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Welcome!

Welcome to SEP19: Topics in Game Theory

“The study of rational decision-making”

▸ Instructors: Panayotis Mertikopoulos

▸ Meeting times: Mondays 09:00-13:00

▸ e-class: https://eclass.uoa.gr/courses/MATH806/

▸ Sessions: Focus on general theory with some deep dives / practical sessions (TBD)

▸ Grading scheme: split between end-of-term project (50%) and final (50%)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Course overview

Rough breakdown of the course:

1. Part 1: Basic elements of game theory
▸ Basic notions: Nash equilibrium, dominated strategies,…

▸ Basic notions: Nash equilibrium, dominated strategies,…

▸ Game classes: potential games, congestion games, price of anarchy,…

▸ Game dynamics: replicator dynamics, exponential weights,…

2. Part 2: Multi-armed bandits and online optimization
▸ Bandits and regret: regret minimization,…

▸ Algorithms: HEDGE, EXP3,…

▸ Online convex optimization: regret, convexification,…

▸ Algorithms: leader-following policies, gradient / mirror descent,…

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Why game theory?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Example 1: A game of roads

A beautiful morning commute in Chicago

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The price of congestion

In the US alone, congestion cost $305 billion in 2017 (≈1.6% of GDP)
2 source: INRIX

▸ Lost productivity
▸ Fuel waste
▸ Environmental impact, quality of life,…

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Game of roads

The city of Chicago

▸ 2,700,000 people

▸ 1,261,000 daily trips

▸ 933 nodes

▸ 2950 edges

▸ 870,000 o/d pairs

▸ ≈  ∗  paths

A very large game!

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Example 2: Spot the fake

Which person is real?

2 Spoiler: https://thispersondoesnotexist.com

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

https://thispersondoesnotexist.com
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Neural networks

The workhorse of deep learning:
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x
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y

input

hidden layers
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The deep learning revolution: breaking the human perception barrier (2010’s)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Neurons

The atoms of any deep learning architecture are its neurons:

input

x

x

x

f output

w

w

w

▸ Input could be binary {, } or real (e.g., average intensity of image)
▸ Inputs weighed with weight coefficients w i

▸ Neuron activates on value of f (∑i w ix i)

Examples

1. Perceptron: binary inputs, step function activation

2. Sigmoid neuron: real inputs, tanh activation

3. ReLU: real inputs, rectified linear activation ( f (z) = [z]+)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The schematics of GANs
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Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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GAN training

How to find good generators (G) and discriminators (D)?

Discriminator: maximize (log-)likelihood estimation

max
D∈D

log ℓ(G ,D)

Generator: minimize the resulting divergence

min
G∈G

max
D∈D

log ℓ(G ,D)

A (very complex) zero-sum game!

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Training landscape

A deep learning loss landscape

2 Easier problem: find a needle in a haystack

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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FailGAN

The game does not always work out:

2 A StyleGAN after 8 days of training at Nvidia headquarters (!!!)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



15/49

Overview & basic information Introduction and basic examples Playing with pure strategies Playing with mixed strategies Nash’s theorem Potential games References

Questions we'll try to answer

1. How should we model player interactions?
▸ Urban traffic ≠ transit systems ≠ packet networks ≠ …

▸ Rational agents ≠ humans ≠ AI algorithms ≠ …

▸ Competition ≠ congestion ≠ coordination ≠ …

2. What is a desired operational state?
▸ Social optimum ≠ equilibrium ≠ …

▸ Static (equilibrium, social optimum) ≠ Bayesian ≠ online (regret) ≠ …

3. How to compute it?
▸ Calculation ≠ learning ≠ implementation

▸ Informational constraints: feedback, bounded rationality, uncertainty, …

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Let's play a game

What would you play? How can we model this game mathematically?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Let's play a game, formally

▸ Players: “” and “”

▸ Actions associated to each player: Ai = {R, P, S}, i = , 

▸ Payoff matrix (win: $; lose −$; tie $):

A =

R P S
R  − 
P   −
S −  

▸ Payoff functions:
▸ u ∶A ×A → R given by u(R, R) = , u(R, P) = −, …
▸ u ∶A ×A → R given by u(R, R) = , u(R, P) = , …

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Some basics

What's in a game?

A game in normal form is a collection of three basic elements:

1. A set of playersN
2. A set of actions (or pure strategies) Ai per player i ∈N
3. An ensemble of payoff functions u i ∶A ≡∏ j A j → R per player i ∈N

Important:

▸ Player set: atomic vs. nonatomic
▸ Action sets: finite vs. continuous; shared vs. individual; …

+ NB: do not mix game classes!

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Taxonomy

Actions

Players
Finite

Finite

Continuous

Continuous

Population Games

Mean Field Games

Finite Games

Continuous Games

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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What's in a game?

Definition (Finite games)

A finite game in normal form is a collection of the following primitives:

▸ A finite set of playersN = {, . . . ,N}

▸ A finite set of actions (or pure strategies) Ai for each player i ∈N

▸ A payoff function u i ∶A ∶=∏ j A j → R for each player i ∈N

A game with primitives as above will be denoted as Γ ≡ Γ(N ,A, u).

Some notes:

▸ “Normal form”↝ difference with “extensive form” games (Chess, Go,…)

▸ Handy shorthands: (a , . . . , a i , . . . aN)← (a i ; a−i) and A−i =∏ j≠i A j

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The Prisoner's Dilemma

Bonnie and Clyde are captured by the authorities and put in separate cells:

▸ If both betray each other, they both serve 2 years in prison

▸ If Bonnie betrays but Clyde remains silent, Bonnie goes free and Clyde serves 3 years

▸ If Bonnie remains silent but Clyde betrays, Bonnie serves 3 years and Clyde goes free

▸ If neither betrays the other, they both serve 1 year

Normal form representation:
▸ Players: N = {B,C}

▸ Actions: AB = AC = {betray, silent}

▸ Payoff bimatrix:
B ↓ C → betray silent
betray (−,−) (,−)
silent (−, ) (−,−)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Split or steal?

https://www.youtube.com/watch?v=S0qjK3TWZE8

▸ If both players steal, they both get nothing

▸ If one player steals and the other splits, the one who steals gets everything

▸ If both players split, they split the prize

Do you split or steal?

Normal form representation:
▸ Players: N = {A, B}

▸ Actions: AA = AB = {split, steal}

▸ Payoff bimatrix:
A ↓ B → split steal
split ($, $) (, $)
steal ($, ) (, )

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

https://www.youtube.com/watch?v=S0qjK3TWZE8
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The battle of the sexes

Robin and Charlie want to go out for the evening:

▸ Robin prefers to go to a movie

▸ Charlie prefers to go to the theater

▸ They both prefer being together instead of alone

Normal form representation:
▸ Players: N = {R,C}

▸ Actions: AR = AC = {movie, theater}

▸ Payoff bimatrix:
R ↓ C → movie theater
movie (, ) (, )
theater (, ) (, )

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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The collision game

Robin and Charlie arrive at an uncontrolled intersection:

▸ If they both drive through, they crash

▸ If they both yield, they may wait forever

▸ If one yields and the other drives through, the latter loses less time

Normal form representation:
▸ Players: N = {R,C}

▸ Actions: AR = AC = {drive, yield}

▸ Payoff bimatrix:
R ↓ C → drive yield
drive (−,−) (, )
yield (, ) (, )

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Dominated strategies

Sometimes, an action may yield consistently suboptimal payoffs

Definition (Dominated strategies)

1. A strategy a i ∈ Ai is strictly dominated by a′i ∈ Ai if

u i(a i ; a−i) < u i(a′i ; a−i) for all a−i ∈ A−i

2. A strategy a i ∈ Ai is weakly dominated by a′i ∈ Ai if

u i(a i ; a−i) ≤ u i(a′i ; a−i) for all a−i ∈ A−i

and u i(a i ; a−i) < u i(a′i ; a−i) for some a−i ∈ A−i .

Notation:

▸ a i is strictly dominated by a′i : a i ≺ a
′
i

▸ a i is weakly dominated by a′i : a i ≼ a
′
i

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Examples, revisited

The prisoner's dilemma:

R ↓ C → betray silent
betray (−,−) (,−)
silent (−, ) (−,−)

Split or steal:
R ↓ C → split steal
split ($, $) (, $)
steal ($, ) (, )

Battle of the sexes:
R ↓ C → movie theater
movie (, ) (, )
theater (, ) (, )

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Iteratively dominated strategies

A larger game:

(, ) (, ) (, )
(, ) (, ) (, )
(, ) (, ) (, )

Definition
1. A strategy is called iteratively dominated if it becomes dominated after successive elimination of

dominated strategies.

2. A game is called dominance-solvable if the successive elimination of dominated strategies leads to a
singleton.

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Best responses

What if only the strategy of the opposing player(s) is known?

Definition (Best responses)

The strategy a∗i ∈ Ai is a best response to a−i ∈ A−i if

u i(a∗i ; a−i) ≥ u i(a i ; a−i) for all a i ∈ Ai

or, equivalently, if
a∗i ∈ argmaxa i∈Ai

u i(a i ; a−i).

The set-valued function BRi ∶A−i ⇉ Ai given by

BRi(a−i) = argmaxa i∈Ai
u i(a i ; a−i)

is called the best-response correspondence.

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



29/49

Overview & basic information Introduction and basic examples Playing with pure strategies Playing with mixed strategies Nash’s theorem Potential games References

Examples

The prisoner's dilemma:
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Split or steal:
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Battle of the sexes:
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movie (, ) (, )
theater (, ) (, )

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Dominated strategies and best responses

Some more examples of best responses

(, ) (, ) (, )
(, ) (, ) (, )
(, ) (, ) (, )

Best responses cannot contain dominated strategies

2 What about weakly dominated strategies?

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Nash equilibrium

Equilibrium: best-responding to each other’s actions

Definition (Nash equilibrium)

An action profile a∗ = (a∗ , . . . , a∗N) is a Nash equilibrium if

a∗i ∈ BRi(a∗−i) for all i ∈N

or, equivalently, if
u i(a∗i ; a∗−i) ≥ u i(a i ; a∗−i) for all a i ∈ Ai and all i ∈N .

Intuition:

▸ Stability: no player has an incentive to deviate

▸ Unilateral resilience: stable against individual player deviations, not multi-player ones

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Examples, revisited

The prisoner's dilemma:

R ↓ C → betray silent
betray (−,−) (,−)
silent (−, ) (−,−)

Split or steal:
R ↓ C → split steal
split ($, $) (, $)
steal ($, ) (, )

Battle of the sexes:
R ↓ C → movie theater
movie (, ) (, )
theater (, ) (, )
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RPS, revisited

How about Rock-Paper-Scissors?

R P S
R  − 
P   −
S −  

Nash equilibria don’t always exist!
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3 Playing with mixed strategies

4 Nash’s theorem

5 Potential games
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Mixed strategies

Instead of playing pure strategies, players could mix their actions:

▸ Mixed strategy of player i ∈N : probability distribution x i on Ai

▸ Notation: x i a i = prob. that player i selects a i ∈ Ai

▸ Strategy space of player i :

Xi ∶= ∆(Ai) = {x i ∈ RAi ∶ x i a i ≥  and ∑a i∈Ai
x i a i = }

2 ∆(Ai); simplex spanned by Ai

▸ Support of x i : actions that are played with positive probability under x i

supp(x i) ∶= {a i ∈ Ai ∶ x i a i > }

▸ x i is pure when supp(x i) is a singleton, i.e.,

supp(x i) = {a i} for some a i ∈ Ai

2 Origin of the term “pure strategies”

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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RPS, revisited

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

P

R

R

∆{R, P, S}

ePeR

eS

(  ,

 ,


 )
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Mixed strategies (collective)

When all players mix their actions:

▸ Each player i ∈N uses a mixed strategy x i ∈ Xi

▸ Prob. of selecting the action profile a = (a , . . . , aN) ∈ A =∏ j A j :

xa , . . . ,aN =∏ j∈N x ja j

▸ Prob. of selecting a−i ∈ A−i :
x−i ;a−i =∏ j≠i x ja j

▸ Mixed strategy profile:
x = (x , . . . , xN) ∈ X ∶=∏i∈N Xi

▸ Mixed strategy profile of i's opponents:

x−i = (x , . . . ,�x i , . . . , xN) ∈ X−i ∶=∏ j≠i X j

+ NB: X =∏ j ∆(A j) ≠ ∆(∏ j A j) = ∆(A) 2 mixed vs. correlated strategies

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Expected payoffs

Expected payoffs under mixed strategies:

▸ Expected payoff to a player under a mixed strategy profile:

u i(x) = ∑
a∈A

⋯ ∑
aN∈AN

x,a⋯xN ,aN u i(a , . . . , aN)

or, in terms of other players’ strategies:

u i(x i ; x−i) = ∑
a i∈Ai

∑
a−i∈A−i

x i a i x−i ;a−i u i(a i ; a−i)

▸ Expected payoff to a pure strategy under a mixed strategy profile:

v i a i (x) ∶= u i(a i ; x−i) = ∑
a−i∈A−i

x−i ;a−iu i(a i ; a−i)

▸ Mixed payoff vectors:
v i(x) = (v i a i (x))a i∈Ai = (u i(a i ; x−i))a i∈Ai

so
u i(x) = ⟨v i(x), x i⟩

+ NB: u i is linear in x i ; v i a i and v i are independent of x i

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategies: x i ∈ Xi

S P

R

R

(  ,

 ,


 )

ePeR

eS

∆{R, P, S}

Mixed strategy payoffs:

u(x , x) = x,Rx,R ⋅ () + x,Rx,P ⋅ (−) + x,Rx,S ⋅ ()
+ x,Px,R ⋅ () + x,Px,P ⋅ () + x,Px,S ⋅ (−)
+ x,Sx,R ⋅ (−) + x,Sx,P ⋅ () + x,Sx,S ⋅ ()
= x,R(x,S − x,P) + x,P(x,R − x,S) + x,S(x,P − x,R)
= x⊺ Ax

u(x , x) = −u(x , x)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Mixed extensions

Definition (Mixed extension of a finite game)

The mixed extension of a finite game Γ = Γ(N ,A, u) is the continuous game ∆(Γ) with

▸ Players i ∈N = {, . . . ,N}

▸ Actions x i ∈ Xi = ∆(Ai) per player i ∈N

▸ Payoff functions u i ∶X → R, i ∈N

Notes:

▸ Continuous game: game with continuous action spaces (here Xi instead of Ai )

▸ Context: when clear, we will not distinguish between Γ and ∆(Γ)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Mixed best responses

Extending the notion of best-responding to mixed strategies

Definition (Mixed best responses)

The mixed strategy x∗i ∈ Xi is a best response to the mixed profile x−i ∈ X−i if

u i(x∗i ; x−i) ≥ u i(x i ; x−i) for all x i ∈ Xi

or, equivalently, if
x∗i ∈ argmaxx i∈Xi

u i(x i ; x−i) = argmaxx i∈Xi
⟨v i(x), x i⟩

As before, we write BRi(x−i) = argmaxx i∈Xi
u i(x i ; x−i).

Notes:

▸ Structure: BRi(x−i) is always a face of Xi 2 Why?

▸ Notation: rely on context to distinguish between pure / mixed best responses

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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1 Overview & basic information

2 Playing with pure strategies

3 Playing with mixed strategies

4 Nash’s theorem

5 Potential games
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Go-to example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategies: x∗i ∈ Xi

S P

R

R

(  ,

 ,


 )

ePeR

eS

∆{R, P, S}

Mixed strategy payoffs when x∗ = x∗ = (/, /, /):

u(x∗ , x∗ ) = 
 (���

 −

 ) +


 (���

 −

 ) +


 (���

 −

 ) =  = u(x∗ , x∗ )

In fact:
u(x , x∗ ) =  = u(x∗ , x) for all x ∈ X , x ∈ X

so

x∗ ∈ BR(x∗ ) and x∗ ∈ BR(x∗ )

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Nash equilibrium in mixed strategies

Extending the notion of equilibrium to mixed strategies

Definition (Nash equilibrium)

A strategy profile x∗ = (x∗ , . . . , x∗N) is a Nash equilibrium if

x∗i ∈ BRi(x∗−i) for all i ∈N

or, equivalently, if
u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi and all i ∈N .

Notes:

▸ Unilateral stability: ceteris paribus, no player has an incentive to deviate

▸ If x∗ is pure Ô⇒ pure Nash equilibrium 2 otherwise “mixed”

▸ If “>” instead of “≥” for x i ≠ x∗i Ô⇒ strict Nash equilibrium

+ Prove: x∗ is strict ⇐⇒ BRi(x∗−i) is a singleton for all i ∈ N

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Nash's theorem

RPS admits a Nash equilibrium in mixed strategies – is this always the case?

Theorem (Nash, 1950)
Every finite game admits a Nash equilibrium in mixed strategies.

Notes:

▸ Support: Nash’s theorem does not specify the support or other properties

▸ Oddness: generically odd number of equilibria 2 Wilson (1971)

▸ Index: generically, if m pure equilibria, at least m −  mixed equilibria 2 Ritzberger (1994)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Proof, Part I

Skeleton of the proof:
▸ Introduce collective best-response correspondence BR∶X ⇉ X given by

BR(x) = (BRi(x−i))i=, . . . ,N

▸ x∗ is a Nash equilibrium ⇐⇒ x∗ ∈ BR(x∗)

▸ Invoke Kakutani’s fixed-point theorem for set-valued functions.

Theorem (Kakutani, 1941)

Let C be a nonempty compact convex subset of Rd , and let F∶C ⇉ C be a set-valued function such that:

(P1) F(x) is nonempty, closed and convex for all x ∈ C

(P2) F is upper hemicontinuous at all x ∈ C , i.e., x̃ ∈ F(x) whenever xt → x and x̃t → x̃ for sequences xt ∈ C and
x̃t ∈ F(xt).

Then there exists some x∗ ∈ C such that x∗ ∈ F(x∗).

2 Upper hemicontinuity↭ closed graph

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Proof, Part II

Verify the conditions of Kakutani’s theorem for C ← X and F ← BR:

(P1) BR(x) is a face of X , so it is nonempty, closed and convex 2 Why?

(P2) Argue by contradiction
▸ Suppose there exist sequences xt , x̃t ∈ X , t = , , . . . , such that xt → x , x̃t → x̃ and x̃t ∈ BR(xt), but x̃ ∉ BR(x).
▸ Then there exists a player i ∈ N and a deviation x′i ∈ Xi such that

u i(x′i ; x−i) > u i(x̃ i ; x−i)
▸ But since x̃ i ,t ∈ BR(x−i ,t) by assumption, we also have:

u i(x′i ; x−i ,t) ≤ u i(x̃ i ,t ; x−i ,t)
▸ Since xt → x , x̃t → x̃ and u i is continuous, taking limits gives

u i(x′i ; x−i) ≤ u i(x̃ i ; x−i)

which contradicts our original assumption.
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Potential games and best responses

Going back to pure strategies:

▸ In single-player games: Nash equilibria (maximizers) trivially exist

▸ In multi-player games: not true

Bridge between single- and multi-player settings?

Definition (Potential games; Monderer & Shapley, 1996)

A finite game Γ ≡ Γ(N ,A, u) is a potential game if there exists a function Φ∶A→ R such that

u i(a′i ; a−i) − u i(a i ; a−i) = Φ(a′i ; a−i) −Φ(a i ; a−i)

for all a, a′ ∈ A and all i ∈N .

Examples
▸ Battle of the sexes
▸ Congestion games (more later…)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών
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Basic properties

Existence of equilibria:

▸ Any global maximizer a∗ ∈ argmaxΦ of Φ is a pure Nash equilibrium

▸ Any unilateral maximizer a∗ ∈ A of Φ is a pure Nash equilibrium

▸ Unilateral maximizers:
Φ(a∗) ≥ Φ(a i ; a∗−i) for all a i ∈ Ai and all i ∈N

When is a game a potential one?

Proposition

Γ is a potential game if and only if

∇x jv i(x) = ∇x i v j(x) for all x ∈ X and all i , j ∈N

where v i(x) = (u i(a i ; x−i))a i∈Ai is the mixed payoff vector of player i ∈N .

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



47/49

Overview & basic information Introduction and basic examples Playing with pure strategies Playing with mixed strategies Nash’s theorem Potential games References

Basic properties

Existence of equilibria:

▸ Any global maximizer a∗ ∈ argmaxΦ of Φ is a pure Nash equilibrium

▸ Any unilateral maximizer a∗ ∈ A of Φ is a pure Nash equilibrium

▸ Unilateral maximizers:
Φ(a∗) ≥ Φ(a i ; a∗−i) for all a i ∈ Ai and all i ∈N

When is a game a potential one?

Proposition

Γ is a potential game if and only if

∇x jv i(x) = ∇x i v j(x) for all x ∈ X and all i , j ∈N

where v i(x) = (u i(a i ; x−i))a i∈Ai is the mixed payoff vector of player i ∈N .

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



47/49

Overview & basic information Introduction and basic examples Playing with pure strategies Playing with mixed strategies Nash’s theorem Potential games References

Basic properties

Existence of equilibria:

▸ Any global maximizer a∗ ∈ argmaxΦ of Φ is a pure Nash equilibrium

▸ Any unilateral maximizer a∗ ∈ A of Φ is a pure Nash equilibrium

▸ Unilateral maximizers:
Φ(a∗) ≥ Φ(a i ; a∗−i) for all a i ∈ Ai and all i ∈N

When is a game a potential one?

Proposition

Γ is a potential game if and only if

∇x jv i(x) = ∇x i v j(x) for all x ∈ X and all i , j ∈N

where v i(x) = (u i(a i ; x−i))a i∈Ai is the mixed payoff vector of player i ∈N .

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών



48/49

Overview & basic information Introduction and basic examples Playing with pure strategies Playing with mixed strategies Nash’s theorem Potential games References

Best-response dynamics

A natural updating process:

▸ Players may choose a new action at each t = , , . . .

▸ Players best-respond if this strictly increases their payoff

Definition (Best-response dynamics)

The best-response dynamics are defined by the recursion

a i t ,t+

⎧⎪⎪⎨⎪⎪⎩

∈ BRi t (a−i t ,t) if a i t ,t ∉ BRi t (a−i t ,t)
= a i t ,t otherwise

(BRD)

where it is any player that updates at stage t.

Notes:

▸ Simultaneous: all players update simultaneously

▸ Iterative: players update in a round robin fashion

▸ Randomized: random subset of players updates at any given stage
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Convergence

Does (BRD) converge?

7 No – and different modes of updating don't help 2 Think RPS

But good convergence properties in potential games:

Proposition (Monderer & Shapley, 1996)

Let Γ be a finite potential game. Then the iterative version of (BRD) converges to a pure Nash equilibrium after finitely
many steps.

Notes:

▸ Simple proof: potential before and after an update is

Φ(a+i ; a−i) −Φ(a i ; a−i) = u i(a+i ; a−i) − u i(a i ; a−i) > 

whenever a+i ≠ a i Ô⇒ no action profile is visited twice Ô⇒ the process stops

▸ Iterative vs. simultaneous: the distinction matters, simultaneous (BRD) may cycle
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