong operator topology. In terms of the spectral resolution {E)} of the
operator £, (4.51) can be stated as follows:

/ MBS — [ eiB, (4.52)
spec

spec L
which explains the reference to the bounded convergence theorem.

PROOF. It follows from (4.49) that
o (L) — o (L) = (px — #) (L),
and (4.47) yields

liow (£) F- (£) FI2 = (= 9 £) 717 = |

spec

B ok (A) = eV dll ExFII*.
The sequence |pg(A) — (N\)] tends to 0 as k — oo for any A € spec L. Since

this sequence is bounded and the measure d||E f||? is finite (its total being
II£11?), the classical bounded convergence theorem yields that

/ 10N = ¢ LB — 0k~ o0,
spec

whence (4.51) follows. O
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Given an operator £ in a Hilbert space H and a vector f € M, consider
the associated Cauchy problem to find a path « : (0, +00) — H so that the
following conditions are satisfied:

e u (t) is strongly differentiable for all ¢ > 0.
e For any t > 0, u (¢) € dom £ and
du
dt
where % is the strong derivative of u.
e u(t) = f as t — 0, where the convergence is strong, that is, in the
norm of H.

If £ is a self-adjoint, non-negative definite operator, that is, spec L C
[0, +-00), then this problem is solved by means of the following family {P;},5,

of operators:
Q
P, =t~ :/ e dE), =/ e"t)‘dE,\.
spec L 0

The family {P;};>, is called the heat semigroup associated with £. In par-
ticular, we have Py = id.

—Lu,

THEOREM 4.9. For any non-negative definite, self-adjoint operator L
in a Hilbert space H, the heat semigroup P, = et~ satisfies the following
properties.

(t) For anyt >0, P; is a bounded self-adjoint operator, and

12l <1 (453)
(i2) The family {P:} satisfies the semigroup identity:
BP, = Py, (4.54)

for allt,s > 0.
(i13) The mapping t — P, is strongly continuous on [0, +00). That is,
foranyt>0and f € H,

Hm Py f = P f, (4.55)
where the limit is understood in the norm of H. In particular, for
any f € H,
tgrgl_i_ P.f=f. (4.56)
(iv) For all f € H and t > 0, we have Pif € dom L and
d
S (Rf) =L (B, (457)

where ;% is the strong deriwative in H.

Consequently, the path u = P.f solves the Cauchy problem in H for any
feHn.
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The properties (¢)-(4v) mean that {F;}, is a strongly continuous con-
traction semigroup in H with generator L.
ProOF. The fact that u = P, f solves the Cauchy problem is obviously
contained in (4i) and (iv).
(1) By (4.48), we have
12 =lle || = sup e™< sup e =1
A€spec L AE[0,400)

(4) This follows from the property of the exponential function e *e~* =
e~ ()X and from (4.50).

(441) The family of functions {e‘s’\}s>0 is uniformly bounded in A €
[0, +00) and tends pointwise to e ** as s — . Hence, by Lemma 4.8, for

any f € H,
(o ¢} (o 0]
P,f= / e *MENf — / e M E\f = P.f.
0 0

(iv) Fix t > 0 and consider the functions ¢ (A) = A, ¥ (\) = e~ **, and
(A =N Y (V) =A™
Since 1 (A) is bounded on [0, +00), (4.50) yields
@ (L)Y (L) = (p¥) (L) = @ (L),
that is
L =d(L).
Since @ (\) is bounded on [0,+o0), the operator ® (L) is bounded and,
hence, dom @ (£) = H. Therefore, dom (Le %) =  whence it follows that
rane *f C dom £, that is, P,f € dom £ for any f € H.
For any f € H, we have
d o Basf — RS /me"s’\—l —ix
o (B:f) = il_{)% . = lim A ¢ dE, f, (4.58)

s—0

where the limit is understood in the norm of H. Obviously, we have

-8\ __ 1
lim e———e_t’\ = —de A,
s—0 S
We claim that the function
6—3A -1 _iA
Ay ——¢

s
is bounded on [0, +00) uniformly in s € [—¢,¢] where € is fixed in the range
0 < e <t,say € =t/2. To prove this, let us apply the inequality

]e" - 1’ < |6, (4.59)

for any 8 € R, which follows from the mean value theorem. Setting § = —\s
in (4.59), we obtain
le_s’\ - 1, < Als| e
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whence
e s —1 —\ —At ,Als| —A(t—e)
e < AeMeMl < de : (4.60)
s
Since the right hand side is a bounded function of A, the above claim is
proved.

By Lemma 4.8, the right hand side of (4.58) is equal to
o0
/ (=N e PdEyf = —8 (L) f = —L (B.f),
0

which was to be proved. 0

The existence in the Cauchy problem in H, which follows from Theorem
4.9, is complemented by the following uniqueness result.

THEOREM 4.10. Let L be a non-negative definite operator in a Hilbert
space H. Then the corresponding Cauchy problem in H has at most one
solution for any initial vector f € H.

Note that operator £ here is not necessarily self-adjoint.

PRrROOF. Assuming that u solves the Cauchy problem, let us prove that

the function

J() = Ju(t, )P = (u(),u(2))
is decreasing in t € (0,400). For that, we use the following product rule
for strong derivatives: if u(t) and v (t) are strongly differentiable paths in
‘H then the numerical function ¢t — (u (t),v (¢)) is differentiable and

d d d
7 (u,v) = (EU, v) + (u, av)

(cf. Exercise 4.46). In particular, we obtain that the function J (t) is differ-
entiable on (0, +00) and

T ) = 3 () =200 2) = ~2(u, Lu) < 0,

where we have used the fact that the operator £ is non-negative definite.
We conclude that J (t) is a decreasing function.

To prove the uniqueness of the solution is suffices to show that f = 0
implies u = 0. Indeed, if u(t) — 0 as ¢t — 0 then also J (¢) — 0. Since J (2)
is non-negative and decreasing, we conclude J (¢) = 0 and u (t) = 0, which

was to be proved. O
On any weighted manifold M, set
P=eH,
where £ = _Ai‘lWoz is the Dirichlet Laplace operator. Theorems 4.9 and

4.10 immediately imply the following result.

COROLLARY 4.11. For any function f € L? (M), the L?-Cauchy problem
(4.44) has a solution. Moreover, this solution is unique and is given by
u=Fhf.
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ExaMPLE 4.12. Let p¢ (z) be the Gauss-Weierstrass function defined by (1.8), that
is,

2
Pt (z) = m exp (—%—) ) (4.61)

where t > 0 and z € R”. By Lemma 2.18, for any f € L% (R™) and any ¢ > 0, the function
us = pe * f is in L2 (R™) and

LZ
u — f ast — 0.

1t follows from Theorem 2.22, that if f € W2 (R™) then u, € W?(R™), w, is strongly
differentiable in L2, and

d’U.t _

d 7 = A’U,t.
As it was shown in Example 4.7, the domain dom £ = W§ (R™) of the Dirichlet Laplace
operator in R™ coincides? with W2 (R™). Hence, u: € dom £ and we obtain that the path
t 5 u; solves the L?-Cauchy problem.

By Corollary 4.11, the unique solution to the L2-Cauchy problem is given by e~ ¢ f-

We conclude that, for all ¢t > 0,
f=prt= [ nE-nfwaw (4.62)

for any f € W2, Since W? is dense in L? and all parts of (4.62) are continuous in f € L?,
we obtain that (4.62) holds for all f € L2.

Recall that, in Section 2.7, the heat semigroup {P.} in R" was defined by P, f = p,* f,
whereas in the present context, we have defined it by P; = e~*¢. The identity (4.62) shows
that these two definitions are equivalent. Another point of view on (4.62) is that the
operator P; = ™% in R™ has the integral kernel p; (z — y). As we will see in Chapter 7,
the heat semigroup has the integral kernel on any manifold, although no explicit formula
can be obtained.

Exercises.

4.35. Fix a function f € L2
(a) Prove that the function ¢ () := (P.f, f) on t € [0, +00) is non-negative, decreasing,

continuous, and log-convex.
(b) Prove that the function ¢ () := | VP, f||3 is decreasing on (0, +oc0) and
* 1
JCLEEITS
0
4.36. Prove that, for any f € W§, such that || fljz2 =1,
1P fln 2 o0 (¢ [ (91 a)), )
M

for any ¢t > 0.

HINT. Use Exercise 4.25 and 4.35.

2In fact, we need here only the inclusion W2 (R™) C dom ., which follows from
W (R™) = W§ (R™) (see Exercise 2.30).
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4.37. Prove that, for all f € L? and all £ > 0,

18w (Pef) 2 < SIFlze. (4.64)
and

IV ) lsa < 4210 (4.65)
4.38. For any t > 0, define a quadratic form &; (f) by

& (f) = (f = f) " (4.66)
for all f € L2

(a) Prove that & (f) is increasing as t is decreasing.
(b) Prove that lim—o & (f) is finite if and only if f € W, and

ime (1) = [ Vs d
(¢) Define a bilinear form & (f,g) in L? by
& (f,9) = (f—_titf-,g> -
L2

Prove that if f,g € W then

&(7,9)~ [ (V5,Vahdu ast 0. (4.67)
M
4.39. Prove that if f € W@ then, for all ¢ > 0,

NPef = flize < thAuflize, (4.68)

REMARK. Recall that, by Theorem 4.9, if f € L? then Pif 5 f ast — 0. The estimate
(4.68) implies a linear decay of |Psf — fllzz ast — 0 provided f € W¢.

4.40. Prove that if f € Wy then

IPf = fllzz < &2V Fie. (4.69)
HINT. Use Exercise 4.25 or argue as in Lemma 2.20.
4.41. Prove that if f € W then

- 2

%f- L ALf as t — 0, (4.70)
4.42. Prove that, for any f € L?,

Ef_f-t'_f P A ast =0,
where A, f is understood in the distributional sense.
4.43. Prove that if f € L? and, for some g € L2,

——-—-Ptft—frl-z)gast-—)O

then f € W¢ and g = A, f.
4.44. Let f € W¢ be such that A,f = 0 in an open set 2 C M. Consider a path

Mﬂ={fﬁ§§%

Prove that u (t) satisfies in R x £ the heat equation % = A,u in the following sense: the
Path t +— wu (¢) is strongly differentiable in L? () for all t € R and the derivative L is
equal to A,u where A, is understood in the distributional sense.
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4.45. Prove that if f € W¢ then
P fast—o.

and if f € W§ then
2
PfYs 5 ast—o.

4.46. (Product rule for strong derwatives)
(@) Let H be a Hilbert space, I be an interval in R, and « (t),v (£} : I — H be strongly
differentiable paths. Prove that

d dv du
a;(u»v)— (U’EH—(EE’U)'

(b) Consider the mappings v : I — L? (M) and v : I — L? (M) where I is an interval
in R and p,q € [1,4+00]. Prove that if u and v are continuous then the function
w (t) = u(t) v (¢) is continuous as a mapping from I to L™ (M) where r is defined by
the equation

(¢) Prove that if v and v as above are strongly differentiable then w is also strongly
differentiable and

T YT a”

4.47. For any open set  C M, denote by Cj, (£2) the linear space of all bounded continuous
functions on Q with the sup-norm. Let u (¢, z) be a continuous function on I X M where
I is an open interval in R, and let the partial derivative 86—1; be also continuous in [ x M.
Prove that, for any relatively compact open set  C M, the path u(¢,-) : I = C, () is

strongly differentiable, and its strong derivative %% coincides with the partial derivative
gly dt p

Bu
ot

4.48. Let H be a Hilbert space.

(a) Let u(t) : [a,b] — H be a continuous path. Prove that, for any z € #, the functlons
t++ (u(t),z) and t — |ju(t) || are contimuous in ¢ € {a, b], and

/a w2 < / (2 ndt) .

Conclude that there exists a unique vector U € H such that

/b (u(t),z)dt = (U,z) forallez e M,

a

which allows to define f (¢) dt by

/abu(t)dt:——-U

[wwd < [ ol

(b) (Fundamental theorem of calculus) Let u (t) : [a,b] — H be a strongly differentiable
path. Prove that if the strong derivative v’ (t) is continuous in [a, b] then

/u'(t)dt:u(b)—u(a).

a

Prove that

4.49. Let u : [a,b] = L' (M, 1) be a continuous paths in L. Prove that there exists an
function w € L* (N, dv) where N = [a,b] x M and dv = dtdpu, such that w (t,-) = u (¢) for
any t € [a, b].
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4.50. (Chain rule for strong derivatives) Let u (%) : (a,b) — L? (M) be a strongly differ-
entiable path. Consider a function ¢ € C* (R) such that

9 (0) =0 and sup|¢'| < oo. (4.71)
Prove that the path 9 (u (t)) is also strongly differentiable in ¢ € (a, b) and
dp(u) ., du
a4 (w) =

4.51. Let ® (X) be a continuous function on [0, +00) of a subexponential growth; that is,
for any € > 0,

d(A)=o (e“‘) as A — +oo. (4.72)

Let £ be a non-negative definite self-adjoint operator in a Hilbert space H. Fix f € H
and consider the path v : Ry — # defined by

v () = /O T (A e dEL f, (4.73)

where {E,} is the spectral resolution of £. Prove that, for any ¢t > 0, v () € dom £, the
strong derivative i—’t’ exists, and

j—? - / 2B (N) e P dESf = Lo (8). (4.74)
0
Conclude that the strong derivative % of any order k£ € N exists and
d*v

4.52. Let £ be a non-negative definite self-adjoint operator in a Hilbert space H. For any
t € R, consider the wave operators

Ct = cos (t[ll/z) and S; =sin (tLl/g) .
{a) Prove that C; and S; are bounded self-adjoint operators.
(b) Prove that, for all f,g € dom £!/2, the function
u(t) = Cef + Sig
is strongly differentiable in ¢t and satisfies the initial data
du 1/2
Uep=f and  — t=0=z:/ 9-
(¢) Prove that, for any f € dom L, both functions C:f and S,f are twice strongly
differentiable in ¢ and satisfy the wave equation
&
di?
where a‘% is the second strong derivative.
(d) (A transmutation formula) Prove the following relation between the heat and wave

= —-Lu,

operators:
—tL ©° 1 ( 32) C d 8
e = ——exp{ —— sds, 4.7
| e (-5 (476)
where the integral is understood in the sense of the weak operator topology (cf.
Lemma. 5.10).

4.53. Let ¢(t) be a continuous real-valued function on an interval (a,b), a < b, and
assume that ¢ (t) is right differentiable at any point t € (a,b). Prove that if ¢’ () < 0
forallt e (a,b) (where ¢’ stands for the right derivative) then function v is monotone
decreasing on (a, b).
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4.54. Consider the right Cauchy problem in a Hilbert space H: to find a path u :
(0, 4+00) — H so that the following conditions are satisfied:
(2) u(t) is continuous and strongly right differentiable for all ¢ > 0;
(%) For any t >0, u (t) € dom £ and
du
dt
where ‘;—;‘ is the strong right derivative of u.
(%) u(t) = f ast — 0, where f is a given element of H.
Prove the uniqueness of the path u (t) for any given f.

= —Lu,

Notes

The main result of this Chapter is Theorem 4.6 that guaranties the self-adjointness of
the Dirichlet Laplace operator. In the present form it was proved in [58]. We give three
different proofs using different tools: resolvent, quadratic forms, and the adjoint operator
V*, respectively (the latter being from [58]).

Construction of the heat semigroup in Theorem 4.9 follows the standard routine
of the spectral theory. Different methods for the construction of the heat semigroup

(concurrently with the associated diffusion process on M) can be found in [16}, [271].



CHAPTER 5

Weak maximum principle and related topics

Here we study those properties of the heat semigroup that are related to
inequalities. Recall that if u (¢, ) is a solution the classical bounded Cauchy
problem in R™ with the initial function f, then by Theorem 1.3 f > 0 implies
u > 0 and f < 1 implies 4 < 1. Our purpose is to obtain similar results
for the heat semigroup P; = e~*£ on any weighted manifold, where £ is the
Dirichlet Laplace operator. Such properties of the heat semigroup are called
Markovian. Obviously, the Markovian properties cannot be extracted just
from the fact that £ is a non-negative definite self-adjoint operator; one has
to take into account the fact that the solutions are numerical functions, but
not just elements of an abstract Hilbert space.

5.1. Chain rule in W}

Let (M, g, u) be a weighted manifold.
LemMMA 5.1. Let ¢ be a C®-function on R such that

¥ (0) =0 and sunlg [W' (t)] < oo. (5.1)
te
Then u € W3 (M) implies 1 (u) € W3 (M) and
Vi (u) =9’ (u) Vu. (5.2)

PrROOF. If u € C§° then obviously % (u) is also in C§° and hence in W{,
and the chain rule (5.2) is trivial (cf. Exercise 3.4).

An arbitrary function u € W& can be approximated by a sequence {u}
of Cg°-functions, which converges to u in W'-norm, that is,

L2 L2
ur — v and Vu, — Vu.
By selecting a subsequence, we can assume that also ux () — u(z) for
almost all z € M.
By (5.1) we have |1 (u)] < C|u| where C' = sup [¢/|, whence it follows

that ¢ (u) € L2. The boundedness of 1/ implies also that 9/ (u) Vu € L2.
Let us show that

P (ug) —L—2> ¥ (u) and Vi (ug) i2—>'1,Lv’ (u) Vu, (5.3)

Which will imply that the distributional gradient of ¥ (u) is equal to ¥ (v) Vu
(see Lemma 4.2). The latter, in turn, yields that 1 (u) is in W and, more-
over, in W{.

123
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The convergence ¥ (ug) z ¥ (u) trivially follows from wuy L w and
|9 (ux) = % (w)] < Clug —uf .
To prove the second convergence in (5.3) observe that
|V (ug) — o' (W) Vu| = |9 (ug) Vg — ¢’ () Vu
< Y (wk) (Vue = V)| + | (¢ (ur) — ' () Vaul,
whence

IV (ui) = %' (u) Vullz < C|Vug — Vullzz + 1| (% (ux) — 9 (u)) Vul(lgz)

2
The first term on the right hand side of (5.4) goes to 0 because Vuy L v
By construction, we have also ug () — u(z) a.e. , whence

Y (ug) ~ ¥ (u) — 0 a.e.
Since
¥ (ur) — ' ()] [Vul® < 4C? |Vu]?

and the function |Vu|? is integrable on M, we conclude by the dominated
convergence theorem that

[ 1 ) = o/ @ff (9 s — 0,
M

which finishes the proof. a

LEMMA 5.2. Let {¢y (t)} be a sequence of C™®-smooth functions on R
such that

Y (0) =0 and supsup |y} (t)] < oo. (5.5)
k teR
Assume that, for some functions ¥ (t) and ¢ (t) on R,
V(@) =¥ () and Y (t) = @ (t) forallteR. (5.6)
Then, for any u € Wi (M), the function 1 (u) is also in WE (M) and
VY (u) = ¢ (u) Vu.
Proor. The function 9 (u) is the pointwise limit of measurable func-

tions v (u) and, hence, is measurable; by the same argument, ¢ (u) is also
measurable. By (5.5), there is a constant C such that

[ ()] < C I, (5.7)

for all k¥ and ¢ € R, and the same holds for function 1. Therefore, |9 (u)] <
C |u|, which implies 4 (u) € L? (M). By (5.5), we have also | (t)| < C,
whence ¢ (u) Vu € L2.
Since each function 1y, is smooth and satisfies (5.1), Lemma 5.1 yields
that
¥r (u) € Wy (M) and Vi (u) = ¢ (u) Vu.
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Let us show that

L L?
P (u) == ¥ (u) and Vi (u) — ¢ (u) Vu, (5.8)
which will settle the claim. The dominated convergence theorem implies
that

| o —p @ ds—o,
because the integrand functions tend pointwise to 0 as k — oo and, by (5.7),
[ (u) — ¥ (u)|* < 4C%2,
whereas u? is integrable on M. Similarly, we have

/ Vi (1) — o (u) Vul? dps = /M 19, () — @ ()| [Vl d — 0,

because the sequence of functions [y} (u) — ¢ (w)]* |Vul? tends pointwise to

0 as k — 0o and is uniformly bounded by the integrable function 4C? |Vu|?.
il

ExaMPLE 5.3. Consider the functions

1, t>0,

which can be approximated as in (5.6) as follows. Choose % (t) to be any
smooth function on R such that

t—1, t>2,
1pl(lt)z{o, t<0

(see Fig. 5.1). Such function 1 (t) can be obtained by twice integrating a
suitable function from C§° (0,2).

/ ‘,."")\'l}l(f) _.(P.(..t)_ e
.’ ‘I’l(t)
0 2 t 0 2 t

FIGURE 5.1. Functions 1 (t) = ¢} and %; (t) and their derivatives

Then define v, by
¥ (t) = %151 (kt).
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If t < 0 then ¥ (t) = 0. If t > O then, for large enough k, we have kt > 2
whence

()= 2 (ki —1) =t~ 7 >t as b oo,
Hence, 9 (t) — ¥ (t) for all ¢ € R. Similarly, if ¢ < 0 then 9, (t) = 0, and,
for t > 0,
P, (8) =) (kt) > 1 as k — oco.

Hence, 9y, (t) — ¢ (t) for all £ € R.
By Lemma 5.2, we obtain that uy € W§ and

Vu, u>0,
Applying this to function (—u), we obtain u_ € W} and
0, 4 >0,
Vu- = { -Vu, u<0. (5.10)
Consequently, since Vuy = Vu_ = 0 on the set {u = 0}, we obtain
Vu=0on {u=0}. (5.11)

Of course, if the set {u = 0} has measure 0 then (5.11) is void because Vu is
defined up to a set of measure 0, anyway. However, if the set {u = 0} has a
positive measure then the identity (5.11) is highly non-trivial. In particular,
(5.11) implies that if u,v are two functions from W such that v = v on
some set S then Vu=Vvon S.

Similarly, u € W implies (v —¢), € W{ for any ¢ > 0, and

Vu, u>c,
V(u—c)+={ 0, wu<ec (5.12)
Since |u| = u4 + u—, it follows from (10.20), (5.10), (5.11) that
V |u| = sgn (u) Vu. (5.13)

Alternatively, this can be obtained directly from Lemma 5.2 with functions
¥ (t) = |t| and ¢ (t) = sgn (¢).

LEMMA 5.4. Let u be non-negative a function from W} (M). Then there

exists a sequence {ux} of non-negative functions from C§° (M) such that
1
Ug Y a.

Proor. By definition, there is a sequence {vy} of functions from C§° (M)

1
such that vy %, u. Let 1 be a smooth non-negative function on R satisfying
(5.1). By (5.3), we have

¥ (k) % o (w).
Observe that 1) (vg) > 0 and 9 (vx) € C§° (M). Hence, the function ¢ (u) €

W3 can be approximated in W!-norm by a sequence of non-negative func-
tions from C§° (M). We are left to show that u can be approximated in
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Wl-norm by functions like 1 (u), that is, there exists a sequence {¢}} func-
tions as above such that
Wl
P (u) = u.

Indeed, consider the functions

’Qb (t) = t+ and 72 (t) = 1(0,_,._00), (514)
and let 9, be a sequence of non-negative smooth functions satisfying (5.5)
and (5.6). Then, by (5.8),

Px (w) =z, Y (u) =wu and Vi (u) 2, @ (u) Vu = Vu,
which finishes the proof. 0

5.2. Chain rule in W1

The main result of this section is Theorem 5.7 that extends Lemma 5.2
to Wl (M).

Denote by W} (M) the class of functions from W? (M) with compact
support.

LeMMA 5.5. Wl (M) c Wi (M).

ProOOF. Set K = suppu and let {U;} be a finite family of charts covering
K. By Theorem 3.5, there exists a family {;} of functions 9; € D (U;) such
that Y, 4; = 1 in a neighborhood of K. Then we have ¢u € W} (U;) (cf.
Exercise 4.2). Since u = ), v;u, it suffices to prove that y¥u € W3 (Us).
Hence, the problem amounts to showing that, for any chart U,

W (U) c W3 (U),
that is, for any function u € W (U), there exists a sequence {@x} C D (U)

such that ¢y W u. Since U is a chart and, hence, can be considered as a
part of R”, also the Euclidean Sobolev space W2 _,(U) is defined in U (see
Section 2.6.1). In general, the spaces W2, ,(U) and W* (U) are different.
However, by Exercise 4.11(b), the fact that v € W1 (U) implies that u
and all distributional partial derivatives 8;u belong to L2 (U). Since the
support of u is compact, we obtain that u and 8;u belong to L% ,(U),
whence u € W}, (U).

By Exercise 2.30, there exists a sequence {¢}f2, of functions from
D(U) that converges to u in W2, (U), and the supports of gy can be
assumed to be in an arbitrarily small open neighborhood V' of supp u.

We are left to show that the convergence ¢ — u in W2, (U) implies

that in W1 (U). By Exercise 4.11, for any v € W, (U) we have
IngIZ = gija,;vaj’v,

where Vv is the weak gradient of v in metric g of the manifold M. It follows
that, for any fixed open set V € U,

Illw: vy < Clivliwe vy



128 5. WEAK MAXIMUM PRINCIPLE AND RELATED TOPICS

where the constant C' depends on the supremums of |g*/| and /detg in V.
Hence, choosing V &€ U to contain all the supports of ¢y and u, we obtain

lu = exllwrvy < Cllv — illws vy =0,
that is, ¢y, — u in W (U). O
Define the space WL (M) by
Wh (M) = {u e LE, (M) : Vu e T, (M)} (5.15)

Clearly, if u € WL (M) then u € W' () for any relatively compact open
set @ C M. Conversely, if u is a function on M such that u € W (Q) for
an exhaustion sequence {2} then u € WL (M).

COROLLARY 5.6. Ifu € WL _(M) and f € C° (M) then fu € W} (M).

loc
PrOOF. Let 2 be any relatively compact open set containing supp f.
Then u € W' (Q) and f € C5° (Q), whence we obtain by Exercise 4.3
that fu € W' (Q). Since supp (fu) is compact and is contained in £, we
obtain fu € W} () whence by Lemma 5.5 fu € W3 (Q). It follows that
fue W¢(M). a

The following result extends Lemma 5.2 to functions from W1 (M).

THEOREM 5.7. Let {1y, (t)} be a sequence of C®-smooth functions on R
such that

¥ (0) =0 and sup igﬁ;{) 1% (1) < o0. (5.16)
Assume that, for some functions ¢ (t) and ¢ (t) on R,
Ye(t) 2> Y(t) and o (t) = o (t) forallteR, (5.17)
as k —+ co.
(3) Ifu € W' (M) then o (u) € W' (M) and
Vi (u) = ¢ (u) Vu. (5.18)

(11) Assume in addition that function o (t) is continuous in R\ F for
some finite or countable set F. If up,u € W' (M) then

uk—Iﬁ)u = @b(uk)ﬁmjz(u).

REMARK. The conditions (5.16) and (5.17) are identical to the conditions
(5.5) and (5.6) of Lemma 5.2.

PROOF. (i) As in the proof of Lemma 5.2, we have 9 (u) € L? (M) and
¢ (u)Vu € L2 (M). The identity (5.18) means that, for any vector field
w e D (M),

(¥ (u),div,w) = — (¢ (u) Vu,w) . (5.19)



5.2. CHAIN RULE IN w! 129

Fix w € D(M) and let f € D(M) be a cutoff function of suppw. By
Corollary 5.6, the function ug = fu is in W (M). Therefore, by Lemma
5.2,
Vi (ug) = @ (up) Vg
and, hence,
(¢ (uo) , divy, w) = — (¢ (uo) Vg, w) .

Since u = ug in a neighborhood of suppw, this identity implies (5.19).

(i7) It suffices to prove that a subsequence of {1 (ux)} converges to 9 (u)
(cf. Exercise 2.14). Since uy — u in L?, there is a subsequence {u;} that
converges to u almost everywhere. Hence, renaming this subsequence back
to {ux}, we can assume that uy — u a.e..

What follows is similar to the proof of Lemma 5.1. It suffices to show

that
W (ug) 2 9 (u) and Ve (uk) 25 Vb (u) . (5.20)
By (5.16), there is a constant C' such that
|9k (£)] < C and |4 (8)] < Ct,
for all k and t € R. Therefore,

1% (ur) — ¥ (w) || < Cllug —ull
(where all norms are L?), which implies the first convergence in (5.20).
Next, using (5.18), we obtain
IVip(ur) — V()| < llo(ur)(Vux — V)l + || (o(u) — o(u)) Vul
< Cli(Vuk — V)| + [l (p(ur) — () Vul. (5.21)

The first term in (5.21) tends to 0 by hypothesis. The second term is equal
to

1/2

([ owe)-ew@PvilaE) . G2
Consider the following two sets:

S1 = {reM:up(x) Au(z) ask - oo},

Sy = {zeM:u(z)ecF},
where F is set where ¢ is discontinuous. By construction, z (S1) = 0. Since
Vu = 0 on any set of the form {u = const} (cf. Example 5.3) and S, is
& countable union of such sets, it follows that Vu = 0 on S;. Hence, the
domain of integration in (5.22) can be reduced to M \ (S; U S;). In this
domain, we have

u (z) > u(z) ¢ F,
which implies by the continuity of ¢ in R\ F that
¢ (uk () = ¢ (u(2)).

Since the functions under the integral sign in (5.22) are uniformly bounded
by the integrable function 4C?|Vu|?, the dominated convergence theorem



130 5. WEAK MAXIMUM PRINCIPLE AND RELATED TOPICS

implies that the integral (5.22) tends to 0 as k& — oo, which proves the

second relation in (5.20). 0
ExAMPLE 5.8. Fix ¢ > 0 and consider functions
$(t)=(t—0), and ¢(t)=1(e (5.23)

(cf. Example 5.3). Since these functions satisfy all the hypotheses of The-
orem 5.7, we obtain that if u € W1 then (u—c), € W1, and V (u — c), is

1 1
given by (5.12). Furthermore, by Theorem 5.7, ug o implies (ux —c) v,

(u~c),.
Exercises.

5.1. Let ¢ (t) and ¢ (¢) be functions satisfying the conditions (5.16) and (5.17) of Theorem
5.7. Prove that ¢};,, = .

5.2. Let 9 € C! (R) be such that
%(0) =0 and sup|y| < o0.

Prove that the functions v and ¢ := 9’ satisfy the conditions (5.16) and (5.17) of Theorem
5.7.

5.3. Prove that if u,v € Wy (M) then also max (u,v) and min (u,v) belong to W (M).
5.4. Prove that if M is a compact manifold then W' (M) = W} (M).

5.5. Prove that if u € W! (M) then, for any real constant ¢, Vu = 0 a.e. on the set
{reM:u(z)=c}

5.6. Prove that, for any u € W' (M),
1
(u~c)+-vy—->u+ asc—0+.

5.7. Let f € W (M) and assume that f (z) = 0 as z — oo (the latter means that, for
any € > 0, the set {|f| > €} is relatively compact). Prove that f € W§ (M).

5.8. Prove that if u € Wj.. (M) and o, ¥ are functions on R satisfying the conditions of
Theorem 5.7 then v (u) € Wi, (M) and V9 (u) = ¢ (u) Vu.

5.9. Define the space W2, (M) by
vvl?:c = {f € I/VIJ:;C : A/Af € leoc} .
Prove the Green formula (4.12) for any two functions u € W3 and v € W{,_.

5.3. Markovian properties of resolvent and the heat semigroup
Set as before £ = _AMIWOZ and recall that the heat semigroup is defined
by P, = e~*£ for all t > 0, and the resolvent is defined by
Ro = (L +aid)™ (5.24)

for all @ > 0. Both operators P, and R, are bounded self-adjoint operator
on L? (M) (cf. Theorems 4.9 and 4.5). Here we consider the properties of
the operators P; and R, related to inequalities between functions.
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THEOREM 5.9. Let (M, g, 1) be a weighted manifold, f € L? (M), and
a> 0.
(i) If f > 0 then Rof > 0.
(i3) If f <1 then Rof < a7l

PRrROOF. We will prove that, for any ¢ > 0, f < c implies Rof < ca™?,
which will settle (i¢) when ¢ = 1, and settle (i) when ¢ — 0+. Without loss
of generality, it suffices to consider the case ¢ = a, that is, to prove that
f < aimplies R, f < 1. Set u = R, f and recall that v € dom L = Wo2 and

Lu+ au = f. (5.25)

To prove that u < 1 is suffices to show that the function v := (u—1)_
identically vanishes. By Example 5.3 and (5.12), we have v € W and

_f Vu, u>1,
Vv = { 0, w<l, (5.26)

Multiplying (5.25) by v and integrating, we obtain
(Lu,v)pz + o (u,v) 2 = (fv)2. (56.27)
By Lemma 4.4 and (5.26), we have

(Lurv) gz = — (Dt v) 2 = (Vi V) 1 = / Va2 du >0,
{u>1}

whereas

wolp= [ +Dvdu= ol + [ vdp.
{v>0} M
Hence, it follows from (5.27) and f < « that
vl +a [ vdu< () <a [, van,
M M

whence we conclude ||v]|;2 =0 and v =0. O

Many properties of the heat semigroup can be proved using the corre-
sponding properties of the resolvent and the following identities.

LEMMA 5.10. For an arbitrary weighted manifold (M, g, u) the following
identity hold.

(¥) For any a > 0,
o o]
R, = / e % P,dt. (5.28)
0

wgzere the integral is understood in the following sense: for all f,g €
L* (M),

(Rof,q) 2 = /0 e (P,f, g),n db. (5.29)
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(i) For anyt >0,
A
Py = lim (;) Rips (5.30)

where the limit is understood in the strong operator topology.

Proor. Let {E)} be the spectral resolution of the Dirichlet Laplace
operator £. Then by (4.45) we have

Bf = / ~ e~ MdE, f (5.31)
0
and
Rof = /0 (a+ N HdE\S (5.32)

(see also Exercise A.24).
(1) Substituting (5.31) to the right hand side of (5.29) with g = f and
using Fubini’s theorem, we obtain

/ Tew(BfDpd = [ e ( /()we~”d(EAf,f)L2) dt

_ /0°° ( /0 ooe—("”"\)tdt) d(Br, f)ia

- /0 T @t N (B,
— (Raf, P2,

which proves (5.29) for the case f = g. Then (5.29) extends to arbitrary
f, g using the identity

(Pf,0) = 5 (Pi(7 +0),f +9)— 3 (B.(f~9),f ~9)

and a similar 7 uatity for Ry

(2>~ ‘he classical identity
/ -~k
. e P = lim (1 + 2)
X k—ro0 k
\"e\rgence theorem, we obtain
. & A oo —k
\\,,\c\}',/ \'*'/f\;\ = kli)m (1 + %) dEj,
for allw. \ /0
on L2 (M) e " the strong sense. This implies (5.30) because

the operators ;¢ to P, and the integral in the right hand side
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is equal to
o0 A\ ¢ E\* [ (k& -k
-z = [2 z E
/0 <1+k) dE\ (t)/o (t+>\) dEy
EN* (k. kO ENR L
- (1) (eve) - (3) e

THEOREM 5.11. Let (M, g, u) be a weighted manifold, f € L? (M), and
t>0.
(2) If f > 0 then P,f > 0.
(ti0) If f <1 then B f < 1.

ProoF. (i) If f > 0 then, by Theorem 5.9, Ry f > 0, which implies that
RE f > 0 for all positive integers k. It follows from (5.30) that P.f > 0.

(43) If f < 1 then, by Theorem 5.9, Rof < o~ !, which implies that
RE f < a7 for all positive k. Hence, (5.30) implies

k\* (k\7F
<lIm (=) (2) =
Ptf_éﬁ&(t) (t) L

which was to be proved. O

d

Exercises.

5.10. Let R, be the resolvent defined by (5.24).
(a) Prove that, for any f € L? and a > 0,

Pf= lim e_“tia%thk f (5.33)
T S keo ol i ’

(b) Using (5.33), give an alternative proof of the fact that f < 1 implies P, f < 1.

5.11. For all o, k > 0, define RE as ¢ (Ra) where ()) = A\F.
(a) Prove that, for all a, k > 0,
R / T et (5.34)
o« = tld, .
o I(k)

where the integral is understood in the weak sense, as in Lemma 5.10, and T is the

gamma function (cf. Section A.6).
(b) Write for simplicity Ry = R. Prove that

RFR' = R**! for all k,1 > 0.

Prove that if f € L? (M) then f > 0 implies R*f > 0 and f < 1 implies R*f < 1,
for all & > 0.
(¢) Prove that R* = e~*% where L = log (id+£) and L is the Dirichlet Laplace operator.

REMARK. The semigroup ~{R’°}k>0 is called the Bessel semigroup, and the operator
log (id +£) is its generator. -

5.12. Prove that, for any noun-negative function f € L? (M) and all {,a > 0,
P.R.f < eatRaf-
5.13. Let £ be the Dirichlet Laplace operator on R!.
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(a) Prove that the resolvent Ry = (£ + Aid)™" is given for any A > 0 by the following
formula:

Rof = —= T o= VRla-] £ (y) dy, (5.35)

2V J o

for any and f € L? (RY).
() Comparing (5.35) with

o0
Ry = / e M P,dt
0

and using the explicit formula for the heat kernel in R?, establish the following

identity:

—tvVX _ *© i tz —sA

[ —A mexp <_Z—S- e ds, (536)
forallt>0and A >0.

ReMARK. The function s — 7‘:? exp (— %) is the density of a probability distribution
on Ry, which is called the Levy distribution.

5.14. Let £ be the Dirichlet Laplace operator on an arbitrary weighted manifold, and
consider the family of operators Q: = exp (—tﬁl/ 2), where t > 0.

(z) Prove the identity

o0 t t2
Qg = ./0 m exp (—Z;> Pst. (5.37)

(b) Let f € L? (M). Prove that f > 0 implies Q:f > 0 and f < 1 implies Q:f < 1.
(¢) Prove that in the case M = R", @, is given explicitly by

Qtf=/mnqt(w—y)f(y)dy

where

g (@) = — i (5.38)
Wni-1 (t2 + ]7"]2) =

REMARK. The semigroup {Qt}kzo is called the Cauchy semigroup, and the operator £/?
is its generator.

5.15. Let ¥ be a C*°-function on R such that ¥ (0) = ¥’ (0) =0 and 0 < ¥ (5) < 1 for
all s.

(a) Prove that, for any f € L? (M), the following function
Pt) = / T (P,f) du (5.39)
M
is continuous and decreasing in ¢ € [0, 4+-00).

(b) Using part (a), give yet another proof of the fact that f < 1 implies P;f < 1, without
using the resolvent.
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5.4. Weak maximum principle

5.4.1. Elliptic problems. Given functions f € L% (M), w € W! (M),
and a real constant o, consider the following weak Dirichlet problem:

Ayu+ou=f,
{ u=w mod W} (M), (5.40)
where the second line in (5.40) means that
u = w + wp for some wy € W§ (M),

and can be regarded as the “boundary condition” for .
If o < 0 and w = 0 then the problem (5.40) has exactly one solution
u = —R_yf by Theorem 4.5. Set
B = infspec L,

where L is the Dirichlet Laplace operator on M. Then, by Exercise 4.29,
the problem (5.40) has exactly one solution for any o < 8 and w € W' (M).

Here we are interested in the sign of a solution assuming that it already
exists. In fact, we consider a more general situation when the equations in
(5.40) are replaced by inequalities. If u,w are two measurable functions on
M then we write

u < w mod Wy (M)
if
u < w + wg for some wg € WOI(M)

The opposite inequality u > w mod W} (M) is defined similarly.

LEMMA 5.12. If u € W' (M) then the relation
u < 0 mod W} (M) (5.41)
holds if and only if uy € W3 (M).

Proor. If u, € W¢ then (5.41) is satisfied because u < u,.. Conversely,
we need to prove that if u < v for some v € W& then u4 € Wol.

Assume first that v € C§°, and let ¢ be a cutoff function of suppv (see
Fig. 5.2). Then we have the following identity:

ur = (L-p)v+pu), . (5.42)
Indeed, if ¢ = 1 then (5.42) is obviously satisfied. If ¢ < 1 then v =0

and, hence, u < 0, so that the both sides of (5.42) vanish. By Corollary 5.6,
we have pu € W{. Since (1 — ) v € C§°, it follows that

(1—p)v+ouec Wi

By Lemma 5.2 and (5.42) we conclude that u; € Wy.
For a general v € W}, let {vx} be a sequence of functions from C§° such

wit
that v, == v. Then we have

ug = u + (Vg —v) < vy,
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FIGURE 5.2. Functions u, v,

1
which implies by the first part of the proof that (ug), € W3. Since uy v, u,

it follows by Theorem 5.7 that (ux), v u4, whence we conclude that
u € Wi. ad

We say that a distribution u € D’ (M) is non-negative® and write u > 0
if (u, ) > 0 for any non-negative function ¢ € D (M).

Of course, if u € L}, (M) then u > 0 in the sense of distributions if and
only if w > 0 a.e.(cf. Exercise 4.7). Similarly, one defines the inequalities
u > v and u < v between two distributions. It is possible to prove that
u > v and u < v imply u = v (cf. Exercise 4.6).

THEOREM 5.13. (Weak maximum principle) Set 8 = infspec L and as-
sume that, for some real a < B, a function u € W' (M) satisfies in the
distributional sense the inequality

Ayu+ou>0 (5.43)
and the boundary condition
1 <0 mod W} (M). (5.44)
Thenu<0in M.
REMARK. If oo >  then the statement of Theorem 5.13 may fail. For ex-
ample, if M is compact then S = 0 because the constant is an eigenfunction
of £ with the eigenvalue 0. Then both (5.43) and (5.44) hold with a = 0

for any constant function u so that the sign of u can be both positive and
negative.

REMARK. Theorem 5.13 can be equivalently stated as a weak minimum
principle: if u € W! (M) and

Ayu+ou <0,

u > 0 mod Wi (M),
then 4 > 0in M.

11t is known that any non-negative distribution is given by a measure but we will not
use this fact.
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REMARK. Consider the weak Dirichlet problem (5.40) with the boundary
function w = 0. By Theorem 4.5, if @ < 0 then the problem (5.40) has a
unique solution u = —R_,f. By Theorem 5.13, we obtain in this case that
f > 0 implies R_,f > 0, which, hence, recovers Theorem 5.9(3).

PRrROOF OF THEOREM 5.13. By definition, (5.43) is equivalent to the
inequality
(Auu, ) +a(u,9) 20
for any non-negative ¢ € D (M), which, in turn, is equivalent to
(Vu, Vo) —a(u,p) <0. (5.45)

Considering the round brackets here also as the inner products in L? (M)
and noticing that all terms in (5.45) are continuous in ¢ in the norm of
W1 (M), we obtain that (5.45) holds for all non-negative ¢ € Wi (M) (cf.
Lemma 5.4).

By Lemma 5.12 we have uy € W (M). Setting (5.45) ¢ = u4, we
obtain

/ (Vu, Vug)dp — a/ uug dy < 0.
M M
It follows by (5.9), that

/1;! |Vuy | dp — a/M uidp < 0. (5.46)

By Exercise 4.27, we have

/ \Vuyl? dp > 5/ w3 dy,
M M
which together with (5.46) implies

(- [ dauso.

Since o < 8, we obtain ||lu||z2 = 0 and, hence, u < 0. O

COROLLARY 5.14. (Comparison principle) Assume that, for some a < 8,
functions u,v € W' (M) satisfy the conditions

Aju+ou> A+ o,
u < v mod W} (M).

Then u < v.

PROOF. Indeed, the function u—v satisfies all the conditions of Theorem
9.13, which implies ©v — v < 0. a

COROLLARY 5.15. (The minimality of resolvent) Assume that a function
u € WL (M) satisfies the inequality

—Apu+yu 2> f, (5.47)
where f € L2 (M) and v > 0, and the boundary condition
% >0 mod W} (M).
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Then u > R, f.
ProorF. Using Theorem 4.5, we obtain that

{ Ay (Ryf) +7vRyf = f < —Byu+yu
R,f =0 mod W} (M) <u mod W§ (M),

whence we conclude by Corollary 5.14 with o = —v that R, f < u. a

If f > 0 then, by Theorem 5.9, R,f > 0. The statement of Corollary
5.15 implies that u = Ryf is the minimal function satisfying (5.47) among
all non-negative functions u € W1 (M).

Exercises.

5.16. Give an example of a manifold M and a non-negative function v € Wi, (M) such

that
u < 0 mod Wy (M)

but u ¢ W (M).

5.4.2. Parabolic problems. Now we turn to the weak maximum
principle for the heat equation. In Section 4.3, we have considered the
L2-Cauchy problem related to the Dirichlet Laplace operator £. In the next
statement, we consider a more general version of this problem, where the
requirement to be in dom £ is dropped.

THEOREM 5.16. (Weak parabolic maximum principle) Let u : (0,T) —
W (M) be a path that satisfies the following conditions:
(i) For any t € (0,T), the strong derivative % ezists in L? (M) and
satisfies the inequality
E — AMU < O, (548)
where A, is understood as an operator in D' (M).
(1) For anyt € (0,T),
u(t,") <0 mod W3 (M). (5.49)

2
(633) us (8,) 20 ast = 0.
Then u (t,-) <0 for allt € (0,T).

REMARK. By Theorem 4.9, the function u = P;f satisfies all the above
conditions, provided f < 0. Hence, we conclude by Theorem 5.16 that
f < 0 implies P,f < 0, which recovers Theorem 5.11(%).

Let u be a solution to the L2-Cauchy problem with the initial function
f, as stated in Section 4.3. Then, for any t > 0, u(¢,-) € dom £ which
implies

u(t,-) =0 mod W§ (M).

Applying Theorem 5.16 to u and —u, we see that f = 0 implies u = 0, which
recovers Theorem 4.10.
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Similarly to Corollary 5.14, one can state in an obvious way a comparison
principle associated with Theorem 5.16.

PROOF. The inequality (5.48) means that, for any fixed ¢ € (0,7) and
any non-negative function v € D (M),

(u’,v) < (Auu,v),
where v/ = 2%, which implies
(v,v) < —(Vu, Vo). (5.50)

Considering the both sides here as the inner products in L? (M), we extend
(5.50) to all non-negative functions v € W} (M).
Let a function ¢ € C* (R) be such that, for some positive constant C,

¢ (s) =0, <0,
@ (s) >0, s> 0, (5.51)
0<¢'(s)<C, seR

By (5.49) and Lemma 5.12, we have uy (t,-) € W3 (M), for any t € (0,T).
Therefore, by Lemma 5.1, the function ¢ (u(t,')) = ¢ (us (¢,+)) is also in
W3 (M) and

Vo (u) = ¢’ (uy) Vuy = ¢ (w) Vu

(cf. (5.9)). Setting v = ¢ (u(¢,-)) in (5.50), we obtain

(W, 0 W) 2 < = (Vu, @ (u) Vu) 5 = — /M ¢ (u) [Vulfdu<0. (5.52)

Using the product rule (Exercise 4.46) and the chain rule (Exercise 4.50) for
strong derivatives, we obtain

L wpNp = (o) + (e @),
= (W, @)+ (W,% W) (5.53)
where
P(s) =9 (s)s. (554

Next, we specify function ¢ as follows. Define first its second derivative ¢”
8s a non-negative smooth function on R, such that

¢"(s)=0, s<0ors>1,

o"(s)>0, 0<s<1.
Then ¢ is obtained by two integrations of ¢” keeping the value 0 at O.

Clearly, ¢ satisfies (5.51). Also function 4 (s) from (5.54) satisfies (5.51),
because its derivative

¥ (s) =" (s)s+¢ (s)
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is obviously non-negative and bounded. By (5.52), we conclude that the

right hand side of (5.53) is non-positive, that is, (u, ¢ (u));2 as a function

of ¢ is decreasing in (0,7'). Since ¢ (s) < Cs for any s > 0, we obtain that
(w0 (u)) 2 = (U, (us))p2 S C(ug,uq) 2 -

By hypothesis, (u4,u4 )2 — 0ast — 0. Hence, the function t = (u4, ¢ (ut)) 2
is non-negative, decreasing on (0,7") and goes to 0 as t — 0. It follows that
(ut> ¢ (ug))p2 = 0 for all ¢t € (0,T), which implies that u4 (¢,-) = 0 for all
te (0,T). O

COROLLARY 5.17. (The minimality of P.f) Let u: (0,T) — W (M) be
a path in W (M) such that
— 2> Au forallt € (0,T),
u(t,-) >0 mod W§ (M) forallte(0,T), (5.55)
u(t,-)—Li>fEL2(M) ast— 0.
Then, for all t € (0,T),
u(t,) > Bf. (5.56)

ProOF. Using Theorem 4.9, we obtain that the function v (¢,-) = u (¢, )~
P, f satisfies the conditions

%EAW for all ¢ € (0,T),
v(t,-) >0 mod W§ (M), forallte (0,7T),
v(t,-)ﬁio ast — 0,
whence (5.56) follows by Theorem 5.16. 0O

Corollary 5.17 implies the following minimality property of P, f: if f > 0
then the function u (¢,-) = P, f is the minimal non-negative solution to the

Cauchy problem
du
-J{ = AA;’U,, t>0,
ult,) > f, ast—0.
Exercises.

5.17. Let the paths w: (0,T) — W' (M) and v : (0,T) — W{ (M) satisfy the same heat
equation
du
i Ayu forallt e (0,T),
where % is the strong derivative in L? (M) and A,u is understood in the distributional
sense. Prove that if
2
w(t,-)—v(t,) 2N ast— 0,

and w > 0 thenw (¢,-) > v (¢,-) for all t € (0,T).
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5.4.3. The pointwise boundary condition at co.

DEFINITION 5.18. The one point compactification of a smooth manifold
M is the topological space M U{oo} where oo is the ideal infinity point (that
does not belong to M) and the family of open sets in M U {oo} consists of
the open sets in M and the sets of the form (M \ K) U {co} where K is an
arbitrary compact subset of M.

It is easy to check that this family of open sets determines the Hausdorff
topology in M U {oo} and the topological space M U {0} is compact. Note
that if M is compact then oo is disconnected from M.

If M is non-compact and v (z) is a function on M then it follows from
the definition of the topology of M U {oc} that, for a real c,

v(z) +c as x> o0 (5.57)
if, for any £ > 0, there is a compact set K. C M such that
sup |v(z)—¢] <e. (5.58)
TEM\K,

ExampLE 5.19. If M = R"” then any compact set is contained in a ball
{z € R™: |z| < r}, which implies that (5.57) is equivalent to
v(z) = ¢ as |z| — oo,
so that z — oo means in this case |z| — co.

If M = Q where (2 is a bounded open set in R™ then every compact set
in M is contained in

Qs ={recQ:d(z,00) >}

for some § > 0. Then z — co in M means d (z, ) — 0 that is, z — 6.
If M = Q where Q is an arbitrary open set in R™ then arguing similarly
we obtain that £ — oo in M means that

If vy (x) is a function on a manifold M that depends on a parameter
« varying in a set A, then define the uniform convergence in « as follows:
v(z) =3 c as £ — oo uniformly in @ € A if the condition (5.58) holds
uniformly in «, that is,
sup sup |uq(z) —c] <e. (5.59)
a€A ze M\K,
For ¢ = +o00 the conditions (5.58) and (5.59) should be appropriately mod-
ified.
The next statement is a rather straightforward consequence of Theorem
5.16 for the classical (sub)solutions to the heat equation.

COROLLARY 5.20. (Parabolic maximum principle) Set I = (0,T) where
T € (0,+00]. Let a function u(t,z) € C?>(I x M) satisfy the following
conditions:
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Ou
. ——a?—Auu<0mI><M
o ui (z,t) =3 0 as z — oo in M, where the convergence is uniform
intel.

o uy (L) ’°° Y0 ast - 0.
Thenu<0inlIxM.

PROOF. The hypothesis uy (z,t) = 0 as £ — oo means that, for any

€ > 0 there is a compact set K C M such that

sup sup wu(t,z)<e.

tel ze M\K
Let Q be any relatively compact open subset of M contalmng K. Then

u(t,-) € W (Q) for any t € I and the partial derivative %% coincides with

the strong derivative %% 2 in L? (Q) (cf. Exercise 4.47). Therefore, u satisfies
the hypothesis (i) of Theorem 5.16 in §2. It follows that u — ¢ also satisfies
that condition.

Since (u —¢), is supported in K C ), we obtain by Theorem 5.7 and
Lemma 5.5 that (u — ), € W§ (Q). This constitutes the hypothesis (i) of
Theorem 5.16.

Finally, we have (u —¢),
(23t) of Theorem 5.16.

Hence, we conclude by Theorem 5.16 that w — & < 0in I x . Finally,
letting ¢ — 0 and exhausting M by sets like 2, we obtainu < 0inIxM. O

L) . . .
— " 0 as t — 0, which gives the hypothesis

REMARK 5.21. Corollary 5.20 remains true if u, satisfies the initial
condition in the L} sense rather than in Ll o sense, that is, if

Heel3

loc

uy (2,°) as t — 0.

See Exercise 5.21.

Exercises.

5.18. Let vq () be a real valued function on a non-compact smooth manifold M depending
on a parameter & € A, and let ¢ € R. Prove that the following conditions are equivalent
(all convergences are inform in o € A):
() va(z) 3 casx — co.
(#1) For any sequence {zx},-, that eventually leaves any compact set K C M, va (zx) =
cas k — o0.
(4t) For any sequence {zx} on M that eventually leaves any compact set K C M, there
is a subsequence {zx, } such that vs (zx;) =3 c as ¢ — oo.
(iv) For any € > 0, the set

Ve = {x EM: sug e (Z) — €] 2 e} (5.60)
ac

is relatively compact.
Show that these conditions are also equivalent for ¢ = Foo provided (5.60) is appro-
priately adjusted.
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5.19. Referring to Exercise 5.18, let M =  where § is an unbounded open subset of R™.
Prove that the condition () is equivalent to

(v) va (zx) =3 ¢ for any sequence {zx} C Q such that either zx — = € 8Q or |zx| — co.

5.20. Let a function v € C? (M) satisfy the conditions:
(1) —Auv+ ov <0on M, for some o > 0;
(#) v+ {z) > 0asz — o0 in M.
Prove that v < 0 in M.

L, (M)

5.21. Prove that the statement of Corollary 5.20 remains true if the condition uy (¢,-) 2>

0 as t — 0 is replaced by

L (M
ug (8, ) ‘ﬁ’—(é)Oas t—0.

5.5. Resolvent and the heat semigroup in subsets

Any open subset ) of a weighted manifold (M, g, 1) can be regarded as
a weighted manifold (9, g, u). We will write shortly L? (Q) for L?(Q, u),
and the same applies to W§ (Q) and other Sobolev spaces.

Given a function f on ), its trivial extension is a function f on M
defined by
ra _ f (fL‘) » TE Q;
f(””)—{o, zeM\Q.

The same terminology and notation apply to extension of a vector field in {2
by setting it 0 in M \ Q. It is obvious that if f € C§° (2) then f € C§° (M)
and

Vf=Vf and A,f=A,7f.
The space L2 (Q2) can be considered as a subspace of L? (M) by identifying
any function f € L? (Q) with its trivial extension.

CLAIM. For any f € W{ (Q), its trivial extension f belongs to W3 (M) and

Vf=Vf. (5.61)

Note for comparison that if f € W (Q2) then f does not have to be in
W1 (M) - see Exercise 7.7.

Proor. If f € C§°(Q) then obviously f € C§° (M) and hence fe
W3 (M). For any f € W3 (€2), there exists a sequence {fi} of functions
from Cg° (Q) such that ’

fe—>f inWOI(Q).
Clearly,
fi— f in I*(M).
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On the other hand, the sequence {ﬁ} is obviously Cauchy in W ~(M ) and
hence converges in Wi (M). We conclude that the limit must be f, whence
it follows that f € W (M) and
fe— F in W§ (M).

In particular, this implies that

Vi, — Vf in I?(M). (5.62)
On the other hand, .

Vi — Vf in L*(Q),
whence it follows that

Ve — Vf in L2 (M). (5.63)
Since V fx = V fi, we conclude from (5.62) and (5.63) that Vf =Vf. O

Hence, the space W (Q2) can be considered as a (closed) subspace of

W§ (M) by identifying any function f € Wy (Q2) with its trivial extension.
This identification is norm preserving, which in particular, implies that we
have an embedding W (Q) — W§ (M). In what follows, we will follow the
convention to denote the trivial extension of a function by the same: letter

as the function, unless otherwise mentioned.
Consider the Dirichlet Laplace operator in {2

L= _Aﬂlwg(n) )
as well as the associated resolvent

RS2 = (L% + aid) ™"
and the heat semigroup

P = exp (—t£Y).

A sequence {Q;}:2, of open subsets of M is called an ezhaustion sequence
if Q; C Q41 for all ¢ and the union of all sets £; is M.

THEOREM 5.22. Let f € L? (M) be a non-negative function, and o > 0.
(i) For any open set Q@ C M,
R3f < Raf.

(i1) For any ezhaustion sequence {Qi}i2, in M,
1
RS f W Rof asi— oo. (5.64)
Note that R f is a short form of R} (fla).

PROOF. (i) By Theorem 5.9, the functions u = Rof and v = R f are
non-negative. By convention, v = 0 outside Q, so that we only need to prove
that u > v in . By the definition of resolvent, u € W (M) and u satisfies
in M the equation

—-Ayu+aou = f.
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In particular, we have u € W1 (Q). Applying Corollary 5.15 to the manifold
), we obtain u > Rg f, which was to be proved.

Alternative proof of (). This proof is longer but it uses fewer tools from the
present Chapter confining them to Lemmas 5.1 and 5.4. By the definition of resolvent, we
have u € W2 (M), v € W¢ (Q), and

L94av=f inQQ,

Lut+au=f in M. (5.65)

By Lemma 5.4, there are sequences of non-negative functions {ux} C C5° (M) and {ve} C
C&° () which converge, respectively, to « and v in W'-norm. Let 1 be a smooth non-
negative function on R such that

w{t)=0fort <0, ¥(t)>0and 0 <4 (t) < 1lforallt>0. (5.66)
One can think of 9 (¢) as a smooth approximation to t; (see Fig. 5.1). Let us show that
w =1 (v —u) € Wy (). For that, set wr = 9 (vr — ux) and observe that we € C§° (M)
and 0 < wi < wg. The latter implies that suppwy is contained in  and hence wy €
C§° () (see Fig. 5.3).

FIGURE 5.3. Function wy = ¢ (v — ug)

On the other hand, by (5.3) (see Lemma 5.1) we have

(o —ur) "= (0 — ),

which yields w € W§ (Q). Subtracting the equations in (5.65) and multiplying them by
w, we obtain

Q _
(ZZ v,w)Lz(Q) = (Lu,w)pa(gy + (v —u,w) 2y = 0.
By Lemma 4.4, we have

o _ R
(E v,w>L2(m = (Vo, VW)zaqy = /Q(Vv, Vw)du.
and
(Lu, W2y = (L% W) 2 = (VU, VW) gz = /Q(Vu, Vw)dy,

Where in the last equality we have used (5.61). Hence, we obtain from the above three
lines that

/(V (v—u),Vw)du+oz/ (v —uw)wdy = 0. (5.67)
Q Q
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By (5.2), we have
Vw=Vy(w—u)=9¢ (v—u)V({-u)

whence, by 9’ (t) > 0,
[V o-0, Vo= [ ¥ =)V =) duz0
Since t (t) > 0 f:r all t € R, we obtain i
/ (v—u)'wdp,z/ (v =) (v — u) dp > 0.
Therefore, the equationg(5.67 ) is possiblenonly when
/n(v—u)w(v—u)du=o,

that is, when (v —u) % (v —u) = 0 in 2, whence v —u < 0.
(i1) Set u; = RSk f and observe that, by part (i) and Theorem 5.9, the
sequence {u;} is increasing and
0<y; < chf .
Therefore, u; converges almost everywhere to a function u such that
0<u< R,f,
which implies that u € L? (M) and, by the dominated convergence theorem,
u; — u in L2 (M).
Note that the function u; is in Wol () and, hence, is in WO1 (M). Let
us show that the sequence {u;} is Cauchy in W3 (M). Each function wu;
satisfies the equation

(V’Uq;, V(,O) +a (’U»i, 50) = (fa ()0) ) (568)
for any ¢ € W () (where (-, -) is the inner product in L? (M)). Choosing
here ¢ = u;, we obtain

(Vui, Vui) + (’I.&,;, u',') = (f, u,) .
Fix k > i and observe that the function ¢ = uy — 2u; belongs to W3 ().
Therefore, by the analogous equation for ug, we obtain
(Vug, V (ug — 2us)) + o (ue, ue — 2w) = (f, up — 2uq) -
Adding up the above two lines yields
[Vurl®+ 1 Ve |2=2 (Vug, V) e (fluiel® + sl = 2 (ur, w) = (f, ue — wi)
whence
IV (e = wa) |12 + flue — wsl|? = (F, we — us) < 1 Fllllee — will-

Since |Jux — u;|| — 0 as k,% — oo, we conclude that also ||V (ug — ;) || = 0.
Therefore, the sequence {u;} is Cauchy in W} (M) and, hence, converges in
W3 (M). Since its limit in L? (M) is u, we conclude that the limit of {u;}
in W{ (M) is also u. In particular, u € W{ (M).

We are left to show that u = R,f. Fix a function ¢ € C§° (M) and

observe that the support of ¢ is contained in €; when ¢ is large enough.
Therefore, (5.68) holds for this ¢ for all large enough i. Passing to the limit
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as ¢ — 00, we obtain that the same equation holds for u instead of u;, that

is,
(Vu, Vo) + a(u, ) = (f,¢) (5.69)
Since C§° (M) is dense in W (M), this identity holds for all ¢ € WO (M).
By Theorem 4.5, the equation (5.69) has a unique solution u € W (M),
and this solution is R, f, which finishes the proof. a
THEOREM 5.23. Let f € L? (M) be a non-negative function, and t > 0.

(1) For any open set Q C M,

Pf < Bf. (5.70)

(1) For any ezhaustion sequence {Q;}i2, in M,
Ptn"fﬁ Bif asi— oco.

REMARK. As we will see from the proof, we have also PtQi f 25 Pf. It will
be shown in Chapter 7 that the functions Ptﬂi f, P.f are C*°-smooth and,

in fact, PtQ" f LA P,f (see Theorem 7.10 and Exercise 7.18).

PROOF. (i) For any a > 0, we have by Theorem 5.22 R!f < R,f. By
Theorem 5.9, the operators R, and R{f preserve inequalities. Therefore, we

obtain by iteration that (Rg)k f < RE f, whence by (5.30)

E\* k E\*
Qr_ 3 " Q < % 5 kg _
ps=im (5) (R) 1< im () Rif =P
(cf. Exercise 2.2 for preserving inequalities by convergence in L?).

Alternative proof of (:). By Theorem 4.9, function u(t,-) := P.f satisfies the
conditions

T = Ayu, for all ¢ > 0,
u (¢, )GWO (M), forallt>0,
u(t, ) L2 ¢ ast— 0,

where 2% is the strong derivative in L? (M). It follows that the restriction of u to  (also
denoted by ) belongs to W' () for any t > 0 and solves the Cauchy problem in Q with
the initial function f. Since by Theorem 5.11 u > 0, we conclude by Corollary 5.17 that
u > P2 f, which was to be proved.

(it) By part (i), the sequence of functions {PQ 12, is 1ncreasmg and

is bounded by P,f. Hence, for any ¢ > 0, the sequence {P{% f} converges
almost everywhere to a function u; such that

0<u <R

Since P, f € L2, we conclude that u; € L? and, by the dominated convergence
theorem,

2
_Ptn'if L) Ut.
We need to show that u; = P, f.
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Fix a non-negative function ¢ € C§° (M) and observe that ¢ € C§° (€4)
for large enough i. It follows from (5.29) and the monotone convergence
theorem that, for any « > 0,

[e 9] o0}
(Re10) = [ e B — [T ) d
0 0
as ¢ — oco. On the other hand, by Theorem 5.22 and (5.29),

o0
(RS f,0) = (Raf, ) = /O e~ (P,f, ) dt.
We conclude that
(o e) XD
[ e tmed= [~ e @roa
0 4]

which, in the view of inequality (us, @) < (P.f, ), is only possible when

(ut, ) = (Bef, ) (5.71)

for almost all t > 0. Let us show that, in fact, both functions ¢ — (P.f, ¢)
and ¢+ (us, ) are continuous in ¢ > 0, which will imply that (5.71) holds

for all t > 0.
By Theorem 4.9, the function (P;f, ) is even differentiable in ¢ > 0.

The same theorem also yields
d A Q. 4
Z (PR, 0) = ~(LUP f,0) = (B, Auyp),

where (-, ) is the inner product in L2. Using ||P{¥|| < 1, we obtain

%(Ptﬂif’ 90)‘ < HPtQifHLZ(Q,)HAWHL?(Q,») < IflzzanlAuell z2ar)-

Since the right hand side here does not depend on %, we see that all the
functions (PtQi f, ) have uniformly bounded derivatives in ¢ and, hence, are
Lipschitz functions with the same Lipschitz constant. Therefore, the limit
function (u, ¢) is also Lipschitz and, in particular, continuous.

Finally, since (5.71) holds for an arbitrary non-negative function ¢ €
C§° (M), we conclude that u; = P, f (cf. Exercise 4.7). a

Exercises.
5.22. Let u be a function from C (M) N W{ (M). For any a > 0, set
Ueo={zeM:u(z)>a}.
Prove that (u— a), € W3 (Us).

5.23. Let 2 be an open subset of a weighted manifold M and K be a compact subset of
Q. Let f be a non-negative function from L? (M). Prove that, for all & > 0,

R.f-RIf< esup Raf. (5.72)

5.24. Under the hypotheses of Exercise 5.23, prove that, for all £ > 0,

Pif - Pf < sup esup P2f. (5.73)
s€(0,t] M\K
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5.25. Let {2}, be an increasing sequence of open subsets of M, Q = J;Z, @, and
f € L*(©4). Prove that the family of functions {Ptﬂ“ b }:1 considered as the paths in
L? (), is equicontinuous in ¢ € [0, +00) with resect to the norm in L* ().

5.26. Let A be the multiplication operator by a bounded,non-negative measurable function
aon M.

(a) Prove that A is a bounded, non-negative definite, self-adjoint operator in I? and,
for any non-negative f € L? and t > 0,

0<ef<y. (5.74)
(b) Prove that, for any non-negative f € L? and t > 0,
0<e et g <oty (5.75)

(c) Using part (b), give an alternative proof of the fact that P{'f < P.f.
HINT. In part (b) use the Trotter product formula:

e tATB) £ — jim (e"%Ae"‘fiB)nf, (5.76)

N~=>00

that is true for any two non-negative definite self-adjoint operators A, B in L2,

Notes

There are different approaches to the maximum principle. The classical approach as
in Lemma 1.5 applies to smooth solutions of the Laplace and heat equations and uses
the fact that the derivatives at the extremal points have certain signs. We will use this
approach in Chapter 8 again, after having established the smoothness of the solutions.

In the present Chapter we work with weak solutions, and the boundary values are
also understood in a weak sense, so that other methods are employed. It was revealed
by Beurling and Deny [39], [106] that the Markovian properties of the heat semigroup
originate from certain properties of the Dirichlet integral | M ]Vu|2 dy, which in turn follow
from the chain rule for the gradient V. This is why the chain rule for the weak gradient
is discussed in details in Sections 5.1 and 5.2 (see also [130]).

Another useful tool is the resolvent Ry. The use of the resolvent for investigation
of the heat semigroup goes back to the Hille-Yoshida theorem. Obtaining the Markovian
properties of P, via those of R, is a powerful method that we have borrowed from [124].
Theorems 5.16, 5.22, 5.23 in the present forms as well as their proofs were taken from
[162].

The reader is referred [41], [115], [124] for the Markovian properties in the general
context of Markov semigroups and Markov processes.



CHAPTER 6
Regularity theory in R”

We present here the regularity theory for second order elliptic and par-
abolic equations in R™ with smooth coefficients. In the next Chapter 7, this
theory will be transplanted to manifolds and used, in particular, to prove
the existence of the heat kernel.

We use here the same notation as in Chapter 2.

6.1. Embedding theorems
6.1.1. Embedding Wl”c < C™. In this section, we prove the Sobolev

oc
embedding theorem (known also as the Sobolev lemma), which provides the

link between the classical and weak derivatives. Let us first mention the
following trivial embedding.

CrLAaIM. For any open set §2 C R™ and any non-negative integer m, we have
an embedding

C™(Q)) — Wi (). (6.1)

PrOOF. Indeed, if u € C™ () then any classical derivative 8%u of order

la| < m is also a weak derivative from LZ _ (£2) and, for any open set ' & ,

10%ulz2@) < Csup|6®ul,

which implies

Nullwmy < Cllullem@y-
Hence, the identical mapping C™ (§2) — W7 (2) is not only a linear injec-
tion but is also continuous, which means that it is an embedding. O

The next theorem provides a highly non-trivial embedding of Wf_ ()
to C™ (Q).

THEOREM 6.1. (Sobolev embedding theorem) Let Q be an open subset
of R*™. If k and m are non-negative integers such that

n
k bl
>'m+2

then w € WE_ () implies u € C™ (Q). Moreover, for all relatively compact
open sets QV, ) such that V¥ € Q" € N

ullgm@y < Cllullwr@ry, (6.2)
151
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where the constant C depends on ', k,m,n.

More precisely, the first claim means that, for every u € W}t (), there
is a version of u that belongs to C™ (€2), which defines a linear injection
from W[, () to C™(2). The estimate (6.2) means that this injection is
continuous, so that we have an embedding

Wiae () C™ (). (6.3)

Set

oo
W (Q) = W* ()

and
vvloc Q) m Wloc
The topology in the space W™ () is deﬁned by the family of seminorms

Hullwk(n),
for all positive integers k, and the topology in Wi (2) is defined by the
family of seminorms
”'“'”Wk(n’)a
where k is a positive integer and ' € Q is an open set.
It follows from (6.1) and (6.3) that
Wiee (Q) = C=(Q),

where the equality means also the identity of the topologies.

Hence, in order to prove that a function from L?oc belongs to C*, it
suffices to show that it has weak derivatives of all orders. Although the latter
may be difficult as well, the existence of weak derivatives can be frequently
proved using the tools of the theory of Hilbert spaces, which are not available
for the spaces C*.

EXAMPLE 6.2. Let us show that u € L}, () implies u € W ;¥ (Q), for
any k > n/2. Indeed, fix an open set ' € Q and observe that, for any
¢ € D (&), we have by Theorem 6.1

() = [ wpdu < sup ¢l fulzsy < Cllelwsan lullzsqan,

where C depends on £’ and n. It follows that
lullw-*@y < CllullLiay
and, hence, u € W F

loc *
PROOF OF THEOREM 6.1. We split the proof into a series of claims.
Recall that Bg = {z € R": |z| < R}.
CraM 1. For any u € D(Bg) and k > n/2,
fu (0)] < Clluflws, (6.4)
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where the constant C depends on k,n, R.

153

We use for the proof the polar coordinates (r,8) centered at the origin
0 € R™ (cf. Section 3.9), and write u = u (r,0) away from 0. The relations
between the Cartesian and polar coordinates are given by the identities

zd =rfi(6),

where f7 are the smooth functions of § € S*~! such that

Y () =1

3
(cf. (3.61)). This implies that

8 = f7(6) ;,
whence it follows by induction that, for any positive integer %,
OF = fi1...f7*0;,...0;,.
Applying the Cauchy-Schwarz inequality and (6.5), we obtain
2
Bful < Z |0%u?.

lof<k

(6.5)

(6.6)

(6.7)

In particular, we see that the function 8%u is bounded in R™\ {0} (note that
this function is not defined at 0), which allows to integrate 8%u in r over the

interval [0, R].

For any 6 € S}, we have u (R, 6) = 0 whence we obtain by the funda-

mental theorem of calculus

R
w(0) = — /0 By (r, 0) dr.

Integration by parts yields

R R
u (0) = — [Gru(r, O) r]e + / r02u (1, 0) dr = / rd2u (r,6) dr,
0 0

and continuing by induction, we arrive at

vk R
u(0) = %—,—/0 r*=19ky (r, 0) dr.

Integrating this identity in # over $*~! and using
" ldrdd = dy,
where u is the Lebesgue measure (cf. (3.82)), we obtain

—1)k o
wnu (0) = (l(c—)l)' /BR ok u dp.

The Cauchy-Schwarz inequality yields then

wEOP<C [ [
Bgr Bpr

2
*u| du.

(6.8)
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The first integral in (6.8) is evaluated in the polar coordinates as follows:

R R
/ r2h=2ngy — o / p2h=2npn=lg. _ ., / P2=n=lpge . ORPN < oo
Bp 0 0

where we have used the hypothesis £ > n/2. Hence, this integral is just a
constant depending on R. By (6.7), the second integral in (6.8) is bounded

by
/ S (0%l dp = [[ule.
B

" lel<k
Therefore, (6.4) follows from (6.8).
For the next Claims 2-4, 2 C R™ is a bounded open set.

CLAmM 2. For any u € D(Q) and k > n/2, we have
sup |ul < Cllully« (6.9)

where the constant C depends on k,n, and* diam Q.

Indeed, let = be a point of maximum of |u| and R = diam Q. Applying
Claim 1 in the ball Bg (z), we obtain (6.9).
CramM 3. Assume that u € W*(Q), where k > n/2, and let the support of
u be a compact set in Q. Then u € C () and the estimate (6.9) holds.

Let ¢ be a mollifier and set u; = u * ;,; where j is a positive integer.
By Lemma 2.9, we have u; € D (), provided j is large enough, and by
Theorem 2.13, u; — u in W¥ when j — co. Applying (6.9) to the difference
u; — uj, we obtain

sup [u; — uj| < Cllui — uy|yys-

Since the right hand side tends to 0 as ¢, 7 — oo, we obtain that the sequence
{u;} is Cauchy with respect to the sup-norm and, hence, converges uniformly
to a continuous function. Hence, the function u has a continuos version,
which satisfies (6.9).
CLAIM 4. Assume that u € W* (Q), where k > n/2+m and m is a positive
integer, and let the support of u be a compact set in Q. Then u € C™(Q)
and

lullem < Clluflwx, (6.10)

where the constant C depends on k,m,n, and diam (2.
Indeed, if |a| < m then O,u € Wk—™_ which yields by Claim 3 that
Oqu € C () and
sup |0%u| < C|0%ullwr-m < Cllullwr, (6.11)
whence the claim follows?.

Hn fact, the constant C in (6.9) can be chosen independently of £, as one can see
from the second proof of Theorem 6.1.
2See Claim in the proof of Lemma 2.9.
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Finally, let us prove the statement of Theorem 6.1. Assume u € WS, (Q)
where ) is an open subset of R® and £ > n/2 + m. Choose open sets
e Q' €N and a function Y € C§° (") such that ¥ = 1 on . Then
Yu € WE(Q") (cf. Exercise 2.26) and the support of u is a compact
subset of Q”. By Claim 4, we conclude that yu € C™ (). In particular,
u € C™ (@) because u = 9u in . Since ' may be chosen arbitrarily, we
conclude that u € C™ (Q). It follows from (6.10) and (2.38) that

lullem@y < lullem@ny < Cllibullwe@ry < Cllullwe@ry,
which finishes the proof. a

SECOND PROOF. We use here the Fourier transform and the results of
Exercise 2.34. Assume first that u € W* (R™) with k > n/2 and prove that
u € C(R™). Since u € L?, the Fourier transform % () is defined and is also
in L2. By (2.42) we have

k
| @ (1+ 1) de < Cllulia. (6.12)

By the Cauchy-Schwarz inequality,

(L. mg)sds)zs | m@r(tvier) e [ (1+162) " de (613)

The condition k£ > n/2 implies that the last integral in (6.13) converges,
which together with (6.12) yields

| @@ < Cluly. (614

In particular, we see that % € L' and, hence, u can be obtain from @ by the
inversion formula

- / a(6) e, (6.15)

" G

for almost all z. Let us show that the right hand side of (6.15) is a continuous
function. Indeed, for all 2,y € R™, we have

A&n u(§) ei:cfd§ _ /Rn @ (6) eiy§d§ — /Rn @ () (eiwg _ eiyg) d.

If y — z then the function under the integral in the right hand side tends
to 0 and is bounded by the integrable function 2 |u (¢)]. We conclude by the
dominated convergence theorem that the integral tends to 0 and, hence, the
function u has a continuous version, given by the right hand side of (6.15).
It also follows from (6.14) and (6.15) that

sup [u| < Cllullyx.
Rn

Since this proves Claim 3 from the first proof, the rest follows in the same
way. O
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THIRD PROOF. We will prove here a somewhat weaker version of The-
orem 6.1, when the hypothesis ¥ > m + n/2 is replaced by the stronger
condition k& > m + 2[, where [ is the minimal integer that is greater than
n/4. This version of Theorem 6.1 is sufficient for all our applications. The
advantage of this proof is that it can be carried over to manifolds under
a mild assumption that the heat kernel satisfies a certain upper estimate;
besides, it can be enhanced to work also for the full range of k (cf. Exercises

7.43, 7.4, 7.46).

We start with the following claim. Recall that P; is the heat semigroup

defined in Section 2.7.
CramM. Ifu € D(R™), k is a positive integer, and

f= (_A + ld)k u,
then, for any x € R™,

By Lemma 2.17, we have in [0, +00) X R" the identity

Pf =P, ((—A +id)k 'u,) = (A +id)* Pu.

Since Pu satisfies the heat equation and, hence,
(—A +id)* Pu = (—6; +id)* P,
we obtain
P.f = (=8; +id)* Pu.
Therefore, the right hand side of (6.17) is equal to

ootk 1 —t
/0 ( ~1)'( 5t+1d) P dt.

Integrating by parts in (6.18) and using the identity
th=lg—t  pk—2,-t

@ +id) i = =

which holds for any & > 2, we obtain

ootk -1 —t
/0 (k_l),( 8, +id)* P dt

oo

- [;Z e _)t( 8, +id)F~ lPtu]

0

th—lo—t -
+/ (8t+1d) = (=0 +id)* " Pudt
0

9]

00 tk -2 et o1
= / (k——2—)7 (—6,: + ld) Ptu dt,
0 — &)

(6.16)

(6.17)

(6.18)
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where the limits at 0 and oo vanish due to £ > 1 and the boundedness of
the function (—8; +id)** P (z) in [0,400) x R” (cf. Lemma 2.17).

Hence, the integral in (6.18) reduces by induction to a similar integral
with k = 1. Integrating by parts once again and using (8; +id)e™® = 0 and
P — u ast — 0 (cf. Theorem 1.3), we obtain

o0
/ e H(—0; +id)Pudt = [e"tPtu]go = u,
0

which proves (6.17).
Let now ! be the minimal integer that is greater than n/4, v € D (R™)
and

F=(=A+id)'u
It is easy to see that, by (1.22),

| B @dz= e (0) = pu 0) = (5t) ™2,

Hence, for all z € R™ and t > 0,

= @nt)"*| 12, (6.19)

which together with (6.17) yields
oo ti 1 -t o tl 1 -t —n
W@l < [ G P @I <l [ Gy e

The condition ! > n/4 implies that the above integral converges, whence we
obtain

lu()] < C|fllz2,

where the constant C' depends only on n. Since f can be represented as a
combination of the derivatives of u up to the order 21, it follows that

sup |u| < Cllully 2. (6.20)
]R'n.
The proof is finished in the same way as the first proof after Claim 2. O

Exercises.

6.1. Show that the delta function & in R™ belongs to W™* for any k > nf2.
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6.1.2. Compact embedding W< L2, Define the space W} () as
the closure of C§° (2) in W' (2). Clearly, W} (Q) is a Hilbert space with
the same inner product as in W (Q).

THEOREM 6.3. (Rellich compact embedding theorem) If( is a relatively
compact open subset of R™ then the identical embedding

W5 (Q) — L*(Q)
18 a compact operator.

PROOF. Any function f € W3 (Q) can be extended to R™ by setting
f = 0 outside 2. Clearly, f € L2NL! (R™). Moreover, f € W (R™) because
f is the limit in W1 () of a sequence {px} C C§° (), and this sequence
converges also in W1 (R™).

Let {fx} be a bounded sequence in W§ (£2). Extending f), to R™ as above,
we can assume that also fr € W (R™). Since {fx} is bounded in L? (R"),
there exists a subsequence, denoted again by { fx}, which converges weakly in
L% (R™) to a function f € L2 (R™). Let us show that, in fact, { fz} converges
to f in L? (Q)-norm, which will settle the claim.

Let us use the heat semigroup F; as in the third proof of Theorem 6.1.
For any ¢t > 0, we have by the triangle inequality

1 fe = flize) < Nfe — Pefellzzy + 1Bk — Bifllie@ny + I Bf — fllc2(mny.-

(6.21)
Let C be a constant that bounds || fx|lw: for all k. Then Lemma 2.20 yields
I1fx — Pefellemny < VEIfrllwrmny < CVE. (6.22)

Since {fi} converges to f weakly in L2 (R™) as k — oo, we obtain that, for
all z € R?,

Pife(z) = (foopt (z — )2 = (f,pt (2 — )2 = Pf(2).
On the other hand, by (6.19)
sup | Pefil < (870) /4 | fullzaqery < C (Bmt) ™4
Hence, for any fixed t > 0, the sequence {P;fi} is bounded in sup-norm

and converges to P;f pointwise in R”. Since x(R2) < oo, the dominated
convergence theorem yields

“Ptfk - P;;f,le(Q) —0 ask— 0. (6.23)
From (6.21), (6.22), and (6.23), we obtain that, for any ¢ > 0,
limsup || fy — fllr2@) < CVE+IPif — fllzo@e)-
k—co

The proof is finished by letting ¢ — 0 because |P;f — f|[z2@r) — O by
Lemma 2.18. a
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Exercises.

6.2. The purpose of this problem is to give an alternative proof of Theorem 6.3 by means
of the Fourier transform. Let Q be a bounded open set in R™. Recall that W§ (Q) can be
considered as a subspace of W (R™) by extending functions by 0 outside 0.

(@) Prove that, for all f € Wy (Q) and g € C™ (R™),

/ (8;f) gdz = —/ f0,g9dx. (6.24)
o Q
(b) Prove that, for any f € W3 (2) and for any & € R”,
iz _ 2\ 7
(£6) ey = L HEP) FC@), (6.25)

where f(f) is the Fourier transform of f.

(c) Let {fs} be a sequence from Wo (£2) such that fi converges weakly in W* (R") to
a function f € W? (R™). Prove that F (&) = f(£), for any £ € R™. Prove that also
fo = Fin L3, (R™).

(d) Finally, prove that if {fi} is a bounded sequence in Wy (£2) then {fi} contains a
subsequence that converges in L? (£2).

HINT. Use Exercises 2.28 and 2.34.

6.2. Two technical lemmas

LEMMA 6.4. (Friedrichs-Poincaré inequality) Let Q be a bounded open
set in R™. Then, for any ¢ € D () and any index j =1,...,n,

/(p?d,ug (diamQ)Z/ (8500)% d. (6.26)
Q Q

PROOF. Set | = diam 2. Consider first the case n = 1 when we can
assume that (2 is the interval (0,1) (note that we can always expand € to an
interval of the same diameter since a function ¢ € D (2) can be extended
to a function ¢ € D (R™) by setting ¢ = 0 outside ). Since ¢ (0) = 0, we
have, for any x € (0,1),

¢ (z) = (/: ¢’ (s) d3)2 < l/ol (¢")* (s) ds,

whence, integrating in z,

! 2 2 ! "2
[e@a<t [ (@)

which is exactly (6.26) for the case n = 1.
In the case n > 1, first apply the one-dimensional Friedrichs’ inequality
to the function ¢ (z) with respect to the variable z7 considering all other

variables frozen, and then integrate in all other variables, which yields (6.26).
a

Recall that, for any mollifier ¢, we denote by @, the function e~ (z/¢)
(see Chapter 2).
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LemMMA 6.5. (Friedrichs lemma) Let € be an open set in R™ and let
a € C®(Q). Consider the operator A in Q defined by

Au = ad)u,

for some j = 1,...,n. Then, for any function u € L?(Q) with compact
support in Q and for any mollifier ¢ in R™, we have

I A (u* ) — (Au) * @cl|L2q) — 0 ase— 0. (6.27)

PRrROOF. Let Qg be the gg-neighborhood of suppu, where g5 > 0 is so
small that ¢ € Q. Let us extend u to a function in R™ by setting u = 0
outside supp u. Then the convolution u * ¢, is defined as a smooth function
in R™ and, if € < g then u * ¢, is supported in . In turn, this implies that
the expression A (u * ¢.) defines a function from D (£2). Similarly, Au is a
distribution supported by suppu, and (Au) * ¢, is a function from D ().

Let us show that, for ¢ < &g,

[l A (u * @e) — (Au) * @ell 2 < Kl|u||rz, (6.28)
where

K =sup|Va| (1 +/ |z] |3jgo|dm) . (6.29)
Qo R®

The point of the inequality (6.28) is that although the constant K depends
on functions a, ¢ and on the set g, it is still independent of v and €. We
have, for any z € Q,

Alwxge)(@) = alds(uxpe))(®) = alux djpe)(a)

= /Q a(z)u(y)djwe(z — y)dy (6.30)
and
(Au) * pe(z) = (Au,pe(z—"))
= (Oju,a()pe(z - )
= — (%9 (a()p:(z —)))
- /Q u(y)a(y)d;ee(z — y)dy
- /Q w(v)da(y)pe(z — y)dy. (6.31)
Setting

Acu = A(ux ) — (Au) * e,
we obtain from (6.30) and (6.31)

Awu(z) = /Q (a(z) — a(¥)) By (x — y)u(y)dy

+ /Q 95a(y)pe(r — y)u(y)dy. (6.32)
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Note that the domains of integration in (6.32) can be restricted to
y € suppu N Be(x). (6.33)

If z ¢ Qo then the set (6.33) is empty and, hence, A.u(z) = 0. Therefore,
Acu(z) # 0 implies z € Qp. In this case, for any y is as in (6.33), we have
z € Be(y) C Qo whence it follows that

la(z) - a¥)| < sup|Va|z -y} = Clz —y], (6.34)
]
where C' := supq, |Va| (see Fig. 6.1).

______
~~~~~~
- ~
- ~.

.
\\
. -
N .
- 0 -
S~o -
———————

Be(y) Be(x)

FIGURE 6.1. Ify € supp unB, (z) then z € B, (y) C Qo and,
hence, the straight line segment between x and y is contained
in g, which implies (6.34).

Since also |9ja (y)| < C, we obtain from (6.32)

eu(z)] < C /Q (12 — 9] B0e] (& — ) + @e(z — v) [u(w)] dy

e /Q ez — v) [u(y)] dy,

where
VYe(x) := |z] 10j¢e] (z) + pe(z).

Hence, for all £ € R™, we have
[Meu (z)] < Clul * e (z),

which implies by rescaling the inequality (2.25) of Theorem 2.11 (see also
Remark 2.12) that

Aclir <€ [ belonte] fulzn

Evaluating the integral of 1, by changing z = /e, we obtain
/ Ye(z)dz = 1 +/ |z] Ie_” xj@(f)] dx
Rr R® £

= 1+ /R" lez] [s_lazjgo(z), dz=1+ /Rn |z] |05¢(2)| dz,
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which gives
[ Acullrz < Kllullre, (6.35)

that is (6.28).
Let us now prove (6.27), that is,

| Acullzz2 = 0 as e — 0.
If uw € D () then, by Lemma 2.10, u * ¢¢ 2w and, hence,
A (u* @g) 2, Au.
Applying Lemma, 2.10 to Au, we obtain
(Au) * @, 2, Au,

which together with the previous line implies A, u 2, 0. For an arbitrary
function u € L? (Q) with compact support, choose a sequence ux € D (2)
such that ug — u in L? (for example, take uj = u * 1 Jk — cf. Theorem 2.3)
and observe that
Au = Acug + Ae (u— ug)

To estimate the second term here, we will apply (6.35) to the difference
u — ug. If k is large enough then supp (u — ug) is contained in a small
neighborhood of supp u and, hence, the constant K from (6.29) can be chosen
the same for all such k. Hence, we obtain

lAcul 2 < | Acurllp2 + || Ae (u — ug) Iz < || Acurlizz + Kllu — ug| 2.

Since ||u — ukllzz — 0 as k — oo and, for any fixed k, ||Acux|z2 — O as
g — 0, we conclude that || Acuf 2 — 0, which was to be proved. g

6.3. Local elliptic regularity

Fix an open set 2 C R™ and L be the following differential operator in
Q.
L= 31- (aij (.CU) é’j) y
where o (x) are smooth functions in Q such that the matrix (o (x))?jzl
is symmetric and positive definite, for any z € . Any such operator with a
positive definite matrix (a%) is referred to as an elliptic operator. The fact

that the matrix (a*) is positive definite means that, for any point z €
there is a number ¢ (z) > 0 such that

a¥ (z) &€ > c(x) €] for any & € R™ (6.36)

The number c (z) is called the ellipticity constant of operator L at z. Clearly,
¢(z) can be chosen to be a continuous function of z. This implies that, for
any compact set K C 2, ¢(x) is bounded below by a positive constant for
all z € K, which is called the ellipticity constant of operator L in K.
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The symmetry of the matrix a* implies that the operator L is symmetric
with respect to the Lebesgue measure p in the following sense: for any
functions u,v € D (Q),

/Luvdu=—/ aij8¢u8jvdu=/uLvdu, (6.37)
Q Q Q

which follows immediately from the integration-by-parts formula or from the
divergence theorem.

The operator L is obviously defined on D' (Q) because all parts of the
expression 9; (a*9;) are defined as operators in D’ () (see Section 2.4). For
all u e D' (Q) and ¢ € D(Q), we have

(Lu, ) = (8 (aY05u),¢) = — (a¥ju, Bip)
= — (Bu,a"8p) = (u,9; (a¥8p)) ,
that is,
(Lu, ) = (u, Lp) .
This identity can be also used as the definition of Lu for a distribution .

6.3.1. Solutions from leoc.

LEMMA 6.6. If a function u € L2 (Q) is compactly supported in @ and
Lu e W™1(R), then

L (u* ;) W Lu ase— 0. (6.38)
PROOF. Consider the difference
L (ux pe) — (Lu) * 0z = 8 (90 (ux 2) — & ((a705) * p.) = Bif?
where
F2i=a"8; (ux ¢c) — (a¥05u) * ..

As follows from Lemma 6.5, || f¢]l;2 — 0 as € — 0 whence
1L (w % pe) — (Lu) * @ellw-1 = 18 fillw-2 <D N Fillze — 0.

Since by Theorem 2.16
(Lu) * ¢ v, Lu,
we obtain (6.38). 0

LEMMA 6.7. (A priori estimate) For any open set (¥ € Q and for any
weD(@),
lullw: < CllLullw-1

ghere the constant C' depends on diam$§Y and on the ellipticity constant of
in Q.
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PrOOF. Lemma 6.4 implies
lullw: < C[Vullre,
where C depends on diam §¥. Setting f = —Lu, we obtain by (6.37)

(F) == [ Ewyudp= /ﬂ o (@) Bubjudp

Let ¢ > 0 be the ellipticity constant of L in £’ so that, for any z € ¥/,
a% (x) Oyu Bju > c|Vul?.

Combining with the previous lines, we obtain
() 2 ¢ [ V0 ds > ulfy, (6.39)
Q

for some ¢/ > 0. On the other hand, by the definition of the norm W1,

(fsu) < I f w2 llullws,
which implies
ullfr < I fllw-2llullws,
whence the claim follows. O

LEMMA 6.8. For any integer m > —1, if u € W (Q) and Lu €

= loc

Wi () then u € w2 (Q). Moreover, for all open subsets ¥ € Q" € Q,

loc
lullwm+2ary < C ([ullwmsr ey + | Luflwm@ny) , (6.40)
where C is a constant depending on §¥,Q", L, m.

PrOOF. The main difficulty lies in the proof of the inductive basis for
m = —1, whereas the inductive step is straightforward.
The inductive basis for m = —1. Assuming that v € L () and Lu €

loc

I/Vl;c1 (), let us show that u € W (Q) and that the following estimate
holds:

lullwr @y < C (lull 2@y + | Lullw-1@n) - (6.41)

Let ¢ € D (Q") be a cutoff function of & in Q" (see Theorem 2.2). Then
the function v := Yu obviously belongs to L? (") and suppv is a compact
subset of (. We claim that Lv € W1 (Q”). Indeed, observe that

Lv = ¢ Lu + 209 8;p05u + (L)) u, (6.42)

and, by Lemma 2.14, the right hand side belongs to W~1(Q") because Lu,
0ju, u belong to Wl;cl, whereas 9, a¥8;v, L belong to D ().
Let ¢ be a mollifier in R"®. By Lemma 6.7, we have

l[v * @ellws < ClIL (v * @e) [lwr-1,
whereas by Lemma 6.38

w-1
L{vxge) — Lv ase — 0,



6.3. LOCAL ELLIPTIC REGULARITY 165

which implies that

limsup ||v * @e|lwr < C||Lollw-1.
e—0

By Theorem 2.13, we conclude that v € W' (Q") and

lvullwrny < CllLvllw-1 (.
Since u = v on @, we obtain that u € W* (Q') and

Nullw @y < llvllwqn-
By varying the set ' we conclude u € W, (). Finally, observing that by
(6.42)
| Lvllw-1ary < C (llull 22y + | Lullw-1(07))

and combining this with the two previous lines, we obtain (6.41).

The inductive step from m — 1 to m, where m > 0. For an arbitrary
distribution u € D’ (), we have

O (Lu) — L(Qu) = 86 (aij 3ju) -6 (aij aja,u)
= ;[0 (a"0ju) — a" 0,0;u]
= 8; [(6a7) 8u] . (6.43)
Assuming that u € W, (Q) and Lu € W%, () and noticing that the right

loc
hand side of (6.43) contains only first and second derivatives of u, we obtain

L (31’11) =& (Lu) — [(3laij) 8ju] € VVlm_l. (6.44)

oC

Since dyu € W, we can apply the inductive hypothesis to d;u, which yields

loc?

Ou € W and, hence, u € W'IZZH.

loc

Finally, we see from (6.44) that
L Q) [lwm-1(qry < Cllullwmsr ey + || Lullym@ry,
whence by the inductive hypothesis
loullwmir@y < C (l8ullwm@ry + 1L (B1u) lwm-10n))
< C (lullwmirar + | Lullwm@n) ,
which obviously implies (6.40). O

THEOREM 6.9. For any integer m > —1, if u € L2 _(Q) and Lu €
W () then u € W2 (). Moreover, for all open subsets ¥ € ' € Q,

loc
lullwm+z@y < C (lull 2@y + 1 Lullwm@r)) , (6.45)
where C is a constant depending on ¥, Q" L, m.

Note the hypotheses of Theorem 6.9 are weaker than those of Lemma,

6.8 ~ instead of the requirement u € W'l’;’:l, we assume here only u € L2 .
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PrOOF. Let k be the largest integer between 0 and m + 2 such that
u € W_. We need to show that k = m + 2. Indeed, if £ < m + 1 then we
have also Lu € VV,’Z:I, whence it follows by Lemma 6.8 that u € WZIZ'CH, thus
contradicting the definition of k.

The estimate (6.45) is proved by improving inductively the estimate
(6.40) of Lemma 6.8. For that, consider a decreasing sequence of open sets
{4}74? such that Qo = Q”, Qmie = @ and Qiy1 € ;. By Lemma 6.8, we

1=0

obtain, for any 1 <k <m+2,
lallwry < € (Iulweraey + ILulwesa, )
< O (lulwesay_o) + I Eullwman)
which obviously implies (6.45). d
COROLLARY 6.10. Ifu € L? (Q) and Lu € W2 (Q) where

loc

n
m>l+§—2.

and | is a non-negative integer then u € C* ().
Consequently, if u € L2 _(Q2) and Lu € C* (Q) then also u € C® (Q).

PROOF. Indeed, by Theorem 6.9 u € W™ (Q) and, since m+2 > I+3,
Theorem 6.1 implies u € C* (Q). The second claim is obvious. d

For applications on manifold, we need the following consequence of
Theorem 6.9 for a bit more general operator L.

COROLLARY 6.11. Consider in §2 the following operator
L=b(2) (a7 (2)9)),

where a¥ () and b (z) belong to C* (), b(z) > 0, and the matriz (a¥ (x))?j___l
is symmetric and positive definite for all x € ). Assume that, for some pos-
itive integer k,

u, Lu, .., LFue L}, (Q). (6.46)
Then u € W2k (Q) and, for all open sets ' € Q" € Q,
k
lullwar gy < C Y 1L ul| 2, (6.47)
i=0

where C depends on Q',Q", L, k.
If m is a non-negative number and
m n
E>—+—

5T 1 (6.48)

then u € C™ () and

k
Jullom@y < C D (L ull 2, (6.49)
1=0
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where C depends on ', Q", L, k,m,n.

Proor. Note that Theorem 6.9 applies to operator L as well because
b; (a¥9;u) € W, if and only if 8; (a¥0ju) € W, and the W™ (Q)-norms
of these functions are comparable for any Q' € Q.

The inductive basis for k¥ = 0 is trivial. Let us prove the inductive step
from k — 1 to k assuming k > 1. Applying the inductive hypothesis to
function v = Lu, we obtain Lu € W'li’z"z, whence u € Wfo’z by Theorem 6.9.

To prove (6.47) observe that by (6.40)

fulwax@y < € (lullzzany + 1 Dullwas-a@r )
where (' € O* € ', and, by the inductive hypothesis,

k-1 k
| Lullyar-2ie) = [Vllwar-2iaxy < C Y 1L 2 =D 1L ullz2any ,
=0 =1

whence (6.47) follows.
Finally, u € W2 (Q) and 2k > m + n/2 imply by Theorem 6.1 that
u € C™ (Q). The estimate (6.49) follows from (6.2) and (6.47). O

6.3.2. Solutions from 7’. Here we extend Lemma 6.8 and Theorem
6.9 to arbitrary negative orders m. We start with the solvability of the
equation Lu = f (cf. Section 4.2). For an open set U C R”, consider the
space W§ (U), which is the closure of D (U) in W (U). Clearly, W3 (U) is
a Hilbert space with the same inner product as W* (U).

LeEMMA 6.12. Let U € 2 be an open set. Then there exists a bounded
linear operator R : L*(U) — W} (U) such that, for any f € L?(U), the
function u = R f solves the equation Lu = f.

The operator R is called the resolvent of L (cf. Section 4.2).
ProOF. Denote by [u,v] & bilinear form in W} (U) defined by

[u,v] := /Uaij Osudjv dp.

Let us show that [u,v] is, in fact, an inner product, whose norm is equivalent
to the standard norm in W3 (U). Indeed, using the ellipticity of L, the
compactness of U, and Lemma 6.4, we obtain, for any u € D (U),

[u, ] :/ a* Qs dudy > c/ |Vul? dp > c’/ wldp, (6.50)
U U U
and
fu,u] < C /U IVul? dp,

and these estimates extend by continuity to any u € W} (U). It follows that
[u,u] is in a finite ratio with

|M%=LJW+LNWW,
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and, hence, the space W} (U) is a Hilbert space with the inner product [, -].
The equation Lu = f is equivalent to the identity

/ a0uBjpdu = — (f,¢) for any ¢ € D(U), (6.51)
U

which can be written in the form
[u, ] = — (f, ) for all p € W§ (U). (6.52)

Note that ¢ > (£, ) is a bounded linear functional of ¢ in W} (U), because,
using again (6.50), we have

(£, o) < 1 fllz2llellze < Clifllze [, o]2 (6.53)

Hence, by the Riesz representation theorem, (6.52) has a unique solution
u € Wi (U), which allows to define the resolvent by Rf = u.

The linearity R is obviously follows from the uniqueness of the solution.
Using ¢ = u in (6.52) and (6.53) yields

[u,u] < Clfllp2 w92,

and, hence, [u,u]*? < C|f|z2, which means that the resolvent R is a
bounded operator from L? (U) to W¢ (U). a

REMARK 6.13. If f € C®° N L2 (U) then, by Corollary 6.10, the function
u = Rf also belongs to the class C= N L2 (V).

Let us mention for a future reference that R is a symmetric operator in
the sense that

(Rf,9)=(f,Ryg) forall g€ L*(U). (6.54)

Indeed, setting u = Rf and v = Rg, we obtain from (6.52)

[u,v] = = (f,v) = = (f,Ryg)
and

[’U,U] =- (g,U) =- (g7Rf)a
whence (6.54) follows. Since W¢ (U) is a subspace of L2 (U), we can consider
the resolvent as an operator from L? (U) to L% (U). Since U is relatively
compact and, by Theorem 6.3, the embedding of W} (U) into L?(U) is a

compact operator, we obtain that R, as an operator from L? (U) to L? (U),
is a compact operator.

LEMMA 6.14. For anym € Z, if u € W% (Q) and Lu € W () then
e W2 (Q).
Proor. If m > —1 then this was proved in Lemma 6.8. Assume m <
—2 and set k¥ = —m so that the statement becomes: if u € W'l;ck“ and
Lu € W;¥ then u € W **2. It suffices to prove that yu € W*12(Q) for
any 9 € D (). Fix such 1 and set v = u. Clearly, v € W1 (Q) and, as
it follows from (6.42), Lv € W% (Q).
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Let U be a small neighborhood of supp v such that U € ). We need to
show that ||v||y-r+2(yy < 0o, and this will follow if we prove that, for any

feD(),
(v, f) < Cl|Lvllw -l fllwre—2- (6.55)

By Lemma 6.12, for any f € D (U) there exists a function w € C°N L2 (V)
solving the equation Lw = f in U and satisfying the estimate

lwll 2y < Cllfliz2y- (6.56)
Fix a function ¢ € D (U) such that ¢ = 1 in a neighborhood of supp .
Then pw € D (U) and
(v,f) = (v,Lw)=(v,L(pw)) = (Lv, pw)
< NLvllw-ranyllewllwewy < ClLvllw-son lwliwewry,

where U’ € U is a neighborhood of supp ¢ and the constant C depends only
on ¢. By Theorem 6.9 and (6.56), we obtain

Il < € (lollza) + 1 Lwlwrs ) < Cliflwe-ay,
whence (6.55) follows. O
Finally, we have the following extension of Theorem 6.9.

THEOREM 6.15. For any m € Z, if u € D' (Q) and Lu € W[ (Q) then
€ W2 (Q).

loc
PROOF. Let us first show that, for any open set U &€ () there exists

a positive integer ! such that v € W~ (U). By Lemma 2.7, there exist
constants N and C such that, for all ¢ € D (U),

<C | .
(u, ) < {gllg,sgpla ¢l

It follows from Theorem 6.1 (more precisely, we use the estimate (6.10) from
the proof of that theorem) that the right hand side here is bounded above
by const |||y () provided I > N +n/2. Hence, we obtain

(w,0) < Cllellwrwy,
which implies, by the definition of W=,
lellw-1y < €' < o0

and u € WL (U).

In particular, we have u € WZ;cl (U). Let k be the maximal integer
between —I and m + 2 such that u € WF_ (U). If k < m + 1 then Lu €
Wkt (U), which implies by Lemma 6.14 u € V[/'l’f)jl (U), thus contradicting

the definition of k. We conclude that k = m + 2, that is, u € W/z?c“ (U). It
follows that u € W2 (), which was to be proved. a

loc
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Exercises.
6.3. Prove that, for any open set ' € Q, for any m > —1, and for any u € D ('),
fullwm+z < CllLuljwm, (6.57)

where a constant C depends on £, L, m.
HinT. Use Lemma 6.7 for the inductive basis and prove the inductive step as in Lemma
6.8.

6.4. Counsider a more general operator
L=25 (a"J (x) a,-) +V ()85 +c(z), (6.58)
where o/ is as before, and ¥’ and c are smooth functions in Q. Prove that if u € D’ ()

and Lu € W2 (Q) for some m € Z then u € W2 (). Conclude that Lu € C* implies
ue C™.

6.4. Local parabolic regularity

6.4.1. Anisotropic Sobolev spaces. Denote the Cartesian coordi-
nates in R**! by ¢, z!, ..., z™. Respectively, the first order partial derivatives
are denoted by 0; = gi and 0; = ?9% for j > 1. For any (n + 1)-dimensional
multiindex a = («g, .., @,), the partial derivative 8% is defined by

el
()™ (Bz1)* ... (Bz™) ™"
Alongside the order |a| of the multiindex, consider its weighted order [],
defined by

aa

— A%0 Qo1 2%
'—“8t 01 -..8nn.

[a] =200+ 01+ ... + .

This definition reflect the fact that, in the theory of parabolic equations, the
time derivative 0; has the same weight as any spatial derivative 832 of the
second order.

Fix an open set 2 C R"*1. The spaces of test functions D () and
distributions 7' (?) are defined in the same way as before. Qur purpose is
to introduce anisotropic (parabolic) Sobolev spaces V* (Q) which reflect dif-
ferent weighting of time and space directions. For any non-negative integer
k, set

VE(Q) = {ue L?(Q): 0% € L? (Q) for all o with [o] < k},
and the norm in V* is defined by
lullfry = D 10%ulZa.
[o]<k
Obviously, V0 = L2, whereas
VIQ)={uecl?(Q):0uel?*Q) Vi=1,..,n}
and
V2 (Q) = {ue L*(Q): b, 8u,88;u € L*(Q) Vi,j=1,..,n}. (6.59)
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Most facts about the spaces V* are similar to those of W¥. Let us
point out some distinctions between these spaces. For simplicity, we write
V* = V* (Q) unless otherwise stated.

CLAIM.(a) If u € V* and [0] < k then 8%u € V5o,
(b) If 8%u € V* for all o with [o] < | and one of the numbers k,1 is even
then u € VEH,

PRrROOF. (a) Let B be a multiindex with [8] < k —[a]. Then [a+ 8] <k
and hence 8Py € L2, Therefore, 8% (8%u) € L?, which means that 8%u €
yk-le]

(b) It is not difficult to verify that if one of the numbers k, ! is even, then
any multiindex S with [8] < k + I can be presented in the form 8 = o + o/
where [a] < ! and [¢/] < k. Hence, 8Pu = 8% (8%u) € V¥~ ¢ L2, whence
the claim follows. O

It follows from part (a) of the above Claim that if u € V* then d;u €
V*~1 and G;u € V*~2 (provided k > 2).

We will use below only the case [ = 2 of part (b). Note that if both &,
are odd then the claim of part (b) is not true. For example, if k = [ = 1 then
the condition that %u € V1 for all @ with [o] < 1 means that the spatial
derivatives O;u are in V1. This implies that &;u, 0;05u are in L2, However,
to prove that u € V2 we need to know that also 8;u € L2, which cannot be
derived from the hypotheses.

For any positive integer k£ and a distribution v € D' (Q2), set

lulyr = sup 28 (6.60)
peD(@)\{0} l®llve

The space V=% () is defined by
VR Q) = {ueD (Q): |ully-x < oo}.
Obviously, for all u € V™% () and ¢ € D (Q), we have

|(w, ©)] < Nullv-s@) lellveg)-

The local Sobolev spaces V¥, () are defined similarly to W, ().

The statements of Lemma 2.14 and Theorems 2.13, 2.16 remain true
for the spaces V*, and the proofs are the same, so we do not repeat them.
Observing that V;2 (Q) <> WE _(Q) and applying Theorem 6.1, we obtain
that

Viee (@) =C™ (),

provided k and m are non-negative integers such that & > m 4 n/2. Conse-
quently, we have

Vise (2) = C= ().
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6.4.2. Solutions from Lloc Fix an open set  C R™*! and consider
in © the differential operator

P =p(z)8; — & (a¥ () 8;) (6.61)

where p and a” are smooth functions depending only on z = (z!,...,z")
(but not on t), p(z) > 0, and the matrix (a* )ijl is symmetric and pos-
itive definite. The operator P with such properties belongs to the class of
parabolic operators. The results of this section remain true if the coefficients
a¥ and p depend also on t but the proofs are simpler if they do not, and
this is sufficient for our applications.

Setting as in Section 6.3

L=g (aij (z) 6,-) ,

we can write
P = pat -
The operator P is defined not only on smooth functions in Q but also on
distributions from D’ () because all terms on the right hand side of (6.61)
are defined as operators in D' (Q2). For all v € D' () and ¢ € D(Q), we
have
(Pu, 0) = (pBu, p) — (Lu, ) = — (u, pBsp) — (u, Lyp)

whence it follows that

(Pu’ ‘P) = (’U,, P*‘P) ’ (6‘62)
where

’P* - ——p@t -

is the dual operator to P. The identity (6.62) can be also used as the

definition of P on D’ (Q2).
We start with an analog of Lemma, 6.7

LEMMA 6.16. (1st a priori estimate) For any open set ' € Q and for
any u € D (%),
llully2 < Cl[Pully-1,

where the constant C depends on diam Q' and on the ellipticity constant of
Linf.

PRrROOF. Setting f = Pu and multiplying this equation by u, we obtain
/ ufdy = / pu Owu dp — / uLudy,
Q Q Q
where du = dtdz is the Lebesgue measure in R"*1. Since
1
pude = =0,(p?),
after integrating the function pud;u in dt we obtain 0. Hence,

/ puliudy = 0.
Q
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Applying the same argument as in the proof Lemma 6.7 (cf. (6.39)), we
obtain,

- [ ubudu 2 clulffsge, (6.63)
Q N

where the constant ¢ > 0 depends on the ellipticity constant of L in ' and
on diam . Since

- / wLudy = / wf dp = (f,u) < 1l [lullys
Q (93
we obtain

cllulZ: < IFly-rliuly,
whence the claim follows. g

LEMMA 6.17. (2nd a priori estimate) For any open set ' € Q and for
any u € D (),
lullyz < CllPul| 2, (6.64)

where the constant C depends on ¥, P.

PROOF. If follows from (6.59) that we have to estimate the L2-norm of
O:u as well as that of 0;u and 9;0;u. Setting f = Pu and multiplying this
equation by d,u, we obtain

/c’hufdu:/p(atu)z du—/@tuLud/,L. (6.65)
Q Q Q

Since 8; and L commute, we obtain, using integration by parts and (6.37),

/BtuLud,u:—/u@t(Lu)d,u=—/uL(Btu)du=—/Lu8tudu,
Q Q Q Q

whence it follows that
/ Oyu Ludy = 0.
Q

Since p (z) is bounded on ¥’ by a positive constant, say ¢, we obtain

[ p@w? du > clowe

Finally, applying the Cauchy-Schwarz inequality to the left hand side of
(6.65), we obtain

18sull L2y I Fll 2y = ellBeullFz gy
whence
0cul| 20y < Cll fll L2y (6.66)
'IO estimate the spatial derivatives, observe that the identity f = pd;u — Lu
implies
| Lullr2qy < W Fllzz) + Clldeull 2y < C'll fll2qay- (6.67)
Let Q and Q' be the projections of Q and €, respectively, onto the subspace
R™ C R**! gpanned by the coordinates 1, ...,z". Obviously, the operator
L can be considered as an elliptic operator in Q. Since @' € Q and u (t,-) €
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D(Q') for any fixed t, the estimate (6.57) of Exercise 6.3 yields, for any fixed
t

lullw2@) < CllLullr2q)
(a somewhat weaker estimate follows also from Theorem 6.9). Integrating
this in time and using (6.67), we obtain that the L? (Q)-norms of the deriva-
tives 8;u and 0;0;u are bounded by C||f}|z2(q). Combining with (6.66), we
obtain (6.64). 0

LEMMA 6.18. If u € L} (Q) and Pu € V;;} (Q) then u € VL ().

loc

Moreover, for all open subsets Q' € Q" € Q,
lullvigy < C (lullz2@n + 1Pullv-1am) , (6.68)
where C is a constant depending on £V, Q", P.

PROOF. Let ¢ € D (") be a cutoff function of § in ", and let us prove
that the function v = yu belongs to V! (Q"), which will imply u € Vi, ().
Clearly, v € L? (") and suppv is a compact subset of €2”. Next, we have

P (vu) = Pu — 2a¥ 8;9p0u + (Py) u (6.69)
(cf. (6.42)), whence it follows that Pv € V™1 (Q") and
IPvlly-10m < C (llull L2y + IIPullv-10m) , (6.70)

where C' depends on ', ", P.
Fix a mollifier ¢ in R**! and observe that, for small enough £ > 0, v,
belongs to D (2”). By Lemma 6.16, we have

v * @ellyr < CIP (v oe) fly-1, (6.71)

where the constant C depends on " and P.
Let us show that

|P (v*@e) — (Pv) xpelly-1 =5 0 ase — 0. (6.72)
By Lemma 6.5, we have
100 (v % ) ~ (pOsv) * el L2 — 0. (6.73)

As in the proof of Lemma 6.6, we have
L(v*pe) ~ (Lv) * e = Oif;
Where . .. ..
fii=a"8; (v* @e) — (a0;v) * ..
By Lemma 6.5, || f2||zz — 0 whence

IZ (v * pe) — (Lv) * @elly-1 = |0:filly-+ < Z Ifells = 0. (6.74)

Combining (6.73) and (6.74), we obtain (6.72).
By extension of Theorem 2.16 to the spaces V™%, the condition Pv €
V1(Q") implies
-1
(Pv) * e LA Pu,
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which together with (6.72) yields

P v+ 9s) L5 Pv ase — 0. (6.75)
It follows from (6.71) and (6.75) that

limsup |jv * @¢[ly1 < Cl|Pully-1.
e—0

By extension of Theorem 2.13 to V*, we conclude that v € V1 (Q”) and
lvflvi@n < CliPY|lv-1an-

Combining this estimate with (6.70) and |lully1(y = [|v|ly1(qry, we obtain
(6.68).

LeMMA 6.19. Ifu e VL, (Q) and Pu € LE, () thenu € V2, (Q). More-
over, for all open subsets ) € Q" € Q,

lullva@ny < C (lullvr@ny + IPullp2im) » (6.76)
where C is a constant depending on ¥, Q" P.

PROOF. Let 9 € D (") be a cutoff function of 0 in ©”, and let us prove
that the function v = ¢u belongs to V2 (Q”), which will imply u € V;Z_(Q).
It follows from (6.69) that Pv € L? (") and

1Pvll 2@y < C (lullvi@n + 1Pullz2@r) » (6.77)

where C' depends on §,Q”,P. Function v belongs to V! (Q”) and has a
compact support in Q”.

For any mollifier ¢ in R"*! and a small enough & > 0, we have v * ¢, €
D (Q"). By Lemma 6.17, we obtain

v * @ellvz < ClIP (v * pe) || 22 (6.78)

where C depends on 7, P.
Let us show that

|P (v ) ~ (Pv) x pe|rz — 0 as e — 0. (6.79)
For that, represent the operator P in the form
P = —aijaiaj — bjaj + pb4,

where b; = §;a”’. The part of the estimate (6.79) corresponding to the first
order terms &’ 9; and pd;, follows from Lemma 6.5 because v € L? (Q2). Next,
applying Lemma 6.5 to function 8;v, which is also in L? (Q), we obtain

1*78; (Bjv * we) ~ (678:0v) * ¢ell 2 — O,

whence (6.79) follows.
Since Pv € L?, we have by Theorem 2.11

(Pv) * e L py
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which together with (6.79) yields

P (v+*pe) B py ase 0.
Combining with (6.78), we obtain
limsup ||v * c|ly2 < C||Pvl 2.
e—0

Therefore, by extension of Theorem 2.13 to V¥ we conclude that v €
V2(©") and

[vllve@my < CllPull g2y
Combining this with (6.77) and [jully2(q) = llvllv2qry, we obtain (6.76). O

LEMMA 6.20. For any integer m > —1, if u € V;ZZ“ () and Pu €
Vi (Q) then u € V"2 (Q). Moreover, for all open subsets ¥ € Q/ € Q,

loc loc
”’U,“V'm+2(QI) < C (l|u||vm+l(QH) -+ “PU”Vm(Q//)) y (680)
where the constant C' depends on ', QY, P, m.

PrOOF. The case m = —1 coincides with Lemma 6.18, and the case
m = 0 coincides with Lemma 6.19. Let us prove the inductive step from
m—2 and m — 1 to m, assuming m > 1. To show that u € VZ,”CH, it suffices
to verify that
O, 8ju, 8¢8jue ZZZ:'

Since dyu € Vl’;z_l and

P (Bru) = 8;Pu € V3 2 (6.81)
the inductive hypothesis yields d;u € V..
It follows from (6.43) that
8l (Pu) -P (8lu) = (51,0) Oyu — &- [(&aij) 6,u} ) (6.82)

which implies

P (Ou) € ym-l

loc

Since yu € V™, the inductive hypothesis yields v € V> Consequently,

loc? loc
all the second order derivatives 6;0;v are in V7%, which was to be proved.

Let us now prove (6.80). It follows from (6.81) and the inductive hy-
pothesis for m — 2 that

Beullym@y < C (I18ullym-1i@n + P (Brw) llym-2(an)
S C (||u||Vm+1(Qu) + ”’Pu“vm(gu)) . (683)
it follows from (6.82) that
1P (8) [ym-1(0my < C ([ullymerary + [Pullymgqny)
whence, by the inductive hypothesis for m — 1,
o] ymirey < C (l8ullym@ny + 1P (B) llym-1n)
< C (”'U,va+1(Q//) + ”'PuHVm(Q/:)) . (6.84)
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Combining (6.83) and (6.84) yields (6.80). a

THEOREM 6.21. For any integer m > —1, if u € L () and Pu €
Vi (Q) then u € Vo+2 (Q). Moreover, for all open subsets & € Q' € €,

loc

lullymzn < C (lullz@ry + [Pullym@n) (6.85)
where C depends on Q' , Q' , P, m.

ProoF. Let k be the largest number between 0 and m + 2 such that
u € VF (Q). If K < m+ 1 then we have Pu € V51, which implies by
Lemma 6.20 that v € VkH, thus contradicting the definition of k. Hence,
k=m+2andu € Vlm+2 which was to be proved.

To prove the estimate (6.85), consider a decreasing sequence of open sets
{ ;1462 such that Q¢ = @/, Qnio = & and Q1 € Q;. By Lemma 6.20,
we obtain, for any 1 <k <m + 2,

lulvrgy < € (lullvar,_y + IPullye-sa, )
< O (lullvar @y +IPulvm@n)
which obviously implies (6.85). O

COROLLARY 6.22. (@) Ifu € L7, (R) and Pu = [ where f €
C*® () then also u € C= ().
(17) Let {ux} be a sequence of smooth functions in €, each satisfying

the equation Pup = f where f € C®(Q). If UL —3 u where
ue LZ (Q) then Pu=0, ue C®(Q), and ux Caon

PROOF. (1) Since Pu € V[ (Q) for any positive integer m, Theorem
6.21 yields that also u € V[J¢ () for any m. Therefore, u € W, (Q) for any
m and, by Theorem 6.1, we conclude u € C* (Q).

(1) Let us first show that u satisfies the equation Pu = f in the distri-
butional sense, that is,

(w, P o) = (f,p) forallp € D(Q), (6.86)
where P* = —pd, — L is the dual operator (cf. (6.62)). Indeed, Puy = f
implies that
(uka P*‘P) = (f’ (P) )
whence (6.86) follows by letting & — co. By part (i), we conclude that
ue C®(Q).

Setting vg = u — ug, noticing that Pvy = 0, and applying to v the
estimate (6.85), we obtain, for all open subsets ' € Q" € Q and for any
positive integer m,

lvkllvm @y < Cllvell L2,
Since vy — 0 in L2 (Q), we obtain that vg — 0 in V™ ().
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Hence, vy — 0 in V% (Q2) for any m, which implies that also vy — 0 in

W= (Q) for any m and, by the estimate (6.2) of Theorem 6.1, vy — 0 in
C* (), which was to be proved. O

Exercises.
6.5. Let ' € Q be open sets and m > —1 be an integer.
(a) Prove that, for any u € D (@),
lullym+z(ay < CllPullvm ), (6.87)
where a constant C depends on ', P, m.
(b) Using part (a), prove that, for any u € C*° (),
lullyms2y < C (lullaqy + 1Pullvmiey) - (6.88)
REMARK. The estimate (6.88) was proved in Theorem 6.21. In the case u € C°, it is
easier to deduce it from (6.87).

6.4.3. Solutions from D'. We start with a parabolic analogue of
Lemma 6.12.

LEMMA 6.23. Let U € Q be an open set of the form U = (0,T) x Q
where T > 0 and Q is an open set in R™. Then, for any f € L2 (U), there
exists a function u € L? (U) solving the equation Pu = f and satisfying the

estimate
lullz2@wy < THF/ollL2wy- (6.89)

REMARK 6.24. As it follows from Corollary 6.22, if f € C® n L2 (U)
then the solution u also belongs to C™ N L? (U).

ProoOF. By Lemma 6.12 and Remark 6.13, the resolvent R of the equa-
tion Lu = f is a compact self-adjoint operator in L? (Q). The multiplication
operator by the coefficient p (z) is a bounded self-adjoint operator in L2 (Q).
Therefore, Rop is a compact self-adjoint operator in L? (Q). By the Hilbert-
Schmidt theorem, there exists an orthonormal basis {v;} in L? (Q), which
consists of the eigenfunctions of the operator Rop. Since R (pv) = 0 implies
pv = L0 = 0 and, hence, v = 0, zero is not an eigenvalue of Rop. Therefore,
each vy is also an eigenfunction of the inverse operator p~ L, and let the
corresponding eigenvalue be Ag, that is,

L’Uk = Akpvk. (690)
Since ran R is contained in W§ (Q), we have vy, € W} (Q). Using the identity
(6.51) with u = ¢ = vg and f = Agpvk, we obtain
/ aijai'uk ijk dx = _)\k/ p’Ug da:,
U U

whence it follows that A\; < 0.
Given f € D(U), expand function f/p in the basis {v}:

F09) Ny 1 (o
,0(.’1?) “Zk:fk'<t) k( )’
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where fx (t) = (f (¢,-) /p,vk), and set

¢
ug () = / e % fy (s) ds. (6.91)
0
We claim that the function
u(t,z) = Z ety (t) vg () (6.92)
k

belongs to L? (U) and solves the equation Pu = f. Indeed, since A\, < 0 and

t
P (0) = [ M (s)ds,
0

we see that, for any ¢ € (0,7),

@] < [ 1ol

whence by the Parseval identity
2 T
Slwe] < ST [ i@k
k k 0

T
= 7 [ 176 By =TI ol
Therefore, the series (6.92) converges in L2 (Q) and, for any ¢ € (0,T),

llu (&, ) 1720y < TN /ol 22y

Integrating in ¢, we obtain u € L? (U) and the estimate (6.89). The same
argument shows that the series (6.92) converges in L2 (U).
Using (6.90) and (6.91) we obtain

P <e)"“tukfuk) = pelrt (Oyug) vk + e tugu, — ety Lo, = o fxVk.
Using the convergence of the series (6.92) in D’ (U), we obtain

Pu=Y_ pfivi =1,
k

which finishes the proof. O
In the proof of the next statement, we will use the operator
P* = —p@t - L,

which is dual to P in the following sense: for any distribution u € D’ (Q)
and a test function ¢ € D (Q),

(Pu, ) = (u, P*p)
(cf. Section 6.4.2). Let 7 be the operator of changing the time direction,
that is, for a test function ¢ € D (Q),

T (t,2) = ¢ (~,2)
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and, for a distribution u € 7’ (2),
(tu, ) = (u,7p) forall p € D(T9).
Clearly, we have P* = P o 7. Using this relation, many properties of the

operator P* can be derived from those for P. In particular, one easily verifies
that Theorem 6.21 and Lemma 6.23 are valid® also for the operator P*.

THEOREM 6.25. For any m € Z, if u € D' (Q) and Pu € V. (Q) then
u € V2 (Q).

loc

PRrROOF. As in the proof of Theorem 6.21, let us first show that u €
V™ (Q) and Pu € Vi (Q) imply u € V2 (Q). For m > —1, this was
proved in Theorem 6.21, so assume k := —m > 2.

It suffices to prove that yu € V~**2(Q) for any v € D(Q) with
sufficiently small support. Fix a cylindrical open set U € 2, a func-
tion ¥ € D(U), and set v = tu. It follows from the hypotheses that
v € V71 (Q) and Pv € V75 (Q) (cf. (6.69)).

We need to show that |jv|ly-k+2(y < 00, and this will be done if we

prove that, for any f € D (U),
(v, £) < Cl[Polly-r| fllye-2. (6.93)

By Lemma 6.23, for any f € D (U), there exists a function w € C®N L2 (V)
solving the equation P*w = f in U and satisfying the estimate

lwll 2@y < Cllfll2@)- (6.94)

Fix a function ¢ € D (U) such that ¢ = 1 in a neighborhood of supp.
Then pw € D (U) and

(v, f) = (v,P*w) = (v,P* (pw)) = (Pv, pw)
< NPvllv-syllewllvewy < ClIPollv-r@yllwllvew,
where U’ € U is a neighborhood of supp ¢ and the constant C depends only

on . Using the estimate (6.85) of Theorem 6.21 (or the estimate (6.88) of
Exercise 6.5) and (6.94), we obtain

|wllyx@y <C (||w||L2(U) + ”P*w|lv’°‘2(U)> < O fllve-2 vy

whence (6.93) follows.

Assume now that v € D' (Q) and Pu € V| (©2), and prove that u €
V™*2(Q). As was shown in the proof of Theorem 6.15, for any open set
U &€ Q there exists | > 0 such that u € Wt (U). Since || ||y < || |ly= and,
hence, || - ||y—2t < || - llyw~1, this implies u € V% (U). Let k < m + 2 be the
maximal integer such that w € Vi, (U). If k < m + 1 then Pu € Vllg;"l ()
whence by the first part of the proof u € V;fj’l (U). Hence, k = m+2, which
was to be proved. a

3Let us emphasize that the solvability result of Lemma, 6.23 is not sensitive to the
time direction because we do not impose the initial data.
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Combining Theorems 6.25 and 6.1, we obtain the following statement
that extends the result of Corollary 6.22(:) from L2 to T’ ().

COROLLARY 6.26. Ifu € D' (Q) and Pu € C* () then u € C*(Q).

Exercises.
6.6. Consider a more general parabolic operator
P = pd, — 8, (aij (z) a,-) —¥ (2)8; — c(z),

where a/ and p are as before, and b and ¢ are smooth functions in . Prove that if
u € D' () and Pu € V() for some m € Z then u € V-*?(Q). Conclude that
Pu € C* () implies u € C= ().

Notes

All the material of this chapter is classical although the presentation has some nov-
elties. The theory of distributions was created by L. Schwartz [327]. The Sobolev spaces
were introduced by S. L. Sobolev in [328], where he also proved the Sobolev embedding
theorem. We have presented in Section 6.1.1 only a pm20f this theorem. The full state-

ment includes the claim that if £ < n/2 then Wk — L{(';:—”‘ , and similar results hold for
the spaces W*P based on LP. The modern proofs of the Sobolev embedding thecrem can
be found in [118], [130]; see also [1) and [269)] for further results.

One of the first historical result in the regularity theory (in the present sense) is due
to H. Weyl [357], who proved that any distribution u € D’ solving the equation Au = f
is a smooth function provided f € C* (Weyl’s lemma). This and similar results for
the elliptic operators with constant coefficient can be verified by means of the Fourier
transform (see [309]). The regularity theorem for elliptic operators with smooth variable
coefficients was proved by K. O. Friedrichs [123], who introduced for that the techniques
of mollifiers in [122]. Alternative approaches were developed concurrently by P. D. Lax
[245] and L. Nirenberg [293], [294].

Nowadays various approaches are available for the regularity theory. The one we
present here makes a strong use of the symmetry of the operator (via the Green formula)
and of the mollifiers. The proofs of the Friedrichs lemma (Lemma 6.4) and the key Lem-
mas 6.7, 6.8 were taken from {208]. The reader may notice that Lemma 6.4 is the only
technical part of the proof. Other frequently used devices include elementary estimates of
the commutators of the differential operators with the operators of convolution and mul-
tiplication by a function. The parabolic regularity theory as presented here follows closely
its elliptic counterpart, with the Sobolev spaces W* being replaced by their anisotropic
version.

Different accounts of the regularity theory can be found in [118], [121], [130], [241],
[241], [273], [308], although in the most sources the theory is restricted to solutions
from L}, or even from W}, as opposed to those from D’. A far reaching extension and
unification of the elliptic and parabolic regularity theories was achieved in L. Hérmander’s
theory of hypoelliptic operators [208] (see also [297], [348)).

Another branch of the regularity theory goes in the direction of reducing the smooth-
ness of the coefficients — this theory is covered in [130], [118], [242], [241]. If the coeffi-
cients are just measurable functions then all that one can hope for is the Hlder continuity
of the solutions. The fundamental results in this direction were obtained by E. De Giorgi
[103] for the elliptic case and by J. Nash [292] for the parabolic case. For the operators
in non-divergence form, the Holder regularity of solutions was proved by N. Krylov and
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M. Safonov [236], partly based on the work of E. M. Landis {243]. See [130] and [230]
for a detailed account of these results.



CHAPTER 7

The heat kernel on a manifold

This is a central Chapter of the book, where we prove the existence
of the heat kernel and its general properties. From Chapter 6, we use
Corollaries 6.11, 6.22, and 6.26.

7.1. Local regularity issues

Let (M, g, u) be a weighted manifold. The only Sobolev space on M we
have considered so far was W1 (M). In general, the higher order Sobolev
spaces W¥* cannot be defined in the same way as in R” because the partial
derivatives of higher order are not well-defined on M. Using the Laplace
operator, we still can define the spaces of even orders as follows. For any
non-negative integer k, set

W2 (M) = W (M, g, 1) = {'u, tu, Ay, .y Abu e L2 (M)},
and l

k
lulifyze = D I ALullZa. (7.1)
1=0

It is easy to check that W2* (M) with the norm (7.1) is a Hilbert space?.
Define the local Sobolev space W% (M) by

loc

W (M) = {u tu, Ay, .., Afue L, (M)} .

loc

Equivalently, v € W2 (M) if u € W (Q) for any open set Q € M. The

loc

topology in W2k (M) is determined by the family of seminorms Nwllwer @y
The following theorem is a consequence of the elliptic regularity theory

of Section 6.3.1.

THEOREM 7.1. Let (M, g, 1) be a weighted manifold of dimension n, and
let u be a function from W2k (M) for some positive integer k.

loc

1By considering in addition the gradient of Aﬁu, one could define W+ (M) similarly
to W (M), but we have no need in such space (cf. Exercise 7.1).

The reader should be warned that if M is an open subset of R™ then W?* () need
not match the Euclidean Sobolev space W2* (€2), although these two spaces do coincide if
M =R" (cf. Exercise 2.33(d)).

183
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(i) If k > n/4 then uw € C(M). Moreover, for any relatively compact
open set Q C M and any set K € (, there is a constant C =
C(K,Q,g,u, k,n) such that

Sup lul < Cllullwaray- (7.2)

(i3) If k > m/2 + n/4 where m is a positive integer then w € C™ (M).
Moreover, for any relatively compact chart U C M and any set
K €U, there is a constant C = C(K, U, g, u, k,nn,m) such that

lullom ) < Cllullweew)- (7.3)

PROOF. Let U be a chart with coordinates z!, ...,2", and let A be the
Lebesgue measure in U. Recall that by (3.21) du = p(z)d)\, where p =
T+/detg and T is the density function of measure u. Considering U as a
part of R™, define in U the following operator

L=p~"0 (pg"0;). (7.4)
By (3.45), we have
Lo=Ayp forall p e D(U). (7.5)

Now let us consider the operators L and A, in D’ (U). Since we will apply
the results of Chapter 6 to the operator L, we need to treat it as an operator
in a domain of R®. Hence, we define L on 7’ (U) using the definitions of
8; and the multiplication by a function in D’ (U) given in Section 2.4 (cf.
Section 6.3).

However, we treat A, as an operator on M, and A, extends to D' (U)
by means of the identity (4.3). Then L and A, are not necessarily equal as
operators on D’ (U) because their definitions as operators in D’ (U) depend
on the reference measures, which in the case of A, is 1 and in the case of L
is \. Indeed, for any u € D’ (U) and ¢ € D (U), we have

(Lu, @) = (p78i(pg" ;) ) = (8i(pg"y), 0™ )
= —(pg"8;,8:(p™ ¢)) = (u, 0i(pg”Bi(0™"¢)))
= (0L (p7"¢)), (7.6)
whereas
(A, p) = (u, Auyp) . (7.7)
Obviously, we have in general Lu # Ay u.

Nevertheless, when the distributions A, u and Lu are identified with L?o .

(or Llloc) functions, the reference measures are used again and cancel, which

leads back to the equality Lu = A,u. More precisely, the following it true?.
Cram. Ifue L _(U) and Ayu € L2 (U) then Lu = Ayu in U.

loc loc

2Compare this to Exercise 4.11, where a similar identity is proved for the weak
gradient.
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As follows from (7.6), if w € L2 (U) then, for any ¢ € D (U),

loc

(Lu,p) = /U'u,pL (p“lcp) dA.

To prove the claim it suffices to show that

/Auu@d)\=/upL(p—l<p) dA.
U U

Since both u and A,u are in L2, (M), the identity (7.7) becomes

/Auutpd;L:/uA“godu.
U U

Using this identity and (7.5), we obtain

[Bueir= [ s (7o) du= [udue™odu= [uLropar
U U U U

which was to be proved.

The hypothesis u € W2X (M) and the above claim imply that, in any

chart U,

u, Lu, ..., IFue LE (V).
If K > m/24 n/4 then we conclude by Corollary 6.11 that v € cm (U) and,
hence, u € C™ (M).

The estimate (7.3) follows immediately from the estimate (6.49) of Corol-
lary 6.11 and the definition (7.1) of the norm |jul/yy2x. To prove (7.2) observe
that there exist two finite families {V;} and {U;} of relatively compact charts
such that K is covered by the charts V; and V; € U; € Q (cf. Lemma 3.4).
Applying the estimate (6.49) of Corollary 6.11 in each chart U; for the op-
erator L = A, and replacing L? (U;, A)-norm by L? (U; , u)-norm (which are
comparable), we obtain

k k
sup Ju| < CZ IALull 2w, 0 < C Z AL ull 20,
d 1=0 1=0

Finally, taking maximum over all 4, we obtain (7.2). O
If we define the topology in C™ (M) by means of the family of seminorms

lullcm (z) where K is a compact subset of a chart then Theorem 7.1 can be
shorty stated that we have an embedding

Wiee (M) = C™ (M),

loc
provided k > m/2 + n/4.
Let us introduce the topology in C® (M) by means of the family of
seminorms

sup |0%u/, (7.8)
K
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where K is any compact set that is contained in a chart, and 0% is an
arbitrary partial derivative in this chart. The convergence in this topology,
denoted by
Vg g——) v,

means that vy converges to v locally uniformly as k¥ — oo and, in any chart
and for any multiindex «, 0%v, converges to 0%v locally uniformly, too.

Denote by W2, (M) the intersection of all spaces W2 (M), and define
the topology in W2, (M) by means of the family of seminorms

fullwaay, (7.9)

where [ is any positive integer and (2 is a relatively compact open subset of
M. The convergence in W, (M), denoted by

loc
WOO
Vg —Log v,
means that vy converges to v in leoc (M) and, for any positive integer [,
Al vy converges to Alv in LY (M).

COROLLARY 7.2. The natural identity mapping
I1:C®°(M)—=>W2 (M) (7.10)
is a homeomorphism of the topological spaces C® (M) and W2, (M).

PRrROOF. If f € C* then I (f) is the same function f considered as an
element of L2, . Clearly, I (f) € W so that the mapping (7.10) is well-
defined. The injectivity of I is obvious, the surjectivity follows from Theorem
7.1(73) . The inequality (7.3) means that any seminorm in C* is bounded
by a seminorm in Wys. Hence, the inverse mapping 1 =1 is continuous. Any
seminorm (7.9) in W;2 can be bounded by a finite sum of seminorms (7.8) in
C*®, which can be seen by covering 2 by a finite family of relatively compact

charts. Hence, I is continuous, and hence, is a homeomorphism. |

It is tempting to say that the spaces C°° and W%, are identical. However,
this is not quite so because the elements of C'™ are pointwise functions
whereas the element of Wi, are equivalence classes of measurable functions.

COROLLARY 7.3. If a function u € L2 (M) satisfies in M the equation

loc

—Ayu+ou= f wherea €R and f € C®(M), then u € C°(M).

More precisely, the statement of Corollary 7.3 means that there is a C®
smooth version of a measurable function u.

ProOF. By Corollary 7.2, it suffices to prove that Aﬁu € leoc for all

k=1,2,... It is obvious that au — f € L? _ and, hence,

loc
Ayju=ou~—feli.

Then we have

A2

2u=alyu—Auf € L},
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Continuing by induction, we obtain
Aku= oAty - AR f e IE,
which finishes the proof. d

Now we consider the consequences of the parabolic regularity theory of
Section 6.4.3. Fix an open interval I C R and consider the product manifold
N = I x M with the measure dv = dt du. The time derivative 0; is defined
on D’ (N) as follows: for all u € D' (N) and ¢ € D (N),

(at’U,, (P) = - (’U,, 3t‘P) )
and the Laplace operator A, of M extends to D' (N) by
(All-uv p) = (u, A“(p) .
Hence, the heat operator 8; — A, is naturally defined on D’ (N) as follows:
(0 — Ap)u, ) = — (u, B0 + App) - (7.11)

THEOREM 7.4. Let N =1 x M.
() Ifue D' (N) and Opu — Apyu € C™(N) then u € C™ (N).
(11) Let {ux} be a sequence of smooth functions on N, each satisfying
the same equation
at'u'k; - A[.Luk = fa

where f € C™ (N). If

L2 (N
k &é})ueLfocU\[)
then (a version of) function u is C-smooth in N, satisfies the
equation
and
C>=(N)
U —> U

PROOF. (i) As in the proof of Theorem 7.1, let U be a chart on M
with coordinates z!,...,z", and X be the Lebesgue measure in U. Then we
have dy = p (z) d), where p(z) is a smooth positive function in U, and the
Laplace operator A, on D (U) has the form

Ay =p710; (pg"8;) = p7'L,
where
L=20; (pgijc’?j) .
Note that U := I x U is a chart on N. Using the definition of the operators
A, and 8; in D'(U), we obtain, for all u € D'(U) and ¢ € D(U),
(Apu,0) = (u,Aup) = (u, p718; (pg785)) = (o7, 8; (pg” 9j))
= — (B (p7u), pg?050) = (0; (pg”8i (p'u)) , ) = (Lw, ),
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where v = p~lu € D'(U). Hence,
(Osu — Apu, @) = (pdsv — Lv, p)
so that we have the identity
Oyu — Ayu = pdyv — Lv.

The hypothesis du — Ayu € C° (N) implies pGv — Lv € C'°°~([7 ), and
Corollary 6.26 yields v € C*°(U). Hence, we conclude u € C*°(U), which

finishes the proof.
(41) It follows from (7.11) that if {u} is a sequence of distributions on N

each satisfying the same equation Gyur — A ug = f and uy 1) u then u also
L2
satisfies Qyu — A u = f. In particular, this is the case when uy 2% u as we
have now. By part (z), we conclude that v € C* (N), and the convergence
Uk % u follows from Corollary 6.22. O
COROLLARY 7.5. The statement of Corollary 7.3 remains true if the
hypothesis u € L?, (M) is relazed to v € L}, (M).

loc
PROOF. Indeed, consider the function v (t,z) = e*u(z), which obvi-
ously belongs to L} (N) where N =R x M. In particular, v € D’ (N). We
have then
O — Ay = ae®u — e Ay u = e*f.
Since e* f € C* (N), we conclude by Theorem 7.4 that v € C* (N), whence
u € C®(M). O
Exercises.
For any real s > 0, define the space W§ (M) as a subspace of L? (M) by
W§ (M) = dom (£ +id)*/?,
where L is the Dirichlet Laplace operator. The norm in this space is defined by
I£lwg = 1| (£ +1d)*"2 fll 2.
7.1. Prove that Wy is a Hilbert space.

7.2. Prove that W} = W3 and W§ = W¢ including the equivalence (but not necessarily
the identity) of the norms.

7.3. Prove that if k is a positive integer then f € W2* if and only if
Fo Lfy oy LEUf e WE (M) and L£Ff e L2 (M). (7.12)
7.4. Prove that W2* ¢ W?* and that the norms in W32k and W?* are equivalent.
7.5. Prove that if f € W2* then, for all integer 0 <[ < k,
1€ flla < UANSS 7 Ik 1Ly, (7.13)

7.6. Let M be a connected weighted manifold. Prove that if f € L. (M) and Vf =0 on
M then f = const on M.
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7.7. Let M be a connected manifold and Q be an open subset of M such that and M \ Q
is non-empty. Prove that 1g ¢ W' (M) and 1o ¢ Wy (£2).

REMARK. If in addition u(£2) < oo then clearly 1o € L? () and Vi1 = 0 in 2 whence
1o € W (). In this case we obtain an example of a function that is in W' (Q) but not
in W ().

7.8. (The exsterior mazimum principle)Let M be a connected weighted manifold and 2 be
a non-empty open subset of M such that M \ D is non-empty. Let u be a function from
C (M) N W3 (M) such that A,u =0 in Q. Prove that

SUp U = Sup u.
Q an

Prove that if in addition  is the exterior of a compact set, then the hypothesis u €
C (M) N W§ (M) can be relaxed to u € C () N Ws (M).

7.9. Assume that u € L%, (M) and A,u € L%, (M). Prove that u € Wi, (M) and,
moreover, for any couple of open sets ' € O’ € M,

lullwian < C (lullza@m + [Auuliza@y) (7.14)

where the constant C depends on Q',Q", g, u,n. The space Wi, (M) is defined in Exercise
5.8 by (5.15).

7.10. Prove that if u € D’ (M) and A u € C™ (M) then v € C™ (M).
7.11. A function u on a weighted manifold M is called harmonic if © € C* (M) and
Ayu = 0. Prove that if {us}}2 , is a sequence of harmonic functions such that
Ug % u e Li, (M)
then (a version of) u is also harmonic. Moreover, prove that, in fact, ug S
7.12. Let {ux} be a sequence of functions from L7, (M) such that
—Apup + aguk = fi, (7.15)

for some oy, € R and fi € W2 (M), with a fixed non-negative integer m. Assume further
that, as k& — oo,

Wi L3,
oy —a, fr —= f and up =% u.
Prove that function u satisfies the equation

—Aputou=f, (7.16)
and that
W2m+2
up 2% . (7.17)

Prove that if in addition fi € C®° (M) and f LSt f then (versions of) ux and u belong
to C*° (M) and ux iy
7.13. Let {ux} be a sequence of non-negative functions from C° (M), which satisfy (7.15)
with o € R and fi € C* (M). Assume further that, as k — oo,

ar = a, fk LSt f and ui (z) tu(z) for any = € M,
Wh%‘i u () is a function from L%, that is defined pointwise. Prove that u € C* (M) and
U —> u.

7.14. Prove that, for any relatively compact open set O C M, for any set K € £, and for
any « € R, there exists a constant C = C (K, Q, ) such that, for any smooth solution to
the equation —~Apu+ou=0on M,

sup [ul < Cllulizz@)-
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7.15. Let Ry be the resolvent operator defined in Section 4.2, that is, Re = (£ + aid) ™,
where o > 0. Prove that if f € L2 N C* (M) then also Rof € L2 N C™ (M).

7.16. Let {4} be an exhaustion sequence in M. Prove that, for any non-negative function
feIL*nC*® (M) and any a > 0,

R f S5 Rof as i — co.

HINT. Use that R f ﬁ> Raf (cf. Theorem 5.22).

7.2. Smoothness of the semigroup solutions

The next theorem is a key technical result, which will have may impor-
tant consequences.

THEOREM 7.6. For any f € L2 (M) and t > 0, the function P;f belongs

to C*® (M).
Moreover, for any set K € M, the following inequality holds
sup [Pef| < Fre () I fll 2y » (7.18)
where
Fr(t)=C(1+t77), (7.19)
o is the smallest integer larger than n/4, and C is a constant depending on
K,g,u,n.

Furthermore, for any chart U @ M, a set K € U, and a positive integer

m, we have

IP:fllemxy < Fx (&) 1l z2(a), (7.20)
where Fi (t) is still given by (7.19) but now o is the smallest integer larger
than m/2+n/4, and C = C(K,U, g, u,n, m).

The estimate (7.18) is true also with & = n/4, which is the best possible
exponent in (7.19) (cf. Corollary 15.7). However, for our immediate appli-
cations, the value of ¢ is unimportant. Moreover, we will only use the fact
that the function Fi (t) in (7.18) and (7.20) is finite and locally bounded in
t € (0, +00).

PROOF. Let {E)\} be the spectral resolution of the operator £ = —Aulwg

in L2 (M). Consider the function ® (\) = A\¥e~* where t > 0 and k is a
positive integer. Observe that by (4.50)

Lre = (L) = / Nee=tA 4R, . (7.21)
0
Since the function ® () is bounded on [0, +00), the operator ® (L) is bounded
and so is L¥e~*£. Hence, for any f € L? (M), we have
cF (e f) e L2 (M),

that is,
Ak (P.f) € L* (M).
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Since this is true for any k, we obtain P,f € W (M). By Theorem 7.1 (or
Corollary 7.2) we conclude that P,f € C™ (M) .

Let us prove the estimates (7.18) and (7.20). Observe that the function
A Me=t takes its maximal value at A = k/t, which implies, for any
fel?

|AEPflie = |ILRe™ |z

0o 0 1/2
= ([T (o) amasiz)
0
o 1/2
sup (x\ke_t’\) (/ d”EAf”%Z)
A>0 0

- (f)ke-knfup. (7.22)

t

Using the definition (7.1) of the norm in W?? and (7.22), we obtain, for any
positive integer o,

IA

IPiflwee = D _IIAEPfl|
k=0
< C<1 k) i fllz2
< (1+t“" lIfIIL2 (7.23)

By the estimate (7.2) of Theorem 7.1, we have
Sup |P:f| < Cl B fllwee ary

provided ¢ > n/4, which together with (7.23) yields (7.18). In the same
way, (7.20) follows from (7.3). d

Initially P; f was defined for as e7*£ f, which is an element of L2 (M). By
Theorem 7.6, this function has a C*-version. From now on, let us redefine
P;f to be the smooth version of e *¢f. Now we are in position to prove
that, on any weighted manifold M, the operator P; possesses an integral
kernel].

THEOREM 7.7. For any x € M and for any t > 0, there exists a unique
Junction py , € L? (M) such that, for all f € L? (M),

Pf (@)= [ P ) £ @) duy). (7.24)
Moreover, for any relatively compact set K C M and for any t > 0, we have
sup [|peliLeary < Fx (1), (7.25)

zeK

where F (t) is the same function as in the estimate (7.18) of Theorem 7.6.
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REMARK 7.8. The function p:z (y) is defined for all t > 0, z € M but
for almost all y € M. Later on, it will be regularized to obtain a smooth
function of all three variables t, x, y.

PRrROOF. Fix a relatively compact set K C M. By Theorem 7.6, for all
t >0 and f € L? (M), the function P, f (z) is smooth in z € M and admits

the estimate
|Pif (z)] < Fx (¢) | fllp2 forall z € K. (7.26)

Therefore, for fixed ¢ > 0 and z € K, the mapping f — Pif(z) is a
bounded linear functional on L? (M). By the Riesz representation theorem,
there exists a function pt, € L? (M) such that

Pif (2) = (Pa, f)ye forall f € L2 (M),

whence (7.24) follows. The uniqueness of p; is clear from (7.24). Since
for any point € M there is a compact set K containing = (for example,
K = {z}), the function p; . is defined for all £ > 0 and =z € M.
Taking in (7.26) f = p;, and using
Pof () = (f, )ga = If132
we obtain

17172 < Fx (8) 122,
whence (7.25) follows. O

EXAMPLE 7.9. Recall that the heat semigroup in R™ is determined by
(4.62), which implies that in this case

1 |z —y|?
) exp ( yn .

Using the identity p; * p; = p2: (see Example 1.9), we obtain

Ipcalite = [ (@ =) dy = (pex20) (0) = p2e (0) =

pre (V) =p(x—y) =

_
(8mt)™/?’

whence
Iptallze = (8mt) 4.
In particular, we see that the estimate (7.25) with Fx (t) = C (1 +¢t77) and

o > n/4 is almost sharp for small £.

Now we prove that the function P f (z) is, in fact, smooth jointly in
t,z. Consider the product manifold NV = R} x M with the metric tensor
gy = dit? + gy and with measure dv = dtdu. The Laplace operator Ay of
(M, 1) , which is obviously defined on C* (), extends to D’ (N) as follows:

(Ay,’U, Q0) = (’U, AMQO) ’

for all v € D' (N) and ¢ € D(N). The time derivative % is defined in on
D'(N) by

(Gro) = (0, 20,
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Hence, for a function u € L ,(N), it makes sense to consider the heat

equation %% = A,ju as a distributional equation on N.

THEOREM 7.10. For any f € L?(M), the function u(t,z) = Bf ()
belongs to C® (N) and satisfies in N the heat equation %% = A, u.

More precisely, the statement means that, for any ¢t > 0, there is a
pointwise version of the L? (M)-function u (¢, -) such that the function u (¢, z)
belongs to C* (N).

ProoF. We already know by Theorem 7.6 that the function u (¢, z) is
C* smooth in z for any fixed t > 0. To prove that u(¢,z) is continu-
ous jointly in ¢,z, it suffices to show that u (¢,z) is continuous in ¢ locally
uniformly in z. In fact, we will prove that, for any ¢ > 0,

u(t+e,-) it u(t,) ase— 0, (7.27)

which will settle the joint continuity of . By Corollary 7.2), to prove (7.27)
it suffices to show that, for any non-negative integer £k,

w(t+e,) S ult,). (7.28)

We know already from the proof of Theorem 7.6 that, for any non-negative
integer m, u(t,-) € dom £™ and, hence, A'u = (—£)™u. Therefore, it
suffices to prove that,

2
L™ (Pyyef) =5 L™ (BS) . (7.29)
Since by (7.21)
X
L7 (Puef) = [ Ame NaE, §
0

and the function A™e~(+€)* remains uniformly bounded in X as ¢ — 0,
Lemma 4.8 allows to pass to the limit under the integral sign, which yields
(7.29).

Since u (¢, z) is continuous jointly in (¢, z), it makes sense to consider u
as a distribution on N. Let us show that the function u (¢, z) satisfies on N
the heat equation in the distributional sense, which amounts to the equation

)
(u, 8—‘: +Aup) =0, (7.30)

for any ¢ € D' (N). Using Fubini’s theorem, we obtain
Oy Op
o+ 8u) = [ u(GE+ ) dr
Op
= (u, B?)Lz(M) dt + (u, Augo)Lz(M) dt(731)
Ry R+

Considering ¢ (t,-) as a path in L? (M), observe that the classical partial

derivative %‘f coincides with the strong derivative % (cf. Exercise 4.47).
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The product rule for the strong derivative (cf. Exercise 4.46) yields
—w oGy (B
( U, 8t) ( U, dt ) - dt (u; (P) (dt’<p)’ (732)

where all the brackets mean the inner product in L? (M). Since ¢ (t,")
vanishes outside some time interval [a, b] where 0 < a < b, we obtain

d
— (u,p)dt = 0. 7.33)
L &9 (
To handle the last term in (6.66), recall that, by Theorem 4.9,
du
A
at M

which yields
L Gooa= [ Guwpre= [ waua @9
dt Ry R

"
Combining (7.32), (7.33), and (7.34), we obtain that the right hand side of
(7.31) vanishes, which proves (7.30).

Applying Theorem 7.4 to function u (¢, z), which satisfies the heat equa-
tion in the distributional sense, we conclude that u € C* (N) and u satisfies
the heat equation in the classical sense. |

SECOND PROOF. In this proof, we do not use the parabolic regularity theory (Theorem
7.4). However, we still use the first part of the first proof, namely, the convergence (7.27).
Let us fix a chart U C M so that we can consider the partial derivatives 3% with respect
to z in this chart. By Theorem 7.8, 8%u is C*°-smooth in z. By (7.27), we have

u(t+e,) L 8%u(t,) ase — 0,
which implies that 8%u is jointly continuous in ¢, z.
To handle the time derivative 8;u, let us first prove that, for any ¢ > 0,
u(t+e,)—ult,)
€
By Corollary 7.2, it suffices to prove that, for any non-negative integer k,

u(t+e,-2—u(t, ) wﬁk L,

% Ayult,”) ase— 0. (7.35)

and this, in turn, will follows from

cmu(t-{-e, E): u(t, ) L2 £m+1 (7.36)
provided (7.36) holds for all non-negative integers m. It follows from (7.21) that

N . oo —eX _
£mu(t te) —ult) = / P 1e_t>‘dE'>\f.
14 0 (=>4

Since the function under the integration remains uniformly bounded in A as e — 0 {cf. the
estimate (4.60) from the proof of Theorem 4.9), by Lemma 4.8 we can pass to the limit
under the integral sign, which yields (7.36).

It follows from (7.35) that d;u exists in the classical sense for all t > 0 and z € M,

and
Ou = Aju. (7.37)
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Moreover, (7.35) also yields that, for any partial derivative 8% in z,
i) u(t+e,2—6 u(t,-) ol

8% Auu(t, ),
which implies that
8 (8%u) = 8% A u. (7.38)

In particular, we obtain that 8; (8%u) is continuous in ¢, z.
Observe that the function v = A,u can be represented in the form v = P;_,g where
g € L? (M), which follows from the identity

v=—Lu=—Le T f = =t (£e7oE )

Therefore, all the above argument works also for function v instead of w and, hence, for
Aﬁ'u, instead of u, for any positive integer k. Replacing in (7.38) u by Aﬁu we obtain

8 (0°2% ') = 0 (akw). (7.39)
Iterating (7.39) for a decreasing sequence of values of k, we obtain
o*Afu=0. (8°A5 ) = 8} (a‘*a’;—zu) = ... = OF L (07 Au) = OF %,

Hence, we have the identity
%y = 8*Afu.

In particular, this gives Bfu = Af;u,, whence applying 9%,
8%0fu = 0°Aku.

Finally, using the above two identities, any partial derivative
ok 9*16F26% .. u

can be brought to the form 8*Afu and, hence, it exists and is continuous in t,z, which
finishes the proof. O

THIRD PROOF. Let ® (A) be a continuous function on [0, +00) of a subexponential
growth; that is for any ¢ > 0

(N =0 (eﬂ) as A — +oo. (7.40)
Fix f € L* (M) and, for any t > 0, consider the function
o(t)= [ @) B, (7.41)
0

where {E,} is the spectral resolution of the Dirichlet Laplace operator £ on M. We will
prove that v (¢, z) belongs to C™ (N) and satisfies the heat equation on N (obviously, this
contains Theorem 7.10 as a particular case for ® = 1).

Fix the numbers 0 < a < b and consider the open set N, C N defined by

Ngp = (a,, b) x M.

LEMMA 7.11. For any t € (o,b), function v (t,) can be modified® on a subset of -
measure 0 of M so that v (t,x) € L?(Nay). Furthermore, the weak derwatives -‘g—‘ti and
Auv ezist in L? (Nap) and satisfy the identity

B e —tA
i Ayv=— AP (A) e " MdE, f. (7.42)
0

B e —
3Such a modification is necessary because there are non-measurable subsets of N that

have y-measure 0 for any fixed ¢.
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PROOF. By (7.40), the function & (\)e™* is bounded for any t > 0, which implies
that the right hand side of (7.41) is defined for all f € L? (M) and determines a function
from L% (M). As in the proof of Theorem 4.9, one shows that the mapping t — v (t,-) as
a path in L? (M) is strongly differentiable and satisfies the equation

3—: (t,) = —Lo(t)=— /0 T A8 () e~ By f (7.43)

(cf. Exercise 4.51).

Consequently, the path t = v2(¢,-) is continuous in L' (M). By Exercise 4.49, the
function v (¢,-) can be modified for any ¢t € (a,b) on a set of y-measure 0 in M so that
v? (t,x) € L' (N, ). Hence, v (t,z) € L? (Nas).

Since the function A® ()) also satisfies the condition (7.40), we conclude by the above
argument that % (t,z) € L? (Nap). Let us show that the distributional derivative &

coincides with the strong derivative, that is,

S dv

Frial e (7.44)
Indeed, applying the product rule of the strong derivative (see Exercise 4.46), we obtain,

for any ¢ € C§° (Nap)

d d<p> (d‘u )
-\, =Y, =57 + TR .
dt( ‘P)Lz(M) < dt L2y at ¥ 2y

Since
b d
/ % (P Peon =0
it follows that . .
dv d
/a (Ev‘P)Iﬂ(M)dt = —[1 (v, E?)Lz(M)dt

Since £ = %f (cf. Exercise 4.47), we conclude that

dt
dv dp
] ==V, 5, 3
(dt <p>L2(N) ( Bt )L”(N)

which proves (7.44).
Let us prove that
Ayv = —Lv. (7.45)
By definition of £, for any fixed ¢t > 0, A v (¢,+) as a distribution on M coincides with
—Lv (t,-), which implies

b b
- (Evv w)Lz(N) = —/ (L’U (t: ) ’ (p(t, '))LZ(M) dt = / (APU (tr ) P (ty )) dt

b
= / (U (ty ) »Aﬂ(p (tr )) dt = ('U, A#‘P)L‘Z(N) f
whence (7.45) follows. Combining (7.43), (7.44), and (7.45), we obtain (7.42). a

Let A be the (distributional) Laplace operator on the manifold N, that is,
~ &2
By Theorem 7.1, in order to prove that v € C* (Na,s), it suffices to show that A*v €
L?(Ng3) for all k> 1.
Since the function A® ()) also satisfies condition (7.40), Lemma 7.11 applies to func-
tion
»__ / A8 (N) e dEy f
ot 0
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and yields that the weak derivative % exists in L® (N, ) and

v

oz = /0 N2®(N) e N dE,f.

Sinceg%’ and A,v belong to L? (Na,b), we obtain that also Av € L? (N, ) and
Av = / (X2 =) @ (\) e *MdEsf.
0

Applying the same argument to the function (A% ~ X} ®()) instead of ® (A} and then
continuing by induction, we obtain, that for all integers & > 1,

AFy =/ (N - N*® () e B f,
0

and, hence, AFv € L? (N, ). We conclude that v € C°° (N, ) and the equation %—‘t’ =Ayv
(which follows from (7.42)) is satisfied in the classical sense.

Exercises.

7.17. Prove that, for any compact set K C M, for any f € L? (M, 1), and for any positive
integer m,

sup AT (B S CET™ (14 t77) (I flf2, (7.46)
where ¢ is the smallest integer larger than n/4.

7.18. Let f be a non-negative function from L? (M) and {4} be an exhaustion sequence
in M. Prove that
Plf C°°(_R_+)><M) Pf asi— o0.
HiNT. Use the fact that, for any t > 0,
Pf 2% Pfasi— oo
{cf. Theorem 5.23).
7.19. Prove that if f € C§° (M) then
Ptfcw)fast—)O.

7.20. Consider the cos-wave operator

C; = cos (t£1/2)
(cf. Exercise 4.52). Prove that, for any f € C§° (M), the function

u(t,z) =Cif (z)
belongs to C*° (R x M) and solves in R x M the wave equation

@ =A,u

with the initial conditions

u(0,z) = f(z) and % (0,z) =0.
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7.3. The heat kernel

By Theorem 7.7, for any £ € M and t > 0, there exists a function
Ptz € L? (M, ) such that, for all f € L? (M, p),
B f (37) = (Pt,:z:, f)L2 . (7.47)

Note that the function p; ; (y) is defined for all = but for almost all y. Here
we construct a regularized version of p; ; (), which will be defined for all y.
Namely, for any t > 0 and all z,y € M, set

Dt (fﬂ,y) = (pt/Z,xapt/Zy) 2 (7-48)

DEFINITION 7.12. The function p; (z,y) is called the heat kernel of the
weighted manifold (M, g, p).

The main properties of p; (z,y) are stated in the following theorem.

THEOREM 7.13. On any weighted manifold (M, g, ) the heat kernel sat-
isfies the following properties.

o Symmetry: py (z,y) = pt (y,z) for all z,y € M and t > 0.
o Forany f € L?, and for allz € M andt > 0,

Rf(z) = / P (20) f (4) di @) (7.49)
M .
e p(z,y) >0 forallz,ye M andt >0, and
/ pe (1) dp () < 1, (7.50)
M

forallz € M andt > 0.
o The semigroup identity: for all z,y € M and t,s > 0,

Pers (@:y) = /M pe (2, 2) ps (2,9) dis (2). (751)

o For any y € M, the function u(t,z) := pi(z,y) is C® smooth in
(0,+00) X M and satisfies the heat equation

5 = Au. (7.52)
e For any function f € C§° (M),
[ pe ) @ du) ~ £ ) ast o, (7.53)

where the convergence is in C® (M).

REMARK 7.14. Obviously, a function p¢ (z,y), which satisfies (7.49) and
is continuous in y for any fixed t,z, is unique. As we will see below in
Theorem 7.20, the function p; (z,y) is, in fact, C* smooth jointly in ¢, z,y.
Note also that p; (z,y) > 0 provided manifold M is connected (see Corollary
8.12).



7.3. THE HEAT KERNEL 199

Proor. Everywhere in the proof, (:,-) stands for the inner product in
L?(M). The symmetry of p: (z,y) is obvious from definition (7.48). The
latter also implies p; (z,y) > 0 provided we show that p;; > 0 a.e.. Indeed,
by Theorems 5.11 and 7.6, P;f (x) > 0 for all non-negative f € L? and for
all t > 0, z > 0. Setting f = (pt,z)_, we obtain

0 S .Ptf(.’L') = (pt,:t,f) = ((Pt,:c).,.,f) - ((pt,:c)_af) = _(faf)’

whence f =0 a.e. and p;; > 0 a.e.
The proof of the rest of Theorem 7.13 will be preceded by two claims.

CrLam 1. Forallz € M, t,s >0, and f € L? (M),
Puyof (2) = /M (PrerD0)  (2) dis (2). (7.54)

Indeed, using Piys = PP, (7.47), and the symmetry of P;, we obtain

Pysf(x) = Ps(Pf)(z)
= (ps,x, Ptf) = (Ptps,x, f)

- / Pipas (2) £ (2) dus (2)
M

- / Pz, Pog) £ (2) di (2),
M

whence (7.54) follows.

CLAIM 2. For all x,y € M and t > 0, the inner product (ps z,pt—s,y) does
not depend on s € (0,1).

Indeed, for all 0 < r < s < t, we have, using (7.47) and applying (7.54)
with f = Pr,z;

(ps,zapt—s,y) = Pspt—s,y (:L') =FB (Ps——'rpt—s,y) (m)
= ‘/Mp'r,z (z) (ps—r,z,pt—s,y) du (z)

B vpra (y)
= (pt—r,y,Pr,z) )

which was to be proved.
Proof of (7.49). Combining (7.54) and (7.48), we obtain

Pf(z) = /M (Pt/2,0:Pe/2y) T (W) dp(y) = /M pe(z,y) f(y)du(y). (7.55)

Proof of (7.50). By Theorem 5.11, f < 1 implies B;f (z) < 1 for all
T € M and t > 0. Taking f = 1x where K C M is a compact set, we obtain

| nendm=t
whence (7.50) follows.
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Proof of (7.51). It follows from Claim 2 that, for all z,y € M and
0<s<Ht,
P (z,y) = (pS,a::pt—s,y) . (7.56)
Indeed, (7.56) holds for s = t/2 by definition (7.48), which implies that it
holds for all s € (0,t) because the right hand side of (7.56) does not depend
on s. Comparison of (7.47) and (7.49) shows that
pt(z,°) = Pt €. (7.57)
Using (7.56) and (7.57), we obtain, for all z,y € M and t,s > 0,

/M P (2,2) ps (2,y) du (2) = (0t (%,) s 25 (4, ) = (D2 Psy) = Po+s (7,9) .
(7.58)

Proofof (7.52). Fix s > 0 and y € M and consider the function v (¢, z) :=
De+s (z,y). We have by (7.58)

v (t’ w) = (pt:x)pS,y) = Bps,y (w) ‘ (7'59)
Since psy € L? (M), Theorem 7.10 yields that the function v (¢, z) is smooth
in (,z) and solves the heat equation. Changing ¢ to ¢t — s, we obtain that
the same is true for the function p; (z,vy).

Proof of (7.53). If f € C§° (M) then also A,f € C§° (M) whence it
follows by induction that f € dom £™ for any positive integer m, where £
is the Dirichlet Laplace operator. By (A.48), this implies that

/ M| Exfl? < oo.
0
The identities o
Lmf = / A"dEf
0
and
OO0
LTPf = / A e~ B, f
0
imply
2 o 2m —tA 2 2
lem (Pt = £) e = [ 2™ (1) dlEaf®

Since the function A?™ (1 — e“”‘)2 is bounded for all ¢ > 0 by the integrable
function A\®>™, and

2
AZm (1—e‘t’\) —~0ast—0,
the dominated convergence theorem implies that

L™ (Pef = f)llz2 = 0ast —0.
We see that P;f — f — 0 in W2 (M), which implies by Corollary 7.2 that

loc

RS, (7.60)
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which was to be proved. O

Exercises.
7.21. Prove that, for all z,y € M and £ > 0,

Pt (z,9) < Vi (2, 2) 22 (4, 9). (7.61)

7.22. Prove that, for all z € M, the functions p; (z,z) and ||p:,||2 are non-increasing in ¢.

7.23. Let K C M be a compact set.
(a) Prove that the function

S(t) = sup pi(z,y)
z,yEK
is non-increasing in t > 0.
(b) Prove that, for all ¢ > 0,
S <C(1+¢t7%),
for some constants &, C > 0, where C depends on K.
7.24. Let J be an isometry of a weighted manifold M (see Section 3.12). Prove that
pe (Jz,Jy) = pe (2,9) -

7.4. Extension of the heat semigroup

So far the operator P; has been defined on functions f € L? so that
B,f € L2 N C*. Using the identity (7.49), we now extend the definition of
P, as follows: set

Bf () = /M pe(2,9) (W) du @), (7.62)

for any function f such that the right hand side of (7.62) makes sense. In
particular, P;f (z) will be considered as a function defined pointwise (as
opposed to functions defined up to null sets).

1
loc*

7.4.1. Heat semigroup in L
THEOREM 7.15. If f € L} (M) is a non-negative function on M then

l
the function P,f (z) is measurable in = € M (for any t > 0) and in (t,z) €
R+ x M.
If, in addition, P.f (z) € L}, (I x M) where I is an open interval in

Ry, then the function Pif (z) is C* smooth on I x M and satisfies the heat
equation

o (Pf) = By (P).

. ProOF. Let {Q%} be a compact exhaustion sequence in M, that is, an
Increasing sequence of relatively compact open set Q C M such that O C
Q%41 and the union of all sets Qp is M. Set

fr = min (f,k) 1a,
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and observe that functions fx are bounded, compactly supported, and the
sequence {fr} is monotone increasing and converges to f a.e.. Since f; €
L? (M), by Theorems 7.10 and 7.13, the function u (¢,z) = Pify (z) is
smooth in N := I x M and satisfies the heat equation in N. Set also
u(t,z) = P,f (z) and observe that, by (7.62) and the monotone convergence
theorem,

ug (t,2) = u(t,z) for all (¢,z) € N. (7.63)

Hence, u (¢, ) is a measurable function both on M and N (note that so far

u may take value 00).
If, in addition, u € L}, (N) then u can be considered as a distribution

on N. The heat equation for u; implies the identity

Oy _
/;v <5t_ + A,ﬁp) ug dudt = 0,

for all ¢ € D(N). Since the sequence of functions (%‘te + AM‘P) ug is uni-
formly bounded on N by the integrable function Clgupp,u, where €' =
sup |G + App|, we can pass to the limit under the integral sign as k — oo
and obtain that u satisfies the same identity. Hence, u solves the heat equa-
tion in the distributional sense and, by Theorem 7.4, u admits a C* (IV)-
modification, which we denote by % (¢, z).

The sequence {uy} is increasing and, by (7.63), converges to % a.e..
Since % is smooth and, hence, & € LZ_(N), we obtain by the dominated

L2 (N) _

convergence theorem that uy "’“——(> ) #. By the second part of Theorem 7.4,
we conclude that uy Cintr4 Finally, since u; — u pointwise, we see that
u(t,z) =u(t,z) for all (¢,z) € N, which finishes the proof. a

For applications, Theorem 7.15 should be complemented by the con-
ditions ensuring the finiteness of P;f. It is also important to understand
whether P, f converges to f as t — 0 and in what sense. We present in the
next subsections some basic results in this direction.

7.4.2. Heat semigroup in C,. Denote by Cj, (M) the class of bounded
continuous functions on M. The following result extends Theorem 1.3 to
arbitrary weighted manifold.

THEOREM 7.16. For any f € Cy (M), the function P, f (z) is finite for
allt > 0 and x € M, and satisfies the estimate

inf f < P.f (z) < sup f. (7.64)

Moreover, P;f (z) is C*™ smooth in Ry x M, satisfies in Ry X M the heat
equation, and :

lim P f (z) = f (=), (7.65)

where the limit is locally uniform in z € M.
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In particular, we see that P.f € Cy (M) for any t > 0 so that P; can
considered as an operator in Cj (M).
The statement of Theorem 7.16 can be rephrased also as follows: for
any f € Cy (M), the function u (t,z) = P f (z) is a bounded solution to the
Cauchy problem

u|t=0 = f 3
understood in the classical sense. The question of uniqueness is quite subtle
and will be first addressed in Section 8.4.1.

{%‘=A“u in Ry x M,

PROOF. By treating separately f+ and f—, we can assume that f > 0.
By (7.50), we obtain, for all t > 0 and z € M,

Pf(z) <supf /M pt (z,y) du (y) < sup f, (7.66)

which proves the finiteness of P;f and (7.64). By the first part of Theorem
7.15, P,f(z) € L>® (R4 x M), and by the second part of Theorem 7.15,
P,f (z) € C® (R4 x M) and P, f satisfies the heat equation.

The initial condition (7.65) was proved in Theorem 7.13 for f € C§° (M).
Assume next that f € Cy (M), where Co (M) is the class of continuous
functions with compact supports. Since C§° (M) is dense in Cy (M) (cf.
Exercise 4.5), there exists a sequence {fx} of functions from C§° (M) that
converges to f uniformly on M. Obviously, we have

Bif — f =(Bf = Pufs) + (Pefe — fx) + (fs = ) -

For a given € > 0, choose k large enough so that
sup |fi — fl <e. (7.67)

By (7.64) we have, for all ¢t > 0,
sup [P; (fe — f)| <e.
M

By the previous step, P;fx — fir as t — 0 locally uniformly; hence, for any
compact set X C M and for small enough ¢t > 0,

sup |Pefe — fx| <e.

Combining all the previous lines yields
sup |P.f — f| < 3g,
K

whence the claim follows.

Let now f € C, (M). Renormalizing f, we can assume 0 < f < 1. Fix
& compact set K C M and a let ¢ € C§° (M) be a cutoff function of K in
M, that is, 0 <) < 1 and 9 = 1 on K (cf. Theorem 3.5). Since f4) = f on
K, we have the identity

Pf - f=(Bf — P (fy)) + (P (f¢) — f) on K.
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Since fy € Cy (M), we have by the previous step
sup |P; (f¢) — f| = 0 ast — 0. (7.68)
K

To estimate the difference P,f — P; (f1), observe that, by 0 < f < 1 and
(7.64),

0LSPB(f-fY)<P(1-9)=PRl-Py<1-PFy.
By the previous part, we have Pyt) — ¢ as t — 0 locally uniformly. Since
1 = 1 on K, we obtain that P,i) — 1 uniformly on K, which implies that

s1}1{p|Pt(f—f1[))|——>0 as t — 0,

which together with (7.68) implies
sup|P,f = f| = ast—0,
k

which was to be proved. 0

REMARK 7.17. Consider the function
— Pt.f (III) ) > 01
“(t’x)—{ f@), t=o0.
It follows from Theorem 7.16 that if f € Cp (M) then w is continuous in
[0,+00) x M.
The main difficulty in the proof of Theorem 7.16 was to. ensure that the

convergence (7.65) is locally uniform. Just pointwise convergence is much
simpler — see Lemma 9.2.

7.4.3. Heat semigroup in L'. Our next goal is to consider P, f for
f € L' (M). We will need for that the following lemma.

LemMaA 7.18. Let {vix} be a double sequence of non-negative functions
from L* (M) such that, for any k,

vikil)ukeLl(M) as ¢ — oo

and .
uki-moeLl(M) as k — oo.

Let {w;} be a sequence of functions from L' (M) such that, for all i,k,
vik Swi and flwl|pr < Jlufjp.

)2 .
Then w; — u as t — 0.

"~ ProoF. All the hypotheses can be displayed in schematic form in the
following diagram:
ik S w;
Jz <rt
Ll
Uk _— u

where all notation are self-explanatory.
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Given € > 0, we have, for large enough k,
[l — ugl 22 <e.

Fix one of such indices k. Then, for large enough %, we have
lluk — villzr < €

so that
lw — vigll L < 2e.
Let us show that, for such ¢,

flu —will 1 < 4e, (7.69)

which will settle the claim.
By condition v;; < w;, we have

U—w; <U— Vg

whence
(u—wi), < (u—vg),
and, hence,
I (v —wi)y o2 < 2
Next, write

/M (w—wi)dy = /{ LT /{ LY
= o wi), gz — I (= ). [lza.

By hypothesis,

[ =) da = s ~ s >,
whence it follows that
(e =)z < (u = wi)y llze < 2,
and which proves (7.69). =

THEOREM 7.19. For any f € L' (M) and t > 0, we have P,f € L' (M)
and
I Peflizs < I Sllza- (7.70)

Moreover, P, f (z) is C* smooth in Ry x M, satisfies in Ry X M the heat
equation, and

1
P ¢ ast o (7.71)
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Proor. Without loss of generality, we can assume f > 0 (otherwise, use
f = f+—f-). Note that by Theorem 7.15, P;f (z) is a measurable function
of z and of (¢, z). Using (7.50), we obtain

[ psaw = [ ([ pt<m,y)f(y>du<y)) du ()
- [ (/. p(@)du(@) ) £ )0

< /M £ @) du () = £l

which implies P,f € L' (M) and the estimate (7.70). Integrating the lat-
ter in dt, we obtain that P,f (z) € L., (R+ x M). By Theorem 7.15, we
conclude that P;f € C*® (R4 x M) and P;f satisfies the heat equation.

Let us now prove the initial condition (7.71). Let {2} be a compact
exhaustion sequence in M. Set

fk = min (f, k) 1Qk
and observe that fr € L? (§), which implies by Theorem 4.9 that

Since p (%) < oo and, hence, L2 (%) — L' (%), we obtain also

~—" fr ast— 0.

LMQ
Ptnkfk —(—)k) fr ast— 0.
Extending function Ptn’c fx (z) to M by setting it to 0 outside §2;, we obtain

1
Pnkfk L—(A;I) fk ast — 0.

Obviously, fk f as k — oo, so that we have the diagram
P*fi < PBf
et <up
i B f
and conclude by Lemma 7.18 that P, f E—) I a
Exercises.

7.25. Prove that, for any two non-negative measurable functions f and g on M,
(P (fo)* S P (f) P (d7)-
Prove that
(P < P.(f7).

7.26. Prove that the following dichotomy takes place: either sup P;1 =1 forallt > 0 or
there is ¢ > 0 such that
sup P;1 < exp (—ct)

for all large enough ¢.
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7.27. Prove that, for any fixed ¢ > 0 and =z € M, the heat kernel p; (z,y) is a bounded
function of y € M.

7.28. Let F be a set of functions on M such that f € F implies |f| € F and P.f € F.
(a) Prove that the semigroup identity

PtPs = Pt+s
holds in F.
(b) Assume in addition that F is a normed linear space such that, for any f € F,
I1P:fll= < I fllx
and

|Pef — fll > 0ast—0.
Prove that, for any s > 0,
|[Pef = Psfllz—0 ast—s.

7.29. Let f € W}, (M) be a non-negative function such that A, f < 0 in the distributional
sense. Prove that P.f < f for all ¢t > 0.
7.30. Let f € L},. (M) be a non-negative function such that P.f < f for all £ > 0.

(a) Prove that P;f (z) is decreasing in ¢ for any € M.

(b) Prove that P;f is a smooth solution to the heat equation in Ry x M.

1
(c) Prove that P.f Ll—"? fast—0.
(d) Prove that A, f < 0 in the distributional sense.

7.31. Under the conditions of Exercise 7.30, assume in addition that A, f = 0 in an open
set U C M. Prove that the function

_ [ Bf(=), t>0,
“(t’w)_{ft(x)g,ﬁ t<o,

is C*° smooth in R x U and solves the heat equation in R x U.

REMARK. The assumption P;f < f simplifies the proof but is not essential — cf. Exercise
9.8(c).

7.32. Let f € Ll (M) be a non-negative function such that P;f € L}, (M) for all
t € (0,T) (where T > 0) and P.f > f for all t € (0,T).

(@) Prove that P.f (z) is increasing in ¢ for any = € M.
(b) Prove that P:f is a smooth solution to the heat equation in 0,T) x M.

Ll
{¢) Prove that P,f =% f as ¢t — 0.
(d) Prove that A,f > 0 in the distributional sense.

(e) Show that the function f (z) = exp ('—ﬂ,—z) in R™ satisfies the above conditions.
7.33. Let f € L™ (M). Prove that P.f € L* (M) for any t > 0,
[1P:fllzee < [Ifllzee,
and the function u (¢, z) = P, f (z) is C*° smooth in Ry X M and satisfies the heat equation.

7.34. Let Q C M be an open set, and consider the function

f<“)=1”($):={ 0 gi?/.r\n

Prove that
%i_{).’% Pif (z) = f(z) for all z € M\ 8Q, (7.72)

and the convergence is locally uniform in z.
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7.35. Prove that if a function f € L™ (M) is continuous at a point z € M then
P.f(z) > f(z) ast — 0. (7.73)
7.36. Let 1 <r <ooand f € L"(M).
(a) Prove that P,f € L™ (M) for any ¢t > 0, and
Pefllzr < £ ller. (7.74)

(b) Prove that P,f (z) is a smooth function of (¢,z) € Ry X M and satisfies the heat
equation.

7.37. Prove that if 1 <r < oo and f € L™ (M) then P;f RN fast—0.
7.38. Assume that
F(t) :== sup p: (z,z) < 0.
z€EM
Prove that, for all 1 <r < s < 400, f € L™ (M) implies P.f € L° (M) and
1Peflles < F (@)™ fllzr. (7.75)

7.5. Smoothness of the heat kernel in t,z,y

In this section, we prove the smoothness of the heat kernel p; (z, y) jointly
intz,y.

THEOREM 7.20. The heat kernel p; (z,y) is C*°-smooth jointly in t > 0
and x,y € M. Furthermore, for any chart U C M and for any partial
differential operator D* int € Ry and z € U,

D%pi(z,-) € L* (M) (7.76)

and, for any f € L? (M),

D*Byf (z) = /M D (2,9) £ (¥) dus ). (7.77)

PRrooFr. Fix a relatively compact chart U C M, and let X be a closed
ball in U. We will assume that z varies in X and denote by 8 partial
derivatives in  in chart U. Recall that, by Theorem 7.13, 8%p; (z,y) is a
smooth function in ¢, z for any fixed .

Let us first prove the following claim, which constitutes the main part

of the proof.
CLAIM. Punction 0%p (z,y) is continuous in z locally uniformly in t,y.
By Theorem 7.6, we have, for any f € L? (M) and any multiindex a,

Sup |0°Pif| < Fx o () || fll 22 (7.78)

where Fx ;. (¢) is a locally bounded function of ¢ € Ry. Since (7.78) can be
also applied to the derivatives 8;0%, it follows that, for all z,2" € X,
|0°P,f (z) — 0°Pof (z')| < Fxjoga () I fllz2 |z — 2], (7.79)

where |z — /| is the Euclidean distance computed in the chart U.
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For all t,s > 0, y € M, and z,2’ € X, we have by (7.56)
Pits (T,Y) — Pets (2,Y) = Pepsy (x) — Pipsy (z')
which implies by (7.79).
0%pets (2,9) = 0%Pras (2,9)] < Fix a1 (t) [Pagllzz |z — 2.

Restricting y to a compact set Y C M and applying the inequality (7.25) of
Theorem 7.7 to estimate ||psy||z2, we obtain

|aapt+s (.’I), y) - aaplf+s (3:[’ y)l < FX,IaH-l (t) FY (5) I:C - wll ’ (7'80)

for all z,2’ € X and y € Y. Hence, 8%pi+s (z,y) is continuous in z locally
uniformly in ¢,y. Since s > 0 is arbitrary, the same holds for 8%p; (z,y),
which was claimed.

By Theorem 7.13, p: (z,y) is a continuous function in ¢,y for a fixed z.
By the above Claim, p: (z,y) is continuous in z locally uniformly in ¢,y,
which implies that p; (z,y) is continuous jointly in ¢, z, y.

Denote by A, the operator A, with respect to the variable z. It follows
from the above Claim that Azp; (z,y) is continuous in z locally uniformly
in ¢,y. Since by Theorem 7.13

s,
Agpt (z,y) = 57 (z,y) = Aypy (z,Y) (7.81)

and Ayp; (z,y) is continuous in ¢,y, we conclude that all three functions in
(7.81) are continuous jointly in ¢, z,y.

Now consider the manifold N = M x M with the product metric tensor
and the product measure dv = dpdu. Since p; (z,y) and its derivatives
(7.81) are continuous functions on R4 x N, all these derivatives are also
the distributional derivatives of p; (z,y) on Ry X N. Hence, we have the
following equation

0 1
Ept = ‘2‘ (Az + Ay)pt,

which is satisfied in the distributional sense in Ry x N. Since
Ag + Ay =A,,

where A, is the Laplace operator on (N, v), the function p; (z,y) satisfies
the heat equation on Ry X N (up to the time change ¢ — 2t). By Theorem
7.4, we conclude that p: (z,y) is C* smooth on R4 x N, which was to be
proved.

Let D* be any partial derivative in ¢t and z. By the previous part of the
proof, D%p, (z,y) is a smooth function in ¢, 2, y, which implies that, for any
feC (M)

D® /M P (2,9) f () du(y) = /M Dop(z,9) f W dply),  (7.82)

because the the function p; (z,y) f (y) is C®-smooth in ¢, z, y and the range
of t,z,y can be restricted to a compact set.
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Observe that the estimate (7.78) holds also for the derivative D in place
of 0%, because by (7.81) the time derivative operator J; on p; (z,y) can be
replaced by A; and, hence, by a combination of operators 3%. Then (7.78)
implies that, for fixed ¢, z, the left hand side of (7.82) is a bounded linear
functional on f € L% (M). By the Riesz representation theorem, there exists
a function hy, € L? (M) such that this functional has the form (hyg, f). It
follows from (7.82) that, for all f € C§° (M),

/M D (2,9) £ () i (9) = (heas ) -

By Lemma 3.13, we conclude that
Do‘pt (il!, ) = ht,z a.e.,

whence
D%p (z,-) € L* (M). (7.83)

Finally, to prove the identity (7.82) for all f € L? (M), observe that, by
(7.83), the right hand side of (7.82) is also a bounded linear functional on
f € L? (M). Hence, the identity (7.82) extends by continuity from C§° (M)
to L? (M) (cf. Exercise 4.4), which finishes the proof. a

In what follows we will give an alternative proof of Theorem 7.20, without the
parabolic regularity theory. As we will see, the joint smoothness of the heat kernel in
t,z,y follows directly from the smoothness of P.f (z) for any f € L? (M), by means of
some abstract result concerning the differentiability of functions taking values in a Hilbert
space.

Consider an open set 2 C R™, a Hilbert space H, and a function & : 2 — 7{. Denote
by (-, ) the inner product in 7. We say that the function h is weakly C* if, for any ¢ € H,
the numerical function

z = (h(z),9)
belongs to C* (Q). The function h is strongly continuous if it is continuous with respect
to the norm of #, that is, for any z € {2,

Ih(y) —h(z)l| > Oasy — =
The Gateaux partial derivative 8;h is defined by

Bih (z) = h_rg(l)h(“ses‘)—h(’"),

where e; is the unit vector in the direction of the coordinate z* and the limit is understood
in the norm of H. One inductively defines the Gateaux partial derivative %h for any
multiindex o. We say that the function h is strongly C* if all Gateaux partial derivatives
8%h up to the order k exist and are strongly continuous.

Since the norm limit commutes with the inner product, one easily obtains that if h is
strongly C* then h is weakly C* and

8% (h(z),p) = (0%h(z),p) for any ¢ € H, (7.84)
provided |a| < k. It turns out that a partial converse to this statement is true as well.

LEMMA 7.21. For any non-negative integer k, if h is weakly C** then h is strongly
C*. Consequently, h is weakly C* if and only if h is strongly C*™.



7.5. SMOOTHNESS OF THE HEAT KERNEL IN ¢,z,y 211

PRrROOF. We use induction in k.
Inductive basis for k = 0. Fix a point €  and prove that & is strongly continuous
at z. Fix also ¢ € H and consider a numerical function

f(@) = (h(2),9),

which, by hypothesis, belongs to C* (2). Choose & > 0 so small that the closed Euclidean
ball B, () lies in 2. Then, for any vector v € R™ such that |v| < ¢, the straight line
segment connecting the points z and x4 lies in £2. Restricting function f to this segment
and applying the mean-value theorem, we obtain

|f (@ +v) — f(2)| < sup [VF]|v].

= (®)

Rewrite this inequality in the form

Ki@iﬂlﬂﬂwﬂscwwx (7.85)

|v]

where C (z, ) := supg, () |Vf|, and consider M’”’#@—) as a family of vectors in H
parametrized by v (while z is fixed). Then (7.85) means that this family is weakly bounded.
By the principle of uniform boundedness, any weakly bounded family in a Hilbert space
is norm bounded, that is, there is a constant C = C (z) such that

Hh(m+v) h{z)

vl

<C (=), (7.86)

for all values of the parameter v (that is, |v| < € and v # 0). Obviously, (7.86) implies
that h is strongly continuous at z.

Inductive step from k — 1 to k. We assume here k > 1. Then, for any ¢ € H, the
function (h (z), ) belongs to C* (), and consider its partial derivative 3; (h (z),¢) at a
fixed point x € Q as a linear functional of ¢ € H. This functional is bounded because by

(7.86)
Kh(m +ses) - h<~”ﬂ),¢>| <C (@) ol

S

and, hence,
[8; (R (z), )| < C(z) ]l -

By the Riesz representation theorem, there exists a unique vector h; = h; (z) € H such
that

8i (h(z),) = (hi (z),p) for all p € H. (7.87)

The function h; (z) is, hence, a weak derivative of h(z). The condition that (k(x),y)
belongs to C*** (Q) implies that (h: () ,¢) belongs to C* (), that is, h, is weakly C¥.
By the inductive hypothesis, we conclude that h; is strongly C*1.

To finish the proof, it suffices to show that the Gateaux derivative 8;h exists and is
equal to h;, which will imply that h is strongly C*. We will verify this for the index i = n;
for 4 < m, it is done similarly. Consider a piecewise-smooth path «y : [0,T] — Q such that
7¥(0) = o and 7 (T) = z, and show that

AzMﬂm¢mﬂ=M@—Mmy (7.88)
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Denoting the integral in (7.88) by I and using (7.87) and the fundamental theorem of
calculus, we obtain, for any ¢ € H,

T .
Ly = /0 (s (7 (8)), 904 (&)

T .
- /0 8 (1 () @)y 7 ()

T d
AL
(h(@),9) ~ (b (z0),9),

whence (7.88) follows.

Now fix a point z € 0 and choose £ > 0 so that the cube (z —z.z —¢)" lies in
Q. For simplicity of notation, assume that the origin 0 of R™ is contained in this cube,
and consider the polygonal path « connecting 0 and z inside the cube. whose consecutive
vertices are as follows:

(,0,...,0,0), (z%,0,...,0,0), ..., (z%,4%..,2"71,0), (z', 2% .27, z").
By (7.88), we have
T .
hiz) =h(0) + / he (v ()7 (&) dt. (7.89)
0

The integral in (7.89) splits into the sum of n integral over the legs of ~, and only the
last one depends on z™. Hence, to differentiate (7.89) in z”, it suffices to differentiate the
integral over the last leg of y. Parametrizing this leg by

7(t) = (¢',2%,...,a"1,8), 0Lt <™,

we obtain
9uh (z) = 2 /zn hs (v (@) 4 (£) dt = =2 /In R |
Oz™ 0 dzm 0 ’ ’ ’
which was to be proved. O

SECOND PROOF OF THEOREM 7.20. Let ) be a chart on the manifold X. x M, and
consider p; . as a mapping Q — L% (M). By Theorem 7.10. for any f € L? (M), the
function P, f (z) = (Pt,x, )z Is C-smooth in ¢,z. Hence, the mapping p; - is weakly
C*. By Lemma 7.21, the mapping p;, is strongly C=. Let Q' be another chart on
R4 x M which will be the range of the variables s,y. Since p; ., is also strongly C*° as a
mapping from Q' — L? (M), we obtain by (7.56)

Dits (2,9) = (Pt,z, Do) 2 = C7 (2 x ),
which implies that p: (z,y) is C*°-smooth in ¢, z,¥.
Let D® be a partial differential operator in variables (¢, z) € Q. By (7.84), we have,
for any f € L? (M),
-~ D% (pt,, f) = (D°Pr.a, ), (7.90)
where D%p; , is understood as the Gateaux derivative. Since the left hand sides of (7.82)
and (7.90) coincide, so do the right hand sides, whence we obtain by Lemma 3.13

D%p; (z,) = D%ps,z a.e.
Comnsequently, D%*p: (z,-) € L? (M) and, for any f € L* (M),

D* / pe (z,9) f (W) duw = D® (1,0, f) = (D*pta, f) = / D%y (2, ) f (v) du,
M M
which finishes the proof. O
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Exercises.

7.39. Let f: M — [—o00,+00] be a measurable function on M.
(a) Prove that, if f > 0 then the function

Pf (z) = /M P (2,9) £ (0) dis (0) (7.91)

is measurable on M for any ¢ > 0.
(b) Prove that if f is signed and the integral (7.91) converges for almost all x then
P, f (z) is measurable on M.
(¢) Prove the identity
Peysf = P (P f)

for any non-negative measurable function f.

7.40. For any open set Q C M, denote by p’ (,y) the heat kernel of the manifold (2, g, x).

(a) Prove that p§ (z,y) < p: (z,y) for all z,y € Q and ¢t > 0.
(b) Let {£2;} be an exhaustion sequence in M. Prove that

C% (R xMx M)
LA

P (z,) pe (z,7) asi— oo.

(¢) Prove that, for any non-negative measurable function f (z),
PR f(z) — Pyf (z) 8si— oo,

for any fixed t > 0 and z € M.
(d) Prove that if f € C (M) then

Pl f(2) cw(]&*)(M) P,f(z) asi— oo.

7.41. Let (X,gx,px) and (Y,gy, uy) be two weighted manifold and (M, g, 1) be their
direct product (see Section 3.8). Denote by p and p} the heat kernels on X and Y,
respectively. Prove that the heat kernel p, on M satisfles the identity

b ((xyy) ’ (m,:yl)) =pi< (-’E; a:') pty (yyy/) y (792)
forallt >0, z,2’ € X, y,¥ €Y (note that (z,y) and (z',y’) are points on M).
7.42. For any t > 0, consider the quadratic form in L? (M), defined by

en= (=)

(cf. Exercise 4.38). Prove that if the heat kernel is stochastically complete, that is, for all
z€ M and £t >0,

[ revdw-1 (7.99)
M
then the following identity holds:

&)=g [ [ 0@ - 10 p@ e, (794

forallt > 0 and f € L2 (M).

7.43. Prove that, for any real k > 0 and for any f € L? (M),

o gkl
I (k)

for almost all £ € M, where T" is the gamma function.

HiNT. Use Exercise 5.11.

(L+id)7* f(z) = e P, f (z) dt, (7.95)
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7.44. Assume that the heat kernel satisfies the following condition
pe(z, ) <ctY forallz e Mand 0 <t < 1. (7.96)

where v, c > 0. Fix a real number & > /2.
(a) Prove that, for any f € L? (M), the function (£ +id) ™" f is continuous and

sup (£ +id)™* | < Oz, (7.97)

where C = C (¢, 7, k).
(b) Prove that, for any u € dom L*, we have u € C (M) and

sup u| < C (luflz= + Hllk'u,”Lz) . (7.98)
M

7.45. Prove that if (7.98) holds for all u € dom £* with some k > 0 then the heat kernel
satisfies the estimate (7.96) with v = 2k.

7.46. The purpose of this question is to give an alternative proof of Theorem 6.1 (Sobolev
embedding theorem).

(a) Prove that if u € W* (R™) where k is a positive integer then « € dom £*/2, where £
is the Dirichlet Laplace operator in R™. Prove also that, for any u € W* (R™),

(€ +1d)* 2 2 < Clluflws,

where C is a constant depending only on n and k.
(b) Prove that if u € W* (R™) where k is an integer such that k > n/2 then u € C (R™)
and
sup fu| < Cllufly.

(¢) Prove that if k > m + n/2 where m is a positive integer then « € W* (R™) implies
u € C™ (R™) and
lullem@ny < Cllullwr@n)-
(d) Prove that if Q is an open subset of R” and k and m are non-negative integers such
that k > m 4+ n/2 then u € Wf_ (Q) implies u € C™ (). Moreover, for any open
sets ' € Q" € Q,
”u"c""(n’) < C”“”W"(Q/’))
with a constant C depending on ¥, Q",k, m,n.
HiNT. Use Exercise 4.25 for part (a) and Exercise 7.44 for part (b)

7.47. (Compact embedding theorems)
(a) Assume that u (M) < co and

sup p: (z,z) < oo for all £ > 0. (7.99)
zeM

Prove that the identical embedding Wg (M) —L? (M) is a compact operator.
(b) Prove that, on any weighted manifold M and for any non-empty relatively open
compact set & C M, the identical embedding W¢ (Q) — L? (Q) is a compact operator
(cf. Theorem 6.3 and Corollary 10.21).
HINT. Use for part (a) the weak compactness of bounded sets in L? and Exercises 7.36,
4.40.

7.48. Let I be an open interval in R and H be a Hilbert space. Prove that if a mapping
h: I — H is weakly differentiable then h is strongly continuous.
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7.6. Notes

One of the main results of Chapter 7 is the existence of the heat kernel satisfying vari-
ous nice properties (Theorems 7.7, 7.13, and 7.20). The classical approach to construction
of the heat kernel on a Riemannian manifold, which originated from [275], [276], uses a
parametriz of the heat equation, that is, a smooth function which satisfies the necessary
conditions in some asymptotic sense. The parametrix itself is constructed using as a model
the heat kernel in R™. A detailed account of this approach can be found in many sources,
see for example [36], [37], [51], [58], [317], {326]. This approach has certain advantages
as it gives immediately the short time asymptotics of the heat kernel and requires less of
abstract functional analysis.

On the other hand, the theory of elliptic and parabolic equations with singular (mea-
surable) coefficients, developed by de Giorgi [108], Nash [292], Moser [279], [280], and
Aronson [9], has demonstrated that the fundamental solutions for such equations can be
constructed using certain a priori estimates, whereas the parametrix method is not avail-
able. The method of construction of the heat kernel via a priori estimates of solutions has
been successfully applied in analysis on more general spaces — metric measure spaces with
energy forms.

In our approach, the key a priori estimate (7.18) of the heat semigroup is given by
Theorem 7.6. The proof of (7.18) uses the elliptic regularity theory and the Sobolev
embedding theorem. As soon as one has (7.18), the existence of the heat kernel follows
as in Theorem 7.7. This approach gives at the same token the smoothness of P, f (z) in
variable z. There are other proofs of (7.18) based only on the local isoperimetric properties
of manifolds, which can be used in more general settings (cf. Corollary 15.7 in Chapter
15).

The heat kernel obtained as above is not yet symmetric. Its symmetrization (and
regularization) is done in Theorem 7.13 using a general method of J.-A. Yan [360]. The
smoothness of the heat kernel p; (z,y) is proved in three installments: first, smoothness
of P.f (z) in « (Theorem 7.6), then smoothness of p: (z,y) in (¢,z) (Theorems 7.10 and
7.13) and, finally, smoothness of p; (z,y) in (¢, z,y) (Theorem 7.20; the second proof of
this theorem uses the approach from |96, Theorem 5.2.1] and [92, Corollary 1.42]).

Other methods for construction of the heat kernel are outlined in Section 16.4.

An somewhat similar approach for construction of the heat kernel via the smoothness
of P, f was used by Strichartz [330], although without quantitative estimates of P; f. That
method was also briefly outlined in [96].

After the heat kernel has been constructed, the heat semigroup P;f can be extended
from L? to other function classes as an integral operator. We consider here only extensions
to L' and Cp. A good account of the properties of the heat semigroup in spaces L9 can

be found in {330].



CHAPTER 8

Positive solutions

This Chapter can be regarded as a continuation of Chapter 5. However,
the treatment of the Markovian properties is now different because of the
use of the smoothness of solutions.

8.1. The minimality of the heat semigroup

We say that a smooth function (¢, z) is a supersolution of the heat
equation if it satisfies the inequality
Ou
in a specified domain. The following statement can be considered as an
extension of Corollary 5.17.

THEOREM 8.1. Set I = (0,T) where T € (0,+00]. Let u(t,x) be a
non-negative smooth supersolution to the heat equation in I x M such that

L2
u(t,") =3 f ast—0, (8.1)
for some f € L2 _(M). Then P,f (z) is also a smooth solution to the heat

loc
equation in I x M, satisfying the initial condition (8.1), and

u(t,z) = Pef (z), (8.2)
forallteI and x € M.

PRrROOF. Note that f > 0. Let (8.2) be already proved. Then P;f (z) is
locally bounded and, by Theorem 7.15, it is a smooth solution to the heat
equation. Let us verify the initial condition

BfL—i‘ff ast— 0. (8.3)
Indeed, for any relatively compact open set 2 C M, we have
P (flo) S Bf <u(t). :
Since both functions P; (f1a) and u (¢,-) converge to f in L? () as t — 0,

we conclude that P f LQ—@ f, which implies (8.3).

In order to prove (8.2), we reduce the present setting to the L2-Cauchy
problem (5.55) of Corollary 5.17. Choose an open set ) € M. The smooth-
ness of u implies that u (t,-) € W' () and the strong derivative % in L? ()
obviously coincides with the classical derivative 4. Hence, u (t,-) as a path

217
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in W1 (Q) satisfies the conditions (5.55), and we conclude by Corollary 5.17,
that?
u(t,) > Pf. (84)

Let {Qx} be a compact exhaustion sequence in M, and set fr = flg,. It
follows from (8.4) that

’U(t, ) > Ptnkfi;
for all i and k. Since f; € L? (M), by Theorem 5.23 we obtain

Pta"’fi L—2> P.f; as k— oo,

whence it follows that

u(t,-) > Pif; a.e.
Letting 1 — 0o, we obtain

u(t,") > P.f ae. (8.5)

This implies P f € Lloc (I x M), and we conclude by Theorem 7.15 that
the function P;f (z) is smooth in ¢,z. Hence, (8.5) implies the pointwise
estimate (8.2). g

COROLLARY 8.2. Let u(t,z) be a non-negative smooth solution to the
heat equation in I x M such that
w(t,) o8 £ ast—s0
for some f € L2 (M), and
u(t,z) 2 0asz — o0 in M, (8.6)
where the convergence is uniform int € I. Then u(t,z) = B f (z).

The hypotheses of Corollary 8.2 are exactly those of Theorem 8.1 except
for the additional condition (8.6), which leads to the identity of (¢, z) and

P f (z).
PRrROOF. It follows from Theorem 8.1 that the function v (¢, z) := u (¢, a:)—
P, f (z) satisfies the heat equation in XM and the initial condition v (¢, -) —3°

0 as t — 0. Besides, (8.6) implies v (¢,z) =2 0 as z — co. Hence, by Corol-
lary 5.20, v = 0, which was to be proved. [

COROLLARY 8.3. For any non-negative f € Cy (M), the functionu (¢,z) =
Pif (z) is the minimal non-negative solution to the following Cauchy problem

{ &= Ayu, inRyx M,
u|t=0 = f:
where uli=p = f means that u (¢, ) — f as t — 0 locally uniformly in z.

(8.7)

1Corollary 5.17 says that (8.4) holds almost everywhere on M (for any ¢ € I). How-
ever, since by Theorem 7.10 P f is a smooth function, (8.4) holds, in fact, everywhere on
M.
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Proor. Indeed, by Theorem 7.16, the function P;f (z) does solve (8.7),
and by Theorem 8.1, u (t,z) > P:f (z) for any other non-negative solution
U. O

Exercises.
8.1. Prove that if h is a non-negative function satisfying on M the equation
A h+ah =0,

where o is a real constant, then P;h < e®*h for all ¢ > 0.

8.2. Extension of resolvent

Our goal here is to extend the resolvent R, f to a larger class of functions
f and to prove the properties of R, similar to the properties of the heat
semigroup P; given by Theorems 7.15 and 8.1.

Recall that, for any o > 0, the resolvent R, is a bounded operator in
L% (M) defined by

R, =(L+aid)™ !,

where £ is the Dirichlet Laplace operator (cf. Section 4.2). For any f €
L? (M), the function u = R, f satisfies the equation

“Apu+ou=f (8.8)

in the distributional sense.
As an operator in L?, the resolvent is related to the heat semigroup by
the identity

(Raf 9)12 = /0 e (Pef,9) 2 dt, (8.9)

for all f,g € L? (M) (cf. Theorem 4.5 and Lemma 5.10).
Now we extend Ry f to a more general class of functions f by setting

Rof (@)= [ eps@at= [ [ onion) s 4)duty)
(8.10)
whenever the right hand side of (8.10) makes sense. Note that the function
R, f {z) is defined by (8.10) pointwise rather than almost everywhere.

If f is a non-negative measurable function then the right hand side of
(8.10) is always a measurable function by Fubini’s theorem, although it may
take value oo. If, in addition, f € L? (M) then substituting R, f from (8.10)
into (8.9), we obtain, again by Fubini’s theorem, that (8.9) holds for all non-
negative g € L? (M), which implies that the new definition of R, f matches
the old one. For a signed f € L? (M), the same conclusion follows using

f=Ff-r-
THEOREM 8.4. Fiz a non-negative function f € Lloc (M) and a constant
a>0.
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(a) Ifu € L, (M) is a non-negative solution to the equation

-Ajutoau=f (8.11)
then u > Rof.
(b) ff Ra)f € L2 (M) then the function u = Raf satisfies the equation
8.11).

PROOF. Let {Q} be a compact exhaustion sequence in M and set
fr =min(k, ) 1g,.
(a) It follows from (8.11) that Ayu € L2 (M), and we conclude by

loc

Exercise 7.9 that u € W}, (M). Then u € W (Q) and, applying Corollary
5.15 in i, we obtain u > Rgfk f. Consequently, we have, for all indices i, k,

u> RSk f;.

Since f; € L? (M), Theorem 5.22 yields RS" fi L—2> R.f; as k — oo, whence
it follows u > R, f;. Passing to the limit as ¢ — oo, we finish the proof.
(b) Since f, € L? (M), the function and ugy = R fr belongs to L? (M)
and satisfies the equation
—A#uk + aup = fk

(cf. Theorem 4.5). Hence, for any ¢ € D (M), we have

/ ug (—App + ap) du = / fepdu. (8.12)
M M

Since the sequence f; is monotone increasing and converges to f a.e., we
obtain by (8.10) and the monotone convergence theorem that ug (z) T u (z)
pointwise. Since u and f belong to L! (supp ¢), we can pass to the limit in
(8.12) by the dominated convergence theorem and obtain that u also satisfies
this identity, which is equivalent to the equation (8.11). a

REMARK 8.5. Part (a) of Theorem 8.4 can be modified as follows: if
u € WL_ (M), u >0, and u satisfies the inequality

~-Ayu+au > f,

then u > R, f. This is proved in the same way because the only place where
the equality in (8.11) was used, is to conclude that A,u € L2, and, hence,
ue WL,

COROLLARY 8.6. If f € L*® (M) and o > 0 then R,f is bounded,
sup |Raf| < oY fliz, (8.13)
and u = R, f is a distributional solution to the equation (8.8).

PROOF. The estimate (8.13) follows from (8.10) and sup |P:f| < || fllze
(cf. Exercise 7.33). If f > 0 then the fact that R,f solves (8.8) follows
from Theorem 8.4(b). For a signed f, the same follows from R,f = Ry f+ —
Ruf-. O
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Some cases when one can claim the smoothness of R, f are stated in the
following theorem.

THEOREM 8.7. Let f € C*° (M) and oo > 0.
(i) If f >0 and and Rof € L2 _(M) then Rof € C® (M).

loc

(1) If f is bounded then Rof € C* (M).

PrOOF. Consider first a special case when f > 0 and f € C§° (M),
and prove that Ryf € C® (M). Since the function v = R,f satisfies the
equation (8.8), it is tempting to conclude that u € C'*® applying Corollary
7.3. Indeed, the latter says that every distributional solution to (8.8) is a
smooth function, which means that u as a distribution is represented by
a C* function, that is, there is a function 4 € C* such that u = % a.e..
However, our aim now is to show that u (z) itself is C°.

Recall that, by Theorem 7.13, function P; f is C* smooth in [0, +00) x M
(cf. (7.53)). Therefore, the function

{
w (z) = /0 e B, f (z) dt

is C*° smooth on M for any finite | > 0 and, moreover, any partial derivative
of u; can be computed by differentiating under the integral sign. Using the
properties of the heat semigroup, we obtain

{ {
Ayuy = / e“’tA” (Pif)dt = / e“"t-(2 (P:f)dt
0 0 ot

!
= [e_atPtf]g + a/ e P, f dt,
0
which implies that
Ay +ou = fj:=f—e ¥Bf.

By the estimate (7.20) of Theorem 7.6, we have, for any compact set K that
is contained in a chart, and for any positive integer m,

1Bifllemxy < Frem (O 112200y,

where Fg m (1) is a function of ! that remains bounded as [ — oco. This
implies

e 4P C50 asl — oo

and, hence, f; <5 f. The sequence {u; (z)} increases and converges to u (z)
bointwise as I — oo. Since u € L? (M), this implies by Exercise 7.13 that
u (z) belongs to C, which finishes the proof in the special case.

(4) Let {Q%} be a compact exhaustion sequence in M and let 1% be a
cutoff function of Q in Q1. Set fr = ¥rf so that fi € C{° (M). By
the special case above, the function ur, = Ry fr belongs to C°. Since the
Sequence { f;} increases and converges pointwise to f, by (8.10) the sequence
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ug () also increases and converges pointwise to u = Ry f. Since u € L%,

and fi e f, we conclude by Exercise 7.13 that u € C.

(i5) By Corollary 8.6, R,f is bounded and, hence, belongs to LZ . If
f = 0 then R, f is smooth by part (). For a signed f, the smoothness of
R, f follows from the representation

f=e - (- §),

because both function ef and ef — f are bounded, smooth, and non-negative.
a

REMARK 8.8. If f is a non-negative function from C* N L? then R, f €
L? and we obtain by Theorem 8.7 that R,f € C. This was stated in
Exercise 7.15, but using the definition of R, as an operator in L2. In other
words, the statement of Exercise 7.15 means that the L?-function R, f has
a smooth modification, whereas the statement of Theorem 8.7 means that
the function R, f, which is defined pointwise by (8.10), is C* itself.

Exercises.
8.2. If u € L}, (M) is a non-negative solution to the equation
“Aputau=f
where a > 0 and f € LE,. (M), f > 0. Prove that if
u(z) - 0 as z — oo,
then u = R, f.
8.3. Let u € L? (M) satisfy in M the equation
Apu+du=0,
where A € R, and
u(z) — 0 as z — oo.

Prove that u € W§ (M).

REMARK. Since by the equation A,u € L? (M), it follows that u € dom (£) and, hence, u
satisfies the equation Lu = —Au. Assuming that u # 0 we obtain that u is an eigenfunction
of the Dirichlet Laplace operator.

8.3. Strong maximum/minimum principle

8.3.1. The heat equation. As before, let (M, g, 1) be a weighted
manifold. For an open set  C R x M, define its top boundary O;pSQY as
the set of points (¢,z) € 0 for which exists an open neighborhood U ¢ M
of z and € > 0 such that the cylinder (¢t —,t) X U is contained in Q (see
Fig. 8.1).

For example, if 2 = (a,b) X @ where a < b and @ is an open subset of
M, then 8;,,Q2 = {b} X Q. If M = R™ and Q is a Euclidean ball in R"*!
then BtopQ = (D
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Fi1GURE 8.1. The top boundary of a set 2.

DEFINITION 8.9. The parabolic boundary 8,2 of an openset @ C Rx M
is defined by
Op§Y 1= 00\ Bsop.

If €2 is non-empty and the value of ¢ in {2 has a lower bound then §,{} is
non-empty — indeed, a point (¢,z) € Q with the minimal value of ¢ cannot
belong to O0;p€2. The importance of this notion for the heat equation is
determined by the following theorem, which generalizes Lemma 1.5.

THEOREM 8.10. (Parabolic minimum principle) Let Q be a non-empty
relatively compact open set in R x M, and let a function u € C? @ satisfy
in Q the inequality

du
— > A,u. 14
Then
infu = inf u. (8.15)
Q OpQ2

REMARK. Any function u € C? satisfying (8.14) is called a supersolution to
the heat equation, while a function satisfying the opposite inequality

Ou
— <A
ot = "t
is called a subsolution. Obviously, Theorem 8.10 can be equivalently stated
as the mazimum principle for subsolutions:
SUp % = sup u.
[¢) 2y
In particular, if u < 0 on the parabolic boundary of Q then u < 0 in Q.
Let Q = (0,T) x Q where Q is a relatively compact open subset of M.
Then the condition 4 < 0 on Op§) can be split into two parts:
e u(t,z) <0forallzcdQandte (0,7)
® %(0,z) <0forall z € Q,
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which imply the following (assuming u € C (Q)):
e u; (t,z) = 0as z — oo in Q (considering @ is a manifold itself)
e u,(t,z) 3 0ast—0.
Then the conclusion that » < 0 in £ follows from Corollary 5.20. Hence,
for cylindrical domains §2, Theorem 8.10 is contained in Corollary 5.20.
However, we will need Theorem 8.10 also for non-cylindrical domains, and
for this reason we provide below an independent proof of this theorem.

Proor or THEOREM 8.10. The proof is similar to that of Lemma 1.5.
Assume first that u satisfies a strict inequality in :

Let (to, zp) be a point of minimum of function u in Q. If (¢g, zo) € 8, then
(8.15) is trivially satisfied. Let us show that, in fact, this point cannot be
located elsewhere. Assume from the contrary that (tg, zg) is contained in
or in Ospf2. In the both cases, there exists an open neighborhood U C M of
zo and € > 0 such that the cylinder I' := (¢ — ¢, tp) x U is contained in .
Since function ¢ — u (¢, zp) in [tg — €, o] takes the minimal value at (¢g, o),
we necessarily have

8
a_"t‘ (to, zo) < O. (8.17)

By the choice of U, we can assume that U is a chart, with the coordinates
zl,...,z". Let g be the matrix of the metric tensor g in the coordinates

zl,...,z" and § be the matrix of g in another coordinate system %, ..., y" in
U (yet to be defined). By (3.25), we have
g=J Tg J,
where J is the Jacobi matrix defined by
k
b= 9
oy’

It is well known from linear algebra that any quadratic form can be brought
to a diagonal form by a linear change of the variables. The quadratic form
£ — gy (zo) £¢7 is positive definite and, hence, can be transform to the
form (£1)2 + ... + (€™)? by a linear change &' = A;EJ , where A is a numerical
non-singular matrix. This implies that

ATg(z)A=1d.

Defining the new coordinates y* by the linear equations z* = A%y/, we obtain
that J (z¢) = A and, hence, g (zo) = id.

So, renaming 3* back to zf, we obtain from (3.46) that the Laplace
operator A, at point zy has the form

2 .0
Bleo =2 T TV B

%
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for some constants b'. Since xg is a point of minimum of function z —
u (to,z) in U, we obtain that
Oou 0%y
pes (to,z0) =0 and W (to,z0) > 0.
This implies
Aju (to,z0) > 0,

which together with (8.17) contradicts (8.16).

In the general case of a non-strict inequality in (8.14), consider for any
e > 0 the function u. = u + &t, which obviously satisfies (8.16). Hence, by
the previous case, we obtain

inf (u + et) = inf (u + €t),
Q 230

whence (8.15) follows by letting e — 0. O

THEOREM 8.11. (Strong parabolic minimum principle) Let (M, g, u) be
a connected weighted manifold, and I C R be an open intervel. Let a non-
negative function u (t,z) € C% (I x M) satisfy in I x M the inequality
ou
—B—t > Auu.
If u vanishes at a point (¢',2’) € I x M then u vanishes at all points (t,z) €
IxM witht<t?t.

Under the conditions of Theorem 8.11, one cannot claim that u (t,z) =0
for t > t' — see Remark 9.22 in Section 9.3.

Note that the function » in Theorem 8.11 is a supersolution to the heat
equation. Since u+const is also supersolution, one can state Theorem 8.11 as
follows: if u is a bounded below supersolution then u (¢, 2') = inf u at some
point implies u (¢, z) = infu for all £ < ¢’ and z. Equivalently, Theorem 8.11
can be stated as the strong parabolic mazimum principle for subsolutions:
if u is a bounded subsolution in I X M then u (¥, 2’) = supu at some point
implies u (¢,2) = supw for all t <t and z.

PRrROOF. The main part of the proof is contained in the following claim.

CLAIM. Let V be a chart in M and xg,x1 be two points in V such that the
straight line segment between g, 1 is also in V. If u is a function as in the
hypotheses of Theorem 8.11 then

u(to, o) >0 = u(t1,z1) >0 forall ty > to, (8.18)

assuming that tg,t; € 1.

For simplicity of notation, set to = 0. By shrinking V, we can assume
that V is relatively compact and its closure V is contained in a chart. Let
T > 0 be so small that the Euclidean 2r-neighborhood of the straight line
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segment [zg,z1] is also in V. Let U be the Euclidean ball in V' of radius r
centered at xg. By further reducing r, we can assume that also

;relrfju(o,w) > 0. (8.19)

Setting & = % (z1 — zo) we obtain that the translates U 4t are all in V for
any t € [0,¢1]. Consider the following tilted cylinder (see Fig. 8.2)

P={(t,z):0<t<ty, zeU+té}.

A

Ficure 8.2. Tilted cylinder T'.

This cylinder is chosen so that the center of the bottom is (0, z¢) while
the center of the top is (¢1,21). We will prove that, under condition (8.19),
u is strictly positive in T, except for possibly the lateral surface of I'; in
particular, this will imply that u (¢1,z1) > 0.

To that end, construct a non-negative function v € G2 (T') such that

Ov .
5 <Auv inT, (8.20)
and
v = 0 on the lateral surface of I', and v > 0 otherwise. (8.21)

Assuming that such a function v exists, let us compare v and cu, where
€ > 0 is chosen so small that

inf 4 (0,z) > esupv (0,z).
=€V zeU

Due to this choice of &, we have u > ev at the bottom of I'. Since v =0 on
the lateral surface of I' and u is non-negative, we conclude that inequality
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u > v holds on the whole parabolic boundary of I'. The function « — ev
satisfies the hypotheses of Theorem 8.10, and we conclude by this theorem
that u > ev in T'. By (8.21), this implies that u is positive in T except for
the lateral surface, which was to be proved.

Assume for simplicity that z¢p = 0 is the origin in the chart V. Let us
look for v in the form

v(t,z)=ef (I:II — §t]2) ,

where o > 0 and function f are to be specified, and |-| stands for the
Euclidean length of a vector. Note that (¢,z) € I' implies z — &t € U,
which means |z — £t|* < r2. Hence, to satisfy conditions (8.21), function
f (-) should be positive in {0,7%) and vanish at v2. Let us impose also the
conditions :
f/'<0 and f”>0 in[0,r%, (8.22)
which will be satisfied in the final choice of f. Denoting by z1,...,z" the
coordinates in V' and setting

n
. 1: 2
w(t,z) = lz — &t = Z(x’—ﬁ t)",
i=1
we obtain, for (¢,z) €T,
B = —ae™f (w) + e (w) 26 (61— o) < e~ (af (w) + OF (),
where C is a large enough constant (we have used that the ranges of ¢ and

z are bounded, £ is fixed, and f’ < 0).
Observe that, by (3.46),
Fw 0w
Oz 0xI oz’
where b* are smooth functions, which yields
Ayw= 29" + 2b* (wi - §it) <C,
where C is a large enough constant. Computing the gradient of w and using
the positive definiteness of the matrix (¢*/), we obtain

.. Ow Ow ~ /0w
2 Mo = > - =
Vulg =g oz 9z = © Z (81“) s

Ayw= g%

i=1
where ¢/ and ¢ = ¢//4 are (small) positive constants. Using the chain rule
for A, (see Exercise 3.9) and (8.22), we obtain from the above estimates

A =™ (f" () [Vol} + f () Ayw) 2 ™ (cwf" (w) + CF (w)),
which yields
Ov

e Ay < —e % (af (w) + Cf (w) + cwf” (w)),
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where we have merged two similar terms C f’ (w). Now specify f as follows:

fw)= (r ——'w)2.

Obviously, this function is smooth, positive in [0,7?), vanishes at r2, and
satisfies (8.22). We are left to verify that, for a choice of a,

af (w)+ Cf' (w) + cwf” (w) >0 for all w € [0,7?],
which will imply (8.20). Indeed, we have
af (w) +Cf (w) +ewf’ (w) = a(?- w)2 ~2C (r® — w) + 2cw
= az?2-2(C+c)z+ 2,
where z = 72 — w. Clearly, for large enough «, this quadratic polynomial is
positive for all real z, which finishes the proof of the Claim.

The proof of Theorem 8.11 can now be completed as follows. Assuming
u(¢,2’) =0, let us show that u(¢,z) =0 for all (t,z) € I x M witht <¢.
By the continuity of u, it suffices to prove that for ¢ < ¢/. Since M is
connected, it is possible to find a finite sequence {xi}f___o so that zg = =z,

zx = 7', and any two consecutive points z; and x;.; are contained in the
same chart together with the straight line segment between them.

h
tA
. (t',z")
e
2 SRR
e T
5 ‘ | 1
N (ta:) | ! 1
| . !
i N N i l
i ! g i
i i 1
. | | | gy
T=Ty o] Ty T3 Z’k:.’t -

Ficure 8.3. If non-negative supersolution u vanishes at
(t',2’) then it vanishes also at any point (¢,z) with ¢ < ¢'.

Choosing arbitrarily a sequence of times (see Fig. 8.3)
t=to<ti<..<tp="?,

we can apply the above Claim: if u (¢p, zo) = u (¢, ) > 0 then also u (¢, z;) >
0 and, continuing by induction, u (tg, ) > 0, which contradicts the assump-
tion u (t/,2') = 0. O

The strong maximum/minimum principle has numerous applications.
Let us state some immediate consequences.
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COROLLARY 8.12. On a connected manifold (M, g, 1), the heat kernel
pt (z,y) is strictly positive for allt > 0 and z,y € M.

PROOF. Assume that py (z',3') = 0 for some t’ > 0, z’,y' € M. Since
the function u (t,z) = p;(z,y’) satisfies the heat equation (see Theorem
7.20), we obtain by Theorem 8.11 that p; (z,y') = 0 for all 0 < ¢ < ¢’ and
all z € M. Consider any function f € C§° (M) such that f(y') # 0. By
Theorem 7.13, we have

/Mm (2,9/) f (@) du(z) = f (/) ast—0,

which, however, is not possible if p: (z,3’) = 0 for small ¢ > 0. O

Note that, by Example 9.10 below, if M is disconnected then p; (z,y) = 0
whenever z and y belong to different connected components of M.

8.3.2. Super- and subharmonic functions.

DEFINITION 8.13. Let « € R. A function v € C? (M) is called o-
superharmonic on M if it satisfies the inequality —A u+au > 0. It is called
a-subharmonic if —Ayu + ou <0, and a-harmonic if —A u+ ou =0.

Of course, in the latter case u € C*° (M) by Corollary 7.3. If a = 0
then the prefix “a-” is suppressed, that is, u is superharmonic if A, u <0,
subharmonic if A, u < 0, and harmonic if Aju = 0.

COROLLARY 8.14. (Strong elliptic minimum principle) Let M be a con-
nected weighted manifold and u be a non-negative a-superharmonic function
on M, where a € R. If u{zp) =0 at some point zo € M then u(z) =0.

Proor. Consider function v (¢, z) = e*u (z). The condition
—Apu+oau>0

implies that v is a supersolution to the heat equation in R x M, because

%1—) — Ay = ae®u—e*Auu > 0.
If 4 (zo) = 0 then also v (¢, 7o) = 0 for any t, which implies by Theorem 8.11

that v (t,2) = 0 and, hence, u = 0. d

There is a direct “elliptic” proof of the strong elliptic minimum principle,
which does not use the heat equation and which is simpler than the proof
of Theorem 8.11 (see Exercise 8.4).

COROLLARY 8.15. Let M be a connected weighted manifold. If u is a
superharmonic function in M and u(zg) = infu at some point z¢ then
u =infu. If u is a subharmonic function in M and u (zo) = supu as some
point zg then u = sup u.

PrOOF. The first claim follows from Corollary 8.14 because the function
U — infu is non-negative and superharmonic. The second claim trivially
follows from the first one. O
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COROLLARY 8.16. (Elliptic minimum principle) Let M be a connected
weighted manifold and S be a relatively compact open subset of M with non-
empty boundary. If u € C (Q) N C*(Q) is a superharmonic function in Q
then

inf 4 = infu.
g £}

PROOF. Set m = infzu and consider the set
S={zell:u(z)=m}.

We just need to show that S intersects the boundary 0. Assuming the
contrary, consider any point z € S. Then z € Q and, in any connected
open neighborhood U C €2 of z, function u takes its minimal value at the
point z. By Corollary 8.15, we conclude that u = m in U, which means
that U C S and, hence, S is an open set. Since set S is also closed and
non-empty, the connectedness of M implies S = M, which contradicts to
ScQcM\oQ. a

A companion statement to Corollary 8.16 is the mazimum principle for
subharmonic functions: under the same conditions, if u is subharmonic then

Sup % = Sup u.
Q o0

Exercises.

8.4. Let M be a connected weighted manifold and E, F be two compact subsets of M.
Prove that, for any real « there is a constant C = C (¢, E, F) such that, for any non-
negative a-superharmonic function u on M,

infu < Cinf u.
E F
8.5. (A version of the elliptic minimum principle) Let M be a non-compact connected
weighted manifold and let u (t,z) € C? (M) be a superharmonic function. Prove that if
limsupu (zx) > 0 (8.23)
ko0

for any sequence {zx} such that z; — oo in M, then u(z) > 0 for all z € M.

8.6. (A version of the parabolic minimum principle) Fix T € (0,+oo] and consider the
manifold N = (0,T) x M. We say that a sequence {(tx,Zx)} 5, of points in NV escapes
from N if one of the following two alternatives takes place as k — oo:

1. zx —+ocoin M and tx = ¢t € [0,T];
2. zx +x €M and tx — 0.

Let u (t,2) € C?(N) be a supersolution to the heat equation in N. Prove that if
limsupu (tx, zx) > 0 (8.24)
k—o0

for any sequence {(tx,zx)} that escapes from N, then u (¢,z) > 0 for all (¢,z) € N.
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8.4. Stochastic completeness

DEFINITION 8.17. A weighted manifold (M, g, ) is called stochastically
complete if the heat kernel p; (z,y) satisfles the identity

/ pr (,9) dps () = 1, (8.25)
M

forallt >0and x € M.

The condition (8.25) can also be stated as P;1 = 1. Note that in general
we have 0 < Bl < 1 (¢f. Theorems 5.11 and 7.16). If the condition
(8.25) fails, that is, P;1 # 1 then the manifold M is called stochastically
incomplete.

Our purpose here is to provide conditions for the stochastic completeness
(or incompleteness) in various terms.

8.4.1. Uniqueness for the bounded Cauchy problem. Fix 0 <
T < o0, set I = (0,T) and consider the Cauchy problem in I x M

{ S — Ayu, inlx M,
uItZO = f’

where f is a given function from Cp (M). The problem (8.26) is under-
stood in the classical sense, that is, v € C®°(I x M) and u (t,z) = f(z)

locally uniformly in x € M as t — 0. Here we consider the question of the
uniqueness of a bounded solution of (8.26).

(8.26)

THEOREM 8.18. Fiz a > 0 and T € (0,00]. For any weighted manifold
(M, g, 1), the following conditions are equivalent.

(a) M is stochastically complete.

(b) The equation Ayv = av in M has the only bounded non-negative
solution v = 0.

(c) The Cauchy problem in (0,T) x M has at most one bounded solu-
tion.

REMARK 8.19. As we will see from the proof, in condition (b) the as-
sumption that v is non-negative can be dropped without violating the state-
ment.

Proor. We first assume T < co and prove the following sequence of
implications
= (a) = ~(b) = ~(c) = ~(a),
where - means the negation of the statement.
Proof of = (a) = = (b). So, we assume that M is stochastically incom-
blete and prove that there exists a non-zero bounded solution to the equation
~Auv + av = 0. Consider the function

u(t,z) = Pl(z) = /Mpt (z,y)du(y),
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which is C* smooth, 0 < u < 1 and, by the hypothesis of stochastic incom-
pleteness, u # 1. Consider also the function

w(z) = Ryl (2) = /0 " oty (t,x)dt, (8.27)

which, by Theorem 8.7 and Corollary 8.6, is C°-smooth, satisfies the esti-

mate
0<w<a™! (8.28)

and the equation

-Ayw+aw=1. (8.29)
It follows from u 3 1 that there exist € M and ¢ > 0 such that u (¢,z) < 1.
Then (8.27) implies that, for this value of z, we have a strict inequality
w(z) < o~1. Hence, w # o~ 1.

Finally, consider the function v = 1 — cw, which by (8.29) satisfies the
equation Ayv = av. It follows from (8.28) that 0 < v < 1, and w # o™}
implies v # 0. Hence, we have constructed a non-zero non-negative bounded
solution to A,v = av, which finishes the proof.

Proof of - (b) = —(c). Let v be a bounded non-zero solution to equation
A,v = aw. By Corollary 7.3, v € C*® (M). Then the function

u(t,z) = e®v () (8.30)

satisfies the heat equation because

Ayu = ™A = ey = %%L
Hence, u solves the Cauchy problem in R, x M with the initial condition
4 (0,z) = v (z), and this solution v is bounded on (0,7) x M (note that T is
finite). Let us compare u (t,z) with another bounded solution to the same

Cauchy problem, namely with Pw (z). By Theorem 7.16, we have
sup | Pv| < sup [v],
whereas by (8.30)
sup |u (¢,-)] = e**sup |v| > sup |v].

Therefore, u # Psv, and the bounded Cauchy problem in (0,T) x M has
two different solutions with the same initial function v.

Proof of ~(¢) = —(a). Assume that the problem (4.43) has two dif-
ferent bounded solutions with the same initial function. Subtracting these
solutions, we obtain a non-zero bounded solution u (¢, z) to (4.43) with the
initial function f = 0. Without loss of generality, we can assume that
0 < supu < 1. Consider the function w = 1 — u, for which we have
0 < infw < 1. The function w is a non-negative solution to the Cauchy
problem (4.43) with the initial function f = 1. By Theorem 8.1 (or Corol-
lary 8.3), we conclude that w(t,-) > P1. Hence, inf ;1 < 1 and M is
stochastically incomplete.
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Finally, let us prove the equivalence of (a), (), (c) in the case T = co.
Since the condition (¢) with 7' = oo is weaker than that for T < oo, it
suffices to show that (c) with 7" = oo implies (a). Assume from the contrary
that M is stochastically incomplete, that is, 1 # 1. Then the functions
u; = 1 and us = P;l are two different bounded solutions to the Cauchy
problem (4.43) in Ry x M with the same initial function f = 1, so that (a)
fails, which was to be proved. O

Exercises.
8.7. Prove that any compact weighted manifold is stochastically complete.
8.8. Prove that R™ is stochastically complete (cf. Exercise 8.11).
8.9. Prove that if P;1(z) = 1 forsomet >0,z € M then P;1(z)=1forallt >0,z € M.
8.10. Fix a > 0. Prove that M is stochastically complete if and only if Ra1 =a™%.

8.4.2. o-Super- and subharmonic functions. We prove here con-
venient sufficient conditions for stochastic completeness and incompleteness
in terms of the existence of certain a-super- and a-subharmonic functions
(see Sections 8.3.2 for the definitions).

THEOREM 8.20. Let M be a connected weighted manifold and K C
M be a compact set. Assume that, for some a > 0, there exists an «-
superharmonic function v in M \ K such that v(z) — +o0o as x — co’.

Then M is stochastically complete.

Proor. By enlarging K, we can assume v is defined also on K and
that v > 0 in M \ K. Then v is also f-superharmonic in M \ K for any
B > o so we can assume o« > 0.

By Theorem 8.18, in order to prove that M is stochastically complete, it
suffices to verify that any non-negative bounded solution M to the equation
Apu = au is identical zero. Assume that 0 <wu <1 and set

m = maxu.
K

Then, for any € > 0, we have
ev>0>u—m ondK, (8.31)

By hypothesis v (z) — 400 as £ — oo and Exercise 5.18, the set {v < 71}
is relatively compact; therefore, there exists a relatively compact open set
{2 C M that contains {v < ¢!} and K. Compare the functions v and u—m
in Q\ K. By the choice of Q, we have v > ¢! on 99 and, consequently,

ev>1>u~m on A0, (8.32)
In O\ K, the function ev satisfies the equation
—A, (ev) + a(ev) =0,

2See Definition 5.18.
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whereas

—Ay(u—-m)+a(u—m)=—-am<0,
whence it following that the function ev—(u — m) is superharmonic in Q\ K.
By (8.31) and (8.32), we have ev > u—m on the boundary 0 (£ \ K), which
implies by Corollary 8.16 that ev > u —m in Q \ K. Exhausting M by a
sequence of sets {2, we obtain that ev > u—m holds in M\ K; finally, letting
€ — 0, weobtainu <min M\ K.

Hence, m is the supremum of u on the entire manifold M, and this
supremum is attained at a point in K. Since Ayu = au > 0, that is,
the function u is subharmonic, Corollary 8.14 implies that w = m on M.
The equation A,u = au then yields m = 0 and u = 0, which was to be
proved. a

THEOREM 8.21. Let M be a connected weighted manifold. Assume that
there exists a non-negative superharmonic function u on M such thot u #
const and u € L* (M). Then M is stochastically incomplete.

PRrROOF. Let us first construct another non-negative superharmonic func-
tion v on M such that v € L' (M) and A,v # 0. Fix a point z9 € M such
that Vu(zp) # 0 and set ¢ = u (zo). Then the function % := min (u,c) is
not differentiable at xg.

Consider the function P:u. Since u is superharmonic, we have by Exer-
cise 7.29

P, t’ﬂ S 'Ptu S u,

which together with
Pu<cRl<c

yields
Pau <. (8.33)
Therefore,
Pyl = P, (PB3) < P4,
that is,

0~

Since Piu is a smooth function for any ¢t > 0, and % is not, we see that there
ist > 0 and x € M such that
—%Pﬂ (z) <. (8.35)
Set v = P,u and observe that, by (8.33), (8.34), and (8.35),

ve L' (M), —A,v>0 and Auv#0.
Therefore, there exists a non-negative function f € C§° (M) such that f # 0
and —A,v > f on M. Since v € W} (M) and v satisfies for any o > 0 the

inequality
~Aw+ov > f,
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Theorem 8.4 yields v > R,f a.e.(cf. Remark 8.5). Since R,f is smooth
by Theorem 8.7, we obtain v > R,f pointwise. Letting o — 0 and using
(8.10), we obtain, for all z € M,

v(m)z/0°°Ptf<x>dt=/owapt(x,y)f(y)dMy)dt.

Integrating in z and using the condition v € L (M), we obtain

/M /Ooo /M pt (z,y) f (y) du (y) dtdu (z) < oo,

whence it follows by interchanging the order of integration that

/00/ P;1(y) f (y) du (y) dt < oo.
0 M

However, if M is stochastically complete and, hence, P;1 = 1, this integral

should be equal to
I (/ f(y)du(y)> dt = co.
0 M

This contradiction finishes the proof. O

REMARK 8.22. The hypothesis u # const cannot be dropped because it
can happen that 1 € L' (M) and M is stochastically complete, for example,
if M is a compact manifold (see Exercise 8.7).

THEOREM 8.23. Assume that, for some o > 0, there ezists a non-zero
non-negative bounded a-subharmonic function v on M. Then M is stochas-
tically incomplete.

ProoF. By hypothesis, we have A,v > av and, without loss of gener-
ality, we can assume that 0 < v < 1. Let {{} be a compact exhaustion
sequence in M. Consider in each ) the following weak Dirichlet problem

{ —-Apug +oup =0

ur = 1 mod Wol (Qk) . (8'36)

Since 1 € W1 (), this problem has a unique solution wuy, by Exercise 4.29
(or by Theorem 4.5). We will show that

v<up Sup <1 (8.37)

(see Fig. 8.4), which will imply that the sequence {uy} has a limit u that,
hence, satisfies the equation Ayu = au on M and v < u < 1. The latter
means that u is bounded but non-zero, which implies by Theorem 8.18 that
M is stochastically incomplete.
To prove (8.37), observe that function v belongs to W' (Q) and obvi-
ously satisfies the conditions
{ ~Apv+av <0,

v<1. (8.38)



236 8. POSITIVE SOLUTIONS

e Qi1 R M

FicURE 8.4. Functions v, ug, Ug+1

Comparing (8.36) and (8.38) and using Corollary 5.14, we conclude v < u.
Since the constant function 1 satisfies the condition

~Aul+al >0,

the comparison with (8.36) shows that u; < 1. Of course, the same applies
also to ugy;. Noticing that ugy; satisfies in Qj the conditions

—Apugqr + ougy1 =0,
Uk+1 S 1a

and comparing them to (8.36), we obtain ug+1 < wug, which finishes the
proof. {1

Exercises.

8.11. Prove the following claims.
{a) R™ is stochastically complete for all n > 1. (cf. Exercise 8.8).
(b) R™ \ {0} is stochastically complete if n > 2, whereas R! \ {0} is stochastically
incomplete. _
(¢) Any open set & C R™ such that §2 # R™, is stochastically incomplete.

8.12. Let Q be an open subset of R™ and h be a positive smooth function in 2 such that
Ah=01in Q,
h(z) > 0as z — 09,
h(z) = €20 ag |z| = o

Prove that P{*h = h for all ¢ > 0.

8.13. Let f be a non-negative superharmonic function on M.

(a) Prove that the function
v(z) = t]irgo B f () (8.39)

satisfies the identity P;v = v for all t > 0 and, hence, is harmonic on M (the limit
in (8.39) exists and is finite because by Exercise 7.29 the function P f (z) is finite
and decreases in t).

(b) Assume in addition that manifold M is stochastically complete and f is bounded.
Prove that, for any non-negative harmonic function A on M, the condition h < f
implies h < v.



8.4. STOCHASTIC COMPLETENESS 237

REMARK. The maximal non-negative harmonic function that is bounded by f is called the
largest harmonic minorant of f. Hence, the function v is the largest harmonic minorant

of f.

8.14. Set v (z) = limi oo P:1(x). Prove that either v = 0 or supv = 1. Prove also that
either v=1 or infv = 0.

8.15. Let  be the exterior of the unit ball in R™, n > 2. Evaluate lim;_,co P51 ().

8.4.3. Model manifolds. Let (M, g, 1) be a weighted model based on
M = R" as it was defined in Section 3.10. This means that, in the polar
coordinates (r,8) in R", the metric g and measure p are expressed as follows:

g =dr? + (r)2 gsn-1, (8.40)

where 1) (r) is a smooth positive function on (0, +o0), and

dp =Y (r) 9 (r)"* drds, (8.41)

where df is the Riemannian measure on S*~! and Y (r) is a smooth positive
function on (0, +0c0). Recall that

S(r) = wa T (r)y" 7 (r)

is the area function of M, and
-
V(r) = u(By) =/ S(t)de
0

is the volume function of M. By (3.93), the weighted Laplace operator of
(M, g, 1) has in the polar coordinates the following form:

9 8 4 1
52 TS or R

It is important to observe that, away from a neighborhood of 0, the
functions 1 (r) and Y (r) can be chosen arbitrarily as long as they are smooth
and positive. Near 0 some care should be taken to ensure that the metric
g, defined by (8.40), extends smoothly to the origin. If 4 (r) and T (r) are
prescribed for large r then it is always possible to extend them to all » > 0
so that ¢ (r) = r and T (r) = 1 for small enough r. This ensures that the
metric and measure in a neighborhood of the origin are exactly Euclidean
and, hence, can be extended to the origin.

It follows from this observation that any function S(r) can serve as
the area function for large r, as long as S (r) is smooth and positive. Fur-
thermore, setting T = 1, we can realize S (r) as the area function of a
Riemannian model.

Our main result here is the following criterion of the stochastic com-
Pleteness of the model manifold.

A“ - ASn-—l . (842)
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THEOREM 8.24. The weighted model (M, g, 1) as above is stochastically
complete if and only if

V), _
/ Soydr=co (8.43)

For example, if V (r) = expr® for large r then M is stochastically com-
plete if o < 2 and incomplete if @ > 2. The manifolds R” and H" with
their canonical metrics satisfy (8.43) because S (r) = w,r"! for R™ and
S (1) = wy sinh™ 1 r for H* (see Section 3.10). Hence, both R™ and H" are
stochastically complete. Note that S™ is stochastically complete by Exercise
8.7.

PrOOF. Let us show that (8.43) implies the stochastic completeness of
M. By Theorem 8.20, it suffices to construct a 1l-superharmonic function
v = v (r) in the domain {r > 1} such that v (r) — 400 as r — co.

In fact, we construct v as a solution to the equation A,v = v, which in

the polar coordinates has the form
!

v+ %v' —v=0. (8.44)

So, let v be the solution of the ordinary differential equation (8.44) on
[1, +00) with the initial values v(1) = 1 and /(1) = 0. The function v(r)
is monotone increasing because the equation (8.44) after multiplying by Sv
and integrating from 1 to R, amounts to

R
Svv'(R) =A S (v'2 + UZ) dr > 0.

Hence, we have v > 1.
Multiplying (8.44) by S, we obtain

(Sv') = Sw,

which implies by two integrations

R r
o(R) =1+ /1 —Si(’;—) /1 S()u(t)dt.

Using v > 1 in the right hand side, we obtain, for R > 2,

B dr (B . EW(r)=v(1)dr RV (r)dr
o> [ [ s [EEEEE ze [TIE

where c =1 — % > 0. Finally, (8.43) implies v (R) — oo as R — co.
Now we assume that

OOV—(QT' oo
/ S <o (8.45)

and prove that M is stochastically incomplete. By Theorem 8.21, it suffices
to construct on M a non-negative function u € L' (M) such that

—~Ayu = f, (8.46)
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where where f € C§° (M), f > 0 and f # 0. Both functions u and f
will depend only on 7 so that (8.46) in the domain of the polar coordinates
becomes

SI
u' s =] (8.47)

Choose f (r) to be any non-negative non-zero function from C§°(1,2), and
set, for any R > 0,

o0 d,r r
r S(r)Jo

Since f is bounded, the condition (8.43) implies that u is finite. It is easy
to see that u satisfies the equation

(Su)" = -Sf,

which is equivalent to (8.47). The function v (R) is constant on the interval
0 < R <1 because f(t) =0 for 0 <t < 1. Hence, u extends by continuity
to the origin and satisfies (8.46) on the whole manifold.

We are left to verify that u € L' (M). Since f (t) = 0 for t > 2, we have

for R>2
u(R)=C / ” Sd(’;
where C = [25(t) f (t) dt. Therefore,
e = [ wRIS AR
- c/ (/oo dr >S’(R)dR
o (fowa) &

®V(r)
< C/z S(T)dr<oo,

which gives u € L! (M). O

u(R) = S5(¢) 7 (t) dt. (8.48)

EXAMPLE 8.25. Let us show that, for any continuous positive increasing
function F (r) on (0,+c0) such that F (r) — oo as 7 — oo, there exists a
stochastically complete model M for which

F(r)—1<V(r)<F(r), (8.49)

for large enough r. Indeed, for large 7, the volume function V (r) of a
weighted model M may be any smooth positive increasing function. Choose
first any such function V (r) satisfying

F(r)—1/2<V (r) < F(r), (8.50)
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and then modify V (r) as follows. Select a sequence of disjoint intervals
(ak, bx) such that ax — oo and

F(b) = F(ax) +1/2. (8.51)
Now reduce V (r) on each interval {a, bx) to create inside (ak, by) the points
with very small derivative V’ (r) while keeping the values of V () at the ends
and the monotonicity, which together with (8.50) and (8.51) will ensure
(8.49) for the modified V (see Fig. 8.5).

/ j/_-——— F(r)-'h

- Fn-1
modified V(r)

a by r

FiGURE 8.5. Modification of function V' (r) on the interval (ag, bz).
By doing so, we can make the value of integral [ :: “,/,—((’;)jdr arbitrarily
large, say, larger than 1, which implies
® V(r)
Vi (r)
Therefore, M is stochastically complete by Theorem 8.24.

dr = co.

Exercises.

8.16. (A model with two ends) Set M = R x §"~! (where n > 1) so that every point

z € M can be represented as a couple (r,0) where r € R and § € §*~!. Fix smooth

positive functions 9 (r) and T (r) on R, and consider the Riemannian metric on M
g =dr’ + 9" (r) gen-1,

and measure p on (M, g) with the density function T. Define the area function S (r) by
8 (r) = wnX (r) 4" (r)

and volume function V (R) by

V(R) = /[OR]S(r) dr,

so that V (R) > 0.
{a) Show that the expression (8.42) for A, remains true in this setting.
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(b) Prove that if function V (r) is even then the following are equivalent:
(i) (M, g, p) is stochastically complete.
(43) There is a non-constant non-negative harmonic function v € L' (M, u).

(i3) [* Edr = co.
(c) Let S (r) satisfy the following relations for some o > 2:
| exp(r*), r>1,
S(r) = { exp(—|7*), r<-L

Prove that (M, g, 1) is stochastically incomplete. Prove that any non-negative har-
monic function u € L* (M, u) is identical zero.

Notes

The material of Sections 8.1 and 8.2 extends the Markovian properties of Chapter 5.

The proofs of the parabolic maximum /minimum principles (Theorems 8.10 and 8.11)
are taken from [243].

Theorems 8.18, 8.20, 8.23 are due to Khas'minskii [223)] (see also [93], [155]), Theo-

rems 8.21, 8.24 were proved in [142] (see also {155]).



CHAPTER 9

Heat kernel as a fundamental solution

Recall that the heat kernel was introduced in Chapter 7 as the inte-
gral kernel of the heat semigroup. Here we prove that the heat kernel can
be characterized as the minimal positive fundamental solution of the heat
equation. This equivalent definition of the heat kernel is frequently useful
in applications.

9.1. Fundamental solutions

DEFINITION 9.1. Any smooth function u on Ry x M satisfying the fol-
lowing conditions
ou
—a_t— /
u(t,) =+, ast—0,

is called a fundamental solution to the heat equation at the point y. If in
addition u > 0 and, for all ¢ > 0,

[utast, (92)
M
then w is called a regular fundamental solution.

As it follows from Theorem 7.13, the heat kernel p; (x,y) as a function
of ¢, is a regular fundamental solution at y.

The following elementary lemma is frequently useful for checking that a
given solution to the heat equation is a regular fundamental solution.

LeEMMA 9.2. Let u(t,z) be a smooth non-negative function on Ry x M
satisfying (9.2). Then the following conditions are equivalent:

(@) w(t,-) EHSy ast — 0.
(b) For any open set U containing y,

/ u(t,)duy—1 ast—0. (9.3)
U
(¢) For any f € Cy (M),
/ u(t,") fdu— f(y) ast — 0. (9.4)
M

243



244 9. HEAT KERNEL AS A FUNDAMENTAL SOLUTION

ProOF. The implication (c) = (a) is trivial because u (t,) N dy is
equivalent to (9.4) for all f € D (M).
(a) = (b) . Let f € D(U) be a cutoff function of the set {y} in U. Then

(9.4) holds for this f. Since f(y) =1 and
/ u(t,) fdu < / u(t,)du <1,
M U

(9.3) follows from (9.4).
(b) = (c) . For any open set U containing y, we have

[ w0 i@ = / u(t,2) f (z) ds (z)

M M\U
+ /U w(t,2) (f (@) - f () d (@)
i ) /U u (t,7) dps (z)

The last term here tends to f (y) by (9.3). The other terms are estimated
as follows:

| [ wtas@a <ol [ st @9
M\U MU
and
[6a0@-10a] < splf@-16) [ stome
U zelU U
< swlf ()~ (0 (09

Obviously, the right hand side of (9.5) tends to 0 as t — 0 due to (9.2)
and (9.3). By the continuity of f at y, the right hand side of (9.6) can be
made arbitrarily small uniformly in ¢ by choosing U to be a small enough
neighborhood of y. Combining the above three lines, we obtain (9.4). O

REMARK 9.3. As we see from the last part of the proof, (9.4), in fact,
holds for arbitrary f € L™ (M) provided f is continuous at the point y.

The next lemma, is needed for the proof of main result of this section —
Theorem 9.5.

LeEMMA 9.4. Let u(t,x) be a non-negative smooth function on Ry x M

such that u (t,-) N dy ast — 0. Then, for any open set @ € M and any
feCy(9),

f@), ifyveq,
[ut9i@ e —g{ AGI AN (9.7)

ast— 0.
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REMARK. Extend f to M by setting f = 0 outside Q. Then in the both
cases in (9.7), f is continuous at y. Hence, (9.7) follows from Lemma 9.2
and Remark 9.3, provided u satisfies (9.2). However, we need (9.7) without
the hypothesis (9.2), which requires a more elaborate argument.

PRroor. If f € D(Q) then, by hypothesis u (t, ) z, dy, we have (9.4),
which implies (9.7).

Representing f € Cy () as f = f+ — f-, it suffices to prove (9.7) for
non-negative f. By scaling f, we can assume without loss of generality that
0<f<L

Let us first prove (9.7) fory € M\ Q. Let ¢ € D (M) be a cutoff function
of Qin M\ {y} (see Fig. 9.1).

v
—M ‘ 9)

FiGure 9.1. Functions f and 7.

®

Then f < 1,whence it follows that
[utfaus [uw)vdu—sp@)=0ast—0,
Q Q

which implies
/ w(t, ") fdu — 0.
Q
Assume now y €  and set f (y) = a. By the continuity of f at y, for
any € > 0 there exists an open neighborhood U € € of y such that
a—e< f<a+t+e inU

Let ¢ be a cutoff function of {y} in U and 9 be a cutoff function of U in Q
so that

(a—e)p<f<(a+e)y inU.

FIGURE 9.2. Functions f, ¢, .
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Therefore, we have
(a—s)/Uu(t,-)cpduS/Uu(t,-) fduS(a-}-e)Lu(t,-)zﬁdp.

Passing to the limit as ¢ — 0, we obtain

limsup/u(t,-)fdug(a+s)¢(y)=a+s (9.8)
t—0 U
and

timipt [ u(t) fauz (@-)p@ =a—e. (9.9)

Let us show that
/ u(t,-) fdu—0. (9.10)
O\U

Indeed, let V' € U be an open neighborhood of y. Since 2\ V is a relatively
compact open set and y ¢ Q\ V, we obtain by the first part of the proof
that

/ Cw(t,) fdp =0,
N4

whence (9.10) follows.
Finally, combining together (9.8), (9.9), (9.10) and letting £ — 0, we
obtain

/u(t,') fdu—a=f(y) ast—0.
Q
O

The next theorem provides a characterization of the heat kernel, which
can serve as an alternative definition.

THEOREM 9.5. For any y € M, the heat kernel p; (z,y) is the minimal
non-negative fundamental solution of the heat equation at y.

PROOF. Let u (¢, z) be another non-negative fundamental solution at y,
and fix s > 0. The function ¢,z — u (f + s, ) satisfies the heat equation in
R4 X M and, hence, u (t + s, z) can be considered as a non-negative solution
to the Cauchy problem in R, x M with the initial function f (z) = u (s, z).
Since u is a smooth function, we have f € L2 (M) and

L?
u(t+s,) =3 f ast— 0.
By Theorem 8.1, we conclude that, for all t > 0 and 2 € M,

u(t+s,z) > Pf (z)= /Mpt (z,2)u(s,z)du(z). (9.11)

Fix now t > 0, z € M and choose an open set {2 € M containing y. Then
pe(z,-) € Cp () and, by Lemma 9.4,

/th(%z)U(s,Z)du(z) - p(z,y) ass—0.
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Hence, letting s — 0 in (9.11), we obtain u (t,z) > p: (z,y), which was to
be proved. |

COROLLARY 9.6. Let (M,g,u) be a stochastically complete weighted
manifold. If u(t,z) is a regular fundamental solution at a point y € M,
then u (¢, z) = pt (z,y).

PRrROOF. By Theorem 9.5, we have u (t,z) > p; (z,y), which implies

1> /M““’ z) du (z) > /Mpt (2,9) dp (z) = 1,

where in the last part we have used the stochastic completeness of M. We
conclude that all the inequalities above are actually equalities, which is only
possible when u (t,z) = p; (z,y). O

The next theorem helps establishing the identity of a fundamental so-
lution and the heat kernel using the “boundary condition”, which may be
useful in the case of stochastic incompleteness.

THEOREM 9.7. Letu (t,z) be a non-negative fundamental solution to the
heat equation aty € M. Ifu(t,z) =3 0 as z — oo where the convergence is
uniform in t € (0,T) for any T > 0, then u (¢, z) = p¢ (z,y)-

REMARK 9.8. The hypothesis that u (¢, z) is non-negative can be relaxed
to the assumption that
limsupu (tg, zx) > 0, (9.12)
k—o0

for any sequence (tx,zr) such that ¢tz — 0 and zx — =z € M. Indeed,
by the maximum principle of Exercise 8.6, (9.12) together with the other
hypotheses implies u > 0.

PrOOF. By Theorem 9.5, we have u (t,z) > p: (z,y) so that we only
need to prove the opposite inequality. Fix some s > 0 and notice that
the function v (¢,z) = u (¢ + s,z) solves the heat equation with the initial
function f (z) = v(0,z) = u (s, z). Since v (t,z) = 0 as z — oo, we obtain
by Corollary 8.2 that v (¢,z) = P.f (z) that is,

u(t+5,2) = Bf (z) = /Mpt (2,)u (s, ) dp.

Let {Q%}5o., be a compact exhaustion sequence in M. For any k, we have

U(t+s,w)—/Q pe(x,)u(s,")dy = /M\Q ot (z,-)u(s,)du

< swpu(s) [ pile)du
M\ M\

Since the total integral of the heat kernel is bounded by 1 and

sup sup u(s,z) = 0ask — oo,
$€(0,T) zeM\S
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we see that, for any £ > 0 there is k so big that, for all s € (0,T),
u(t+5,9)- [ plo)uls)duse
Q

Letting here s — 0 and applying Lemma 9.4 in Qj with function f = p; (2, -),
we obtain

u(t,z) —pe(z,y) <e
Since € > 0 is arbitrary, we conclude u (t,z) < p; (z,y), which was to be
proved. g

ExXAMPLE 9.9. By Lemma 1.1, the Gauss-Weierstrass function

2
e (2,y) = Wexp (— lz 4tyl ) (9.13)

is a regular fundamental solution of the heat equation in R™. Since R" is
stochastically complete, we conclude by Corollary 9.6 that p; (z,y) is the
heat kernel in R™. Alternatively, this can be concluded by Theorem 9.7
because p; (z,y) — 0 as  — oo uniformly in ¢ (cf. Exercise 1.5). Yet
another proof of the fact that p; (z,y) is the heat kernel in R™ was given in
Example 4.12.

ExXAMPLE 9.10. For any weighted manifold (M, g, x) and an open set
Q C M, denote as before by pi! (x,y) the heat kernel in (Q,g, 1). Extend
P! (z,y) to all z,y € M by setting it to 0 if either z or y is outside Q. Let
us show that if 2; and Q5 are two disjoint open sets and = 13 U Q5 then

Q
Pl = P?l +p; 2. (9.14)

Indeed, if y € ) then p?l (z,y) is a fundamental solution not only in £; but
also in Q because, being identical zero in {25, it satisfies the heat equation also
in Q5. Therefore, by the minimality of pi!, we conclude pf! (z,y) < p?l (z,y).
On the other hand, since ©; C 2, we have the opposite inequality by Exercise
7.40. Hence,

P (z,y) = i (2,9),

which implies (9.14) because pi2 (z,y) = 0. Similarly, (9.14) holds if y € Q.

The identity (9.14) implies that p; (z,y) = 0 if the points z,y belong
to different connected components of M (assuming, of course, that M is
disconnected). Indeed, if z is contained 1n a connected component €; and

Qg := M \ Q1 then y € Q, and, hence, pi* (z,y) = 0 for i = 1,2, whence
Pt (2,y) = " (z,9) +p{" (z,9) = 0.

9.2. Some examples

We give here some examples of application of the techniques developed
in the previous sections.
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9.2.1. Heat kernels on products. Let (X,gx,ux) and (Y, gy, uy)
be two weighted manifold and (M, g, u) is their direct (see Section 3.8).
Denote by pf and p{ the heat kernels on X and Y, respectively.

THEOREM 9.11. Assume that (M, g, ) is stochastically complete. Then
the heat kernel p: on M satisfies the identity

o ((=9), (=,y)) = o (z.2) 0} (v,9/), (9.15)
forallt>0andz, 2’ € X, y,y €Y.

The statement is true without the hypothesis of stochastic completeness,
but the proof of that requires a different argument (see Exercise 7.41).

PrROOF. Denote by Ax and Ay the Laplace operators on X and Y,
respectively. Then the Laplace operator A, on M is given by

Ayu = Axu+ Ay,

where u (z,y) is a smooth function on M, and Ax acts on the variable z,
Ay acts on the variable y (see Section 3.8).
Fix (z',9') € M and prove that the function

u(t, (2,9) =07 (z,2) 0¥ (v,7)

is a regular fundamental solution at (z, y'), which will imply (9.15) by Corol-
lary 9.6.
Indeed, the heat equation for u is verified as follows:

Bu ) 0
5 = 32 @2)p] 0y) +of (2.7) 50 W)

AX]?{( (CE, (E') pgf (y’y/) +pi< (CIZ’,.’E,) Asz/ (y7y/)
= (Ax+Ay)u=Auu.

The integral of u is evaluated by

/ u(t,-)dp = / 7 (o) dux/ vy (y)duy <1.
M M M
"To check the condition (9.3) of Lemma 9.2, it suffices to take the set U € M

intheform U =V xW where VC X and W C Y. If (z/,4/) € U then
z' € V and y € W, which implies

/U(t, -)dﬂ=/p§‘ (-2)) dux/ o (vy)dpy — 1
U 14 w

f(is t — 0. Hence, by Lemma 9.2, u is a regular fundamental solution at
', y'). O
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9.2.2. Heat kernels and isometries. We use here the notion of isom-
etry of weighted manifolds introduced in Section 3.12.

THEOREM 9.12. Let J : M — M be an isometry of a weighted manifold
(M,g,p). Then the heat kernel of M is J-invariant, that is, for all ¢ > 0
and z,y € M,

Pt (Jz, Jy) =pt (,9) (9.16)

See also Exercise 7.24 for an alternative proof.

PROOF. Let us first show that the function u (¢,z) = p: (Jz, Jy) is a
fundamental solution at y. Indeed, by Lemma 3.27, for any smooth function

fon M,
(ALf) (Jz) = AL (f (Jz)).
Applying this for f = p; (-, Jy), we obtain
Ou 0
5 = 5P (Jz, Jy) = (Aupt) (J2, Jy) = Ayu,
so that u solves the heat equation.
By Lemma 3.27, we have the identity

/ £ (J2) dys (z) = / f (z)dp (), (9.17)
M M

for any integrable function f. Hence, for any ¢ € D (M),

/U(tam)tp(w)dﬂ(w) = /pt(Jw,Jy)cp(w)du(m)
M M

= /pt(x,Jy)cp(J‘lz)du(a:).
M

Since p; (z, Jy) is a fundamental solution at Jy, the last integral converges
ast—>0to

(pod ™) (Jy) =),
which proves that u (¢, ) z, dy. Hence, u (¢,z) is a non-negative funda-
mental solution at y, which implies by Theorem 9.5

u (t’ x) > pt (, y) ’

that is,

b (J:E’ Jy) 2 Dt (:I:,y) :
Applying the same argument to J~! instead of J, we obtain the opposite
inequality, which finishes the proof. a

ExaMPLE 9.13. By Exercise 3.46, for any four points z,y,2',y/ € H®
such that
d(2,y) = d(z,y),
there exists a Riemannian isometry J : H® — H" such that Jz' = z and
Jy = y. By Theorem 9.12, we conclude

Dt (-’Bl,y/) =Dt (-’E,y) .
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Hence, pt (z,y), as a function of z,y, depends only on the distance d(z,y).

9.2.3. Heat kernel on model manifolds. Let (M, g, u) be a weighed
model as in Sections 3.10 and 8.4.3. That is, M is either a ball B,, =
{|z| < ro} in R™ or M = R" (in this case ro = 00), and the metric g and
the density function of u depend only on the polar radius. Let S (r) be the
area function of (M, g, 1) and p; (z,y) be the heat kernel.

Let (M, g, i) be another weighted model based on the same smooth
manifold M, and let S (r) and p; (z,y) be its area function and heat kernel,
respectively.

THEOREM 9.14. If S (r) = S (r) then p: (z,0) = 5t (y, 0) forallz,ye M
such that |z| = |y

Note that the area function S (r) does not fully identify the structure of
the weighted model unless the latter is a Riemannian model. Nevertheless,
pt (z,0) is completely determined by this function.

PROOF. Let us first show that p; (z,0) = p: (¥, 0) if |z| = |y|. Indeed,
there is a rotation J of R™ such that Jz = Jy and JO = 0. Since J is
an isometry of (M, g, 1), we obtain by Theorem 9.12 that p; is J-invariant,
which implies the claim.

By Lemma 9.2, the fact that a smooth non-negative function u (¢,z) on
R4 x M is a regular fundamental solution at 0, is equivalent to the conditions

[ eeo)au@ <, (9.18)

/ u(t,z)du(z) >1 ast—0,

\ JB,

for all 0 < £ < rg. The heat kernel p; (z,0) is a regular fundamental solution
on (M, g, u) at the point 0, and it depends only on ¢ and r = |z| so that we
can write p; (z,0) = u (¢, 7).

Using the fact that u does not depend on the polar angle, we obtain
from (3.93)

P S0
T or2 " S(r) or’

For 0 < € < rg, we have by (3.86), (3.88), (3.91)

J

Ayu

'u.d,u,=i/:/sn_lu(t,r)S(r)d@dr=/Oeu(t,r)S(r)dr.

Wy

€
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Hence, we obtain the following equivalent form of (9.18):
(Ou _ B%u S (r)du

t ~ o2 TS or’
4 /Tou (t,r)S(r)dr <1, (9.19)
0

€
/u(t,r)S(r)dr—>1 ast— 0.
» Jo

Since by hypothesis S (r) = S (r), the conditions (9.19) are satisfied also
with S replaced by S, which means that u (¢,7) is a regular fundamental
solution at 0 also on the manifold (M, g, ). By Theorem 9.5, we conclude
that u (¢, |z|) > bt (=, 0), that is,

pt (2,0) > Dt (2,0).

The opposite inequality follows in the same way by switching p; and pi,
which finishes the proof. a

9.2.4. Heat kernel and change of measure. Let (M,g,h) be a
weighted manifold. Any smooth positive function 2 on M determines a
new measure 4 on M by

dii = h2dp, (9.20)

and, hence, a new weighted manifold (M, g, It). Denote by P, and Pt respec-
tively the heat semigroup and the heat kernel on (M, g, 1z).

THEOREM 9.15. Let h be a smooth positive function on M that satisfies
the equation

Ayh+ah =0, (9.21)
where & is a real constant. Then the following identities holds
Az = % o (A, +aid) o, (9.22)
D at 1
P, =e EOPtOh, (9.23)

P (z,y) = eath—p(tg;z—%;—), (9.24)

forallt >0 and z,y € M.

In (9.22) and (9.23), h and } are regarded as multiplication operators,
the domain of the operators in (9.22) is C* (M), and the domain of the
operators in (9.23) is L? (M, 1z).

The change of measure (9.20) satisfying (9.21) and the associated change
of operator (9.22) are referred to as Doob’s h-transform.
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PROOF. By the definition of the weighted Laplace operator (see Section
3.6), we obtain, for any smooth function f on M,

Anf = %divu(hzw) divy(VF) + L1 VR,V

= Auf+2AS Ve (9.25)

On the other hand, using the equation (9.21) and the product rule for A,
(cf. Exercise 3.8) and (9.21), we obtain

%Au(hf) = %(hA,,f-F?(Vh Ve +fA h)

= nf+2< Vf)g"‘f
= ﬁf—af

Hence, we have the identity

“f— A (hf) + af, (9.26)
which is equivalent to (9.22).
Next, fix a point y € M, set

_ ot Dt (:z:,y)
t2) = ) h (v)

and show that u(¢,z) is a fundamental solution on (M, g, %) at point y.
Using (9.26), we obtain

Qu _ at 0 pe(2,9)
5t = T R h@hw)
eat

= au-+ WAMIR (m, y)

1 Pt (%, 9) )
= a'u,+-———A (h xr e"‘t————
O RARA AT
= ou+ %A” (hu) = au + Aju — au = Agu,

so that u solves the heat equation on (M, g, z).
For any function ¢ € D (M), we have

/M u(t,z)p(z)dp(z) = /M eatgt—h(—?yij@h (z) ¢ (z) du (z)

= iR 0). (0.27)

Since h (z) ¢ (z) € D (M), we have
Fy (ko) (y) = ho (y) ast—0,
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whence it follows that

[ 5t2)v@die) -0 ),
M

and, hence, u (%, -) z, 0y on (M, g, 11).
Therefore, u is a non-negative fundamental solution on (M, g, i) at point
y and, by Theorem 9.5, we conclude that u (t,z) > p; (z,y), that is,

eat—%% > pi (z,y) .- (9.28)

To prove the opposite inequality, observe that the function h := % sat-
isfies the equation
Agh —ah =0,

which follows from (9.26) because bk = 1 and

Agh = 3 Au(hR) + o = o

Switching the roles of u and [, replacing @ by —« and & by E, we obtain by
the above argument

e—at~5t (xiy)
h(z)h(y)
which is exactly the opposite inequality in (9.28).
Finally, using (9.20) and (9.24), we obtain, for any f € L2 (M, Ji),

Bf = /M 7 (2,) f (v) 45 ()
/M eat%ﬁ%ﬂy) B2 () dps ()

Zpt (a:,y),

1
= at Pt (.fh) s
whence (9.23) follows. O
EXAMPLE 9.16. The heat kernel in (R", ggn, u) with the Lebesgue mea-
sure p is given by
_ 1 jz —y?
pt(z,y) = (i) exp ( ym . (9.29)

Let h be any positive smooth function on R™ that determines a new measure
& on R™ by di = h%du. Then we have A, = a% and
d? K d
Ag=—+2——
il
(cf. (9.25)). The equation (9.21) becomes
R +ah =0,

(9.30)
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which is satisfied, for example, if h (z) = cosh Sz and a = —32. In this case,
we have by (9.30)
Az = @ 28 coth d
P= g3 + 2B co ﬂxag.
By Theorem 9.15, we obtain
ot Pt (x,y)

pi(z,y) = e B (2)h(y)

1 1 |z —y|” 2
(4t)'/? cosh Bz cosh By exp ( 4 prt)-

ExaMPLE 9.17. Using the notation of the previous Example, observe
that the heat kernel (9.29) is a regular fundamental solution also on (M, grn, 1)
where M := R" \ {0}. If n > 2 then by Exercise 8.11, M is stochastically
complete, which implies by Corollary 9.6 that p, is the heat kernel also in
M.

Assuming n > 2, consider the following function

h(z) = [a*",
that is harmonic in M (cf. Exercise 3.24). Hence, (9.21) holds for this
function with @ = 0. Defining measure i by dii = h%du, we obtain by
Theorem 9.15 that the heat kernel in (M, g, II) is given by

~ o 1 n—2 n—2 ‘SC - y’2
pi(z,y) = e 2" ly|" " exp ( yramll B

ExAMPLE 9.18. Consider in R! measure y is given by

du = e”zdx,
where dz is the Lebesgue measure. Then, by (9.30) with A = ei?
A=L 0l (9.31
BT da? dz’ 31)
We claim that the heat kernel p: (z,y) of (R, gr, ) is given by the explicit
formula:
1 2xye™ 2 — 32 — 42 )
b\z,y)= exp -1, 9.32
®9) (27 sinh 2¢)'/ ( 1—e® (532

which is a modification of the Mehler kernel (cf. Exercise 11.18). It is a
matter of a routine (but hideous) computation to verify that the function
(9.32) does solve the heat equation and satisfy the conditions of Lemma. 9.2,
which implies that is it a regular fundamental solution. It is easy to see that

1 =z —y/*
< —— = g
Dt (m,y) = (47rt)"/2 €Xp ( 4t 3 ’

which implies that p; (z,y) = 0 as z — oo uniformly in ¢ (cf. Exercise 1.5).
Hence, we conclude by Theorem 9.7 that p; (z,y) is indeed the heat kernel.



256 9. HEAT KERNEL AS A FUNDAMENTAL SOLUTION

Alternatively, this follows from Corollary 9.6 provided we know that the
manifold (R, ggr, 1) is stochastically complete. To prove the latter, observe
that (R, gg, u) fits the description of “a model with two ends” of Exercise
8.16. Its area function is S (r) = e, and the volume function

Viry= / e dz
(0,7}

is even and satisfies the condition

+o0 V(’I‘) _
| -

because
V) 1
S(’I‘) Nﬁ;asr—-)-}—oo
Hence, by Exercise 8.16, (R, gg, 1) is stochastically complete. Alternatively,
this conclusion follows also from Theorem 11.8, which will be proved in

Chapter 11, because R is geodesically complete and, for large r,
V (r) < exp (Cr?).

ExaMpLE 9.19. Continuing the previous example, it easily follows from
(9.31) that function

h(z)=¢e""
satisfies the equation
Ayh+2h =0.
Clearly, the change of measure dpi = h2dpu is equivalent to
du = e~ da.

By Theorem 9.15 and (9.32), we obtain that the heat kernel p; of (R, gg, 1)
is given by

~ z,
pi(z,y) = ez*g%()—% =p; (z,y) exp (2 + ¥ + 2t)
B “_1 2wy6_2t _ (x2 + y2) e—4t :
T (@rsimhon) 2T 1—e 4 )

9.2.5. Heat kernel in H3. As was shown in Example 9.13, the heat
kernel p; (z,y) in the hyperbolic space H" is a function of r = d (z,y) and
t. The following formulas for p: (z,y) are known: if n = 2m + 1 then

— (_l)m 1 2 " —mzt—ﬁ
P (29) = (2m)™ (4mt)2/2 \ sinhr Or ¢ o (9.33)
and if n = 2m + 2 then
2
AT g1y s
(2m)™ (4nt)®/? sinhr Or r (coshs — coshr)z
(9.34)

Y2 (3:7 y) =
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In particular, the heat kernel in H? is given by

82
V2 1t 0 se” & ds
(4nt)® 2° r (coshs—coshr)i’
and the heat kernel in H® is expressed by a particularly simple formula

(@) = ——— " ex L (9.36)
P )= (47t)%/2 sinhr Pl74 ' '

Of course, once the formula is known, one can prove it by checking that it
is a regular fundamental solution, and then applying Corollary 9.6, because
H"™ is stochastically complete.

We will give here a non-computational proof of (9.36), which to some
extend also explains why the heat kernel has this form. Rename y by o and
let (r,6) be the polar coordinates (r,§) in H? \ {o}. By means of the polar
coordinates, H® can be identified with R® and considered as a model (see
Sections 3.10 and 9.2.3). The area function of H® is given by

S (r) = 4nsinh?r,
and the Laplacian in the polar coordinates is as follows:
82 3] 1
Ags = —5 +2cothr— + ——5—
B = r2 +eco "or + sinh?r
Denote by i the Riemannian measure of H?. For a smooth positive function
h on H®, depending only on r, consider the weighted model (]H[3, ZZ) where
di = hdp. The area function of (H3, 1) is given by
S(ry=hn2(r)S(r).

Choose function h as follows:

h(r) =

pe(z,y) = (9.35)

Agz . (9.37)

T
sinhr’

so that S (r) = 47r? is equal to the area function of R3. By a miraculous
coincidence, function h happens to satisfy in H3 \ {0} the equation

Auh+h=0, (9.38)

which follows from (9.37) by a straightforward computation. The function
h extends by continuity to the origin o by setting A (o) = 1. In fact, the
extended function is smooth! in H3, which can be seen, for example, by
representing h in another coordinate system (cf. Exercise 3.23).
Denoting by p; the heat kernel of (1HI3 , ZI), we obtain by Theorem 9.15
that e (21)
~ EPt\T,Y
Pt (z,9) h(z) b (y) . (9.39)

11t is true for any weighted manifold of dimension n > 2 that any bounded solution
to (9.38) in a punctured neighborhood of a point extends smoothly to this point, but we
do not prove this result here.



258 9. HEAT KERNEL AS A FUNDAMENTAL SOLUTION

Since the area functions of the weighted models (H?, %) and R3 are the same,
we conclude by Theorem 9.14 that their heat kernels at the origin are the
same, that is

-
Dt (x) o)= (47rt)3/2 €xXp 4‘.t :

Combining with (9.39), we obtain

1 7 r?
_ ot - -G
pi (z,0) = e7'p; (z,0) h (z) h (0) (47rt)3/2 sinhr P ( 4¢ t) ’

which was to be proved.

Exercises.
9.1. Let u be a measure in R™ defined by
du = exp (2¢- ) dz

where dz is the Lebesgue measure and c¢ is a constant vector from R™. Prove that the
heat kernel of (R™, ggn, ) is given by

2
Pt (T,y) = mexp (—c- (z+y)— >t~ EL{—“) . (9.40)
9.2. (Heat kernel in half-space) Let
M= {(z*,...,2") € R* : 2" > 0}.
Prove that the heat kernel of M with the canonical Euclidean metric and the Lebesgue
measure is given by

pe(zy) = (74}:)_“/_2 (eXP (—'ic-;ty—lz> — exp (—%ED (9.41)

where 7 is the reflection of y at the hyperplane z™ = 0, that is,
7=y -y").
9.3. (Heat kernel in Weyl’s chamber) Let
M={(z'....,s") eR":z' <2’ < .- <2"}.

Prove that the heat kernel of M with the canonical Euclidean metric and the Lebesgue
measure is given by

P (2,9) = det (7 (< ) ) X (9.42)

)
i j=1
where p{‘l is the heat kernel in R,

9.4. Let (M, g, u) be a weighted manifold, and let h be a smooth positive function on M
satisfying the equation
~Ayh 4+ ®h =0, (9.43)

where @ is a smooth function on M. Define measure i on M by dfi = h2dp.
(a) Prove that, for any f € C* (M),
Auf—2f =hAg (h77F). (9-44)
(b) Prove that, for any f € D (M),

/M (IVF*+@f*) du>0. (9.45)



9.3. ETERNAL SOLUTIONS 259

9.5. Applying (9.45) in R™\ {0} with suitable functions h and &, prove the Hardy inequality:
for any f € D(R™\ {0}),

o2 2
/R VP> -2 /R Iz (9.46)

nfof®

9.3. Eternal solutions

In this section, we consider solutions to the heat equation defined for
all ¢ € (—00,+00), which, hence, are called eternal solutions.

Let u (¢, z) be a regular fundamental solution at a point y € M. Let us
extend u (,x) to t < 0 by setting « (¢,z) = 0. Since for any ¢t € R,

/ u(t,z)du(z) <1, (9.47)
M

we see that u(¢,z) € L}, (R x M). In particular, u(t,z) can be regarded
as a distribution on R x M.

THEOREM 9.20. Let u (t,x) be a reqular fundamental solution of the heat
equation at y € M, extended to t < 0 by setting u(t,z) = 0. Then u(t,z)
satisfies in R x M the following equation

Oou
E - A#U = 6(0,y)' (948)

Here 6(g ) is the delta function at the point (0, y) on the manifold Rx M,
defined by

(504)%) = ¢ (0,y) for any p € D(R x M).

The equation (9.48) means that u (¢,z) is a fundamental solution of the
operator % —A,in Rx M.

PROOF. The equation (9.48) is equivalent to the identity
- [ (@t Aup)ududt =0 (0), (9.49)
RxM

?vhich should be satisfied for any ¢ € D (R x M). Since u =0 for ¢ < 0, the
Integral in (9.49) is equal to

(e o] x
/0 /M (O + App) ududt = 61_1)1(1)1_’_/6 /M (Csp + App) udpdt.
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Next, we have, for any € > 0,

/ / (Bep + App) udpdt
€ M

o0 o0
= / / (8s (pu) — @Osu) dudt +/ (/ Aﬂgoud/.a) dt
€ M € M
oo o0 xQ
= / (Bt / goudu) dt — / /  Opu dudt + / / PA udpdt
€ M € M 5 M

= —/ (g, ) ule,-) du, (9.50)
M

where we have used the Green formula for A, and the fact that u (%, z)
satisfies the heat equation for ¢ > 0. We are left to verify that the integral in
(9.50) tends to ¢ (0,y) when € — 0. By the definition (9.1) of a fundamental
solution, we have

/ ©(0,)u(e, ) dp— ¢(0,y) ase—0. (9.51)

Using the regularity (9.2) of the fundamental solution, we obtain
[ oerue) du- [ p0Iute) du
[ ee)-p0u)

< sup |p(e,z) —(0,2)] — 0 ase — 0.
zeM

fl

Together with (9.51), this proves that the integral in (9.50) tends to ¢ (0,y),
which was to be proved. O

Since the heat kernel p; (z,y) is a regular fundamental solution for any
fixed y (or z), Theorem 9.20 can be applied to it as well. The next statement
contains the ultimate result on the smoothness of the heat kernel jointly in
t,z,y. Set

diag := {(z,y) e M x M : z =y},
and denote by A;, Ay the operator A, with respect to the variables z and
Y, respectively.

COROLLARY 9.21. Let us extend p; (x,y) for t <0 by setting p: (z,y) =

0. Then, as a function on R x M x M, the heat kernel p; (z,y) is C™

smooth away from {0} x diag (see Fig. 9.3), and it satisfies in this domain
the equation

3pt

8t = Azpt Aypt. (952)

PrOOF. Let N = M x M be the product manifold with the product
measure dv = dudu. It follows from (9.47) that p; (z,y) € L, (R x N). If
we show that p; (z,y) satisfies in R x N \ {0} x diag the equation (9.52) in
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A

k4

FiGURE 9.3. The heat kernel is singular at the set 0 x diag

the distributional sense, then this will imply the C*®°-smoothness of p; (z,y)
in this domain. Indeed, the Laplace operator A, on N can be represented
as A, = Ay + Ay (cf. the proof of Theorem 7.20), so that (9.52) implies

1
Ot = EAupt-
Hence, the function p; (z,y) satisfies the heat equation in ¢ € R (up to the
change ¢t +— 2t) and (z,y) € N (away from {0} x diag) which implies the
C*-smoothness of p; (z,y) by Theorem 7.4.

Since p; (z,y) is symmetric in z,y, it suffices to prove the first of the
equations (9.52). This equation is equivalent to the identity

/ (Bup + Do) pr (2,9) dps (z) dp () dE =0, (9.53)
RxMxM

which should be satisfied for any function ¢ (¢, z,y) € D (R x N) supported
away from {0} x diag. Expanding the integral in (9.53) by Fubini’s theorem
with the external integration in y, we see that it suffices to prove that, for
any y € M,

[ @+ baphmi (o) duloie =0 (9.54)
RxM

Since y is fixed here, we obtain by Theorem 9.20 (more precisely, by (9.49))
that

/RXM (at(p + A;;‘,O) Dt (.’IJ, y) dﬂ(l‘)dt ==y (07 €T, y) ’x=y =—p (0’ z, y) .

By hypothesis, we have ¢ (0,y,y) = 0 whence (9.54) follows. |

) REMARK 9.22. Let M be connected so that the heat kernel p: (z,v)
Is strictly positive for ¢ > 0 (cf. Corollary 8.12). Considering function
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u(t,z) =p: (z,9) in R x (M \ {y}), we obtain an example of a solution to
the heat equation which is identical zero for ¢ < 0 and strictly positive for
t > 0. This example shows that, in the parabolic strong minimum principle
(Theorem 8.11), the time direction is essential: the fact that a non-negative
solution vanishes at a point does not imply that it will vanish in the future,
although it does imply that it was identical zero in the past.

Exercises.

9.6. Prove that if v and v are two regular fundamental solutions at point y € M then the
difference u — v is a C*°-smooth function on R x M satisfying in R x M the heat equation.

9.7. Let Q C M be an open set. Prove that the function u: (,y) := p: (z,y) — pf! (z,¥)
is C*° smooth jointly int € R and z,y € Q.

9.8. Let a smooth function u (¢, ) on R4 x M satisfy the following conditions
%’;ﬁ = A,;'u, in Ry x M,
w(t,) 28 f ast—0,
where f € L}, (M). Extend u (t,z) to t < 0 by setting u (¢, z) = 0.
{a) Prove that the function u (¢, z) satisfies in R x M the equation
Su
ot
where F is a distribution on R X M defined by
(F)= [ 00,07 @du(a),

for any ¢ € D(R x M).
(b) Prove that if in (9.55) f =0in M then u € C* (R x M).
(c¢) Prove that if f € C*° (M) then
U (t: )
Consequently, the function

(9.55)

~Ayu=F, (9.56)

Ci(—@fast%O-l—.

- [ u@z), t>0,
“(t’””)‘{f(w)w, t<o,

belongs to C*° (R x M).
HinT. Use Exercise 7.19.

9.9. Prove that, on any weighted manifold M, for any open set 2, any compact set K C §2,
and any N > 0,

sg}}z /m pe(z,y) du(y)=o (tN) ast—0. (9.57)

x

9.10. Define the resolvent kernel ro (z,y) by
ree)= [ € n @y (9.58)
0

Prove that, for any a > 0, ro (,y) is a non-negative smooth function on M x M \ diag.
Furthermore, for any y € M, r4 (-, y) satisfies the equation

—A/J.Tcz + are = 8y (959)
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Notes

Theorem 9.5 was proved by Dodziuk [108].

Theorem 9.14 can be regarded as a simple model case for comparison theorems of
{58] and [104].

The idea of changing the measure by dfi = h®du, where h is a harmonic function,
is widely used in the theory of stochastic processes where it is referred to as Doob’s h-
transform (probabilistically this means conditioning of the diffusion process to exit in the
direction h on the Martin boundary).

The Mehler kernel is by definition the heat kernel of the operator —d—‘j;— + («® - 1)
that is the Hamiltonian of the quantum harmonic oscillator. The Mehler kernel is given
explicitly by the Mehler formula (11.21) ( see Exercise 11.18). The formula (9.32) for the
heat kernel in (R, gg, & dz) is equivalent to the Mehler formula. The proof of the latter
can be found in [92].

The formula (9.35) for the heat kernel pf'z in H? was stated by McKean [272]?, and
the formula (9.36) for p’fa was stated in [104] (the derivation of (9.36) in Section 9.2.5
seems to be new). The formulas (9.33) and (9.34) for pi" follow then by the recursive
relation between pi” and p2"~ (see [51], [104], [96]). A direct proof of (9.33) and (9.34),
based on the reduction to the wave equation, can be found in {175]. Convenient explicit
estimates of pi' can be found in [102].

The extension of the heat kernel to negative times is a standard procedure for evolu-

tion equations (see, for example, [356]).

‘2113 Wwas privately communicated to the author by Peter Laurence, that Henry McKean
attributed (9.35) to the book [311, p.154].



CHAPTER 10

Spectral properties

Here we consider some spectral properties of the Dirichlet Laplace oper-
ator such as the discreetness of the spectrum, the positivity of the bottom
of the spectrum, and others. The notion of the bottom of the spectrum will
be essentially used in Chapters 13, 14, 15.

10.1. Spectra of operators in Hilbert spaces

We start with some basic properties of spectra of self-adjoint operators
in a Hilbert space. The knowledge of the relevant material from Appendix
A is assumed here.

10.1.1. General background. Let A be a densely defined self-adjoint
operator in a Hilbert space H. Denote by Amin (A) the bottom of the spec-
trum of A, that is,

Amin (A4) := inf spec A.
Since spec A is a closed subset of R, Amin (4) is the minimal point of spec A

provided Apin (A) > —oo. It is a general fact that Apin (A) admits the
following variational characterization:

(Az, z)

in A) =
Amin (4) zedolzﬂA\(O) |||

(10.1)

(cf. Exercise A.26).

DEFINITION 10.1. The discrete spectrum of A consists of all a € spec A
such that

® « is an eigenvalue of A of a finite multiplicity;

e and « is an isolated point of spec A, that is, for some € > 0, the
interval (o — ¢, @ + €) contains no other points from spec A, except
for «.

The essential spectrum of A is the complement in spec A of the discrete
Spectrum of A.

It easily follows from the definition that the discrete spectrum is at most
countable, and any point of accumulation of the discrete spectrum belongs
to the essential spectrum or is Fco.

265



266 10. SPECTRAL PROPERTIES

Let {Ex},cg be the spectral resolution of A. For any Borel set U C R,

set
Ey := 1y (A) =/ dE), =/ dE>,.
U Unspec A

The operator Ey is a projector in H (cf. Exercise A.27). Moreover, if o is an
eigenvalue of A then E,) is the projector onto the eigenspace ker (A - aid)
of o (cf. Exercise A.28).

LEMMA 10.2. Let S be the essential spectrum of A. Then the space
(ran Eg)! (the orthogonal complement of ran Es in H) admits at most
countable orthonormal basis {vk}ﬁzl such that each vy is an eigenvector of
A. Moreover, if A is the eigenvalue of v then the sequence {)\k}kN=1 consists
of all the points of the discrete spectrum of A counted with multiplicities.

In particular, if S is empty, that is, if the entire spectrum of A is discrete,
then ran Eg = {0} and, hence, such a basis {v;} exists in the entire space
H. Assuming that dimH = oo, we obtain that in this case the basis {vg}
is countable, and |[A\g| — oo as & — 00, because oo is the only possible
accumulation point of the sequence {| x|}

Proor. Let {a;} be a sequence of all distinct points in the discrete
spectrum of A, enumerated in some order. By the spectral theorem, we
have

id = dEy = Es+ Y Ef,
spec A i

whence it follows that, for any 2L ran Fg,

z=Y Egge (10.2)

(a priori, the convergence of the series in (10.2) is weak, which, however,
implies the strong convergence by Exercise A.4). Since ran Ey,,; is the
eigenspace of the eigenvalue ¢, it admits an orthonormal basis that consists
of the eigenvectors of A. Since the eigenspaces of different eigenvalues are
orthogonal, merging the bases of the eigenspaces across all o;, we obtain an
orthonormal sequence, say {vx} (this sequence is at most countable because
each eigenspace is finitely dimensional and the number of points ¢; is at
most countable). Since Ef,,} is a linear combination of some vectors v, it
follows from (10.2) that every € (ran Eg)™ can be expanded into a series
>k CkUk, which means that {v;} is a basis in (ran Es)*t.

Let now )\x be the eigenvalue of vg. By construction, the number of the
eigenvectors vi with the given eigenvalue o; is equal to dimran Elo which
is the multiplicity of o;. Hence, each «; is counted in the sequence {\z} as
many times as its multiplicity. 0
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10.1.2. Counting measure. The counting measure of the operator
A is the following function defined on all Borel sets U C R:
m (U) := dimran Ey. (10.3)
The value of m (U) is a non-negative integer or +0co.
As was mentioned above, if o is a real number then
ran B,y = ker (A — aid),
which implies
m ({a}) = dimker (A — aid). (10.4)
Hence, if o is an eigenvalue of A then m ({a}) is the multiplicity of the
eigenvalue o; otherwise, m ({a}) = 0.
THEOREM 10.3. Let m (U) be the counting measure of a self-adjoint
operator A. Then the following is true:
(2) m (U) is a Borel measure on R.
(it) For any open interval U C R, m(U) > 0 if and only if the inter-
section U N spec A is non-empty.
(i4i) A point a € spec A belongs to the discrete spectrum of A if and
only if m (U) < oo for some open interval U containing o.
PROOF. (i) The proof of this part consists of two claims.
CramM 1. If U and V two disjoint Borel subsets of R then

mUUV)=mU)+m(V). (10.5)

Indeed, if U and V disjoint then 11y = 0 and hence EyEy = 0, that
is, the ranges of Fy and Ey are orthogonal subspaces. On the other hand,
lyuv = 1y + 1y whence

Eyuv = Ey + By.
Therefore, Eyyy is the projector onto ran By & ran Ey whence
dimran Fyyy = dimran Ey + dimran By,

which is equivalent to (10.5).

Consequently, we obtain from Claim 1 that if U C V then m (U) <
m (V), because m (V) =m (U) +m (V\ U).
CrLam 2. If {Ui}se, is a sequence of disjoint Borel sets in R and U = |J, Uy
then

m (U) = im k). (10.6)
k=1

Consider first a particular case when m (Uy) = 0 for all k and show that
m (U) = 0. The condition m (Uy) = 0 means that Ey, = 0. Since

]-U:Z]-Uk )
k
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we obtain by Lemma 4.8 that, for any z € H,

Eyz = / (E lvk) dExz = z/ ly,dExz =) _ Ey,z =0,
R\% k /R k

whence Ey =0 and m (U) = 0.
In the general case, the previous Claim implies that

m(U)>> mU).
k

If >, m(Ux) = oo then this yields (10.6). If >, m (Ux) < oo then only
finitely many terms m (Uy) are non-zero, say, for k =1,2,..., K. Let

V= U
k>K

so that m (V') = 0 by the first part of the proof. Since U is a disjoint union
of V and Uy, ..., Uk, we obtain by the previous Claim, that

K K fore)
m@U)=> mU)+mV)=> mUs)=>_ mUs).
k=1 k=1 k=1

(i4) Let ¢ be any continuous function on R supported in U and such
that 0 < ¢ <1 and ¢ (A) =1 for some A € U Nspec A. Then by (A.53)

llo(A) || = sup || =1,
spec A

so that there is z € # \ {0} such that ¢ (A) z # 0. Then we have by (A.50)
1Boalf = [ 100 diEsalf = [ diBsal?

> / o (V2 d| Bxzll? = o (A) z|® > 0,
U

whence it follows that Ey # 0 and, hence, m (U) > 0.

(i43) Let o belong to the discrete spectrum of A. Then there is an open
interval U containing no spectrum of A except for o, whence it follows by
parts (z), (¢¢) and (10.4), that

m (U) = m ({a}) = dimker (4 — aid) < co.

Conversely, assume that m (U) < oo for some open interval U containing a.
Since m is a o-additive measure, we have

m ({a}) = jnf m(U),

where the infimum is taken over all open intervals U containing . By part
(i), we have m (U) > 1 for any such interval U, and by hypothesis, we have
m(U) < oo for some interval U. Hence, we conclude that

1< m{{a}) < oo,
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which together with (10.4) implies that o is an eigenvalue of A of a finite
multiplicity.

Let us show that « is an isolated point of the spectrum. If not, then
there exists a sequence {ay} C spec A such that oy — o, all oy are disjoint,
and ap # a. There exists a sequence {Uy} of disjoint open intervals such
that Uy contains oy and Uy — a. Then any open interval U containing o,
contains infinitely many of the intervals Uy, whence it follows by parts (7)
and (i%) that

mU)2 Y. mU)> Y 1=o00,
UpCU UCcU
thus, contradicting the hypothesis m (U) < oo. O

Exercises.

10.1. Let (X, d) be a separable metric space and § C X be a subset of X. Prove that if
all points of S are isolated then S is at most countable.

10.1.3. Trace. In this section, A is a densely defined self-adjoint op-
erator in a Hilbert space H such that

spec A € [0, +00). (10.7)

The condition (10.7) is equivalent to A being non-negative definite, that is,
to
(Az,z) > 0 for all z € dom A

(cf. Exercise A.26).
Define the trace of such an operator by

trace A = Adm (), (10.8)
(0,+00)

where m is the counting measure of A defined by (10.3). Note that the point
0 is excluded from the domain of integration in (10.8), and that trace A takes
values in [0, 4+o00].

LEmMMA 10.4. If {vg} is an orthonormal basis in H such that all vg €
dom A then

trace A = Z (Avg, vi) - (10.9)
k

PROOF. We have by (A.49)
(Avg, vg) =/ M (E\vg, vk) = /
spec A

[0!"‘00

MEsuel? = [ d|Esu?

0,400
' (10.10)
Fix a Borel set U C R and let {u;} be an orthonormal basis in ran Er;. Then

Byvp = (vg, ) us
i
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and, applying twice the Parseval Identity, we obtain

| By l|® = Z (V> us)?

DoIEgul? = 30D S (mw) =303 (v w)?
k k i ik
= Z flual|® = Z 1= dimran By = m (U). (10.11)

Since the right hand side of (10.10) is a Lebesgue integral against the mea-
sure U + ||Eyvi]|?, when adding up in k we obtain a Lebesgue integral
against the measure m (U), that is,

> (Avg,vg) = / Adm () = trace 4,
which was to be proved. O

REMARK 10.5. The identity (10.9) can be used as the alternative defi-
nition of the trace. In this case, Lemma 10.4 means that the definition of
the trace is independent of the choice of the basis {v}. For a direct proof
of this fact see Exercise 10.4.

LEMMA 10.6. For any non-negative Borel function ¢ on [0, +c0),

trace o (A) = /S 0 (\) dm (\), (10.12)
where
Si={A>0:0(\) >0} (10.13)
ProoF. By (10.9), we have
tracep (A) = ; (¢ (A) vk, vk)

where {vx} is an orthonormal basis. Similarly, to (10.10), we have

(0 (4) v, vg) = / o (V) dl| Exug? = /S o (V) dl| Exvi 2.

0,+00

Summing up in k and using (10.11), we obtain (10.12). O

LEMMA 10.7. Let ¢ be a non-negative continuous function on [0, +00).

(2) If trace p (A) < oo then the spectrum of A in the set S is discrete,
where S is defined by (10.13).
(1) If the spectrum of A in S is discrete then

tracep (A) = Z v (Ae), (10.14)
k

where { A} is the sequence of all the eigenvalues of A in S counted
with multiplicities.



10.2. BOTTOM OF THE SPECTRUM 271

PRrROOF. (i) Let @ € S be a point of the essential spectrum of A. By
Theorem 10.3, for any open interval U containing «, we have m (U) = co.
Since ¢ is continuous, the set S is open and, hence, there is a bounded open
interval U C S containing a. Furthermore, we can assume that the closed
interval U is also contained in S. Then by (10.12)

tracep (4) 2 [ o) dm ()2 (i%f w) m(U) = oo,

because infr; ¢ > 0 and m (U) = oo.

(74) By hypothesis, the set S Nspec A consists of isolated eigenvalues of
finite multiplicity. In particular, the set S N spec A is at most countable
and, hence, can be enumerated as a sequence {c;} (where each eigenvalue
is counted once). The set S\ spec A is open and is outside the spectrum. It
follows from Theorem 10.3, that measure m does not charge this set. Hence,
measure m in S sits at the sequence {a;} whence by (10.12)

trace p (A) = /{ PN = (@) m (fa).

Noticing that by (10.4) m ({a;}) is the multiplicity of the eigenvalue o, we
obtain (10.14). 0O

Exercises.
10.2. Prove that, for any Borel set U,
m (U) = trace By.

10.3. Prove that if A is a non-negative definite self-adjoint operator with a finite trace
then A is a compact operator.

10.4. For any non-negative definite operator A with dom A = H, define its trace by
trace A = Z (Avg,ve),
k

where {vi} is any orthonormal basis of . Prove that the trace does not depend on the
choice of the basis {vi}.

10.2. Bottom of the spectrum

The Dirichlet Laplace operator £ = —A,LIW@( M,y constructed in Sec-

tion 4.2, is a self-adjoint operator, and spec £ C [0, +00). Here we investigate
further properties of the spectrum of £. Denote by Apin(M) the bottom of
the spectrum of £, that is

Amin (M) = inf spec L.

This notation reflect the point of view that the spectral properties of £ are
regarded as the properties of manifold M itself.
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For any non-zero function f € W' (M), define its Rayleigh guotient by

fM !vflz dy '

7 (10.15)

R(f) =

THEOREM 10.8. (The variational principle) The following identity is true

Amin(M) = inf R(f), 10.16
(M) = inf R () (10.16)
where T is any class of functions such that

C(M)CTCWi(M). (10.17)

Furthermore, the infimum in (10.16) can be restricted to non-negative func-
tions f€T.

PrROOF. It is obvious that the functional R is continuous on W1\ {0}.
Since C§° ¢ W¢ and that Cf° is dense in Wi in W'-norm, the infimum
in the right hand side of (10.16) is the same for any functional class 7
satisfying (10.17). Since C§° C W§ C W{, it suffices to verify (10.16) for
T=W;=domL.

By (10.1), we have
(LS, f)

inf \=DJ)
fedomer{o) [ FI2

By Lemma 4.4, we obtain, for any f € dom L,

2 /M FALfdu = /M V% du

inf spec £ = (10.18)

whence
Ju IV 51 dp

inf —
infspec L f€dom £\{0} fM fzd,u

which proves (10.16).
Let us show that the infimum in (10.16) can be restricted to non-negative
functions, that is,
Mun(M) = _int R (f). (10.19)
It suffices to consider the borderline cases 7 = C§° and 7 = W3. By
Lemma 5.4, for any non-negative function f € W there is a sequence {fi}
of non-negative functions from C§° that converges to f in W*. Therefore,
the right hand side of (10.19) has the same value for 7 = C§° and 7 = W{.
Hence, it suffices to prove (10.19) in the case 7 = W{. For simplicity
of notation, let us allow also f = 0 in (10.19) by setting R (0) = +oc0. As
follows from Lemma 5.2, for any f € W{, also the functions f, and f_
belong to W3 and

V= 1{f>0}Vf and Vf-= —1{f<0}Vf (10.20)
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(see (5.9) and (5.10)). Let us show that

R(f) 2 min (R (f+), R (f-)). (10.21)
If f+ = 0or f— = 0 then this is obvious. Otherwise, observe that, by (10.20),
Vf4 and Vf_ are orthogonal in L?. Since f = f; — f-, we obtain
IVAR _ VAP IV
R = =
D= = TR FIEe

Set R (0) = 0 so that the infimum in (10.19) can be taken for all f € W.
It follows from (10.21) that

inf R(f)> inf R(fy)= inf R(f),
e (f) = nty (f+) 0 (f)

2 min (R (f4),R(f-)).

whereas the opposite inequality

inf R(f)< inf R
A (f)—og}lé - (f)

is trivial. We conclude that
doia (M) = o6 R(7) = int R(f),
which finishes the proof. a
ExaMPLE 10.9. Let us show that

Amin (R™) = 0. (10.22)

Choose a non-zero function ¢ € C§° (R™) and set
or () = (z/k), k=1,2,...

Then we have

/ngo,%(x)dxzk"/ncp2(:c)dw

and

[ valas =2 [ (veias
R=» R»

R (px) =k R (p).

Letting k£ — oo, we obtain (10.22).
It is possible to show that the spectrum of the Dirichlet Laplace operator
in R™ is the interval [0, +00).

whence

THEOREM 10.10. Assume that the infimum of R(f) in (10.16) is at-
tained on a function f € W (M) \ {0}. Then f € dom L and

Lf = Amin (M) f.
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PROOF. Denote for simplicity A = Apin (M) and observe that, for any
@ € C§° (M) and real t, we have

R(f+tp) 2 A=R(f),

that is
IV (f +to) 17 = XlIf + toll®> > 0= VA = Al I
We have
IVf +tVe|® = | VFI? + 2t (V, Vi) + 8[| Vol
and
If +tel® = 112+ 2 (£, ) + Ellel%,
whence

IV (£ + o) I = Al + toll? = 2t ((V£, Vo) = X (£, 0)) +1° ([ Veol* — Mo?) .
Since the left hand side is non-negative for all real ¢, the linear in ¢ term in
the right hand side must vanish, that is

(V£ Vo) = A(f,p)=0.
This implies
(f, Bup)p + A (f,9)p = 0

whence it follows that A, f + Af = 0 in the distributional sense. Therefore,
A,f € L% whence f € W = domZL and Lf = Af, which was to be
proved. O

Exercises.
10.5. Prove that, for any f € L? (M),
(Pef, £) < exp (= Amia (M) 1) || £]Z2-

10.6. Prove the following properties of Amin for subsets of a weighted manifold M.

(a) If 1 C Q2 are two open sets then

Amin (1) 2 Amin (Q2) -
(b) If {Q%} is a finite or countable sequence of disjoint open sets and Q = | j, Oy then
Amin () = i%f Amin () -

(e} If {%}ze, is an increasing sequence of open sets and Q = J, Qk then
Amin () = Lm Amin (Qk) .
k—oo

10.7. Let (M, g, ) and (M, g, %) be two weighted manifolds based on the same smooth
manifold M of dimension n. Assume that they are quasi-isometric, that is, for some
positive constant A and B,

At <Ecama B % <B, (10.23)
where T and T are the density functions of measures u and 1 respectively. Prove that
C ™ Amin (M) < Amin (M) < CAmin (M) (10.24)

where C = C (4, B,n) is a positive constant, Amin (M) is the bottom of the spectrum of
the Dirichlet Laplacian on (M, g, 1), and Amin (M) is the bottom of the spectrum of the
Dirichlet Laplacian on (M, g, [i).
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10.8. (Cheeger’s inequality) The Cheeger constant of a manifold is defined by
Ju V5] du

h{(M) = inf . 10.25
() recg oo} [y, ] du (1025)
Prove that 1

10.3. The bottom eigenfunction
A non-zero function f € dom (£) such that
‘Cf = >\min (M)f,

is called the bottom eigenfunction of L.

The bottom eigenfunction does not always exist (for example, it does not
exist in R™). Theorem 10.10 provides a sufficient condition for the existence
of the bottom eigenfunction. The next theorem ensures that the bottom
eigenfunction does not change the sign and, hence, can be assumed to be
positive.

TBEOREM 10.11. If f is the bottom eigenfunction on a connected weighted
manifold M then f never vanishes on M.

The connectedness of M is essential. Indeed, if M is disconnected and
contains a compact component £ then the function f = 1q is the bottom
eigenfunction with the eigenvalue Apin (M) = 0, while f vanishes in M \ Q.

ProOF. Denote for simplicity A = Amin (M) so that Lf = Af in M.

Then we have (). f)
R(f) = F.7) = A\ (10.27)

Let us prove that either fy or f_ is identical zero. Assume from the contrary
that the both functions £y and f- are non-zero as elements of L2 (M). Since
f € W§ (M), by Lemma 5.2 both f4 and f_ belong to W (M) and

Vi =Upa Y VI =1V (10.28)
(cf. Example 5.3). By Theorem 10.8, we have
R(fy)>Xand R(f)> A (10.29)

Assume that one of these two inequalities is strict, say the first one. Then
we obtain by (10.28) and (10.29)

/ VP du> A / Fdu
{F>0} {f>0}

N7y e
{f<0} {f<0}

and
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Adding up these inequalities yields

[ Vs> | Fau

which contradicts (10.27).

Hence, the both inequalities in (10.29) turn to be equalities. By Theorem
10.10, we conclude that both functions fy and f_ are eigenfunctions of £
with the eigenvalue A, whence

Aufe +Afr=0. (10.30)

By Corollary 7.3, fi and f_ are C* smooth functions in M, and, by the
strong minimum principle (¢f. Corollary 8.14), they cannot vanish in M.
However, this contradicts the fact that the inequalities fi (z) > 0 and
f— (z) > 0 cannot occur at the same point z.

This proves that either f; or f_ is identical 0. Changing the sign of
f, if necessary, we can assume f > 0. Since f # 0, applying again the
strong minimum principle, we conclude that f > 0 in M, which was to be

proved. a

SECOND PROOF. Since inf spec P; = e~*¢, it follows that NPl 2op2 =
e~ and, hence,

1PAl < e 115 (10.31)

Since f is the eigenfunction of £ with the eigenvalue A, f is also the eigen-
function of P, = e *£ with the eigenvalue e~*, that is,

Bf =e Y.
On the other hand, the identity
Pf =P fy - Rf-
implies that
Pify > (Pf)y = ey
The comparison with (10.31) shows that we have, in fact,

Pify=ef,.
A similar identity holds for f-, so that we obtain (10.30). The proof is then
finished in the same way as the previous proof. O

COROLLARY 10.12. For any connected weighted manifold,
dimker (£ — Amin id) < 1.

In other words, if the bottom eigenfunction exists then it is unique up to a
constant multiple.

PROOF. Indeed, let f and g be two linearly independent bottom eigen-
functions. By Theorem 10.11, we can assume that both f and g are positive
on M. Fix a point zp € M and choose a real constant ¢ so that

f (o) +cg (z0) = 0.
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The function A = f+cg is obviously contained in ker (£ — Amin id). However,
h cannot be the bottom eigenfunction because it vanishes at point zg. The
only alternative left is that h =0, which contradicts the assumption of the

linear independence of f, g. 0

It follows from Theorem 10.11 and Corollary 10.12 that if the bottom
eigenfunction f exists then f can be normalized to satisfy the conditions

|flizz=1 and f >0, (10.32)

which determines f uniquely.

10.4. The heat kernel in relatively compact regions

Let (M, g, ) be a weighted manifold. To simplify the terminology, we
will call by the spectrum of M the spectrum of the Dirichlet Laplace operator
L= _AMIWOZ on M, and the same convention applies to the eigenvalues and
the eigenfunctions of L.

The next statement is one of the main results of this chapter.

THEOREM 10.13. Let 2 be a non-empty relatively compact open subset
of a weighted manifold (M, g, ). Then the following is true.

(i) The spectrum of 2 is discrete and consists of an increasing se-
quence {Ax}re, of non-negative eigenvalues (counted according to
multiplicity) such that img_,oo Ap = +00. There is an orthonormal
basis {¢x Yoo, in L? () such that each function ¢y is an eigenfunc-
tion of Q with the eigenvalue Ag.

(i3) In any such basis {py}, the heat kernel pf (z,y) of Q admits the
following expansion

¢ (zy) = Ze Mhor () vr () (10.33)

The series in (10.33) converges absolutely and uniformly in the
domaint > g, z,y € §2 for any € > 0, as well as in the topology of
C*® (R, x Qx0Q).

Clearly, Theorem 10.13 applies when M is compact and @ = M.
In a more general context, the eigenvalue Ay of Q will be denoted by
Ak (22). One can consider )\t (Q) as a function of k and Q, and this function
is tightly linked to various analytic and geometric properties of the set Q,
the identity (10.33) being one of them.
" Note that the first eigenvalue A1 (Q2) is the bottom of the spectrum of Q,
at is,

AL (Q) = Amin (). (10:34)
It is also worth mentioning that

M (@) =R () - (10.35)
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Indeed, we have ¢y € W& () and
—Appr = L = A () ox,
which implies by the Green formula (4.12)

/ Vx| du = — / Prluprdp = Ak (2) / v>du,
Q Q (9]

whence (10.35) follows.
For the proof of Theorem 10.13, we need the following abstract lemma.

LEMMA 10.14. Let (X, ) be a measure space such that L? = L? (X, )
is a separable Hilbert space. Set L?? := L? (X x X, x p) and consider a
non-negative symmetric function q(x,y) € L*? and the operator Q defined
on measurable functions on X by

Qf (z) = /X g (e,y) F () du(v), (10.36)

whenever the right hand side of (10.36) make sense. Then Q is a bounded
self-adjoint operator in L? and

trace Q% = ||g]|22.2. (10.37)

PROOF. The fact that Q is bounded as an operator from L? to L2 follows
from the Cauchy-Schwarz inequality:

Qf ()2 < / ¢ (z,y) d (3) || 12
X
and
/ 1QF (2)2 du (z) < / / ¢ (@) dis () di (2) | F122 = NlglZaall F 125
X XJX

Let us show that the operator @ is symmetric. For all f, g € L?, we have by
Fubini’s theorem

@f.g) = /X QF (2) 9 () du (z) = A /X 0 (z,v) f (0) g (=) dy (=) dus (3)

and similarly

(f,Qg)=/X/Xq(fv,y)f(x)g(y)du(x)du(y)-

Switching z and y and using g (x,y) = ¢ (y, z), we obtain (Qf, 9) = (£, Qg) -
The operator Q2 is, hence, also bounded and self-adjoint. Besides, Q>
is non-negative definite because for any f € L?,

(Q%F,F) = (Qf,Qf) > 0.

To prove (10.37), choose any orthonormal basis {vi} 5., in L2. Write (10.36)
in the form
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where ¢; := ¢ (z,). By Lemma 10.4 and (10.36), we have

trace Q? = Z (Q%w, ) = Z (Qur, Qug) = Z /X (9, v&)? dps (z) ,
k

k k
(10.38)
Expanding ¢, € L? in the basis {v} we obtain
@ = (9, v) vk (10.39)
k
whence, by the Parseval identity,
> (g ve)” = llgali3e- (10.40)
k
Hence, (10.38) and (10.40) yield
trace @ = [ laslifpds (@) = llalas (10.41)
which was to be proved. O

Proor oF THEOREM 10.13. (i) Since 2 is relatively compact, by the
estimate (7.25) of Theorem 7.7 (cf. Theorem 7.6) we obtain

sup Ipeeliz: < Fa(t) :=C (1+177), (10.42)
fAS

where ¢ is any integer larger than n/4 and C is a constant depending on £2.
Since p& < ptg (cf. Exercise 7.40 or Theorem 5.23), (10.42) implies

sup lIpfellze < Fa () (10.43)

and
12122 = /Q 160 Zadi < F2 (8) (), (10.44)

whence it follows that |[p{]j;22 < co.

Applying Lemma 10.14 to the operator @ = P{? and noticing that Q? =

P! we obtain that

trace Ps; = ||pi| 22,2 < 0. (10.45)
Since P§} = exp (—2tL"), we conclude by Lemma 10.7, that the spectrum
of £% is discrete on the set where the function A — e~ is positive; hence,
all the spectrum of £ is discrete.

By Lemma, 10.2, there is an orthonormal basis {¢g} 7o ; of eigenfunctions
of £2 in L2 (2) such that the sequence {\;} of their eigenvalues consists of all
eigenvalues of £ counted with multiplicity. Besides, we have |\;| — co and
Ak 2> 0, which implies that Ay — +0o. Since any bounded interval contains
only a finite number of terms \x, the sequence {\;} can be renumbered in
the increasing order.

(44) Noticing that

L —_
(B 0k) 12 = Pilor () = 7 o (z) = ey (2) (10.46)
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we obtain the following expansion of pi}z in the basis {@r}:

P = e Mo () ¢x, (10.47)
k
that is,
P (y) =D e Mo (z) or (v), (10.48)
k

where the series converges in L? (Q) in variable y for any £ € Q and ¢ > 0.
Note that, by (10.14) and (10.45),

Ze"zt’\" = trace P§; = Hp?“%az < o0. (10.49)
k

The sequence {wi () ¢k (y¥)}rey is obviously orthonormal in L2 (Q x Q),
which together with (10.49) implies that the series (10.48) converges in
L2 (2 x Q).

To show the absolute and uniform convergence, observe that by (10.43),
for any f € L? (),

< Fo (t) | £l z2-

PQ — ' 0 ,
:ggl 3 f ()] sup (Pt ) 12

Applying this to f = ¢k and using (10.46), we obtain

sup 'e—t’\kcpk (m)i < Eq (), (10.50)
€N
whence
sup 'e"m’wk (=) ¥r (y)! < Fa(8)?.
z,ycd
Since function Fq (t) is decreasing in t, we obtain, for any € > 0,
> sup le“?’“ksok (=) o (y)! < Fa(e)?) e, (10.51)
& z,yEeN &

t>e

where the right hand side is finite by (10.49). Renaming 3t to t and 3¢ to &,
we obtain that the series (10.48) converges absolutely and uniformly in the
domain t > ¢, z,y € (.

Finally, let us show that the series (10.48) converges in C® (Ry. x §2 x §2).
The function u (¢, z,y) = pL (, y) satisfies the heat equation

Ou

with respect to the Laplace operator A, + A, of the manifold O x Q (cf.
the proof of Theorem 7.20), and its is straightforward to check that each
function uy, (t, z,y) = e~ %y (z) ¢ (y) also satisfies the same equation. It
follows from the previous argument that the series ), ux converges to u in
L2 (R x Q x ), which implies by Theorem 7.4 that it converges also in

loc

C®(Ry x O x Q). O
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REMARK 10.15. It follows from (10.51) that, for any ¢ > 0 and n € N,

Sy (t) = Z e sup | () @x ()] < 0.

— z,yeN

Since Sy, (t) is a decreasing function of ¢, it follows that, for all t > ¢3 > 0
Sp (t) < e ™28, (£/2) < e ™28, (t0/2). (10.52)
In particular, if A, > 0, then S, (£) — 0 as t — co.

ExXAMPLE 10.16. Let us show that if (2 is a non-empty relatively compact
open subset of a weighted manifold, then, for all large enough %,

A () > ck/ 39 (10.53)

where ¢ is the exponent from (10.42) and c is a positive constant depending
on {2 (better estimates for A\ (©2) will be proved later in Corollary 15.12).

Write for simplicity Ay = A (). Since the sequence {Ag}5 is increas-
ing, we have, for any k& > 1,

(o]
Z 6—21‘3Ak 2 ke‘—'?tAk.
k=1
It follows from (10.49) that
ke™ ™ < 11322
and, hence,
k

1
M () > =log ——5—. 10.54
TRLI I (10-54)

Assuming 0 < ¢ < 1, we obtain from (10.42) and (10.44),
Ipel720 < CE27,

for some constant C' depending on 2, whence

1. Kkt
Ak (92) > ﬂlog o (10.55)
Let us choose ¢ from the condition % = ¢, that is
Ce\ 1/(29)
t= (Te) . (10.56)

Since we want ¢ < 1, this is only possible if k¥ > Ce. Assuming that k is
that large and substituting (10.56) into (10.55), we obtain (10.53).

. EXAMPLE 10.17. It is easy to show that the eigenvalues of the circle
S* are given by the sequence { K2} o all with multiplicity 1 (see Exercise
10.18). For the sphere S™, the distinct eigenvalues are given by

ar=k(k+n-1), k=0,1,..,
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(see Exercise 10.19), where the multiplicity of o is 1 and the multiplicity
of o, k > 1, is equal to
(k+n—-2)

RN (2k+n—1).

Exercises.

10.9. In the setting of Lemama 10.14, prove that the integral operator Q is compact without
using the trace.

10.10. Let M be a compact weighted manifold, which has a finite number m of connected
components.

(a) Prove that A\; (M) = ... = A (M) =0 and Amt1 (M) > 0.
{b) Show that the estimate (10.53) holds for all ¥ > m + 1 and does not hold for k < m.

10.11. Let M be a compact connected weighted manifold. Prove that

1
pt(x,y):kmast—)oo,

where the convergence is uniform for all z,y € M.

10.12. Let 2 be a non-empty relatively compact connected open subset of a weighted
manifold M. Using the notation of Theorem 10.13, prove that, for all z,y € Q,

e (2,9) ~ e 01 () 01 (y) as t — oo

10.13. Prove that, under the conditions of Theorem 10.13,
sup gk ()] S C(1+2g), forallk > 1, (10.57)
zES

where ¢ is the exponent from (10.42) and C is a constant that does not depend on k.

10.14. Let (M, g, u) be a weighted manifold with the discrete spectrum. Let {yx} be an
orthonormal basis in L? (M) that consists of the eigenfunctions of M, and let Ax be the
eigenvalue of py.

(a) Prove that, for any f € L? (M), if f = 3_, axx is the expansion of f in the basis

{¢x} in L? (M) then
Pf=> e *arpy, (10.58)

k

where the series converges in L? (M) for any ¢t > 0. Show also that the series

converges in C® (R4 x M).
(b) Assume in addition that

trace P; = Ze_k"t < 00
k

for all t > 0. Prove that
pe(z,y) = 3 e ok (@) ok (¥) (10.59)
P

where the series converges in C*° (R x M x M).

10.15. On an arbitrary weighted manifold, consider the resolvent R = (id +£)™" and its -
powers R® = (id +£)°, where £ is the Dirichlet Laplace operator and s > 0.

(a) Prove that

0 48-—1
trace R® =/[; %e't trace Pedt. (10.60)
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(b) Assuming in addition that u (M) < o0 and
p(z,x) <Ct ™V forall<it<l, zeM,
where C and v are positive constants, prove that trace R® is finite for all s > v.

10.16. Let Q be a relatively compact open subset of a weighted manifold M of dimension
n. Let {px} be an orthonormal basis in L? (Q) that consists of the eigenfunctions of M,
and let {\x} be the sequence of the corresponding eigenvalues.

(a) Prove that if s > so = so (n) then

> A <o (10.61)
k: A >0

{(b) Prove that if f € C§° (Q) then the Fourier series
F= Zcidpk
k

of function f converges to f absolutely and uniformly in €.

10.17. Let (M, g, u) be a compact weighted manifold and {p«} be an orthonormal basis
in L? (M) that consists of the eigenfunctions of M. Prove that the set of all finite linear
combinations of functions (y is dense in C (M).

REMARK. This can be considered as a generalization of the classical Stone-Weierstrass
theorem that any continuous 2m-periodic function on R can be uniformly approximated
by trigonometric polynomials.

10.18. In this problem, the circle S! is identified with R/2nZ.
() Prove that the heat kernel p; (z,%) of S* is given by

1 1 bad —k2¢
pe(z,y) = o + p ;e cosk{z—y). (10.62)
(1) Show that the heat kernel p; (x, %) of S! can be obtained from the heat kernel 7; (z, y)
of R? by
p: (z,y) = Z'ﬁt (z + 27n,y) . (10.63)
n€Z

(tit) Prove the Poisson summation formula

S eF = \/é 3 exp (—”2:2) . (10.64)

kEZ neL

10.19. Let P (z) be a homogeneous of degree k& harmonic polynomial on R™"!. Prove
that the function f = Ps» is an eigenfunction of the Laplacian of 8™ with the eigenvalue
a=k(k+n-1).

REMARK. It is possible to prove that such eigenfunctions exhaust all eigenfunctions on
s,

10.20. Consider the weighted manifold (R, gg, x) where du = e *"dz. Prove that the
spectrum of this manifold is discrete, its eigenvalues are A\x = 2k, k = 0,1,..., and the
eigenfunctions are hy (z) — the Hermite polynomials (see Exercise 3.10). Hence, show that
the heat kernel of this manifold satisfies the identity

2\ okt hk ()R
Pt (a:,y)——-z;ae 2 —k% (10.65)
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REMARK. The same heat kernel is given by the formula
1 . 2zye~? — (2? +9%) e »
(2x sinh 2¢)*/2 *P 1—e% '

Pt (z,9) =

cf. Example 9.19.

10.5. Minimax principle

Let (M,g, 1) be a weighted manifold with discrete spectrum, and let
{Ax (M)}72, be the increasing sequence of all the eigenvalues of M, counted
according to multiplicity. The following theorem generalizes the variational
formula (10.1) for Amin (M).

THEOREM 10.18. If the spectrum of (M, g, 1) is discrete then the follow-
ing identities hold:

M (M)= su inf R(f), 10.66
£ (M) dimE-—I-)k——leEJ‘\{o} () ( )

where the supremum is taken over all subspaces E C W} (M) of dimension
k—1 and the infimum is taken over all non-zero functions f in the orthogonal
complement of E in W} (M), and

M (M)= _inf sup R(f), (10.67)
dim F=k Fer\{0}

which is understood similarly.
For example, for k =1 (10.66) and (10.67) yield

MM = inf R(f),
1 (M) fev%fg\{o} (f)

matching Theorem 10.8.

PROOF. Let {¢y} be an orthonormal basis in L? (M) such that ¢y is an
eigenfunction of M with the eigenvalue Ay = Ay (M) (cf. Lemma 10.2).

CLAM 1. For any f € W§ (M) and i > 1,
(V£ Vo2 = X (f, i)z - (10.68)

Indeed, since f € Wg (M) and
Ay = —Nips € L* (M),
the Green formuls 4.12 yields
(V£ Vi) =— / fAppidp = A / feidp,
M M

which is equivalent to (10.68).
In particular, applying (10.68) to f = ¢;, we obtain

)"i, Z=_7,
(Vei, Voj) 2 ={ 0 it (10.69)
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CrLAaM 2. If E is a (k — 1)-dimensional subspace of a Hilbert space H and
F is a k-dimensional subspace of H then there exists a non-zero vector v €

FNE*.
Indeed, let {¥1, ---, P&} be a basis in F' and let us look for v in the form

k
V= E Ci¢;
=1

where ¢y, ..., ck are unknown reals. If {ej,...ex—1} is a basis in E then the
condition v € E+ means (v,e;) = 0 for all j = 1,...,k — 1, which amounts
to a linear system for ¢;:
k

Z (So’iaej)c'i =0, j=1,..,k— L

i=1
Since the number of the equations in this homogeneous system is less than
the number of unknowns, there is a non-zero solution {c¢;}, which determines
to a non-zero vector v € FN EL.

Now we can prove (10.66) and (10.67). Consider the space

E = span {1, ..., pr-1},
which is a (k — 1)-dimensional subspace of W§ (M). Any function f ¢
E1\ {0} can represented in the form

=Y cpi,
>k
whence we obtain, using (10.69),
(VF£ Ve 2ok €6 (Vo Voila sy e

R(f)= = = > Ag.
) (fs F)r2 Zi,jZk cicj (9i, 95) 2 Eizk czg -
Hence, we obtain, for this particular space E
inf R(f)> A 10.70
LR 2N (1070

If F' is any k-dimensional subspace of W{ (M) then, by Claim 2, there exists
a non-zero function f € F N E+, which implies that

sup R(f) > A (10.71)
fermio}

Hence, taking in (10.70) supremum over subspaces E and in (10.71) infimum
over F, we obtain upper bounds for A in (10.66) and (10.67), respectively.
To prove the lower bounds, consider the k-dimensional subspace
F = span {‘pla 0 on} .
Writing a function f € F\ {0} in the form

=Y cpi

i<k
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we obtain, similarly to the first part of the proof,

. Aic2
R(f)= ———Zf’“ :

< Ag.
i<k Cz?
Hence, for this particular space F',
sup R{f) < g (10.72)
feF\{o}
If E is any (k — 1)-dimensional subspace of W (M) then, by Claim 2, there
is a non-zero function f € F N E+, which implies that
inf R < Ag. 10.73
P (10.73)
Taking in (10.72) infimum over all subspaces F' and in (10.73) supremum over
E, we obtain the lower bounds for A¢ in (10.67) and (10.66), respectively,
which finishes the proof. g

COROLLARY 10.19. If Q and QY are non-empty relatively compact open
subsets of M and Q' C Q then, for any k > 1,

Ak (Q’) > A (Q).
ProOOF. Note that the space Wi (') can be considered as a subspace
of W (Q) by identifying any function f € W3 (') with its trivial extension

(cf. Section 5.5), and the trivial extension does not change R (f). Hence,
any k-dimensional subspace F of W} (€) is also that of W} (), and the

value of the functional

R(F):= sup R(f)
feF\(o}

does not depend on whether F is considered as a subspace of W} () or
W3 (). By (10.67), we obtain

M()=_ iof RF)2 _ inf R(F)=X (),
£() FC%V&(Q’) ()“Fclwg(n) (F) =X ()

which was to be proved. O

Exercises.

10.21. Let (M, g, u) be a weighted manifold with discrete spectrum, and let {«} be an
orthonormal basis in L? (M) of the eigenfunctions of M with eigenvalues {\x}.

(a) Prove that {px} is an orthogonal basis also in Wg (M).
(b) Let f € L* (M) and assume that f = 3", axs is its expansion in the basis {¢x} in
L? (M). Prove that if, in addition, f € W (M) then

Vi=) aVei inL*(M) (10.74)
k

/M IVFZdu =" Aeai. (10.75)
k
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{¢) Prove that if f € W2 (M) then
—Auf=>_ Asarpr in L (M) (10.76)
k

fM (Auf)Pdp=>" Xai. (10.77)
k

10.22. Let manifold M admit k non-zero functions fi,..., fx € W¢ (M) with disjoint
supports such that R (f;) < a for all ¢ =1,...,k and some number a. Assuming that the
spectrum of £ is discrete, prove that A (M) < a.

10.6. Discrete spectrum and compact embedding theorem

Recall that, on any weighted manifold (M, g, ), the identical mapping
W' (M) — L?(M) is an embedding (cf. Section 4.1). In this section, we
discuss the conditions when the embedding operator Wi (M) —L? (M) is
compact.

THEOREM 10.20. Let (M, g, 1) be a weighted manifold. Then the follow-
ing conditions are equivalent.

(a) The spectrum of M is discrete.

(b) The embedding operator Wi (M) — L% (M) is compact.

(c) The resolvent Ry = (L + id)™" is a compact operator in L2 (M),
for some/all > 0.

PROOF. (a) = (b). If the spectrum of the Dirichlet Laplace operator £
is discrete, then, by Lemma 10.2, there exists an orthonormal basis {¢g } 7o ;
in L? (M) such that each ¢, is an eigenfunction of £, and the corresponding
eigenvalues A, tend to +oo as k — oo.

It follows from (10.68) that, for any f € W} (M) and any k > 1,

(frer)wr = (1+ Xg) (F %) 2 - (10.78)
In particular, (10.78) implies that

loellfn =1+ Ag.

By Exercise 10.21, the sequence {p} forms an orthogonal basis in W} (M).
Hence, any function f € L? (M) can be expanded in the basis {¢} as

follows:
[o o}
F=> arpk,
k=1

where az, = (f, )2, and if f € W} (M) then the same series converges in
Ws (M ). By the Parseval identity, we have

[ee]
IflZ2 =D _ak
k=1
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and -
1£1% =D (1 + M) af.
k=1

Now assume that we have a sequence {f,} in W¢ (M), which is bounded
in the norm W? (M), and prove that there exists a subsequence that con-
verges in L? (M), which will prove that the embedding W} (M) < L% (M)
is compact. Set anx = (fn,¥x)z2 and observe that, by the boundedness of
| follw1, there exists a constant C' such that, for all n,

o
> (14 M) e < C. (10.79)
k=1
In particular, all the coefficients an,x are uniformly bounded. Consider the
infinite matrix

a11 G21 @31 ... Qnl
a1 Qa2 asz2 ... 0On2
ak1 Qg2 Qp3 .. Gnk

The boundedness of the entries implies that, in any row, there is a conver-
gent subsequence. Using the diagonal process, choose a sequence of column
indices n1,ng,... — oo such that the subsequence {an}io; converges for
any k.

Let us show that the subsequence {fy,,} converges in L?(M). For sim-
plicity of notation, renumber this sequence back to {f.}. Then we have, for
all indices n,m, K,

00 K [o)
”fn - fm”%z = Z (ank - amk)2 = Z (ank - a'mls:)2 + Z (ank - amk)2 .
k=1 k=1 k=K+1
The condition (10.79) implies
2
Z (ank_amk) <2 Z Qg + 2 Z amksl_’_)‘K
k=K+1 k=K+1 k=K+1
whence
X 4C
2
| frn — fm“%z < ; (Ank — amk)” + 1+ A
Given € > 0, choose K so big that
4C < €
1+Xg 2’

which is possible because Ax — o0 as K — co. For the already chosen K,

we have
K

€
E (ank — Gmk)® < 3 for large enough n,m,
k=1
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because by construction the sequence {an},; is Cauchy for any k. Hence,
for large enough n,m,
”fn - fm“%ﬂ <g,
that is, {fn} is a Cauchy sequence in L? (M), which was to be proved.
(b) = (c) . Recall that, by Theorem 4.6, the resolvent Ry = (£ + avid)™"
is a bounded self-adjoint operator in L2 (M). For any f € L? (M), we have

u:= Rof € dom £ C Wg§ (M)

and
Lu+au=f

whence
(Vu, Vu) 2 + o (u,w) 2 = (u, Lu) 2 + (u, o) 2 = (4, f) 2
(cf. (4.21)). Therefore,

min (1, @) ullf < lullzzllfllze < fullws [ £l 22
and
lullwr < max (1,7 ") ||F|l e (10.80)

Consider the operator Ry : ~L2 (M) — W} (M) defined by Rof = Rof (the
difference between R, and R, is that they have different target spaces). By
(10.80), the operator R, is bounded. The resolvent R, : L? (M) — L% (M)

is the composition of R, and the embedding operator, as follows:

L2 (M) Bo Wi (M) > L2 (M).

Since R, is bounded and the embedding operator Wg (M) <sL? (M) is com-
pact, their composition is a compact operator.

(¢) = (a). Note that ker Ry, = {0} because R,f = 0 implies f =
(£ + @id) 0 = 0. By the Hilbert-Schmidt theorem, there is an orthonormal
basis {¢r} in L? (M) that consists of the eigenfunctions ¢y of R, with the
eigenvalues py, # 0 such that px — 0 as k — co. Since £ = R, — ¢, function
¥k is also an eigenfunction of £ with the eigenvalue Ay = p,:l — . Since
Ak — o0, there is no finite accumulation point of the sequence {\;}. Using
this, the operator (£ — Aid)™" can be explicitly constructed for any A # A
as follows: if f = 37, arpx in L? (M) then

-l ak
(‘C_Ald) f_;Ak—/\(p’m

and this operator is bounded because infy [\ — A| > 0. Hence, the entire
spectrum of £ coincides with the sequence {Ax}, which implies that the
spectrum of £ is discrete. |

CoroLLARY 10.21. (Compact embedding theorem) If ) is a non-empty
relatively compact open subset of a weighted manifold M then the embedding
operator Wi (Q) <+ L2 (Q) is compact.
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ProoF. By Theorem 10.13, the spectrum of L% is discrete, whence the
result follows from Theorem 10.20. O

SECOND PROOF. Let us present a more direct proof, without using Theorems 10.13
and 10.20. Instead, we assume that the compact embedding theorem is known for the
case M = R" (see Theorem 6.3).

Let us show that, for any bounded sequence {fx} in W¢ (), there is a subsequence
{fx;} that converges in L (Q2). Since C§° () is dense in W3 (£2), we can assume without
loss of generality that all functions f are in C§° (). Since Q C M is relatively compact,
there is a finite family {U;} of small enough relatively compact charts such that

ﬁCUUj =:U.
J

By Theorem 3.5, there exist functions ¢; € C5° (U;) such that }_, ¢; =1 in a neighbor-
hood of §.

Fix j and observe that the sequence {fx;}52, is bounded in Wg, because (suppress-
ing indices k, §)

IFellzs + 1V (fo) 22

< FNZ2 + 20V F 122 + 25up [Vl 1 £IZ2
< const.

15 ellwa

Since W (U;) embeds compactly into L?(U;), there is a subsequence {fi,;}>°; that
converges in L? (U;). Using the diagonal process, one can ensure that this subsequence
converges in L? (U;) for any j. Since >.; i =1in Q, we conclude that {fi;} converges
in L? (Q), which finishes the proof. 0

Applying further Theorem 10.20, we obtain that the spectrum of £ is discrete, which
is the main part of Theorem 10.13. Hence, this approach allows to prove Theorem 10.13
without Theorem 7.6, However, we use Theorem 7.6 also to prove the existence and
smoothness of the heat kernel and, at the same token, it leads to a short proof of Theorem
10.13 via the properties of trace.

Yet another approach to the proof of Corollary 10.21 is presented in Exercise 7.47.

That proof also uses the heat kernel, but in a more direct way.

Exercises.

10.23. Prove that if the spectrum of a weighted manifold (M, g, 1) is discrete then also
the spectrum of any non-empty open subset Q C M is discrete.

10.24. Let (M’',g’, 1) and (M”,g”, 11”) be two weighted manifold with discrete spectra,
whose eigenvalues are given by the sequences {a:} and {B;}, respectively (each eigenvalue
is counted with multiplicity). Prove that the spectrum of the direct product (M, g, u) is
also discrete, and the eigenvalues are given by the double sequence {o; + 5}

10.25. (Compactness of the embedding W, — L%,.) Let {ux} be a sequence of functions
from Wb, (M) such that {u;} is bounded in W* (Q) for any relatively compact open set
Q C M. Prove that there exists a subsequence {uy,} that converges in L7, (M).
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10.7. Positivity of \;

Throughout this section, € is a non-empty relatively compact open sub-
set of a weighted manifold (M, g, u). Recall that, by Theorem 10.13, the
spectrum of the Dirichlet Laplace operator £ is discrete and consists of a
sequence {A; () }pe; Of non-negative eigenvalues such that Az (2) — oo as
k — oo.

THEOREM 10.22. Let (M,g,u) be a connected weighted manifold. If
Q C M is a non-empty relatively compact open set such that M \ Q is non-
empty then A\; () > 0.

Neither connectedness of M nor the fact that Q #£ M can be dropped.
Indeed, if a disconnected manifold is allowed then let M consist of two
disjoint copies of S” and 2 be one of these copies. Obviously, function
¢ =1 is an eigenfunction in 2 and, hence, A\; () = 0. If Q = M is allowed
then take Q = M = S™ with the same effect.

PROOF. Assume that A; (Q2) = 0 so that there is an eigenfunction f of
L9 with the eigenvalue 0, that is, £2f = 0. By Lemma 4.4, we have

(V£ Hiagy = (£, f) pag) = 0

so that Vf =0 in Q. By Corollary 7.3, f € C*° (2). Hence, f is a constant
on any connected component of {2. Since f # 0, there is a component of ()
where f is a non-zero constant, say, f = 1. Denote this component again
by Q.

The set  is closed and its complement is non-empty. Since M is con-
nected, Q is not open, which implies that the boundary 99 is not empty.
Choose a point zg € 9Q and let U be any connected open neighborhood of
xp. Consider the set ' = Q U U, which is a connected open set. Note that,
by construction, ' \ € is non-empty.

Since f € dom L% C W§ (), extending f to ' by setting f = 0 in
@'\ Q, we obtain a function from Wj (€') (see Section 5.5). Since f =0 on
'\ Q, by (5.11) we have Vf = 0 in ' \ Q. Since also Vf = 0 in Q, we
conclude that Vf = 0 in €. This implies, that, for any ¢ € D (@),

(Auf’ (P)'D = (f, A#QD)D =—(V/, VCP)D =0.

Hence, we have f € W} (€) and A, f = 0 in &', which implies by Theorem
7.1 that f € C*° (£Y). Since Vf = 0 in ', we conclude that f = const in &,
which contradicts to the construction that f =1in Q and f =0in Q' \ Q.

Theorem 10.22 is complemented by the following statement. a

THEOREM 10.23. For any a weighted manifold (M, g, ) and any non-
empty relatively compact connected open set 2 C M,

A2 (€2) > A1 (Q). (10.81)

PrOOF. Indeed, by Corollary 10.12, the eigenvalue \; {€2) is simple whence
(10.81) follows. O
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10.8. Long time asymptotic of logp;

We will show here that the bottom of the spectrum Ay, (M) determines
the long time behavior of the heat kernel.

THEOREM 10.24. On any connected weighted manifold (M,g,u), we
have, for all z,y € M,

. logpi(z,y)

Jim ZEEEDY = r i (M). (10.82)
PROOF. Set A = Amin (M). Since the spectrum of operator P, = et~ is

bounded by e~*, we obtain that || P;|| < e~** and, hence, for any f € L2,

IPifllz2 < e £l 2 (10.83)

Applying this to f = ps, (where s > 0 and ¢ € M) and notices that
Pipsz = Pttsz, We obtain

|Ptsszllze < €25l L2y (10.84)

whence
log [Iptallr> Ny

lim sup
t—o0 4

It follows from (7.48) that

2t (2,9) = (Pej2,0:Pr/24) < WDtz N2 lp/2,9 1 22,
whence
lim sup
t—o0
To prove the opposite inequality, take any connected relatively compact open
set 2 C M and recall that, by Theorem 10.13, the spectrum of the Dirichlet
Laplace operator £ is discrete, and the heat kernel p} is given by the
expansion (10.33). By Theorem 10.23, A (©2) > A1 () for any k¥ > 1 and,
by Theorem 10.11, the first eigenfunction ¢y (x) of £ is strictly positive in
). Hence, the first term in expansion (10.33) is the leading one as t — oo,
that is,

logps (z,9) . _,
R

—AL(Q)t

p?(a:,y)fve ¥1 ($)<p1 (y) as t — oo,

for all z,y € Q, which implies
Q
lim logptt(w,y) - ().

t—00

Since p; > p? (cf. Theorem 5.23 and Exercise 7.40), it follows that
liminf PEPEEY) 5 3y
t—o0 t

Exhausting M be such sets  and noticing that Amin (2) — X (see Exercise
10.6), we finish the proof. O
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Exercises.

10.26. Let f € C? (M) be a non-negative function on a connected weighted manifold M
that satisfies the inequality

Auf+af <0
with a real constant . Prove that either f =0 or & < Amin (M).
REMARK. The converse is also true, that is, for any a > Ami, (M) there exists a positive
solution to the equation A,f + af = 0. This will be proved later in Chapter 13 (cf.
Theorem 13.16). Exercise 10.27 contains a partial result in this direction.

10.27. Let a be a real number.
(@) Prove that if @ < Amin (M) then the operator £ — aid has the inverse in L? (M) and

oo
(L —id)™t = [ e P.dt. (10.85)
o}

(b) Prove that if (M) < co and & < Amin (M) then the weak Dirichlet problem

Aju+aou=0
% € 1 mod W3 (M)

has a unique solution that is given by the formula
o0
u=1+a / e* (P;1) dt (10.86)
0

Deduce that v > 0.

10.28. (Mazimum principle) Let Q2 be a non-empty relatively compact open set in a
connected weighted manifold M such that M \ Q is non-empty. Prove that if u € C (ﬁ) n
C? (Q) is a subharmonic function in Q then

SuUpu = SUp u. (10.87)
o 80

REMARK. Of course, this statement follows from Corollary 8.16. Find another proof using
Theorem 10.22 and Exercise 4.28.
10.29. Prove that, for all z,y € M and t > 5 > 0,

Pt (%,9) < Vs (,2) Ps (¥, ¥) €xP (—Amin (M) (t — 3)) -

Notes

Most of the material of this Chapter is an adaptation of the classical spectral theory,
that is associated with the names of Rayleigh, Courant, Neumann, Weyl, to the particular
case of the Dirichlet Laplacian.

The computation of the spectra of S” and some other compact manifolds can be found

in {36] (see also [51]).



CHAPTER 11

Distance function and completeness

Here we introduce the techniques of Lipschitz test functions (Section
11.2), which allow to relate the geodesic distance to the properties of solu-
tions of the Laplace and heat equations. Apart from the applications within
the present Chapter, this techniques will also be used in Chapters 12, 15,
16.

11.1. The notion of completeness

Let (M, g) be a Riemannian manifold and d (z,y) be the geodesic dis-
tance on M (see Section 3.11 for the definition). The manifold (M, g) is
said to be metrically complete if the metric space (M, d) is complete, that
is, any Cauchy sequence in (M, d) converges.

A smooth path v (¢) : (a,b) = M is called a geodesics if, for any
t € (a,b) and for all s close enough to t, the path 7|y is a shortest path
between the points 7y (¢) and «y (s). A Riemannian manifold (M, g) is called
geodesically complete if, for any z € M and € € T, M \ {0}, there is a
geodesics v : [0,400) — M of infinite length such that v(0) = z and
4 (0) = £. It is known that, on a geodesically complete connected manifold,
any two points can be connected by a shortest geodesics.

We state the following theorem without proof.

Hopr-RINOW THEOREM. For a Riemannian manifold (M, g), the following
conditions are equivalent:

(@) (M,g) is metrically complete.

(b) (M, g) is geodesically complete.

(c) All geodesic balls in M are relatively compact sets.

This theorem will not be used, but it motivates us to give the following
definition.

DEFINITION 11.1. A Riemannian manifold (M, g) is said to be complete
if all the geodesic balls in M are relatively compact.

For example, any compact manifold is complete.

Exercises.
11.1. Let g be a metric in R™, which is given in the polar coordinates (r,8) by
g =dr’ +9° (r) gsn-1, - (111)

W!:lere % (r) is 2 smooth positive function (¢f. Sections 3.10 and 8.4.3). Prove that the
Riemannian model (R™, g) is complete.

295
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11.2. Prove the implication (¢) = (a) of Hopf-Rinow Theorem, that is, if all geodesic balls
are relatively compact then (M, d) is a complete metric space.

11.2. Lipschitz functions

Let d be the geodesic distance on a Riemannian manifold (M, g). Let f
be a function defined on a set S C M. We say that f is Lipschitz on S if
there exists a finite constant C such that

If () = f ()| < Cd(z,y) forallz,y €S

The constant C is called the Lipschitz constant of f . The smallest possible
value of C is called the Lipschitz seminorm of f and is denoted by || f|| Lip(sy;

that is,
|f (=) - f W)
in(S) = Sup =t
”f”sz(S) 2 yeS.rty d (11:, y)

The set of all Lipschitz functions on M is denoted by Lip(M). It
is obvious that Lip (M) is a linear space (cf. Exercise 11.5). It follows
from Lemma 3.24 that any Lipschitz function on M is continuous, that is,
Lip(M) Cc C(M).

A large variety of Lipschitz functions arise from the following construc-
tion. For any non-empty set E C M and any point z € M, define the
distance from z to E by

d(z,E):=inf{d(z,2): z € E}.
LEMMA 11.2. If manifold M is connected then the function z — d(z, F)
is Lipschitz on M with the Lipschitz constant 1.

PRrOOF. The connectedness of M ensures that d(z, E) is finite. Let us
show that, for any two points z,y € M,

d(z,E)—d(y,F) <d(z,y), (11.2)
which will imply the claim. For any € > 0, there exists z € E such that
d(y,E) 2 d(y,z) -«
Then we have by the triangle inequality
d(z,E)~d(y,E) < d(z,2)—(d(y,2) — €) < d(z,2)—d (y, z)+e < d(z,y)+e.
Since ¢ > 0 is arbitrary, (11.2) follows. a

It is important for applications that any Lipschitz function has the weak
gradient as stated below.

THEOREM 11.3. Let (M, g, 1) be a weighted manifold. Then, for any
f € Lip (M), the distributional gradient V f is an L®-vector field on M and

IVflle < l17]zip- (11.3)
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FIRST PROOF. Let U be a chart on M such that
d(z,y) <Clz—y| forall z,y €U,

where |z — y| is the Euclidean distance in the local coordinates in U. By
Lemma 3.24, the manifold M can be covered by charts with this property.
It follows that the function f|y is Lipschitz with respect to the Euclidean

distance.
We will take without proof the following fact from the theory of functions

of real variables.

RADEMACHER’S THEOREM. Any Lipschitz function f in a an open set U C
R"™ is differentiable at almost oll points x € U in the following sense: there
exists a covector u (z) € R", such that

fl+8) - flz)=(ul=),&)+o(l]), as&—0. (11.4)

Moreover, the components u; (z) of u(z) coincide with the distributional
derivatives g;é of .

The Lipschitz condition implies that all the components u; = g{? belong
to L (U). By Exercise 4.11, the vector field v with components

vt = g'r,g Ui

is the distributional gradient of f in U with respect to the Riemannian
metric g. In particular, if z € U is a point where (11.4) holds then, for any
vector £ € T, M, we have

(v,8)g = girV" € = girgu,t* = uif' = (u, €). (11L.5)

Let us show that |v|, < C a.e. where C' = ||f||Lsp, Which will prove
(11.3). It suffices to show that, for any point © € U where (11.4) holds and
for any tangent vector £ € T, M,

(v,6)g < ClElg (11.6)
Choose a smooth path v in U such that v (0) = z and % (0) = £. Then
vy —v(0)=¢Et+o0(t) ast— 0,
whence, by (11.4) and (11.5),
FO@)=F (v (0) = (u,y (1) =7 (0)) +0 (t) = (u, §)t+0(t) = (v,E)gt+0 (t) -
On the other hand, the Lipschitz condition implies

t
If () = £ (v (O] < CE (vlpa) = C/O 1 (s)lgds = Cl¢lgt+o(t).

Comparing the above two lines and letting ¢t — 0, we obtain (11.6), which
Wwas to be proved. O
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SECOND PROOF. In this proof, we do not use Rademacher’s theorem,
but instead, we will use Exercise 2.23, which proves the statement of Theo-
rem 11.3 in the case when M is an open set in R” and the metric is Euclidean.

Let us first prove the following claim.

CLaiM. For any point p € M and for any C > 1, there exists a chart U 3 p
such that forallz e U, €T, M, ne T M,

gij () €87 < C? ((Sl)2 4ot (g")‘") (11.7)

and -
g7 (x)min; < C? (2 + ..+ n2). (11.8)

Let so far U be any chart containing p. Arguing as in the proof of
Theorem 8.10, the coordinates z, ..., 2™ in U can be chosen so that g;; (p) =
id. By continuity, the matrix g is close enough to id in a small enough
neighborhood V of p. More precisely, by choosing V' small enough, we can
ensure that the matrices §;; and §¥ satisfy the conditions (11.7) and (11.8),
respectively. We are left to rename V to U, ¢* to ¢, and § to g.

Shrinking further the chart U from the above Claim, we can assume that
U is a ball in the coordinates z!,...,z™ centered at p. Then, for any two
points x,y € U, the straight line segment between z, y is also contained in U.
By (11.7), the Riemannian length of this segment is bounded by C |z — yj,
which implies that

d(z,y) < Clz—y|. (11.9)

Let now f be a Lipschitz function on M with the Lipschitz constant K.

In a chart U as above, we have

|f (z) = f (v)| < Kd(2,y) < CK |z — g,

so that f is Lipschitz with a Lipschitz constant CK in the Euclidean metric
in U. By Exercise 2.23, we conclude that f has the distributional partial
derivatives 24 € L™ (U) such that

= 0f\? 2

E -— ) L (C £.. .

2 (8:;5’) < (CK)* a.e (11.10)
By Exercise 4.11, the Riemannian distributional gradient Vg f is given by

; 0
(Vef)* = g% 2L,

and 87 of
2 _ g

It follows (11.8) and (11.10) that

IVefl? < 02§nj <—3i)2 < C?(CK)? ae
g/l = Bzi) = -~

=1
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that is, in U,
|Vef| < C°K ae.. (11.11)

Since M can be covered by a countable family of such charts U, (11.11)
holds also in M. Finally, since C > 1 was arbitrary, we obtain |Vgf| < K
a.e., which finishes the proof. 0

Denote by Lipg (M) the set of all Lipschitz functions on M with compact
support. It is obvious that

Lipy (M) C LP (M),
forall 1 <p <L o0
COROLLARY 11.4. We have the following inclusions:
C} (M) C Lipy (M) c W3 (M). (11.12)

ProoF. By Theorem 11.3, any function f € Lipg (M) has distributional
gradient Vf € L (M). Since supp f is compact, it follows that f € L? (M)
and Vf € L2 (M), that is, f € W' (M). By Lemma 5.5, the compactness of
supp f implies f € W3 (M), which proves the second inclusion in (11.12).

Let now f € C} (M). Set

C:=sup|Vf| <oo
M

and show that, for any two points z,y € M,

|f (=) — F ()| £ Cd(z,y), (11.13)

which will prove the first inclusion in (11.12). If the points z,y € M cannot
be connected by a smooth path then d(z,y) = oo and (11.13) holds. Let
v (t) : [a,b] = M be a smooth path such that v (a) = z and «y (b) = y. Then

b b b
t-r@= [ graoa= [aae= [ (v

whence

b b
f@-1@i< [ IvaARa<c [(Ha=cw.
Minimizing over all -y, we obtain (11.13). O

A function f on M is said to be locally Lipschitz if f is Lipschitz on any
compact subset of M. The class of all locally Lipschitz functions is denoted
by Lipj,. (M), so that we have

Lipy (M) C Lip (M) C Lipic (M).

Some additional properties of Lipschitz and locally Lipschitz functions
are stated in the following Exercises.
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Exercises.
11.3. Prove that a function f € C* (M) is Lipschitz if and only if [V f] is bounded, and
| fllzip = sup [V f].
M

11.4. Prove the following properties of Lipschitz functions.
(@) Let fi,..., fm € Lip(M) and let I = fi (M) be the range of fi. Let v be a Lipschitz
function on the set I X ... X I, C R™. Then the composite function
@ (z) = ¢ (f1 (), e fm (2))
is Lipschitz on M and

- 1/2
12llzip < lollzip (Z kalli@p) . (11.14)
k=1

(8) If f € Lipo (M) and ¢ € Lip (R) is such that ¢ (0) = 0 then @ o f € Lipo (M).

11.5. Prove that f,g € Lip (M) then also the functions f + g, max(f, g), min(f, g) are
Lipschitz; moreover, fg is also Lipschitz provided one of the functions f, g is bounded on
the support of the other.

Hence show, that if f,g € Lipo (M) then also the functions f + g, fg, max(f,g),
min (f, g) belong to Lipo (M).
11.6. Prove that for any open set 2 C M and any compact set K C 2 there is a function
f€Lipg(Q)suchthat 0< fF<1in Q, flx =1, and (|fljrip < W{%ﬁgs.

REMARK. A function f with the above properties is called a Lipschitz cutoff function of
K in Q.

11.7. Let f be a real valued function on a Riemannian manifold M.
(a) Prove that if {Us} is a countable family of open sets covering the manifold M such
that
C = sup ||fl| Lipway < 00,

then f € Lip (M) and || fllLipan) < C.

(b) Prove that if By, F are two closed sets in M such that By UF; = M and f is
Lipschitz in each set E;, E2 with the Lipschitz constant C, then f is also Lipschitz
in M with the Lipschitz constant C.

11.8. Prove that
Cl (M) C Liploc (M) C Wl]éc (M) .

11.9. Prove that the set of functions from Lipi,c (M) with compact support is identical
to Lipe (M).
11.10. Prove that if fi,..., fm € Lipioc (M) and ¢ € Lipioc (R™) then the composite
function ® (z) := ¢ (f1 (), ..., fm (z)) is locally Lipschitz on M.
11.11. Prove that if f,g € Lipi.c (M) then the functions f + g, fg, max (f,g), min (f,g)
are also in Lipioc (M) .
11.12. Prove that if f € Lipio. (M) then the distributional gradient Vf belongs to
Lige (M).
11.13. (Product rule for Lipschitz functions)

{(a) Prove that, for all f,g € Lipioc (M),

V(fg) =fVg+gVf. (11.15)
(b) Prove that if f € Lip(M)NL™ (M) and g € W (M) then fg € W (M) and (11.15)
holds.
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(¢) Prove that if f € Lipo (M) and g € Wi, (M) then fg € W (M) and (11.15) holds.

11.14. (Chain rule for Lipschitz functions) Prove that if f € Lipi.. (M) and ¥ € C* (R),
then ’l/) (f) S Liploc (M) and
VY () =9 (f) V.

11.3. Essential self-adjointness

Apart from the Dirichlet Laplace operator, the operator A,|, may
have other self-adjoint extensions related to other boundary conditions. A
densely defined operator in L2 is said to be essentially self-adjoint if it admits
a unique self-adjoint extension.

THEOREM 11.5. If the weighted manifold (M, g, 1) is complete then the
operator Al is essentially self-adjoint in L2 (M).

‘We precede the proof by lemmas of independent interest.

LEMMA 11.6. Let (M, g, u) be a complete weighted manifold. If a func-
tion u € L? (M) satisfies the equation A,u — Au = 0 with a constant A > 0,
then u = const on each connected component of M. If in addition A > 0
then u = 0.

ProoF. By Theorem 7.1, we have u € C® (M). Let f € Lipg (M),
that is, f is a Lipschitz function on M with compact support. Then also
uf? € Lipg (M) and, hence, uf? € W¢ (M) (cf. Corollary 11.4). Multiplying
the equation A, u = \u by u f2, we obtain u fQA#u > 0. Integrating this
inequality and using the Green formula (4.12), we obtain

0 > —/Musz#udu=/M(V(ufz),Vu)gd,u

= [ Vo Pdu+2 [ (Vuf)gurdn
M M

whence
/ [Vul? f2dp < -2 / (Vu, V f)gu f du
M M
< 5[ IVt Pdur2 [ ViR
2J/m M
and
/|Vu|2f2du§4/ IV £ I? u?dp. (11.16)
M M

Fix a point 0 € M, numbers R > r > 0, and specify f as follows:

f(z) =(R—d(z,0)), .
Alternatively, this function can be defined by f = ¢ o d (-,0) where ¢ (s) =
(R~5) +- Since both functions ¢ and d (-, 0) are Lipschitz function on R and
M, respectively, with Lipschitz constants 1, the function f is also Lipschitz
with the Lipschitz constant 1 (cf. Exercise 11.4). Obviously, supp f coincides
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with the closed geodesic ball B (o, R). By hypotheses, all the geodesic balls
on M are relatively compact, whence it follows that supp f is compact.
Hence, f € Lipg (M), and (11.16) holds with this f.

Since f > R— 1 on B(o,r) and, by Theorem 11.3, |[Vf| < 1 a.e., we
obtain from (11.16)

4
Vul? dp < —————/ uwldp.
‘/;(o,r) l l (R - 7")2 M

Letting R — oo and using u € L2 (M), we obtain

/ [Vul® du = 0.
Bfo,r)

Since r is arbitrary, we conclude Vu = 0 and hence u = const on any
connected component of M. In the case A > 0 it follows that u = 0 because
0 is the only constant that satisfies the equation A,u — Au = 0. O

LEMMA 11.7. On a complete weighted manifold, if w € L2 (M) and
Ayu € L2 (M) then u € WE (M).
PrROOF. By Theorem 4.5, the equation —A,v + v = f has a solution
v = Rif € W¢ (M) for any f € L*(M). Set f = —A,u+ u and observe
that, for the function v = R; f, we have
Ay (u—v)+ (u—v)=0.
Since u — v € L2 (M) we conclude by Lemma 11.6 that u — v = 0 whence
u € Wg (M). a
PROOF OF THEOREM 11.5. Let £ = —Aulwg and Lo = —A,lp. The
inclusion £y C £ implies £ = L£* C Lj. By (4.10), we have
dom £§ = {u € L* (M) : Ayu € L* (M)},
whence by Lemma 11.7,
dom £} ¢ W (M) = dom L,
which implies £§ = L.
If £, is another self-adjoint extension of Lo then Lo C Ly implies L1 =
L] C L§ and, hence, £; C £. In turn, this implies £* C L} whence £ =
L. O

Exercises.
11.15. Prove that if (M, g, 1) is a complete weighted manifold then W§ (M) = W (M).
11.16. Let (M, g, 1) be a complete weighted manifold.
(a) Let {ur};>, be a sequence from W' (M) such that, for all ¢ € C§° (M),
(uk, Q)1 = (%, Py (11.17)

for some u € W?, and
(uk; )2 = (,0) 2 5 (11.18)
for some v € L? (M). Prove that u = v.
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(b) Show that without the hypothesis of completeness, the claim of (a) is not true in
general.

11.17. Let (M, g, 1) be a complete weighted manifold, and let ~» be a smooth positive
function on M satisfying (9.43). Set dii = h®dp.

(a) Let £ = —Aﬁlwoz be the Dirichlet Laplace operator of (M, g,1). Prove that the
operator —A, + ®|,, is essentially self-adjoint in L? (M, ), and its unique self-
adjoint extension, denoted by L%, is given by

£®=JLst, (11.19)

where J is a bijection L? (M, i) — L? (M, u) defined by Jf = hf.
(b) Prove that the heat semigroup e~ of the operator £& in L2 (M, u1) has the integral
kernel p¥ (z,y), given by

p: (2,9) =h (@) h ()5 (2,9). (11.20)

11.18. Consider in R the function & () = 2® — 1. Verify that the function h (z) = e~3
satisfies (9.43) with this function. Hence, prove that

t 2 2, .2
® _ € (z-y) +y
p: (z,9) = __—_(Qn e 2t)1/2 exp ( 5 stnh OF 3 tanh t) . (11.21)

REMARK. The function (11.21) is called the Mehler kernel.

HinT. Use Example 9.19.

11.4. Stochastic completeness and the volume growth
Define the volume function V (x,r) of a weighted manifold (M, g, u) hv
V(z,r):=up(B(zr)),

where B (z,r) is the geodesic ball. Note that V (z,7) < coforallz €¢ M
and r > 0 provided M is complete.
Recall that a manifold M is stochastically complete, if the heat kernel

Dt (z,y) satisfies the identity

[ maydu) =1,
M
for all z € M and t > 0 (see Section 8.4.1). The result of this section is the

following volume test for the stochastic completeness.

THEOREM 11.8. Let (M, g, 1) be a complete connected weighted mani-
fold. If, for some point xp € M,

o0 rdr
| e (11:22)

then M is stochastically complete.
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Condition (11.22) holds, in particular, if

V(zo,) < exp (Cr?) (11.23)
for all r large enough or even if
V(zo,7%) < exp (C3) , (11.24)

for a sequence T — 00 as k — oo (cf. Exercise 11.19). This provides yet
another proof of the stochastic completeness of R™ and H". See Exercise
12.4 for an alternative proof of the stochastic completeness of M under the
condition (11.24).
Fix 0 < T < o0, set I = (0,7) and consider the following Cauchy
problem in I x M o
5t = Auu inl xM,
{ oo = 0. (11.25)
A solution is sought in the class u € C®°(I x M), and the initial condition
means that u (¢,z) — 0 locally uniformly in £ € M as ¢t — 0 (cf. Section
8.4.1). By Theorem 8.18, the stochastic completeness of M is equivalent
to the uniqueness property of the Cauchy problem in the class of bounded
solutions. In other words, in order to prove Theorem 11.8, it suffices to
verify that the only bounded solution to (11.25) is u = 0.
The assertion will follow from the following more general fact.

THEOREM 11.9. Let (M, g, 1) be a complete connected weighted mani-
fold, and let u(x,t) be a solution to the Cauchy problem (11.25). Assume
that, for some zy € M and for all R > 0,

T
[ et du@)e < exp (7)), (11.26)
0 JB(zo,R)
where f(r) is a positive increasing function on (0,+00) such that
< rdr
—— = 00. 11.27
1= (11-27)

Thenu=0inIxM.

Theorem 11.9 provides the uniqueness class (11.26) for the Cauchy
problem. The condition (11.27) holds if, for example, f (r) = Cr2, but fails
for f (r) = Cr?**® when € > 0.

Before we embark on the proof, let us mention the following conse-
quence.

CoROLLARY 11.10. If M = R" and u(t,z) be a solution to (11.25)
satisfying the condition
lu(t, z)| < Cexp (C|m|2) foralite I, z €R™, (11.28)

then u = 0. Moreover, the same is true if u satisfies instead of (11.28) the
condition

lu(t,z)] < Cexp (f (|z|)) forallitel, z €R", (11.29)
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where f () is a convex increasing function on (0,+00) satisfying (11.27).

PROOF. Since (11.28) is a particular case of (11.29) for the function
f(r) = Cr? it suffices to treat the condition (11.29). In R™ we have
V (z,r) = cr™. Therefore, (11.29) implies that

/T/ u?(z,t) du(x)dt < CR™exp (f (R)) = Cexp(f (R)),
B(0,R)

where f (r) :== f () +nlogr. The convexity of f implies that logr < Cf (r)

for large enough r. Hence, f (r) < Cf (r) and function f also satisfies the
condition (11.27). By Theorem 11.9, we conclude v = 0. a

The class of functions u satisfying (11.28) is called the Tikhonov class,
and the conditions (11.29) and (11.27) define the Técklind class. The
uniqueness of the Cauchy problem in R™ in each of these classes is a classical
result, generalizing Theorem 1.7.

PrOOF OF THEOREM 11.8. By Theorem 8.18, it suffices to verify that
the only bounded solution to the Cauchy value problem (11.25) is u = 0.
Indeed, if u is a bounded solution of (11.25), then setting

S =sup|u| < oo

we obtain

[ [ e < STV B) = exn(s (R),
B(zo,R)

where

F(r) :=log (S*TV (z0,7)) .
It follows from the hypothesis (11.22) that the function f satisfies (11.27).
Hence, by Theorem 11.9, we obtain u = 0. O

ProOOF OF THEOREM 11.9. Denote for simplicity B, = B(zg,r). the
main technical part of the proof is the following claim.
CLAIM. Let u(t,z) solve the heat equation in (b,a) x M where b < a are

reals, and assume that u (i, z) extends to a continuous function in [b,a] x M.
Assume also that, for all R > 0,

b
/a /B W (z,t) dp(z)dt < exp (F(R)),

where f is a function as in Theorem 11.8. Then, for any R > 0 satisfying

the condition 5
R
PR I R —
a—b< 57 (4R)’ (11.30)

the following inequality holds:

4
/BR u?(a, Ydu < /Bm u?(b, )dp + —5 = (11.31)
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Let us first show how this Claim allows to prove that any solution v to
(11.25), satisfying (11.26), is identical 0. Extend u (¢, z) to ¢ = 0 by setting
1 (0,z) = 0 so that u is continuous in [0,T) x M. Fix R > 0 and ¢ € (0,T).
For any non-negative integer k, set

Ry =4*R
and, for any k > 1, choose (so far arbitrarily) a number 75 to satisfy the
condition

0< 1 L e—x (11.32)

f(R )’
where ¢ = T;—s' Then define a decreasing sequence of times {#;} inductively
by to =t and tp = tg_1 — T (see Fig. 11.1).

LI ltk [ {tk}xBRk

FIGURE 11.1. The sequence of the balls Bg, and the time
moments t;.

If ¢, > 0 then function u satisfies all the conditions of the Claim with
a = tx_q and b = t;, and we obtain from (11.31)

4
[ wens [ o ddu+ o (11.33)
BRk—-l BRk k—1
which implies by induction that
2
u*(t,-)du 5/ w?(t, )dp + . (11.34)
/BR Bry, ; R2

If it happens that £ = 0 for some k then, by the initial condition in (11.25),

f W (ty, Y = 0.
Br

k
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In this case, it follows from (11.34) that

e 0]
4 o
2
u (t, )d = 53
/BR ,,Z Rz2 1 R?
which implies by letting R — oo that u(-,t) = 0 (here we use the connect-
edness of M).
Hence, to finish the proof, it suffices to construct, for any R > 0 and
t € (0,T), a sequence {t;} as above that vanishes at a finite k. The condition
tr = 0 is equivalent to
t=11+1+ ...+ 7. (11.35)
The only restriction on 7% is the inequality (11.32). The hypothesis that
f (r) is an increasing function implies that

[ sk fosx

k=0
which together with (11.27) ylelds

Ry
f (Ry)

Therefore, the sequence {7}z, can be chosen to satisfy simultaneously

(11.32) and
o
oo
k=1

By diminishing some of 7, we can achieve (11.35) for any finite £, which
finishes the proof.

Now we prove the above Claim. Since the both integrals in (11.31) are
continuous with respect to a and b, we can slightly reduce a and slightly
increase b; hence, we can assume that u(¢,z) is not only continuous in
[b,a] X M but also smooth.

Let p(z) be a Lipschitz function on M (to be specified below) with the
Lipschitz constant 1. Fix a real s ¢ [b,a] (also to be specified below) and
consider the following the function

_ P
(t7 .T) T 4(t _ 3) 3
which is defined on R x M except for ¢ = s, in particular, on [b,a] x M. By
Theorem 11.3, the distributional gradient Vp is in L* (M) and satisfies the
inequality |Vp| < 1, which implies, for any ¥ # s,

p(z)
IVE(t,2)| < 5—5)

% Pl
ot 4(t—s)2’

Since
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we obtain
43
ot
For a given R > 0, define a function ¢ (z) by

¢ (2) = min ((3— ﬂ%’—))+,1)

(see Fig. 11.2). Obviously, we have 0 < ¢ < 1on M, ¢ =1 in Bypg, and
@ = 0 outside B3g. Since the function d (-, z) is Lipschitz w. 1 the Lipschitz
constant 1, we obtain that ¢ is Lipschitz with the Lipschitz constant 1/R.
By Theorem 11.3, we have |Vy| < 1/R. By the completeness of M, all the
balls in M are relatively compact sets, which implies ¢ € Lipg (M).

+|veP <o. (11.36)

FIGURE 11.2. Function ¢ (z)

Consider the function ugp?ef as a function of z for any fixed ¢ € [b,a].
Since it is obtained from locally Lipschitz functions by taking product and
composition, this function is locally Lipschitz on M (cf. Exercise 11.11).
Since this function has a compact support, it belongs to Lipg (M), whence
by Corollary 11.4

up?et € Wi (M).
Multiplying the heat equation

E=A#u

by ug?ef and integrating it over [b, a] X M, we obtain
¥ g

a a

//%i:ugozegdudt=//(A#u)ucp%&dudt. (11.37)
b M b M
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Since both functions u and ¢ are smooth in ¢ € [b, a], the time integral on
the left hand side can be computed as follows:

3(“2) 2 et 2 2 g / 2 2 ¢
2 ot dt = [ pe Fuve dt. (11.38)

Using the Green formula (4.12) (cf. Exercise 5.9) to evaluate the spatial
integral on the right hand side of (11.37), we obtain

/ (Auu)u<p2e§du=—/ (Vu, V(up?e)dpu.
M M

Applying the product rule and the chain rule to compute V(up?e?) (cf.
Exercises 11.13 and 11.14), we obtain

—(Vu, V(ug?e®)) = —|Vul?>pet — (Vu, VE)up?et — 2(Vu, Vip)upet
< —|Vut g%t +|Vu| | V¢ Jul pet

+ (—;— IVul? ¢* +2|Ve|® u2) et
1
= (<5 1Vl + vl Vel ) e+ 2 vt

Combining with (11.37), (11.38), and using (11.36), we obtain

a H y;
[ / u2<p265d,u] = / / %uzwzeg dudt + 2 / / (Auu) upe  dudt
M b J S s

/ / —|vgizu2—[w|2+2|vfu[ |VE| Iul) p2eSdudt

+4 / / [Vio|? u?ef dudt

b M

IA

a
= = [ [ avelul - 1vu)® eetdua
M
a

+4//|Vgo|2 ulebdudt
b M

whence

UM eEdﬂJ =4 / / IVo|? ulef dudt. (11.39)

b M



310 11. DISTANCE FUNCTION AND COMPLETENESS

Using the properties of function ¢ (z), in particular, |Vy| < 1/R, we obtain
from (11.39)

a
/ uz(a,-)ef(“")d)ugf u2(b,-)e§(b")du+%/ / w2t dudt.
Br Byr R
b Bsa\Bzr
(11.40)

Let us now specify p(z) and s. Set p(z) to be the distance function from the
ball Bg, that is,

p(z) = (d(z, z0) — R),
(see Fig. 11.3).

F1GURE 11.3. Function p(z).

Set s = 2a — b so that, for all t € [b,al,
a-b<s—-t<2(a-b),

whence

2 2
¢t z) = — 4‘(:(_5_”1) < —2—3—%1—(%% <o. (11.41)

Consequently, we can drop the factor € on the left hand side of (11.40)
because & = 0 in Bpg, and drop the factor ef in the first integral on the right
hand side of (11.40) because £ < 0. Clearly, if z € Byg\Bag then p(z) > R,
which together with (11.41) implies that
R
f(t, 1‘) S —g—(a—:—b—)‘ mn [b, a] X .B4R\BQR.

Hence, we obtain from (11.40}

4 R\ f
u?(a, )dy < / u*(b, - )dp + = exp (-———-—~———-> / / uldudt.
/BR Bar ud ® <a B b) b Bsr
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By (11.26) we have

b/ ) /R WPdudt < exp (f(4R))

whence

4 R?
2 2
u*(a, - d,uS/ w*(b,-)du + —5 exp (—————+f 4R)) .
‘/BR (@) Byr ( R? 8 (a—1b) (
Finally, applying the hypothesis (11.30), we obtain (11.31). a
ExampLE 11.11. The hypothesis

®  rdr
| v = (42

of Theorem 11.8 is sufficient for the stochastic completeness of M but not
necessary as one can see from Example 8.25. Nevertheless, let us show that
the condition (11.42) is sharp in the following sense: if f(r) is a smooth
positive convex function on (0, +oc) with f' (r) > 0 and such that

/oo % < 0, (11.43)

then there exists a complete but stochastically incomplete weighted manifold
M such that

log V (zo,7) = f (1),
for some zp € M and large enough r. Indeed, let M be a weighted model

as in Section 8.4.3. Note that M is complete by Exercise 11.1. Define its
volume function V (r) for large r by

V(r) =exp(f(r))

"s0 that r)
Vir 1
T FO (1144
Let us show that, for all > 1,
1 r
< e, 11.45
Firir) = f () (49

where

¢ =min ()}l((ll))l) > 0.

. h(r)=rf'(r)—cf(r)
I8 non-negative for » = 1 and its derivative is
. W) =rf'(r)+1—-0of(r)20.
Hence, 1 i increasing and h (r) > 0 for r > 1, whence (11.45) follows.

Indeed, the function
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Combining (11.44), (11.45), and (11.43), we obtain

® V()

V' (r)

which implies by Theorem 8.24 the stochastic incompleteness of M.

dr < oo,

EXAMPLE 11.12. We say that a weighted manifold (M, g, 1) has bounded
geometry if there exists € > 0 such that all the geodesic balls B(z,¢) are
uniformly quasi-isometric to the Euclidean ball B;; that is, there is a con-
stant C and, for any z € M, a diffeomorphism ¢, : B (z,&) — B, such that
¢z changes the Riemannian metric and the measure at most by the factor

C (see Fig. 11.4).

FIGURE 11.4. A manifold of bounded geometry is “patched”
by uniformly distorted Euclidean balls.

For example, R™ and H"™ have bounded geometry. Any manifold of
bounded geometry is stochastically complete, which follows from the fact
that it is complete and its volume function satisfies the estimate

V(z,7) <exp(Cr),
for all z € M and large r (see Exercise 11.20 for the details).

Exercises.

11.19. Let f(r) be a positive increasing function on (0, +co) and assume that there exists
a sequence {rx} — oo such that

f(rx) < Cri for all k.

Prove that o
rdr

—— = 00.
f(r)
11.20. Let M be a connected manifold with bounded geometry as in Example 11.12.

(a) Prove that there is a constant N such that for any = € M, the ball B (z,¢) can be
covered by at most IV balls of radius £/2.
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(b) Prove that for any z € M and integer k > 1, the ball B(z, ke/2) can be covered by
at most N*~! balls of radii £/2.

(¢) Prove that any geodesic ball on M is relatively compact.

(d) Prove that, V(z,7) < exp (Cr) for all z € M and r > 1. Conclude that M is
stochastically complete.

11.21. Let (M, ) be a complete connected weighted manifold with (M) < co. Prove
that, for all z,y € M,

e (z,9) — L(I*JVI) as t — co. (11.46)

11.22. Let (M,p) be a complete connected weighted manifold and let h be a positive
harmonic function on M such that, for some zo € M, the function

v(r):= / h2du
B(zo,7)

®  rdr
/ m = 00, (11.47)

satisfies the condition

Prove that P.h = h.

11.5. Parabolic manifolds

DEFINITION 11.13. A weighted manifold (M, g, i) is called parabolic if
~any positive superharmonic function on M is constant.

THEOREM 11.14. Let (M, g, 1) be a complete connected weighted mani-
Jold. If, for some point zg € M,

®  prdr
—_— = 11.4
./ Vigo,r) (149
then M is parabolic.

For example, (11.48) holds if V' (zg,7) < Cr? for all r large enough or
even if

V(zo, %) < Cr2, (11.49)

for a sequence r — 0o as k — oo (cf. Exercise 11.19).

. ProOF. Let u € C? (M) be a positive superharmonic function on M.
Choose any Lipschitz function v on M with compact support. Multiplying
the inequality Auu < 0by % and integrating using the Green formula (4.12)
(note that v € Wg (M), we obtain

2
M M u

)
2 1/2 1/2
< 2(/ —IVZI ‘U2d/.L> (/ IVvlzd;A) ,
M U M
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whence it follows that
2
/ %l—vzdu <4 / Vol dp. (11.50)

Set p (z) = d(z,zg) and choose v (z) in the form v (z) = ¢ (p (x)) where
@ is a function on [0, +00) to be defined. Denote for simplicity V (r) =
V (z0,7) and B, = B (o, 7). Fix a finite sequence

O<rmp<nm<..<rp <00

and define function ¢ by the conditions that it is continuous and piecewise
linear on [0, +00),

e(r)=1if0<r<ry, @(r)=0 ifr >, (11.51)
and, for any i = 1,..., k,

rey . TiT il o '
@ (r)= a—————V(Ti) ifri<r<my, (11.52)

where
-1
a = (Z (T"';g;—l) )

(see Fig. 11.5).

A(p(r)

Ny

0 ro ri1 ri e

FicUure 11.5. Function ¢ (r).

For this value of a, we have

E (o p )2
/r (r)dr—Z/m_ '(r)drz—az(rzv(rsl) =1,

i=1

which makes the conditions (11.51) and (11.52) compatible.
Clearly, ¢ (r) is a Lipschitz function, which implies that v = p o p is
Lipschitz on M. By (11.51), suppv C By, and, since the balls are relatively
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compact, v € Lipg (M). Obviously, V¢ =0 in B, and outside B,,. Since
|Vp| < 1 ae., in each annulus By, \ By,_, we have'

ri — Ti-1
< g——7— a.e. .
|Vv| <a V) a.e., (11.53)

which implies

k k 2
(ri = ri-1)
Vol dy = / szdusaz ———V(r) =a.
| rovP d > fom, 7 > Y 0
(11.54)
On the other hand, using the monotonicity of V (r), we obtain

k=1 pp. k—1 , k-1 o 2
Tk rdr /""“ rdr 1 /"'+1 1 Tir1 — T3
— = — < rdr=-S"Ti1 "
Vo), Ve ST ), 22V
Specifying {r;} to be a geometric sequence with r; = 2r;_1, we obtain

2 2 2 2
ri+1 - Ty = 3Ti =12 (ri — 7'1'—1) 3

which implies

o 14 (T) - 14 (T’i)
Comparing with (11.54), we conclude that

™ rdr \ 7!
vol2 d §6</ T——) .
/M‘ Pan<6\ ) v

Returning to (11.50) and using the fact that v = 1 on B,,, we obtain

|Vu)? (/”‘ rdr )_1
du <24 .
/B,O u? n V()

We can still choose g and k. By the hypothesis (11.48), for any rg > 0 and
€ > 0, there exists k so big that

Tk prdr S g1
71 V(’r) ’

k-1 2
Tk rdr (ri — mi-1) 1
— <6 E <6a "
=1

——————

1Strici:ly speaking, we can apply the chain rule Vv = ¢’ (p) Vp and, hence, obtain
(11.53) only in the open set By, \ Br,_,. Then (11.53) in B, \ B,,_, follows from the fact
that .the boundary of any geodesic ball has measure zero. However, the proof of this fact
requires more Riemannian geometry than we would like to use here. Without this fact,
one can argue as follows. The volume function V (r) is monotone and, hence, the set S
of the points of discontinuity of V (r) is at most countable. We can choose the sequence
{rs} to avoid S, which implies that

4 (0By,) = lim (V (ri +€) ~ V (r:)) = 0.
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which implies

2
/ Vul’ 1, < 24e.
B,

2
U
T0
Since rg and ¢ are arbitrary, we conclude Vu = 0 and u = const, which was
to be proved. O

REMARK 11.15. Assume that the volume function V (r) belongs to C* (R.)
and V' (r) > 0. Then one can choose function ¢ () is a simpler manner.
Namely, for fixed 0 < ry < R, define ¢ (r) by

p(r)=1i0<r<r, ¢F)=0ifr>R,
and ,
w(r)z—m 1f’f‘0<’l"<R,

(/1' I )
0 ! (T)

/]Vvlzd,u</ LA R—b2'—-dV(r)—b2/R ar_ _y,
M - Bgr\Br |4 (p)2 o V/ ("')2 o V' (r) ’

whence it follows that
R d -1
2 T
du <4 — .
Ivul #= <»/7:o v’ (T))

L.,

Letting R — oo and rp — o0, we obtain that v = const provided the
following condition holds:

where

*® dr -
Note that (11.48) implies (11.55) by Exercise 11.23.

ExAMPLE 11.16. Set M =R" and let (M, g, 1) be a weighted model as
in Section 8.4.3. Let V (r) be the volume function of M, that is, V (r) =
V (0,7). Let us show that in this case the condition (11.55) is not only
sufficient but is also necessary for the parabolicity of M. Denoting as in
Section 8.4.3 S (r) = V' (r) and assuming that

® dr
_or_ 11.56
5@ =% (11.56)

consider the function u (R) from the proof of Theorem 8.24 defined by (8.48),

that is, o g .
u(R)=/R 5—05/0 S(®) 7 () dt,

where f € C§° (1,2) is a non-negative non-zero function. It was shown in
the proof of Theorem 8.24 that u extends to a smooth function on M and
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A, u = —f on M so that u is a positive superharmonic function on M. Since
u # const, we conclude that M is non-parabolic.

The non-parabolicity test (11.56) implies that R™ is non-parabolic if ana
only if n > 2, and H" is non-parabolic for any n > 2.

Exercises.
11.23. Let f (r) be a C'-function on (0, +oc) such that f’ (r) > 0. Prove that
I e s [T
f(r) f(r)

11.24. Prove that any parabolic manifold is stochastically complete.

11.6. Spectrum and the distance function
We present here some estimates of Ayin (M) using the geodesic distance.

THEOREM 11.17. Assume that, on a weighted manifold (M, g, i), there
exists a Lipschitz function p with the Lipschitz constant 1 such that

App > o,

where a is a positive constant and the inequality is understood in the distri-

butional sense. Then

o2

Amin (M) 2 . (11.57)
PRrROOF. For any function ¢ € D (M), we have by hypothesis
(Aup,¥?) > a / oldp. (11.58)
M

By Theorem 11.3, Vp € L (M) and |Vp| < 1 so that
(Aup,¥?) = (diva (Vp),¢%) = = (Va, V)

1/2 1/2
- <2 @ovogan<a([ vela) ([ pa) .
M M M

Combining with (11.58), we obtain

1/2 1/2
a (/ <p2du) <2 (/ |V<pl2du) :
M M

which implies (11.57) by Theorem 10.8. O

EXAMPLE 11.18. Let o be the origin of the polar coordinate system in
H", and set p(z) = d(o0,z). Function p is Lipschitz with the Lipschitz
constant 1 (cf. Lemma 11.2). Evaluating by (3.85) its Laplacian away from
0 and noticing that, in the polar coordinates (r,8), p (z) = r, we obtain

&%p dp
Agnp = —2 — hr—=(n-— thr >n—1.
Hn 0 6r2+(n 1) cot T3 (n—1)cothr >n—1
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Therefore, for any open set 2 C H” not containing o, we obtain by Theorem
11.17

Amin (§2) > (";1)2. (11.59)

Observe that the origin 0 may be taken to be any point of H" (cf. Exercise
3.46), which implies that (11.59) holds for any open subset  C H" with
non-empty complement. Finally, applying (11.59) to an exhaustion sequence
{Q%} and using Exercise 10.6, we obtain

(n—1)°

R
Alternatively, by Exercise 11.26, (11.60) follows from (11.59) with Q@ = H"\
{o}.

THEOREM 11.19. Assume that, on a weighted manifold (M, g, 1), there
ezists a Lipschitz function p with the Lipschitz constant 1 such that p(z) —
400 as £ — oo and e~P? € L' (M) for some 8 > 0. Then
ﬁ2
Z-

PRrROOF. Set f(z) = e~3PP(®) g0 that f € L? (M) and notice that, by
Exercise 11.14,

Amin (H?) > (11.60)

Amin (M) < (11.61)

Vf=261Vp,
whence )
2 — é_ 2 2 gi 2
[wstan=L [ pivspans<t [ ra

In particular, we see that f € W' (M) and R (f) < B%/4. The hypothesis
p(x) — +oo implies f(z) — 0 as ¢ — oo, whence f(z) — 0 as z — oo.
By Exercise 5.7, we obtain that f € W3 (M). Hence, (11.61) follows from
Theorem 10.8. O

ExXAMPLE 11.20. Consider again H", and let p be the same function as
in Example 11.18. Using the area function

S (r) = wysinh™ 1 7
of H™ (see Section 3.10), we obtain
oQ
”e—B”Hl =/ e PPdy =/ e'ﬂr.S'(r) dr.
Hn» 0
Since S (r) ~ const e™=1rthe above integral converges for any 8 > n — 1,

which implies by Theorem 11.19 that

(n-1)°

Amin (") < 22
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Comparing to (11.60), we obtain
(n—1)*
YR
It is possible to show that t};e spectrum of the Dirichlet Laplace operator in
H" is the full interval [(”—_4&, +00).

Amin (H") =

Exercises.
11.25. Prove that, for any bounded open set 2 C R™,

1
Amin () 22—
=in () 2 n (diam 02)?
Hence or otherwise show that there exists a constant ¢, > 0 such that, for any ball
B, CR",

(11.62)

Amin (Br) = cn"'_z-
11.26. Let (M, g, u) be a weighted manifold of dimension n > 2, and o be a point in M.

() Prove that, for any open neighborhood U of 0 and for any e > 0, there exists a cutoff
function 1 of {0} in U such that

/ IV du < e.
U
(b) Prove that

Amin (M \ {0}) = Amin (M) . (11.63)
(¢) Show that (11.63) fails if n = 1.

11.27. Let (M, g, u) be a complete weighted manifold. Fix a point zo € M and set
o = limsup % log 4 (B (zo, 7)) . (11.64)

00

Prove that
o2
Amin (M ) S Z .

11.28. Let (M, g, 1) be a weighted model based on R™ as in Sections 3.10 and 8.4.3, and
let S'(r) be the area function of this model. Set

r_ . i (7') 1 s (’I‘)
= :I;i(; 50 and a= hin_)sip 5 (11.65)

«

Prove that ) .
7
(“4) < i (M) < -

Notes

The proof of the Hopf-Rinow theorem can be found in the most of standard courses on
Riemannian geometry (see for example [227], [299]). The proof of Rademacher’s theorem,
that was used in the first proof of Theorem 11.3, can be found in [119, p.281].

The essential self-adjointness of the Dirichlet Laplacian on a complete manifold was
proved by Gaffney [126] (see also [68] and [316]). The proof presented here is due to
R.Strichartz [830]. The key ingredient of the proof — Lemma 11.6, was proved by S.-T.
Yau [363],

. A statement that any harmonic function from a function class S on a manifold M is
identical constant is called the S-Liouville theorem. Lemma 11.6 is a particular case of a
more general result of [363] that the LP-Liouville theorem holds on any complete manifold
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for any p € (1,+00). Although L*-Liouville theorem does hold in R™ by the classical
Liouville theorem (cf. Exercise 13.23), on an arbitrary complete manifold the L™- and
L'-Liouville theorems are not necessarily true (see [72], [142], {155], [240}], [246]).

The uniqueness class (11.28) for the Cauchy problem in R™ was obtained by Tikhonov
[347] and (11.29) — by Técklind {342]. Similar integrated uniqueness classes for parabolic
equations in unbounded domains in R? were introduced by Oleinik and Radkevich [298]
and by Gushchin [192], using different methods.

The fact that the condition V (zo,r) < exp (Cr?) on complete manifolds and other
similar settings implies the stochastic completeness was proved by various methods in
[97], [209], [222}, [338], {343]. Historically, the first result in this direction is due to
Gaffney [127] who obtained the stochastic completeness under a stronger assumption
logV (z,7) = o(r). Theorems 11.8 and 11.9 in the present form were proved in [137] (see
also [143], [155}).

Let M be a geodesically complete manifold with bounded below Ricci curvature, and
let p be its Riemannian measure. It follows from the Bishop-Gromov volume comparison
theorem that

V(z,7) < exp(Cr) (11.66)
(see for example [48)) so that M is stochastically complete. The stochastic completeness
for Riemannian manifolds with bounded below Ricci curvature was first proved by S.-
T.Yau [364] (see also {155], [209), [212], [286], [352] for extensions of this result).

It was proved earlier by Azencott [16] that a Cartan- Hadamard manifold with bounded
below sectional curvature is stochastically complete. Azencott also gave the first example
of a geodesically complete manifold that is stochastically incomplete. Note that Theorem
8.24 provides plenty of examples of such manifolds (cf. Example 11.11). It was shown
by T.Lyons [266] that the stochastic completeness is in general not stable under quasi-
isometry. It is also worth mentioning that on manifolds of bounded geometry not only
a regular fundamental solution is unique but also any positive fundamental solution is
unique that hence coincides with the heat kernel (see [214], [231], [286]).

The condition (11.49) for the parabolicity of a complete manifold is due to Cheng
and Yau [62]. Theorem 11.14 was proved in [134], [136], [221], [352] (see also [110],
(155], [211], [206], [274] for related results). The stability of the parabolicity under
quasi-isometry was proved in [186] using the capacity criterion (see also [155]).

Theorem 11.17 was proved in [362], Theorem 11.19 is due to R.Brooks [47]. The fact
that the spectrum of H? fills the interval [1/4, +oc0) was proved in [272].



CHAPTER 12

Gaussian estimates in the integrated form

As one can see from explicit examples of heat kernels (9.13), (9.32),
(9.36), (9.40), the dependence of the heat kernel p; (z,y) on the points z,y

is frequently given by the term exp (—cﬁ(f—’yz) that is called the Gaussian

factor. The Gaussian pointwise upper bounds of the heat kernel, that is, the
estimates containing the Gaussian factor, will be obtained in Chapters 15
and 16 after introduction of the necessary techniques. These bounds require
additional hypotheses on the manifolds in question.

On the contrary, it is relatively straightforward to obtain the integrated
upper bounds of the heat kernel, which is the main topic of this Chapter.
From the previous Chapters, we use general the properties of solutions of
the heat equation, including those of the heat semigroup P;, as well as the
properties of Lipschitz functions from Section 11.2.

The results of this Chapters are used in the subsequent chapters as
follows:

e Theorem 12.1 (the integrated maximum principle) — in Chapters
15 and 186.

e Theorem 12.3 (the Davies-Gaffney inequality) and depending on it
Lemma 12.7 — in Chapter 13 from Section 13.3 onwards. Theorem
12.3 is also used in the proof of Theorem 16.2 in Chapter 16.

The results of Sections 12.3 and 12.5 do not have applications within
this book.

12.1. The integrated maximum principle

Recall that, by Theorem 11.3, any function f € Lip;,. (M) has the
distributional gradient V f € L£2 (M).

loc

THEOREM 12.1. (The integrated maximum principle) Let (¢, z) be a
continuous function on I x M, where I C [0,+00) is an interval. Assume
that, for anyt € I, & (t,z) is locally Lipschitz in x € M, the partial derivative
2 exists and is continuous in I X M, and the following inequality holds on

xM:
' ¥ 1.0
5 T3 Ve <0 (12.1)
321



322 12. GAUSSIAN ESTIMATES IN THE INTEGRATED FORM

Then, for any function f € L? (M), the function

0= [ (P @)D dula) (122)
M
is non-increasing in t € I. Furthermore, for all t,to € I, if t > to then
J(t) < J (tg) e~ Pmin(M)(t—t0), (12.3)

REMARK 12.2. Let d(x) be a Lipschitz function on M with the Lipschitz
constant 1. By Theorem 11.3, we have |Vd| < 1. It follows that the following
functions satisfy (12.1):

& (z)

and
2

E(t,z) = ad(z) — %t,

where a is a real constant. In applications d () is normally chosen to be the
distance from z to some set (cf. Lemma 11.2).

PROOF. Let us first reduce the problem to the case of non-negative f.
Indeed, if f is signed then set g = | P, f| and notice that

I-F)tfl = IB—toPto.fl S -Pt—tog'

Assuming that Theorem 12.1 has been already proved for function g, we
obtain

/ (Ptf)2 eg(t’.)dﬂ S / (Pt—t()g)2 eg(tr')du
M M

S 6_2/\min(t’“t0) / gzeE(tO") du
M

e~ 2Amin(t—t0) / (Ptof)2 eﬁ(to,')dﬂ.
M

Hence, we can assume in the sequel that f > 0. In the view of Theorem
5.23, it suffices to prove that, for any relatively compact open set  C M,
the function

Ta(t) = [ (PRF)’ ()42 du(o)

is non-increasing in t € I. Since u(t,-) := P{f € L?(Q) and £(t,-) is
bounded in 2, the function Jg (¢) is finite (unlike J (¢) that a priori may
be equal to 00). Note also that Jo (t) is continuous in ¢ € I. Indeed, by
Theorem 4.9 the path ¢ +— u (¢, -) is continuous in ¢ € [0, +o0) in L2 () and
the path ¢ — e3(t) is obviously continuous in ¢ € I in the sup-norm in
Cy (Q2) , which implies that the path ¢ — u (¢, ) e36(t) is continuous in ¢ €
in L2 () (cf. Exercise 4.46).

To prove that Jq (t) is non-increasing in I it suffices to show that the

derivative l“%l exists and is non-positive for all ¢ € Iy := I \ {0}. Fix some

t € Iy. Since the functions £ (¢,-) and %t{ (t,-) are continuous and bounded
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in 02, they both belong to Cj (2). Therefore, the partial derivative %% is at
the same time the strong derivative % in Gy () (cf. Exercise 4.47). In the
same way, the function ef(t) is strongly differentiable in Cp (Q) and

det _ et _ es?_ﬁ.

- = a5 124
& o (124)
By Theorem 4.9, the function u (¢, ) is strongly differentiable in L% () and
its strong derivative 2% in L2 (Q) is given by
du
— =Auu. 12.
dt pt ( 5)

Using the product rules for strong derivatives (see Exercise 4.46), we con-
clude that uef is strongly differentiable in L? () and

d du det
Z(uef) = —ef +u—a
7 (ue ) i +u i (12.6)
It follows that the inner product (u, ueﬁ) = Jq (t) is differentiable as a real
valued function of ¢ and, by the product rule and by (12.4), (12.5), (12.6),

dlog _ (du . d (uet)
@ (dt’ue)+(u’ dt
du def

- habal 4 2 =

2<dt’ue>+<u’dt)

0¢

= 3 2 75 ¢

= Z(Apu,ue)-i—(u ’8te>' (12.7)

By the chain rule for Lipschitz functions (see Exercise 11.14), we have ef(t) ¢
Lipjo. (M). Since the function e®) is bounded and Lipschitz in £ and
u(t,-) € Wi (Q), we obtain by Exercise 11.13 that ue® € W (Q). By the
Green formula of Lemma 4.4, we obtain

2 (A“u, ueg) = —2/9(Vu,v (ueg))d,u.

Since both functions u and e®) are locally Lipschitz, the product rule and
the chain rule apply for expanding V (ue®) (cf. Exercises 11.13, 11.14).
Substituting the result into (12.7) and using (12.1), we obtain
dJa
dt

< -2 / <|Vu|2ef+uef<w, Vf):l—i—zﬂ \%3k ef) du
0

2
= -2 / (w + —;-qu) etdu, (12.8)
Q
whence %%3 < 0. To prove (12.3), observe that

(Vu + %qu) et/? = V(uet/?).
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Since uet/? € W (£2), we can apply the variational principle (Theorem 10.8)
which yields

2
/ <Vu+luv5) efdy = / |V (uet/?)|2dp
Q 2 Q

> Amin (Q) /Q (uet/2 2 = Ain () T (@2.9)
Hence, (12.8) yields
dJ,
d—t" < —2min (Q) Ja (B),
whence (12.3) follows. a
Exercises.
12.1. Let ® be a C*-function in I := [0, +00) such that &, ', ®"” > 0 and
"% >6(2')%, (12.10)

for some & > 0. Let £(t,z) be a continuous function on I x M and assume that £ (¢, z) is
locally Lipschitz in z € M for any t € I, %% exists and is continuous on I x M, and the
following inequality holds on I x M:

8 1 . .,
g‘*‘;ﬂ;‘lvflso-

Prove that the quantity
J(t) = / & (P.f) £ dy
M

is non-increasing in ¢ € I for any non-negative f € L? (M).

12.2. The Davies-Gaffney inequality

For any set A on a weighted manifold M and any r > 0, denote by A,
the r-neighborhood of A, that is,

Ar={zeM:d(z,A) <r}.
Write also AS = (4,)° = M\ A,.

THEOREM 12.3. Let A be a measurable subset of a weighted manifold
M. Then, for any function f € L*(M) and for all positive r,t,

2
/ (Pef)?dp < / f2du + exp (—r— - 2,\t> / f2du, (12.11)
Ag_ Ac 2t A
where X = Amin(M). In particular, if f € L? (A) then
2
/ (Pof)?dp < || fllexp ("'22 - 2,\t> (12.12)
A

(see Fig. 12.1).
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FIGURE 12.1. Sets A and Aj

PROOF. Fix some s > ¢ and consider the function
d? (2. AS)
2(r—s)’
defined for @ € Af and 7 € [0, ). Set also

{(r.z) =

J(r) = | (Prf)’ ™y
A

Since the function £ satisfies the condition
o8 1 2
— + = |V¢|* £0,
o+ 5 IVe <
we obtain by Theorem 12.1 that
J(t) £ J(0)exp(—2At).

Since £ (7,2) = 0 for x € AL, we have
102 [ (B,
A

On the other hand, using the fact that £ (0.2) < 0 for all 2 and

2

£(0,r) < —; for all z € A,
we obtain

2
J(0) < fdu + exp (—7—) / fldp.
A 25) Ja

(12.13)

(12.14)

(12.15)

Combining together (12.13). (12.14), (12.15) and letting s — t+. we obtain

(12.11).

The inequality (12.12) trivially follows from (12.11) and the observation

that L&c fgd[.l = 0.

O
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CoROLLARY 12.4. (The Davies-Gaffney inequality). If A and B are two
disjoint measurable subsets of M and f € L*(A), g € L?(B), then, for all
t>0,

2
(B0 < Wlalolaes (-5 2 -3 (216)
(see Fig. 12.2).

FIGURE 12.2. Sets 4 and B

PrOOF. Set r = d (A, B). Then B C A¢ and by (12.12)

/B (Pef)?dp < || fll3exp <—£—i - 2At) .

Applying the Cauchy-Schwarz inequality, we obtain
1/2
rol < ([ @oa) il

2
| Fllzlgllz exp (‘zz _ )\t)

which was to be proved. 0

IA

Note that (12.16) is in fact equivalent to (12.12) since the latter follows
from (12.16) by dividing by ||g}|, and taking sup in all g € L?(B) with
B=AT.

Assuming that the sets A and B in (12.16) have finite measures and
setting f = 14 and g = 13, we obtain from (12.16)

(Pilar15) < v/a(AVA(E) exp (—ﬂ‘ft—BZ -x¢),

or, in terms of the heat kernel,
d2
/ [ menautaidut) < Va@aBres (-2 <) 21

ThlS can be considered as an integrated form of the Gaussian upper bound
of the heat kernel. Note that, unlike the pointwise bounds, the estimate
(12.17) holds on an arbitrary manifold.



12.3. UPPER BOUNDS OF HIGHER EIGENVALUES 327

Exercises.

12.2. Give an alternative proof of (12.12) applying Theorem 12.1 with the function
o?
£(t, z) = ad(z, A) — —2—t,

where ¢ is an arbitrary real parameter.

12.3. The purpose of this question is to prove the following enhanced version of (12.16):
if f and g are two functions from L? (M) such that

d(supp f,suppg) > 7,
where r > 0, then, for all ¢ > 0,

% q 52
N e e (1218)

(@) (Finite propagation speed for the wave equation) Let u (¢,) be a C* function on
R x M that solves in R x M the wave equation

9%u
W = A#u.
Set K = suppu(t,-) . Prove that K is contained in the closed [¢]-neighborhood of

Kp.
(b) Prove (12.18) using part {(a) and the transmutation formula of Exercise 4.52.

REMARK. See Exercise 13.25 concerning the additional factor e~ in (12.18).

12.3. Upper bounds of higher eigenvalues

We give here an application of Corollary 12.4 to eigenvalue estimates on a
compact weighted manifold M. Recall that by Theorem 10.13 the spectrum
of the Dirichlet Laplace operator £ on M is discrete. As before, denote by
Ak (M) be the k-th smallest eigenvalue of £ counted with the multiplicity.
Recall that A\g (M) > 0 and A1 (M) = 0 (cf. Exercise 10.10).

THEOREM 12.5. Let M be a connected compact weighted manifold. Let
A1, Ag, ..., Ax be k > 2 disjoint measurable sets on M, and set

0:= 1&1;1 d(A4i, Aj).
Then

4 2u(M)
Ap(M) < s max | log —=——r=
82 iy ( v 1(As) p(45)

In particular, if we have two sets Ay = A and Az = B then (12.19)
becomes

(12.19)

4 2uM) \°

where ¢ := d(A, B).
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PROOF. We first prove (12.20). Let {¢)}r; be an orthonormal basis
in L?(M, 1) that consists of the eigenfunctions of £, so that ¢ has the
eigenvalue Ay = A\ (M). By the eigenfunction expansion (10.33), we have
for any t >0

[ pawaueing) = Ze—w [ o@)iu) [ otsdanty

= Z e Pig;b;, (12.21)
i=1
where
a; = (1A; ‘Pi) and b; = (]-B?Soi) .
By the Parseval identity

[a o] o
Y ai=llal;=p(4) and ) bf =|15(3 = u(B).

Since A\; = 0, the first eigenfunction ¢; is identical constant. By the nor-
malization condition ||¢1]ja = 1 we obtain ¢1 = 1/4/u(M) , which implies

=(1a,1) = ) and b = (1g,p1) = C)

V(M) u(My

Therefore, (12.21) yields

o0
//:43 pe(z,y)dp(z)duly) = aibi+ Ze—“iaibi

= . 1/2 / oo 1/2
> a1b — et (Z a?) (Z b?)
=2 =2
> M(i()ztr(f) — e Ju( A u(B).

Comparing with (12.17), we obtain

VA u(Be 5 > M—A()—f,‘,()m e~/ u(A)u(B),

whence
otha 5 VAALB) _ &
T (M)
Choosing t from the identity
8 _ L/EARB)
2 (M)

we conclude

vo< Lo 2800 _ 1 (Iog 2u(M) )2
=t /u@uB) & vV u(A)u(B)
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which was to be proved.
Let us now turn to the general case ¥ > 2. Consider the following

integrals
Jim = / / p(t, 7, y)dp(z) du(y)
Ay J A,

and set

ol = (14, 05).

Exactly as above, we have

Jim = ze SHONL

1(A) p(Am) W (m o= @ (m)
—i—Ze'Aitai a, —l—Ze‘Aztai a;

o) ~
ADu(Am)
HBgn) — /WA Am)
k-1
+3 e taPal™. (12.22)
=2
On the other hand, by (12.17)
2
Jim < v/ (&) p(Am)e™ . (12.23)

Therefore, we can further argue as in the case k = 2 provided the term in
(12.22) can be discarded, which the case when

k~1
Z e"“tagl)agm) > 0. (12.24)
1=2
Let us show that (12.24) can be achieved by choosing I, m. To that end, let
us interpret the sequence

o) = (a(J) agﬂ)’ ,af_) )

as a (k — 2)-dimensional vector in R*~2. Here j ranges from 1 to k so that
we have k vectors ) in RF=2. Let us introduce the inner product of two
vectors u = (ug, ..., Ug—1) and v = (vg, ..., vg_1) in R¥=2 by

(u,v)¢ := Ze ituv; (12.25)

=2

and apply the following elementary fact:

LEMMA 12.6. From any n+2 vectors in a n-dimensional Euclidean space,
it is possible to choose two vectors with non-negative inner product.
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Note that n+2 is the smallest number for which the statement of Lemma,
12.6 is true. Indeed, choose an orthonormal basis ej,eg, ..., e, in the given
Euclidean space and consider the vector

Vi=—€ —€z — ... €n.
Then any two of the following n + 1 vectors
e1+ev, eg+ev, ..., en +€V, v

have a negative inner product, provided € > 0 is small enough.

Lemma 12.6 is easily proved by induction in n. The inductive basis
for n = 1 is trivial. The inductive step is shown on Fig. 12.3. Indeed,
assume that the n + 2 vectors vy, vg, ..., Unto in R™ have pairwise obtuse
angles. Denote by E the orthogonal complement of vp 2 in R™ and by v}
the orthogonal projection of v; onto E.

FIGURE 12.3. The vectors v] are the orthognal projections
of v; onto E.

For any ¢ < n + 1, the vector v; can be represented as
Vi = vé — &{Un+2,
where
i = —(vi,vn+2> > 0.
Therefore, we have
VN 2
<’Ui,'Uj> = <’U7;,’UJ> + Ei€j I’L)n+2’ .

By the inductive hypothesis, we have (v, v;) > 0 for some 4, j, which implies
(vi,v5) > 0, contradicting the assumption.

Now we can finish the proof of Theorem 12.5. Fix some ¢t > 0. By
Lemma 12.6, we can find [, m so that (a®®,a(™), > 0; that is (12.24) holds.
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Then (12.22) and (12.23) yield
e VIR _ ¢
T uM) ’

and we are left to choose t. However, t should not depend on [, m because
we use t to define the inner product (12.25) before choosing I,m. So, we

first write
et > min Y pA:)u4,) - e—%
i (M)

and then define ¢ by

o = L g YHADA)
2545 (M)
whence (12.19) follows. O

12.4. Semigroup solutions with a harmonic initial function

The next statement can be viewed as an example of application of The-
orem 12.3. On the other hand, it will be used in Section 13.3 in the proof
of Theorem 13.9.

LEMMA 12.7. Let V' be an exterior of a compact subset of M and let f
be a function from W} (M) such that A,f =0 in V. Then, for any open
set U CV such that U C V, the following holds:

Rf-f

t

=0. (12.26)
L2(U)

lim
t—0

REMARK 12.8. Since the function P, f satisfies the heat equation in R x
V with the initial function f € C* (V'), by Exercise 9.8 the function

P,
o= { B 120

is C*° smooth in R x V. Since f is harmonic in V, it follows that u satisfies
the heat equation in R x V. Hence, we have in V as t — 0+

Rf—-f _u@®)-u() , oul _ VoA f=
1 - t - Ot t0 —A#u(o’ )—Auf—oa

where the convergence is local uniform in V. If U is relatively compact then
it follows that also

Pf-f
t

—0 ast—=0.
L2(U)

However, this argument does not work in the general case when U is non-
compact, and the latter case requires a different argument as below.
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PROOF. Let us first prove (12.26) in the case when f is a function from
L? (M) such that f = 0 in V. Noticing that 7 := d (U, V°) > 0 and applying
the inequality (12.12) of Theorem 12.3 with A = V¢, we obtain

72

W Pefll ey < fIZ2 exp (—52> =o(t) ast —0.

Together with || f|| 72y = 0, this yields (12.26).
Let us now prove (12.26) in the case when f € W& (M) and A,f =01in
U. By Exercise 4.41, we have
—_ 2
—Pﬁ-—ngVI)Apfast—-)O,
t
whence it follows that

— 2
Bf fL_()U)

Oast — 0,

which is equivalent to (12.26).

Ficure 12.4. Illustration to the proof of Lemma 12.7

Finally, consider the general case, when f € W3 (M) and A,f =0in
V. Let ¢ be a cutoff function of the compact set V° in the open set U° (see
Fig. 12.4). Since ¢f = 0in V’/ = (suppy)® and U C V’, we conclude by
the first of the above cases that
P, — 2
t—(‘p%if ) 0ast - 0. (12.27)
Next, we claim that the function

g=Q1-9)f
belongs to W (M). Indeed, by Exercise 4.21 (or 11.13), we have ¢f € W}
whence g € W. In a neighborhood of V¢, where ¢ = 1, we have g = 0 and,
hence, A,g = 0. On the other hand, using the hypothesis A,f =0 in V,
we obtain that the following identity holds in V:

Aug = (1— ) Auf — 299V 5 — (Dyup) f = ~2V9Vf — (Dup) f (12.28)
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(cf. Exercise 3.8) Since Vy and A,y are bounded, while f and Vf belong
to L2, we obtain that A,g € L2 (V). It follows that A,g € L? (M) and,
hence, g € WZ (M). Since in U we have ¢ = 0, which implies by (12.28)
that A,g = 0, we obtain by the second of the above cases, that

—_ 2
ﬂ%—g D 0ast 0. (12.29)
Since f = ¢f + g, adding up (12.27) and (12.29), we obtain (12.26). g

12.5. Takeda’s inequality

Similarly to Theorem 12.3, the next theorem provides a certain L2-
estimate for a solution to the heat equation. However, the setting and the
estimate are essentially different.

THEOREM 12.9. Let A, B be two relatively compact open subsets of a
weighted manifold M such that A € B and let R = d (A, B°). Let u(t,z) be
a non-negative bounded C?-function in (0,T) x B such that

o & —Au<0in(0,T)x B,
2
e and u(t,-) P 0ast -0 (see Fig. 12.5).
Then, for any t € (0,T),

[0 du < B\ Dl e (25 Y e (- ).
(12.30)

FiGure 12.5. The function u (¢,z) in (0,T) % B.

REMARK. The hypotheses of Theorem 12.9 are in particular satisfied if
u(t,-) = P.f where f is a non-negative function from L* (B¢) (see Exercise
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12.5). Let us mention for comparison that Theorem 12.3 yields in this case
the following estimate

2 R2
[ as< e (-5 ).
A

assuming that f € L?(B°). The advantage of (12.30) is that it can be
applied to functions like f = 1 that are bounded but are not necessarily
in L2. There are also applications of Theorem 12.9 for solutions u that do
not have the form P,f (see Exercise 12.4).

ProoF. Without loss of generality, we can assume throughout that 0 <
u < 1. Let £(t, ) be a continuous function on [0, T] x B such that £ (t,z) is
Lipschitz in z, continuously differentiable in ¢, and the following inequality
holds almost everywhere on [0,7] x B:

¢+ % Vel <o (12.31)

for some o > 1, where ¢ = %fn We claim that the following inequality is
true for any t € (0,7) and any ¢ € W} (B):

t
/u(t, )2 2ef®) dp < —-2—12—1-/ / IVol? e85) duds (12.32)
B @ 0 JB

(cf. the inequality (11.39) from the proof of Theorem 11.9). Since the
functions u, & and ¢ are uniformly bounded in the domain of integration,
the both sides of (12.32) are continuous as functionals of ¢ in W'-norm.
Hence, it suffices to prove (12.32) for ¢ € C§° (B), which will be assumed in
the sequel.

Let us differentiate in ¢t the left hand side of (12.32). Note that the
time derivative % and || g are interchangeable because the function under
the integral is continuous differentiable in time and the integration can be
restricted to a compact set supp ¢. We obtain

i/u2<pze§du = 2/u’u90265du+/ w2 etdu
dt Jp B B
< 2/ (Ayu) ugo‘?egd,u—{—/ wpit'efdy
B B
= —2/ (qu]2 el + (Vu, VE)up?et + 2(Vu, ch)wpe§>
B

+ / u?t'p?eldp.
B

Here we have applied the Green formula (4.12) using that u € W7 (B) and
up®ef € W2 (B) (cf. Exercise 5.9), and the product and chain rules for
Lipschitz functions to evaluate V (up?e®) (cf. Exercises 11.13 and 11.14).

Applying the inequalities
(Vu, VEu > — |Vul [VE] u
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and

1
2(Vu, Vghup > - (342 |Vl +e [Tl
where € € (0, 1) is to be specified later, we obtain

2
4 [ 2peay < 2 / u? |Vl? efdp
dt B EJB

—2/ ((1 — &) |Vul* = |Vu||VE|u — %u%’) ©? etdp.
B
Using (12.31) we see that the expression in brackets in the last integral above
is bounded below by

(1 &) [Vul® — |Vu| [V u + Ju?|VEP,

which is identical to a complete square

(VI~eIVu - va/tu|ve))’

provided
(1-g)a=1
Choosing € to satisfy this condition, that is, e =1 —«

%/ wefpldu < g/ u? |Vl efdp.
B €JB

Integra,tmg this inequality against dt from O to ¢ and using the hypotheses

u(t,") LX) 0 as t — 0 and w2 < 1, we obtain (12.32).
Now we will specify the functlons @ and £ in (12.32). In all cases, we
will have ¢ =1 on A, whence also |Vy| =0 on A, so that (12.32) implies

¢
/ u(t,) ety < = 20 |V<p|2 (/ et(s) ds) du. (12.33)
A a—1 0

In order to prove (12.30) for R = d(A,Bc), it suffices to prove (12.30) for
any R < d(A,B°). Fix R< d(A,B°),te€ (0,T), set

p(z)=d(z,A4),

~1 we obtain

and consider the function
o (z) =9 (p(z))
where 1 (r) is a Lipschitz function on [0, +00) such that
p(0)=1land ¢ (r)=0ifr >R

(see Fig. 12.6).

This ensures that ¢ € Lipp (B) C W3 (B) (cf. Corollary 11.4), and
¢ =1 on A. The function 1 will be chosen to be smooth in (0, R). Then by
Exercise 11.14 we have

Vo =1/ (p) Vp,
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)=y (p{x)

FIGURE 12.6. Function ¢ (z)

and since ||[Vpl|; < 1 (see Theorem 11.3), it follows that
[V (z)| < ¢ (p(2))| for almost all z € B\ A. (12.34)

To specify further ¢ and &, consider two cases.

Case 1. Let .

R

=<
2t L
then set £ = 0 and

(R-71),
pr) = =1

By (12.34) we have |V¢| < 4, and it follows from (12.33) that

Letting a — oo, we obtain

2t 2t _Rr?
[we)dss Zum\ < ZeF @, 02
A
Case 2. Let
RZ
E&' > 1.

In this case, set
§(s,z) = ~2ap(z) — bs,
where a and b are positive constants to be chosen below. Clearly, ¢ satisfies
(12.31) provided
b= 2d%.

Note also that

t 1— e~ b
/ H00) s = 2T g0l (12.36)
0
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Next, define 9 as follows:
(ea,R . ear)
,l/) (T) = eaR _ 1 + °
Then we have
Y (r) = —ce* forr € (O, R),

where
a

C= g

whence it follows that

|V (2)]? < c2e?er®) (12.37)
for almost all z € B \ A. Substituting (12.36) and (12.37) into (12.33) and
observing that £|4 = —bt, we obtain

/u(t, Vdy = ebt/u(t, Y2 el gy
A A

IA
Q
%)
(g
oy
I
g
5
-
>
<
S
N
TN
o\\"
Y
2,29
w
ay
)
N—”’
2,
"

<
S ooy cr(B\4
1 2a2at __ 1
= B\ A
o1 (oo" 1)2”( \4)
Setting further
R2 ) R
=1 a= -
b=5;~1 a=—-anda=g7,
we obtain the identities
R? 1
2 = = — = =
2a°at = aR, 5o ) ST
whence 5
2
. < .
[ w9 du < Fu B\

Since e? > 1 + §, we have
e _ 148 1496
ef—1-(1+8)-1" 6’

whence

]

< -6
" g <(1+4d)e

and B2
2
/A u(t, ) du < e EHL (B A). (12.38)

Combining (12.35) and (12.38), we obtain (12.30). 0O
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REMARK 12.10. As one can see from the proof, if u satisfies the heat
equation 2% S = Auuin (0,T) x B then the assumption u > 0 can be dropped.

COROLLARY 12.11. Under the conditions of Theorem 12.9, the following

tnequalities are satisfied:
2

/u2 (t,-) du < p(B) ||u]|% e max (%’ 1) exp (—:g; + 1) (12.39)
A

and

A/ u(t,) dp < /i (4) p(B)|lu] oo max (7}—2—; 1) P (‘%2 * ;)
(12.40)

ProoF. If R?2/2t > 1 then (12.39) trivially follows from (12.30). If
R2?/2t < 1 then

[0 < p (i < 18) ulie o0 (- +1),
A
which implies (12.39).
Inequality (12.40) follows from (12.39) and the Cauchy-Schwarz inequal-
ity. a

In fact, the following inequality is true:

o] ,,.2
/ w(t,”) dp < 165 (B) ]|z /R m exp ("zfg) dr,  (12.41)

A
which is called Takeda’s inequality. Estimating in a certain way the integral
in the right hand side, one obtains

[ du < S2(B) e Y exp (—%:) .
A

For large ratios %, this inequality is somewhat better than (12.40). The

inequalities (12.30) and (12.39) can be considered as L? versions of Takeda’s
inequality.

For applications of Theorem 12.9 and Corollary 12.11 see Exercises 12.4,
12.5, 15.1, 9.9.

Exercises.

12.4. Using Corollary 12.11, prove that if the weighted manifold M is geodesically complete
and, for some point z € M, a constant C > 0, and a sequence {rx} — oo,

B (B (z,m%)) < exp (Crir) (12.42)
then M is stochastically complete.

REMARK. Of course, this follows from Theorem 11.8 but the purpose of this Exercise is
to give an alternative proof.
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12.5. Let A and B be sets as in Theorem 12.9.
(a) Prove that, for any function f € L™ (B°),

[ Pty d < w(B) = mae( g, e B (12.49)
(b) Prove that
/ pe (@, ¥)du(v)dp(z) < O/ alA)u(B) max(%, ne ¥, (12.44)

A B¢

where C = 1/e/2.

Notes

The integrated maximum principle goes back to Aronson [10], [9]. A good account of
it in the context of parabolic equations in R™ can be found in [806]. Here we follow [147],
[146] and [154]. For the integrated maximum principle in a discrete setting see [85].
The Davies-Gaffney inequality was proved by B.Davies [97] with reference to [127].
The present proof is taken from [147]. A somewhat sharper version of (12.16),
2

(PLOI< Il [ e (=5 )

was proved in {154], using the finite propagation speed approach of [57].
The upper bounds of eigenvalues of Section 12.3 were proved in [65], [66]. See also
[43] for further results.

A slightly weaker version of Takeda’s inequality (12.41) was first proved by M.Takeda
[343] using a probabilistic argument. It was improved and brought to the form (12.41)
by T.Lyons [265]. An analytic proof of an L? version of Takeda’s inequality (12.30) was
obtained in [147]. Here we reproduce the proof of [147] with some simplifications. An
interesting application of Takeda’s inequality to the escape rate of the Brownian motion
on M can be found in {152].



CHAPTER 13

Green function and Green operator

Here we introduce the Green function and apply it to prove the local
Harnack inequality, which requires a substantial use of the heat kernel. The
results will not be used in the subsequent chapters.

13.1. The Green operator

By definition, the Green operator G acts on non-negative measurable
functions f on a weighted manifold M as follows:

Gf (z) = /0 " Bf(z)dt. (13.1)

More generally, G f is defined whenever the right hand side of (13.1) makes
sense. If Q is an open subset of M then set

6 = [ Por@a

LEMMA 13.1. Let f be a non-negative function from Ll20c (M) such that
GfelL?, (M ). Then the function u = Gf is the minimal non-negative so-
lution in Ll o (M) of the equation —A,u = f considered in the distributional
sense. If in addition f € C* then also u € C°.

PROOF. Let us use the resolvent operator R,, o > 0, as it was defined
in Section 8.2, that is

Rof (z) = / / e (z,y) f (y) du (y) dt

If f > 0 then by the monotone convergence theorem, R, f (z) + Gf (z) as
al0. .
Iff>0, f€ L}, and Gf € L, then also Rof € L and, by Theorem
8.4, the function vy = R, f satisfies the equation

A ug + aug = f.

Passing to the limit as @ — 0 and noticing that u, 2; u, we obtain —A, u =

f
If v € L}, is another non-negative solution to the equation —~A v = f
then, for any a > 0,

-Apw+av=f+avell..
341
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Therefore, by Theorem 8.4,
v > Ro (f +av) > Rof.

Letting o — 0, we obtain v > u.

If f € C*° then u, € C* by Theorem 8.7. As o | 0, the sequence u, (x)
increases and converges to u{z) pointwise. By Exercise 7.13 we conclude
that »v € C°. O

It follows from (13.1) that, for any non-negative measurable function f
on M,

Gf(x) = /0 " /me,y)f(y) dp (y) d
= /M g(z,y) f (¥)du(y) (13.2)

where the function o
9(zy) = /0 i (z,y) dt (13.3)

is called the Green function of M. Note that g takes values in [0, +0c0]. The
Green function is called finite if g (x,y) < oo for all distinct z,y € M.

If ©Q is an open subset of M then define the Green function of Q by
similarly

o0
Pen=[ fea (13.4)
ExAMPLE 13.2. Applying (13.3) with the Gauss-Weierstrass heat kernel

(2.50) and using the identity (A.60) from Solution to Exercise 5.14, we obtain
the following formulas for the Green function in R™:

— Cn I.’E - yIQ—n y N> 27
9(z,y) = { +oo, n<o (13.5)
where
_I'(n/2-1)  T'(n/2) 1
4wz 272(n—2)  (n—2)w,

(cf. (3.94)). Hence, the Green function in R™ is finite if and only if n > 2.
DEFINITION 13.3. A function h € L} (M) is called a fundamental solu-

loc

tion of the Laplace operator at a point z € M if —A,h = 45.

In particular, a fundamental solution A is harmonic away from z and,
hence, is smooth in M \ {z} (cf. Theorem 7.4 and Exercise 7.10).

THEOREM 13.4. If Amin (M) > 0, then the following is true.
(¢) The Green function g of M is finite and, for anyx € M, g (=z,-) is
o fundamental solution of A, at z.
(ii) The Green operator G maps L? (M) into itself. Moreover, it is
a bounded self-adjoint operator in L? (M), and G = L7, where
L= —A#|Wg is the Dirichlet Laplace operator.
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(i5d) If f € CS° (M) then Gf € C™ (M).

PRrOOF. Let us first show that the integral in (13.3) converges for distinct
z,y. Indeed, the convergence at 0 follows from the fact that p; (z,y) — 0
as t — 0 (cf. Corollary 9.21), and the convergence at oo follows from
A := Amin (M) > 0 and the inequality

pt (z,y) < V/ps (z,2) ps (¥, y) exp (—A (t — 5)) (13.6)
(cf. Exercise 10.29). Fix s > 0, a compact set K C M, and set

C = sup /ps (v, v),
yeK

so that, for all z € M, y € K, and t > s, the following inequality takes

place:
Pt (z,y) < C/ps (m, z)e 79, (13.7)
Using (7.50), (13.3), and (13.7), we obtain

/K 9(@,9)du(y) = / [r@yduwa+ [ 7pt<w,y>dtdu<y>
0 K K s

C
< s+ 5u(K) Vs (2,2).
Hence, the integral
/ g (z,y)du (y)
K

is finite and, moreover, it is locally bounded as a function of z. It follows
that g (z,-) € L}, (M). Let us also mention the following consequence of the

above estimate and of the symmetry of g (z,y): for any function f € L' (M)
with compact support, we have

[ienas [ ([ o@n (@) ) 17 )] o) < o0
that is, Gf € L} _(M).

loc
The spectrum of £ is contained in [A, +0o) and hence, £ exists as a

bounded operator, and ||£7}|} < A~!. By the functional calculus, we have

/ ” (e7*f)dt=L71f (13.8)

0

for any f € L? (M). Comparing (13.8) with (13.1), we see that the left hand
side here coincides with G f. Hence, the Green operator G maps L? (M) into
itself and coincides in L? (M) with £~!. Consequently, for any f € L? (M)
there is a unique solution u € W (M) to the equation

—Ayu=f, (13.9)
and this solution is given by u = Gf.

The fact that f € C§° (M) implies Gf € C* (M) follows from Lemma
13.1if f > 0. If f is signed then it can be represented as a difference of two
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non-negative functions from C§° (M) (cf. Exercise 4.6), which settles the

claim.
Finally, let us prove that g (z,-) is a fundamental solution at z, that is,
—Aug(z,") = 0. (13.10)

We need to verify that, for any u € C§° (M),
- [ 9 Au@ ) =u (). (13.11)

Indeed, any such function u satisfies the equation (13.9) with the right hand
side f ;= ~A,u. Hence, by the uniqueness of the solution in W¢ (M),
functions u and Gf coincide as L2-functions. Since both functions u (z) and
Gf (z) are C* (the latter being true because f € C§° (M)), it follows that
they coincide pointwise, which proves (13.11). O

As one can see from (13.5), the Green function g (z, ) does not have to
belong to L? (M). Indeed, in R* the integral of g% (z,-) diverges both at
z and at co. The following statement shows that, in a restricted setting,
a ”cut-down” Green function belongs even to W3 (M). This is a technical
result that has many applications.

LEMMA 13.5. Assume that Amin (M) > 0 and p (M) < co. Let ¢ (s) be
a C®-function on [0, +00) such that, for some constant C > 0,
P(0)=0, 0<y<C, 0<¢'<C (13.12)

Then, for any xo € M, the function u = (g (xo,-)) belongs to W} (M) and
IVul2: < /0 "1 ()| ds
PRrROOF. Define a new function ¢ on [0, +00) by
p(r) = /OT ¢’ ()] ds. (13.13)

Clearly, ¢ also satisfies the conditions (13.12) with the constant C? instead
of C. Extending oddly % and ¢ to (—o0,0), we obtain that ¢ and 1 are
smooth Lipschitz functions on R that vanish at 0.

Since 1) is bounded, the function v = 1 (g (2o, -)) is also bounded. Since
p (M) < o0, it follows that u € L? (this is the only place where the finiteness
of (M) is used). The main difficulty lies in the proof of the fact that
u € W}. By Theorem 13.4, the Green operator is bounded in L? and
coincides with the inverse of £. Consider for any ¢ > 0 the function

gt = Gpt (:170, ) )
which is hence in L? (M) and, moreover,
g: € dom (£) = W¢ c W3.

It follows that
—Augt = pi (20,-) . (13.14)
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On the other hand, we have
gt (x) = /Mg (x,y) ps (z0,y) d (y)

-/ ( [ <x,y>ds)pt (20, 5) dps (3)
= [T ([ @nmeonduw)

o0
= /0 Pt+s (3?,370) ds
o0
= / ps (, zo) ds. (13.15)
¢
It follows from (13.15) that g is increasing as ¢ decreases, and
9t (z) T g (z0,z) as t}0. (13.16)

By Lemma 5.1, the functions 1 (g;) and ¢ (g¢) belong to W{. Using the
chain rule, the Green formula of Lemma 4.4, (13.13) and (13.14), we obtain

[ive@ra = [ WGPl a
M M
= [ ¢@val
M
= / (Vo (gt), V) du
M
= - / o (9) Age du
M

— [ olo)m (o0, ) d
M
= Pup(gt) |zo- (13.17)
It follows that, for all ¢ > 0,

/M Ve (9:)|” dp < sup ¢ < oo. (13.18)

In particular, the integral in (13.18) remains bounded as ¢t — 0.

By (13.16), the sequence 1 (g;) increases and converges pointwise to 1 (g)
as t | 0, where we write for simplicity g = g (g, -). Using the uniform bound
(13.18) and that 9 (9) € L?, we conclude by Exercise 4.18 that 1 (g) € W?,

Y (g¢) % 4 (g), and
/ V4 (9)|* du < sup =/ |9/ (s)|° ds.
M 0

Finally, since 1 (g;) € W¢ and Wy is weakly closed in W (cf. Exercise A.5),
it follows that also 9 (g) € W§, which finishes the proof. a
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COROLLARY 13.6. Assume that Amin (M) > 0 and (M) < oo. Then,
for any constant ¢ > 0 and any xo € M, the function

v = min (g (zo,") ,¢)
belongs to WE (M) and ||Vulj2; <.
PROOF. Clearly, we have u = 9 (g (zo, :)) where
¥ (s) = min (s, c).

It is easy to see that there is a sequence {4}z, of smooth non-negative
functions on [0, +00) such that 0 < ¢}, < 1 and

P (8) T4 (s) as k — 0.
(see Fig. 13.1).

Y(s)=min(s,c),4
, Vd
7 pennresipnrasassasaneniasnn,
P ACNINE SRR EEE
P ,
o’ Ky
A5 W) lr'—‘“--,}_y-(-)-'-
/-:3::“ .................... :‘,‘...
4’“4‘ W ’g( S) “ ‘.‘
f - 9 s
0 c s 0 ¢ 5

Ficure 13.1. Construction of functions 9 (s) via their derivatives

Since each 7y satisfies the hypothesis of Lemma 13.5, we conclude that
i (9) € Wy and

/ Ve (9)? du < / gl ()" ds < / W, (s)ds = sup ey < c.
M 0 0

Letting k — 0o, we conclude by Exercise 4.18 that v (g) € W{ and

[ ive@rduse,
M

O

REMARK 13.7. The hypotheses Amin (M) > 0 and p (M) < co in Corol-
lary 13.6 (as well as in Lemma 13.5) can be dropped but the conclusion will
change as follows: u € W, and [|Vul|2; < ¢ — see Exercise 13.12.
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Exercises.
13.1. Prove that if M is a compact manifold then
(@) g(z,y) =005
(b) there is no fundamental solution of the Laplace operator on M.
13.2. Let M be a weighted model (cf. Section 3.10) and S (r) be the area function of M.

(a) Prove that, for any positive real R that is smaller than the radius of M, the following

function
R g
h{z) = _or_
1z S (1)
is a fundamental solution in Bgr of the Laplace operator at the pole o.
(b) Using (a), evaluate the fundamental solutions on R™ and H".
13.3. Prove that if the manifold M is connected then g (z,y) > 0 for all z,y € M.

13.4. Prove that if the Green function g is finite then the following identity takes place
for allt > 0 and zp € M:
Peg (zo,-) = Gpe (2o,-) -

13.5. Prove that if Amin (M) > 0 then the Green function g (z,¥) is C° smooth jointly in
z,y in M x M\ diag.

13.6. Prove that if Amin (M) > 0 then

1
IGllz2oz2 <

13.7. Prove that if Amin (M) > 0 and pu (M) < 0o then g(z,y) € L' (M x M).
13.8. Prove that if {Q);} is any exhaustion sequence in M then, for all z,y € M,
9™ (z,y) t g (z,y) ask— co.

13.9. Let 2 be an open subset of a weighted manifold M. Prove that, for any compact
set K C Q and for any non-negative function f € L? (M),

Gf <G+ esup Gf. (13.20)

(13.19)

13.10. Let © be a non-empty relatively compact open subset of a connected manifold M
such that M \ € is non-empty. Fix a point zo € Q.

{a) Let ¢ be a cutoff function of {zo} in Q. Prove that

(1-9) g% (z0,") € W3 ().
() Prove that for any open set U C €2, containing zo,
g% (20,") = ¢" (zo,-) € Wy (Q).

13.11. Assume that Amin (M) > 0 and p (M) < co. Prove that, for all 0 < ¢ < b and any
2o € M, the function -7

a, if g(z0,%) < a,

g (xoax) lfg (IEO,&L‘) € [a3 b] s
v(z) =
b, if g (zo,z) > b,

belongs to W' (M) and
Vo322 <b-a.

13.12. Prove that, for any weighted manifold M and for all ¢ > 0, zg € M, the function
u = min (g (2o, ) , ¢) belongs to Wj,, (M) and
HVu[lig <e
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13.13. Let 2 be a non-empty relatively compact connected open subset of a weighted
manifold M. Prove that

sup /ﬂ g% (z,9) du(v) > m (13.21)

13.14. Let M be 3 connected weighted manifold and 2 be a relatively compact open subset
of M such that M \ € is non-empty. Let {pr}so, be an orthonormal basis in L? () of
eigenfunctions of 2 and {Ax} be the corresponding sequence of eigenfunctions. Prove the
identity

@y =) Xlk-we (@) ox (¥)
k=1

where the series converges in D’ (2 x Q).

13.2. Superaveraging functions

We say that a function f on M is superaveraging if f € L (M), f >0,
and
Pf < fforallt>0.

By Exercise 7.30, if f is superaveraging then P f is a smooth solution of the
i

heat equation, which is decreasing in ¢, and P,f =% f as t — 0; besides,

Auf < 0 in the distributional sense. Furthermore, if f € W}_(M) and

f = 0 then f is superaveraging if and only if A,f < 0 (cf. Exercise 7.29).
In particular, any non-negative superharmonic function is superaveraging.

LEMMA 13.8. Let U be an open subset of M such that Aygin (U) > 0 and
U¢ is compact. Fiz a function f € W' (M), a cutoff function v of U in
M, and let u € W (U) be the solution to the weak Dirichlet problem in U:

Ayu=0,
{ ui fY mod W} (U). (13.22)

Define the function f on M by
}7_ f inUS
T lu U
(see Fig. 13.2).
(a) Then f € W} (M). N
(b) If in gddition f is superaveraging then also f is superaveraging and
0<F<f.

PRrOOF. (a) By Corollary 5.6, we have fyy € W} (M), and by (13.22)
v:= fi) —u € W¢ (U). Extending v to M by setting v = 0 in U, we obtain
v € W3 (M). Observe that

F=fp-v in M. (13.23)

Indeed, in U° we have
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FIGURE 13.2. Function f in Lemma 13.8

because 1 = 1 and v =0 in U¢, and in U we have

~

f=u=fy-v
by the definition of v. It follows from (13.23) that f € W (M).
(b) Since f¢ > 0 and Agin (U) > 0, by Theorem 5.13 we obtain from

(13.22) that u > 0. Hence, f > 0. Since f is superaveraging, we have in U
“A,(u—fl=-8u+A,f <0
and
u—f<u—fp=0 mod W} (U).
Hence, by Theorem 5.13, u — f < 0 in U. It follows that f_<_ finM. In
particular, f € L? (M). o
We are left to prove that Bf < f. In U®, we have
RF<Pf<f=F
To prove that Pf< fin U, observe that the functions wy (t,-) = P.f and
wa (t,-) = f as paths in W (M) satisfy the conditions

dw1 dw2
— —Qpw; =0< == —~ Ajwy,

w < we mod Wi (M),
%}_%’wl ) = %g%wg )= f.
Hence, by Theorem 5.16, wy < ws, which finishes the proof. D
Exercises.

13.15. Prove the following properties of superaveraging functions.

(a) If {f}2, is an increasing sequence of superaveraging functions and fi — f € L},
then f is also superaveraging.
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(a) I {fi};e; is a family of superaveraging functions depending on a parameter 4 then
the function
f=ints
is also superaveraging.

13.16. Let M be a connected, stochastically complete weighted manifold, and let f be a
non-negative continuous superaveraging function on M.
(a) Prove that the inequality P.f < f is satisfied pointwise and that B.f — fast — 0
pointwise.
(b) (Strong minimum principle) Prove that if f (z) = inf f at some point £ € M then
f = const on M.
(b) (Minimum principle) Let Q be a relatively compact open subset of M with non-
empty boundary. Prove that

inf f = inf f.

W=
13.17. Prove that if the Green function is finite then it is superaveraging with respect to
each of its arguments.

13.18. Let Q be a relatively compact open subset of M such that Amin (€2) > 0. Let u be
a solution of the following weak Dirichlet problem in Q

Ayu=0,
{ u=f mod Wg (Q), (13.24)

where f € W' (M), and set
* [ f inQ°
f _{ u inQ,

(see Fig. 13.5).

M

FI1GURE 13.3. Function fin Exercise 13.18

(a) Prove that if f € Wg (M) then also f € W (M). ~
(b) Prove that if f is superaveraging then also f is superaveraging and 0 < f < f.

13.19. Let f and h be two superaveraging functions from Wg (M). Then, for any ¢ > 0,
(—ALP:f,h) < (Vf,Vh). (13.25)
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13.20. Let f € W¢ (M) and {Qx} be a compact exhaustion sequence in M. Let ux €
W (Q4) solve in ) the weak Dirichlet problem problem

Ajup =0,
uk = f mod Wi ().

Then
[[Vuk|lrz — 0 as k — oo.

13.21. Let f and h be two superaveraging functions from Wy (M). If {Q:}52, is a compact
exhaustion sequence such that Amin (%) > 0 for any k, then

sup/ (AP f)h du — 0as k — oo.
>0 J M\,

13.3. Local Harnack inequality

The next statement contains a useful technical result, which will be then
used to prove the local Harnack inequality in Theorem 13.10.

THEOREM 13.9. Let M be a weighted manifold with Amin (M) > 0, and
let Qy € 2y € Qg be relatively compact open subsets of M. Then, for any
non-negative harmonic function f € W (M), we have

sup f < Cinf f (13.26)
Qo Qo
where (1)
9, Y
C= sup 13.27
z,z'eg 9 (wl>y) ( )
yeQ2\U

and g 1s the Green function of M.

REMARK. Note that, due to the hypothesis Apin (M) > 0, the Green func-
tion g is finite (cf. Theorem 13.4).

The hypotheses Amin (M) > 0 and f € W' (M) are not restrictive be-
cause this theorem is normally applied when M is a relatively compact open
subset of another manifold.

ProoF. Choose an open set {2 such that £ € 2 € (), and let % be
a cutoff function of  in Q2. Let u be the solution to the following weak
Dirichlet problem in °:
Ayu =0,
u= fy mod W} (0°).
Consider the function _
}:_ f in £,
" 1luw in0°
Since f = f in Q D €, it suffices to prove (13.26) for f instead of f (see
Fig. 13.4). 5
Let us mention the following properties of f, which will be used. Since f
is harmonic and, hence, superaveraging, we conclude by Lemma 13.8, that
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FiGURE 13.4. Illustration to the proof of Theorem 13.9

fe W3 (M) and f is superaveraging. Since the both functions f and u are
harmonic in their domains, we obtain that A, f = 0 outside 0. Renaming
for simplicity f back to f, we have by (13.1)

G(-rf) = [ RU-PhE
_ /OooPsfds—/oooPs(Ptf)ds
= /OooPtf dS—/OOOPertde

T o0
=/Ptfds——/ Psf ds
0 t
t
= /Ptfds
0

Since P, f £'—2> f ast — 0, we obtain that
G (L—_—El—y-) Lt ast—o.

Observe that function f satisfies the hypotheses of Lemma 12.7 with V =
M\ 0Q and U = Q; UQ;. Hence, we conclude by Lemma 12.7 that

—_ 2
SRR 0y

Since by Theorem 13.4 the Green operator is bounded in L?, it follows that
G(f—Ptflu) —IJ—Q)O ast — 0,

t
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whence

ht:=G<f_tPtf1Uc) Lt oast—o.

Noticing that U¢ = Q2 \ Q1, we can write
— P,
m@ = [ gyl
2\

Since f — P,f > 0, it follows from (13.27) that

sup hy (z) < C inf h:(z).
z€Q z€Qg

(v) du (y) -

2
Since h; = f as t — 0, the same inequality holds for f. Indeed, there is a
sequence g — 0 such that h;, =3 f as k — oo. It follows that

esup f < Ceinf f.
Qo Qo

However, since f is continuous in g, esup a 4 einf can be replaced by sup
and inf, respectively, which yields (13.26). a

Now we can prove the main result of this section.

THEOREM 13.10. (The local Harnack inequality) Let M be an arbitrary
connected weighted manifold and K be a compact subset of M. Then there
1s a constant C = C (K) such that, for any non-negative harmonic function
fonM,

sup f < Cinf f. (13.28)
K K

Proor. If M is compact then any harmonic function f on M is constant
because in this case f € C§° (M) and, hence,

[ wstau=- [ fa.fau=o

Therefore, (13.28) is satisfied with C = 1.

Assuming in the sequel that M is non-compact, choose a sequence g €
0, € Qg € 2 of relatively compact open subsets of M such that K ¢ .
By Theorem 10.22, we have Amin () > 0. Applying Theorem 13.9 to the
manifold Q and noticing that f € W1 (£2), we obtain that (13.28) holds with
the constant C defined by (13.27) Wi‘ch_gn instead of g, that is,

C= sup F(x,w',y),

z,2' €0
yEQ\
where Q( )
g \z,y
F (z,2,y) = T2,
(:29) g (2, y)

We have still to make sure that C < oo. For that, it suffices to show that
function F is finite and continuous in the compact domain

(z,2,y) € Qo x Qo x (A \ Q). (13.29)
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By Theorem 13.4, g% (z,y) < oo because £ # y. Choosing the set Q to
be connected, we obtain by Exercise 13.3 that g% (z/,%) > 0, whence F' is
finite in the domain (13.29). Finally, by Exercise 13.5, ¢! (z, ) is continuous
jointly in z,y away from the diagonal, which implies that F' is continuous
in (13.29). O

The next theorem extends the local Harnack inequality to a-harmonic
functions.

THEOREM 13.11. Let M be an arbitrary connected weighted manifold
and assume that there is a positive function h on M such that

—-Aph+ah =0,

where a 1s a real constant. Then, for any compact K C M and for any
B > a, there is a constant C = C (K, ) such that, for any non-negative
B-harmonic function f on M,

sup f < Cinf f. (13.30)
K K

Moreover, the constant C (K, 8) as a function of f ~ [a,+0) is uniformly
bounded on any bounded interval.

PROOF. Let us first prove the statement in the case § = «, that is,
when f is a-harmonic. By Corollary 7.3, we have h € C*°. Cousider a new
measure [t on M defined by

dii = h2dp.

By (9.26), we have, for any smooth function function u on M,
1
Agu = EA“ (hu) — au. (13.31)

Setting u = f/h, we obtain

1 1

Agu = EA“f - Eaf =0.

Hence, u is a non-negative harmonic function on the weighted manifold

(M, g, 1) . By Theorem 13.10, we have
supu < Cginfu,
K K

for some constant Cx. Then (13.30) holds with the constant

supg h

infg h’

To handle the case § > «, fix a compact K C M, a relatively compact
connected open set § containing K, and construct a positive §-harmonic
function hg on Q. Consider the weak Dirichlet problem on the weighted
manifold (2, g, &):

C=Cka:=Ck

~Azu+ (B —a)u=0,
{ u=1 mod Wi (), (13.32)
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which has a unique solution u € W (Q) by Exercise 4.29. Since the constant
function v = 1 satisfies the inequality

A+ (B—-a)v >0,

we obtain by the comparison principle of Corollary 5.14 that v < 1. Sim-
ilarly, we have v > 0. Moreover, by the strong minimum principle (cf.
Corollary 8.14), we conclude that v > 0 in Q.

Observe that the function u decreases when the parameter 3 increases.
Indeed, if function u’ solves the problem (13.32) with g’ instead of 5 and if
B’ >  then

Az + (B—-a)u <0,

which implies by Corollary 5.14 that v/ < u.

The function hg := hu is positive in §2 and is B-harmonic in (£, g, 1),

which easily follows from (13.31). By the first part of the proof, we conclude
that, for any positive S-harmonic function f in Q, (13.30) holds with the
constant
supg hg
infg hg )
We are left to verify that Ck g is uniformly bounded from above if 3 is
bounded. By the monotonicity of u in 8 mentioned above, we have that
hg decreases when [ increases. Therefore, if S varies in an interval (61, 53]
where 1 < f2 then

C= CK”3 = CK

Supg g,
(' <(’ o A
K, = kl .y 2)

whence the uniform boundedness of C g follows. a

Exercises.

13.22. Prove the classical Harnack inequality: if f () is a positive harmonic function in
a ball B(z,7) in R™ then

su <C inf 13.33
B(z,rp/z)f =" B(z,r/z)f ’ ( )

where the constant C,, depends only on n.

13.23. (The Liouville theorem) Prove that any positive harmonic function in R™ is identical
constant.

13.4. Convergence of sequences of a-harmonic functions

THEOREM 13.12. (The compactness principle) Let {ux} be a sequence
of non-negative harmonic functions on a connected weighted manifold M.
If the sequence {uy (x)} is bounded at some point x € M then there is a
subsequence {uy,} that converges to a harmonic function u on M in the
sense of C® (M)
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Proor. By the Harnack inequality of Theorem 13.10, if the sequence
{ut (z)} is bounded at some point z then it is uniformly bounded in any
compact set K > z. Hence, the sequence {uy} is locally uniformly bounded
on M. In particular, this sequence is uniformly bounded in L2 (Q) for any
relatively compact open set {2 C M. Using Exercise 7.9 and A, ux = 0,
we conclude that the sequence {uy} is uniformly bounded in W (), also
for any relatively compact open set 2 € M. By Exercise 10.25, there is a
subsequence {uk,} that converges in LZ  (M). By Exercise 7.11, the limit

. . . C=
function u of the sequence {ug,} is also harmonic and ug, — u. a

COROLLARY 13.13. (Harnack’s principle) Let {ui} be a monotone se-
guence of harmonic functions on o connected weighted manifold M. If
Bmyg_,00 ug () is finite at some point x € M then it is finite at all points
x € M. Moreover, the function

u(z) = klggo ug (z)

is harmonic and
Co(M
Uy 4 ) u as k — oo.

PRrROOF. Assume for certainty that {uz} is monotone increasing. Re-
placing uy by ug —u1, we can assume that ug > 0. By Theorem 13.12, there
is a subsequence {ug; } that converges locally uniformly. Since the sequence
{ux} is monotone increasing, the entire sequence {uy} must converge locally
uniformly as well. Then the convergence is in C*° by Exercise 7.11. a

The following theorem extends the compactness principle to a-harmonic
functions.

THEOREM 13.14. Let {ur}r, be a sequence of non-negative functions
on a connected weighted manifold M such that ug is ax-harmonic for some
real . Assume that the sequence {ay} is bounded and {ux (z)} is bounded
for some x € M. Then there is a subsequence {ug,} that converges to an
a-harmonic function u on M in the sense of C*° (M), for some real a.

PROOF. Passing to a convergent subsequence of {ay}, we can assume
that {a;} converges and set a = limg_,o0 k. Fix a connected relatively
compact open subset 2 C M such that Amin () > sup;, (—ax), that is,

Ak > —Amin (Q) forallk >1 (13.34)

(the question of existence of such sets will be addressed below). Set ap =
—Amin (€2) and observe that, by Theorem 10.11, there is a positive ao-
harmonic function on Q (namely, the first eigenfunction of EQ). Therefore,
by Theorem 13.11, we conclude that the Harnack inequality (13.30) holds
for any compact K C {2 and any positive S-harmonic function f in Q. More-
over, the constant C in (13.30) can be taken to be the same for any bounded
range of 8. In particular, if 8 takes only the values o and o, & = 1,2, ...
then the constant C can be assumed to be the same.
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Now we can argue as in the proof of Theorem 13.12. By the Harnack
inequality (13.30) if the sequence {uy (z)} is bounded at some point z €
then it is uniformly bounded in any compact set K 3 z. In particular, the
sequence {uz} is uniformly bounded in L2 (Q') for any relatively compact
open set ¥ € Q. Using Exercise 7.9 and Ajug = agug, we conclude that
the sequence {uy} is uniformly bounded in W (%), also for any relatively
compact open set ' € Q. By Exercise 10.25, there is a subsequence {uy,}

that converges in L2, (2). By Exercise 7.12, the limit function u of the

. . Cc=()
sequence {ug, } is a-harmonic and ux, — u.

To ensure the convergence of {ug,} on M, let us observe that, for any
point x € M, there is a connected relatively compact open subset & C M
such that z € Q and Apin () is arbitrarily large. Indeed, choose first a
chart containing z and then take Q to be a little Euclidean ball in this
chart centered at xz. By Exercise 11.25, the bottom eigenvalue of Q in the
Euclidean metric is ¢,r~2 where c, is a positive constant depending only on
the dimension n = dim M and r is the radius of the ball. Taking r small
enough, we can get c,r~2 arbitrarily large. At the same time, in a small
neighborhood of z, the ratio of the Riemannian metric g and the Euclidean
metric remains uniformly bounded, and so is the ratio of the measure u and
the Lebesgue measure. This implies by Exercise 10.7 that the eigenvalue
Amin (2, g, 1) is also large enough.

Hence, for any point x € M there is a set §2 as above and such that
(13.34) is satisfied. Choose a cover of M be a countable sequence {€;}72,
of such sets and order then so that any two consecutive sets overlap, which
is possible by the connectedness of M. We can assume also that ) contains
the point z where the sequence {ug (z)} is bounded. Then by the above
argument there is a subsequence that converges in ;. Since this subse-
quence converges in §23 N Qg, there is a sub-subsequence that converges in
g, etc. Applying the diagonal process, we obtain finally a subsequence that
converges on M. d

Exercises.

13.24. Let M be a connected weighted manifold. Prove that if ¢ (z,y¥) < oo for some
couple z,y € M then g (z,y) is finite, that is, g (z,y) < oo for all distinct points z,y € M.

REMARK. Hence, the following dichotomy takes places: either g (z,y) = coforallz,y € M
or g(z,y) < oo for all distinct z,y € M.

13.5. The positive spectrum

DEFINITION 13.15. The positive spectrum of (the Laplace operator on)
a weighted manifold M is the set of all real & such that the equation

Aju+ou=0 (13.35)

has a positive solution v on M.
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THEOREM 13.16. For any connected weighted manifold M, the positive
spectrum coincides with the interval (—00, Amin (M)].

In particular, there is always a positive solution on M of the equation
Ayt + Apin (M)u =0,

which is called the ground state of the manifold M. For comparison, let
us recall that, by the definition of A, (M), the spectrum of the Dirichlet
Laplace operator is contained in [Amin (M), +o00). Hence, Amin (M) is the
only common point of the L2-spectrum and the positive spectrum of the
Laplacian.

In terms of a-harmonic functions, Theorem 13.16 can be stated as fol-
lows: a positive a-harmonic function exists if and only is o > — Ay (M).

ProoF. That any o from the positive spectrum satisfies o < Apin (M)
follows from Exercise 10.26. We need to prove the converse, that is, if
@ < Amin (M) then there is a positive solution of (13.35) on M. Choose a
compact exhaustion sequence {2} in M such that all Q; are connected.
Since by Exercise 10.6

Amin (Qk) 1 Amin (M) as k — o,

there is a sequence {a} such that ag < Amin (Q) for any k and oy, T o as
k — co. By Exercise 4.29, the weak Dirichlet problem in

Ayug + agug = 0,

ug = 1 mod Wi (%),
has a unique solution u;. Moreover, we have ug > 0 by Theorem 5.13 and
Corollary 8.14. Alternatively, the solution of this problem is given explicitly
by the formula

)
up =1+ ak/ (Ptﬂk 1) ekt dt
0

(see Exercise 10.27).
Select some point zg € §2; and consider functions
Vg = Uk
* 7 ug (o)
so that vk (zg) = 1. Using Theorem 13.14, we conclude that there is a
subsequence {v, } that converges to function v on M, that satisfies (13.35).
This function is clearly non-negative; moreover, since v (zg) = 1, it is strictly
positive by Corollary 8.14. O

Exercises.

13.25. Prove the following improved version of (12.18): if f and g are two functions from
L? (M) such that

d(supp f,suppg) >,
where r > 0, then, for all ¢t > 0,

A <1 s
(BAD <INl o0 [7 Lewp (-5 )as. (1336)
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13.6. Green function as a fundamental solution

THEOREM 13.17. Let M be a connected weighted manifold and xg be a
point of M.
(a) If the Green function g of M is finite, then g(xo,-) is a positive
fundamental solution of the Laplace operator at zg.
(b) If h(z) is a positive fundamental solution at xg then g(zo,z) <
h(x) for all z # xo.

This can be equivalently stated as follows: g (zo,-) is the infimum of all
positive fundamental solutions at zo (using the convention that the infimum
of an empty set is o).

ProOOF. If M is compact then all is settled by Exercise 13.1, which says
that g = oo and there is no fundamental solution. Assume that M is non-
compact, and let {Q;}z; be a compact exhaustion sequence in M. Then
all Qi are relatively compact and, hence, M \ §; # 0. By Theorem 10.22
we have Amin (%) > 0, and by Theorem 13.4 the weighted manifold £ has
the Green function ¢** € L} _(Q) satisfying the equation

—ALg"™* = 8 in Q. (13.37)

By Exercise 13.8, the sequence { gﬂk} increases and converges pointwise to
g as k — oo.
(a) The identity (13.37) implies that, for all k¥ > m,

Ay (gnk - gn"‘) =0in Q.

It follows from Corollary 7.5 that the function g% — g% is smooth (and
hence harmonic) in §,,; more precisely, this function being a priori smooth
in Q, \ {zo}, can be extended to zp to become C* (Q2,,). By the Harnack
principle of Corollary 13.13, the function

C Om QO
g—g klggo(g’“g)

is also harmonic in Q,,, and the convergence takes places in C* (Q,).
Hence, g € L}, (Qn) and g satisfies (13.10) in Q,,. Letting m — oo we
conclude that g € L}, (M) and g satisfies (13.10) in M, that is, g is a
fundamental solution. The positivity of g follows from Exercise 13.3.

(b) Let us first observe that, for any open set U such that 2y € U €
(see Fig. 13.5),

g e LPUW! (% \T). (13.38)
Indeed, we have g% < g%+, and the function g¥%+1 is smooth in Qpr1 \
{zo}. Tt follows that g+1 is bounded on O \ U, whence the boundedness
of g% follows. Next, set

C = sup g%
\U

and notice that ¢™* = min (g%, C) in O \ U. Since by Corollary 13.6 the
function min (9%, C) belongs to W (), it follows that its restriction to
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FIGURE 13.5. The Green function g%

Q \ U, that is g, belongs to W (% \U), which finishes the proof of
(13.38). ~

Let h be a positive fundamental solution at zo, that is, —Ay h = dz,.
We need to verify that ko > g, and it suffices to show that h > g% for all k.
For any index k consider a function

Uk =gn’c — h.

Clearly, Ajug = 0 on Q4 so That uy is a smooth harmonic function in Q.
We need to prove that ug < 0, and we will do it in four steps.

1. The function u belongs to W* (), that is, uy, and |Vuy| belong to
L% (Q). Indeed, let U be an open set as above. Then ug, |Vug| € L2 (U)
just by the smoothness of u in 2, while ug,|Vug| € L? (Qx \ U) because
both functions g% and h belong to W! (9 \ T).

2. The function uy is bounded from above in ;. Indeed, u; is bounded
in U by continuity, and is bounded in Qz \ U because u; < g and g% is
bounded in Q; \ U.

3. We have

ug <0 mod W (). (13.39)
Set C' = supq, ux. Then the following inequality holds in {2:

U < min (gn", C) = Ug.

By Corollary 13.6, the function vy, belongs to W (Q), whence (13.39) fol-
lows.

4. Since the function u; belongs to W (Q), satisfies in Q the Laplace
equation Aju, = 0 and the boundary condition (13.39), we conclude by
Theorem 5.13 that ug < 0. O
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Exercises.

13.26. Let M be a connected non-compact manifold and {2 be a relatively compact open
subset of M.
(a) Prove that, for any p € {1, +o), G? is a bounded operator from L? (Q) to L? ().
(b) Prove that the function u = G f satisfies the equation —A,u = f for any f € L? ().

13.27. Let M be a connected weighted manifold and let f € L},. (M) and f > 0. Prove
that if Gf (z) is finite then Gf belongs to L},, and —A, (Gf) = f.

13.28. Let M be a connected weighted manifold with a finite Green function g (z,y). Fix
a point o € M and a compact set K C M. Prove that if u is a harmonic function on M
and

u(z) <g(e,z0) forallz e M\ K,
then u(z) <0forallz € M.

13.29. Let M be a connected weighted manifold. Prove that if h(z) is a fundamental
solution of the Laplace operator at a point zo € M such that A (z) = 0 as 2 — oo, then
h (z) = g (=, zo)-

13.30. Prove that, on an arbitrary connected weighted manifold M, the following condi-
tions are equivalent:

(i) the Green function is finite;
(i4) there exists a positive non-constant superharmonic function (that is, M is non-
parabolic);
(i41) there exists a positive non-constant superaveraging function.

13.31. Let M be a connected weighted manifold and 2 be a non-empty relatively compact
open subset of M such that M \ Q is non-empty. Prove that, for all z € M, y € §2,

9(z,y) <67 (z,9) + sup g (2,9). (13.40)

Here we set ¢ (z,y) =0if z ¢ Qory ¢ Q.

13.32. Prove that a fundamental solution of the Laplace operator exists on any non-
compact connected weighted manifold.

13.33. Prove that if, for some £ € M and a compact set K C M,
/ g(z,y) du(y) < oo (13.41)
M\K

then M is stochastically incomplete.

13.34. Let M be a weighted model of dimension n > 2, and S (r) be its boundary area
function (cf. Section 3.10). Prove that the Green function of the central ball Br satisfies
the identity

¢%7 (z,0) = " ds (13.42)
’ - S(s)’
where r = |z|. Deduce that the Green function of M satisfies the identity
® ds
g (xi 0) - . S (S) . (13.43)

Hence or otherwise give an example of a complete manifold M where the Green function
belongs to L (M).

13.35. Prove that the Green function of the ball B = Br (0) in R™ is given by the following
formulas, for all z,y € B:
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(a) If n > 2 then

B 1 1 ( R )"‘2 1
z,y) = — (=) —], 13.44
g ( y) wn(n_2) (Ix_y‘ 2 lyl lx_y*] 2 ( )
where y* is the inversion of y with respect to the ball B, that is
* Y 2
y =—3R
lyl®
(6) If n =2 then
B (g ) = Ljog Y11
(¢) f n=1 then
R
g% (z,y) = Iw yl - wy +5-

13.36. Let F'(t) be a positive monotone increasing function on R; and assume that

pe(z,y) < = e (—cﬁ>
Y F ( \/—) Xp i
for some z,y € M and all ¢ > 0, where r = d(z,y) and ¢ > 0. Prove that if F satisfies
the doubling property

F(2s) < AF(s) forall s >0, (13.45)
then © o
sds

g(z,y)<C /T ) (13.46)

where C = C (A4, ¢).
If in addition F satisfies the condition

F(s) 5\ ,
> il
F(o) _a(sl) , foralls>s >0, (13.47)
where a > 0 and & > 2 then 2
9(@y) < C'F( 7’ (13.48)
where C = C (A, a, 0, ¢).
Notes

The present account of the Green function is somewhat different from the traditional
approach (cf. [155]). Some proofs would have been simpler, had we used the fact that
the Green function ¢g® (z,y) in a relatively compact open set £ with smooth boundary
vanishes at every point £ € € while y € Q. For example, the proof of the minimality
of g in Theorem 13.17(h) would be as short as this: since h (z) — g° (z, 7o) is a harmonic
function in {2 that takes non-negative value on 852, by the classical maximum principle
this function is non-negative in 2, that is, h (z) > ¢% (z, zo); letting © — M, we obtain
h(z) 2 g (2,20).

However, following the general approach adopted in this book, we avoid using the
bounda.ry regularity of solutions and employ instead other methods, based on the Sobolev
space W§ (). Despite of technical complications, we feel that this strategy has good
prospects for the future applications in more singular settings.

The idea to use the Green function for the proof of the local Harnack inequality
(Section 13.3) goes back to A.Boukricha [46] and W.Hansen {197]. However, the present
implementation of this idea is entirely new. This approach allows us to avoid at this stage
the technically involved proofs of the uniform Harnack inequalities, although at expense
of loosing the uniformity of the Harnack constant. However, the local Harnack inequality
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is sufficient to prove the convergence properti i

I on T5.4 properties of sequences of harmonic functions as we
u’fl?e treatment of the positive spectrum in Section 13.5 follows S.-T.Yau [362] and

D.Sullivan [340]. We' wanted necessarily to demonstrate how the convergence properties

a.llow.to prove the existence of the ground state. The latter is an important tool that i

used in many applications (cf. Section 9.2.5). o et



CHAPTER 14

Ultracontractive estimates and eigenvalues

In the Chapter we study the problem of obtaining the uniform on-
diagonal upper bounds of the heat kernel of the form

pt(z,7) < @ (14.1)

with some increasing function 7 (¢). If A = Amin (M) > 0 then by Exercise
10.29 the heat kernel p; (z,y) decays as exp (—At) when ¢t — co. However,
if A = 0 then we do not get any decay of p; (z,y) from the spectral theory,
and more subtle methods are required. As we will see below, the function
7 (t) in (14.1) can be determined by a lower bound of Amin () via u (),
which shows the rate of Amin () approaching 0 when 2 exhausts M.

14.1. Ultracontractivity and heat kernel bounds

By Theorems 4.9 and 7.19 the heat semigroup {P;} on any weighted
- manifold (M, g, 1) admits the estimates

IPllos2z <1, [|Pfhis1 <1,
so that P, is a contraction in L? and L!. In fact, by Exercises 7.33 and 7.36,
(2l

for any r € [1, 4+-00]. Here we consider some estimates of || P;||,q with p < g.

ror S

DEFINITION 14.1. Let 1 < p < g < +00. We say that the semigroup
{P:} is I? — L ultracontractive if there exists a positive function 6 (¢) on
(0,4+00) such that, for all f € LP N L? and t > 0, we have P,f € L9 and

1B:fllq < 6@ fllp-
We write in this case
| Pellp—sq < 6(2).
The function @ is called the rate function of ultracontractivity.
For any r € [1,+00], denote by r* its Holder conjugate, that is

L i =1.
roor
For example, 2* = 2, 1* = +00, and +00* = 1.
THEOREM 14.2. Let the heat semigroup {P;} be L — L ultracontractive

with the rate function 9(t). Then {P;} is also LT — LP* ultracontractive
with the same rate function.

365
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PROOF. By the hypothesis, we have for any g € LP N L? and ¢t > 0

[ Bglly < 6®)llgllp-
Then for any f € L9 N L? we obtain by the Holder inequality

(Pef,9) = (f, Pg) < Iflle 1 Begll < 6@ fllg g lle-

Therefore,

1Pflr = sup PO <oy £,
gerenrz(o} 1l9llp

whence the claim follows. O

COROLLARY 14.3. The semigroup {P;} is L' — L? ultracontractive if
and only if it is L? — L* ultracontractive, with the same rate function.

The following statement elucidates the importance of the notion of ul-
tracontractivity.

THEOREM 14.4. The heat semigroup {P;} is L' — L? wltracontractive

with the rate function 6(t) if and only if the heat kernel satisfies estimate
pat (z,7) < 6%(2), (14.2)
forallt >0 and z € M.

PROOF. By Theorem 14.2, the hypothesis that {P;} is L' — L? ultra-
contractive with the rate function 6(t) is equivalent to the fact that L2 — L
is ultracontractive with the same rate function; that is, for all f € L? and
t>0

1 Pefllee < OO fll2- (14.3)

Substitute in (14.3) f = p; (z,-) for some fixed ¢ > 0 and z € M. Then,
using the properties of the heat kernel from Theorem 7.13, we obtain

Rﬂ@=Am@@m@@@@=m@m

and
”f”g =P ('T) SL') )

p2t (7, %) < 0(t) vpat (2, 2),
which proves (14.2).

Conversely, if the heat kernel satisfies (14.2) then, for all ¢ > 0 and
zEeM,

whence by (14.3)

IHﬂ@l=!AfM%wﬂww@)
(Aﬁmw@wﬂmwm

pat (z,2) 2| £ 2

IA

Il
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whence

I Pf (#)]l o < 6NN 2
which proves (14.3). O

REMARK 14.5. Using the inequality

i (z,9) < Vpt (z,7) 2t (9, 9)

(see Exercise 7.21), we obtain the following version of Theorem 14.4: the
heat semigroup {P;} is L! — L? ultracontractive with the rate function 6(¢)
if and only if the heat kernel satisfies estimate

D2t (.13, y) < 92(t)7
forallt>0and z,y € M.

Exercises.

14.1. Prove that if the heat semigroup {P;} is L? — L? ultracontractive with the rate
function 6(t) where 1 < p < 2 then {P.} is also L” — L ultracontractive with the rate
function 6%(t/2).

14.2. Faber-Krahn inequalities

Given a non-negative non-increasing function A on (0, +o00), we say
that a weighted manifold (M, g, ) satisfies the Faber-Krahn inequality with
function A if, for any non-empty relatively compact open set Q2 C M,

Amin (2) 2 A (4 (Q)) . (14.4)

Of course, since the spectrum of the Dirichlet Laplacian £% is discrete in £,
we can replace here Amin (2) by A1 (©2). However, for most applications we
do not need to use the fact that Amin () is an eigenvalue.

If Q is an open subset of R™ then, by the Faber-Krahn theorem,

AL (Q) = A (2Y),

where Q* is a ball of the same volume as . If the radius of Q* is r then
A1 (%) = &% with some positive constant c, (see Exercise 11.25). Since by
(3.90)

w.

B(@) = (@) =22,
it follows that
AL(Q) = apu Q)77 (14.5)

where ¢ = a(n) > 0. Therefore, (14.4) holds with the function A (v) =
av‘2/".

An alternative proof of (14.5) (although with a non-sharp constant a)
can be found below in Example 14.31.

REMARK 14.6. It is known that the Faber-Krahn inequality (14.5) with
Some constant a > 0 holds on the following two classes of n-dimensional
Riemannian manifolds:
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(1) Cartan-Hadamard manifolds, that is, complete simply connected
manifolds of non-positive sectional curvature. This class includes,
in particular, R™ and H".

(2) Minimal submanifolds of RY.

See the Notes at the end of this Chapter for bibliographic references.

Exercises.

14.2. Prove that if (14.4) holds for all relatively compact open sets €2 then it holds also
for all open sets Q with x(Q) < oco.

14.3. The Nash inequality

LEMMA 14.7. (The generalized Nash inequality) Let (M, g, 1) a weighted
manifold satisfying the Faber-Krahn inequality with a function A : (0, +00) —
[0, +00) that is monotone decreasing and right continuous. Then, for any
0 < & < 1 and for any function uw € L* N W} (M) \ {0}, the following
inequality holds

u 2
[ 1l du> o=y pulga (211, (146)
M

£ [lull3
For example, for the function
) A®) =av™ "
we obtain from (14.6)

—4/n 1+4+2/n
/ |Vu|2du2c< / luldu) ( / u2d/.4> , (14.7)
M M M

where ¢ = ¢ (a,n) > 0. In particular, (14.7) holds in R™ where it is referred
to as the (classical) Nash inequality.

ProoOF. It suffices to consider non-negative u since by (5.13) |Vu| =
[V |u|}. Consider first the case when u is in addition continuous. For any
s > 0, consider the open set

Qs ={reM:uz)> s}
and observe by Exercise 5.22 (u — s), € W¢ (), and by (5.12)

|V (u— s)Jrl2 du < / IVul? du. (14.8)
Qs M
By Theorem 10.8, we have
Aeain (Qs) /Q (u—s)% du < /Q IV (u—s), | du. (14.9)

Set for simplicity
A=y and B=ull}.
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Integrating the obvious inequality,
u? — 2su < (u~s)i,
we obtain
B—-2sA< / (u— s)2du, (14.10)
M
which together with (14.8) and (14.9) yields
M

On the other hand, by the definition of §2, we have
1 1
< - ==
pSs) < < /Mudu e
whence by the Faber-Krahn inequality
1
Amin ($2s) 2 A (4 () 2 A(Z4), (14.12)

where we have used the hypotheses that A is monotone decreasing. Com-
bining (14.11) and (14.12), we obtain

AGA) (B~ 254) < /M Vul2dy,

whence (14.6) follows upon setting here s = £2.
To treat the general case u € L' N W¢ (M), we will use the following
observation.

CrAaM. If {wy} is a sequence of functions from L' N W¢ (M) such that
lwg —ully = 0, ||lwx —ull2 =0, ||Vwg — Vul2 = 0, (14.13)
as k — oo and if (14.6) holds for each function wy then (14.6) holds also
for u.
Indeed, it follows from the hypotheses that the function A is lower semi-
continuous that is, for any convergent sequence {rx} of positive reals,

o S ALl . '
hkrgg}fA(rk) > A(klgxgo k) (14.14)

Hence, using (14.13), we can pass to the limit in the inequality (14.6) for wy,
and obtain (14.6) for u.

Consider now the case when u is a non-negative function from W} (M).
Let Q be a relatively compact open neighborhood of supp . Since by Lemma
5.5 u € W3 (Q), and C° (Q) is dense in W} (), there exists a sequence
{ur} C O (M) such that

flug —ulla = 0 and ||[Vup — Vull2 — 0. (14.15)
By the Cauchy-Schwarz inequality, we have u, u; € L! () and

uk — ulls < Ve(@)llue - ull2 — 0. (14.16)
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Since (14.6) holds for each function uj by the first part of the proof, the
above Claim applies, and we obtain (14.6) for function u.

Finally, let u be an arbitrary non-negative function from L' N W¢ (M).
As above, there is a sequence {ug} C C§° (M) such that (14.15) holds. By
Lemma 5.4, we can assume that u; > 0. Let ) be any relatively compact
open set that contains supp ug. Consider the function

wy, = min (u, ug) = u — (v — ug) .

and observe that wy € Wi (M) (cf. Example 5.3 and Exercise 5.3). Since
supp wy C supp ug, we conclude by the previous part of the proof that (14.6)
holds for the function wi. We are left to prove that a subsequence of {wy}
satisfies (14.13). We have

IV — Vu”% = (/ +/ ) |V (wg —u)|2dp
{ukgu} {uk>u}

- / IV (u — )2 dp
{ux<u}

because on the set {u; > u} we have wy = u and, hence, V (wg — u) = 0 (cf.
(5.11)) and on the set {ux < u} we have wy = uy and, hence, V (wy —u) =
V (ux — u). It follows that

- [Vwg — Vulls — 0 as k — oo,
and similarly one proves that
llwg — ulla — 0 as k — oo.

Therefore, there is a subsequence {wy,} such that wy, — u almost every-
where. Since 0 < wy, < u and u € L, the dominated convergence theorem
yields

lwr, — ulls — 0 as k - .

Hence, the subsequence {wy, } satisfies all the conditions of the Claim, which
finishes the proof. |

Exercises.
14.3. Assume that the following Nash inequality holds:

2 N
il du> el (),
M flull3
for any non-zero function u € C§° (M), where A is a decreasing function on [0, +00).
Prove the Faber-Krahn inequality
Amin () 2 A (1 (D)),
for any open set 2 C M with finite measure.

14.4, Give an example of a manifold where the Faber-Krahn inequality can holds only
with function A (v) = 0.
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14.5. Prove that the Faber-Krahn inequality with function

A ) = av™ " (14.17)
where a and v are positive constants, implies that, for any relatively compact ball B (z, ),
u(B(z,r)) 2 ca®/?r”, (14.18)

where ¢ =c¢(v) > 0.
HiNT. First prove that

p(B(z,m)) >c (a,'rz) wz u(B (cc,r/2))#f
and then iterate this inequality.

14.6. Prove that the Faber-Krahn inequality with function (14.17) with v > 2 is equivalent
to the Sobolev inequality:

y—=2

/ [VulPdu > ¢ (/ lu]"l—u'f d,u) ’ (14.19)
M M
for any u € Wg (M), where ¢ = ¢(a,v) > 0.

14.7. Prove that the Sobolev inequality (14.19) implies the following inequality, for any

u € C§° (M): ) .
/M Vul dp > c( /M ful® du) ) ( /M fuf? d,u) (14.20)

for any set of positive reals «, 8, a, b that satisfy the following conditions:

2v
a<fB< P (14.21)
and )
b—a=1-2,
{ 8b—aa =2, (14.22)

ReMARK. Under the conditions (14.21), the numbers a, b solving (14.22) always exist and
are positive. For example, f « = 1 and 8 = 2 then a = 4/v and b = 1 + 2/v, so that
(14.20) coincides with the Nash inequality (14.7). If « = 2 and 8 = 2+ 4/v then a = 2/v
and b = 1, and we obtain the Moser inegquality

/M IVl du > ( /M fuf? d/.t) - ( /M 340 dp) .

14.4. The function classes L and T

We consider here a certain ordinary differential equation, which will be
used in Section 14.5. The main results are Lemmas 14.10 and 14.18. This
section can be skipped at first reading and be consulted in case of need.

DEFINITION 14.8. We say that a function A : (0, +00) — R belongs to
the class L if

(?) A is non-negative, monotone decreasing, and right continuous;
(1) A is positive in a right neighborhood of 0 and

/0 «TC\% < . (14.23)
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For example, if a function A satisfies (i) and A (v) = v (a > 0) for
small v, then A belongs to L, while if A (v) = const then A ¢ L.

DEFINITION 14.9. We say that a function 7 : (0, +00) — R belongs to
the class I if 7y is positive, monotone increasing, log-concave, and y(0+) = 0.

Consequently, for any v € I, the function logy is monotone increas-
ing and concave. Hence, log~y is absolutely continuous, and its derivative
(logv)’ exists almost everywhere and is monotone decreasing. Taking the
right continuous version of (log7y)’, we can assume that (log~y)’ is defined
pointwise. We see that v € T if and only if

() the function ~ is positive, monotone increasing, absolutely contin-

uous, and y(0+) = 0;

(%) the function v/~ is monotone decreasing.

For example, the functions v (¢) = t* and v (¢) = exp (—t~%) belong to
T for any a > 0.

LEMMA 14.10. For any function A € L, the following Cauchy problem
on (0, +oc0)

B A, A(04) =0 (14.24)

has a unique positive absolutely continuous solution (t). This solution be-
longs to I' and can be determined by

N () du
t p—t / 5 O < t < t(),
o vA(v) (14.25)
7(t) = %o, t 2 th
where
A d t Y _dv
vo=sup{v:A(v) >0} and ty= /(; TA@)’ (14.26)

Conversely, for any function v € T, there exists a unique non-negative,
monotone decreasing, right continuous function A satisfying (14.25). This
function belongs to L and can be determined by

AG@) =L@, t>0,
v (14.27)

A(v) =0, v > sup”.

Hence, the equation (14.24) (and each of the identities (14.25) and
(14.27)) can be considered as the definition of a bijective mapping from L
to I' and back.

DEFINITION 14.11. For any A € L, the function «, defined by (14.25),
is called the I'-transform of A. For any v € T, the function A, defined by
(14.27), is called the L-transform of .
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Proor OF LEMMA 14.10. Uniqueness of y. Let (0,v0) be the maximal
interval of positivity of A, that is v is defined by (14.26). By (14.24) we
have 4/ > 0 so that v is monotone increasing. Let (0,%p) be the maximal
interval where ¥(¢) < vg, that is

to :=sup{t: v(t) < wo}.
For any t € (0,tg), we have A(y(t)) > 0 so that (14.24) implies upon inte-

gration
/t ,YI dt _ t
o YA(M)

Changing v = ~y(t) we arrive at the identity

"0 _dv for all 0 4
t—A m’ or <t<tp. (1 .28)

By continuity, (14.28) holds also for t = to. By the definition of ty, we have

v(to) < wo. Let us prove that in fact y(¢g) = vo, that is ¢y satisfies (14.26).
Indeed, if ¥(tg) < vo then (14.28) and (14.23) imply

'7(t0) drv
to = -/0 v—m—) < 0.

However, for a finite tg, we have y(tp) = vp just by continuity.
Hence, we have proved that the function v is determined for ¢ < g by
(14.28) where tg is determined by (14.26). For t > to we have y(t) > vy
- whence A(v(t)) = 0. Therefore, (14.24) implies v/(t) = 0 and

v(t) =vo forall t>t, (14.29)

which finishes the proof of the uniqueness of +.
It follows directly from (14.24) that v € I" (the fact that ' /v is decreas-
ing follows from «'/~ = A () and the monotonicity properties of A and 7).

Existence of . Define «y(t) by (14.25), where vg and ¢ are defined by
(14.26). Observe that if g is finite then also vg is finite. Indeed, if vy = oo
then we obtain from (14.26) and the monotonicity of A

t__/°° dv >/°° dv > 1 /oofl—g—oo
T Jo vA) TS wAW) TAD S v

Hence, (14.25) defines a positive absolutely continuous function y on (0, +00).
It is straightforward to check that -+ solves (14.24).

Uniqueness of A. Set vy := sup+y and let (0,%5) be the maximal interval
where «(t) < vg, that is

to :=sup{t : y(t) < vo}-
We claim that 3’,7/ > 0 on the interval (0,%p). Indeed, if j’y_/(tl) = 0 for some

0 <¢; <ty then by the monotonicity %(t) = 0 for all £ > ¢;. Therefore, v
attains its maximum at ¢ = ¢;, which cannot be the case because y(t1) < vo.
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Hence, v > 0 on (0, %p), and the function < is strictly monotone on this
interval and has the range (0, vp). It follows from (14.24) that

!
Aly(t)) = %(t), for all 0 < t < o, (14.30)

which uniquely determines A(v) on the interval (0,vp). If vp = oo then
(14.30) proves the uniqueness of A.

Assume now vg < co and show that in this case A(vg) = 0; this would
imply by monotonicity that

A(v)=0 forallv>wp (14.31)

and prove the uniqueness of A in this case. Indeed, if ¢;3 < oo then for all
t > to we have y(t) = vo and hence +/(t) = 0, which implies by (14.24)
A('vo) =0.
Assume now ty = oo and show that
!

lim 2 (t) = 0.

t—o0 7y
Indeed, the function +’/7 is monotone decreasing and has a non-negative
limit at oo; denote it by c. If ¢ > 0 then '/ > c implies that () grows
at least exponentially as ¢ — co, which contradicts the assumption supy =
vo < co. Hence, we conclude ¢ = 0, which implies by (14.24)

- Jim A(~(t)) =0.

It follows by the monotonicity of A that A(vg) = 0.

Finally, let us verify (14.23) that would prove A € L. Indeed, dividing
(14.30) by the left hand side and integrating it as above we obtain again the
identity (14.28), for any t € (0,tp), whence (14.23) follows.

Existence of A. Define A by (14.27). Set vo = sup~y and observe that
the first line (14.27) defines A(v) for all v in the range of -y, which is either
(0,vp) or (0,vp). If g = oo then the second line in (14.27) is void. If vp < 00
and the range of <y is (0,v¢) then the second line in (14.27) extends A to
be 0 in [vg, +o00). If the range of v is (0,vp) then « attains its supremum;
therefore at a point of the maximum of v we have ¥/(t+) = 0 and hence
A(vp) = 0, which is compatible with the second line in (14.27).

It is obvious that this function A satisfies (14.24).

ExXAMPLE 14.12. For all o, ¢ > 0, the function
Aw)=cv™®
belongs to L and its I'-transform is
7 () = (cat)'/.
In the next examples, let us always assume that A € L and
A(w)=cpv ®forv <1,
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where cp,a > 0. Set

1 v
to= [ sy = (@)™

Let «y (t) be the I-transform of A. For all ¢ < ¢9, we obtain by (14.25)

7 () = (coat)V/=.

Let
A)=cvPorv>1,
where 3,c¢ > 0 and ¢ < ¢g. Then the identity

7(t)
t—ty= / v (14.32)
1

implies that
v (t) = (cBt + c’)l/’s fort >t
where ¢ =1 — ;2%. It follows that in this case

et <1,
’Y(t) - { tl/ﬁ, t>1.

Let
A(w)=cforv >1,
where 0 < ¢ < ¢g. Then by (14.32)
7 (t) = exp(c(t —to)) for ¢t > to. (14.33)
Let
A(w)=0forv>1.
Then by (14.25) we obtain
v(t)=1for t > t.

Formally this follows also from (14.33) with ¢ = 0.
Let
A () =clog v for v > 2.
Then it follows from (14.32) that, for large enough ¢,

v (t) = exp ((c’t + c”)ﬁ) ,
where ¢ = ¢ (8 + 1) and ¢” is a real number.

LEMMA 14.13. Let A € L and v be its I'-transform. If f(t) is a positive
absolutely continuous function satisfying on an interval (0,T) the inequality
1= FA(S), (14.34)
then
f&)>~((@) forallO<t<T.
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PROOF. Let (0,vg) be the maximal interval of positivity of A(v), and let
(0,7) be the maximal interval where f(t) < vg. For all t € (0, 7) we obtain
from (14.34)

T fldt
o fA(F)

£
/ dv >t
7o) vA(v)

Comparing with (14.25), we obtain f(t) > ~(¢) forallt € (0,7). If r =T
then this finishes the proof.

If 7 < T (which includes also the case 7 = 0) then for all ¢ € (7,T") we
have f(t) > vo, which implies f(t) > v(t) simply because () < vp. 0O

2t

whence

DEFINITION 14.14. Fix § € (0,1) and let v be a function from class T’
and A be its L-transform. We say that « belongs to the class I's (and A
belongs to the class L) if, for all ¢ > 0,

§-1
arye ="

We say that v belongs to the class I's (and A belongs to the class Ls) if, for
all ¢ > 0,

] %,(%) > 5171(7:). (14.36)

od Y
;(%) - 6;(15) + (14.35)

Clearly, (14.36) implies (14.35) so that I's C T's. Observe also that the
parameter & occurs in (14.35) three times. One could have three different
parameters instead but the fact that the left hand side of (14.35) is monotone
decreasing with & allows to manage with a single parameter. This also
implies that the class I'; increases when § decreases.

It is obvious that if v € I'5 or v € I's then the function ay (bt) belongs
to the same class for any positive constants a, b.

Recall that, for any v € T', the function 4’/ is monotone decreasing.
The condition vy € I's means that the rate of decay of v/ /~ is at most
polynomial. For example, the function v (¢) = t*, a > 0, satisfies (14.36)
with § = % and, hence, belongs to fl /2

To have more examples, let us first prove the following lemma that helps

in checking that v € I's or v € T's.

LEMMA 14.15. Let 0 < a < b < oo.
(a) If (14.35) holds for allt < a andt > b, theny € L'y for some &’ > 0.

(b) If (14.36) holds for allt < a andt > b and ¥/ (2b) > 0 then v € 'y
for some &' > 0.

PROOF. Denote f = ?yi and recall that f is non-increasing.
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(a) Then, for all t € [a,b), we have
f(t) £C:= f(a)
and, for a small enough &,
@)

(F20) - 810) <O < oo

Hence, for t € [a, b), (14.35) is satisfied with § = &’. Since for ¢ outside [a, b)
(14.35) is satisfied by hypothesis, we conclude that v € T'y.
(b) If t € [a,b) then

F(2t) 2 f(2b)=cf(a) 2ef(2),
where € = %’3} > 0. Hence, replacing § in (14.36) by min (4, €), we obtain

that (14.36) holds for all ¢ > 0. 0O
ExAMPLE 14.16. 1. The function
(t) = —
T = Tt

belongs to I's with § = 2721,
2. The function
7(t)={ t* t<l1,
B, t>1,
where o, 8 > 0, belongs to some T's. Indeed, each of the function ~ (£) = t°
and «y (t) = t# belong to I'; /2, and the claim follows by Lemma 14.15.
3. In the same way, the functions

w={ t<1,
T exp (B -1), t21

and
te, t<1,
7(t)"{ 1+loght, t>1

belong to some f‘g.
4. The function

o t<1,
7(t) = { 1 t>1 (14.37)
obviously satisfies (14.36) if ¢ < 3 or ¢ > 1. By Lemma 14.15, v € T's for

some &. Note that v ¢ I's because in the range t € [2,1) we have v/ (2t) =0
while 4/ (t) > 0, and (14.36) fails for any § > 0.

LeMMA 14.17. If y € Ts with 6 < % then there exists a smooth function
g on [0,+4c0) such that

1<g<e™ ¢ >0, (14.38)
_fmd such that the function ¥ := g belongs to ﬁ;.
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PRrROOF. Define function g (¢) to be the solution of the Cauchy problem

! 2
%(t)“z“i)Tg,g()—l

t ds
g (t) = €Xp (5—2A a——;_—s)-l—ﬁ) .

The properties (14.38) are obvious. Set 7 = «yg so that

~ / 7

that is,

rT_rX,.9
v v g
whence
od sTm - |2 57 g
Zen-sZw - |[Zeo-sZo|+[Len-sLo)
6—1 6—2 6—1
2 _(1+t)1+5 + (1+2t)1+5 - (a +t)1+6
672 261

T o420 11T (14:39)

We are left to verify that the right hand side of (14.39) is non-negative,
which is true provided § < % because

&
(A+2)" s 5

- RSl M. S < it
(1) — <2572
d
To state the next result, we use the notation log, s := (logs),.
LEMMA 14.18. Ifv € I’,; then, for any v >0,
t
sup — lo g, 7( ) > A(C’ v), (14.40)

>0 t

where A is the L-transform of v and C’,; > 1 is a constant that depends only

ond.
If v € T'5 then (14.40) is true with Cs = 1.

PRrROOF. Assume first that v € Ts. Ifv> supy then A (v) = 0 and
(14.40) is trivially satisfied. If v < sup+y then there exists ¢ > 0 such that
= 7(t/2). Using the concavity of log-y we obtain

2. () _ logy(t) —logy(t/2) vy Y
clog, == 2 7 > (log) (t) = 5 (t).
By (14.36) and (14. 24) we obtain

w>ﬂum SA (7(t/2)) = SA(v),
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whence

sup 3 Log, 249 7“ A() (14.41)
t>

Let now v € I's. Without loss of generahty, we can assume 6 < % Let g
be the function from Lemma 14.17 so that 7 := g € I's. Taking a multiple
of g, we can assume that

s S g S 1a
where ¢5 > 0. Therefore, ¥ < v and, by the first part of the proof,
1 7(t) 1 () dx
sup - lo >sup - log, — > =A(v
t>(IJ)t B+ Ty t>§t &+ 7 2 ©),
where A is is the L-transform of 7.
If v < sup¥ then v = ¥ (¢) for some ¢t. Using ¢’ > 0 and v < cs"li, we

obtain
=~ !

K(v>=7xm=%=1+9—'>§=A<v>2A(c;W) ACr),

Y 9
where Cs5 = 05 ~!. Combining the previous two lines, we obtain (14. 40).
If v > sup¥ then Csv > sup+y and A (Csv) = 0 so that (14. 40) is trivially
satisfied. g

Exercises.

14.8. Prove that if A1, A2 are two functions of class L then also A; +A; and max (A1, Az)
belong to L.

14.9. Let A be a function of class L such that

A _ clv—ala v < v,
(v} = —az >
Cav y U2 U2,

where ay,¢1,v1 > 0, az,c2 > 0, and v > v1. Prove that A € L for some 6§ > 0.

14.10. For any function vy € I, denote by A, the L-transform of v, and for any function
A € L, denote by «ya the I'-transform of A. Let a, b be positive constants.

(a) Set A (v) = aA (v). Prove that
vz (&) = b~ ya (at) .
(b) Set ¥ (t) = avy (bt). Prove that
Az (v) = bAy (a™v).
(¢) Prove that if A; and Az are two functions from L and A; < A, then Ya; < YAp-

14.11. Prove that the product of two functions from fa belongs to f‘;, and the product
of two functions from I's belongs to T's/2.

14.12. Show that there is a function 4 € I" that does not belong to any class I's.

14.13. Let F (s) be a positive function of class C? on [0, +00) such that F” (s) does not
vanish for large s. Assume that
*® ds
o F(s)
and
F"F
c:= lim (F')2 (s) #0.
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Prove that
t ds ¢!

o F(s) "~ F ()
14.14. Let A be a function of class L such that
A(v) =exp (—vﬁ) forv>1,

where 8 > 0. Evaluate the asymptotic of its I'-transform + (t) as ¢ — co.

as t — oo.

14.5. Faber-Krahn implies ultracontractivity

As before, denote by P; the heat semigroup of a weighted manifolc
(M,g, 1) and by P the heat semigroup of {, for any open set Q ¢ M
‘We use in this section the functional classes L and I" defined in Section 14.4

THEOREM 14.19. Assume that the Faber-Krahn inequality holds on ¢
weighted manifold (M, g, p) with a function A € L. Then, for any function
Fe€LYNL?(M,u) and for all t > 0,

Pl <

where 7y (t) is the I'-transform of A.
Consequently, for allt >0 and z,y € M,

%llfll% , (14.42)

4
P\, Y) S — 555 14.43
t ( y) ’Y(t/2) ( )
ProOOF. Without loss of generality, we can also assume that
Il =1. (14.44)
For any ¢t > 0, set u (¢,-) = P;f and consider the function
J(t) = llu(t, M3 = 1P:F1I3- (14.45)

By Theorem 4.9(iv), we have for any ¢ > 0
u(t,-) € dom £ ¢ W} (M)

and g
u 9
I =-Lu€ L*(M),

where d% is the strong derivative in L? and £ is the Dirichlet Laplace oper-
ator. It follows that function J (¢) differentiable in (0, +o00) and

dJ d du
il (u,u)p2 = 2(;{»“)0 = —2(Lu,u)p2.

On the other hand, by the Green formula (4.12),
(L) =~ B = [ [Valdu
M
whence we obtain iJ
@l _ _, / IVl dy. (14.46)
dt v
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In particular, function J(t) is monotone decreasing. Let (0,7) be the max-
imal interval where J(t) > 0. For any ¢t > T we have J(¢) = 0, and (14.42)
is trivially satisfied. Assuming in the sequel that ¢ € (0,T) and applying
Lemma 14.7 (with € = 1), we obtain

2 2 ”U“1
[ 19ufdn> guga (o2l (14.47)
Theorem 7.19 and condition (14.44) imply
flully < 1. (14.48)

Combining (14.45), (14.46), (14.47), and (14.48), we obtain the following
differential inequality for J on the interval (0,T):

aJ 4
—< - .
4 (2) tas

Consequently, the function .
f(g) = 50)

satisfies on (0, T’) the inequality

I 2 FA(S).
Resolving this inequality by Lemma 14.13, we conclude f(¢t) > (t) whence
J(t) < 4/v(¢t), which is equivalent to (14.42).

_ The estimate (14.43) follows from (14.42) by Theorem 14.4 and Remark
14.5. a

Exercises.
14.15. Prove that the claim of Theorem 14.19 remains true for any f € L (M).

14.6. Ultracontractivity implies a Faber-Krahn inequality
Here we prove a theorem which is “almost” converse to 14.19.

THEOREM 14.20. Let (M, g, i) be a weighted manifold, and assume that
the heat kernel satisfies the estimate

1
P (%, T) S —
t ( ) ~ (t)
forallt > 0 and z € M, where v (t) is a positive function on (0,+c0). Then
M satisfies the Faber-Krahn inequality with the function A(v) defined by
A(v) = sup E log, () . (14.50)
>0 ¢ v

If in addition v € T's then M satisfies the Faber-Krahn inequality with the
Junction g—A(Cgv) where A is the L-transform of v and Cjs is the constant
from Lemma 14.18.

The proof of Theorem 14.20 will be preceded by a lemma.
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LemMA 14.21. For any function f € W} (M) such that ||fllz2 = 1 and
for any t > 0, the following inequality holds

exp (—t [ 1Vf12du) < IBfla (14.51)

PROOF. Let {E)} be the spectral resolution of the Dirichlet Laplacian
L. Then, for any f € dom (£) = W such that || f|j2 = 1 we have

1= If3= [ B
and
[vitdu==[ @un)fdu=@rn= [ MBSE (452
M M 0

(cf. Exercise 4.24). Since the measure d| E,f||> has the total mass 1, we
can apply Jensen’s inequality which yields

o 0] oc
oo (= [T ondimf) < [ ool
Using (14.52) and the identity
IPfIE = /0 exp (~26)) d|[Ba £,

we-obtain
o (~2 [ V17 du) <1P11G
which coincides with (14.51).
Assume now that f € W} and | f]l2 = 1. Since C§° is dense W, there
is a sequence {fx} C C§° such that fj W, f. Then ¢ := || fxll2 = 1, which

implies that also c,:l I E) f. The inequality (14.51) holds for each function
c; ' fr. Since both sides of (14.51) survive when passing to the limit in the
norm | - [y, we obtain (14.51) for f. O

See Exercise 4.36 for an alternative proof.

PROOF OF THEOREM 14.20. By Theorem 14.4, the heat semigroup 7
on M is L' — L? ultracontractive with the rate function 4/1/7(2t), that is

1
NPyalise < ol (14.53)

Let © C M be an open set with finite measure and f € W () be a function
such that || f||2 = 1. Then also f € W} (M) and we obtain by Lemma 14.21
and (14.53)
1
e —-t/ \Y 2d)§ Pafl? < —=Ifl13.
o (=t [ V1P au) < 1Pyaslh < s IR
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Since by the Cauchy-Schwarz inequality || f]|? < u(€), it follows that

2 1 ()
/M [VF“du > —Elog+ Ok

Taking the infimum in f and the supremum in ¢, we obtain
Amin () > A(u()), (14.54)

which was to be proved.
If v € T's then by Lemma 14.18

A(w) > gA(Cgv),
which proves the second claim. a

REMARK 14.22. It follows from (14.50) that A (v) > 0 provided sup~y =
0o. By (14.54), we conclude that Apin (2) > 0 for any open set 2 with finite
measure.

Recall that by Theorem 14.19 if M satisfies the Faber-Krahn inequality
with a function A € L then the heat kernel satisfies the estimate

4
pt(z,z) < R

where < is the I-transform of A. Hence, putting together Theorems 14.19
and 14.20 and assuming v € I'; (which is equivalent to A € Lg), we obtain
" essentially the equivalence

pt(w,m)sjy—(% e (@ > AW(®)) (14.55)

where all the constants factors are discarded.

COROLLARY 14.23. For any weighted manifold and any n > 0, the fol-
lowing conditions are equivalent:

(@) The on-diagonal estimate ps (x,z) < Ct™™2, for all t > 0 and
zeM.

(b) The Faber-Krahn inequality with function A (v) = cv™%/™ where
c>0.

(¢) The Nash inequality (14.7).

(d) The Sobolev inequality (14.19), provided n > 2.

PROOF. Indeed, the equivalence (a) < (b) follows from the above Re-
mark 14.22 because the A-transform of the function «(t) = C~1t"/2 is
A (v) = cv=2/", The equivalence (b) & (c) holds by Lemma 14.7 and Exer-
cise 14.3, and (b) < (d) holds by Exercise 14.6. O

REMARK 14.24. As it follows from Corollary 14.23 and Remark 14.6,
all the equivalent conditions (a) — (d) are satisfied on Cartan-Hadamard
_manifolds and minimal submanifolds of RY,
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14.7. Lower bounds of higher eigenvalues

Here we prove a remarkable consequence of the equivalence (14.55) that
the Faber-Krahn inequality, that is, the lower bound A; (2) > A (1 (Q))
for the bottom eigenvalue for any relatively compact open subsets 2 C M,
implies a similar estimate for the higher eigenvalues

A (9) > A (C“—g’—)) ,

subject to a mild restriction on the function A (see Corollary 14.28).

THEOREM 14.25. Assume that the heat kernel on a weighted manifold
M satisfies for all t > 0 the following estimate

/ Pt (z,) dps (z) < p(8), (14.56)
M

where p is a positive function on (0,+00). Then the spectrum of the Dirich-
let Laplace operator L is discrete, and its k-th smallest eigenvalue A (M)
satisfies for all k = 1,2, ... the inequality

1
Ax (M) > sup ~log,, (14.57)
>0 t

L
p(t)
ProOOF. Note that

/ Py (2,2) ds / / Py (2, )? ds () dis (v) = lpjallZac.

By Lemma 10.14 and (14.56), we have

—tL

tracee ™~ = tra,cePt/2 “Pt/z”z,zz <p(t),

and by Lemma 10.7 we conclude that the spectrum of £ is discrete. Fur-
thermore, by (10.14) we have

o0
Z e~ = trace e £ < p(t). (14.58)
k=1
Since the sequence {A;};- ; is arranged in the increasing order, the left hand
side of (14.58) is bounded below by ke~** for any index k. Therefore,

ke ™ < p(t)
which implies
A 2> 1 log ———k
k = T .
t " p(t)

Since A\x > 0, the function log can be replaced by log,; since ¢t > 0 i8
arbitrary, we obtain (14.57) by taking the supremum in ¢. O

COROLLARY 14.26. If the heat kernel on M satisfies the estimate

pe(z,2) < 7%5 (14.59)
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for allt > 0 and x € M, where v is a function of the class I's then, for any
open set @ C M with finite measure the spectrum of the Dirichlet Laplace
operator L2 is discrete and, for any k > 1,

A (Q) > gA (05-“—%2—)> : (14.60)

where A is the Li-transform of v and Cjy is the constant from Lemma 14.18.

Applying (14.60) for & = 1, we obtain the alternative proof of Theorem
14.20.

Proor. We have
Q 1 ($2)
z,z)du(z) < —=
so that ! as a manifold satisfies the hypotheses of Theorem 14.25 with
function

Q
(t) = F‘_(t_l
v (£)
By Theorem 14.25, we obtain that the spectrum of £? is discrete and

1
A () > sup ~1lo
% () t>§t g+“

If v € T's then by Lemma 14.18 we obtain that
1 ky(t) 6 ( L (9))
sup — lo > —-A| Cs———=
t>g t ot p() ~ 2 "k
which finishes the proof. O

ExXAMPLE 14.27. Let us show that, for any weighted n-dimensional man-
ifold M and for any relatively compact open set ) C M, there exist constant
¢, C > 0 such that

1/(20)
e (U) 2 ¢ (M—(’-“-U—)) (14.61)

for all open U C Q and k > Cp (U), where o is the same as in Theorem 7.6,

that is, the smallest integer larger than n/4 (cf. Example 10.16).
Indeed, it follows from Theorem 7.6, that, for any f € L? (),

1P Flloo < 6 (8) [IF1l2
where 6 (t) = C(1+t7°) and C = C (Q). Hence, the semigroup {P} is.
L? — L[> ultracontractive with the rate function 6 (t), which implies by

Theorem 14.4 that 1
Q 2

z,z) < 6°(t/2) £ —=,

where

t2, t<1
! H }
’Y(t)—c{l, t>1. "
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As was shown in Example 14.16, v € T';. Evaluating A from (14.27), we
obtain

A () > v for v < vy,
for some ¢, vg > 0. By Corollary 14.26 we obtain that (14.61) is true when-

ever 05&,? < wp, which is equivalent to k > Cp (U) with C = Csvy 1
As we will see later, (14.61) holds with o = n/4 (see Corollary 15.12).

COROLLARY 14.28. Assume that M satisfies the Faber-Krahn inequality
with a function A € Ls. Then, for any open set Q C M with finite measure,
the spectrum of the Dirichlet Laplace operator LY is discrete and satisfies
for all k > 1 the estimate

e (Q) > A( (9)) (14.62)

where Cs > 0 depends only on §.

PrROOF. By Theorem 14.19, we have the estimate

P09 S T

for all t > 0 and x € M, where « is the I'-transform of A. Since the function
¥ (t) = 1v(t/2) belongs to T's, we obtain by Corollary 14.26 the estimate
(14.60) with function A that is the L-transform of %, whence (14.62) follows
(cf. Exercise 14.10). O

14.8. Faber-Krahn inequality on direct products
Here we give another example of application of the equivalence (14.55).

THEOREM 14.29. If X and Y are two weighted manifolds satisfying the
Faber-Krahn inequalities with functions Ai, Ay € Ls, respectively, then the
product manifold M = X XY satisfies the Faber-Krahn inequality with the
Sfunction

v ZA (Csv)

where

A(v) == Jnf (A1 (u) + Az (w)) (14.63)
and Cs > 0 depends only on é.

PROOF. By Theorem 14.19, the heat kernels on X and Y admit the
estimates

4 4
X d Y

for all 1,29 € X and 41,y2 € Y, where v; and s are the T-transforms of
A1 and As, respectively.
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The heat kernel p; on M is the product of pf and pf in the following
sense: if z; = (25, 7:) € My X My where ¢ = 1,2 then
(21, 22) = P (21, 22)0} (1, 112)-
(see Theorem 9.11 and Exercise 7.41). Hence, we obtain for all 21,22 € M,
16 16
z1,22) < = )
Plen ) S e ED )

where v = <172. By hypothesis, the functions v, and 7, are in the class
T's; then v is in T/ by Exercise 14.11. Therefore, by Theorem 14.20, M
satisfies the Faber-Krahn inequality with the function

v gK(C’av) ,

where A is the L-transform of 7. We are left to show that A (v) > A (v)
where A is defined by (14.63). If v < sup+y and, hence, v = v (¢) for some ¢
then by (14.27) and (14.63)

! / !
o) =Ky @) =2 =L+ 2 = (3 () + Ma(n2 (1) 2 A(0).
T oM "
If v > sup~y then we can choose numbers v > sup-y; and w > sup+y, such
that ww = v. Since A1 (u) = Az (w) = 0, it follows from (14.63) that
A(v) = 0. Hence, in the both cases, A(v) > A(v), which finishes the
proof. g

EXAMPLE 14.30. Let A; (u) = c1u~2/™ and A, (w) = cow™2/™. Then
(14.83) gives

A(’U) = inf (clu“z/" + 32w_2/m) — c,v—2/('n+m)’
uw=v

where ¢ = c¢(c1,¢2,n,m) > 0. Since both Aj;, A2 belong to Ls for some
d > 0, we conclude that X x Y satisfies the Faber-Krahn inequality with
the function const v=2/(+m),

ExaMmPLE 14.31. Let us show how the above example allows to prove the
Faber-Krahn inequality in R™ with function A (v) = ¢,v~2/" by induction
in n. In R! any open set (1 is a disjoint union of open intervals {I;}. Set
T = p(Ii), where p is the Lebesgue measure. Then we have, for some ¢ > 0,

Amin () > i0f Ain (I) = inf — > cp (Q) 2
k k T
(cf. Exercises 10.6 and 11.25), which proves the above claim in the case
n =1. Assuming that the Faber-Krahn inequality in R™ holds with function
A (v) = ¢,v2/" we obtain by Example 14.30 that it holds in R™! = R"xR?!
with function A (v) = const v=2(+1), which was to be proved.
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EXAMPLE 14.32. Let X satisfy the Faber-Krahn inequality with the
function A; (u) = c;u—?/"; for example, X may be any Cartan-Hadamard
manifold of dimension n. Let Y be any compact manifold of dimension m.
By Exercise 15.2, Y satisfies the Faber-Krahn inequality with the function

—2/m <
. CoWw , WX W,
A2(w)—{ 0, w > wo,

which belongs to Ls by Exercise 14.9. By (14.63), we have

A(v) = min (u%?iv cru~2/™, uglzfv (clu_z/ 4 eqw™ % m))

w>wo wlwp
—-2/(n+m) <
v y U X v,
< 4.64
— C{ ,U—2/n’ v > UO) (1 6 )

with some ¢,vg > 0. Hence, we conclude by Theorem 14.29 than X x Y
satisfies the Faber-Krahn inequality with the function (14.64).

Notes

The proof of the classical Faber-Krahn theorem in R™ as well as its extensions to S"
and H" can be found in the book by I.Chavel [61] that is a good general reference for the
properties of the eigenvalues of the Laplace operator on manifolds.

The fact that the ultracontractivity of the heat semigroup is equivalent to a heat
kernel on-diagonal upper bound is widely known. Moreover, the argument that is used to
prove the upper bound, can be turned into the proof of the existence of the heat kernel in
a rather general setting — see [49], [96], [163], [184].

The method of obtaining the heat kernel upper bound from the Nash inequality,
which was used in of Theorem 14.19, goes back to a seminar paper of J. Nash {292]. The
equivalence of the Sobolev inequality and the heat kernel upper bound

pi (z,z) < Ct ™2 (14.65)

was first proved by N.Varopoulos [353], [355]. The equivalence of the classical Nash
inequality and (14.65) was proved by Carlen, Kusuoka and Stroock in [49].

The equivalence of the Faber-Krahn inequalities and the heat kernel upper bounds
in full generality (Theorems 14.19 and 14.20) was proved in {146]. A particular case that
(14.65) is equivalent to

AL (Q) > cu ()27 (14.66)
was obtained independently by G.Carron [50].

The equivalence of the generalized Nash inequality and the heat kernel upper bounds
in full generality was proved by T.Coulhon [77|. In particular, Lemma 14.21 is taken
from [77]. A direct derivation of various types of Nash and Sobolev inequalities each from
others can be found in [17].

The discreteness of the spectrum in the setting of Theorem 14.25 was proved by
L. Gross [188]. The fact that the lower estimates for A; (2} implies non-trivial lower
estimates for Ax () (Corollary 14.28) was proved in [146]. Further results in this direction
can be found in [67] and [184)].

We do not use here a geometric tool for obtaining Faber-Krahn inequalities: the
isoperimetric inequalities of the form

o (6Q) > F (u(2)), (14.67)
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where §) is any relatively compact open subset of M with smooth boundary 8Q and o is
the induced measure on 8, and F is a non-negative function on [0, +00). For example,
in R™ the isoperimetric inequality (14.67) holds with the function
n—1
Fv)=cv = (14.68)
(see, for example, [53], [196]). By the Cheeger inequality, if (14.67) holds with function
F such that F (v) /v is monotone decreasing then the Faber-Krahn inequality holds with

function | (F () .
v
A =3 (T)
(cf. [56], [1486]).

For example, the isoperimetric inequality with the function (14.68) implies the Faber-
Krahn inequality (14.66). This can be used to prove the Faber-Krahn inequality (14.66)
on Cartan-Hadamard manifolds and minimal submanifolds of RY as was mentioned in
Remark 14.6, because the corresponding isoperimetric inequalities on such manifolds are
known - see {203], [325] for Cartan-Hadamard manifolds, [44] for minimal submanifolds,
and [67], [154] for the both classes.

A far reaching extension of Cheeger’s inequality —~ Maz’ya’s inequality, and its ap-
plications can be found in [153], [268], [269], [270]. Further relations of isoperimetric
inequalities and heat kernels can be found in [64)], [55), [76], [153]. Faber-Krahn inequal-
ities on direct products were proved in [83] without using heat kernels. Isoperimetric
inequalities on direct products were proved in [135], [278].

A powerful isoperimetric inequality on groups and covering manifolds was proved by
T.Coulhon and L.Saloff-Coste [86], which provides plenty of examples of manifolds with

explicit functions F' and A in the isoperimetric and Faber-Krahn inequalities, respectively.



CHAPTER 15

Pointwise Gaussian estimates I

In this Chapter we obtain the pointwise Gaussian upper bounds of the
heat kernel, that is, the estimates containing the factor exp (—ﬂ}tﬁz) The

key ingredient is a mean value inequality that is deduced from the Faber-
Krahn inequality. The mean value inequality enables one to obtain upper
bounds for a certain weighted L?-norm of the heat kernel, which then im-
plies the pointwise estimates. In contrast to Chapter 14, the Faber-Krahn
inequality is assumed to hold in some balls rather than on the entire mani-
fold.

In the core part of this chapter, we use from the previous chapters only
the properties of Lipschitz functions (Section 11.2) and the integrated max-
imum principle (Section 12.1).

15.1. L?-mean value inequality

- Consider a weighted manifold N = R x M with the product measure
dv = dtdu. Let I be an interval in R and 2 be an open set in M so that the
cylinder I x 2 can be considered as a subset of N. A functionu: I xQ —= R
is called a subsolution to the heat equation if u € C? (I x Q) and

Ou

THEOREM 15.1. Let B (z, R) be a relatively compact ball in M and as-
sume that, for some a,n > 0, the Faber-Krahn inequality

M(U) > ap(U)™2", (15.2)

holds for any open set U C B(zx,R). Then, for any T > 0 and for any
subsolution u (¢,y) of the heat equation in the cylinder C = (0,T] x B(z, R),
we have

-n/2

wl (T,z) < Ca — / ud d, (15.3)
min (\/T, R) ¢

where C = C(n).

Although n does not have to be the dimension of M, in most applications
of Theorem 15.1 one has n = dim M. We prove first two lemmas.

301
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LEMMA 15.2. Let Q be an open subset of M and Ty < T. Let 1 (t,z)
be a Lipschitz function in the cylinder C = [Ty, T) x Q such that 7 (t,-) is
supported in some compact set K C Q for any t. Let u be a subsolution to
the heat equation in C and set v = (u—0), with some § > 0. Then the
following inequality holds:

s Lo ea] s+ [iwenpar s [ (o[ 2]) o

(15.4)
In particular, if n(To, ) = 0 then

/Q o () dps < 2 /c v (|vn12 + '"%D dv (15.5)

for any t € [T, T], and

/lV (n)|Pdv < /v2 <|Vn|2+ n@tD dv. (15.6)
c
(), by Exercise 5.8 we have v(t,") €

PROOF Since u (¢,-) €
W, (Q) and

loc

Vv = 10 Vu = 11201V,
which implies
. (Vo, Vu) = |Vou|* and vVu = vVo.

Since 7 (t,-) € Lipg (), by Exercise 11.13 we have vn? € W3 (Q2) for any
fixed time ¢ and

\Y (vnz) = vVn? + n?Vu = 20V + n* Vo,

whence
(Vu, V (vn?)) = 2un(Vv, V) +n° |Vo]?.
Multiplying the inequality (15.1) by vn? and integrating over C, we obtain

Oou T 2
—wnldy < (Ayu) vn*dudt
Bt Ty JO

st

To /O

= — / (2un(vv,w)+n2|vvl2) dv
C

where we have used the Green formula of Lemma 4.4. Since

2un(Vv, Vo) + 02 |[Vol* = |V (un)|* ~ v2 |Vn?,

we obtain

/ U 2y < — f IV (on)? dv + / 2|Vl du. (15.7)
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For any fixed z, all functions u,v,7 are Lipschitz in t € [Ty, T]. Therefore,
using the integration by parts formula for Lipschitz functions (see Exercise
2.25) we obtain, for any fixed z € 2,

Tau 1 Ta(,u2)
ou 24 - L[ 2\W) o
m Ot at 2 /TO e

__ 1 9 o1T 28

- Sl -3 [ e
_ 1 22T_/T 2. On

= 2[1177]TO Btdt

Integrating this identity over Q2 and combining with (15.7), we obtain (15.4).
The estimate (15.5) follows from (15.4) if one replaces T" by t, and (15.6)
is an obvious consequence of (15.4). 0

LEMMA 15.3. Under the hypotheses of Theorem 15.1, consider the cylin-
ders

Cr = [Tk;T] X B(xaRk)a k=0,1,

where 0 < R < Rg < Rand 0 < Ty < Ty < T (see Fig. 15.1). Choose
01 > 0y > 0 and set

T = / (u — 6;)2 dv.
Ck
Then the following inequality holds
- C J1+2/'n
a51+2/n (91 . 90)4/n,

(15.8)

where C = C (n) and
6 = min (Tl - To, (Ro - R1)2) .

PROOF. Replacing function u by u — 8y we can assume that 6y = 0 and
rename 6 to 6. Consider function 7 (¢,y) = ¢ (t) ¥ (y) where

(t—To), { 17:’-T t>1i,
(t)__——-fo—/\l— F=5, To <t < T, (15.9)
0, t<Ty
and
(Ria —~d(2,9)),
Ry/q — Ry
where Ry = AR, + (1 — \) Ry. Obviously, suppy = B (z, Ry/4) is & com-

bact subset of B (z, Ry) because the ball B (x, Ry) is relatively compact by
hypothesis.

Y (y) = A,
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4
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N - —
B(x,Ro)

FIGURE 15.1. Cylinders Cy and C;

Applying the estimate (15.6) of Lemma 15.2 in the cylinder Cy for func-
tion v = uy with ¢ € [T1,T] and noticing that ¢ (¢) = 1 in this range and
Y=1in B (x, Rl/z), we obtain

on 34
uZ (t,")d S2/ u? <V 2+‘17——D dv < —Jy, 15.10)
Jopo, g <2 [ (190 + o) av <

where we have also used that

1 16 16
[Vnf? < = < —=
(R1/4 - R1/2)2 (RO - Rl)z é

and
on 1 1
—_— < < -.
nat —TNhh-Tp " 6
For any t € [T1, T}, consider the set

U= {y €B (:U,R3/4) cu(t,y) > 0}

so that by (15.10)

. 1 1 34Jg
p(Uz S—ﬁ__uz (t,-)d,us—/ ul (¢, ) dp < =
( 62 B(z,R3/4) + 62 B(Z,Ruz) + 626

(15.11)
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Consider now a different function -

_ (R3/4 - d(l"y))
Y(y) = Ryn — R

Applying (15.6) for function v = (u — 6), with n(t,z) = ¢ (t)¥ (y) where
@ is given by (15.9) and 4 is given by (15.12), we obtain

2 1y Zl
‘7 3} ‘7:’7 + < < _ ’.

(15.13)
For a fixed ¢, the function vn (t,y) can take a non-zero value only if y €
B (z,Rs /4) and u (t,y) > 6. It follows that

t AL (15.12)

~supp (vn(t,-)) C T,

whence v (t,-) € Lipy () for any open set {2 containing U;. Choose such
an  with additional conditions 2 C B (z, Ry) and

68
< <
U (Q) 2u (Ut 925 =7 J0s

where we have used (15.11) (still assuming that ¢ € [T1,T]). Then we obtain
by the variational principle and (15.2)

[ Vele)d 2 dm@ [ @nf )
B(z,Ro) B(z,Rop)
> ap(Q)m /B (wn)? (¢, ) dp

z,Ro

926\ %™ _
2 o) H [0
B(z,R1)

where we have used that n(t,y) = 1 for ¢t € [T1,T) and y € B (z, R:).
Integrating this inequality from 73 to T and using (15.13), we obtain

17 T 9
—Jo = / [V (vn)|* dv
6 Ty JB(z,Ro)

25\ 2/ T
a (%g) JO—2/"/ / v2 (t,-) dudt
T\ JB(z,R1)

2¢\ 2/n
= a (ﬁ) J(‘)-z/nJ]_,

v

68
whence (15.8) follows. O

PROOF OF THEOREM 15.1. Consider a sequence of cylinders
Cr = [Tk, T] x B (z, Rg),
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where {T;}r, is a strictly increasing sequence such that Ty = 0 and T} <
T/2 for all k, {Rx}r is a strictly decreasing sequence such that Ry = R
and R > R/2 for all k. Assume also that

(Ry, — Rk+1)2 = Tgy1 — Tk =: 0. (15.14)

In particular, the sequence of cylinders {Cy}re, is nested, Cp = C and Cx
contains [T'/2,T] x B (z, R/2) for all k.
Fix some 6 > 0 and set 6 = (1 - 2‘(’““)) # and

Jp = / (u— Bk)2 dv.
Ck

Clearly, the sequence {Ji } 5o is decreasing. We will find 6 such that J — 0
as k — oo, which will implies that

T
/ / (u—0)2 dv=0.
1/2 JB(=,R/2)

In particular, it follows that u (T, z) < 6 and, hence, u,. (T, z) < 62. For an
appropriate choice of 8, this will lead us to (15.3).
Applying Lemma 15.3 for two consecutive cylinders Cx, D Cr41, we obtain

cJrem _ C'16km gt

Jp41 < = 15.15
B T e T (15.15)
where C' = 16%/"C. Assume that & is chosen so that for any &
c'iekmpdm 1
_i+_2/n_0__ = . (15.16)
as, g4/n 16
We claim that then
Ji < 167%J;, (15.17)

which in particular yields J;y — 0. Indeed, for k& = 0 (15.17) is trivial. If
(15.17) is true for some & then (15.15) and (15.16) imply

C16M (167RI)*" L caeEmpn 1
a5’1:+2/n04/n k a5i+2/"94/n k k

<
Je+1 < 6

whence Ji; < 16~(*+D jq.
The equation (15.16) can be used to define d, that is,

5 <01161—k/nJ3/n) 7—1% C”lG_"‘L"'Z Jgt%f
k= —77 =

— i —0 (15.18)

ant+2 0 n2

where C” = (16C’)#+7 , but we must make sure that this choice of 6, does
not violate the conditions Ty < T/2 and Ry > R/2. Since by (15.14)

k-1 k-1
Ty=)Y 6 and Rpy=R-Y /5,

=0 1=0
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the sequence {0x} must satisfy the inequalities

iak < T/2and ims R/2.

k=0 k=0
Substituting dz from (15.18) and observing that {0z} is a decreasing geo-
metric sequence, we obtain that the following inequalities must be satisfied:

2 2 1/2
J'u+2 n-4-2
—0 - <T and | —%— <cR,
an+z@nt? an+z f@n+2

for some ¢ = c¢(n) > 0. There conditions can be satisfied by choosing ¢ as
follows:

n/2 n/2
> S and 02>
( c T) (CR)
Taking
- n+2
c"t2 min (\/T, R)
and recalling that uﬁ_ (T, z) < 62, we finish the proof. O
Exercises.

15.1. Fix zg € M, R > v > 0 and let the ball B(z¢, R) be relatively compact. Assume
also that, for some a,n > 0, the Faber-Krahn inequality
Amin(U) > ap (U)~3/™, (15.19)

holds for any open set U C B(zo,7). Let u (%, z) be a non-negative bounded C?-function
(0,7) x B (zo, R), where T' > 0, such that

(6) & -Au<0,

(i) u(t,") > 0ast—0in L?(B (2o, R)).

Prove that, for all z € B (zg,r/2) and t € (0,T),

24y 2
u(t,z) < Cllujre ﬂl%f)%;,—w max (1, g) : max (1, i) e (15.20)
where § = R —r and C = C (n).

15.2. Faber-Krahn inequality in balls

Here we show how the local geometry of a manifold and the mean value
?nequa.lity of Theorem 15.1 can be used to give an alternative proof (of the
Improved version) of the key estimate (7.18) of Theorem 7.6.

THEOREM 15.4. On any weighted manifold (M, g, ) of dimension n
there is a continuous function r(z) > 0 and a constant a = a(n) > 0
such that any ball B (x,r (2)) is relatively compact and, for any open set
UC B(z,r()),

Ammin (U) 2 ap (T) %™ (15.21)
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PROOF. For any point € M, one can always choose p = p(z) so small
that the ball B (z, p(z)) is relatively compact and is contained in a chart.
Furthermore, reducing p further, one can achieve that the Riemannian met-
ric g and the Euclidean metric e in this ball are in a fixed finite ratio, say

1
—e< g <2
2e_g_ e

(cf. Lemma 3.24), and the density function T of measure p with respect to
the Lebesgue measure A in the chart is almost constant, say

supY < 2inf Y.
Then the Faber-Krahn inequality (14.5) in R™ implies the Faber-Krahn in-
equality (15.21) in B (z,p(z)) with n = dim M and with a fixed constant
a=a(n).

To make a continuous function from p (z), denote by pg (z) the supre-
mum of all possible values of p(z) such that the above conditions are satis-
fied, capped by 1 (the latter is to ensure the finiteness of pg (z)). Let us show
that the function pg (z) is continuous. Indeed, if y € B (z, pp (z)) then the
ball B(y,p(y)) satisfies the above conditions with p (y) = po (z) — d (z,y),
which implies i

po (¥) = po (z) — d(z,y).
Swapping z and y, we obtain

oo (z) = po (y)| < d(=,y),

which proves the continuity of pg (z).
Finally, setting r (z) = 3p0 (), we obtain the required function r (z).
O

REMARK 15.5. If M has bounded geometry (see Example 11.12) then
the function r (z) is uniformly bounded below by some € > 0.

COROLLARY 15.6. Under the hypotheses of Theorem 15.1, for any f €
L% (M) and for allt > 0,

sup |P.f| < Ca™/4 (B2 +47/4) | fllps, (15.22)
B(ziR/z)

where C = C (n).

ProoF. The function u (¢,:) = P,f satisfies the hypotheses of Theorem
15.1. Since |Ju (2,-) ||z2 < || fllL2, we obtain

t
2 2
/0 /. o S

Ca~"/%¢

min (\/Z, R)

whence

W (t,2) < Tzl fI3: < Cam/ (B +7/2) |13,
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Applyin% the same argument to u = —F; f, we obtain a similar estimate for
|P;f (z)|*. Finally, replacing z by any point ' € B (z, R/2) and applying
the above estimates in the ball B (z’, R/2) instead of B (z, R), we obtain
(15.22). O

Now we can improve the inequality (7.18) of Theorem 7.6 as follows.

COROLLARY 15.7. For any weighted manifold M of dimension n and for
any set K € M, there ezists a constant C such that, for any f € L? (M)
and allt > 0,

sup|Pf| < € (1+674) If 2, (15.23)

PROOF. Let 7 (z) be the function from Theorem 15.4. Then any ball
B (z,r (z)) satisfies the hypotheses of Theorem 15.1, and we obtain by Corol-
lary 15.6 that, for all x € M,

IPf @) < C (r @™ +74) | £z,

where C = C (n). Replacing r (z) by infx r (z), which is positive by the
continuity of r (z), we obtain (15.23). O

15.3. The weighted L?-norm of heat kernel
For any D > 0, define the function Ep (¢,z) on Ry x M by

d? (z,
Boo) = [ Aeves(TeL)awe). a2
M
This quantity may take value co. For example, in R™ we have Ep (¢t,z) = oo
for any D < 2.
If D > 2 then the function
d? (z,y)
€(t7 y) - —D_t——

satisfies (12.1). It follows from Theorem 12.1 that Ep (¢, z) is a non-increasing
function of ¢ > 0, because we can represent it in the form

ED (t,w) = / (R_sf)2e£(t1')du
M
where 0 < 5 < t and f = p, (z,-) € L% Furthermore, by (12.3)

Ep (t,z) < Ep (ty, z) e~ Pmin(M{t=t0) (15.25)

for all ¢ > tg > 0.
One can naturally extend the definition (15.24) to D = o by setting

Foo (t,2) = /M 22 (2, ) dis (v) = p2e (2, 7).

Then (15.25) remains true also for D = oo (cf. (10.84) and Exercise 10.29).
Observe also that Ep (t, ) is non-increasing in D € (0, +00).
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THEOREM 15.8. Let B (z,r) be a relatively compact ball on a weighted
manifold M. Assume that the following Faber-Krahn inequality holds: for
any open set U C B(z,r),

M (U) > ap(U)™H", (15.26)
where a,n are positive constants. Then, for any t > 0 and D € (2, +00]
C(aé -n/2
Ep (t,2) < 229 (15.27)

min(t, r2)"/2’
where C = C(n) and § = min (D —2,1).
By Theorem 15.4, for any * € M there exists » > 0 that satisfies the

hypotheses of Theorem 15.8 with n = dim M. In particular, this implies the
following statement:

COROLLARY 15.9. On any weighted manifold M and for allt > 0, x €
M, and D > 2,
Ep (t,z) < 0.

The main part of the proof of Theorem 15.8 is contained in the following
lemnma.

LEMMA 15.10. Under the conditions of Theorem 15.8, set

p(y) = (d(=zy) — 1)
Then, forallt > 0,
2 —n/2
2 p (y)) Ca
z,y)exp | —== ) d, < —7, 15.28
[ #ayes (£ RS (15.28)
where C' = C (n).
PROOF. By Theorem 12.1, the left hand side of (15.28) is a non-increasing
function of ¢ > 0. Hence, it suffices to prove (15.28) for ¢ < r2. Fix a func-

tion f € L? (M) and set u = P;f. Applying the mean value inequality of
Theorem 15.1 in cylinder [t/2,t] x B (z,r), we obtain

Ca—n/z
ﬂmhwmﬁ// w2 (s,) du (y) ds (15.29)
0 B(z,r)
Consider the function

o (y)
§(S,y)= 2(S—t)’

defined for 0 < s < t and y € M. Since function £ vanishes in B (z,7), we
can rewrite (15.29) as follows:

t
-n/2
uz(t,w)sc—a—— / / u?ebdpuds. (15.30)

t1+n/2
0 B(z,r)
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Function £ obviously satisfies the condition (12.1) of Theorem 12.1. Hence,
the function

J(s) :=/ u? (s,-) e dy
M

is non-increasing in s € [0, t), in particular, J (s) < J (0) for all s € [0,t). It
follows from (15.30) that

u? (t,z) < C (at) ™2 J(0).

10 = [ e (-gz) s,

w2 (t,z) < C (at) ™™/ /M fexp (——g—i) dyp. (15.31)

Now choose function f as follows

2
f () =pt(z,y)exp (8——2%) v (1Y),

where ¢ is any cutoff function. Applying (15.31) with this function f, we
obtain

p; (z,-) exp ’—2); m 2£C(at)'“/2 P} (z,) exp g—i ©dp.
. M M

Using the inequality ¢? < ¢ and cancelling by the integral in the right hand
side, we obtain

Since

we obtain

2
/ P (z,") exp (%) pdu < C (at)™™/?,
M
whence (15.28) follows. a

PROOF OF THEOREM 15.8. Since Ep (t, z) is decreasing in D, it suffices
to prove (15.27) for D < 3. Since Ep (¢,z) is decreasing in ¢, it suffices to
prove (15.27) for t < 2.

Set § = D — 2 and observe that v/8¢t < r, so that the Faber-Krahn

inequality (15.26) holds in B (a:, \/55) Applying Lemma, 15.10 with v/3¢ in
place of r, we obtain

2
d(z,y) — ‘/E) Cg—"/2
/Mp? (2, ) exp ( s | ) < @at_)n/?

(15.32)

Using the elementary inequality

2 2
LALARN
t 8

(a—l—b)2
t+s

’
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which is true for real a,b and positive t, s, we obtain

(d(w,y)"\/E)i N (\/(s—t)z S & (z,y)

2t & T (24+48)¢
whence
(d (z,y) — \/E)2 2
2t - Dt ’
Substituting into (15.32), we obtain (15.27). O

15.4. Faber-Krahn inequality in unions of balls

In this Section we demonstrate the heat kernel techniques for merging the
Faber-Krahn inequalities, that is, obtaining the Faber-Krahn inequality in a
union {2 of a family of balls assuming that it holds in each ball separately. At
the same token, we obtain non-trivial lower estimate for higher eigenvalues,
similarly to Corollary 14.26 but in a different setting.

THEOREM 15.11. Let a,n,r be positive numbers and {z;};c; be a family
of points on M where I is any index set. Assume that, for any i € I the ball
B (z;,r) is relatively compact and, for any open set U C B (z;,7),

A (U) > ap (U)~". (15.33)

Let Q be the union of all the balls B(z;, %r), 1 € I. Then, for any open set
U C Q with finite measure (see Fig. 15.2), the spectrum of LY is discrete

and 2/n
M (0) 2 ca (u (kU)>

k> Ca™™2r "y (U),

where ¢,C are positive constants depending only on n. In particular,

p(U) < C a2 = A (U) > cap (U)™

for any k such that

PROOF. If z € (2 then z € B(z;,3r) for some i € I. Therefore,
B(z, 3r) C B(z;,r) which implies that the Faber-Krahn inequality (15.33)
holds for any open set U C B(z, %r) By Theorem 15.8 with D = o0, we
obtain y

Ca™" 2
z,z) < —————. (15.34)
P (@) min (¢, 72)"/?

Fix now an open set U C Q with finite measure. It follows from (15.34) that

U -n/2 (4~n/2 | -n) _
su z,z) < Ca t +7r =
sp Pt (@) ( )=70
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FIGURE 15.2. Set U

where
C—lan/2
Y (t) - t_n/z 4 :
By Corollary 14.26, the spectrum of £V is discrete and
Mo (U) > cA <@) , (15.35)

“where ¢ = c¢(n) > 0 and A is the L-transform of .
If v = v (t) for some t < r? then

(at)n/2
>
V=0
and by (14.27)
' —-n/2-1
A(v)=fy ®) _n_t " >-7-?'-,>_cav"2/",

() 2t 4rn = 4t
where ¢ = ¢(n) > 0. The condition t < rZ is equivalent to v (¢) <
(2C) ™1 a2, Hence, we conclude that

v< (20)‘1 aVin — A (v) = cav™
which together with (15.35) finishes the proof. O

COROLLARY 15.12. On any connected weighted mgnifold M and for any
relatively compact open set Q C M, such that M \ s non-empty, there
ezists a > 0 such for any open subset U C Q and any k € N,

2/n
e (U) > a (%U)) , (15.36)

where n = dim M. In particular, the Faber-Krahn inequality holds in Q with
function A (v) = av™/™.

2/n’
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PROOF. Since the function r (z) from Theorem 15.15 is continuous, we

have
R:=inf r(z) > 0.
2€0

By Theorem 15.15, the family of ball {B (2, R)},cq satisfies the hypotheses
of Theorem 15.11 with n = dim M. By Theorem 15.11, we obtain

A (U) 2 co <u_(kﬁ_)>2/",

where ¢y = cg (n) > 0, provided k satisfies k > Cp (U), where C = C (n, ).
Since M \ Q is non-empty, by Theorem 10.22 we have A; (2) > 0. There-
fore, if £ < Cp (U) then

Me (U) = A (Q) > A (Q) (C—lﬂ_(kU—))Wn:Cl (L_(%Y/n

where ¢; = A1 () C~?/™. Hence, (15.36) holds with a = min (cg, ¢1) for all
k> 1. O

Exercises.

15.2. Prove that the Faber-Krahn inequality holds on a weighted n-dimensional manifold

M with function iy

cv , v <ug,
A(’U):{ 0, 'UZ’U(],
where ¢, vg are some positive constants, provided M belongs to one of the following classes:
(a) M is compact;
(b) M has bounded geometry (see Example 11.12).
REMARK. If M is non-compact and has bounded geometry then the Faber-Krahn function
A can be improved by setting A (v) = cv™2 for v > vo — see [148].

15.5. Off-diagonal upper bounds

Our main result in this section is Theorem 15.14 that provides Gaussian
upper bounds of the heat kernel assuming the validity of the Faber-Krahn
inequalities in some balls. It is preceded by a lemma showing how the
weighted norm Ep (¢, x), defined by (15.24), can be used to obtain pointwise
upper bounds of the heat kernel.

LEMMA 15.13. For any weighted manifold M, for any D > 0 and all
z,y € M, t > tg > 0, the following inequality is true:
2

pe(z,y) < \/ED(%to,w)ED(%to,y) exp (‘z%: —A(t- to)> , (15.37)

where p = d(z,y) and A = Agin(M).

In particular, setting t = g we obtain

2(x
pe(z,y) < \/E'D(%t,x)ED(%t,y) exp <_d_2(D,t—y)) . (15.38)
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PrOOF. For any points z,y,z € M, let us denote o = d(y,z2), 8 =

d(z,z) and v = d(z,y) (see Fig. 15.3). By the triangle inequality, we have
of + B2 > 37°.

FIGURE 15.3. Distances «, 3, ¥

Applying the semigroup identity (7.51), we obtain
pe(z,y) = /M De2(T, 2)Pe/2(y, 2)dp(2)

8* a? _ 2
< [ e s)eBnya, DeBre Frduts)
M

1

1
2 2 cx2 2 2
S (_/1;4 p?/2($)z)e%dﬂ(z)) 2 (Alpf/2(y,z)egﬁdﬂ(z)> 2 e_sz
d*(z,y)
= 1 1 _ 3
= \/Ep(zt, z)Ep(5t,v) exp( D ) ’

which proves (15.38). Combining (15.38) with (15.25), we obtain (15.37).
O

THEOREM 15.14. Let M be a weighted manifold and let {B (i, 7i)};c;
be a family of relatively compact balls in M, where I is an arbitrary indez
set. Assume that, for any i € I, the Faber-Krahn inequality holds

Amin (U) > aip (U)~2/™ (15.39)

for any open set U C B (x;,r;), where a; > 0. Let Q be the union of all the
balls B(z;, %r,;), i €I. Then, forallz,ye Q andt >ty >0,

o) (1+ f;—z)"/zexp (~% -2t -1t0)

o (15.40)
(aiaj min(tg, r2) min(to, 7'32))

pe(z,y) <
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where p = d(z,y), i and j are the indices such that z € B(zi,3r;) and
y € B(zj, 375), and A = Amin (M).

PROOF. If ¢ € B(;, ;) then B(z, -21-n) C B (zi,r;) so that the Faber-
Krahn inequality (15.39) holds for any open set U C B(x, —%—ri). Applying
Theorem 15.8, we obtain, for all £ > 0 and D > 2,

C (a;8)™™?

t <————.

Ep (t,2) < min(t, ;)2

Using a similar inequality for Ep (%, y), we obtain by (15.37)
C5~™2 exp ( £~ Amin(M) (t — to))

pe(z,y) < 7 (15.41)
(aiaj min(tg, 7?) min(to, ,,.Jz))
Setting here
9\ —1
§= (1 + p?) (15.42)

and, consequently, D = 2 + J, we obtain that
2 2 2
im0y
4 2Dt 4D t

so that the term QEE in (15.41) can be replaced by %. Substituting (15.42)

into (15.41), we obtain (15.40). O

COROLLARY 15.15. On any weighted manifold M there is a continuous
function r (z) > 0 such that, for all z,y € M andt >ty > 0,

/2
C(1+Pt—2)n exp( A(t—to))
min(tg, 7 () )"/4m1n(to,r(y) yn/a
where n =dim M, p=d(z,y), A = Amin (M), and C = C (n).

PrOOF. Let r () be the function from Theorem 15.4. Then the family
{B (z,7(x))},cps Of balls satisfies the hypotheses of Theorem 15.14, and
(15.43) follows from (15.40). O

(15.43)

pt(w7y) <

COROLLARY 15.16. For any weighted manifold, and for all x,y € M,
lim sup 4t log ps(z, v) < —d*(z, ). (15.44)
t—0-+ :

PRrOOF. Indeed, setting in (15.43) ¢t = ¢y < min(r (z),r (y)), we obtain

2

02 /
tlogp:(z,y) < tlog (Ct‘"/z) +tlog (1 + 7) -5

Letting ¢t — 0, we obtain (15.44). O
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In fact, the matching lower bound in (15.44) is also true. More precisely,
on any weighted manifold the following asymptotic takes place:

: — _ 12
Jim 4tlogpy(z,y) = —d(z,y). (15.45)

Hence, the term ’i—: in (15.43) is sharp. Note also that if Apin (M) > 0 then
the term A (M)t in (15.43) gives a sharp exponential rate of decay of

. 2
pt (z,y) as t — oo — see Theorem 10.24. The term (1 + E;)n/ in (15.43)

is almost sharp: as it was shown in [277], on n-dimensional sphere the
following asymptotic is true

2\ n/2-1 2
c (p p
p(@y) ~ o (—t ) exp (— 4t> ,

provided z and y are the conjugate points and ¢ — 0.

COROLLARY 15.17. Let M be a complete weighted manifold of dimension
n. Then the following conditions are equivalent:
(a) The Faber-Krahn inequality holds on M with function A(v) =
cv—2/m for some positive constant c.
(b) The heat kernel on M satisfies for all z,y € M and t >ty > 0 the
estimate

C o2 n/2 02
- < e, p— —— —_—
ne) < (1+5) e (-F-re-w), (s
where p = d(z,y), A = Amin (M), and C is a positive constant.
(¢) The heat kernel on M satisfies the estimate

p: (z,2) < Ct™/2 (15.47)
forallz € M, t >0, and for some positive constant C.

PRrOOF. The implication (a) = (b) follows from Theorem 15.14 by tak-
ing r; = rj = v/t (by the completeness of M, all balls B (=, v/%) are relatively
compact). The implication (b) = (c) is trivial, and (c) = (a) is true by The-
orem 14.20 (or Corollary 14.26). |

Sometimes it is convenient to use (15.46) in the following form:

C P n/2 02
<—— _(1+£& . ,
for all ¢, T > 0, which is obtained from (15.46) by setting ¢, = min (¢, T).

The statement of Corollary 15.17 remains true without assuming the
completeness of M. Indeed, the only place where the completeness was
used is (a) = (b), and this can be proved by a different method without
completeness — see Exercise 16.4.
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Examples of manifolds satisfying (a) were mentioned in Remark 14.24.
Hence, on such manifolds, the heat kernel satisfies the estimates (15.46) and
(15.47).

Observe that, under the conditions of Corollary 15.17, the heat kernel
satisfies also the following estimate, for any € > 0 and all z,y € M, t > O:

2
pe(z,y) < Ct™™ % exp <— @ _i o) t) . (15.49)

where the constant C depends on . Indeed, this follows from (15.46) by
setting ¢o = ¢ and then using the inequality

(1 + 6)”/2 exp <_§'> < Cs,n exp ("4 f_ €) s (15.50)

which is true for all £ > 0.

COROLLARY 15.18. Let (M, g,u) be a complete weighted manifold whose
heat kernel satisfies any of the equivalent upper bounds (15.46), (15.47),

(15.49). If a weighted manifold (M,g, 1) is quasi-isometric to (M,g,u)
then the heat kernel on (M, 8, i) satisfies all the estimates (15.46), (15.47),
(15.49).

ProOOF. Thanks to Corollary 15.17, it suffices to prove that the Faber-
Krahn inequality with function A (v) = cv=2/" is stable under quasi-isometry.
For simplicity of notation, let us identify M and M as smooth manifolds. It
follows from _Exercise 10.7 or 3.44 that, for any open set U C M,

Amin (U) = Agin (U),

where Apyin (U) and Amin (U) are the bottoms of the spectrum of the Dirichlet

Laplacians in U on the manifolds (M, g, 1) and (M , 8, [1) respectively. By
Exercise 3.44, we have also

p(U) ~p(U).
Hence, the Faber-Krahn inequality
Amia (U) 2 e (U) 2"

implies
Amin (U) 2 T (U)~7,
which was to be proved. (0
Exercises.

In the following exercises, we use the notation p = d(z,y).

15.3. Prove that, on any weighted manifold M there is a positive continuous function
F(z,s) on M x R, which is monotone increasing in s and such that the heat kernel on
M satisfies the following estimate
2\ /2
< ° (1 * PT) ( pz) (15.51)
z,y) < exp | —=— .
p(%,y) F(z-,\/i)lle(y,«/f)l/z P\ &)
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for all z,y € M and ¢ > 0,where n = dim M and C = C (n) (cf. Exercise 16.3).
15.4. Prove that if M has bounded geometry then, for some constant C,

n/2
C(1+Pt_2) P
2,y) £ ———Zexp |- ), 15.52
pe(z,9) T p( 4t> (15.52)

forall z,y € M and £t > 0.
15.5. Under the hypotheses of Corollary 15.17, assume in addition that n > 2 and
u(B(z,r)) < Cr"
for all r > 0. Prove that each of the conditions (a) — (c) is equivalent to the following
estimate of the Green function:
9(z,y) < Cd(z,y)* ",
for all distinct z,y € M.

REMARK. Note for comparison that the Faber-Krahn inequality of Corollary 15.17 implies
(B (z,r)) > constr™ — see Exercise 14.5.

15.6. Under conditions of Corollary 15.17, let n > 2 and X := Amin (M) > 0. Prove that,
for any € € (0,1), the Green function of M satisfies the estimate

2—n
T, n > 2,
2,y) < Ce~ (V3o 15.53
g(z,y) < (1+log+%), n=2, ( )
for all z # y, where C = C (n,¢, A, ¢).
15.7. Let M be an arbitrary weighted manifold of dimension n > 2. Prove that if the
Green function of M is finite then, for any z € M and for all y close enough to z,

P m>2,
g(x,y) S C{ log-};, n = 2, (1554)

2

where C = C (n).

15.6. Relative Faber-Krahn inequality and Li-Yau upper bounds

DEFINITION 15.19. We say that a weighted manifold M admits the rel-
ative Faber-Krahn inequality if there exist positive constants b and v such
that, for any ball B(z,7) C M and for any relatively compact open set

U C B(z,r), )
2/v
M(U) > 7% (%) . (15.55)

In R™ (15.55) holds with ¥ = n, because it amounts to (14.5). It is
possible to prove that the relative Faber-Krahn inequality holds on any
complete non-compact manifold of non-negative Ricci curvature — see the
Notes at the end of this Chapter for bibliographic references.

DEFINITION 15.20. We say that the measure y on M is doubling if the
volume function
V(z,r) = p(B(z,1))

satisfies the inequality
V(z,2r) < CV{(z,r), (15.56)
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for some constant C and forallz € M and r > 0.
If (15.56) holds then one also says that the manifold M satisfies the

doubling volume property.
Now we can state and prove the main theorem of this section.

THEOREM 15.21. Let (M, g, ) be a connected, complete, non-compact
manifold. Then the following conditions are equivalent:

(a) M admits the relative Faber-Krahn inequality (15.55).
(b) The measure p is doubling and the heat kernel satisfies the upper

bound
o c (1 + ’;—2)”/2 2 550
pt(x,y) < exp (——) , 15.57
t vV (Z, \/E) 12 Vv (ya \/2)1/2 4t

for all for all z,y € M, t > 0, and for some positive constants C, v,
where p = d(z,y).

(¢) The measure u is doubling and the heat kernel satisfies the inequal-
ity

pe(z,7) < V—@% (15.58)

for all for allz € M, t > 0, and for some constant C.
REMARK 15.22. For the implication (a) = (b), the value of v in (15.57)

is the same as in (15.55). In this case, the estimate (15.57) can be slightly
improved by replacing v/2 by (v — 1) /2 — see Exercise 15.9.

REMARK 15.23. As we will see later (cf. Corollary 16.7), under any of
the conditions (a) — (c¢) of Theorem 15.21 we have also the matching lower

bound
c

pe(z,z) > W,

for all z € M, t > 0 and for some constant ¢ > 0.

PROOF. (a) == (b) By Definition 15.19, we have, for any ball B(z,r) C
M and any relatively compact open set U C B(z,r),

A1 (U) 2a (iB, 7‘) M(U)_Z/V, (1559)
where
a(z,r)= %V(m,r)w”. (15.60)

Applying Theorem 15.14 with the family of balls {B (z,r)},c5,, Wwe obtain
that, for all z,y € M and r,t > 0,

C(1+%2)u/2 exp( pz)-

(a (z,7) a(y,r) min(t, r2) min(t, r2))*/*

pi(z,y) <
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Note that r is arbitrary here. Choosing r = /¢ and substituting a from
(15.60) we obtain (15.57). An alternative proof of this part will be given in

Section 16.2.
By Exercise 14.5, the Faber-Krahn inequality (15.59) in the ball B (z, R)

implies that, for any r < R.
p(B(@,r)) > ca(z, R)"*r",
where ¢ = ¢ (v) > 0. Substituting a (z, R) from (15.60), we obtain
T\
Viz,r)>c (R) V(z,R), (15.61)

where the doubling property follows.

(b)) = (c) Trivial.

(¢) = (a) It follows easily from the volume doubling property (15.56)
that there exists v > 0 such that

11;((2 }:)) c (%)V , (15.62)

forallz € M and 0 < r < R. Fix a ball Q = B (z,r) and consider an open
set U C Q. Then, by (14.58) and (15.58),

MO < /m@@@@)c/ “M (15.63)

For any y € U and ¢ < r2, we have by (15.62)

V(zr) _ V(y2) <C( r )

V@ vh T Vv T \VE
Therefore,
du (y) ) ()
R A0 (72) . (15.64)
Now choose t from the condition
Y _ V()

for some ¢ € (0,1). Since we need to have ¢ < r2, we have to assume for a
while that
u(U) <eViz,r). (15.66)

If so then we obtain from (15.63), (15.64), and (15.65) that
1 1
A (U) 2 T 108 -
Choosing € = e~1C~? and evaluating ¢ from (15.65), we obtain
V (z, r)>2/"
)\ U)> 15.67
(02 5 (28 (15.67)
where b > 0 is a positive constant, which was to be proved.
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We are left to extend (15.67) to any U C B (z,r) without the restriction
(15.66). For that, we will use the following fact.
CLAamM. If M is connected, complete, non-compact and satisfies the doubling
volume property then there are positive numbers ¢,V such that

/

‘;((Z’,]:)) >c (?) ’ (15.68)

forallze M and0 <r < R.

The inequality (15.68) is called the reverse volume doubling. Assume
first R = 2r. The connectedness of M implies that there is a point y € M
such that d (z,y) = 3r. Then B (y, 37) < B(z,2r) \ B(z,r), which implies

V(@,2r) >V (@,7) + V(g 57).
By (15.56), we have

Vie,r) _ Vgdr) 4
< < C8,
Viy,3r) ~ V(y,3r)

whence
V(z,2r) > (1+C )V (z,r).
Iterating this inequality, we obtain (15.68) with / = log, (1 +C~3).
Returning to the proof of (15.67), find R > r so big that
V{(z,R) _ 1
> )

Viz,r) "¢

were € was chosen above. Due to (15.68), we can take R in the form R = Ar,

where A is a constant, depending on the other constants in question. Then
U cC B(z,R) and

w(U) <eV(z,R),
which implies by the first part of the proof that
2/v 2/v
M (U)Z—b;(v(z’R)) > b i (V(a:,r)) ’
R p(U) (Ar) ©(0)
which was to be proved. u

Using (15.61), we obtain, for p = d (z,y),

V(e _VvEite) _ o (vite)” 2\
V) S Vv 50( Vi ) SC(”t) '

Replacing V (y, v/%) in (15.57) according to the above estimate, we obtain

Dt (m,y) < V*(:S-\/Z) (1 + E;) e exp (—Z—j) (15.69)
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P 31// 4 . .
where C = C (b,v). Absorbing the term (1 + %) in (15.69) into the
exponential by means of the inequality (15.50), we obtain

pe(z,y) < << exp (———p i ) ‘ (15.70)
V(z,Vt) (44+¢e)t)’
where € > 0 is arbitrary and C = C (b,v,¢).
It follows from Theorem 15.21 that all the estimates (15.57), (15.58),
(15.69), (15.70) are equivalent’, provided the measure y is doubling.

DEFINITION 15.24. Each of the equivalent estimates (15.57), (15.58),
(15.69), (15.70) are referred to as the Li-Yau upper estimate of the heat
kernel.

COROLLARY 15.25. Assume that (M, g, 1) is connected, complete, non-
compact weighted manifold and measure p be doubling. Let (M .8, 1) be
another weighed manifold that is quasi-isometric to M. If the heat kernel
on M admits the the Li-Yau upper estimate then so does the heat kernel
on M. In other words, the Li-Yau upper estimates are stable under quasi-
isometry.

Consequently, the Li-Yau upper estimate holds on manifolds that are
quasi-isometric to complete non-compact manifolds of non-negative Ricci
curvature.

PRroo¥. In the view of Theorem 15.21, it suffices to prove that the rel-
ative Faber-Krahn inequality (15.55) is stable under quasi-isometry. For
simplicity of notation, let us identify M and M as smooth manifolds. Let d
be the geodesic distance of the metric g , B (z,r) be a metric ball of d. By
Exercise 3.44, there is a constant K > 1 such that

K~ (z,y) <d(z,y9) < Kd(z,y).

Hence, any open set U C B (z,7) is also contained in B (z, Kr), and we
obtain by the relative Faber-Krahn inequality on (M, g, 1) that

_ b p(B(z, Kr)\ ¥
Amin(U) - 2 (Kr)z( u(U) )
> D (u(é(z,ﬂ))”"
- K2\ )

= 2/v
1 [ BBz, 7))
= <—7@—> . (15.71)

INote that the equivalence of (15.58) and (15.70) can be proved without the hypothesis
of completeness — see Exercise 16.5.
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Let Xmin (U) be the bottom of the spectrum of the Dirichlet Laplacian in

U on the manifold (M,g,7%). By Exercise 10.7, we have that Amin (U) ~
Amin (U), which together with (15.71) implies the relative Faber-Krahn in-

equality on (M, g,1). O

Exercises.

15.8. Let M be a complete manifold satisfying the relative Faber-Krahn inequality. Prove
that the Green function g (z,y) is finite if and only if, for all z € M,

*®  rdr
/ Vn =
Prove also the estimate for all z,y € M:

glz,y) <C rdr

d(z,y) v (:L‘, 'r) '

15.9. Under conditions of Theorem 15.21, prove that the relative Faber-Krahn inequality
(15.55) implies the following enhanced version of (15.57):

v—1

1) C (1 + E;) T P ( 3
P (z,y) < exp (——) . 15.7
(] v (x, \/5)1/2 v (y, \/f)l/z 4t

HINT. Use the mean-value inequality of Theorem 15.1 and (12.18).

Notes

The L*-mean value inequality of Section 15.1 was introduced and proved by J.Moser
[279], [280] for solutions of uniformly elliptic and parabolic equations in R™. Moser used
for the proof his celebrated iteration techniques when one estimates the L°°-norm of a
solution via its L®-norm in a larger ball my means of a series of iterations through L®-
norms with p — 0o. A possibility to increase the exponent of p comes from the Sobolev
inequality.

Here we use a different approach, which goes back to de Giorgi and employs the
Faber-Krahn inequality in the level sets of a solution. We follow the account of this
method in {145], which in turn is based on [241] and [242]. A more general mean value
inequality under the Faber-Krahn inequality with an arbitrary function A (v) was proved
in [145] and [146]. See also [105) for extension of the mean value inequality to non-linear
operators.

The use of the weighted L?-norm of the heat kernel in conjunction with the mean
value inequality was introduced by Aronson[9], [10] in the context of parabolic equations
in R™. A good account of Aronson’s estimates of the heat kernel as well as of the Har-
nack inequality of Moser can be found in [306], [333]. The relation between the mean
value inequality and the heat kernel upper bound was extensively studied in [255]. An
alternative method of obtaining Gaussian upper bounds can be found [94], [95].

Our treatment of Gaussian upper bounds follows [141] and [146], where all the results
of Sections 15.3 and 15.5 were obtained. Let us emphasize that Theorem 15.14, which
provides the main Gaussian upper bound of the heat kernel, applies even when the Faber-
Krahn inequality is known locally, in some balls. The output of this theorem varies
depending on how much is known about the Faber-Krahn properties of the manifold in
question.

The short time asymptotics (15.45) of log p: (z,y) was proved by Varadhan [351] (see
also [296], [326]).



NOTES 415

The relative Faber-Krahn inequality (15.55) was introduced in [145], where it was
shown that (15.55) holds on complete non-compact Riemannian manifolds of non-negative
Ricci curvature (see [128], [154], [325] for alternative proofs). The equivalence of (15.55)
and the Li-Yau upper estimate was proved in [146]. The two-sided Li-Yau estimates for
the heat kernel on complete manifolds of non-negative Ricci curvature was first proved by
P.Li and S.-T. Yau [258], using the gradient estimates.

Let us briefly outline an alternative approach to obtaining the Li-Yau upper bound
from the relative Faber-Krahn inequality (Theorem 15.21), which is due to [81], [154] and
which avoids using Theorem 15.14.

Stepl. Observe that under the relative Faber-Krahn inequality, the L*-mean value
inequality Theorem 15.1 becomes

2
ui(Tyz) £ // u? dudt, (15.73)
¥ u(B(a:, e VT T))
provided R = /T, which follows from (15.3) by substitution

a= 24 (B (=R

Step 2. The L?-mean value inequality (15.73) together with the doubling volume
property (which is also a consequence of the relative Faber-Krahn inequality — see the
proof of Theorem 15.21) implies its L-counterpart — see [248], [255].

Step 3. Combining the L'-mean value inequality with the Davies-Gaffney inequality

(12.17) yields (15.57).
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Denoting the integral in (7.88) by I and using (7.87) and the fundamental theorem of
calculus, we obtain, for any ¢ € H,

(I, 9)

/ b (r(0), ) ¥ (Bt

T
[ o601 O a

T d
IO
(h(x)7‘)0) - (h‘ (mo)aﬁp)v

whence (7.88) follows.

Now fix a point z € 2 and choose ¢ > 0 so that the cube (z —¢,z+¢)" lies in
Q. For simplicity of notation, assume that the origin 0 of R" is contained in this cube,
and consider the polygonal path « connecting 0 and z inside the cube, whose consecutive
vertices are as follows:

©,0,..,0,0), (=%,0,..,0,0), ..., (z",2%..,2""1,0), (2%, 2% ..,2""",2").
By (7.88), we have

T ,
h(z) = h(0) + /o hi (y () 4 (£) dt. (7.89)

The integral in (7.89) splits into the sum of n integral over the legs of v, and only the
last one depends on z™. Hence, to differentiate (7.89) in z™, it suffices to differentiate the
integral over the last leg of . Parametrizing this leg by

v(t) = (a:l,xz, ...,:c"_l,t) , 0<t< 2™,

we obtain
Bk (z) = 2 [In B (7 (8) 5 (£) dt = 2 /mn b (3, .0, 7" 71 8) dt = R (2)
axn O amn 0 b b H b
which was to be proved. a

SECOND PROOF OF THEOREM 7.20. Let § be a chart on the manifold Ry x M, and
consider p;. as a mapping Q — L* (M). By Theorem 7.10, for any f € L2 (M), the
function P;f (z) = (pt,z, f) 2 is C™-smooth in t,z. Hence, the mapping p:.» is weakly
C*. By Lemma 7.21, the mapping p:,c is strongly C. Let Q' be another chart on
R4 x M which will be the range of the variables s,y. Since ps,y is also strongly C*™ as a
mapping from Q' — L2 (M), we obtain by (7.56)

Dt+s (93: y) = (Pt,x,Ps,y)m =C% (Q X QI) s
which implies that p: (z,y) is C*°-smooth in ¢, z,y.
Let D® be a partial differential operator in variables (¢,z) € Q. By (7.84), we have,
for any f € L* (M),
D~ (pt,-’t’ f) = (Dapt.za f) ) (790)
where D®p; , is understood as the Gateaux derivative. Since the left hand sides of (7.82)
and (7.90) coincide, so do the right hand sides, whence we obtain by Lemma 3.13

D%p; (z,-) = D%p; » ace.
Consequently, D®p; (z,-) € L? (M) and, for any f € L? (M),

D* / P (2,9) f (u) dis = D® (pua, F) = (D*pra f) = / Dpe (2,9)  (v) dis
M M

which finishes the proof. O



CHAPTER 16

Pointwise Gaussian estimates 11

In this Chapter we describe another approach to the off-diagonal upper
bounds of the heat kernel. This method allows to deduce the Gaussian
estimates for p; (z,y) directly from the estimates of p; (z,z) and p: (y,y)
and does not require the completeness of the manifold in question.

16.1. The weighted L2-norm of P, f

DEFINITION 16.1. We say that a function « defined on an interval (0,T)
is regular if «y is an increasing positive function such that, for some A > 1,
a>1landall 0 <t; <ty <T/a,

v(at1) v(atz)
V&) =) (16.1)

Here are two simple situations when (16.1) holds:

o ~(t) satisfies the doubling condition, that is, for some A > 1, and
alo<t<T/2
7(2t) < Ay(t). (16.2)
Then (16.1) holds with a = 2 because

(t) T T (te)
e (t) has at least a polynomial growth in the sense that, for some
a > 1, the function «(at)/y(t) is increasing in ¢. Then (16.1) holds
for A=1.

Let T' = o0 and 7 be differentiable. Set {(1) := logy(e") and observe
that [ is defined on (—o0,+00). We claim that - is regular provided one of
the following two conditions holds:

o I’ is uniformly bounded (for example, this is the case when () = tV
or v(t) = log" (1 + t) where N > 0);
o I’ is monotone increasing (for example, y(t) = exp(t")).

On the other hand, (16.1) fails if I/ = exp (—7) (which is unbounded as
T — —00), that is y(¢) = exp (—t™!). Also, (16.1) may fail if ¢ is oscillating.

THEOREM 16.2. Let (M, g, 1) be a weighted manifold and S C M be a a
non-empty measurable subset of M. For any function f € L>(M) and t > 0

417
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and D > 0 set
Eo(t,f)= [ (Pf)exp (d 269) (16.3)
Assume that, for some f € L?(S) and for all t > 0,
1
IP.£II5 < it (16.4)

where y(t) is a regular function on (0,+o00) in the sense of Definition 16.1.
Then, for all D > 2 and t > 0,
6A

where ¢ = c¢(a, D) > 0 and A, a are the constants from (16.1).

(16.5)

PRrROOF. The proof will be split into four steps.
Step 1. For any ¢t > 0 and r > 0 define the following quantity

T(t) = /S (P du,

where S, is the open r-neighborhood of S. By the inequality (12.11) of
Theorem 12.3, we have, forall0<r< Rand 0 <t < T,

2
L (o< /S g (Ptf)zdu+exp( ) ) / (Pef)? dp
By (16.4), we have
/ (Pef)?dp < —~ (t)

whence it follows that

1 (R—17)?
Jr(T) < Jp(t) + o) exp (—m) . (16.6)

Step 2. Let us prove that

34 r?
Jr(t) < W exp (—6—{) s (167)

for some € = £(a) > 0. Let {rx}pep and {tx}r—, be two strictly decreasing
sequences of positive reals such that

To=T, rkaO’ t0=ta tk,l,o
as k — co. By (16.6), we have, for any k > 1,

1 (rg—1—7 )2
o) € i)+ e (<G s
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‘When k& — oo we obtain

)= [ Puffdus [ FupPdus [ Pau=0 (o)

where we have used the fact that P,f — f in L2(M) as t — 0+ (cf. Theorem
4.9) and the hypothesis that f = 0 in S°.
Adding up the inequalities (16.8) for all k from 1 to oo and using (16.9),

we obtain
J(t)_z (t)ep< %1—1?—_’%—) (16.10)

Let us specify the sequences {rx} and {tx} as follows:

=" k
T = P and ¢ = t/a s
where a is the constant from (16.1). For all £ > 1 we have
r (a - 1)t
=T = ——————— d 1 =t =
Tk—1— Tk FE+1) and tgp_1—ig F
whence
(rg—1 — rk)2 ak r? 2
- —> —
2(tk_1 — t) 2((1 - 1)k2(k' + 1)2 t — e(k + 1) t
where
ak
e = g(a) = inf > 0. (16.11)

k>12(a — 1)k2(k + 1)3
By the regularity condition (16.1) we have

(e 1) 7(to)
W )

which implies

¥(t) _ o) y(t)  vtea) _ [ ,3(t)\
v(te) () () T (k) s (A’Y(t1)> '
Substituting into (16.10), we obtain

i) < v(t)z( 7(?)) exp (—e(k + )7

T

exp (—8—

s (435

where

Consider the following two cases:
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(1) f €% ~ L > 1 then

o (2) & z
Je(t) < ————-gexp(—k) ) exp( T )

¥(t)

(2) It 53; — L < 1 then we estimate J,(t) in a trivial way:

J.() < /M (Pof)? dp < :;(1?)

whence
Je(t) < (t) exp (1 + L - er—:)ﬁ'— ,th)AzE 0 exp ( s—t-)

< s (-5)

Hence, in the both cases we obtain (16.7). .

Step 3. Let us prove the inequality

6A
Ep(t, f 16.12
D( ) 'y(t/a) ( )
under the additional restriction that
D > 5¢71 (16.13)

where ¢ was defined b}; (16.11) in the previous step.
Set p(z) = d(z,S) and split the integral in the definition (16.3) of
Ep(t, f) into the series

ot = </{p<r}+

where r is a positive number to be chosen below. The integral over the set
{p < 7} is estimated using (16.4):

—/{psr} (Pif)? exp (Dt) du < exp (%)A{(Ptffd

2

< 7—(156Xp (%ft) . (16.15)

i /{2k_1r<pszkr}) (P.f)? exp (g) dy, (16.14)

k=1
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The k-th term in the sum in (16.14) is estimated by (16.7) as follows
2 A
P.f)exp ( ) du
/{2’“_1r<p32"’r} ( t ) Dt
4kp2
(ﬁ) / (Pof)? dp
SC
2k—1p

IA
]
B

41c 2 4k—1,’.2
. (t/a) ( T )
< Té%exp <—§%1;E>, (16.16)

where in the last line we have used (16.13).
Let us choose r = v/ Dt. Then we obtain from (16.14), (16.15), and
(16.16)

E'D(t f % i

whence (16.12) follows.
Step 4. We are left to prove (16.5) in the case
2 <D< Dy:=5"1 (16.17)
By Theorem 12.1, we have for any s >0and all 0 < 7 < ¢

/M (P.f)? exp (2_(7/)42——‘95) du < /M (P, f)? exp (Z(ij_ s)) dp.  (16.18)

Givent > 0 and D as in (16.17), let us choose the values of s and 7 so that
the left hand side of (16.17) be equal to Ep(t, f) whereas the right hand side
be equal to Ep, (7, f). In other words, s and 7 must satisfy the simultaneous
equations

2(t+s)=Dt
2(t + s) = Dy,
whence we obtain
D -2 D=2
s:—2—t and T—D0_2t<t

Hence, we can rewrite (16.18) in the form
ED(t’ f) < EDO(T) f)

By (16.12), we have
6A

EDo(T’f) S W’
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whence we conclude
64

ED t, f <
(¢, 5) NEEPERY
thus finishing the proof of (16.5). O

16.2. Gaussian upper bounds of the heat kernel

We will again use the notation

Bo(t2) = [ stees (D20 au).

THEOREM 16.3. If, for somex € M and allt >0,
pi(z,z) < (t) (16.19)
where 7 s a regular function on (0, +0q)" “then, for all D > 2 and t > 0,

Ep(t,z) < ;(%j, (16.20)

where C =64, ¢ = c(a,D) > 0, and a, A are the constants from (16.1).

PRrROOF. Let U be an open relatively compact neighborhood of the point
z, and let ¢ be a cutoff function of {z} in U. For any s > 0 define the
function ¢; on M by

ws(z) = ps(z, 2)p (2) -
Clearly, we have p; < ps(z,-) whence
Pips < Bips (z,°) = pr+s(z, )
and 1
1Peps3 < llpers(m, I3 < llpe(z, I = pae(z,7) < S
By Theorem 16.2, we conclude that, for any D > 2,

2 d2(3U) o
/M (Peps) exp( Dt )dus ER (16.21)

Fix y € M and observe that, by the definition of pj,
Paos ) = [ 20,207 (5,2) 9 (2)du (2) = P @),

where
Ye(2) = pe(y, 2) (2)
Since function % (+) is continuous and bounded (cf. Exercise 7.27), we con-
clude by Theorem 7.16 that
Py (z) — e (z) as s = 0,

that is,
Pyps(y) — pi(z,y) as s — 0.
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Passing to the limit in (16.21) as s — 0, we obtain by Fatou’s lemma

[ Ao (He) g 2o

Finally, shrinking U to the point z, we obtain (16.20). a

COROLLARY 16.4. Let v; and 72 be two regular functions on (0,+00),
and assume that, for two points x,y € M and allt >0

1 1
pi(z,2) < o) and p:(y,y) < ’—)’2(_1*') (16.22)

Then, for all D > 2 and t > 0,
C d*(z,y)
pt(2,y) < ——=——=——=exp (———- ;
Vmlet)ya(et) 2Dt

where C' and ¢ depend on the constants from the regularity condition, and c
depends in addition on D. ~ :

Proo¥r. By Theorem 16.3, we obtain

C
Ep(t,z) < (e and Ep(t,y) < e

Substituting these inequalities into the estimate (15.38) of Lemma 15.13, we
finish the proof. ]

In particular, if «y (¢) is regular and
1
pt(z,2) < ——
t ( ) y (t)

for all z € M and ¢t > 0 then

C d2(1'a y)

< — —

pe(z,y) < ) P ( 5Dt )’

for all z,y € M and ¢ > 0. If the manifold M is complete and the function

7 is of the form v (t) = ct™/? then this was proved in Corollary 15.17.
Exercises.
16.1. Let forsome z € M and all t € (0,T)
1
pe(z,z) < ek (16.23)

where T' € (0,+00] and v is a monotone increasing function on (0,T) satisfying the
doubling property

v(2t) < Av(t), (16.24)
for some A > 1 and all ¢t < 7/2. Prove that, for all D > 2 and £ > 0,
C
< —_— .
Ep (tr 21) =~ (t A T) ) (16 25)

where C = C(A).
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16.2. Using Exercise 16.1, give an alternative proof of Corollary 15.9: on any weighted
manifold M,

Ep(t,z) < o0
foralD>2, 2 M,t>0.

16.3. Using Lemma 15.13, prove that on any weighted manifold M, for any D > 2 there
exists a function ®(¢, z) that is decreasing in ¢ and such that the following inequality holds

pi(e,9) < B(t, 2)B(t,y) exp (—%@ ~ Amin (M) t) , (16.26)

for all 2,y € M and t > 0 (cf. Exercise 15.3).

16.4. Assume that a weighted manifold M admits the Faber-Krahn inequality with a
function A € L and let v be its L-transform. Assume that <y is regular in the sense of
Definition 16.1. Prove that, for any D > 2 and for all ¢ > 0 and z,y € M,

C d? (z,y)
pt(m,y)s,y(ct)exxw(— 2Dt ),

where C depends on D and on the regularity constants of +.

16.5. Assume that the volume function V (z,7)= u (B(z,r)) of a weighted manifold M
is doubling and that the heat kernel of M admits the estimate

o
1 Z) < ——F,
(@0 < g
for all z € M and t € (0,T), where T & (0, +00] and C is a constant. Prove that ‘
c @ (z,y)
< 2 _

pt(x1y)_ V(E,\/‘E)exp( 2Dt )

forall D > 2,z,ye M, t € (0,T) and some constant C.

REMARK. If T' = 400 and the manifold M is complete and non-compact, then this follows
from Theorem 15.21.

16.3. On-diagonal lower bounds

Here we demonstrate the use of the quantity Ep(t,z) for the proof of
some lower bounds of the heat kernel in two settings. For any £ € M and
r >0, set

V(z,r) =p(B(z,1)).

Observe that V (z,r) is positive and finite provided M is complete.

THEOREM 16.5. Let M be a complete weighted manifold. Assume that,
for somexz € M and all T > 7,

V(z,r) < Crv, (16.27)
where C,v,rg are positive constants. Then, for all t > ty,
1/4

' ZT) 2 , 16.28
pi(z,2) 2 V(z,v/Ktlogt) ( )
where K = K (z,70,C,v) > 0 and ty = max(r¢, 3).

Furthermore, for any K > v there exists large enough ty such that
(16.28) holds for all t > tg.
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Of course, (16.28) implies
Pt (z,3) 2 c(tlogt) /2.
In general, one cannot get rid of logt here — see [169].

PROOF. For any r > 0, we obtain by the semigroup identity and the
Cauchy-Schwarz inequality

pat(z, ) = / pi(z,)dp > / pi(z, )du
M B(z,r)

2
1
V(z,m) (-/B(.'z:,r) el .)du) ' o)

Since M is complete and the condition (16.27) obviously implies (11.22), we
obtain by Theorem 11.8 that M is stochastically complete, that is

/Mpt(-% dp = 1.

Using also that p:(x, z) > pa(z, z) (cf. Exercise 7.22) we obtain from (16.29)

2
1
Z,T) > ——— 1——/ z,-)d . 16.30
pt( ) V(CE,’T’) ( M\B(:z:,'r)pt( ) N) ( )
Choose r = r(t) so that

/ pe(z,)dp < 5. (16.31)
M\B(a,1)

Assume for a moment that (16.31) holds. Then

1/4
P2 T @)

To match (16.28), we need the following estimate of r (¢):

r(t) < v/ Ktlogt. (16.32)

Let us prove (16.31) with r = r(t) satisfying (16.32). Setting p = d(z,-)
and fixing some D > 2, we obtain by the Cauchy-Schwarz inequality

2
M\B(z,r)
2 o’ o’
/pt (z,)exp (T)E) du / exp <—5£> du
M

M\B(mf")

— N[ =

16.30) yields

IA

~ Ep(t,a) / exp ("%) du, (16.33)

M\B(z,r)
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where Ep(t,z) is defined by (15.24). By Theorem 12.1 and Corollary 15.9,
we have, for all £ > #,
Ep(t,z) < Ep(ty, z) < co. (16.34)

Since z is fixed, we can consider Ep(tp, ) as a constant.
Let us now estimate the integral in (16.33) assuming that

r=r(t) > ro. (16.35)
By splitting the complement of B(z, ) into the union of the annuli
B(z,28r)\ B(z,2Fr), k=0,1,2,...,
and using the hypothesis (16.27), we obtain

/ exp < gzt) dp < Zexp ( ) V(z,2r) (16.36)

M\B(zr) *=0w
o N (1) 4k
v 14
< Cr) 2 exp (—T)_) (16. 37)
k=0
Assuming
Ui 16.38
—_> .
Dt - ? ( )
the sum in (16.37) is majorized by a geometric series whence
2 2
£ < C'rv r 16.
/ exp( D )d/.L C'r exp( Dt) (16.39)
M\B(z,r)

where C’ depends on C and v. Set

r(t) = /Ktlogt, (16.40)

where the constant K will be chosen below; in any case, it will be larger
than D. If so then assuming that

t > to = max (r3, 3)

we obtain that both conditions (16.35) and (16.38) are satisfied.
Substituting (16.40) into (16.39), we obtain

2 v/2
exp ( Zt) du < C'K"/? ( logtl) . (16.41)

tvD

M\B (:t 7"')

If & > 1 then the function l%%— is decreasing for ¢ > 3. Hence assuming
K > ND we obtain from (16.41) and (16.33)

9 v/2
| mleds) sor? | B8 Boez.  (16.42)
M\B(z,r) toms-l

a
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Choosing K large enough, we can make the right hand side arbitrarily small,
which finishes the proof of the first claim.
If K > v then choosing D close enough to 2 we can ensure that

2K

— -1 .

D >0
Therefore, the right hand side in (16.42) can be made arbitrarily small pro-
vided tg large enough, whence the second claim follows. d

THEOREM 16.6. Let M be a complete weighted manifold. Assume that,
for some point x € M and all >0

V(z,2r) L CV(z,r), (16.43)
and, for allt € (0,T), .
; C
1 Z) S o= 16.44
where T' € (0, 4+o0] and C > 0. Then, for all t € (0,T),
c
' E) 2 =0 16.45
P(w) 2 s (16.45)

where ¢ > 0 depends on C.

ProoOF. It follows from (16.43) that V (z,7) < Cr¥ for all r > 1 and
some v. Hence, by Theorem 11.8, M is stochastically complete. Following
the argument in the proof of Theorem 16.5, we need to find r = r (t) so that

1
/ pt(-’ﬂ, )du < _2-,
M\B(z,r)

1/4
pt(sc,:z:) > W

which implies

(16.46)

If in addition r (t) < K/t for some constant K then (16.45) follows from
(16.46) and (16.43).
Let us use the estimate (16.33) from the proof of Theorem 16.5, that is,

2 2
( / pe(z, -)du> < Ep(t,z) exp (_;;_) dp  (16.47)
M\B(z,1) M\B(z,r) Dt

where p = d(z,-) and D > 2 (for example, set D = 3). Next, instead of
using the monotonicity of Ep(¢, z) as in the proof of Theorem 16.5, we apply
Theorem 16.3. Indeed, by Theorem 16.3 and Exercise 16.1, the hypotheses
(16.43) and (16.44) yield, for all t € (0,T),

Ep(t,z) < (16.48)

_<¢
V(iz,vt) -
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Applying the doubling property (16.43) we obtain

/ exp (—%%) du < Zexp( )V( ok+1r)

M\B(z,r) k=0
< E°° Ccktl exp( £ 2) V(z,r)
- Di
k=0
r2
< C'V(z,r)exp ( Dt) (16.49)

provided r2 > Dt. It follows from (16.47), (16.48), and (16.49) that, for any

te(0,7),
) < e (~12).
T,- exp | ——
/I\/I\B(:z,r)pt( H P Dt

Obviously, the expression exp (—m-) can be made arbitrarily small by
choosing r = vV Kt with K large enough, whlch finishes the proof. a

COROLLARY 16.7. If M is a complete non-compact weighted manifold
and M admits the relative Faber-Krahn inequality then

D \Z, —-V(.'L',\/E)
for somec> 0 and forallz e M, t > 0.

PRrROOF. Indeed, by Theorem 15.21(a), the relative Faber-Krahn inequal-
ity implies both conditions (16.43) and (16.44) with T' = 400, whence the
claim follows from Theorem 16.6. O

16.4. Epilogue: alternative ways of constructing the heat kernel

Recall that the existence of the heat kernel was proved in Chapter 7
using the key estimate (7.18) of the semigroup B, that is,

sup | Pef| < C (14 47) fllsqan (16.50)

for all t > 0 and f € L? (M), where K is any relatively compact subset of
M, 0 =0 (n) > 0, and the constant C depends on K. The estimate (16.50)
- T—~htained in Theorem 7.6 as a consequence of the Sobolev embedding
1C (K) provided ¢ is large enough.
have methods of construction of the heat kernel, which
le use of the smoothness properties as possible, to be
ing of metric measure spaces. Let us sketch three alter-
éonstructmg the heat kernel, which satisfy this require-
ize that in all cases the existence of the heat kernel is
Ertain local properties of the underlying space.

.48)
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1. The estimate (16.50) has received one more proof in Corollary 15.7,
which depends on the following two ingredients:

e Theorem 15.4 that provides the Faber-Krahn inequality in small
balls;

e Theorem 15.1 that provides a mean-value inequality for solutions
of the heat equation assuming the Faber-Krahn inequality.

The properties of manifolds that are used in this approach are the Faber-
Krahn inequality in small ball, which is a consequence of a local Euclidean
structure, and |Vd| < 1, which reflects a special role of the geodesic distance
in contrast to other possible distance functions. Although the proof of the
key Theorem 15.1 is relatively long and technical, this approach has a certain
advantage since it allows to jump quickly to Gaussian off-diagonal estimates
of the heat kernel (cf. Theorem 15.14 and Corollaries 15.17, 15.15).

2. It suffices to construct heat kernels p? in all relatively compact open
subsets £ of M. Indeed, then*one proves define p; as the limit of p?k as
k — oo where {Q} is any compact exhaustion sequence. The fact that
the limit exists follows from the monotonicity of p§! with respect to Q (ctf.
Theorem 5.23) and from

et  aesy

That p: is indeed the integral kernel of the heat semigroup F;, was proved
by J. Dodziuk [108] (see also [51, p.188]).

Let us describe two methods for construction of p?.

(¢) One first shows that the Dirichlet Laplace operator £ has a discrete
spectrum. This was proved in Theorem 10.13 using the heat kernel and the
estimate (16.50). However, to realize the present approach, it is necessary
to have a proof of of the discreteness of the spectrum without using the
heat kernel — see, for example, the second proof of Corollary 10.21. Then
one can define the heat kernel p{® by the explicit formula (10.33) via the
eigenfunctions of £2. Certain efforts are needed to verify that p{ > 0 and
(16.51), for which one employs the maximum principle.

(i4) Starting with the Faber-Krahn inequality in small balls (cf. Theorem
15.4), one first obtains the same inequality in any relatively compact open
set Q. This follows from Theorem 15.11, but one should have a different
proof for merging Faber-Krahn inequalities without using the heat kernel
(a relevant argument can be found in [179]). Then, by Theorem 14.19, the
heat semigroup PtQ is L — L? ultracontractive, and the ultracontractivity
implies the existence of the heat kernel (see, for example, [49], [96], or
[163)).

Yet another method for construction of the heat kernel under a weaker
version of the Faber-Krahn inequality can be found in [184].

Notes and further references

The key idea of Theorem 16.2, that the upper bound (16.4) for [|P:f|| implies a
Gaussian estimate (16.7) for the the integral of (P;f)? away from the support of £, is due
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to Ushakov [350] in the context of parabolic equations in R™ (see also [193]). The present
proofs of Theorems 16.2 and 16.3 were taken from {151].

The finiteness of Ep (t, z) on any manifold for D > 2 was proved in [141] and [146].

The on-diagonal lower bound of the heat kernel in Theorems 16.5 and 16.6 were
proved in [80], [79]. Moreover, Theorem 16.5 was proved in [80] under the hypothesis
V (z,7) < F (r) with a more general function F (r) than in (16.27).

Further results on the topics related to this book can be found in the following refer-
ences.

— the Gaussian bounds of heat kernels and Harnack inequalities: [13], [15], (35], [54],
[55], [74], [75], [78], [87], [94], [95], [96], (98], [101], [120], [145], [148], [149], [150],
[157], [176], [177], [179], [180], [198], [199], [230], [295], [312], [319], (320], [322],
[324), [345];

— a short time behavior of the heat kernel: [36], [131], (132], {267], {275], [276],
[277], [295], [336], [349].

— heat semigroups and functional inequalities: [20], [94], [95], [96], [188], [190],
[313], [314, [315], [369];

— heat kernels and curvature: [18], [61], [258], [267], [307], [361], [365], [366];

— heat kernels on symmetric spaces and groups: [2]]3], [7], [8], [33], [34], [84], [114],
[189], [218], [219], [287], [303], [304], [312], [355];~

— heat kernels on metric measure spaces and fractals: [14], [22], [23], [24], [27],
[124], [125], [156], [158], [162], [163], [164], [165], [166], [167], [172], [195], [202],
[224], [225], [288], [331], [332], [337], [339);

— heat kernels and random walks on graphs: [5], (25], [26], [64], [68], [70], [69], [82],
(9], {L11], [129], [181], [182], [191], [233], [234], (323, [358], [359);

— heat kernels of non-linear operators: {105], [107];

- heat kernels of higher order elliptic operators: [19], [100], [237], [312];

— heat kernels of non-symmetric operators: [117], [236], [300];

— heat kernels of subelliptic operators: [80], [31], [215], [216], (239];

— heat kernels in infinite dimensional spaces: [32], [34], [112], [113];

— heat kernels and stochastic processes: [152], [155], [161], [168], [169], [170], [171],
(178}, [210], [334);

— heat kernels for Schrédinger operators: [21], [71], [157], [160], [201], [259], [260],
(282], [283], [344], [371], [370];

- Liouville theorems and related topics: [4], [6], [28], [62], [72], [90], [91], {109],
[138], (139], [140], [143], [144], [150], [173], [204], [208], [220], [247], [248], [250]
[251), [252], [254], [261], [262], [264], [284], [285], [288], [301], [338], (341].

— eigenvalues and eigenfunctions on manifolds: [36], [51], [59], [60], [174], [183],
(185), [232], [247), [253], [256], [257], [289], [290], [291], [326], [362], [367);

- various aspects of isoperimetric inequalities: [11], [40], [42], [48], [53], [116], [128],

[249], [302], [305), [321], [354], [362].



APPENDIX A

Reference material

For convenience of the reader, we briefly review here some background
material frequently used in the main body of the book. The detailed ac-
counts can be found in numerous textbooks on Functional Analysis and
Measure Theory, see for example, [73], [88], [89], [194], [226], [229], [235],
[263], [281], [310], [318], [335], [346], [368].

A.1. Hilbert spaces

We assume throughout that # is a real Hilbert space with the inner
product (z,y) and the associated norm ||z = (z, z)"/2.

CAUCHY-SCHWARZ INEQUALITY. For all z,y € H,
Iz, )| < =l llyll-

PRrROJECTION. If S is a closed subspace of H then for any x € H there is a
unique point y € S such that (z —y) LS.

The point y is called the projection of x onto S. The mapping P : H — H
defined by Pz = y is called the projector onto S. In fact, P is a linear
bounded self-adjoint operator in #, and ||P]| < 1 (see Section A.5 below).

Let D be a dense subspace of H and [ : D — R be a linear functional.
The norm of ! is defined by

il = su &-)-
1= s Tl

The functional ! is said to be bounded if ||I| < co. The boundedness of [
is equivalent to the continuity and to the uniform continuity of I. Hence, a
bounded linear functional uniquely extends to a bounded linear functional
defined on the whole space H.

For example, any vector a € H gives rise to a bounded linear functional
lo as follows: I, (z) = (z,a) . It follows from the Cauchy-Schwarz inequality
that ||la]| = ||a||. The next theorem implies that the family {l,},c4, exhausts
all the bounded linear functional.

RieSz REPRESENTATION THEOREM. For any bounded linear functional !
on H, there exists a unique vector a € H such that l(z) = (z,a) for all x
from the domain of l. Furthermore, ||I|| = |lal|.

431
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BESSEL’S INEQUALITY. Let {vi} be a orthonormal sequence in o Hilbert
space H. Fiz a vector x € H and set

Tk = (.‘B,’U]c) .
Then
> el < izl
k

PARSEVAL’S IDENTITY. Let {vx} be an orthonormal sequence in a Hilbert
space. Fiz a vector x € H and a sequence of reals {zx} . Then the identity

T = Zxkvk
k
holds if and only if xy, = (z,vx) for all k, and

2
> |zl = o>
k

ORTHONORMAL BASIS. In any separable Hilbert space H, there is an at most
countable orthonormal basis, that is, a finite or countable sequence {vk}kN=1
such that

-

_ [0, E#L
(”’“’”’)_{ 1, k=1,

and that any vector x € H can be uniquely represented as the sum

N
= Zwkvk;
k=1

for some real zi. In the case N = oo the series converges in the norm of
H.

The series Y, zxvy is called the Fourier series of the vector x in the
basis {vx}, and the numbers z; are called the coordinates (or the Fourier
coefficients) of x.

A.2. Weak topology

A sequence {z1} in a Hilbert space H converges weakly to z € H if for
alye#
(zk,y) = (2,9)-
In this case one writes 2 — z or £ = w-limx;. Alternatively, the weak
convergence is determined by the weak topology of H, which is defined by
the family of semi-norms

Ny (z) = |(z,y)l,
where y varies in H.
In contrast to that, the topology of H that is determined by the norm
of H, is called the strong topology. Clearly, the strong convergence implies
the weak convergence.
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PRINCIPLE OF UNIFORM BOUNDEDNESS. Any weakly bounded (that is, bounded
in any semi-norm) subset of a Hilbert space is strongly bounded (that is,
bounded in the norm).

Hence, the boundedness of a subset in the weak sense is equivalent to
that in the strong sense.

We say that a set S C H is weakly compact if any sequence {zx} C S
contains a subsequence {z,} that converges weakly to some z € S.

WEAK COMPACTNESS OF A BALL. In any Hilbert space H, the ball
B:={zeH:|=z|| <1}
s weakly compact.

For comparison let us mention that the ball B is strongly compact if and
only if dim#H < oo.

It is also worth mentioning that any strongly closed subspace of # is
weakly closed, too — see Exercise A.5. Hence, the closedness of a subspace
in the weak sense is equivalent to that in the strong sense.

Exercises.

A.l. Prove that if {zx} and {yi} are two sequences in # such that zx = z and yx — y
then

(mk) ’!Jk) - (w,y) .
A.2. Prove that if zx — z then

el < Yimin [

A.3. Let {zx} be a sequence of vectors in a Hilbert space H and z € .
(a) Prove that zx — z if and only of
zr — x and ||zk] — {2
That is, the strong convergence is equivalent to the weak convergence and the con-
vergence of the norms.

(b) Prove that zx — = if and only if the numerical sequence {||lzx||} is bounded and, for
a dense subset D of H,

(zx,y) = (z,y) for any y € D.
That is, the weak convergence is equivalent to the convergence “in distribution” and
the boundedness of the norms.
A4, Let {vx},o, be an orthonormal sequence in #.

(a) Prove that vy — 0 as k — oo.
(b) Prove that, for any sequence of reals cx, the series

oo
E CkUk

k=1

converges weakly if and only if it converges strongly.

A.5. A subset S of a Hilbert space H if called weakly closed if it contains all weak limits
of all sequences from S. Prove that any closed subspace of H is also weakly closed.

-~
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A.3. Compact operators

Let X,Y be two Banach spaces. A linear operator A : X =Y is called
bounded if
4] := inf [ Azly < o0
zex\{0} ||zllx
A linear operator A : X — Y is called compact if, for any bounded set
S C X, its images A (S) is a relatively compact subset of Y. Equivalently,
this means that, for any bounded sequence {Zn}pe; C X, there exists a
subsequence {zn,} such that A (z,,;) converges in Y.

THEOREM. Any compact operator is bounded. Composition of a compact
operator and a bounded operator is compact.

Let H be a Hilbert space. A a bounded operator A : H — H is called
self-adjoint if
(Az,y) = (z, Ay) for all z,y € H.
A vector z € H is called an eigenvector of A ff z # 0 and Az = Az for some
scalar A, which is called the eigenvalue of z. '

THE HILBERT-SCHMIDT THEOREM. Let A be a compact self-adjoint operator
in o Hilbert space H. Then, in the orthogonal complement (ker A)* of the
kernel of A, there exists an at most countable orthonormal basis {vk}kN=1 ,
such that each v is an eigenvectors of the operator A. The corresponding
eigenvalues A are real, and if N = 0o then the sequence { A} tends to 0 as
k — oo.

Note that all the eigenvalues Ay are non-zero because vy ¢ ker A. If
the space H is separable then ker A admits at most countable orthonormal
basis, say {w;}. Obviously, w; is an eigenvector of A with the eigenvalue 0.
Merging the bases {v;} and {w;}, we obtain an orthonormal basis in H that
consists of the eigenvectors of A.

A.4. Measure theory and integration

A.4.1. Measure and extension. Let M be a set and S be a family
of subsets of M containing the empty set §. A measure on S is a function
p: S — [0,+00] such that p (@) = 0 and, for any finite or countable sequence
{E;} of disjoint sets from §, if the union E = U;F; is in S then

u(E) =3 n(B).

Measure u is called o-finite if there exists a countable sequence of sets
{E;}2, from S covering M and such that y (E;) < oo.
A non-empty family S of subsets of M is called a semi-ring if the fol-
lowing two conditions holds:
e ELFeS = ENFEeS;
e E,Fe€S = E\F is a disjoint union of a finite family of sets
from S.
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For example, the family of all intervals! in R is a semi-ring, and so is
the family of all boxes? in R".
A non-empty family R of subsets of M is called a ring if

E,FER = FEUF and E\ F are also in R. (A.1)

It follows from (A.1) that also E N F € R. Hence, a ring is a semi-ring.

A family 3 of subsets of M is called a o-ring if it is a ring and, for
any countable sequence {F;}:2; of sets from X, also their union U;E; is in
3. This implies that the intersection N;E; is also in 3. Hence, a o-ring
¥ is closed with respect to the set-theoretic operations N, U, \ on countable
sequences of sets. A o-ring T is called a o-algebra if M € 2.

For any semi-ring S, there is the minimal ring R = R(S) containing
S, which is obtained as the intersection of all rings containing S. In fact,
R (S) consists of sets which are finite disjoint unions of sets from S. If pis a
measure on S then u uniquely, éxtends to a measure on R (S), also denoted
by u, and this extension is given by -

n
p(4) = p(4) (42)
=1
whenever A € R(S) is a finite disjoint union of sets Ay, ..., A, €S.

For any ring R, there is the minimal o-ring ¥ = ¥ (R) containing R,
which is obtained as the intersection of all o-rings containing R.
CARATHEODORY EXTENSION THEOREM. Any measure u defined on a ring
R extends to a measure on the o-ring . (R); besides, this extension is unique
provided measure u is o-finite.

The extended measure, again denoted by p, is defined for any A € ¥ (R)
by

[o o] o0
u(A):inf{Zu(Ai):AieR, AcUA,}. (A.3)
i=1 i=1
Let u be a measure defined on a o-ring ¥. A subset of M is called a null
set if it is a subset of a set from ¥ with p-measure 0. Measure u is called
complete if all null sets belong to . An arbitrary measure can be extended
to a compete measure as follows. Denote by ¥ the family of sets of the form
EUN where E € ¥ and N is a null set. Then ¥ is a o-ring, and i can be
extended to ¥ by setting u (E UN) = u(E). Measure p with domain ¥ is
complete.
In fact, the formula (A.3) is valid for all A € T (R). The extension of a
measure y from a ring R (or from a semi-ring S) to a complete measure on
3 (R) is called the Carathéodory extension.

1Including open, closed, and semi-open intervals.
2A box in R™ is a set of the form

L x..x1I,

where I C R are intervals.
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As an example of application of this procedure, consider construction
of the Lebesgue measure in R™. Let S be the semi-ring of all intervals in
R and A(I) be the length of any interval I € S; in other words, if a < b
are the ends of I (that is, I is one of the sets (a,b), [a,b], [a,b), (a,]])
then set A(I) = b —a. It is easy to see that A is a measure on S and,
moreover, this measure is o-finite. More generally, for any box E C R?,
define its n-volume A, (E) as the product of the lengths of the sides of E.
It is not difficult to prove that A, is a o-finite measure on the semi-ring S
of all boxes. Hence, )\, admits a unique extension to the minimal o-ring (in
fact, o-algebra) containing S. This g-algebra is denoted by B (R™), and the
elements of B (R™) are called Borel sets.> Null sets in R™ are not necessarily
Borel. Completing the o-algebra B (R") by adding the null sets, we obtain
the o-algebra A (R™) of Lebesgue measurable sets. The extension of measure
An to A (R") is called the n-dimensional Lebesgue measure.

The Lebesgue measure has an additional property, stated in the next
theorem, which is called regularity and whjch links the measure with the
topology. g
THEOREM. Let u be the Lebesque measure in R™. For any compact set
K C R™, the measure u(K) is finite, and, for any Lebesgue measurable set
A CR™, u(A) satisfies the identities:

p(A)=sup{p(K): K C A, K compact} (A.4)’

and
p(A)=inf {p(U): ACQ, Q open}. (A.5)

A.4.2. Measurable functions. Let y be a measure defined on a o-
algebra in a set M. We say that a subset A C M is measurable (or p-
measurable) if A belongs to the domain of measure p. We will be consider-
ing functions on M, taking values in the extended real line [—o0,400]. A
function f: M — [—o0,+00] is called measurable if the set

{reM: f(z) <t}

is measurable for any real .

All algebraic operations on measurable functions result in measurable

functions provided they do not contain indeterminacies g, %, and oo —

co. Moreover, if fi,..., fn are measurable functions on M taking values in
R and F (zy1,...,Z5) is a continuous function on R” then F (fi,..., fn) is a

3The class B (R™) of Borel sets is very large. In particular, it contains all open and
closed sets in R™. Denote by G the family of all open sets and by F the family of all closed
sets. Next, denote by Gs the family of all countable intersections of open sets, and by F»
the family of all countable unions of closed sets. Similarly, one defines even larger families
Gsoy Fos, Gsos, Foso, etc, which all are called Baire classes. Since B (R™) is a o-algebra,
it